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Quasi-isometries for certain right-angled Coxeter groups
Alexandra Edletzberger

Abstract. We construct the JSJ tree of cylinders 7, for finitely presented, one-ended, two-dimen-
sional right-angled Coxeter groups (RACGs) splitting over two-ended subgroups in terms of the
defining graph of the group, generalizing the visual construction by Dani and Thomas [J. Topol. 10
(2017), 1066-1106] given for certain hyperbolic RACGs. Additionally, we prove that 7, has two-
ended edge stabilizers if and only if the defining graph does not contain a certain subdivided Kjy.
By use of the structure invariant of 7, introduced by Cashen and Martin [Math. Proc. Cambridge
Philos. Soc. 162 (2017), 249-291], we obtain a quasi-isometry invariant of these RACGs, essen-
tially determined by the defining graph. Furthermore, we refine the structure invariant to make it a
complete quasi-isometry invariant in case the JSJ decomposition of the RACG does not have any
rigid vertices.

1. Introduction

In this paper, we give a construction of the JSJ tree of cylinders of a wide family of
right-angled Coxeter groups (RACGs). It is visual, that is, it is determined in terms of the
defining graph.

Theorem 1.1 (cf. Theorem 3.29). For a one-ended, two-dimensional RACG W splitting
over two-ended subgroups, the defining graph visually determines the JSJ tree of cylinders
T.; subsets of vertices of the defining graph satisfying certain graph theoretic conditions
are in bijection with W -orbits of vertices of T,, and they generate the representatives of
the conjugacy classes of the vertex stabilizers.

With this construction, generalizing the one by Dani and Thomas [12] for certain such
RACGs which are in addition hyperbolic, the JSJ tree of cylinders can be easily “read
off” the defining graph. Throughout this article, we will illustrate the convenience of this
method with a range of examples. In particular, the cylinder vertices are produced by
a simple process, see Section 3.1, each comes from an uncrossed cut collection, that is
a cut pair or a cut triple, of the defining graph and its common adjacent vertices. This
implies that cylinder vertices occur only in three types: two-ended, virtually Z?2 or the
direct product of a virtually non-abelian free group and an infinite dihedral group.

Additionally, we characterize the edge stabilizers of the JSJ tree of cylinders visually.
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Theorem 1.2. All the edge stabilizers of the JSJ tree of cylinders of a one-ended, two-
dimensional RACG W splitting over two-ended subgroups are two-ended if and only if
in the defining graph no uncrossed cut collection contains opposite corners of a square,
whose other two corners are connected by a subdivided diagonal.

We are interested in the JSJ tree of cylinders mainly because it has two key features.
(1) Ttis a canonical representative of the space of all JSJ decompositions of a group.
(2) Quasi-isometric groups have isomorphic JSJ trees of cylinders.

While feature 1 can be of interest on its own, see [18, Part IV] and Section 2.2, we aim
to use it rather as a stepping stone towards the application of feature 2 as this provides a
new tool to classify a large class of RACGs up to quasi-isometry. This class we consider
includes the hyperbolic RACGs classified in [12] and the RACGs on generalized theta
graphs classified in [19].

With feature 2, the structure invariant introduced by Cashen and Martin in [8], see
Section 4.1, comes into play: it can often detect that two JSJ trees of cylinders are non-
isomorphic by using the types of the vertex stabilizers, implying that the RACGs are
not quasi-isometric. With this technique occasionally one glance suffices to conclude that
RACGs with rather basic defining graphs such as the following from Figure 4.2 are not
quasi-isometric:

[ ]
[ ]

The graph on the left has two uncrossed cut pairs, colored in blue and red, which
both have three common adjacent vertices. This implies that the corresponding cylinder
vertices both have vertex groups that are the direct product of a virtually non-abelian free
group and an infinite dihedral group. The red cut pair of the right graph, however, has only
two common adjacent vertices. Thus, the corresponding cylinder vertex group is virtually
7. This is an obstruction for the existence of a quasi-isometry between the corresponding
RACGs.

In a second step, we adjust the structure invariant to our setting of RACGs by refining
itin a way that also the converse of feature 2 is true in certain cases, turning our (modified)
structure invariant into a complete quasi-isometry invariant.

Theorem 1.3 (cf. Theorem 4.24). Let W and W' be two finitely presented, one-ended
RACGs with non-trivial JSJ decompositions over two-ended subgroups, both without rigid
vertices. Define T and T’ to be the JSJ trees of cylinders of W and W', respectively. Then,
W and W' are quasi-isometric if and only if T and T' have the same structure invariant
up to reordering and quasi-isometry equivalence of vertex groups.
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With Theorem 1.3 at hand, we can now immediately see that RACGs corresponding
to defining graphs such as the following from Figure 4.8 are indeed quasi-isometric:

Both graphs have one red uncrossed cut pair with two common adjacent vertices pro-
ducing a virtually Z? cylinder vertex group and a blue uncrossed cut pair with more than
two common adjacent vertices producing a cylinder vertex group that is the direct product
of a virtually non-abelian free group and an infinite dihedral group. So, the two defining
graphs produce the same (modified) structure invariant.

Additionally, Theorem 1.3 and its proof in Section 4 can be exploited to obtain various
examples of RACGs that are quasi-isometric, see Examples 4.28 and 4.29, starting from
a defining graph, we perform reflections and duplications of subgraphs to produce new
graphs whose corresponding RACGs are quasi-isometric to the original one. This method
is even applicable to groups with rigid vertices, as long as these remain unaltered or have
additional properties (see Remarks 4.11 and 4.26).

1.1. Background

By introducing a geometric viewpoint in [16], Gromov started the classification of groups
in terms of their geometric equivalence. Groups are considered to be indistinguishable
from a large-scale geometric perspective if there is a quasi-isometry (QI) between them.
That is, a map which has two properties: it distorts distance at most by a scaling factor C
and an additive shift D and it is almost surjective in the sense that in a uniform neighbor-
hood of every point in target space we can find an image point of the map. If there is such
a quasi-isometry between two geodesic metric spaces, we call the map a (C, D)-QI and
refer to the spaces as quasi-isometric, short QI, to each other.

A large class of interesting groups are the Coxeter groups, introduced by Coxeter
in [9] as abstract reflection groups of geometric objects, see [13] for a recent survey. Their
simplest examples are the right-angled Coxeter groups (RACGs), which are defined by
a finite, simplicial, labeled graph, whose vertex labels are self-inverse generators of the
group and whose edges determine commutation relations. They are called right-angled
because they act geometrically on a CAT(0) cube complex. This paper gives a QI classifi-
cation of a wide class of RACGs.

A strategy to produce QIs is to decompose groups into smaller pieces, whose QI clas-
sification is understood. The interplay of the single pieces is captured by the graph of
groups, a graph equipped with vertex and edge groups. For an edge e, the corresponding
edge group is contained in the vertex group of its initial vertex o(e) and it embeds into the
vertex group of its terminal vertex ¢ (e) via an attaching map. Stallings theorem [30] states
that a finitely generated group admits the simplest possible graph of groups decomposition
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as an HNN extension or an amalgamated product over a finite edge group if and only if it
has more than one end. Therefore, since the number of ends of a group is a Ql-invariant,
that is, preserved under a QI, so is the existence of such a decomposition.

Any finitely presented group admits a maximal decomposition over finite subgroups
by Dunwoody’s accessibility [14]. Among the finitely presented groups with infinitely
many ends, the collection of occurring QI-types of one-ended vertex groups in a max-
imal splitting is a QI-invariant by a result of Papasoglu and Whyte [25, Theorem 0.4].
Thus, we can focus on one-ended RACGs. In particular, the first obvious step is to con-
sider one-ended groups that split over two-ended subgroups, a property which is a QI-
invariant by [24] as long as the group is not commensurable to a surface group. In the
case of RACGs, we restrict our attention to the finitely presented one-ended groups split-
ting over two-ended subgroups whose corresponding cube complex is additionally two-
dimensional. Then, these properties can be easily ensured by restrictions on the defining
graph, summarized in Standing Assumption 1 in Section 2.

We consider splittings which are non-trivial and maximal in a certain sense. They are
called JSJ decompositions, produced from JSJ trees. This terminology is borrowed from
the decomposition of 3-manifolds. Its genesis is traced in [18]. JSJ decompositions are
very robust under Qls: the QI-type of non-elementary vertex groups together with the
pattern coming from the incident edge groups are preserved [8, Section 2.3.2]. Thus, they
can be used to distinguish groups up to QI. Unfortunately, one group might have plenty of
JSJ decompositions. However, there is a canonical object, the JSJ tree of cylinders, which
can be built from any JSJ decomposition and thus captures the structure of the group.
It has three different types of vertices: cylinder, hanging, and rigid. A QI between two
groups induces an isomorphism between their JSJ trees of cylinders cf. [8, 17]. In fact, the
tree isomorphism even preserves additional information about the vertex groups such as
the vertex type and about the structure provided by the adjacent edge groups. This was
exploited in [8] by the introduction of the structure invariant.

For hyperbolic, one-ended, two-dimensional RACGs splitting over D .-subgroups,
Dani and Thomas give a QI classification in [12]. While they claim to consider such
RACGs which split over any two-ended subgroup, they implicitly use the assumption
that the group does not split over Do, X Z5. This error also occurred in an earlier version
of this paper. Now, this issue is addressed in Section 2.3 and Theorem 2.25 is a corrected
version of the main Theorem 3.37 of [12]. In particular, Theorem 2.25 gives an explicit
visual construction of the JSJ tree of cylinders of certain hyperbolic RACGs, that is, a
construction which can be expressed only in terms of subgraphs of the defining graph.
This implies that the defining graph not only determines the group presentation, but fully
encodes its whole structure. Thus, essentially, certain hyperbolic RACGs can be distin-
guished up to QI just by looking at their defining graphs. More precisely, the distinction
can be seen in the JSJ trees of cylinders or its quotient by the group action and follows
from the finite valencies at the cylinder vertices of the tree.

Extending this QI classification of certain hyperbolic RACGs from [12], Hruska, Stark
and Tran give a QI classification for (not necessarily hyperbolic) RACGs whose defining
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graphs are generalized theta graphs in [19, Theorem 1.6]. These results are combined in
[10, Theorem 5.20] to a QI classification of RACGs whose defining graphs are included
in the much larger class of graphs dealt with in this paper.

The construction followed in [12] is the one for Bowditch’s JSJ tree, introduced in [6],
a special case of the JSJ tree. Its construction preceded the more general one defined
in [18]. It works only for hyperbolic groups and by [18, Theorem 9.18], it coincides with
the JSJ tree of cylinders of the group. In this paper, the general construction and its broader
set of tools are used.

1.2. Outline

After a short preface on right-angled Coxeter groups in Section 2.1, the general construc-
tion of JSJ trees of cylinders is introduced in Section 2.2. Then, Section 2.3 analyzes
the specific construction for hyperbolic RACGs from [12]. We conclude Section 2 with a
careful comparison of the two constructions. The proof of Theorem 1.1 on how to visually
obtain the JSJ tree of cylinders for any one-ended, two-dimensional RACG splitting over
two-ended subgroups stretches across all of Section 3 and is summarized in all detail as
Theorem 3.29. The proof has three main ingredients.

» Section 3.1: for the construction of cylinder vertices, we use Proposition 3.5, essen-
tially stating that they all come from the uncrossed cut collections of the defining
graph. In Lemma 3.11 we show that the cylinder vertex groups are either virtually
cyclic, virtually Z? or the direct product of a virtually non-abelian free group and an
infinite dihedral group.

e Section 3.2: the hanging and rigid vertices are produced by the analogy between the
two constructions introduced in Section 2.

* Section 3.3: the characterization of two-ended edge groups in terms of the defining
graph from Theorem 1.2 is a combination of Lemma 3.21 and Theorem 3.24.

Section 4 is dedicated to the QI classification of the RACGs. We can distinguish some
of them up to QI by use of the structure invariant for JSJ trees of cylinders, whose con-
struction and key features are illustrated in Section 4.1. Then, we are guided by the natural
question: if two groups have equivalent structure invariants, when does this imply that they
are indeed QI to each other?

The blueprint for producing such a QI is set up in [8]: we need to understand the local
QIs between vertex groups which are matched up by the structure invariant. These local
QIs must also respect the structure coming from the incident edges. Then, we try to patch
those together inductively to a global QL.

The local QIs are produced in Section 4.2, for two-ended vertex groups, they are
already dealt with in [8]; essentially, they are determined by the finite valence of the cor-
responding vertex in the JSJ tree of cylinders. In Proposition 4.13, however, we see that
the QIs between vertex groups that are the direct product of a virtually non-abelian free
group and an infinite dihedral group can be chosen very flexibly. For the virtually abelian
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vertex groups, the Qls are of intermediate versatility, as proven in Proposition 4.17. The
constraints they cause are implemented to the structure invariant by the density refine-
ment in Section 4.3. That leads to a complete QI-invariant for certain RACGs, as outlined
in Theorem 1.3 and stated with all precision as Theorem 4.24 in Section 4.4. The proof
works along the lines of the proofs of Sections 5 and 7 of [8]. As described in Outline 4.27,
Theorem 4.24 can be used as a tool to produce new examples of one-ended RACGs which
are QI to each other. This is illustrated in Examples 4.28 and 4.29. In fact, by Lemma 4.31
the groups in these examples are even not commensurable. Thus, as far as the author is
aware, they provide the first examples of one-ended, non-hyperbolic, non-commensurable,
quasi-isometric RACGs.

2. Preliminaries

We assume familiarity with standard group theoretic concepts such as Cayley graphs,
quasi-isometries, ends and hyperbolicity of groups as wells as graphs of groups and Bass—
Serre theory. For background, consult, for instance, [4,20, 28].

2.1. RACGs
In the following section, we introduce the key properties of right-angled Coxeter groups.

Definition 2.1. For a finite, simplicial graph T, the defining graph, on a vertex set S, we
define the Right-Angled Coxeter Group (RACG) Wr as the group given by the following
presentation:

Wr=(seS|s*>=1foralseS,(st)> = lif (s.1) € E(I)).

Remark 2.2. General Coxeter groups are often defined on the Coxeter graph instead,
which in the case of RACGs corresponds to the complement graph of the defining graph.

Convention. Throughout the article, W denotes a RACG and T' is a simplicial graph
with vertex set S = V(I"). In order to emphasize the generating set .S, we often denote the
corresponding group as Wy instead of Wr. Both notations are used without any further
comment, depending on whichever is more suitable for the context.

Example 2.3. We obtain the following “extrema” as standard examples.
o IfI' is a complete graph, then Wr = lesl. Wr is finite if and only if ' is complete.
» If I" does not have any edges, then Wr = *|g|Z>, so, in particular, the infinite dihedral

group Do, = Zy * Z, is a RACG.

Example 2.4. The class of RACGs is closed under taking direct products by taking the
join of defining graphs and under taking free products by taking the disjoint union of
defining graphs.

Certain subgroups can be “read off” the defining graph.
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Definition 2.5. Given a RACG Wg on S = V(I'), the subgroup Wr generated by T C S
is called a special subgroup of Ws.

In fact, by [13, Theorem 4.1.6], Wr is itself a (right-angled) Coxeter group on the
defining graph I'r, which is the induced subgraph of I' on the vertices labelled by 7.
Moreover, the intersection of two special subgroups Wr N Wy is the special subgroup
generated by the intersection 7 N 7.

The geometry of a Coxeter group Wy is encoded in a complex, the so-called Davis
complex. Its construction and properties can be found in [13] and [12, Section 2.1]. We
outline the following facts relevant for this paper: the Davis complex of a special sub-
group Wr C Ws embeds isometrically into the Davis complex of Ws. For RACGs, the
Davis complex is a CAT(0) cube complex. Its 1-skeleton is precisely the Cayley graph
Cay(Ws, S) of Wg with respect to the generating set S = V/(I"). Note that in case Wy
is infinite, it contains Doo = Wy, 5} as a subgroup, where a and b are non-adjacent ver-
tices in S. Then, we find a geodesic of arbitrary length in the Cayley graph of Wy that is
labelled alternately by a and b. We call such a geodesic bi-labelled.

We also need some graph theoretic terminology.

Definition 2.6. A vertex v of I is essential if it has at least valence 3. We denote the set
of all essential vertices in I' by EV(I"). An embedded path between essential vertices,
which does not contain any essential vertices in its interior, is a branch.

A pair {a, b} of vertices of I" is a cut pair if it separates I, that is " \ {a, b} has at
least two connected components. If both vertices are essential, we call it an essential cut
pair.

A set {a, b, c} of vertices of T is called a cut triple if a and b are not a cut pair, ¢ is a
common adjacent vertex of a and b and the subgraph induced by {a, b, c} separates I.

