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Linear progress in fibres

Vaibhav Gadre and Sebastian Hensel

Abstract. A fibred hyperbolic 3-manifold induces a map from the hyperbolic plane to hyperbolic
3-space, the respective universal covers of the fibre, and the manifold. The induced map is an embed-
ding that is exponentially distorted in terms of the individual metrics. In this article, we begin a study
of the distortion along typical rays in the fibre. We verify that a typical ray in the hyperbolic plane
makes linear progress in the ambient metric in hyperbolic 3-space. We formulate the proof in terms
of some soft aspects of the geometry and basic ergodic theory. This enables us to extend the result
to analogous contexts that correspond to certain extensions of closed surface groups. These include
surface group extensions that are Gromov hyperbolic, the universal curve over a Teichmüller disc,
and the extension induced by the Birman exact sequence.

1. Introduction

In this article, we initiate the study of distortion for typical elements in groups focusing
on examples whose motivation comes from geometry and topology in dimensions 2
and 3.

Suppose that H is a finitely generated subgroup of a finitely generated group G.
For any choice of proper word metrics on H and G, the inclusion of H into G is a
Lipschitz map. However, distances are contracted by arbitrary amounts by the inclusion
in many examples. This can be quantified by the distortion function, the smallest function
bounding the word norm of H in terms of the word norm of G. Many examples from
low-dimensional topology exhibit exponential distortion; well-known examples are the
fundamental groups of fibres in fibred hyperbolic 3-manifolds (see [3, Section 5]), Torelli
(see [2, Theorem 1.1] and [4, Corollary 1.3]) and handlebody groups in surface mapping
class groups (see [11]).

By definition, the distortion function measures the worst-case discrepancy between
intrinsic and ambient metrics – for example, the existence of a single sequence of group
elements in H whose norm grows linearly in G and exponentially in H already implies
exponential distortion.

In this article, we adopt instead a more probabilistic viewpoint to ask about the growth
of the ambient norm for typical elements of the subgroup.
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Concretely, we consider subgroups isomorphic to the fundamental group of a closed
surface and thus quasi-isometric to the hyperbolic plane. This allows us to use the
(Lebesgue) measure on the circle at infinity to sample geodesics in the subgroup. Our main
result proves that in various topologically interesting, exponentially distorted examples of
surface group extensions such paths nevertheless make linear progress in the ambient
space. We consider three geometrically motivated contexts, the first of which from geo-
metric group theory. For the entirety of our article, we let† be a closed orientable surface
of genus g > 2.

Theorem 1.1. Let
1! �1.†/! � ! Q! 1

be a hyperbolic group extension of a closed surface group. Then, there is a constant c >
0 that depends only on the word metrics so that almost every geodesic ray in �1.†/
(sampled by the Lebesgue measure under an identification of �1.†/with H2) makes linear
progress with speed at least c in the word metric on � .

In particular, this includes the classical case where � is a fundamental group of a
fibred hyperbolic 3-manifold. This special case is likely well known to experts (but to our
knowledge not published). We also want to mention here that all known groups of this
type have Q virtually free (but this does not yield any simplifications for the question
considered here).

The second context arises in Teichmüller theory. A holomorphic quadratic differential
on a Riemann surface is equivalent to a collection of charts from the surface to C with
transition functions that are half-translations, which is of the form z ! ˙z C c. The
SL.2;R/-action on C D R2 preserves the form of the transitions and hence descends
to an action on the space of quadratic differentials. The compact part SO.2;R/ acts by
rotations on the charts and hence preserves the underlying conformal structure on the
surface. Thus, given a quadratic differential q, the SL.2;R/ orbit of q gives an isometric
embedding of H2 D SL.2;R/= SO.2;R/ in the Teichmüller space of the surface. This is
called the associated Teichmüller discDq . We may then consider a bundleE!Dq whose
fibres are the universal covers of the corresponding singular flat surfaces. The bundle E
carries a natural metric, in which the fibres are again exponentially distorted. Although
the total space is not hyperbolic, we obtain here the following theorem.

Theorem 1.2. For any quadratic differential q, there is a number c > 0 so that almost
every geodesic in a fibre of E (sampled with Lebesgue measure under an identification
with H2) makes linear progress with speed at least c in the metric on E.

Finally, we consider the Birman exact sequence

1! �1.†; p/! Mod.† � p/! Mod.†/! 1;

where Mod.†/ is the mapping class group of a closed orientable surface† of genus g > 2

and Mod.† � p/ is the mapping class group of the surface † punctured/ marked at the
point p.
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Here, we obtain the following theorem.

Theorem 1.3. For the Birman exact sequence

1! �1.†; p/! Mod.† � p/! Mod.†/! 1;

there is a number c > 0 so that almost every geodesic in �1.†;p/ (sampled with Lebesgue
measure under an identification with H2) makes linear progress with speed at least c in a
word metric on Mod.† � p/.

The three results are not unexpected. The main merit of our article is that we distill the
key features, thus giving a unified treatment in all three contexts that differ substantially
in their details. Our results also leave the topic poised for a finer exploration of distortion
in all contexts.

Proof strategy

The basic method of proof is the same for all three results and has two main parts. In the
geometric part, we construct suitable shadow-like sets in the total space from a ladder-type
construction motivated by the construction in [15]. The basic idea is to move shadows
in the base fibre to all other fibres using the monodromy and consider their union. We
implement the idea with sufficient care to ensure that for a pair of nested shadows in the
base fibre the shadow-like set from the bigger shadow is contained in the shadow-like set
from the smaller shadow.

We then characterise “good” geodesic segments in the fibre, that is, segments for which
the shadow-like set at the end of the segment is nested in the shadow-like set at the begin-
ning by a distance in the ambient space that is linear in the length of the segment. This
translates into a progress certificate for fibre geodesics in the ambient space.

Next, in the dynamical part, we exploit ergodicity of the geodesic flow on hyperbolic
surfaces to guarantee that fellow-travelling with good segments occurs with a positive
asymptotic frequency, thus proving the results.

The argument is cleanest in the classical case of a fibred hyperbolic 3-manifold. In
this case, the monodromy is by a pseudo-Anosov map of the fibre surface. Such a map has
a unique invariant Teichmüller axis and is a translation along the axis. By Teichmüller’s
theorem, the surface can be equipped with a quadratic differential such that the map is
represented by an affine map (given by a diagonal matrix in SL.2;R/) in the singular
flat metric on the surface defined by the quadratic differential. We can thus identify the
fibre group by a quasi-isometry with universal cover of the surface with the lifted sin-
gular flat metric. The pseudo-Anosov monodromy acting as an affine map defines the
singular flat metrics on the other fibres. Although the monodromy does not act as an
isometry of the singular flat metric, it maps geodesics to geodesics. A long straight arc,
for example, a long saddle connection that makes an angle close to �=4 with both the
horizontal and vertical foliations of q, has the property that all its images under the pseudo-
Anosov monodromy will be also be long. Using (Gromov) hyperbolicity, the property of
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containing/ fellow-travelling such a segment is stable for geodesic rays. In particular, it
has positive Liouville measure when we pass to the hyperbolic metric. Hence, ergodicity
of the hyperbolic geodesic flow implies that a typical hyperbolic ray satisfies the property
with a positive asymptotic frequency. This ensures linear progress.

In a general hyperbolic surface group extension, the monodromies have weaker prop-
erties. In the bundle over a Teichmüller disc, the ambient space is not hyperbolic, but the
monodromies are affine. In the Birman exact sequence, both properties fail, but weaker
ones hold which still suffice to run our strategy. We work around these problems; the
step that requires most care is finding good segments that they give robust distance lower
bounds in the ambient space.

Other sampling methods

In Theorems 1.1 and 1.3, one could sample in the kernel subgroup using random walks.
Here, general results on random walks in hyperbolic groups ensure that corresponding
results are true as well. In light of the famous Guivarc’h–Kaimanovich–Ledrappier sin-
gularity conjecture (see [5, Conjecture 1.21]) for stationary measures, the random walk
sampling is in theory different from the earlier sampling using the hyperbolic Liouville
measure.

In the setup of Theorem 1.2, there is no direct random walk analogue. In the lattice
case, that is, when the affine symmetric group SL.X; q/ (sometimes known as the Veech
group) of a quadratic differential q is a lattice in SL.2;R/, one may replace the bundle
E by the extension of SL.X; q/. Recent work of [6] shows that extension group acts on a
suitable hyperbolic space; in fact, the result is hierarchically hyperbolic. This in turn again
implies a linear progress result for sampling using stationary measures for random walks
on SL.X; q/.

A third method of sampling for Theorems 1.1 and 1.3 is given by the Patterson–
Sullivan measure for a word metric on the fibre group. Here again, general results for
non-elementary actions of groups on Gromov hyperbolic spaces imply linear progress;
see [9, Theorem 1.4]. For the Birman exact sequence, the hyperbolic space in question is
the curve complex of the punctured surface. Since the curve complex distance is a coarse
lower bound for the distance in Mod.† � p/, linear progress in Mod.† � p/ follows.

The Patterson–Sullivan sampling is distinct from the random walk sampling because
the measures are singular; see [10, Theorem 1.3]. As Patterson–Sullivan measures that
arise from word metrics are also expected to be singular with respect to the Liouville
measure for the hyperbolic geodesic flow, all three methods of sampling are in theory
different.