Convention. For economy of notation, we will use the term cut collection when referring
to both cut pair and cut triple at once and use the notation {a — b}. The “—” represents the
possibly existing common adjacent vertex ¢ of a and b contributing to the triple.

Example 2.7. In the left graph I'; of Figure 2.1, the set T3 = {a, b} is a cut pair. Since
a and b are not connected by an edge in I'y, the T;-induced subgraph contains only two
disconnected vertices, and thus, the special subgroup generated by 77 is Wi, p) = Deo.
The graph ', on the right has a cut triple 7, = {a, b, ¢}. The special subgroup on the
T,-induced subgraph is

I/V{a,b,c} = Doo X Z3.

Recall that in the search for QIs we want to limit ourselves to one-ended RACGs
that split over two-ended subgroups. In order to translate these properties into accessible
conditions on the defining graph I', we make use of the auxiliary assumption that the
RACGs are two-dimensional. While we expect that this restriction can be dropped, the
generalization is not immediate. This issue is also addressed in [12, Section 1] and [10,
Question 5.17]. Therefore, we fix the following properties of the defining graph I'".
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Figure 2.1. The orange vertices form a cut pair and a cut triple, respectively.

Standing Assumption 1. The defining graph '
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has no triangles: this corresponds to the fact that the Davis complex is two-dimen-
sional, which simplifies the geometry encoded by the group,

is connected and has neither a separating vertex nor a separating edge: Wr is one-
ended by [13, Theorem 8.7.2] under assumption (1) that I" has no triangles,

has a cut collection {¢ — b} by Theorem 3.1, recalling [22, Theorem 1] in our
setting under assumptions (1) and (2), this ensures the existence of a splitting
over a two-ended subgroup. Indeed, if there is a cut collection {a — b} all k parts
of I' \ {a — b} attach along the two-ended special subgroup Wi, 5 = Do oOr
Wiap,ey = Doo X Z5 as a k-fold amalgamated product,

is not a cycle of length > 5: by [12, Theorem 4.2], I" is a cycle of length > 5
if and only if Wr is cocompact Fuchsian. That means that it acts geometrically
on the hyperbolic plane. However, then the Svarc—Milnor lemma implies that all
groups with such a defining graph are QI to each other, thus their QI-Problem is
understood.

Remark 2.8. Observe the following.

*  Under Standing Assumption 1, a cut pair {a, b} always consists of non-adjacent ver-
tices and a cut triple {a, b, ¢} forms a segment where a and b are both adjacent to ¢
and not adjacent to each other. Thus, the special subgroup generated by both a cut pair
and a cut triple is two-ended and the elements a and b generate a copy of D .

* For a cut triple {a — b} the common adjacent vertex of a and b might not be unique:
see, for instance, Figure 2.2, where {x, y, b}, {x, y,c} and {x, y, d} are cut triples.
We say that the cut triples overlap. However, when there are overlapping cut triples
the graph necessarily has an induced square, so this complication does not arise in
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Figure 2.2. The vertex sets {x, y, b}, {x, y,c}, and {x, y, d} form overlapping cut triples.

the hyperbolic case (by [13, Corollary 12.6.3]), but we have to deal with it in our
more general setting. In Section 3.3.1, we will make additional assumptions (to guar-
antee that the graph of cylinders has two-ended edge groups, see Remark 2.22) which
exclude overlapping cut triples, see Remark 3.27.

2.2. Trees of cylinders

Throughout this section, let T be a simplicial tree and G a finitely generated group acting
on T by isometries and without edge inversions. The stabilizer of any element ¢ in T is
denoted as G, geodesic paths in 7T starting at vertex a and ending at vertex b are denoted
as [a, b]. Let + be a class of infinite subgroups of G that is stable under conjugation. 7T is
an A-tree if all the edge stabilizers G, of T are contained in 4.

Example 2.9. Since we split RACGs over two-ended subgroups, the class of subgroups
we have in mind as # is the class V€ of virtually infinite cyclic (or equivalently two-
ended) subgroups. Note that V€ is invariant under conjugation, but not under taking
subgroups.

Our main tool is a universal tree on which G acts with vertex stabilizers as small as
possible.

Definition 2.10. (1) A subgroup H of G is elliptic in T if it fixes a point in 7. It is a
universally elliptic subgroup if it fixes a point in any A-tree. An A-tree is universally
elliptic if all its edge stabilizers are universally elliptic subgroups of G.

(2) An A-tree T dominates another #A-tree T if every vertex stabilizer of T is elliptic
inT’.

(3) A JSJ tree of G is an A-tree T that is universally elliptic and that dominates
any other universally elliptic #-tree T’. The quotient graph A = T/G is called a JSJ
decomposition or JSJ splitting of G.
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JSJ trees are extensively surveyed in [18]. Unfortunately, the JSJ tree is not as univer-
sal as we would like it to be. It does not even always exist, nor is it unique if it does. It
rather happens that we find a collection of universally elliptic trees, which are pairwise
dominating each other. This collection then is called the JSJ deformation space [18, Sec-
tion 2.3].

Remark 2.11. If in a graph of groups A = T/ G of G whose edge groups are all univer-
sally elliptic, also up to conjugation all universally elliptic subgroups of G occur as edge
groups, A is a JSJ decomposition of G. Indeed, if all edge groups in A are universally
elliptic, so are the stabilizers of 7', thus 7 is universally elliptic. Furthermore, given any
other universally elliptic tree 7', we can refine it to 7', and 7" is therefore dominated by
T [18, Lemma 2.15]. Thus, T is a JSJ tree.

We aim to obtain a more accessible equivalent definition, when restricting to one-
ended groups splitting over two-ended subgroups. For that, we need to introduce the
following terminology.

Definition 2.12 (cf. [18, Definition 5.13]). A vertex v of a graph of groups A over two-
ended edge groups and its vertex group G, are called hanging if G, maps onto the
fundamental group 71(Xy) of a hyperbolic, compact, two-dimensional orbifold ¥, and
the image of every edge group incident to G, in 71(X,) is either finite or contained in
a boundary subgroup of 71 (X,). We call v and G, maximal hanging if there is no other
hanging vertex group G, such that the corresponding orbifold X¥,, can be glued to X,
along identical boundary components to obtain a new splitting of the group.

Remark 2.13. While the interpretation of a hanging subgroup is not universal, in the
setting of RACGs all versions are equivalent, for instance, suppose that, following [6], we
see a vertex group G, which is non-elementary, finitely generated and which acts properly
discontinuously on the hyperbolic plane H?2. This is equivalent to saying that G, surjects
with finite kernel onto the fundamental group of a hyperbolic, compact, two-dimensional
orbifold X, cf. [1, Definition 3.2.]. If additionally all the maximal two-ended subgroups of
G, map onto the fundamental groups of the boundary components of X,,, Bowditch calls
Gy hanging Fuchsian. However, then G, meets the Definition 2.12 of a hanging vertex
group as well.

Also, it is worth noting that in [18, Definition 5.13], Guirardel and Levitt define the
vertex and vertex group we call hanging as quadratically hanging (QH), to extend the
definition of quadratically hanging subgroups given by Rips and Sela in [27]. Moreover,
various authors call vertex groups meeting the properties of Definition 2.12 along similar
lines as the hanging Fuchsian groups, hanging surface groups, for instance.

Definition 2.14. A vertex v of a graph of groups A over two-ended edge groups and its
vertex group G, are called rigid if G, is not two-ended, not hanging and does not split
over a two-ended subgroup relative to its incident edge groups.
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By piecing together [18, Theorem 6.5, Corollary 6.3, Section 2.6, and Proposition 5],
which rely on work of Fujiwara and Papasoglu [15], we can describe certain JSJ decom-
positions neatly in terms of graphs of groups.

Lemma 2.15. If G is a finitely presented, one-ended group, then a graph of groups decom-
position with two-ended edge groups is a JSJ decomposition if and only if the following
conditions hold.

* Each vertex group is either two-ended, hanging or rigid.

* Any valence one vertex v with two-ended vertex group does not have an incident edge
group surjecting onto Gy,.

e All hanging vertex groups are maximal.
Even though JSJ decompositions are not unique, under certain conditions, we can
produce a canonical representative of the JSJ deformation space, the so-called tree of

cylinders T,. The rest of this subsection gives a short overview of its construction. For all
details, consult [17].

Definition 2.16. An equivalence relation ~ on # is called admissible if for all A, B € A
the following axioms hold.

(1) IfA~ Band g € G, then gAg™! ~ gBg™ L.

(2) If AC B,then A ~ B.

(3) Given an A-tree T and a,b € V(T) that are fixed by A, B € #4, respectively, then

for every edge e C [a, b], we have A ~ G, ~ B.

Definition 2.17. Two subgroups H and K of a group G are called commensurable if their
intersection H N K has finite index in both H and K. The commensurator of a subgroup
H in G is the set

Commg(H) = {g €G|gHg 'and H are commensurable}.

Commensurability is an equivalence relation on subgroups. We denote the equivalence
class of A € 4 by [A]. The stabilizer of [4] under the action of G on A/ ~ by conjugation
is denoted as Gp4).

Example 2.18. On the class V€ of two-ended subgroups of G, commensurability is an
admissible equivalence relation. For A € V€, we obtain G[4) = Commg (4).

Construction 2.19. Given an A-tree T, we construct the object of interest, the cylinder,
in the following way.
» Start with an admissible equivalence relation ~ on A.

* Define two edges e, f* € E(T) to be equivalent if their edge stabilizers G, and Gy are
equivalent, i.e., e ~ f if Go ~ Gy.
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* If G, fixes the edge e € E(T), in particular, it fixes its endpoints o(e), t(e) € V(T).
Thus, by axiom (3) for an admissible relation, all the edges on a path between two
equivalent edges will be in the same equivalence class as well. Thus, this equivalence
class forms a subtree Y of T, called a cylinder of T .

* By construction, two distinct cylinders can intersect at most in one common vertex.

*  We refer to the equivalence class in A/ ~ containing all edge stabilizers of edges in
Y as[Y].

Definition 2.20. Given an admissible equivalence relation on # and an A-tree 7, its tree
of cylinders T, is the following bipartite tree with vertex set 1 U V,: the vertex set V;
contains one vertex vy per cylinder Y, the cylinder vertices. The vertex set V, contains all
the vertices of T that belong to at least two cylinders. There is an edge (vy,v) € E(T¢)
between vy and every vertex v contained in Y. The graph of groups decomposition of G
coming from the quotient of the action of G on 7 is the graph of cylinders A..

The stabilizer Gy of a cylinder vertex vy in V; is G[y]. The stabilizer G, of a vertex
v in V3 is the stabilizer G, of v viewed as a vertex of T. An edge (vy,v) in E(T,) is
stabilized by the intersection of G[y] and G.

Example 2.21. Consider the Baumslag—Solitar group BS(m,n) = (a,b | b~'a™b = a™)
defined for the integers m,n € Z \ {0}. We view it as an HNN-extension with stable letter
b and consider its action on the corresponding Bass—Serre tree 7. All the edge stabilizers
are of the form g(a™)g~! for g € BS(m,n), thus they are contained in V€. By use of
the inductive consequence

bkam Iy pk = ¢ for any k,y € N

of the relation, one shows that (a”) is commensurable to g (a)g~! forany g € BS(m,n).
Hence, all edges are part of the same commensurability cylinder and T, consists of only
one vertex.

Remark 2.22. Note that T, is not necessarily an #A-tree. This problem is resolved by col-
lapsing all edges that have edge stabilizers not in +4 to obtain the collapsed tree of cylinders
T} . However, in our application of the construction, we aim to bypass this complication.

Convention. Henceforth, when the set 4 and the admissible equivalence relation on it
are not specified, it is fixed to be V€ with the relation to be commensurability, as in
Example 2.18.

The question left to answer is how the construction of the tree of cylinders gives a
canonical object encoding the structure of the group. Starting from a finitely presented,
one-ended group G, we pick some JSJ tree T of the JSJ deformation space, which exists
by [18, Theorem 1]. For T', we construct the tree of cylinders T, which by [17, Theorem
1] does not depend on the choice of 7" but only on the deformation space itself. Thus, it
makes sense to call it the JSJ tree of cylinders and the corresponding graph of cylinders
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A the JSJ graph of cylinders. While, for instance, for hyperbolic groups, A, is itself a JSJ
decomposition [18, Theorem 9.18], this is not true in general. However, by construction,
its Bass—Serre tree is G-equivariantly isomorphic to the tree of cylinders of any JSJ tree.
Hence, from the JSJ graph of cylinders A., we can essentially recover the deformation
space of JSJ splittings.

Moreover, the JSJ tree of cylinders produces a Ql-invariant for groups, by a result of
Cashen and Martin based on work of Papasoglu [24, Theorem 7.1] with a correction made
by Shepherd and Woodhouse in [29].

Theorem 2.23 ([8, Theorem 2.9] and [29, Theorem 2.8]). Given two finitely presented,
one-ended groups G and G’ splitting over two-ended subgroups which are quasi-isometric
via ¢ : G — G/, then ¢ induces a tree isomorphism ¢x : T, — T. Moreover, ¢ is vertex-
type preserving and for every vertex v € V(T') with vertex group G, there is a real constant

Cy > 0 such that ¢ maps G, within distance Cy, of G:p*(v)'

Thus, ideally, we construct the JSJ graphs of cylinders directly from the groups, in our
case from the defining graphs of the RACGs. Deducing from them that the corresponding
JSJ trees of cylinders are not isomorphic then implies that the groups we started with are
not QL. On the other hand, if there is an isomorphism between the JSJ trees of cylinders,
we try to promote it to a QI of the groups.

Outline 2.24. To summarize, the framework we focus on is the following: the group G
is finitely presented, one-ended and splits over the set of two-ended subgroups V€. We
obtain a JSJ splitting A, in which all vertex groups are either two-ended, hanging or rigid
by Lemma 2.15. By considering the commensurability relation on the corresponding JSJ
tree, we produce the JSJ graph of cylinders A., whose cylinder vertex groups are the
commensurators of the two-ended groups of A and whose non-cylinder vertex groups are
precisely the hanging and rigid vertices of A.

2.3. JSJ trees of cylinders of hyperbolic RACGs

For one-ended, two-dimensional, hyperbolic RACGs whose defining graphs do not have
any cut triples, a way to construct the JSJ graph of cylinders directly from the defining
graph " is given in [12]. By [13, Corollary 12.6.3] a RACG Wr is hyperbolic if and
only if I' has no squares. Although Dani and Thomas’s construction follows the one for
Bowditch’s JSJ tree described in [6], it turns out that the tree they produce in their (main)
Theorem 3.37 corresponds to the JSJ tree of cylinders of Wr. More precisely, since Wr is
hyperbolic, it follows from [18, Theorem 9.18] that both trees and thus their corresponding
decompositions are Wr-equivariantly isomorphic.

Dani and Thomas claim in [12] that they give a construction of Bowditch’s JSJ tree
for all one-ended, two-dimensional, hyperbolic RACGs splitting over two-ended sub-
groups. However, they miss the fact that a RACG cannot only split over a two-ended
D so-subgroup coming from a cut pair but also over a two-ended D, X Z,-subgroup
coming from a cut triple. The origin of this problem is a miscitation of [22, Theorem 1] as
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in [12, Theorem 2.1] claiming that every splitting over a two-ended subgroup corresponds
to a cut pair. Example 2.7 gives a counterexample to this claim.

However, under the mild additional assumption that the defining graph I' does not
have any cut triples, all the results in [12] remain valid. We will add this assumption
whenever referring to results in [12]. This additional assumption was also implicitly used
in an earlier version of this paper, however the error has been removed as Theorem 3.29
now also includes the construction of the JSJ tree of cylinders of RACGs splitting over
two-ended subgroups coming from cut triples in both the hyperbolic and non-hyperbolic
case. In particular, removing this assumption does not affect the strategy and large-scale
geometry results developed in [12] and in this paper, but only certain descriptions of the
subgraphs of I" corresponding to the large-scale structures of interest.

Most of the proofs in [12] depend on the hyperbolicity, in particular, the existence of
the Gromov boundary, of the group Wr. Before we can produce the broader result, we
want to understand the correspondence between the two constructions. This subsection is
dedicated to this task.

In our terminology, the JSJ tree of cylinders of one-ended, two-dimensional, hyper-
bolic RACGs splitting over D,-subgroups is produced by the following theorem.

Theorem 2.25 (cf. [12, Theorem 3.37]). Let Wr be a hyperbolic RACG with T satisfying
the Standing Assumption 1, and in addition, let I" have no cut triples. Then, its JSJ tree of
cylinders T, has vertices and associated vertex groups in the JSJ graph of cylinders A,
as follows.

(1) Type I vertex:

(a) Forany cut pair {a,b} such that T \ {a, b} has k > 3 connected components,
none of which consists of only one single vertex, there is a valence k vertex
in T,. The associated vertex group in A is the subgroup of Wr generated by
{a, b}, unless a and b have a common adjacent vertex c, then it is generated
by{a,b,c}.

(b) For any cut pair {a,b} such that I" \ {a, b} has k > 3 connected components,
one of which consists of only one vertex c, there is a valence 2 - (k — 1)
vertex in T,. The associated vertex group is the subgroup of Wr generated by
{a,b,c}.

(c) For any set A C V(I') satisfying the properties (Al), (A2), and (A3) and
which generates a two-ended subgroup not occurring in 1(a) nor in 1(b),
there is a valence 2 vertex in T;, where the properties (A1), (A2), and (A3)
are the following.

(A1) Elements of A pairwise separate the geometric realization |T'|.

(A2) If any subgraph T’ of T that is a subdivided K4 contains more than 2
vertices of A, all vertices of A lie on the same branch of T".

(A3) The set A is maximal among all sets satisfying (A1) and (A2).
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If either |A| = 2 and there is no third vertex ¢ adjacent to both elements in A
or |A| = 3, the associated vertex group in A is the subgroup of Wr generated
by A. If |A| = 2 and the two elements in A have a common adjacent vertex

¢, then the associated vertex group in A is the subgroup of Wt generated by
AU {c}.

(d) On any edge between a type 2 and a type 3 vertex there is a valence 2 vertex
added in T,. The associated vertex group in A is the intersection of the
vertex groups of its neighbors.

(2) Type 2 vertex: for any set A C V(I') satisfying properties (Al), (A2), and (A3)
such that the subgroup generated by A is infinite but not two-ended, there is a
vertex in T, with associated vertex group Wy in A..

(3) Type 3 vertex: for any set B C EV(I') of essential vertices in T" satisfying the
properties (B1), (B2), and (B3), there is a vertex in T, whose associated vertex
group in A, is the subgroup Wp generated by B, where the properties (B1), (B2),
and (B3) are the following.

(B1) For any pair C = {c,d} C EV(T') of essential vertices, B \ C is contained
in one single connected component of T \ C.

(B2) The set B is maximal among all sets satisfying (B1).
(B3) |B| = 4.

Between a vertex v of type 1 and a vertex v’ of type 2 or 3 in V(T,), there is an edge
connecting them if and only if their corresponding vertex groups intersect in an infinite
subgroup.

Convention. Whenever we illustrate a JSJ graph of cylinders A, of a RACG, see Fig-
ure 2.3 for instance, for economy of notation we omit the brackets of the vertex and edge
groups and just write down the collection of generating vertices. For convenience, we
mark cylinder vertices in green, hanging vertices in red and rigid vertices in blue.

Remark 2.26. Not only type 1(a) or type 1(b) vertices correspond to essential cut pairs,
but all type 1 vertices in Theorem 2.25 do.

Any set A satisfying properties (A1), (A2), and (A3) must contain an essential cut pair
as shown in Lemma 3.22. But for a vertex of type 1(c), we need that Wy is two-ended.
By Theorem 3.14, we see that the only two options for a special subgroup of I' satisfying
Standing Assumption 1 to be two-ended is that it consists either of two single non-adjacent
vertices or of two vertices connected via one common adjacent vertex. So, either |A| = 2,
then it is precisely an essential cut pair. Or |A| = 3, thus it contains an essential cut pair
and one common adjacent vertex in between.

By [12, Lemma 3.30], the intersection of a set A satisfying properties (A1), (A2), and
(A3) and a set B satisfying properties (B1), (B2), and (B3) contains at most two vertices.
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U, p1, D2,y

u,q,y

V,n1,N2,X v, 0, b,u,y

w,ry,r2,2 Y581,82,2

Figure 2.3. A, is the JSJ graph of cylinders of the RACG Wr obtained by Theorem 2.25.

Thus, A and B can intersect at most in an essential cut pair. But in case their associated
vertex groups intersect non-trivially, this intersection cannot be finite, implying that it must
contain precisely the essential cut pair. The vertex of type 1 (d) can therefore be detected
from an essential cut pair as well.

However, it is important to note that not all essential cut pairs contribute to a type 1
vertex, as illustrated in Example 2.27. The question on how to distinguish the ones con-
tributing from the ones that do not is addressed in Section 3 in Proposition 3.5.

Example 2.27. In Figure 2.3, we see on the left side a square-free graph I' satisfying
Standing Assumption 1. On the right side, the JSJ graph of cylinders A, of Wr is illus-
trated. It is obtained by Theorem 2.25 with the following considerations: there is no cut
pair of type 1(a) and the cut pairs {u, y} and {v, y} give vertices of type 1(b). From the
cut pairs {v, w} and {w, x} we obtain a vertex of type 1(c) and {v, x}, {w, z} and {y, z}
add vertices of type 1 (d). Of type 2, there are the five vertex sets

{v.ni,np,x}, {w,ri,r2,z},  {y,s1,82,2},

{u’p17p2’y}v {v7113127u,y}~

The only vertex of type 3 is given by {v, w, x, y, z}. Note that, for instance, the set {v, x,w}
does not give a vertex of type 2 as property (A2) is violated by the subdivided K4 with
corners w, v, x and z. Furthermore, while the set {v, /1, [, u} is a pairwise separating
branch, it does not satisfy (A3). Thus, even though {u, v} is an essential cut pair and
thus gives a two-ended subgroup over which Wr splits, it does not give a type 1 vertex.
As proved in Proposition 3.5, this is due to the fact that there are other cut pairs, for
instance {y, /1 }, separating u and v (see also Example 3.3). This implies that Wy, , is not
universally elliptic and therefore contained within a hanging subgroup.

Also, the type of a vertex determines a key property.
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Theorem 2.28 (cf. [6, Theorem 5.28]). Let Wt be a hyperbolic RACG with T" satisfying
the Standing Assumption 1. Let A, be the JSJ graph of cylinders given by Theorem 2.25,
then

* the vertex group associated to a type I vertex is two-ended,
* the vertex group associated to a type 2 vertex is hanging,

* the vertex group associated to a type 3 vertex is rigid.

Comparing this Theorem 2.28 and Outline 2.24, we can now establish the following
correspondence between the JSJ tree of cylinders given by Construction 2.19 and the JSJ
tree of cylinders constructed in Theorem 2.25 for hyperbolic RACGs.

*  Type I vertices correspond to cylinder vertices: type 1 vertices in A, lift to vertices
of finite valence in 7, with two-ended vertex stabilizer. These properties can only
hold for cylinder vertices. Furthermore, by existence of vertices of type 1(d), the JSJ
tree of cylinders constructed in Theorem 2.25 is bipartite with V = V(1) U V(2, 3),
where V(1) are all the vertices of type 1 and (2, 3) contains vertices of type 2 and 3.
Thus, as the JSJ tree of cylinders is also bipartite, no other than the type 1 vertices can
correspond to cylinder vertices.

*  Type 2 vertices correspond to hanging vertices: by Theorem 2.28 type 2 vertices are
hanging, thus they are the hanging non-cylinder vertices.

*  TDype 3 vertices correspond to rigid vertices: again, by Theorem 2.28 type 3 vertices
are rigid, thus they are the rigid non-cylinder vertices.

3. JSJ trees of cylinders of RACGs

Since in the non-hyperbolic case, there is no universal construction of a JSJ tree and its
tree of cylinders like the one given by Bowditch, for arbitrary RACGs, we need to start
from scratch: we first determine how to find a JSJ decomposition in terms of the defining
graph I' and then produce a construction of the JSJ graph of cylinders from there.

In fact, any decomposition of a (right-angled) Coxeter group over two-ended sub-
groups is visible in the defining graph I".

Theorem 3.1 ([22, Theorem 1]). For a simplicial graph T" which is triangle-free and

which has no separating vertices or edges (i.e., satisfies Standing Assumptions 1 and 2),

Wr splits over a two-ended subgroup H if and only if T has a cut collection {a — b}.
Moreover, given some decomposition A of Wt with two-ended edge groups there is a

visual decomposition V¥ of Wr such that

* all occurring subgroups in V are special;

e each vertex group of W is a subgroup of a conjugate of a vertex group of A;

* each edge group of WV is a subgroup of a conjugate of an edge group of A;
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* in particular, for each two-ended edge group H of A there is a unique cut collection
{a — b} such that some conjugate of H contains Wi,_py.

Thus, in order to produce a splitting over two-ended special subgroups, by Theo-
rem 3.1, we need to collect all cut collections of I'. Then, by Remark 2.11, we are left
to eliminate the cut collections that produce a subgroup that is not universally elliptic
and thus belong inside a hanging subgroup. To be able to do that, we need the following
terminology.

Definition 3.2. A cut pair {a, b} € V(I') is said to be crossed by another, disjoint cut pair
{c,d} € V(') \ {a, b} if a and b lie in different connected components of I" \ {c¢,d }. We
say {c,d} is crossing {a, b}. If there is no cut pair crossing {a, b}, then {a, b} is uncrossed.

A cut triple {a, b, ¢}, where ¢ is the common adjacent vertex of the non-adjacent
vertices a and b is said to be crossed by another cut triple {d, e, f}, where f is the
common adjacent vertex of the non-adjacent vertices d and e, if ¢ is equal to f and a
and b lie in different connected components of I' \ {d, e, c}. We say {d, e, f} is crossing
{a, b, c}.If there is no cut triple crossing {a, b, c}, then {a, b, ¢} is uncrossed.

Example 3.3. In Figure 2.3 of Example 2.27, while for instance {w, z} is an uncrossed
cut pair, {u, v} is not as it is crossed by {/;, y} for example. In the right graph of Figure 2.1
considered in Example 2.7 the cut triple {a, b, c} is crossed by the cut triple {d, e, c}.

Remark 3.4. Any uncrossed cut pair is essential, but not every essential cut pair is un-
crossed. Moreover, it is not necessary to define a notion of a crossing between a cut pair
and a cut triple because it is obvious that this situation cannot happen.

It turns out that all the two-ended edge groups of a JSJ splitting are detected by the
uncrossed cut collections of T".

Proposition 3.5. Let T" be a graph which satisfies Standing Assumption 1 and which has
at least one uncrossed cut collection. Then the following hold.

(a) Forevery special subgroup Wi,_p generated by an uncrossed cut collection {a —
b} of T there is a JSJ splitting A such that Wi,_py is contained in a special, two-
ended edge group of A.

(b) Given a two-ended edge group of a JSJ splitting A of Wr that is special and
contains Wiq_py where {a — b} is a cut collection, then {a — b} is uncrossed.

Proof. For (a), let {a — b} be a cut collection of I". Let A; be a splitting of Wt over a two-
ended subgroup containing Wy,_py, which exists by Theorem 3.1. Suppose that A is not
a JSJ splitting. If the Bass—Serre tree 77 of A; is universally elliptic, but not dominating
every other universally elliptic tree, then by [17, Lemma 2.15], T} can be refined to a
JSJ tree T with a two-ended edge stabilizer containing W,—py and the claim follows. If
on the other hand the subgroup containing W,_py is not universally elliptic, there must
be another splitting A, of Wr in whose Bass—Serre tree the group Wy,_p) is not elliptic.
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Hence, the infinite-order element ab € Wy,_py cannot fix a point in it. Now, we can refine
A, by Theorem 3.1 to a visual splitting W of Wr. Because W is visual, we know that
we can find a unique cut collection {¢ — d} in I" such that Wj,_g4y is contained in a two-
ended edge group of W. Also, every edge group of W is a subgroup of a conjugate of an
edge group of A, and every vertex group of W is a subgroup of a conjugate of a vertex
group of A,. Thus, the element ab does not fix a point in the Bass—Serre tree of W either,
implying that the elements a and b must be in different vertex groups of W. This implies
that the vertices a and b must be separated in " by the cut collection {¢ — d }, thus the cut
collection {@ — b} is not uncrossed.

Assume conversely for (b) that we have a cut collection {a — b} crossed by another
cut collection {¢ — d }, respectively, with splittings A; and A, over two-ended subgroups
containing Wy, _py and Wi._4y, respectively. Since the cut collection {a@ — b} is crossed by
{¢ — d}, the elements a and b are in different vertex groups of the splitting A,. Thus, the
infinite-order element ab € Wy,_p) cannot fix a point in the Bass—Serre tree of A5, imply-
ing that the edge group of A containing W,_\ is not universally elliptic and therefore
A1 is not a JSJ decomposition. ]

Remark 3.6. In Proposition 3.5, the assumption that I' must contain an uncrossed cut
collection excludes the case where I is a square. This is important because for I' a square,
the corresponding RACG

Wr = Do X Do

is virtually Z2. Such Wr is commensurable to the fundamental group of a surface, in this
case a torus, which have to be treated separately (cf. [24]). However, this is the only case
we need to rule out additionally since by Standing Assumption 1, Wt is not cocompact
Fuchsian and thus never commensurable to a surface group of higher genus.

Also, excluding the case that I is not a square is no obstacle for the QI classification,
since the property of being virtually Z2 determines the QI-type of the group. Thus, we
refine the standing assumption by modifying (4) of Standing Assumption 1 to exclude
squares.

Standing Assumption 2. The defining graph I'

(1) has no triangles,

(2) is connected and has neither a separating vertex nor a separating edge,
(3) has a cut collection,

(4) isnot a cycle.

Now, starting from a visual JSJ decomposition over all uncrossed cut collections, we
can determine how to produce the different vertices and the edges of the JSJ graph of
cylinders.
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3.1. Cylinder vertices

Given a JSJ decomposition A, by Outline 2.24, we know that we can find all cylinder
vertices of the JSJ graph of groups A, and their vertex groups Gy by running through all
edge groups visible in A.

Thus, in light of Proposition 3.5, we pick up all uncrossed cut collections in I" and
compute the commensurators of the special subgroups they generate. It turns out that the
commensurator of a special subgroup is also visible from the defining graph I'.

Theorem 3.7 ([26, Theorem 2.1]). Let W be a RACG on the defining graph T" with finite
generating set S and let T C S be a subset of S. Consider the maximal decomposition
Wr = Wr, x--- x Wr, of Wr as a direct product of subgroups, where Wr,, ..., Wr, are
finite for some r € {1,...,n} and all the other subgroups are infinite. Then, the commen-
surator of Wr in W is given by

Commy (Wr) = Wree X Wy
with
T® =T, U---UT, and Y* ={seS|e=(t,5)€ EI)forallt € T*®}.

Convention. To simplify terminology, we refer to the vertices of the defining graph of
the commensurator of the special subgroup given by a cut collection as commensurator of
the cut collection.

Remark 3.8. We encounter the following situations.

» Foracutpair{a,b}in I" this means that the commensurator is generated by {a,b} U €,
where € contains all the common adjacent vertices of @ and b. That is,

Commpy (Wig.py) = Wia,py X We.

» For a cut triple {a, b, ¢}, where a and b are non-adjacent and ¢ is a common adjacent
vertex, the special subgroup Wy, p .y decomposes as Wy, 51 x Wi, . Thus, also in this
case, the commensurator is generated by {a, b} U €, where € contains all the common
adjacent vertices of a and b, in particular, € contains c.

» In case there are two overlapping cut triples {a, b, ¢} and {a, b, ¢’} sharing the same
non-adjacent vertex pair {a, b}, for both cut triples we obtain the same commensu-
rator. Hence, their corresponding edges in a JSJ decomposition are equivalent under
commensurability, thus they lie in the same cylinder. Therefore, such two cut triples
only give one cylinder.

e It is immediate from Theorem 3.7 that a cut collection {a — b} in a hyperbolic RACG
always has a two-ended commensurator. This is because a and b can have at most
one common adjacent vertex ¢, as otherwise two common adjacent vertices and a
and b give a square in contradiction to hyperbolicity. But both W, 5y >~ Do and
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Figure 3.1. The special subgroup generated by the orange cut pair {v, x} has three purple common
adjacent vertices {w, m, y}. Thus, its commensurator is generated by {v, w,m, y, x}.

Wiab,e} = Doo X Z are two-ended (cf. Theorem 3.14), thus hyperbolic RACGs have
two-ended cylinder vertices.

Example 3.9. In the non-hyperbolic defining graph I" in Figure 3.1 the orange cut pair
{v, x} has three purple common adjacent vertices € = {w, m, y}, thus

Commpy, (Wiv,x3) = Wiw,xy X Wow,m,yy = Wiww,m,y,x}-

The other two cut pairs {w, z} and {y, z} correspond to special subgroups with commen-
surators Wiy, ;- n xy and Wy, -, 3, respectively.

The commensurator of the special subgroup corresponding to the cut triple {w, x, y}
on the other hand is Wy, x yy since v and x are the common adjacent vertices of w and
y. This is the only cut triple in I". Recall that, for instance, the vertices {w, m, y} are not
a cut triple, despite separating v from the rest of I", because Wiy, .y} is not two-ended.

For the sake of completeness, we summarize this insight as a proposition.