Future directions

Our results lay the preliminary ground work for more refined questions regarding distor-
tion statistics for a random sampling in the contexts we consider. We will outline one such
direction here.
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Organising distortions by scale, we may ask for the explicit statistics of distortion
along typical geodesics. An example of this nature covered in the literature is the case
of a non-uniform lattice in SL.2;R/, more generally a non-uniform lattice in Isom.Hn/.
Because of the presence of parabolic elements, a non-uniform lattice in SL.2;R/ is distor-
ted in H2 under the orbit map. The orbit is confined entirely to some thick part and never
enters horoballs that project to cusp neighbourhoods in the quotient hyperbolic surface.
The hyperbolic geodesic segment that joins pairs of orbit points that differ by a power of a
parabolic is logarithmic in this power. This gives rise to the exponential distortion in this
context. For example, when the lattice is SL.2;Z/, the distortion statistics can be inter-
preted as the statistics of continued fraction coefficients. Similar distortion coming from a
“parabolic” source arises in mapping class groups. To see some analysis of the distortion
statistics in such examples, we refer the reader to [7, 8, 17].

In the contexts we consider here, the distortion does not have a parabolic source and
results analogous to the examples in the above paragraph would be quite interesting.

2. Linear Progress in fibred hyperbolic 3-manifolds

Let M be a closed hyperbolic 3-manifold that fibres over the circle with fibre a closed
orientable surface † with genus g > 2. Fixing a fibre †, the manifold M can be realised
as a mapping torus † � Œ0; 1�= �, where † � ¹0º has been identified with † � ¹1º by a
pseudo-Anosov monodromy f , that is, by a mapping class f of† that is pseudo-Anosov.

Passing to the universal covers, the inclusion of † in M as the fibre † � ¹0º induces
an inclusion of the universal cover H2 of the fibre † to the universal cover H3 of M . In
the hyperbolic metrics on H2 and H3, this inclusion is distorted. Nevertheless, Cannon–
Thurston [3] proved that there is limiting behaviour at infinity despite distortion. More
precisely, they showed that the inclusion induces a continuous map from S1 D @1H2 to
S2 D @1H3, and moreover, this map is surjective. Thus, it is implicit that the image in
H3 of any hyperbolic geodesic ray 
 in H2 converges to a point in S2 D @1H3, even
though the image need not be a quasi-geodesic because of the distortion.

2.1. Sampling geodesics

Our first notion of sampling involves the hyperbolic geodesic flow on T 1†. Let gt be the
hyperbolic geodesic flow on T 1†, and let �Lio be the gt -invariant Liouville measure on
T 1†. Let � W T 1†! † be the canonical projection. We adopt the convention that when
we mention a hyperbolic geodesic ray 
 , we mean the projection

�.gtv/ W t > 0

for some v 2 T 1†.
Let Dhyp be the hyperbolic metric on H3. Sections 2 to 5 will be concerned with

a detailed proof of the following theorem (which will also serve as a blueprint for the
analogous result in other settings).
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Theorem 2.2. There exists a constant k > 0 such that, for �Lio-almost every v 2 T 1†,
the corresponding hyperbolic geodesic ray 
 D �.gtv/ satisfies

Dhyp.
0; 
T / > kT

for all T sufficiently large depending on v.

Before beginning with the proof in earnest, we also want to discuss a different method
of sampling random geodesics in the fibre surface.

For this second notion, we consider non-elementary random walks on �1.†/. Let �
be a probability distribution on �1.†/. A sample path of length n for a �-random walk
on �1.†/ is the random group element wn given by wn D g1g2 � � � gn, where each gj is
sampled by �, independently of the preceding steps. A random walk is said to be non-
elementary if the semi-group generated by the support of � contains a pair of hyperbolic
elements with distinct stable and unstable fixed points on S1 D @1H2.

It is a classical fact (generalised by Furstenberg to many more settings) that a non-
elementary random walk on �1.†/, when projected to H2 using the group action, con-
verges to infinity. That is, for any base point x and for almost every infinite sample path
! D .wn/, the sequence wnx in H2 converges to a point of S1. For a detailed account of
the theory, we refer the reader to [12].

The almost sure convergence to S1 defines a stationary measure � on it. We may then
use � to sample geodesic rays as follows. Using geodesic convergence to infinity, we can
pull � back to a measure on the unit tangent circle T 1x H2. We use this pullback to sample
hyperbolic geodesic rays starting from x and consider the question of whether a typical
ray makes linear progress.

A famous conjecture of Guivarc’h–Kaimanovich–Ledrappier states that for any finite-
ly supported non-elementary random walk on �1.†/ the associated stationary measure
� is singular with respect to the Lebesgue measure on S1 (see [5, Conjecture 1.21]). As
such, linear progress of �-typical ray cannot be deduced from Theorem 2.2.

For technical reasons, it is more convenient to simultaneously consider forward and
backward random walks. The backward random walk is simply the random walk with
respect to the reflected measure

y�.g/ D �.g�1/:

The space of bi-infinite sample paths, denoted by �, has a natural invertible map on it
given by the right shift � . The product measure � � y�, where y� is the stationary measure
for the reflected random walk, is � -ergodic.

Using the orbit map, we may equip �1.†/ with the hyperbolic metric induced from
H2; that is, we may consider the functions fn.!/ D dhyp.x; wnx/ along sample paths
in �. Similarly, by the orbit map to H3, we may also equip �1.†/ with the function
induced by the hyperbolic metric from H3; that is, we may consider the functionsFn.!/D
Dhyp.x; wnx/ along sample paths in �.
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A distribution � on �1.†/ is said to have finite first moment for a word metric ifX
g2�1.†/

d�1.†/.1; g/ d�.g/ <1:

The action of �1.†/ on H2 is co-compact. Hence, a word metric on �1.†/ is quasi-
isometric to the hyperbolic metric dhyp induced on it by the orbit map. Thus, finite first
moment for a word metric is equivalent to finite first moment for dhyp, and so, we no longer
need to specify the metric. It follows that if � has finite first moment, then the functions
fn are `1 with respect to � � y�. Since fn > Fn, we deduce that the functions Fn are `1.

By the triangle inequality, the function sequences fn and Fn are sub-additive along
sample paths. Hence, by Kingman’s sub-additive ergodic theorem, there exists, constants
a1 > 0 and a2 > 0 such that for almost every bi-infinite sample path !

lim
n!1

fn.!/

n
D a1 and lim

n!1

Fn.!/

n
D a2:

The constants are called drifts.
To argue the fact that the drifts are positive, we recall [12, Theorem 1.2].

Theorem 2.3 (Maher–Tiozzo). Suppose that a countable group G acts by isometries on
a separable Gromov hyperbolic space X , and let x be any point of X . Let � be a non-
elementary probability distribution onG; that is, the semi-group generated by the support
of � contains a pair of hyperbolic isometries ofX with distinct fixed points on the Gromov
boundary @X . Further, suppose that � has finite first moment in X ; that is,X

g2G

dX .x; gx/ d�.g/ <1:

Then, there is a constant L > 0 such that for any base point x 2 X and for almost every
sample path ! D .wn/n2N

lim
n!1

dX .x; wnx/

n
D L:

In our case, the actions of �1.†/ on H2 and H3 are both non-elementary. Since
Dhyp 6 dhyp on �1.†/, finite first moment for dhyp implies finite first moment for Dhyp.
By Theorem 2.3, the drifts a1 and a2 are both positive.

Using the measure � � y�, we can sample ordered pairs of points at infinity. With prob-
ability one, these points are distinct and hence determine a bi-infinite geodesic in H2. We
parameterise the geodesic by 
 W .�1;1/! H2 such that 
0 is the point of 
 closest to
the base point and 
t converges to the point at infinity sampled by �. As a consequence of
the positivity of the drifts, the theorem below directly follows.

Theorem 2.4. Let � be a non-elementary probability distribution on �1.†/ with finite
first moment, and let y� be the reflected distribution. Let � and y� be the stationary measures
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on S1 for �- and y�-random walks. Then, there exists a constant K > 1 such that, for
� � y�-almost every 
 , there is a T
 such that, for all T > T
 ,

Dhyp.
0; 
T / >
T

K
:

Since the treatment in Maher–Tiozzo is quite general, we will provide a direct sketch
for the positivity of the drifts later in the paper (see Section 5).

The hyperbolic ray from the base point x that converges to the same point at infinity
as the geodesic 
 is strongly asymptotic to 
 . Thus, we deduce the following theorem.

Theorem 2.5. Let � be a non-elementary probability distribution on �1.†/ with finite
first moment, and let � be the stationary measure on S1 for the �-random walk. Then,
there exists K > 1 such that, for �-almost every � 2 S1, there exists T� such that, for any
T > T� the point 
T along the hyperbolic geodesic ray from x that converges to �, we
have

Dhyp.
0; 
T / >
T

K
:

In other words, a typical ray in the fibre H2 makes linear progress in H3.

3. Flat and solv geometry

In order to prove Theorem 2.2 and Theorem 2.4, we analyse the geometry by starting with
the flat and singular solv geometry. A pseudo-Anosov map on † acting on Teichmüller
space has an invariant axis that it translates along. We may then consider a holomorphic
quadratic differential q along the axis and use contour integration of a square root of it to
equip † with a singular flat metric. The singular flat metric lifted to the universal cover
H2 of†will be denoted by dflat. The singular flat metrics on all other fibres can be derived
by the action of the corresponding affine maps along the Teichmüller axis. Put together,
these metrics equip the universal cover H3 of M with a singular solv metric which we
denote by dsolv.

3.1. Optimal shadows

We will define below the optimal shadow associated to a flat geodesic based at a point
on it. The orientation on H2 induces a cyclic order on the unit tangent circle at any point
in H2. We will make use of this cyclic order in the description.

Let ˇ W Œ0; T �! H2 be a parameterised flat geodesic, and let 0 < t 6 T . As a pre-
liminary, we define the lower and upper unit tangent vectors to ˇ at ˇt . Let " > 0 be
small enough so that the segment Œˇt�"; ˇtC"� contains no singularities except possibly at
ˇt . We then define the lower unit tangent vector v�.ˇt / to be the unit tangent vector to
Œˇt�"; ˇt � at the point ˇt . Similarly, we define the upper unit tangent vector vC.ˇt / to be
the unit tangent vector to Œˇt ; ˇtC"� at the point ˇt . Note that if ˇt is a regular point, then
v�.ˇt / D v

C.ˇt /.
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ˇ ˇ.t/

ˇt
?