Proposition 3.10. Let S be the following set: for every uncrossed cut collection {a — b}
of T, the set {a,b} U €, where € is the set of common adjacent vertices of a and b, is an
element in §. Then, every set S in § corresponds to a cylinder vertex in the JSJ graph of
cylinders of Wr with vertex group the special subgroup generated by S.

Lemma 3.11. Every cylinder vertex group of the JSJ graph of cylinders of a RACG Wr,
where I satisfies Standing Assumption 2, in particular is triangle-free, is either

* virtually cyclic;
e virtually 72;

e the direct product of a virtually non-abelian free group and the infinite dihedral group
Doo.
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For the proof, we need the following characterizations.

Theorem 3.12 ([13, Theorem 17.2.1]). A RACG Wr is virtually abelian if and only if it
decomposes as the direct product of finitely many infinite dihedral groups D, and a finite
RACG.

Theorem 3.13 ([22, Theorem 8.34]). A RACG Wr is virtually free if and only if no
induced subgraph is a circuit of more than three vertices.

We can detect the intersection of the above two classes of groups by the following
theorem.

Theorem 3.14 ([13, Theorem 8.7.3]). A RACG Wr is two-ended if and only if it is the
direct product of one infinite dihedral group D and a finite RACG. In terms of the defin-
ing graph this means that T is a two-point suspension of a complete graph.

Proof of Lemma 3.11. Consider a cut collection {a — b} of I" with a and b non-adjacent,
then I' \ {¢ — b} has i > 2 connected components I'y, ..., I';. We distinguish the contri-
bution of some component I'; for j € {1,...,i} to the commensurator Gy of Wy,_p;.

» If I'; does not contain any common adjacent vertex of {a, b}, no vertex contributes to
Gy.

» If I'; contains one common adjacent vertex ¢ of {a, b}, the contribution to Gy is a
direct product with Z,.

» If I'; contains at least two common adjacent vertices c; and c, of {a, b}, then they
must be connected by a path not passing through a or b. Otherwise, they would not lie
in the same connected component of I" \ {a — b}. However, there cannot be an edge
between c; and c;, as otherwise, {a, c1, c;} would form a triangle. Thus, there is no
relation between c¢; and ¢, in Gy.

Moreover, if {a — b} is a cut triple, the third vertex ¢ of the triple contributes a direct
product with Z, to Gy . In conclusion, the commensurator Gy of the cut collection {a — b}
is the RACG given by a defining graph I'y consisting of a and b with k common adjacent
vertices {c1,...,cr} =: €, which are all only connected to a and b in Gy, see Figure 3.2.
Thus, we can consider the following cases.

* € ={}: Gy = Wy =~ D, thus virtually cyclic.

s k=1:Gy = Wype = Do X Zy, thus virtually cyclic.

* k=2:Gy = Wypeier) = Doo X Do, thus virtually abelian, in particular virtually
72

* k>2:Gy =Wype,...c} = Doo X F, where F is virtually a non-abelian free group.

Example 3.15. The commensurator of Wy, x; in Figure 3.1 is the direct product of the
virtually non-abelian free group Wy, 1, and the infinite dihedral group Wy .
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a
C1 Ck
b
I'y
Figure 3.2. The common adjacent vertices {c1,...,cx } of a and b are only adjacent to both a and b.

Convention. From now on, we refer to the two “new” types of cylinder vertex groups and
their corresponding cylinder vertex as

VA, if the cylinder vertex group is virtually Z2,

* VFD, if the cylinder vertex group is the direct product of a virtually non-abelian free
group and an infinite dihedral group.

3.2. Non-cylinder vertices

The fact that a certain collection of vertices gives a hanging or rigid vertex group in a graph
of groups with respect to incident two-ended edge groups is intrinsic to this collection
in the sense that it is independent of the existence of squares in the defining graph I'.
Furthermore, by Outline 2.24, if we see a hanging or rigid vertex in the JSJ decomposition,
it transfers over to the JSJ graph of cylinders. So, the results of [12] in Theorem 2.25
translate to the general setting.

Proposition 3.16. Let A C V(I') be a set of vertices such that the A-induced subgraph
T4 is not a complete graph and A satisfies either the following conditions.

(A1) Elements of A pairwise separate the geometric realization |T|.

(A2) If any subgraph T of T that is a subdivided K4 contains more than 2 vertices
of A, all vertices of A lie on the same branch of T".

(A3) The set A is maximal among all sets satisfying (A1) and (A2).
Or A satisfies the following condition:

(A*) The set A is a maximal collection of pairwise crossing cut triples.
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If A is not contained in a vertex set corresponding to a cylinder vertex, then A corresponds
to a vertex in the JSJ graph of cylinders A . with hanging vertex group Wy.

Sketch of the proof. Recall that the assumption that I'4 is not a complete graph ensures
that Wy is infinite. Now, we want to give some motivation on how the graph theoretic
conditions (A1), (A2), and (A3) and the graph theoretic condition (A*) produce a hanging
subgroup Wy. The intuitive picture to have in mind as the hanging subgroup is a surface
with boundary.

Let us first consider crossing cut pairs. By the proof of Proposition 3.5, they are not
universally elliptic and thus belong to a hanging subgroup. They give crossing curves
corresponding to different interfering splittings, which are thus not part of a JSJ decom-
position. In particular, a collection of pairwise separating vertices as forced by condition
(A1) contains all pairwise crossing cut pairs within a branch and at least one uncrossed
essential cut pair (cf. Remark 3.23). Such an uncrossed cut pair then generates precisely a
universally elliptic subgroup as the boundary component. If we see however a subdivided
K4 in T', we could choose three or all four corner vertices as a collection of pairwise
|T'|-separating vertices. But then, this collection cannot contain any non-essential ver-
tex contained in a branch. So, there are no crossing cut pairs in the collection producing
crossing curves. Thus, the resulting group is not hanging but rather a candidate for a rigid
vertex group. Therefore, we need to exclude such a collection by condition (A2). Maxi-
mality needs to be ensured by condition (A3), since a JSJ decomposition is maximal (cf.
Definition 2.12 and Lemma 2.15).

Consider now crossing cut triples contained in a collection A satisfying condition
(A*). Again, by the proof of Proposition 3.5, they are not universally elliptic and thus
belong to a hanging subgroup. By the definition of a JSJ decomposition, we again need
maximality.

Since all the cut triples in A cross pairwise, all share their “middle” common adjacent
vertex, call it ¢. Thus, the subgraph induced on the collection A is a graph theoretical star
based at ¢. Since by Standing Assumption 2, I" has no triangles and no separating edge,
for every pair {x, y} € A\ {c} of leaves, x and y are not adjacent and there are at least
three disjoint paths connecting x and y, one is the segment {x, y, ¢} and two paths do not
contain ¢, call them p; and p».

We claim that either {x, y} is an uncrossed cut pair or {x, y, c} is a cut triple: if
every path connecting the interior of p; (or analogously p,) with ¢ passes through x or
¥, removing {x, y} separates the interior of p; from I'4 \ {x, y}. Hence, {x, y} is a cut
pair. In fact, {x, y} is an uncrossed cut pair, because no matter which other cut pair is
removed, x and y will stay connected with each other via either p;, p, or the segment
{x, y, c}. Thus, the cut pair {x, y} generates a universally elliptic subgroup representing
the boundary component of the surface.

If both p; and p, contain an interior vertex that is connected to ¢ via a path not passing
through x or y, then we need to show that removing {x, y, x} separates I'". Since x is leaf
in A\ {c}, there exists x’ € A\ {c, x} such that {x, x’, ¢} is a cut triple separating I" into
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two connected components C and C’ of T \ {x, x’, ¢}. Then, either the interior of p; or
P> must be contained in one of the connected components of T \ {x, x’, ¢}. Without loss
of generality, assume that the interior of p; is contained in C. Thus, there is a vertex [
in V(C) N V(p1) which is not connected in T" \ {x, x’, ¢} to some [, € V(C’). However,
since /1 is in the interior of pq, /1 will also not be connected to /5 in I" \ {x, y, ¢}. Thus,
also {x, y, ¢} is a cut triple contained in A. If it is uncrossed, it represents a boundary
component. |

Corollary 3.17. Let A C V(L") be a set of vertices satisfying the condition (A*). Then,
the A-induced subgraph T'y of T is a star.

Proposition 3.18. For any set B C EV(I') of essential vertices in I satisfying the prop-
erties (B1), (B2), and (B3), there is a vertex in the JSJ graph of cylinders A, with rigid
vertex group Wp, where the properties (B1), (B2), and (B3) are the following.

(B1) For any set C that is a pair {c,d} C EV(T) of essential vertices or a path
{c,d,e} € EV(T) of length 2 of essential vertices, B\ C is contained in one
single connected component of T' \ C.

(B2) The set B is maximal among all sets satisfying (B1).
(B3) |B| = 4.

Sketch of the proof. Again, we want to give some motivation on how the graph theoretic
conditions (B1), (B2), and (B3), produce a rigid subgroup Wpg. The key feature of a rigid
vertex group is that it cannot be split any further. This is precisely captured by condition
(B1): we consider the collection of cut pairs and cut triples which are pairwise not sepa-
rating the collection. We want a maximal such collection and thus impose condition (B2).
Suppose now we find a collection

B ={x.y.z}

with only three essential vertices satisfying conditions (B1) and (B2). Then, since we
restrict to special subgroups, the virtually free RACG Wp can have the adjacent edge
groups Wiy 1, Wiy 2y and Wy, -y. However, such a group is then virtually a surface with
boundary and thus not considered to be rigid. This case is excluded by condition (B3). m

3.3. Edges

It remains to be determined which vertices in the JSJ graph of cylinders are connected by
an edge.

Lemma 3.19. For any pair of vertices in the JSJ graph of cylinders A there is an edge
connecting them if and only if the pair consists of one cylinder vertex corresponding to
the cut collection {a — b} and one non-cylinder vertex and their vertex groups intersect in
a special subgroup containing Wi,_py. The edge group is the special subgroup generated
by the intersection of the corresponding vertex sets.
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Figure 3.3. A is the JSJ graph of cylinders of the RACG Wr.

Proof. Since the JSJ graph of cylinders A is bipartite, edges can only connect cylinder
with non-cylinder vertices. Suppose there is an edge connecting a cylinder vertex cor-
responding to a cut collection {¢ — b} and a non-cylinder vertex. By definition of the
fundamental group of a graph of groups the edge group is the intersection of their vertex
groups. If this intersection would be a finite group, the group W cannot be one-ended by
Stallings’ Theorem [30], in contradiction to Standing Assumption 2. Thus, the intersection
is infinite. Furthermore, the vertex groups are special subgroups, thus so is their intersec-
tion by [13, Theorem 4.1.6]. Since the structure of A, comes from a JSJ decomposition
A, by Proposition 3.5, the edge group in A must contain W,_s), thus so does the edge
group in A..

Assume conversely that the vertex group of a cylinder vertex corresponding to a cut
collection {a — b} and a non-cylinder vertex intersect in a special subgroup containing
Wia—py- Then, they are connected by an edge by the definition of the fundamental group
of a graph of groups. ]

Example 3.20. For the graph I" shown in Figure 2.2, which satisfies Standing Assump-
tion 2, we can construct the corresponding JSJ graph of cylinders in Figure 3.3 by reading
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off the following collections of vertices according to Propositions 3.10, 3.16, and 3.18 and
connect them with edges according to Lemma 3.19:

Uncrossed cut collection | Commensurator | Hanging Rigid
X, w x,w,k,d

v, w v,w,d v,w,l,l>

v,y v,y,m,d

x,y,blx,y,clx,y,d x,y,a,b,c,d v,w,x,y,d

c,d c,d,x,y c,d,ny,ny | c,x,d,y
b,c b,c,x,0,y b,x,c,y
a,b a,b,x,y a,b,p1,p2 | a,x,b,y

3.3.1. Two-ended edge groups. As indicated in Remark 2.22, we aim to restrict to trees
of cylinders that are V€-trees themselves. This is not always the case, as we can see in
Example 3.20, Figure 3.3: the vertex set {x, y, a, b, ¢, d} generating the commensurator
of the uncrossed cut triples {x, y, b}, {x, y,c} and {x, y, d} contains, for instance, the
collection {c, x,d, y}, which corresponds to an adjacent rigid vertex. Thus, the connecting
edge group generated by the intersection by Lemma 3.19 is Wi, x 4.3y = Doo X Do,
which is not two-ended.

Therefore, we need to impose assumptions on the defining graph I' to ensure that the
intersection of vertex groups is two-ended. Recall that by the bipartiteness of the JSJ tree
of cylinders, the only intersections we need to consider are between cylinder and non-
cylinder vertices.

Lemma 3.21. If the intersection of a cylinder vertex group Gy corresponding to a cut
collection {a — b} and a hanging vertex group Wy contains Wi,_py and
(a) the set A satisfies the conditions (A1), (A2), and (A3), then the intersection is the
infinite dihedral group D oo,
(b) the set A satisfies the condition (A*), then the intersection is two-ended.

The proof of Lemma 3.21 relies on the following properties.

Lemma 3.22. If A C V(I') is a set that satisfies conditions (A1), (A2), and (A3), the
A-induced subgraph Ty is not a complete graph and Wy is not contained in a cylinder
vertex group, then

(1) A does not contain a cut triple,
(2) A does not contain two branches which share a common endpoint.
Proof. By definition, the non-adjacent vertices a and b of a cut triple {a — b} are not a cut

pair and by Standing Assumption 2, @ and b do not share an edge. Thus, a and b do not
separate |I"|. Therefore, a set satisfying (A1) cannot contain a cut triple, implying (1).
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For (2) suppose that two vertices x and y of degree 2 lie in different branches con-
tained in A meeting at an essential vertex a. Let b, and by, be the other endpoint of these
branches, respectively. Since a, b, and by, are essential, a is connected to both b, and b,
via a path neither passing through x nor y. Thus, [T'| \ {x, y} is connected, in contradiction
to condition (A1). [ ]

Proof of Lemma 3.21. For the proof of (a), assume that A satisfies the conditions (A1),
(A2), and (A3). Let Wy be the corresponding hanging vertex group on the defining graph
I'4 intersecting the cylinder vertex group Gy corresponding to the cut collection {a — b}
non-trivially. Recall that by Lemma 3.19 the intersection must contain W,_p,. Then, by
Lemma 3.22 (1), {a — b} cannot be a cut triple, so Gy must correspond to a cut pair {a, b}.

If Gy is Wiapy = Doo, so is the intersection. Therefore, we can assume that Gy is

not D.. Thus, the cylinder vertex group is the special subgroup on the defining graph I'y
consisting of the pair {a, b} with a non-empty common adjacent vertex set {c1,¢2,...,Ck}
for k > 1 and the degree of every vertex in € in I'y is 2. Since by [13, Theorem 4.1.6], the
intersection of two special subgroups is the special subgroup defined on the induced graph
given by the intersection, we need to consider how 'y N I'y can look like. Recall that the
intersection / = V(I'y N I'y) contains a and b. We distinguish the following cases:

(1) I = {a, b}: the corresponding group Wi, py = Do is two-ended,

(2) ¢; € I and ¢; has degree 2 in T" for i € {1,...,k}. Then, I contains the whole
branch {a, ¢;,b}. No other branch in A can be attached ata or b by Lemma 3.22 (2),
implying I = {a,c;,b}. But A cannot be equal to I = {a, ¢;, b}, since the hanging
vertex corresponding to A is not two-ended. However, supposing that there is
another vertex v € A \ {a, ¢;, b} such that |I'| \ {c¢;, v} is separated, contradicts
the fact that @ and b are uncrossed and c; has degree 2. This implies that this case
cannot occur,

(3) ¢; el fori €{l,...,k} and ¢; essential in I": we argue as in case 2. that there
must exista v € A \ {a, ¢;, b} such that || \ {c;, v} is separated. Since a and b
are an uncrossed cut pair, there is a path between v and ¢; not passing through
a nor b and another path connecting a and b not passing through ¢; nor v. This
means that we have a subdivided K4 with corners a, ¢;, b and v, in contradiction
to (A2). So again, this case cannot occur.

To conclude, in case (a) the special subgroup W; generated by the intersection I is always
Doo.

Assume now for the proof of (b) that A satisfies the condition (A*), and that the cor-
responding vertex group Wy on the defining graph I'4 is infinite. By Corollary 3.17 Iy, is
a graph theoretical star based at the vertex ¢ where all the cut triples contained in A meet.
Suppose that Wy intersects the cylinder vertex group Gy corresponding to a cut collection
{a — b} in a subgroup containing Wy,_py. Thus, if Gy is two-ended, so is the intersection
and we can assume that Gy is not two-ended. That means that the cylinder vertex group is
the special subgroup on the defining graph I'y consisting of the two non-adjacent vertices
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{a, b} of the cut collection and their common adjacent vertices € = {cy, ..., ¢} with
k > 2, which all have degree 2 in I'y. As above, we need to consider the graph I'y N T'y.
Define
I =V(I4)NV(Iy),

which contains {a — b} by Lemma 3.19 and consider the following cases for /:

(1) I ={a, b}: in this case W} is D, thus two-ended,

) I ={a,b,c;} for some i € {l,...,k}: in this case W} is Dy X Z, and thus

two-ended,

(3) {a,b} € I and |I N€| > 2, then I contains a square, thus so does 4 in contra-
diction to the fact that I'4 is a triangle-free star. Thus, this case cannot occur.

In conclusion, also in case (b) the special subgroup W; generated by the intersection 7 is
always two-ended. This finishes the proof. ]

Remark 3.23. By Standing Assumption 2 the defining graph I is never a cycle. Thus, in
case A satisfies the conditions (A1), (A2), and (A3) by Lemma 3.22 (2), A cannot contain
a cycle. This is also true in case (b), where A satisfies (A*) since the A-induced subgraph
I'4 is a graph theoretical star by Corollary 3.17. Therefore, Theorem 3.13 implies that any
hanging vertex group is virtually free.

Theorem 3.24. Let Gy be the vertex group of the cylinder vertex vy in A, corresponding
to the cut collection {a — b} with defining graph T'y C T" on the vertex set V(I'y) =
{a,b} U €, where € is the set of common adjacent vertices of a and b. Then, every rigid
vertex group Wp adjacent to the cylinder vertex group Gy intersects Gy in a two-ended
subgroup if and only if for any pair of vertices in € every path connecting them in T
passes through a or b.

Example 3.25. In Figure 3.3, the rigid vertex group generated by {c, d, x, y} is adjacent
to the cylinder vertex group corresponding to the cut triple {x — y}, which has {c, d}
as common adjacent vertices. Because there is a path through the vertices {c,n,n,,d}
connecting ¢ and d without passing through x nor y, they intersect in the non-two-ended
edge group generated by {c, d, x, y}.

Proof. Suppose first that there is a pair {c;, c;} C € of distinct vertices that are connected
by a path in I not passing through @ nor b nor any other common adjacent vertex of a and
b. There must be a path between a and b not passing through c; nor ¢; as otherwise {a — b}
would be crossed by {c; — c; }. However, this implies that the vertex collection {a, b, c;,c; }
forming a square in ['y satisfies condition (B1). While this set might not be maximal with
respect to this condition, it is for sure contained in a maximal collection B satisfying
conditions (B1), (B2), and (B3), corresponding to a rigid vertex group Wp. Thus, Gy is
adjacent to the rigid vertex group Wp which it intersects in a subgroup containing

I’V{a,b,ci,Cj} = Do X Do

Hence, the intersection is not two-ended.
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Assume conversely that Gy is adjacent to the rigid vertex group Wp and that no pair
of vertices in € is connected by a path in I that is not passing through a nor b. Then, each
such pair is separated when @ and b are removed. Thus, at most one of the ¢ € € can be
contained in B as otherwise condition (B1) would be violated. Since the intersection of
Gy and Wp must be infinite, we conclude that {a, b} C B. Thus, the intersection is either
Wia,by or Wia b,y and therefore two-ended. [

Remark 3.26. Combining Lemma 3.21 and Theorem 3.24 implies Theorem 1.2, stating
that the JSJ tree of cylinders has two-ended edge stabilizers if and only if there is no
uncrossed cut collection containing the corners of a square in the defining graph where the
other two corners are connected by a subdivided diagonal. Note that this can be interpreted
as a condition about a subdivided Kj4.

Remark 3.27. If T" contains two overlapping cut triples {a, b, c} and {a, b, ¢'}, then ¢ and
¢’ are connected by a path not passing through a or b. Otherwise, a and b would be a cut
pair, in contradiction to the definition of a cut triple. Thus, if we only consider graphs I"
where the JSJ graph of cylinders has two-ended edge groups, overlapping cut triples do
not occur in I'.

This has an impact on Proposition 3.10: recall that the set § contains as elements the
sets {a, b} U €, where {a — b} is an uncrossed cut collection and € is the set of com-
mon adjacent vertices of a and b. Excluding overlapping cut triples implies that every
uncrossed cut collection contributes a new element to . Hence, every uncrossed cut col-
lection is in one-to-one correspondence with a cylinder vertex.

To obtain a JSJ graph of cylinders with two-ended edge groups, we need to refine
Standing Assumption 2.

Standing Assumption 3. The defining graph I’

(1) has no triangles,

(2) is connected and has neither a separating vertex nor a separating edge,

(3) has a cut collection,

(4) is not a cycle,

(5) has only uncrossed cut collections {a — b} for which for any pair {c;,c,} € € of
common adjacent vertices of a and b, every path in I" connecting ¢ and ¢, passes
through a or b.

Remark 3.28. Under Standing Assumption 3, the proofs of Lemma 3.21 and Theo-
rem 3.24 imply that the edge stabilizers are either of the form Wy, 5y or Wi, py X Wiey,
where {a — b} is an uncrossed cut collection and ¢ is a common adjacent vertex of a and
b. In particular, the latter case can only happen when a, b, and ¢ are the corners of a
subdivided Kj4.

To conclude, we summarize the construction of the JSJ graph of cylinders A, in the
following theorem.
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Theorem 3.29. Let Wr be a RACG with T satisfying Standing Assumption 3. Then, its
JSJ graph of cylinders A, consists of the following vertices.

*  For any uncrossed cut collection {a — b} C EV(I') there is a cylinder vertex with
vertex group Wiq pyue, where € is the collection of common adjacent vertices of a
and b in T. All the cylinder vertices are either two-ended, VA or VFD.

*  Foranyset A C V(I') of vertices such that Wy is infinite, A satisfies either conditions
(A1), (A2), and (A3) or condition (A*) and A is not contained in a vertex set corre-
sponding to a cylinder vertex group, there is a hanging vertex with vertex group Wy.
The vertex group is virtually free.

* For any set B C EV(I') of essential vertices in I satisfying conditions (B1), (B2),
and (B3), there is a rigid vertex with vertex group Wp.

Furthermore, a pair of vertices is connected by an edge if and only if the pair consists
of one cylinder vertex corresponding to the cut collection {a — b} and one non-cylinder
vertex and their vertex groups intersect in a special subgroup containing Wia_p). The edge
group is the special subgroup generated by the intersection of the corresponding vertex
sets. It is two-ended.

Example 3.30. For the graph I" shown in Figure 4.1, which satisfies Standing Assump-
tion 3, we can construct the corresponding JSJ graph of cylinders by reading off the
following collections of vertices:

Uncrossed cut collection | commensurator hanging rigid
a,b a,mip,mo,ms,b a,b,c,d
a,c a,c a, ki ko, c
a,d a.d a,li,l,d
b,c b,o,c
b,d b, p,d
c,d c,ny,ns,d C,no,n3,N4,d

4. QI invariance

As discussed in Section 2, the feature of interest of the JSJ graph of cylinders is that it
can give insight on whether two groups can be QI or not. In the case of certain hyperbolic
RACGs, we know by Theorem 2.25 that all the two-ended cylinder vertices have finite
valence in the JSJ tree of cylinders. Thus, if two groups exhibit different valencies at their
cylinder vertices, the JSJ trees of cylinders are not isomorphic, and thus, by Theorem 2.23,
the groups are not QL.

However, this argument is not applicable in general, since cylinder vertices with one-
ended vertex groups do not have finite valence. Nonetheless, we still might be able to
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Figure 4.1. A is the JSJ graph of cylinders of the RACG Wr.

distinguish trees of cylinders with infinite valence cylinder vertices, and thus produce an
obstruction for a QI, by taking the additional structure coming from the vertex groups
and their interplay via edge groups into account. This idea was formalized by Cashen and
Martin in [8] by the introduction of the so-called structure invariant. We first recall its
definition and illustrate when it can distinguish two RACGs up to QI and when it cannot.
In a second step, we aim to produce a QI between certain groups from identical structure
invariants, making the structure invariant a complete QI-invariant.

4.1. The structure invariant

We fix T to be a simplicial tree of countable valence and G to be a group acting on
T cocompactly and without edge inversions. We introduce some terminology following
[8, Section 3].
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Definition 4.1. For some arbitrary set @ of ornaments, a G-invariant map é: V(T') — O
is called a decoration. The tree T is said to be decorated.

Example 4.2. A classical set of ornaments for a JSJ tree of cylinders 7T, is the vertex
type, that is @ = {‘cylinder’, ‘hanging’, ‘rigid’}. A possibly finer decoration is obtained
by equipping each vertex v with the ornament consisting of the vertex type and the so-
called relative QI-type of the corresponding vertex group G,. This relative QI-type is
determined as follows: given the vertex group G,, we consider the set &, of distinct
Hausdorff equivalence classes in G, of G,-conjugates of images of the edge injections
te: Go — G, where e € E(T,) is an edge incident to v. P is often referred to as the
peripheral structure of G, coming from incident edge groups or just as the peripheral
structure of G, . Then, the relative QI-type [(G,, #,)] of G, is the set of all pairs (Y, P),
where Y is a geodesic metric space and P is a collection of Hausdorff equivalence classes
of subsets of Y such that there is a QI from G, to Y inducing a bijection from £, to P.
Thus, the relative QI-type captures the structure of the vertex group with respect to its
incident edge groups up to QL

Definition 4.3. A decoration §’: V(T) — O’ is called a (strict) refinement of the dec-
oration 8: V(T') — O if the §'-partition | | o/ (8")"1 (") of V(T) (strictly) refines the
§-partition | |,c 87" (0). A non-strict refinement is called trivial.

The refinement process used to obtain the structure invariant is the neighbor refine-
ment, which is an idea generalizing the degree refinement algorithm known from graph
theory. It works as follows.

Construction 4.4. Let N = N U {oo} and call Oy = O the initial set of ornaments and
80 = § the initial decoration. Starting from i = 0, we define for each i € N and each
v € V(T) the map
fv,i: (9,' —> N
o [{w e (o) | (w,v) € E(T)}.
Define 9; 41 as Qg x N9 and §; ; as the pair (§o(v), Jv,i) € Qg x NO:.

Cashen and Martin prove the following facts about the maps defined in Construc-
tion 4.4.

Lemma 4.5 ([8, Lemma 3.2 and Proposition 3.3]). The map 8;4+1: V(T) — O;41 is a
decoration refining §;: V(T) — O; for all i € N. Furthermore, this refinement process
stabilizes. That is, there is an s € N such that for any i + 1 < s, the decoration 8; 41 is a
strict refinement of 8;, but for any i > s, the refinement 8; 11 is trivial.

Definition 4.6. The decoration 85: V(T') — 5 at which the neighbor refinement process
stabilizes is called the neighbor refinement of §.

To capture the information contained in the neighbor refinement, we define 7o: O3 —
O to be the projection to the first coordinate. After choosing an ordering on the image
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8(V(T)), we denote the jth element as @[ ]. Then, we can choose an ordering of
75 (O[] N8 (V(T)).

We order §;(V(T)) lexicographically and denote the ith element as O;][i].

Definition 4.7. A structure invariant S = S(T,§, O) is the |85(V(T'))|?-matrix, where

Sidke = (1, 0(Os[ 1), w0 (Os[k])),

with 7 x the number of vertices in §;1(O;[;]) adjacent to §; 1 (Os[k]). The second entry
of the tuple S x is the row and the third entry the column ornament.

We can view S(7, 8, O) as a block matrix, which is well defined up to block permuta-
tions and the choice of ordering on §(V(T')) and 7y ' (9[j]). For economy of notation, we
will denote a structure invariant in a table with entries 7, x, whose rows and columns are
labelled by the initial decoration §(V(T')), as illustrated in Example 4.10 or labelled by the
vertex orbit representatives carrying the same ornaments, as illustrated in Example 4.23.

As indicated in the definition, a structure invariant depends on the initial choice of
ornaments and decoration. When we refer to the structure invariant, the initial decoration
is the one introduced in Example 4.2: the ornaments consist of vertex type and relative
Ql-type. We call two vertices in the JSJ graph of cylinders indistinguishable if they have
the same image under 6.

By construction, the structure invariant relates to the existence of a tree isomorphism
between the JSJ trees of cylinders.

Proposition 4.8 (cf. [8, Proposition 3.7]). Given two groups G and G’ with JSJ trees of
cylinders T, and T/, and G- and G'-invariant decorations §:V(T,;) — O and §'": V(T}) —
O, respectively, there is a decoration-preserving isomorphism ¢: T — T/ if and only if
up to permuting rows and columns within O-blocks,

S(T..8,0) = (T8, 0).

Since the ornaments on a JSJ tree of cylinders consisting of vertex type and relative
QI-type determine the structure of the group, we can refine our search to decoration-
preserving tree isomorphisms. Hence, by Proposition 4.8, the structure invariant is indeed
a Ql-invariant for RACGs with defining graph satisfying Standing Assumption 3 (cf. [8,
Theorem 3.8]).

Example 4.9. The two groups with defining graphs illustrated in Figure 4.2 serve as an
introductory example as they are easily distinguished as non-QI by use of the structure
invariant. While the commensurator of the cut pairs {a, b} and {c, d} in I'; both give a
VFD vertex group, in ', the commensurator of {c, d } corresponds to a VA vertex group.
Since both graphs only have those two uncrossed cut collections, the initial decoration
consisting of vertex and relative QI-type already shows that the groups cannot be QI.
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Figure 4.2. The RACGs on the graphs I'1 and I'; are not QI to each other.

Example 4.10. To obtain the structure invariants of the JSJ graphs of cylinders A, ; and
A¢,» for the two RACGs W; and W, on the defining graphs I'; and I',, respectively,
illustrated in Figure 4.3, we start with the following initial decorations:

8:V(A) = O 8:V(Ay) — O
¢ > (Ceyl', [(VA, P0)]) ¢ = (eyl', [(‘'VA", 2)])
h +— (‘hang’, [("VF’, Pp)]) hi,hy = (‘hang’, [("VF", P,)])
r (g, [(Wiapede £ Pl r' = (g [(Wiap.e.d.e, fg.1) Pr)])

We immediately see that no refinement is possible, the vertices #; and A, are indis-
tinguishable and thus the following structure invariant is the same for both JSJ trees of
cylinders.

(eyl’, [CVA, P

(‘hang’, [("VF", Pp)])

(rig’, [(Wiap.c.d e fig) Pr)D)

(‘eyl, [(“VA*, Po)]) 0 00 00
(‘hang’, [(‘VF", Pp)]) 00 0 0
(‘rig’, H(W/(a,b,c,d,e,f,g}’ erPr)]]) oo 0 0

Thus, by Proposition 4.8, there is a decoration preserving tree isomorphism between
the respective trees of cylinders 77 and 75. This leads to the question whether W, and W,
are QI, which we will answer in the negative in Example 4.21.

4.2. Promoting to a QI

Given two groups G and G’ with identical structure invariants and thus with a decoration-
preserving isomorphism between their respective JSJ trees of cylinders, we want to deter-
mine when we can promote this isomorphism to a QI of the groups. Since any QI between
G and G’ needs to restrict to a QI locally at each vertex group by Theorem 2.23, the
general idea is the following: start with any local QI between two cylinder vertex groups
with the same entry in the structure invariant, which is bijective on the peripheral struc-
tures coming from the incident edge groups, and extend it piece by piece from there. By
Lemma 3.11, we know that in our setting we can encounter either two-ended, VA or VFD
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Figure 4.3. We compare the JSJ graphs of cylinders A¢ 1 and A¢ > of the RACGs Wr, and Wr,,
respectively.

cylinder vertex groups. Hence, we first determine the possible local QIs for these different

cases separately and combine the respective results to find a global QI in a next step.

Remark 4.11. All arguments will work along the lines of the ones used in [8], where the
case of two-ended cylinder vertices is dealt with. However, at this point, we need to clarify

three technicalities.

* Rigid vertices need to be handled with special care:

While the relative QI-type of rigid vertices might be hard to determine, it can be the
crucial ingredient to distinguish groups. In the case of RACGs, for instance, this
is illustrated by Cashen, Dani, and Thomas in [12]. Their Theorem B.1 states that,
while all RACGs on 3-convex subdivided complete graphs with at least 4 essential
vertices have isomorphic JSJ trees of cylinders, they are pairwise non-QI. The
reason for that lies in the relative QI-type of the rigid vertices. To have more control
over rigid vertices, Cashen and Martin restrict to those that have the property of
being quasi-isometrically rigid relative to the peripheral structure [8, Definition
4.1]. For example, free rigid vertex groups will have this property by [7]. Under
this additional assumption, another ornament, the relative stretch factor, can be
introduced to decorate edges and help distinguish rigid vertices [8, Section 4].
However, whether rigid vertices in JSJ trees of cylinders of RACGs have this or
a similar sufficient property (for example, the related right-angled Artin groups
splitting over cyclic groups do; cf. [21, Section 6]) is yet to be determined.
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— Another issue caused by rigid vertices is that they might have adjacent edges whose
edge groups are not two-ended as shown in Theorem 3.24. Nguyen and Tran give
in [23] a complete QI classification of a class of RACGs with such edge groups:
the defining graphs are connected, triangle-free and planar and have more than
4 vertices, no separating edge or vertex and a property called €F S (constructed
from squares, [2, Definition 1.3]). In the proof, they use the maximal suspension
decomposition and the properties of its corresponding vertex groups. However, for
the groups they consider, this turns out to be in correspondence with the JSJ graph
of cylinders and the decoration consisting of the relative QI-type.