ˇ0

Figure 3.2. Lower perpendiculars. The lower perpendicular ˇt
?

at a point ˇ.t/ of a geodesic has the
property that any other perpendicular ˇ0 lies “behind ˇt

?
” from the perspective of ˇ.

We will first show the existence of a lower perpendicular; compare Figure 3.2. Let
ˇ W Œ0; T �! H2 be a parameterised flat geodesic, and let 0 < t 6 T . We say that a flat
geodesic segment ˛ W .�s; s/! H2 is the lower perpendicular to ˇ at ˇt if

• ˛0 D ˇt ;

• the unit tangent vectors v˙.˛0/ make an angle of �=2 with the lower tangent v�.ˇt /.

Let ˇ0 be a bi-infinite perpendicular to ˇ at ˇt . We denote the component of H2 � ˇ0

that contains ˇ0 by C�.ˇ0/. The content of the following lemma is illustrated in Fig-
ure 3.2.

Lemma 3.3. Let ˇ W Œ0; T �! H2 be a parameterised flat geodesic, and let 0 < t 6 T .
There exists a bi-infinite flat geodesic ˇt

?
such that

• ˇt
?

is the lower perpendicular to ˇ at ˇt ;

• for any bi-infinite geodesic ˇ0 perpendicular to ˇ at ˇt

C�.ˇt?/ � C
�.ˇ0/:

Proof. Breaking symmetry, suppose that ˇt is a regular point. Then, ˇ has exactly two
perpendicular directions vL, vR at ˇt . Using the cyclic order on the unit tangent circle at
ˇt , we arrange matters so that vL, v�.ˇt /, vR in that order are counter-clockwise.

If the flat ray with initial direction vL is infinite, then we set ˇL
?

to be this ray. So,
suppose that the ray with initial vector vL runs in to a singularity p in finite time. Let v�

be the lower tangent vector to the ray at the point p. In the induced cyclic order on the unit
tangent circle at p, we may move clockwise from �v� till we get a vector vC that is at
an angle � from �v�. We then extend the initial ray by the flat ray with initial vector vC.
Continuing iteratively in this manner, we obtain an infinite flat ray which we set to be ˇL

?
.
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We may then carry out an analogous construction with vR to obtain an infinite flat ray
ˇ?R with initial vector vR. In the analogous construction, should we encounter a singular-
ity, we move counter-clockwise from �v� by an angle of � to continue.

We then set ˇt
?

to be the union ˇL
?
[ ˇR
?

. As the angle between ˇL
?

and ˇR
?

at the
point ˇt is exactly � , the union is a bi-infinite flat geodesic.

Suppose instead that ˇt is a singularity. Using the induced cyclic order on the unit
tangent circle at ˇt , we move clockwise from �v�.ˇt / till we are at the vector vL that is
at angle �=2 from �v�.ˇt /. Similarly, we move counter-clockwise from �v�.ˇt / till we
are at the vector vR that is at angle �=2 from �v�.ˇt /. We now proceed to construct rays
ˇL
?

(and ˇR
?

) with initial vectors vL (respectively, vR) exactly as above. We then set ˇt
?

to be again the union ˇL
?
[ ˇR
?

. The angle between ˇL
?

and ˇR
?

is � , and hence, ˇt
?

is a
bi-infinite geodesic.

Finally, suppose that ˇ0 is a bi-infinite geodesic perpendicular to ˇ at ˇt . If ˇ0 is
distinct from ˇ, then it diverges from ˇt

?
at some singularity. Breaking symmetry, suppose

that there is a singularity p along ˇL
?

at which ˇ0 diverges from ˇL
?

. Then, the angle that
ˇ0 makes at p exceeds � .

Let vC.ˇ0/ ¤ vC.ˇL
?
/ be the tangent vectors at p to ˇ0 and ˇL

?
. Suppose that the rays

with these initial vectors intersect. Then, the rays give two geodesic segments that bound
a bigon. As the metric is flat with the negative curvature concentrated at singularities, the
presence of this bigon contradicts Gauss–Bonnet. Hence, the rays do not intersect. Let sL
then be the region bound by this pair of rays and not containing ˇ0.

A similar argument applies if there is divergence between ˇ0 and ˇR
?

and yields a
region sR that does not contain ˇ0.

We deduce that C�.ˇ0/ D C�.ˇt
?
/ [ sL [ sR, thus finishing the proof.

We also present a slightly less direct construction for ˇt
?

. The flat metric on † has
finitely many singularities, and so, their lifts to H2 yield a countable discrete set in H2.
Let t in .0; T � be a time such that there exist, " > 0 depending on t such that the segment
Œˇt�"; ˇt � contains no singularity. We may then consider the foliation �? that is perpen-
dicular to the segment Œˇt�"; ˇt �. Among such times, we say t is simple if the leaf of
�? containing ˇt is bi-infinite and does not contain any singularities. By the observation
regarding lifts of singularities, the set of simple times is dense (in fact, full measure) in
Œ0;T �. Let s < t be simple times. A Gauss–Bonnet argument similar to the one in the proof
above shows that

C�.ˇs?/ � C
�.ˇt?/:

Suppose now that t > 0 is a time that is not simple. We then consider a sequence of
simple times tn < t such that tn converges to t and define ˇt

?
as the limit of the bi-infinite

perpendiculars at ˇtn . We leave it as a simple exercise to check that this reproduces our
definition in the above lemma.

The bi-infinite flat geodesic ˇt
?

divides H2 into two components. We call the com-
ponent of H2 � ˇt

?
that does not contain ˇt�" the optimal shadow of ˇ at the point ˇt .

We denote the optimal shadow by Sh.ˇt /.
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ˇ

ˇs
?

ˇt
?

Sh.ˇs/ Sh.ˇt /

Figure 3.5. Nested shadows.

A number of easy consequences follow from Gauss–Bonnet.

Lemma 3.4. Let ˇ W Œ0; T �! H2 be a parameterised flat geodesic, and let 0 < t 6 T .
The optimal shadow Sh.ˇt / is convex in the flat metric on H2.

Proof. Let x, x0 be distinct points in Sh.ˇt /, and suppose that the flat geodesic segment
Œx; x0� intersects ˇt

?
. Then, the number of intersection points is at least two.

We may parameterise Œx; x0� and consider consecutive points of intersection. Between
these points, Œx; x0� and ˇt

?
bound a nontrivial bigon. The presence of such a bigon con-

tradicts the Gauss–Bonnet theorem.

As a consequence of Lemma 3.4, we immediately deduce the following lemma, illus-
trated in Figure 3.5.

Lemma 3.6. Let ˇ W Œ0;T �!H2 be a parameterised flat geodesic, and let 0 < s < t 6 T .
Then, Sh.ˇt / is nested strictly inside Sh.ˇs/; that is, Sh.ˇt /� Sh.ˇs/ and ˇt

?
is contained

in the interior of Sh.ˇs/.

Proof. Suppose that ˇs
?

and ˇt
?

intersect. Breaking symmetry, we may assume that there
is an intersection point to the left of ˇ. Let p be the first point of intersection to the left.

Let Œˇs; p� (respectively, Œˇt ; p�) be the finite segment of ˇs
?

(respectively, ˇt
?

) with
endpoints ˇs (respectively, ˇt ) and p.

Since ˇs
?

and ˇt
?

are both perpendicular to ˇ, the sum of the angles of the triangle
with sides Œˇs; p�, Œˇt ; p�, and Œˇs; ˇt � exceeds � . Since the metric is flat with negative
curvature at the singularities, the presence of such a triangle violates the Gauss–Bonnet
theorem.

Hence, we may conclude that ˇs
?

and ˇt
?

do not intersect, and the lemma follows.
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ˇ

ˇs
?

x

Sh.ˇs/

Figure 3.8. Geodesics from ˇ.0/ to a point x in the shadow Sh.ˇt / pass close by ˇ.t/. Illustrated
here is the case where ˇ.t/ is regular – in the singular case, the geodesic to x will usually pass
exactly through ˇ.t/.

In the next two lemmas, we justify the sense in which Sh.ˇt / is actually a shadow.

Lemma 3.7. For any parameterised geodesic

ˇ W Œ0; T �! H2

and any 0 < t 6 T , the point on ˇt
?

that is closest to ˇs for any s 2 Œ0; T � is ˇt .

Proof. Suppose that a point x 2 ˇt
?

distinct from ˇt is closest to ˇs . Consider the triangle
with sides Œˇs; ˇt �, Œˇt ; x�, and Œx; ˇs�, where Œˇt ; x� is a sub-segment of ˇt

?
. Since x is

closest to ˇs , the angle inside the triangle at x is �=2, as otherwise we could shorten the
path from ˇs to x. Hence, the triangle with our chosen sides has two of its angles �=2,
which violates the Gauss–Bonnet theorem.

The following lemma is illustrated in Figure 3.8.

Lemma 3.9. There exists r0 > 0 such that, for any t satisfying 0 < r0 < t , any paramet-
erised geodesic ˇ W Œ0; t � ! H2 and any x 2 Sh.ˇt /, the flat geodesic segment Œˇ0; x�
intersects the ball B.ˇt ; r0/.

Proof. By Lemma 3.4, shadows Sh.ˇt / are convex, and by Lemma 3.7, the segment
Œˇ0; ˇt � gives the closest-point projection. The existence of r0 > 0 then follows from
the hyperbolicity of the singular flat metric.

Alternatively, given x 2 Sh.ˇt /, we can give a more detailed description of the flat
geodesic Œx; ˇ0�. Note that it suffices to assume that x 2 ˇt

?
.
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We will recall some facts from flat geometry to give this description. For any point y
on the fibre S , consider the set Sad.y/ of flat geodesic arcs that

• join y to a singularity;

• have no singularity in their interior.

It is a standard fact in the theory of half-translation surfaces that the slopes of such arcs
equidistribute in the set of directions. See [13, 14]. It follows that we can find r > 0 such
that all gaps in the slopes of all arcs in Sad.y/ with length at most r are less than �=2.

Now, we consider Sh.ˇt /, and breaking symmetry, consider ˇL
?

. Suppose that no flat
geodesic segment Œx; ˇ0�, where x 2 ˇL

?
, passes through a singularity in its interior. This

then means that the sector of angle �=2 based at ˇt , with sides Œˇt ; ˇ0� and ˇL
?

, contains
no arc in Sad.ˇt / with length at most r , a contradiction.

Moving along ˇL
?

away from ˇt , let x be the first point for which Œx; ˇ0� passes
through a singularity p. It follows that, for later points x0 along ˇL

?
, the geodesic seg-

ments Œx0; ˇ0� must pass through p.
The same holds for points in ˇR

?
and concludes our proof.

We record the following consequence.

Lemma 3.10. Let r > r0, where r0 is the constant in Lemma 3.9. Then, there exists `0 > 0
that depends on r such that for any ` > `0 and any flat geodesic segment Œˇ0; ˇ3`� of
flat length 3` and any flat geodesic segment ˇ0 that fellow-travels ˇ so that after para-
meterising ˇ0 W .�"; t �! H2 to arrange ˇ00 2 B.ˇ0; r/ and ˇ0t 2 B.ˇ3`; r/ for some t
satisfying 3` � 2r < t < 3`C 2r we have that

H2
� Sh.ˇ00/ � H2

� Sh.ˇ`/

and
Sh.ˇ0t / � Sh.ˇ2`/:

Proof. We give a proof of the first inclusion; the second inclusion follows using similar
arguments.

Given r , there exists r 0 > r that depends only on r such that r 0 is the fellow-travelling
constant for the segments Œˇ00; ˇ

0
t � and Œˇ0; ˇ3`�. If `0 > 2r 0, then ˇ00

?
does not intersect the

ball B.ˇ0; r 0/. Otherwise, for any point of ˇ0 that lies in B.ˇ`; r 0/, the point ˇ00 is not the
closest point on ˇ00

?
, contradicting Lemma 3.7. Suppose now that ˇ00

?
and ˇ`

?
intersect in

the point p. Since ˇ00
?

does not intersectB.ˇ0; r 0/, the geodesic segment Œˇ00;p��ˇ
00
?

does
not intersect B.ˇ`; r0/ which contradicts Lemma 3.9. Hence, the geodesics ˇ00

?
and ˇ`

?
do

not intersect when `0 > 2r 0, from which we deduce H2 � Sh.ˇ00/ � H2 � Sh.ˇ`/.

3.11. Ladders

The universal cover H3 can be equipped with the Z-equivariant pseudo-Anosov flow
¹ r I r 2 Rº such that the time 1-map is the lift of the pseudo-Anosov monodromy f



V. Gadre and S. Hensel 1112

of the fibred 3-manifold M . In fact, various lifts to the universal covers of the fibre inclu-
sion †!M are precisely given by  r applied to our chosen lift

H2
! H3:

We will call these lifts the r-fibres in H3. As a notational choice, we will denote the
inclusion of H2 in H3 given by the r-fibre by  r .H2/.

Definition 3.12. Let ˇ be a flat geodesic segment in H2. We define the ladder given by ˇ
to be the set

Lad.ˇ/ D
[
r2R

 r .ˇ/:

Comparing our definition to the ladders introduced by Mitra in [15], we note two
differences.

(1) In [15], the ladders are constructed for the group extension

1! �1.†/! �1.M/! Z! 1;

and thus, the ladder consists of one segment in each Z-coset of �1.†/. We operate
directly in H2 and H3, and our ladders contain the segment  r .ˇ/ in each fibre
 r .H2/. As �1.†/ and �1.M/ act co-compactly on H2 and H3, the two points
of view are equivariantly quasi-isometric by the Svarc–Milnor lemma.

(2) Secondly, in [15], when the segment ˇ in �1.†/ is moved to a different fibre, it is
pulled tight in the metric on the coset. In our setup, the maps  r are affine maps.
As a result, the segment  r .ˇ/ is already geodesic in the corresponding flat metric
on  r .H2/.

Thus, [15, Lemma 4.1] applies, and in our notation, this translates as follows.

Lemma 3.13. For any geodesic ˇ in the flat metric, the ladder Lad.ˇ/ is quasi-convex in
the singular solv metric on H3 with quasi-convexity constants independent of ˇ.

As the singular flat metric and the singular solv metric are quasi-isometric to the hyper-
bolic metrics on H2 and H3, quasi-convexity of ladders is also true for the hyperbolic
metrics. We will continue the geometric discussion for the singular flat and singular solv
metrics.

We now consider the ladders defined by shadows, namely, the sets

L.ˇ; t/ DWD
[

x2Sh.ˇt /

[
r2R

 r .x/:

By Lemma 3.6 and item (2) above, the lemma below immediately follows.

Lemma 3.14. Let ˇ W Œ0;T �!H2 be a parameterised flat geodesic, and let 0< s < t 6 T .
Then,

L.ˇ; t/ ¨ L.ˇ; s/:
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3.15. Undistorted segments

To quantify (un)distortion of segments, we use the following definition.

Definition 3.16. For a constantK > 1, we say that a flat geodesic segment ˇ W Œ0;T �!H2

is K-undistorted if dsolv.ˇ0; ˇT / > T=K.

The requirement that a segment be undistorted translates to the following geometric
criterion.

Let �˙ be the stable and unstable foliations for the pseudo-Anosov monodromy f . If
a flat geodesic segment makes a definite angle with both foliations �˙, then it cannot be
shortened beyond a factor that depends only on the bound on the angle. As a result, it is
undistorted.

To be more precise, let ˇ D Œˇ0; ˇt � be a flat geodesic segment. We may write ˇ as a
concatenation

ˇ D Œˇ0; ˇs1 � [ Œˇs1 ; ˇs2 � [ � � � Œˇsk�1 ; ˇsk �;

where sk D t and where ˇsj is a singularity for all 1 6 j 6 k � 1. We then let

Slope.ˇ/ D ¹mj W mj is the slope of Œˇsj�1 ; ˇsj � for 1 6 j 6 kº:

One could now precisely quantify the maximal K so that ˇ is K-undistorted in terms
of Slope.ˇ/, but since we do not make a particular use of it, we refrain from doing so.

For our purposes, the following soft definition suffices.

Definition 3.17. For ` > 0, we say that a flat geodesic segment ˇ of flat length is `-good
if

• the length of ˇ is at least 3`;

• all slopes m in Slope.ˇ/ satisfy 1=2 < jmj < 2.

The choice of the slope bound is arbitrary, and it will only affect the constant of undis-
tortion and other coarse constants to follow.

We first list a consequence of the slope bounds.

Lemma 3.18. Let ˇ W Œ0; t �! R be a flat geodesic segment with slopem satisfying 1=2 <
jmj < 2. Then, ˇ is a quasi-geodesic in Lad.ˇ/, and there is a constant c WD c.m/ such
that dsolv.Lad.ˇ0/;Lad.ˇt // > c � t .

Proof. The ladder Lad.ˇ/ intersects the r-fibre in  r .ˇ/. Since  r is pseudo-Anosov
flow, the slope bounds imply that there is a constant c > 0 that depends only on the bounds
such that for any r 2 R the flat length of  r .ˇ/ in the fibre  r .H2/ is at least c � lflat.ˇ/.
We deduce that any path in Lad.ˇ/ that connects Lad.ˇ0/ with Lad.ˇt / must also have
length at least c � lflat.ˇ/. The lemma follows.

From Lemma 3.18, we deduce the lemma below, the key reason why we need the
notion of `-good segments.
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Lemma 3.19. There is a constant B > 0 such that every `-good segment is a B-quasi-
geodesic in the singular solv metric on H3.

Proof. By Lemma 3.13, ladders are quasi-convex in the singular solv metric on H3, hence
undistorted. Thus, a singular solv geodesic from Lad.ˇ0/ to Lad.ˇt / is contained in a
bounded neighbourhood of Lad.ˇ/. So, it suffices to show that if ˇ is L-good, then it is a
quasi-geodesic in Lad.ˇ/. To this end, we may write ˇ as a concatenation

ˇ D Œˇ0; ˇs1 � [ Œˇs1 ; ˇs2 � [ � � � Œˇsk�1 ; ˇsk �:

Then,
Lad.ˇ/ D Lad.Œˇ0; ˇs1 �/ [ Lad.Œˇs1 ; ˇs2 �/ [ � � �Lad.Œˇsk�1 ; ˇsk �/;

and by Lemma 3.18, each segment Œˇsj�1 ; ˇsj � is quasi-geodesic in the corresponding sub-
ladder Lad.Œˇsj�1 ; ˇsj �/. Also, by Lemma 3.18, each ladder Lad.ˇsj / is well separated
from its predecessor Lad.ˇsj�1/ and its successor Lad.ˇsjC1/ by distances that are linear
in the lengths of the segments Œˇsj�1 ; ˇsj � and Œˇsj ; ˇsjC1 �, and hence the concatenation is
a quasi-geodesic.

Lemma 3.20. For any ` > 0, there is an `-good segment.