— Moreover, in [5], Bounds and Xie show that RACGs whose defining graphs are
generalized thick m-gons exhibit a strong form of QI-rigidity: they are QI if and
only if their defining graphs are isomorphic.

For simplicity, we focus on groups without any rigid vertices or on pairs of groups
which have isomorphic rigid vertex groups as in Examples 4.10 and 4.29.

*  Work on the geometric tree of spaces: to make technical details more economic,
instead of working on graphs of groups, Cashen and Martin state their results for a
slightly modified space, the geometric tree of spaces X of G over T.. The construc-
tion of X is standard and useful as X is QI to G. Essentially, X is produced from the
JSJ graph of cylinders A, by substituting all groups of the same relative QI-type by a
uniform model space representing the equivalence class. Thus, instead of a subgroup
G, we have a subspace X, for every ¢ € T,. Most importantly, if two groups G and G’
exhibit subgroups G; and G/, with equivalent relative QI-types in their JSJ graphs of
cylinders, we choose the same model space X; for both G, and G;,. If convenient, we
will state results in terms of the geometric tree of spaces X, but spare the bookkeeping,
which is done thoroughly in [8, Sections 7.2 and 2.5].

* Partial orientations can be omitted: for the sake of completeness it should be men-
tioned that, apart from the neighbor refinement, Cashen and Martin introduce the
cylinder and the vertex refinement, depending on a partial orientation chosen essen-
tially on all two-ended spaces. However, since all infinite RACGs and thus all edge
groups in A, contain an infinite dihedral group D, the orientation can always be
reversed. Thus, the refinement processes become trivial and shall therefore be left out
of our considerations.

4.2.1. Two-ended cylinder vertices. In case all cylinder vertex groups are two-ended,
like, for instance, for hyperbolic groups, Cashen and Martin give a structure invariant,
which is a complete QI-invariant. Their result, stated for RACGs splitting over two-ended
subgroups and thus refining Theorem 2.23, is reiterated in the following proposition.

Proposition 4.12 ([8, Theorem 7.5]). Let W and W' be two finitely presented, one-ended
RACGs with non-trivial JSJ decomposition over two-ended subgroups such that cylin-
der stabilizers are two-ended and all non-cylinder vertex groups are either hanging or
quasi-isometrically rigid relative to the peripheral structure. Define T to be the JSJ tree
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of cylinders of W and X to be the geometric tree of spaces of W over T. The initial
decoration 8o on T takes vertex type, relative QI-type and the relative stretch factor into
account. Let § be the neighbor refinement of 8o. Analogously, we define T', X', 8, and &'
for W'. Then, W and W' are QI if and only if there is a bijection 8:5(T) — §'(T') such
that

(1) 808~ =850 (8) " op;

(2) S(T,5,0) = S(T',8,0) in the B-induced ordering;

(3) for every ornament o € O with §~1(0) containing non-cylinder vertices, there is a
vertex v € 81 (0) and a vertex v' € (8')"1(B(0)) such that there is a QI between
the vertex spaces X, and X,,, which is bijective on the peripheral structures Py
and P, and respecting the decorations § and &', respectively.

The inductive construction of the QI in their proof will serve as a blueprint for the
proof of the general Theorem 4.24.

4.2.2. VFD cylinder vertices. It turns out that VFD cylinder vertex groups have enough
flexibility to always find a QI between cylinder vertices with this same entry in the struc-
ture invariant. We construct this local QI in the following simplest setting.

Proposition 4.13. Let W and W, be two RACGs on defining graphs satisfying Standing
Assumption 3 with identical structure invariants and one single cylinder vertex vy and v,
in the JSJ graph of cylinders A and A, respectively. Let the vertex groups Vi and V, of
vy and v,, respectively, be VFD. Then, there is a QI between Vi and V, that is bijective
on the respective peripheral structures.

Proof. The setup is the following: both JSJ graphs of cylinders A; and A, look like stars,
with the cylinder vertex in the middle and their neighbors grouped into j < oo classes of
indistinguishable vertices. Suppose at first that j = 1.

Thus, for i € {1,2}, each A; consists of one cylinder vertex v;, which has a vertex
group of the form V; = We, x Do. The copy of D is generated by non-adjacent vertices
of a cut collection and We, is generated by the set €; of their common adjacent vertices.
By assumption, W, is virtually free, thus |€;| > 2. At the cylinder vertex v; in the middle,
there is a set N; of e¢; indistinguishable non-cylinder vertex groups of the same relative
QIl-type attached along a two-ended edge group. These edge groups are either a copy of
Do or of Dog X Zy with Zy = Wiy for some ¢ € €; by Remark 3.28. Thus, in the
corresponding JSJ tree of cylinders, the vertex 1 - V; has infinitely many adjacent vertex
groups corresponding to cosets of the form gN: the group N is an element of N; and
g € V; is either any word in W, or a word in We, not ending on ¢, depending on whether
the edge group along which N attaches is Do, Or Doy X Wey.

We want to interpret this setup in terms of Cayley graphs in order to prove Claim 4.14.
Before, we need to fix some terminology.

As a graph A with tangling edges E we understand some base graph A, where at each
vertex in V(A) we add some additional neighbors, all of valence 1. Each such additional
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edge is labelled by an element of E and is called a tangling edge. In the new graph, we
can think of each tangling edge as the pair (v, i), where i € N counts the edges attaching
at the base vertex v € V(A) in A. We denote the resulting graph as A U E, where the
union happens via the implicit attaching map. Let k(v) be the number of edges tangling
at v € V(A). Then, we can interpret the set E as

E={tyilveV(A),iec{0,... k@) —1}}
where t,, ; denotes the ith tangling edge at vertex v € V(A).

Claim 4.14. The problem of finding a QI between V; and V, that is bijective on the
respective peripheral structures can be reduced to finding a QI between two identical infi-
nite, regular trees 7" with tangling edge sets £ and E; such that the occurring numbers
of tangling edges {k;(v) | v € V(T)}in T U Ey and T U E, differ. In addition, this QI
must be bijective on the tangling edges.

Proof of Claim 4.14. The idea of the reduction is the following: the Cayley graph of We,
reduces to the base tree and the tangling edges are in correspondence with the different
cosets gN.

We start the reduction process with the object X;, illustrated in Figure 4.4, constructed
as follows: note first that the Cayley graph of the cylinder vertex group V; = We, X D is
the direct product of the Cayley graph T; of W, and the line D that is the Cayley graph of
D. This is true because with the correct choice of generating sets, the Cayley graph of
a direct product is the direct product of the Cayley graphs. Since all the vertices in €; are
pairwise non-connected in the defining graph, the Cayley graph 7; of W, is a |€;|-regular
tree. We can think of each coset g/N adjacent to the vertex 1 - V; as attaching in this Cayley
graph. If g can be any word in We,, the coset attaches at the vertex g in 7; and along the
line D.If g is a word in W, not ending on c, the coset attaches along the edge c starting at
the vertex g in 7; and along the line D. Either way, we can think of the e; different cosets
gN as e; possibly thickened half-planes at the vertex g in 7; attached along the line D.
Note that at one vertex g it can happen that there attach both thick half-planes along an
edge and thin half-planes at the vertex. We call the constructed object X;.

Since X; captures the structure of the group, the task of finding a QI between V; and
V, that is bijective on the peripheral structure is done if we can show that there is a QI
between X; and X that is bijective on the half-planes corresponding to the cosets. For
the reduction, we squish for any N € V; attaching along a Do, X Wi,y the corresponding
thick half-plane: replace each such thick half-plane attaching along an edge by a thin
half-plane attached at the terminal vertex of the attaching edge that has less half-planes
attached. Then, at each vertex in 7; there attaches some positive number of thin tangling
half-planes corresponding to the cosets g/N. We reinterpret this object as (7; U E;) x D,
where E; is a set of tangling edges. It suffices to find a QI between (77 U E1) x D and
(T> U E3) x D that is bijective on the tangling half-planes, because this immediately
implies that we can find a QI between the trees with thick tangling half-planes simply by
extending the map along the attaching edges via the identity.
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Figure 4.4. We replace thick half-planes by thin half-planes and collapse the D-direction.

However, now it is enough to find a QI between 77 U E; and 7> U E, which is bijec-
tive on the tangling edges, because again, this immediately implies that we can find a QI
between (77 U E1) x D and (T, U E3) x D this time by extending the map to D via the
identity.

So, to find this QI, recall the well-known fact that two regular trees are QI to each
other by contracting or inserting one edge path of a certain finite length at each vertex of
the first tree to turn it into the second. Thus, we start with the tree with smaller regularity,
say without loss of generality 77 and perform this operation on the edges to obtain a
tree T that is QI to 77 and isomorphic to 7,. While this contraction and insertion of
edges redistributes the tangling edges of 77, since we started with the tree with smaller
regularity, the resulting 7" also has at least one tangling edge at each vertex. Hence, there
is a QI between 77 U E; and T, U E, that is bijective on the tangling edges if we can
find a QI between 7' U E (with some adjusted tangling edge set £1) and T U E, that is
bijective on the tangling edges.

We could keep track of the exact number k; (v) of tangling edges at each vertex v in
V(T) of T U E;. However, since this would require a technical case distinction, we sup-
press the details. In general, the number &; (v) of tangling edges at each vertex v varies.
However, most importantly, we see from an analysis of the reduction process that all ver-
tices have a bounded number of tangling edges, that is all vertices have at least y; > 0 and
at most x; < oo tangling edges, i.e., 0 < y; < k;(v) <x; <ooforallv € V(T).

With this process, we have reduced the problem of finding a QI between V; and V,
that is bijective on the respective peripheral structures to finding a QI between two copies
of an infinite, r-regular tree 7" with differing occurring numbers {k; (v) | v € V(T)} of
tangling edges at its vertices, that is bijective on the tangling edges. ]
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So, as Claim 4.14 suggests, we aim to find a QI ¢ from 7" U E; to T U E», where the
base graph T is an infinite r-regular tree with distinguished base vertex and g is bijective
on the tangling edges. Without loss of generality, we set the maximal number x; of edges
attaching at a base vertex in 7 U E; to be greater than the maximal number x, of edges
attaching at a base vertex in 7 U Ej.

We define the following notion on 7' U E;: given an edge e € E(T') with some tangling
edge t € E; at the vertex o(e), we call it a slide along e if we detach ¢ from o(e) and
reattach it at 7 (e).

Claim 4.15. There is a constant d € N such that in 7 U E every tangling edge at each
vertex of T needs to slide at most along d edges of T away from the distinguished base
vertex such that the resulting graph is isomorphic to 7 U E,.

Now, we get the desired QI g from 7' U E to T U E» which is bijective on the tangling
edges: the sliding process in Claim 4.15 defines a bijective map ¢’ : E; — E, mapping
each edge in E; to the edge in E, on whose position it is slid to. We define g : T U E; —
T U E; to be the map that is the identity on T and ¢’ on the elements of E; as “half-open”
edges without the endpoint contained in 7.

Let t,,; and f,y j» in E; be two tangling edges based at v and v’ in T, respectively.
Since tangling edges are always slid away from the distinguished base vertex, their images
can get at most d edges closer to each other than v and v’ are. Hence,

d(tv,js tv’,j’) —d < d(Q([v,_i)v ‘I(tv’,j’))»

which gives the lower QI-bound. For the upper QI-bound note that since both tangling
edges are slid at most along d edges, their distance can grow at most by 2d, that is

d(‘](tv,j)» Q(tv’,j’)) = d(tv,j ) tv’,_/’) +2d.

Since a vertex w € V(T') is not moved by ¢, analogous bounds hold for d(g(t,;), g(w)).
This implies that ¢ is a quasi-isometric embedding. The bijectivity of ¢’ ensures the quasi-
surjectivity of ¢g. Therefore, ¢ is a QI and the only thing left to prove is Claim 4.15.

Proof of Claim 4.15. For simplicity, we want to define the graphs 7, which are identical
to 7' U E; with the exception that in 77, the base vertex of 7" does not carry any tangling
edges. Since the number of tangling edges we remove is bounded by k < oo, the claim
remains true if we can prove it on 7} and the argument works analogously. However, if we
work on 77, we can give d explicitly in terms of the maximal number x; of tangling edges
at a vertex in 7 U E, the minimal number y, of tangling edges at a vertex in 7 U E, and
the degree r of the regularity of T as follows:

log(21)
4= [log(r - I)W'
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If the base vertex carries at most k tangling edges as well, d is bounded by

log(21)
(mg(r . lﬂ Tk

a complication we avoid without any loss of generality. Now, the key feature of the proof
is the following algorithm.

Algorithm 4.16. Since we always need to slide away from the base vertex, we can reduce
the problem by dividing the tree T into r subtrees by removing the base vertex, which
does not have any tangling edges. Then, we have r rooted trees, where the root has r — 1
outgoing edges. We consider one rooted tree R, which is oriented away from the root *. A
vertex is at level / of R if it has distance / to the root . Note that every vertex in R, with
exception of the root, has one incoming, (r — 1) outgoing and at least y; and at most x;
tangling edges. The root has r — 1 outgoing and at least y; and at most x; tangling edges.

Now, the idea is the following: every vertex receives some tangling edges via a slide
along its incoming edge and superfluous tangling edges leave the vertex via a slide along
the outgoing edges. The sliding process follows two rules.

(1) The distribution of the superfluous tangling edges along the r — 1 outgoing edges
is uniform.

(2) The edges that are kept at each vertex are always the ones that have been slid the
furthest.

Without loss of generality, we can assume that all vertices in 77 have the maximal number
of x; tangling edges and all vertices in 7, with the minimal number of y, tangling edges.
If the bound d works for these special cases, it works for the numbers of tangling edges
in between.

We show by induction on the level / of R that d satisfying

X1 <
h_nﬂ =7

works as a uniform bound. Consider the root of R at level O as the base case. We need to
keep y, edges at the root and by rule (2), we keep at most a total of (r — 1) - y, edges
coming from the root at level 1. In general, we keep at most a total of (r — 1)’ - y, edges
coming from the root at level i. But since

d

Y=y = =Dy = xy,
i=0

it is immediate that none of the x; edges coming from the root will be slid more than d
steps.

For the inductive step, suppose that each edge up to level / will be slid at most along d
edges. We consider a vertex v at level [ + 1. If we slide its tangling edges along d edges
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in R, they are now attached at a vertex at level [ 4+ 1 4 d. But by hypothesis any edge slid
away from a vertex at level / or any level above cannot be attached at level / + 1 + d.
Thus, the edges from level [ 4 1 are the ones that have been slid the furthest, so by rule (2)
they are the ones that need to stay. However, by choice of d, there are at most y, edges
coming from v per vertex at level [ + 1 + d. Therefore, no edges coming from level k + 1
are slid any further, proving that the chosen d gives a uniform bound. |

The way to interpret Algorithm 4.16 is that in the JSJ graphs of cylinders, we can
duplicate or collapse the neighboring vertices of v; of the same QI-type to match the
neighbors of v5.

In order to produce a QI between V; and V, when Ay and A, have j > 2 classes of
indistinguishable vertices attached at the cylinder vertex, we apply Claims 4.14 and 4.15
and execute Algorithm 4.16 for each class individually. ]

4.2.3. VA cylinder vertices. The flexibility of the VA cylinder vertices lies in between
the flexibility of the other two types: in the tree of cylinders, they have infinite valence
like the VFD cylinder vertices. However, in order to get a QI from one VA cylinder vertex
group to another, the different classes of indistinguishable neighboring vertex groups must
occur with matching densities in the respective JSJ graphs of cylinders. This behavior is
similar to the two-ended cylinder vertices. The robustness comes from the fact that the
QI cannot be of any type, but it must be bounded distance from scaling by precisely the
density. Shepherd and Woodhouse also make use of these densities in [29, Section 5.6].

As for the VFD cylinders, we construct the local QI in the following simplest setting.