Proof. The discreteness of saddle connection periods and the quadratic growth for the
number of saddle connections (counted by length) in every sector of slopes implies the
existence of a good segment. See [13, 14] for these facts. In fact, this shows that a single
saddle connection can be chosen as a good segment instead of a concatenation. We also
remark that the existence could be shown with more elementary means, but we refrain
from doing so for brevity.

We now derive nesting along ladders of shadows along `-good segments (compare
Figure 3.21).

Lemma 3.22. There exists a constantD > 1 such that, for ` sufficiently large, any `-good
segment ˇ

1

D
` 6 dsolv.Lad.ˇ`?/;Lad.ˇ2`? // 6 D`:

In other words, the flat geodesic segment ˇ is coarsely the line of nearest approach for
the ladders; that is, it gives coarsely the shortest distance between the ladders.

Proof. By Lemma 3.19, ˇ is a quasi-geodesic in the singular solv metric. The upper
bounds follow immediately from this.

By construction, at every singularity contained in ˇ`
?

, the angle subtended on one side
is exactly � . Similarly for ˇ2`

?
. Because of the constraints on Slope.ˇ/, it follows that all

slopes m in Slope.ˇ`
?
/ and in Slope.ˇ2`

?
/ also satisfy

1=2 < jmj < 2:

By Lemma 3.19, ˇ, ˇ`
?

, and ˇ2`
?

are quasi-geodesics in H3 for the singular solv metric.
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ˇ`
?

ˇ

ˇ2`
?

t D 0

ˇ`
?

ˇ2`
?

ˇ

t D t0

Figure 3.21. A good segment forces separation of shadows over all fibres (Lemma 3.22). The left
part of the figure shows the configuration in the base fibre. The middle segment of ˇ is assumed to
be `-good. Moving to a different fibre, shown on the right, changes the geometry, but goodness of
the middle segment ensures that the distance between (the images of) ˇl

?
, ˇ2l
?

is still large, leading
to definite separation of the corresponding shadows.

Let x 2 ˇ`
?

and x0 2 ˇ2`
?

. By arguing as in Lemma 3.9, the flat geodesic segment
Œx; x0� fellow-travels the concatenation Œx; ˇ`� � Œˇ`; ˇ2`� � Œˇ2`; x0�, where Œx; ˇ`� � ˇ`?
and Œˇ2`; x0� � ˇ2`? . This implies that if ` is sufficiently large all slopes in Œx; x0� are
bounded away from the horizontal and vertical. Thus, Œx; x0� is also a quasi-geodesic in
the singular solv metric, and the result follows from this and the fellow-travelling.

4. Hyperbolic geometry

We now pass to the hyperbolic metrics on the fibre and the 3-manifold. Recall that we
denote the hyperbolic metric on H2 by dhyp and the hyperbolic metric on H3 by Dhyp.

The metrics .H2;dflat/ and .H2;dhyp/ are quasi-isometric, so are the metrics .H3;dsolv/

and .H3;Dhyp/. Let .K1; A1/ and .K2; A2/ be the quasi-isometry constants in each case,
and set K D max¹K1; K2º, A D max¹A1; A2º.

As a consequence of these quasi-isometries, we can recast Lemma 3.4 and the quasi-
convexity of ladders in .H3; dsolv/ in the previous section to conclude that for any para-
meterised flat geodesic ˇ W Œ0; T �! .H2; dflat/ and any 0 < t 6 T

• Sh.ˇt / is quasi-convex in .H2; dhyp/;

• L.ˇ; t/ D Lad.Sh.ˇt // is quasi-convex in .H3;Dhyp/.

Let C1 be the quasi-convexity constant in the first instance and C2 the quasi-convexity
constant in the second instance. Set C D max¹C1; C2º.
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4.1. Non-backtracking

Let 
 W .1;1/! H2 be a hyperbolic geodesic parameterised by unit speed with x�1

and x1 in S1 its points at infinity, where 
t ! x˙1 as t ! ˙1. Let ˇ be a bi-infinite
flat geodesic that also converges to x˙1. Note that ˇ might not be unique, but any such
geodesic fellow-travels 
 in the hyperbolic metric. By resetting the constant C , we may
assume that the fellow-travelling constant in both hyperbolic and flat metrics can also be
chosen to be C .

By the same proof as Lemma 3.7, there is a unique point p in ˇ that is closest to the
point 
0 in the flat metric. We parameterise ˇ with unit speed such that ˇs ! x˙1 as
s !˙1 and ˇ0 D p.

For any time t along 
 such that t=K �A> 0, the flat distance between 
0 and 
t is at
least t=K � A. Thus, the flat distance between ˇ0 and 
t is at least t=K � A � C . Thus,
for any t that satisfies

.t=K/ � A > 2C;

the point 
t is contained in Sh.ˇs.t//, where

s.t/ D
t

K
� A � 2C: (4.2)

Recalling our notation L.ˇ; u/ D Lad.Sh.ˇu//, define the function f
 W R>0 ! R>0

by
f
 .t/ D Dhyp.
0; L.ˇ; s.t///;

and note that since 
t is contained in Sh.ˇs.t//, we have f
 .t/ 6 Dhyp.
0; 
t /.
Since s.t/ < s.t 0/ whenever t < t 0 and since the ladders of nested shadows are nested,

we have f
 .t/ 6 f
 .t
0/; that is, f
 is a non-decreasing function of t . To prove The-

orem 2.2, it then suffices to prove that f
 .t/ grows linearly in t .

4.3. Progress certificate

We fix � > 0 and set the constant r in Lemma 3.14 to be

r D K�C AC C:

With this value of r , we choose ` > 0 to be large enough so that both Lemma 3.14 and
Lemma 3.22 hold. By increasing ` further, we may assume that `=.KD/ � A > 0 and
then set

R D `=.KD/ � A:

We now choose an `-good segment ˇ.
We now define a subset in T 1.†/ that will certify progress in the hyperbolic metric.

Let B.ˇ0; �/ the ball with radius � > 0 in the hyperbolic metric centred at ˇ0. Let V be
the subset of T 1B.ˇ0; �/ consisting of those unit tangent vectors v such that the forward
geodesic ray 
t D gtv passes through the hyperbolic ball B.ˇ3`; �/ centred at ˇ3`. Let ƒ
be the image in T 1.†/ of V under the covering projection.
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Extending the hyperbolic geodesic 
 considered in the above paragraph to make it bi-
infinite, let ˇ0 be any flat bi-infinite geodesic that converges to the same points at infinity
as 
 . We may parameterise ˇ0 with unit flat speed so that

• ˇ0s and 
s converge to the same point at infinity as s !1;

• ˇ00 is the point on ˇ0 closest to 
0 in the flat metric.

By our choice of constants, it follows that dflat.ˇ
0
0; ˇ0/ < r and dflat.ˇ

0
t ; ˇ3`/ < r for some

t satisfying 3`� 2r < t < 3`C 2r . Then, by Lemma 3.14, H2 � Sh.ˇ00/ �H2 � Sh.ˇ`/
and Sh.ˇ0t / � Sh.ˇ2`/. By the choice of constants and Lemma 3.22, it follows that

Dhyp.H
3
� L.ˇ0; 0/; L.ˇ0; t // > Dhyp.Lad.Sh.ˇ`?//;Lad.Sh.ˇ2`? /// > R:

We now suppress the discussion on the good segment to summarise the conclusions as
follows.

Remark 4.4. Let 
 be a bi-infinite hyperbolic geodesic, and let ˇ be a parameterised
flat geodesic such that it converges to the same points at infinity as 
 forwards and
backwards and ˇ0 is the closest point on � in the flat metric to 
0. Let p.t/ be the flat
time such that p̌.t/ is the point of ˇ closest to 
t . There exists constants r; ` > 0 such
that if after projecting to T 1.†/ the unit tangent vector v.
t / is in ƒ, then Dhyp.H3 �

L.ˇ; p.t//; L.ˇ; p0// > R for some p0 6 p.t/C 3`C 2r .

Let �Lio be the Liouville measure on T 1.†/. We may normalise the measure to be a
probability measure. Then, note that �Lio.ƒ/ > 0. We set m D �Lio.ƒ/.

5. Linear progress in the fibre for a fibred hyperbolic 3-manifold

We will now derive linear progress, namely, Theorem 2.2.

Proof of Theorem 2.2. Let 
 and ˇ be, respectively, hyperbolic and flat geodesics as in
Remark 4.4.

Recall Equation (4.2) for s.t/. Given t >K.AC 2C /, the set of times ¹u Wp.u/6 s.t/º
is closed and bounded above. Let w be its maximum, and note that w > .1=K/s.t/�A�

2C .
Let n
 .w/ be the number of visits by 
 to ƒ (in the sense above) till time w. From

Remark 4.4, we conclude Dhyp.L.ˇ; 0/; L.ˇ; p.w/// > .n
 .w/ � 1/R.
Since p.w/ 6 s.t/, Lemma 3.14 implies that Dhyp.L.ˇ; 0/; L.ˇ; s.t/// > .n
 .w/ �

1/R. We deduce

f
 .t/ D Dhyp.
0; L.ˇ; s.t/// > .n
 .w/ � 1/R � C: (5.1)

Let �ƒ be the characteristic function of ƒ. In each visit, 
 spends time at most 2� in
ƒ. Hence,

n
 .w/ >
1

2�

Z w

0

�ƒ.v.
t // dt: (5.2)
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By the ergodic theorem, for �Lio-almost every v 2 T 1†, any lift 
 in H2 of the hyper-
bolic ray determined by v, satisfies

lim
w!1

1

w

Z w

0

�ƒ.gtv/ dt D m:

In particular, there exists a time wv > 0 depending only on v such that

1

w

Z w

0

�ƒ.gtv/ dt >
m

2
(5.3)

for all w > wv . Given v, let tv be a time along 
 such that s.tv/ > p.wv/.
By combining Equation (5.1), Equation (5.2), and Equation (5.3), we conclude that

for �Lio-almost every v 2 T 1†, along any lift 
 in H2 of the hyperbolic geodesic ray
determined by v, we get

f
 .t/ >
�mw
4�
� 1

�
R

for all t > tv . Since w > .1=K/s.t/�A� 2C D .1=K2/T � constants, we conclude the
proof of Theorem 2.2.

Proof of Theorem 2.4. We record some observations from flat geometry. Let ˇŒx; p� be
a flat geodesic ray from the base point x to a point p 2 S1 D @H. We may write ˇ as
a (possibly infinite) concatenation ˇ1 [ ˇ2 [ � � � of saddle connections, or slightly more
precisely, where ǰ�1 \ ǰ is a singularity for all j > 2. The vertical and horizontal
foliations of the pseudo-Anosov monodromy f are uniquely ergodic. In particular, they
are minimal; that is, every leaf is dense. Hence, they have no saddle connections. We infer
that only the initial segment ˇ1 and in case of a finite concatenation the terminal segment
ˇn can possibly be vertical/horizontal. We then define the tilted length of `tilt.ˇ/ to be

`tilt.ˇ/ D
X

mj2Slope.ˇ/W0<jmj j<1

`. ǰ /:

By the discreteness of saddle connection periods, it follows that, given ` > 0, the set of
p 2 S1 such that `tilt.ˇŒx; p�/ < 2` is finite.

Since � is non-elementary, the limit set Lim.G�/ � S1 D @1H of the semi-group
G� generated by the support of � is infinite. It follows that, for any ` > 0, Lim.G�/
contains a point p such that the flat geodesic ray ˇŒx; p� has tilted length exceeding 3`.
Parameterising ˇ by arc length, it follows that there exists a time T such that the tilted
lengths of the segments Œˇ0; ˇT �, ŒˇT ; ˇ2T �, and Œˇ2T ; ˇ3T � all exceed `. To be precise,
we may write ˇ as a concatenation such as above and then only the initial segment in the
concatenation can be horizontal or vertical. In particular, T could be taken to be the flat
length of this initial segment plus `. Once chosen, there is also a constant � > 0 such that
any slope mj along Œˇ0; ˇ3T � that is not horizontal nor vertical satisfies 1=� < jmj j <
�. Except for (potentially) a horizontal or vertical prefix, the segment ˇ3T satisfies the
requirements of a good segment; that is, it contains three subsegments of length at least



Linear progress in fibres 1119

` such that the absolute values of the slopes of the saddle connections along them are
bounded away from 0 and1 by �. In particular, the segment Œˇ0; ˇ3T � can be used as a
linear progress certificate for the metric D, where the progress achieved will depend on
this bound �.

We now consider Sh.ˇ3T / and denote by @1 Sh.ˇ3T / the limit set at infinity of the
shadow. By definition of the limit set, fixed points of hyperbolic isometries are dense in
Lim.G�/, and since we are in the semigroup, we can find an element g in it such that the
stable fixed point p0 of g is contained in the interior of @1 Sh.ˇ3T /.

Let � be the stationary measure for the random walk, and let I be a subset of S1

such that �.I / > 0. Let k > 0 be the smallest integer such that gkI � @1 Sh.ˇ3T /. By
stationarity of �,

�.gkI / D �.k/.gk/�.g�kgkI /C
X
h¤gk

�.k/.h/�.h�1I /;

where �.k/ is the k-fold convolution of �. Notice that the first term on the right is strictly
positive because both �.k/.gk/ and �.I / are strictly positive. We deduce that

�.@1 Sh.ˇ3T // > �.gkI / > 0:

Denote �.@1 Sh.ˇ3T // by ˛.
As discussed at the beginning of Section 4.3, we now consider the set � of bi-infinite

sample paths. By convergence to the boundary, almost every ! 2 � defines a bi-infinite
hyperbolic geodesic 
! in H2. For R > 0, let �R be the subset of those ! such that
d.
! ; x/ < R. The subset R is measurable, and as R!1, we have .� � y�/.�R/! 1.
Hence, we may choose R > 0 such that .� � y�/.�R/ > 1 � ˛=2.

Letƒ0 be the subset of�R of those ! D .wn/ such that wnx! @Sh.ˇ3T /. It follows
that .� � y�/.ƒ0/ > ˛=2. In this context,ƒ0 will serve as the progress certificate analogous
to the subset ƒ of the unit tangent bundle defined in Section 4.3.

We now consider the shift map � W �! �. Recall that for almost every bi-infinite
sample path ! we get the tracked bi-infinite geodesic 
! . Let 
!.j / be the point of 
!
closest to wjx.

By combining linear progress and sub-linear tracking in the metric d , namely, [12,
Theorems 1.2 and 1.3], we deduce that for almost every

! D .wn/;

the distance d.
!.0/;
!.n//, where 
!.j / is the point of 
! closest towjx, grows linearly
in n.

By the ergodicity of � , it follows that the asymptotic density of times j such that
�j .!/ 2 ƒ0 approaches .� � y�/.ƒ0/, which exceeds ˛=2; in particular, it is positive.
Finally, the geodesic rays 
! and the ray from x to the same point at infinite are positively
asymptotic; that is, up to the choice of an appropriate base point, the distance between
the corresponding points on the rays goes to zero. Theorem 2.4 then follows by the same
arguments as the proof of Theorem 2.2.
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6. Linear progress in analogous settings

Remark 6.1. We were very explicit about the constructions for fibred hyperbolic 3-
manifolds, but as the astute reader may have observed, the proofs rely on weaker features.
We distill the essential features below.

(1) A �1.†/-equivariant assignment of shadows along any geodesic ray in the fibre
with the property that if 0 < t is a sufficiently large time and t < t 0, then Sh.
t / �
Sh.
t 0/.

(2) A ladder-like construction in the total space with the property that if a shadow is
contained in another shadow, then its ladder is contained in the ladder of the other.

(3) The existence of finite segments in the fibre that achieve a specified nesting of
ladders; that is, for any sufficiently large R > 0, there exists a segment ˇ of length
3` D O.R/ and � > 0 such that

• the ball B.ˇ0; �/ in the fibre is contained in the complement of Sh.ˇ`/;

• the ball B.ˇ3`; �/ is contained in Sh.ˇ2`/;

• for any geodesic segment Œˇ00;ˇ
0
T � such that ˇ00 2B.ˇ0; �/ and ˇ0T 2B.ˇ3`; �/

the shadows satisfy Sh.ˇ`/ � Sh.ˇ00/ and Sh.ˇ0T / � Sh.ˇ2`/;

• Dtotal.@Lad.Sh.ˇ`//; @Lad.Sh.ˇ2`/// > R;

refer to Figure 6.2 for this confirmation.

(4) For a good segment ˇ that satisfies (3) above, the set of geodesics in the fibre that
pass through B.ˇ0; �/ and B.ˇ3`; �/ have a positive mass in the measure used for
the sampling.

Our proofs hold verbatim for fibrations (with surface/surface group fibres) that exhibit
these features establishing that a typical geodesic ray in the fibre makes linear progress in
the metric on the total space.

We will now give some explicit settings where these essential features hold and thus
derive linear progress in the fibre. We start with Gromov hyperbolic extensions of sur-
face groups, and then consider canonical bundles over Teichmüller discs, and finally the
Birman exact sequence. In each case, different parts need to be adapted to check that the
features in Remark 6.1 hold but the general strategy remains the same.

6.3. Hyperbolic extensions

In this section, we discuss a finitely generated group extension

1! �1.†/! � ! Q! 1;

where � is a hyperbolic group. We make no assumptions on Q but remark that, in all
known examples of this form, the group Q is virtually free. It is wide open if other
examples exist, for instance, if there is a hyperbolic extension of �1.†/ by the funda-
mental group �1.†0/ of another closed surface †0 with negative Euler characteristic.
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Sh.ˇ00/

Sh.ˇ`/

�

ˇ

ˇ0

�

Sh.ˇ0T /

Sh.ˇ2`/

Figure 6.2. The general setup for shadows, as in Remark 6.1 (3). ˇ is a good segment, whose
endpoints are close to a segment ˇ0. The nesting of “inner” shadows of ˇ, ˇ0, together with the
separating of the “outer” shadows of ˇ, ˇ0 imply separation of shadows for ˇ0, which is retained by
its images in all fibres.

We fix a finite generating set for � that contains a generating set for �1.†/, and we
equip � with the corresponding word metric. We also choose, once and for all, an equivari-
ant quasi-isometry

G W H2
! �1.†/;

and a base point x0 2 H2 with G.x0/ D 1. We use it to identify the kernel �1.†/ of
p W � ! Q with the hyperbolic plane. Such a choice is not unique (it is only up to quasi-
isometry) – but we make the choice to use it later to sample geodesics in H2.

By a result of Mosher, namely, [16, Theorem B], any short exact sequence such as
above with a hyperbolic, non-elementary kernel (like �1.†/) admits a quasi-isometric
section � W Q! � with �.1/ D 1.

Fixing such a section, any q 2 Q induces a quasi-isometry  q W �1.†/! �1.†/ by
conjugation with �.q/; that is,  q.g/ D �.q/�1g �.q/.

Suppose that ˇ is an infinite geodesic ray in �1.†/ starting at 1. The closest-point
projection to ˇ is coarsely well defined; that is, the image in ˇ of the set of closest points
has bounded diameter. For any point r 2 ˇ, let N.ˇ; r/ denote the set of all points in
�1.†/ whose closest-point projection to ˇ (as a set) lies after r . The Gromov boundary
of �1.†/ is a circle, and the limit set @1N.ˇ; r/ is an interval. We then set our required
shadow Sh.ˇ; r/ as the union of all bi-infinite geodesics in �1.†/ whose both endpoints
at infinity are contained in the limit set @1N.ˇ; r/. It is clear from the construction that
if r > r 0, then Sh.ˇ; r/ � Sh.ˇ; r 0/ which is the containment property we require our
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assignment of shadows to satisfy in feature (1) of Remark 6.1. Furthermore, since �1.†/
is quasi-isometric to the hyperbolic plane, observe that Sh.ˇ; r/ is a quasi-convex subset
of �1.†/ with a quasi-convexity constant independent of r .