Proposition 4.17. Let Wy and W, be two RACGs on defining graphs satisfying Standing
Assumption 3 with identical structure invariants and one single cylinder vertex vy and
vy in the JSJ graph of cylinders A1 and A, respectively. Let the cylinder vertex group
V12 Doo X Doo and Vo = Do X Do at vy and v,, respectively, be VA. Suppose at v and
vy attach ey and e neighbors of the same class of indistinguishable vertices, respectively.
The number e1 decomposes as the sum of my vertices attaching along a D »-edge and n
vertices attaching along a Do X Z,-edge. Analogously, e; = my + ns.
There is a QI from Vi to V, that is bijective on the respective peripheral structures

if and only if there is a QI that is the identity map on the first Doo-copy of V1 and V;
and that scales under the natural identification with Z the second D oo-copy of Vi to the
second D -copy of V by

2mi + nq

2ms +ny’
Furthermore, every QI between V1 and V5 that is bijective on the respective peripheral
structures is bounded distance from one of the form

Yv:DxL— DxL
(x. ) = (' (x.9), ¥ (x. ),
where D and L are Cayley graphs of Do and " is scaling by

2mi+n;
2ma+ny’
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Figure 4.5. We replace thick half-planes by thin half-planes and collapse the D-direction.

Proof. The proof resembles the proof of Proposition 4.13, we have a similar setup: for i
{1, 2}, the JSJ graph of cylinders A; looks like a star with one VA cylinder vertex v; in the
middle. The VA vertex group V; at v; corresponds to the uncrossed cut collection {a; — b; }
with common adjacent vertex set {s;, #; }, thus V; = Wi, py X Wi 13 = Doo X Do

As before, in Aj;, at the cylinder vertex v; there is a set N; of e; indistinguishable
non-cylinder vertex groups of the same relative QI-type. Of these, m; are attached along a
Wia; by = Doo-edge group and n; are attached along a Wig, p, s,y = Doo X Z2-edge group
or a Wiy, b 1y = Doo X Z-edge group (cf. Remark 3.28). In the corresponding JSJ tree
of cylinders, the vertex 1 - V; has infinitely many adjacent vertex groups corresponding to
cosets of the form g/N. The group N is an element of N; and g € V; is either any word in
Wis, 1y or any word in Wiy, 1 not ending on s; or on #;, depending on whether N attaches
along the edge group Wi, p;3 of Wig, b;.13 Of Wig, b, .5:1 TESPECtively.

Again, we want to interpret this setup in terms of Cayley graphs in order to prove the
following claim.

Claim 4.18. The problem of finding a QI between V; and V; that scales W, 1,3 to Wi, 1)

by gz‘ﬁ and that is bijective on the respective peripheral structures can be reduced to
2+n2
finding a QI between two copies of the number line with different occurring numbers of

tangling edges that scales the number line by %z;—iz;

Proof of Claim 4.18. Analogous to the procedure for a VFD cylinder vertex in the proof
of Proposition 4.13, we use the Cayley graph of V;. It is given by the a;b; X s;t;-grid.
Note that the bi-labelled s;¢;-line L corresponds to 7; in the proof of Proposition 4.13 and
the bi-labelled a; b;-line corresponds to D. If g can be any word in W, .1, the coset gN
attaches at vertex g in L along D. If g is a word in W, ;) not ending on s;, the coset gN
attaches along the edge s; starting at the vertex g in L and along D and if g is a word in
Wis, 1y not ending on ¢;, the coset gN attaches along the edge #; starting at the vertex g
in L and along D. Either way, we can think of the e; different cosets g/N as e; possibly
thickened half-planes at the vertex g in L attached along the line D. Using the notation
from the proof of Proposition 4.13, we call this object X, it is illustrated in Figure 4.5.
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Again, we obtain a QI between V1 and V5 that is bijective on the peripheral structure if
we can find a QI between X; and X, that is bijective on the half-planes corresponding to
the cosets. Unlike in the proof of Proposition 4.13, we need to make sure that the following
reductions work both ways in order to prove the fact about the scaling, that is, we show
that we find the desired QI between the reduced objects if and only if we find one between
the original ones.

First, we get rid of the thick half-planes, as in the proof of Claim 4.14. For any N € V;
we find attaching along a Wig, p, s;3- o Wi, b;.1,1-€dge, we need to squish the corre-
sponding thick half-planes: replace half of the thick half-planes attaching along an edge
e € {s;,1;} by a thin half-plane attached at o(e) and the other half at #(e). Then, at each
vertex in L there attach % thin tangling half-planes coming from thick ones and m; origi-
nally thin ones. In total, there attach m; + ”7‘ thin half-planes at each vertex. Of course, it
can happen that n; is odd and we have produced “half a half-plane” with this procedure.
However, this will not affect the rest of the argument.

We reinterpret this object as (L U E;) x D, where Ej; is the set of tangling edges. It suf-
fices to find a QI between (L U E1) x D and (L U E») x D that scales L by gz;z; that
is bijective on the tangling half-planes. The existence of such a QI immediately implies
that we can find a QI between the grids with thick tangling half-planes simply by extend-
ing the map along the attaching edge via the identity. Conversely, if we find a QI between
two grids with thick tangling half-planes which is bijective on all tangling half-planes, this
means that the horizontal D-lines are preserved. Thus, we can restrict this QI to obtain the
desired QI between the grids with thin tangling edges.

In the second reduction step, we check that it is enough to find a QI between L U E;
and L U E5 that is bijective on the tangling edges and scaling L by 2%12; Again, given
such a QI, we can find the desired QI between D x (L U Ey) and D x (L U E5) by
extending the map via the identity to D.

For the converse, suppose that ¥: D x (L U E;) — D x (L U E5) is a QI which is
bijective on the tangling half-planes and scaling L by 2"“"’21 Restricted to the grid, v is
of the form

Yv:DxXxL— DXL
(. ) = (P ), v (3, p).

However, the bijectivity on the tangling half-planes implies that { coarsely preserves
the copies of D, that is the a;b;-horizontal lines. This means that, given the pair (xg, yo)
in the grid of D x (L U E1), with image

¥ (X0, ¥o)) = (0. ¥g),

any other pair (x, yo) is mapped to (x’, yg). This means that " (x, y) is independent of
the input of x, hence we can interpret " as follows:

v’ L — L
y =y ().



A. Edletzberger 1082

Via ¥ we extend " again to the tangling edges, that is we find map v": L U E; —
L U E, that is bijective on the tangling edges.

Lastly, note that ¥ is a QI. Indeed, given two pairs (xg, yo),(x1, y1) inthe grid D x L,
we can decompose their distance as follows:

dpxr((x0,Y0). (x1,y1)) = dp(x0.x1) + dr (Yo, ¥1)-

This implies that a QI-inequality for v also holds for .

For convenience, we include a third reduction step. As in the proof of Claim 4.14 of
Proposition 4.13, we contract every other edge of L. This way, we have 2m; + n; edges
at each vertex, removing the issue with the “half-edges”.

So, we have a QI between V; and V, which is bijective on the respective peripheral
structures and which scales one copy of D to the other by 5~ 2”” +”‘ if and only if we find
a QI between two copies of the line L with tangling edge set E 1 and E5 with 2my 4+ ny
and 2mj + n tangling edges at each vertex, respectively, that scales L by zﬁ‘ 71 and is

+nz
bijective on the tangling edges. ]

As Claim 4.18 suggests, we need to find a QI from L U E; to L U E, where the base
graph L is a line whose vertex set we can identify with Z and the QI is bijective on the
tangling edges and scaling by gn”:‘ifl L. Without loss of generality, we set 2m + ny >
2mo + ny.

The first step is to define for i € {1, 2} the following map:

¢i: LUE; - Z
[—1-Q2m; +n;)
z-(2m; +n;) + jifz >0
lz,j = L
z+1)-@Cm; +n;)—j—1ifz <0,

where ¢, ; is one of the 2m; + n; tanglingedges atz € Z, i.e., j €{0,...,2m; +n; — 1}.
It is easily checked that ¢; is bijective on E; for both i € {1, 2}, and by definition, ¢;
scales L by 2m; + n;.

Now, it suffices to show the following claim.

Claim 4.19. Any bijective QI f:Z — Z which fixes 0, co and —oo is bounded distance
from the identity map.

By using Claim 4.19, for any isometry i composed with f, we obtain the commuting
diagram of the form:

L % L
o1, J (2my + ny) b2, T (2my +n2)
iof
Z —
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This implies that ¢ is a QI scaling by 27471

2may+ny”
Thus, we are left to prove Claim 4.19.

Proof of Claim 4.19. Let f be a (C, D)-QI satisfying the assumptions and suppose it is
not bounded distance from the identity. Then, for any n € N we can find a z,, € N such
that d(z,, f(zn)) > n.

First, we claim that there is a maximal k € N such that f(—k) > 0, implying by
surjectivity of f that [0, c0) € f([—k, 00)). Suppose this is not true. Then, for every
k € N with f(—k) > O there is a k’ € N such that k < k" and f(—k’) > 0. However, by
the QI-property and the fact that f fixes 0, we have

édehm—Dsaﬂ%mm=fem

for every k € N. Thus, with k € N tending to oo, so does f(—k), in contradiction to the
assumption that f fixes —oo.
Now, let Br(z,) be a ball of radius R around z,,. We want to show that

[0, fzn) + g - D] C f([~k.zn + R])

for any R € N large enough.
Since f is bijective by assumption, some elements must map onto interval [0, f(z,) +
g — D]. Itis indeed [—k, z, + R] by the following observations illustrated in Figure 4.6.

(1) By choice of k, there is no element k¥’ < —k such that f(k’) > 0.
(2) Since fisa QL Bg_p(f(z2)) S f(BR(zn))-

(3) Any element z > z, + R maps to an element f(z) > f(z,) + % — D: pick some
a> C - f(zy) + R, for which

ﬂmzduwm»z%—0>f@o+§_u

Such an a must exist, since f fixes 0, oo and —oo. Thus, a is mapped to the right
side of Z \ B%—D (f(z)). Now, choose a’ such that d(a, a’) = 1. This implies

d(f(a), f(a") =C + D.

If we choose R € N such that Z(g — D) > C + D, then f(a) and f(a’) cannot
be mapped to different sides of Z \ B E_p (f(z,)) and not in the ball. Thus, they
are both mapped to the right side. Now, for any arbitrary z > z, + R, we pick a
sequence (a,-){.‘=0, where ag = a, d(a;,a;4+1) = 1 foreveryi € {0,...,k — 1} and
ar = z. Then, all f(a;) withi € {0,...,k}, in particular, f(z), must be on the
right side of Z \ Bng(f(zn)), thatis f(z) > f(z,) + g —D.
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< >
< »

-k 0 Zn-R Zn Zn+R f(-'n)*§+D S (zn) f(zn)Jrg—D

Figure 4.6. The interval [—k, z, + R], illustrated in pink, maps onto the interval [0, f(z,) + g —
D], illustrated in blue.

Hence, we ruled out all the elements outside of [k, z,, + R] to be mapped to [0, f(z,)+
g — D], implying that

@J@w+§—D_gﬂkh%+Ru

Thus, since f is bijective, we obtain

‘@J@ﬂ+§—u}fuwk%+Rm
and thus

R
f(Zn)+E—D+1§Zn+R+k+1,
1
f(zn) —zn < (1—6)R+k+D.
But now choose n > (1—%)R+k+D,then

1 1
(1 —E)R—i—k—i-D <n <d(f(zn),zn) = f(zn) —zn < (1 —E)R—i—k—i—D,
which is a contradiction. [

Thus, to conclude, given two RACGs W; and W, with one cylinder vertex with VA
vertex group, and one class of e; and e, indistinguishable non-cylinder vertices, respec-

tively, there is a QI between W; and W, and any such QI is bounded distance from scaling
by 2mi+ny | |

2ma+ny

If at the VA cylinder vertex attach j > 2 classes of indistinguishable neighbors we can
apply Proposition 4.17 to each class individually to obtain the following generalization.

Corollary 4.20. Let Wy and W, be two RACGs on defining graphs satisfying the Standing
Assumption 3 with the same structure invariant and one single cylinder vertex vy and v,
in the JSJ graph of cylinders A1 and A,, respectively. Let the cylinder vertex group Vi
and V, at vy and vy, respectively, be VA. Suppose at both vi and v, attach j > 1 classes
of indistinguishable vertices, respectively, and let e; ; = m; ;. + n;x fori € {1,2} and
k € {l,..., j} denote the number of neighbors v; in class k with m; . the number of
neighbors attaching along a D -edge and n; y the number of neighbors attaching along
a Do X Zp-edge. If there is a QI between Wy and W,, then the ratio % is the
same forallk € {1,...,j}. ’ ’



Quasi-isometries for certain right-angled Coxeter groups 1085

Example 4.21. In Example 4.10 illustrated by Figure 4.3, we have j = 2 classes of indis-
tinguishable tangling edges. Since all occurring edge groups are Do, we have e;1 = m; 3
counting the hanging vertices and e; , = m; > counting the rigid. Then, we have

m; k k=1 k=2

i=1 1 1

i =2 2 1
. 1

ratio 5 1

implying that by Corollary 4.20 the VA cylinder vertices of W, and W, do not have the
same relative QI-type and thus W} and W, are not QI by Proposition 4.8.

4.3. Refinement of the structure invariant

In Corollary 4.20, we have seen that the number of neighbors per class of indistinguishable
vertices at a VA cylinder vertex in the JSJ graph of cylinders is an essential characteristic
to determine whether two groups are QI or not. Thus, we aim to alter the structure invariant
in a way such that this information is taken into account. For that purpose, we introduce a
process we call density refinement.

Construction 4.22. We start with an initial decoration 8o with an initial set of ornaments
consisting of the vertex and the relative QI-type. We perform the neighbor refinement,
giving us a stable decoration §;.

Now, we define the map

v V(T) - N [ o,

where ~ is an equivalence relation defined in step (2) below, as follows.
» For any vertex v € V(T), whose vertex group is not VA, v; maps v to #.

* A vertex v € V(T), whose vertex group is VA, is mapped to an equivalence class of
tuples with entries in N indexed by the image of the decoration §;. We obtain the
image v; (v) in two steps.

(1) We associate to v a tuple « obtained as follows: the entry indexed by o € O;
is computed from the JSJ graph of cylinders A.. We look at the neighbors
of the vertex in A, corresponding to the orbit of v with ornament o. Let m
be the number of such neighbors attached along a D-edge and 7 be the
number of such neighbors attached along a D, x Z,-edge. Then, the entry
is2m + n.

(2) Define the image of v under v; as the projective class of «, that is the equiv-
alence class under the relation: @ ~ B if and only if there is a k € R™ such
that k - « = B, where the multiplication - is defined coordinate-wise.
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With the map v; we provide a new decoration: the new set of ornaments is
0} := 0o x N¥ VD) [~y x NO,
and the decoration is §;: T — O] with

i (v) 1= (8o (v), vi (v), fu,i)

for any v € V(T). Possibly, §; is a refinement of §; and thus we can perform the neighbor
refinement on it. Again, we obtain a stable decoration §; for which we can define a map
v;j as above. We define a new set of ornaments

0} := 0o x NV D) [~ Uiy x NO
and the decoration 8]’.: T — (9; with

8} (v) == (So(v), vj (), fv,})

for any v € V(T). We repeat this alternating refinement process. Since there are only
finitely many cylinder vertices in A, this process will eventually stabilize. The resulting
decoration is the density refinement of 8.

Combining Proposition 4.8 and Corollary 4.20 yields that two RACGs can only be QI
if their structure invariants, where §; is stable with respect to the density refinement, are
identical.

Example 4.23. The original structure invariant for the group illustrated in Figure 4.7 with
respect to only the neighbor refinement is illustrated in the following table:

1 hy
vertex Cy Ca hs
type QIl-type Ce c3 Cs ha ho r
C1,C4,Ce ‘cyl’ 2-ended 0 0 0 0 0 1
c3 ‘cyl’ 2-ended 0 0 0 0 1 1
C2,C5 ‘cyl’ VA 0 0 0 00 0 00
hi,hs, hy ‘hang’ ‘VF’ 0 0 00 0 0 0
hy ‘hang’ ‘VF 0 00 0 0 0 0
r ‘rig’ 00 00 00 0 0 0

We see that the vertices ¢, and c5 are indistinguishable. However, when performing
the density refinement according to Construction 4.22, the images of ¢, and c¢s under v;
differ:

vi(c2) =[(0,0,0,2,0,2)],
vi(cs) =1[(0,0,0,4,0,2)].
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This makes it possible to further distinguish /; from /3 and /4. We obtain the following
refined structure invariant:

1
vertex Ca h3
type | QL-type Vstable C6 ¢3 C2 C5|hy hy ha|r
c1,C4,C6| ‘cyl’ |2-ended # 0O 0 0 0|0 O Of1
c3| ‘cyl’ |2-ended # 0 0 0O OO0 0 1|1
cz| ‘cyl’ | VA" [[(0,0,0,0,1,0,0,)]| 0 0 O O|oco 0O O |oc0
¢s| ‘eyl’ | ‘VA* 1[(0,0,0,0,0,2,0,1)]|0 O O 0|0 oo 0|00
hiy | ‘hang’ | ‘VF # 0 0 co 0|0 O OfO
h3, hg| ‘hang’ | ‘VF # 0 0 0 colO O OfO
hy | ‘hang’ | ‘VF’ # 0 co 0O O|]O O OO
r| ‘rig’ # oo oo oo ool 0 00

4.4. Complete QI-invariant

Now, we aim to put the local QIs between cylinder vertex groups together to obtain a
global QI between the groups and thus have a structure invariant which is a complete QI-
invariant for certain groups. As mentioned in Remark 4.11, we exclude rigid vertices so
the only missing piece are the local QIs between the hanging vertices. We see that we can
choose them with a lot of flexibility.

Theorem 4.24. Let W and W’ be two finitely presented, one-ended RACGs with non-
trivial JSJ decompositions over two-ended subgroups, which both have no rigid vertices.
Define T to be the JSJ tree of cylinders of W and X to be the geometric tree of spaces
of W over T. The initial decoration §g on T takes vertex type and relative QI-type into
account. Let § be the density refinement of 8o. Analogously, we define T', X', 3 and §' for
W'. Then, W and W' are QI if and only if there is a bijection B:5(T) — 8'(T") such that
(1) 890671 =80 (8) o B;
2) S(T,8,0) = S(T',8,0) in the B-induced ordering;
(3) for every ornament 0 €0, there is a vertex vE€§ ™ (0) and a vertex v' €(8') "1 (B(0))
such that there is a QI between the vertex spaces X, and X,, respecting the dec-

orations § and §' and which is bijective on the peripheral structures $, and P,
respectively.

Sketch of the proof. This is an analog of the proof of [8, Theorem 7.5], with some gener-
alizations and some specializations. The statement is more specialized in the two aspects
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Figure 4.7. A is the JSJ graph of cylinders of the RACG Wr.

laid out in Remark 4.11, we assume that the considered groups do not have any rigid ver-
tices, thus the relative stretch factors do not apply. Moreover, since we restrict to RACGs,
partial orientations can be omitted. However, we do not assume the cylinder vertex groups
to be two-ended, which makes the statement more general.

The idea is to inductively build a tree isometry y: T — T, which respects the decora-
tions by using the local vertex QIs ¢,: X, — X )/( ) bijective on the respective peripheral
structures inducing y on the link of the vertex v € V(T'). Then, y induces a global QI.
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For the base case, we pick some cylinder vertex c € V(T') and some ¢’ € (8') "1 (B(8(c)))
and define

() :=c.

Because the initial decoration depends on the relative QI-type, there is a QI between X,
and X/,. Depending on whether ¢ has a two-ended, a VFD or a VA vertex group, we pick
such a QI ¢, : X, — X/, according to Propositions 4.12, 4.13, and 4.17, respectively. By
construction, ¢, will be bijective on the respective peripheral structures and thus defines
how to pick the bijection between the edge spaces incident to c. Thus, we can extend y to
the link of ¢ according to this bijection.

Since the considered trees are bipartite, the inductive step consists of two parts: first,
we extend y to a hanging vertex and from there we extend y to a cylinder vertex.

Suppose there is an edge e; € E(T) such that o(e;) is a cylinder vertex,

t(ey) =:h
is a hanging vertex and y(o(e;)) is already defined. Then, there is a QI

Poter): Xoter) = Xyioter))

respecting the decorations and bijective on the respective peripheral structures. Thus,

Poten) X, Xey = Xy

defines the QI on X, . The QI on X} can now be produced as suggested in [8, Proposition
7.1], which is guided by [3, Theorem 1.2]. The key feature is the following: pick for
any other edge e adjacent to 4 some real constant o,. The only condition is that for all
edges in the same orbit the constant needs to be identical. Then, we can choose a QI
o Xp—>X )’( ") such that when restricted to X, it matches ¢y (e,)|x,, and when restricted
to X, for any other e adjacent to A, this ¢ |x, is a QI with multiplicative constant o.

Of course, we do not pick the o, randomly, but we choose them among the set X
of multiplicative constants occurring in the QIs produced by Propositions 4.12, 4.13,
and 4.17. Since there are only finitely many orbits of cylinder vertices, this set X is finite
and we also only pick a finite configuration of o, ’s from X. If we later see that our choice
of configuration conflicts with the constants forced by the QIs of the adjacent cylinder ver-
tices, we return to /2 and pick a different configuration. Since the number of such different
configurations is finite, we know that eventually we have found the correct QI and extend
x to the link of & accordingly. Thus, without loss of generality, we can assume that we
have picked a suitable QI at / satisfying all requirements.

Suppose now that e, € E(T') is an edge such that 0(e;) is a hanging vertex, 7(e3) = c2
is a cylinder vertex and y(o(ez)) is already defined in the previous step. We repeat the
extension process: we know that there is a QI

Po(er): Xo(er) = X)/((O(ez))
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Figure 4.8. The RACGs on the graphs 'y and I'; are QI to each other.

respecting decorations and bijective on the respective peripheral structures, which restricts
to a QI on X,,. We can now extend y to the link of ¢, and define

ber: Xey = Xy(ea)
according to Propositions 4.12, 4.13, and 4.17 such that it agrees with ¢y(,) on Xe,. =

Example 4.25. We make the introductory example of the two groups with defining graphs
illustrated in Figure 4.8 explicit. By Proposition 4.13, we see that the VFD cylinder ver-
tices coming from the blue uncrossed cut pairs are QI. In both cases there is one hanging
vertex group generated by the /;’s, thus by Proposition 4.17, the VA cylinder vertices com-
ing from the red uncrossed cut pairs are QI. Hence, the structure invariants are identical
and Theorem 4.24 implies that the groups are QI.

Remark 4.26. It is discussed in Remark 4.11 that Theorem 4.24 excludes groups whose
JSJ decompositions have rigid vertices. However, in certain cases we can add another
induction step to the proof of Theorem 4.24 handling rigid vertices following again the
proof of Theorem 7.5 of [8]. For instance, we can consider the subgraphs A and A’ of
the graphs of cylinders A, and A/, respectively, which consist of one rigid vertex and
all its adjacent cylinder vertices. If there is a decoration preserving graph isomorphism
¢ between A and A’ and in addition, every vertex and edge group G, is isomorphic to
the image vertex group Gg(;), then the induction extends also to these rigid vertices. The
obvious method to produce such an example is to simply use identical defining graphs for
corresponding special subgroups. This is illustrated in the following Example 4.29.

Alternatively, if the rigid vertices are virtually free, they are quasi-isometrically rigid
relative to the peripheral structure by [7], and thus, relative stretch factors can be used as
introduced in [8, Section 4].

QOutline 4.27. Theorem 4.24 illustrates the flexibility we have to change the defining
graph in a way such that the group on the resulting graph is QI to the one on the orig-
inal graph. The changes happen at the cylinder vertices.
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* At a virtually cyclic cylinder vertex coming from the uncrossed cut collection {a —
b} we can only remove or add a common adjacent vertex such that |€]| € {0, 1} is
maintained since the valencies in the JSJ tree of cylinders need to be preserved.

* Ata VFD cylinder vertex coming from the uncrossed cut collection {a — b} and its
common adjacent vertices €, we can duplicate or remove tangling pieces in the JSJ
tree of cylinders that are equivalent up to QI (cf. Algorithm 4.16). In the defining
graph T" this corresponds to duplicating or removing any connected component of
I' \ {a — b} disjoint from €, and reattaching the new collection of pieces to @ and b.
Note that in the reattaching the roles of a and b can be interchanged, thus this move
can be interpreted as a reflection along the subgraph on {a, b} U €. Additionally the
number of vertices in € can be changed. The only restriction is that [€] > 2.

Also, within a connected component containing vertices of a set A contributing to a
hanging vertex, the number of vertices can be altered while preserving the virtually
free QI-type. That means, we can add or remove elements on a branch, as long as the
resulting vertex set A still produces a hanging vertex. Thus, by Proposition 3.16, the
altered set A should still satisfy conditions (A1), (A2), and (A3) and Wy has to be
infinite and not a cylinder vertex group.

» Ata VA cylinder vertex coming from the uncrossed cut collection {a — b} and its com-
mon adjacent vertices € we can perform changes similar to the ones at VFD cylinder
vertices. There are only two differences: we perform the duplication or removal of
pieces with a fixed ratio and the number of common adjacent vertices has to stay fixed
€| = 2.

These observations can be used as a method to produce examples of QI RACGs.

Example 4.28. The RACGs on the defining graphs I'; and I'; with JSJ graphs of cylinders
Ac,1 and A’ |, respectively, illustrated in Figure 4.9 are QI by Theorem 4.24.

c,1

Example 4.29. The RACGs on the defining graphs I', and I'} with JSJ graphs of cylin-
ders A.> and A/c,2’ respectively, illustrated in Figure 4.10 are QI by Theorem 4.24 and
Remark 4.26.

Remark 4.30. It would be most interesting to produce QIs that do not arise from algebraic
considerations. One might guess that a simple graph operation like duplicating the com-
plement of a subgroup corresponding to a cylinder vertex would produce either a group
which is a finite index subgroup of the original one or at least produce a group which
shares a common finite index subgroup with it. In this case we call the groups (abstractly)
commensurable and this already implies that they are QI. However, our construction has
much more flexibility than that.

Only partial commensurability results are known, such as the commensurability clas-
sification for certain hyperbolic RACGs done by Dani, Stark and Thomas in [11]. Their
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proof is not applicable to our more general setting, as it strongly depends on the fact that
the finite valence of cylinder vertices in the JSJ tree of cylinders of hyperbolic RACGs
is a QlI-invariant. This tool is lost for non-hyperbolic RACGs. In [19, Section 4], Hruska,
Stark and Tran provide examples of commensurable non-hyperbolic RACGs whose defin-
ing graphs are generalized theta graphs. However, a complete classification for some class
of non-hyperbolic RACGs is yet to be stated and should be addressed separately. Nonethe-
less, we can show that the non-hyperbolic Examples 4.28 and 4.29 for which we produced
QIs with our methods are not abstractly commensurable, by application of the following
Lemma 4.31, which is guided by Shepherd and Woodhouse [29, Lemma 7.2].

Lemma 4.31. The two RACGs Wy and W] in Example 4.28 on the defining graphs T'y and
'} in Figure 4.9 are not commensurable to each other and the two RACGs W, and Wy in
Example 4.29 on the defining graphs T', and T} in Figure 4.10 are not commensurable to
each other.

Proof. (cf. [29, Lemma 7.2]). Let W and W’ be two RACGs whose JSJ graphs of cylin-
ders have cylinder vertices v and v” with vertex groups We X Doo and Weer X D, respec-
tively, such that We and We: are both virtually free, i.e., |€], |€’| > 2. In fact, given
€ ={c1,...,ci+1}, as per the proof of Theorem B.1 of Cashen, Dani, and Thomas in
[12, Appendix B], We has a free subgroup F; generated by (cicz, ..., c1¢iy1) of rank i
and index 2. Analogously, We: has a free subgroup Fj of index 2 and rank [€'| — 1 =: j.

Suppose that W and W’ are commensurable, that is they have isomorphic finite index
subgroups. By [18, Corollary 7.4] we can assume that the induced JSJ graphs of cylinders
of these subgroups are identical. Call this induced JSJ graph of cylinders T with funda-
mental group W . The idea is now to compute the degree of a vertex in T, using first W
and then W' and obtain a contradiction for the groups we are interested in as the computed
degrees cannot match.

Suppose there is a 0 € V(f ) with vertex group G,; covering v and v’. Then, we can
embed @,; into both Wee X D and Wer X Do, as a finite index subgroup. Note that such
a vertex U exists in both the examples we consider here: A, ; has only one VFD cylinder
vertex, the vertex ¢,. Thus, any vertex ¥ covering some VFD cylinder vertex in A’C’1 has
to cover c; as well. This argument works also for A > with its only VFD vertex c3 and
AL,

Moreover, in the considered examples all edge groups are the same D, generated by
the cut pair. Hence, the number of edges incident to ¢ corresponds to the number of double
cosets G{) gD with g an element in the cylinder vertex group, multiplied by the degree
of the cylinder vertex. So, we aim to compute deg(?) in two ways, first via v, then via v’

deg(t) = [{GsgDoo | § € Wee X Doo}| - deg(v)

= [{G3gDoo | g € Weer X Doo}| - deg(v)).
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Figure 4.9. The RACGs on the graphs I'; and I‘i with their respective JSJ graphs of cylinders A¢ 1
and A’C 1 are QI to each other by Theorem 4.24. By Lemma 4.31, they are not commensurable.
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Figure 4.10. The RACGs on the graphs I'; and I'} with their respective JSJ graphs of cylinders Ac >
and A/C’2 are QI to each other by Theorem 4.24. By Lemma 4.31, they are not commensurable.
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In order to do this, we consider F; X Do, < We X Doo. This is a subgroup of index 2,
thus the intersection
G :=F; XxDoo NGy <Gy

is at most of index 2 in @;,. For Fj X Do < Wer X Do we define analogously
Gj := F; x Do N Gy < Gy,
which is also at most of index 2 in é@. Hence, we have for the intersection G := G; N G;
Gy : G| < 1Gs : Gi||Gy - G| <2-2=4.

Now, we decompose the double cosets Gﬁ gD further into double cosets of G with
representatives f; in F; X Dy. Since Do is central, it suffices to consider CA;{, g: each
such coset Gﬁ g consists of at most 8 cosets of the form G f;. Indeed, at most 4 cosets
come from the partition of Gﬁ into G-cosets as the index of G in G,; is at most 4 and then
we multiply by 2 because F; x D« is of index 2 in Wee X D . This bounds the number
of double cosets G\ﬁ gD by

1
gHGfiDoo | fi € Fi x Dool|
< {G38gDoo | g € Wee X Doo}| < 2l{Gfi Deo | fi € Fi x Dao}l.

Let 7t; : F; X Doy — Fj be the projection map. Then, the image 7; (G) is a subgroup
of F; and thus free. This implies that the short exact sequence

1— GnNnker(m;) > G — m(G) > 1

splits, that is there is a section o; : 7;(G) — G with image P; isomorphic to 77; (G). But
since D is central in F; X Do, we know that

G = P; x (G Nker(m;)).

Thus, the number of double cosets G f; D is equal to the number of cosets 7; (G ) 7; ( f;) X
Do in F; X Dyo. But this number is the index of 7; (G) in Fj, which we compute with
the Schreier index formula
k(7 (G)) — 1

P 1 .
Analogously, we perform the same argument for F; x D, and the projection map 7; :
Fj x Dog — F; to compute the number of double cosets G f; Do With f; € Fj X Do via

tk(7; (G)) — 1
-

|F; : 1 (G)| =

|Fj i (G)] =
However, we note that

tk(7;(G)) = tk(G/ ker(m;)) = 1k(G/Z(G)) = tk(G/ ker(r;)) = rk(7; (G)).
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that is both occurring ranks are identical, call them r. Thus, when computing deg(v) via
v, we can use the first computation to obtain the bound

1r—1 -1
<o - deg(v) < deg(h) = 25— - deg(v).
8i—1 i—1

When computing deg(?) via v/, we obtain using the second computation
1r—1

—1
. deg(v') < deg(d) < 22— - deg(v).
8j—1 j—1

This implies that we arrive at a contradiction, whenever
r—1 1r—1
2—— -deg(v') < ——— -deg(v)
j—1 8i—1

that is, whenever

deg(v")

deg(v)

In case of Example 4.28, this inequality is satisfied for the two VFD cylinder vertices
labeled ¢, and c5: in I'y, we have [€] = 3, thus i = 2 and deg(c,) = 1. In I'} we have
|€’| =35, thus j = 34 and deg(c}) = 2. In Example 4.29, the condition is satisfied for the
vertices labelled c3. Hence, W; and W] in Example 4.28 and W, and W, in Example 4.29
are not commensurable to each other. ]

j>16-(i—1)-

Remark 4.32. The proof of Lemma 4.31 works for various other examples. In fact, it
can even provide a more sensitive commensurability invariant. Recall that the argument
involves computing for an edge e with edge group Do, at the vertex v the number of
cosets |{@f,gDoo | g € We X Dyo}|. Then, we sum over all such edges e, which is the
same as multiplying by the degree deg(v) of v.

However, instead of summing over all edges e incident to v, we can restrict to a certain
subclass of edges. For example we can restrict to edges whose incident vertices share the
same vertex types because the vertex types of the incident vertices of a covering edge must
be the same as the ones of the covered edge. Even finer than just considering the vertex
type would be to restrict to edges with incident vertices sharing a particular decoration
which has to be preserved by the covering.
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