For any q 2 Q, the corresponding quasi-isometry  q maps the interval @1N.ˇ; r/ to
a possibly different interval

Iq.ˇ; r/ D . q/1@1N.ˇ; r/:

Let Shq.ˇ; r/ be the union of bi-infinite geodesics in �1.†/ whose both endpoints at
infinity are contained in Iq.ˇ; r/.

Define
L.ˇ; r/ D

[
q2Q

�.q/Shq.ˇ; r/:

This is our analogous ladder-like construction in this context. Using a slight extension of
the methods of [15], we observe the following lemma.

Lemma 6.4. The set L.ˇ; r/ is quasi-convex in � , and if r 0 > r , then

L.ˇ; r/ � L.ˇ; r 0/:

Proof. We briefly indicate how the proof in [15] needs to be adapted. The basic strategy
is the same – we define a Lipschitz projection … W � ! L.ˇ; r/. Since one can then
project geodesics in � to L.ˇ; r/ without increasing their length too much, this will show
undistortion. Hyperbolicity of � then implies quasi-convexity.

As in [15], the definition of … involves the fibrewise closest-point projection to the
sets Shq.ˇ; r/. To show that the projection is Lipschitz, one needs to control the distance
between ….x/, ….y/ for points x, y of distance 1. There are two cases to consider. If x,
y are in the same fibre, the estimate stems from the fact that closest-point projections to
quasi-convex sets in hyperbolic spaces are Lipschitz. If x, y lie in adjacent fibres, then the
estimate in [15] relies on the fact that quasi-isometries coarsely commute with projections
to geodesics in hyperbolic spaces. This fact is still true for projections to quasi-convex sets
(with essentially the same proof), and so, the argument extends.

Finally, we note that for r < r 0 we have @1N.ˇ; r/ � @1N.ˇ; r 0/ which implies that
Iq.ˇ; r/ � Iq.ˇ; r

0/ for all q 2 Q. This then implies Shq.ˇ; r/ � Shq.ˇ; r 0/, and hence,

L.ˇ; r/ � L.ˇ; r 0/:

Lemma 6.4 thus ensures that feature (2) in Remark 6.1 holds.
We now construct appropriate “good” segments to achieve a specified nesting. To start,

we need to better understand what the shadows look like at infinity.

Lemma 6.5. In the Gromov boundary @1� , both @1L.ˇ; r/ and its complement have
non-empty interior.
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Proof. We first claim that there is a quasi-geodesic in � whose endpoint lies in @1L.ˇ;r/.
Namely, let g 2 �1.†/ be an element in the fibre so that the sequence ˇ0n D g

n converges
to a point in @1N.ˇ; r/ as n ! 1. Since the cyclic group generated by any infinite
order element in a hyperbolic group is quasi-convex, hence undistorted, (compare, e.g.,
[1, III.F.3.10]), the sequence ˇ0n is also a quasi-geodesic in � , thus proving the claim.

We now claim that ˇ0n nests in L.ˇ; r/ as n ! 1. That is, we claim that for any
distance R > 0 we have D�.ˇ0n; @L.ˇ; r// > R for all sufficiently large n. Note that
d�1.†/.ˇ

0
n; @ Sh.ˇ; r// becomes arbitrarily large as n!1. We now choose a radius for

a ball B centred at the identity in Q such that D�.1; �.q// > R for all q 2 Q � B . We
can then arrange n to be sufficiently large so that the distance D�.ˇ0n; @ Shq.ˇ; r// >
R for all q 2 B . The claim follows because D�.ˇ0n; @ Shq.ˇ; r// > R for nearby fibres
corresponding to q 2 B , and D�.1; �.q// is a lower bound on D�.ˇ0n; @ Shq.ˇ; r// > R
for all fibres corresponding toQ �B andD�.1; �.q// > R was arranged for these fibres.

By the claim above, we can choose n sufficiently large to arrange that the ball in �
centred at ˇ0n is contained deep in L.ˇ; r/; that is, the distance between any point in the
ball and the complement of L.ˇ; r/ is large enough. It then follows that all geodesic rays
in 
 starting at identity and passing through this ball converge to a point in the Gromov
boundary that is contained in @1L.ˇ; r/. In particular, this means that @1L.ˇ; r/ has
non-empty interior in @1� .

The claim for the complement @1� � @1L.ˇ; r/ follows because the complement of
Sh.ˇ; r/ in �1.†/ contains the shadow Sh.ˇ�; r/, where ˇ� is the geodesic ray in �1.†/
with its initial direction opposite to ˇ.

Corollary 6.6. There is an element g0 of �1.†/whose axis has one endpoint in @1L.ˇ;r/
and one endpoint in the complement of @1� � @1L.ˇ; r/.

Proof. One can use an element as in the proof of the previous lemma, also assuming that
gn converges to a point outside @1 Sh.ˇ; r/.

Alternatively, choose open sets UC, U� in @1L.ˇ; r/ and its complement. Since we
have a continuous Cannon–Thurston map, there are intervals IC, I� of the boundary
@1�1.†/ mapping (under the Cannon–Thurston map) into UC, U�. We can choose an
element g0 of �1.†/ whose axis endpoints are contained in IC, I�. This has the desired
property.

Recall that any infinite order element of a Gromov hyperbolic group acts with north-
south dynamics on the Gromov boundary. The element g guaranteed by the previous
corollary will act hyperbolically on � with axis endpoints in UC, U�. Thus, a large power
hD gN has the property that it nestsL.ˇ; r/ properly into itself; in particular, by choosing
N large enough, we can guarantee that the distance between the boundaries ofL.ˇ; r/ and
hL.ˇ; r/ is at least R > 0 for any choice of R. In other words, similar to `-good segments
in the fibred case, feature (3) in Remark 6.1 can be achieved by a geodesic segment ˇ in
�1.†/ from identity to a suitably high power

h D gN :
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Finally, since @1 Sh.ˇ; r/ is an interval with non-empty interior, it has positive meas-
ure with respect to geodesic sampling using the fixed quasi-isometry G W H2 ! �1.†/.

Thus, feature (4) of Remark 6.1 also holds, and hence, by replicating the proof of
Theorem 2.4, we conclude that a typical ray in �1.†/ makes linear progress in � .

6.7. Teichmüller discs

In this section, we consider the universal curve over a Teichmüller disc.
A marked holomorphic quadratic differential on a closed Riemann surface defines

charts to the complex plane via contour integration of a square root of the differential. The
transition functions are half-translations, which are of the form z !˙z C c. The natural
action of SL2.R/ on C D R2 preserves the form of the transitions and hence descends to
an action on such differentials.

Let q0 be such a quadratic differential on a Riemann surface X0. The conformal struc-
ture is unchanged under the SO2.R/-action on q0, and hence, the image of the orbit
SL2.R/q in Teichmüller space is an isometrically embedded copy of

H2
D SL2.R/=SO2.R/:

This is called a Teichmüller disc. We will use the notation Dq0 for the disc and X0 for the
underlying marked Riemann surface for q0. The canonical projection SL2.R/q0 ! Dq0
exhibits the orbit as the unit tangent bundle of the Teichmüller disc. In particular, since
Dq0 is contractible, the unit tangent bundle is trivial.

The universal curve over Dq0 lifts to its universal cover to us gives the bundle

H2
! E ! Dq0 :

As discussed in, e.g., [6, Sections 3.3–3.5], the triviality of the unit tangent bundle
allows us to equip the total space E with a metric dE as follows.

• We choose a section � W Dq0 ! SL2.R/q0 such that �Œq0� D q0.

• We equip the fibre over Œq� with the lift of the singular flat metric on † given by the
differential �Œq�.

In particular, the metrics on nearby fibres differ by (quasi-conformal) affine diffeomorph-
isms with bounded dilatation.

In fact, there is a convenient section of the unit tangent bundle. Namely, given any
point X 2 Dq , there is a (unique) Teichmüller extremal map from X0 to X . The map
pushes the quadratic differential q0 on X0 to a quadratic differential qX on X – which, if
X is defined by Aq for A 2 SL2.R/, differs from Aq by a rotation.

We fix, once and for all, an identification of the fibre over the base point q with the
hyperbolic plane H2 up to quasi-isometry. The goal is to discuss the behaviour of a typical
(hyperbolic) geodesic ray in that fibre for the metric dE .

One major difference from the preceding sections is that the total space E is no longer
hyperbolic. This will mandate several adaptations from the previous two cases.
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We begin by defining shadows in the fibre as in the fibred 3-manifold case; that is, for
a flat geodesic ray ˇ, we set Sh.ˇ; r/ as the shadow in the flat metric that contains the
point at infinity @1ˇ and has the optimal perpendicular ˇ?.r/ as the boundary. As the
hyperbolic and the singular flat metric are quasi-isometric, given a hyperbolic ray 
 in the
fibre and a time t along it, we can assign the shadow Sh.ˇ; s.t//, where ˇ is a flat ray
fellow-travelling 
 for all time and s.t/ is a time along 
 assigned as in Equation (4.2).
The assigned shadows then satisfy feature (1) in Remark 6.1.

We will now set up to carry out a ladder-like construction in this context. Let ˇ be a
flat geodesic. We define the ladder of ˇ by

Lad.ˇ/ D
[

X2Dq0

�.X/.ˇ/;

where, as above, �.X/ is the affine diffeomorphism given by the trivialisation of the unit
tangent bundle. Note that since �.X/ is an affine map, it takes a flat geodesic in the fibre
over X0 to a flat geodesic in the fibre over X .

We then define
L.ˇ; r/ D

[
X2Dq0

�.X/Sh.ˇ; r/:

It follows that along a flat geodesic ray ˇ the sets, L.ˇ; r/ satisfies feature (2) in Remark
6.1.

Arguing as in Lemma 6.4 (observing that only the proof of quasi-convexity, and not
of undistortion, relies on the hyperbolicity of the ambient space), we obtain the following.

Lemma 6.8. There is a constant K so that, for any flat geodesic ˇ in H2 and r > 0,
the ladder Lad.ˇ/ and the set L.ˇ; r/ are K-undistorted in E for the bundle metric dE
defined above.

Our next aim is to show the existence of finite segments which produce any specified
nesting on ladder-like sets. The additional complexity in this particular context is that a
single saddle connection has no lower bound on its flat length over all fibres. To sidestep
this issue, we finesse the definition of a good segment.

We consider the collection of flat geodesic segments that are a concatenation of seg-
ments of the form

ˇ D i � v � h � f

for which

(1) the segments v and h are saddle connections with different slopes; in particular,
we may assume that v is almost vertical and h almost horizontal;

(2) the segments i and f have no singularities in their interior;

(3) the angles �L.i; v/ and �L.h; f / subtended on the left along ˇ at the singularities
satisfy �L.i; v/ D �L.h; f / D 3�=2.
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Note that condition (3) above implies that the angles �R.i; v/ and �R.h; f / at the
singularities satisfy �R.i; v/> 3�=2 and �R.h;f /> 3�=2. Let v0 and v00 be flat geodesic
rays such that the concatenations v0 � v and v00 � v are also flat geodesics and the angles
�L.v0; v/ D � and �R.v0; v/ D � . The concatenation v0 � v00 is then a bi-infinite flat
geodesic. Observe that the angle conditions imply that .v0 � v00/ \ i? D ;. Similarly, let
h0 and h00 be flat rays such that the concatenations h � h0 and h � h00 are also flat geodesics
and the angles �L.h � h0/ D �R.h � h00/ D � . Then, the concatenation h0 � h00 is a bi-
infinite flat geodesic and by the same logic regarding angles .h0 � h00/ \ f? D ;.

We now derive the following lemma.

Lemma 6.9. A flat geodesic segment with endpoints on i? and f? contains v � h.

Proof. Let ˇ0 be a flat geodesic segment with endpoints xi on i? and xf on f?. Since
v0 � v00 separates xi and xf , the segment ˇ0 must intersect v0 � v00. Similarly ˇ0 must also
intersect h0 � h00. Breaking symmetry, suppose that ˇ0 intersects v0 and h0 in points p and
q, respectively. The concatenation v0 � v � h � h0 also gives a geodesic segment between
p and q. This implies that ˇ0 and v0 � v � h � h0 must coincide between p and q, and thus,
ˇ0 contains v � h. Identical arguments apply for possibilities for intersections of ˇ0 with
v0 � v00 and h0 � h00 which concludes the proof of the lemma.

We now parameterise ˇ and denote by times s < t the midpoints of i and f along ˇ.
By Lemma 6.9, any flat geodesic from H2 � Sh.ˇ; s/ to Sh.ˇ; t/ contains v � h.

As the maps �.X/ act by affine diffeomorphisms, the corollary below immediately
follows.

Corollary 6.10. A flat geodesic segment with endpoints on �.X/.i?/ and �.X/.f?/ con-
tains the segment �.X/.v � h/.

Given any ` > 0, it is obvious from the asymptotics of saddle connections that we can
choose a segment ˇ such that both v and h have flat length at least `. We will call such a
segment ˇ to be `-good.

With the assumption that v is almost vertical and h almost horizontal, notice that
�.X/.v � h/ is bounded below by O.`/ for any X in Dq0 .

The main point now follows.

Lemma 6.11. Given R > 0, there exists ` > 0 such that for any `-good segment ˇ D
i � v � h � f and times s < t corresponding to midpoints of i and f along ˇ any geodesic
segment in E that joins E � L.ˇ; s/ to L.ˇ; t/ has length at least R.

Proof. Since the sets L.ˇ; s/ and L.ˇ; t/ are undistorted by Lemma 6.8, the E-distance
between @L.ˇ; s/ and @L.ˇ; t/ can be (coarsely) computed in L.ˇ; s/. So, suppose that a
geodesic segment in L.ˇ; s/ coarsely gives the distance between @L.ˇ; s/ and @L.ˇ; t/.
Let xi 2 i? D @ Sh.ˇ; s/ and xf 2 f? D @ Sh.ˇ; t/ be points such that the geodesic
segment above has its endpoints in the ladders Lad.xi / and Lad.xf /. Since ladders are
also undistorted by Lemma 6.8, it suffices to show that the distance in E between any
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point of Lad.xi / and Lad.xf / is uniformly bounded from below by a constant that is
linear in `. This follows from Corollary 6.10 and the observation preceding the lemma
that �.X/.v � h/ is bounded below by O.`/ for any X in Dq0 . This means that, given
R > 0, we can indeed find ` > 0 that achieves the nesting as required.

6.12. Point-pushing groups

The final setting that we consider is given by the Birman exact sequence

1! �1.Sg ; p/! Mod.Sg ; p/! Mod.Sg/! 1:

We follow essentially the same strategy as in the previous sections. As in the section on
hyperbolic extensions, we construct nested shadows along geodesic rays in the fibre in
exactly the same way. The construction of ladders and subsequently the sets L.ˇ; r/ is
also identical.

The definition of segments that achieve nesting as in point (3) of Remark 6.1 requires
care. Roughly speaking, given ` > 0 sufficiently large, we need a segment such that all
Mod.Sg/ images of it have lengths bounded below by O.`/.

We first recall the following basic fact from elementary hyperbolic geometry.

Lemma 6.13. Let S be a closed surface. Given any complete hyperbolic structure X on
S and any R > 0, there exists a natural number k D k.S; R/ such that any geodesic arc
on X with at least k self-intersections has length at least R.

We now fix a complete hyperbolic structure X on Sg . Given R > 0 sufficiently large,
let k be as in Lemma 6.13. Fix a geodesic arc on X with k self-intersections. Let 
 be a
bi-infinite lift in H2 of this arc on X . We parameterise 
 with unit speed. Given a time s,
let ˛s be the bi-infinite geodesic orthogonal to 
 at 
s . We let H�s and HCs be the half-
spaces with boundary ˛s such that 
t converges in to H�s as t ! �1 and 
t converges
in to HCs as t !1.

We may then choose a time s sufficiently large such that any geodesic segment 
 0 with
endpoints in H�0 D H

�
�s and HC0 D H

C
s fellow-travels a long enough arc of 
 to ensure

that the projection of 
 0 toX has at least k self-intersections. In fact, by passing to a larger
s if required, we can ensure that there are at least k group elements gi W 16 i 6 k such that
the half-spaces in the list ¹H�0 ;H

C
0 ; g1H

�
0 ; g1H

C
0 ; : : : ; gkH

�
0 ; gkH

C
0 º are pairwise well

separated and the pairs .giH�0 ; giH
C
0 / all link the pair .H�0 ;H

C
0 /. Let I�0 D @1H

�
0 and

IC0 D @1H
C
0 be the pair of intervals at infinity. Similarly, we get the pairs of intervals

I�i D @1giH
�
0 and ICi D @1giH

C
0 . The separation of half-spaces implies that these

intervals are all pairwise disjoint, and along the circle S1 D @1H2, the pairs .I�i ; I
C

i / are
all linked with the pair .I�0 ; I

C
0 /.

The hyperbolic structure X defines a group-equivariant quasi-isometry

 W H2
! �1.Sg/
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that gives a homeomorphism  1 of their Gromov boundaries. So, we get intervals J�i D
 1.I

�
i / and JCi D  1.I

C

i / in the Gromov boundary of �1.Sg/. Being a homeomorph-
ism,  1 preserves the linking, and hence, the pairs .J�i ; J

C

i / all link .J�0 ; J
C
0 /.

Realising a mapping class on Sg as an actual automorphism f of �1.Sg/, the action
of f on �1.Sg/ extends to a homeomorphism f1 of the Gromov boundary. Hence, the
pairs .f1.J�i /; f1.J

C

i // continue to link the pair .f1J�0 ; f1J
C
0 /. LetH�

f;i
andHC

f;i
be

the half-spaces in H2 such that @1H�f;i D f1.J
�
i / and @1HCf;i D f1.J

C

i /.
We note the following lemma.

Lemma 6.14. For any mapping class on Sg and any automorphism f of �1.Sg/ in its
class,

dhyp.H
�
f;0;H

C

f;0
/ > R:

Proof. Because of the linking, any geodesic segment that connects H�
f;0

to HC
f;0

projects
to an arc on X that self-intersects at least k times. By Lemma 6.13, the arc has length at
least R and the lemma follows.

By construction,
S
f 2Mod.Sg /H

C

f;0
D L.
; s/ and

S
f 2Mod.Sg /H

�
f;0
D Mod.Sg ; p/ �

L.
;�s/.
We now define the nesting segment to be the segment ˇ D Œ
�3s; 
3s�. To compare

constants with feature (3) in Remark 6.1, we set ` D 2s and reset time zero to be �3s.
We then get a parameterised segment ˇ of length 3` for which the ball B.ˇ0; �/ is con-
tained in the complement of L.ˇ; `/, the ball B.ˇ3`; �/ is contained in L.ˇ; 2`/, and
DMod.Sg ;p/.Mod.Sg ; p/ � L.ˇ; `/; L.ˇ; 2`// > R, as required.
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