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The Argentine mathematician has been a leading figure in the de-
velopment of partial differential equations in the last 50 years and
was awarded with the 2023 Abel Prize “for his seminal contribu-
tions to regularity theory for nonlinear partial differential equations
including free-boundary problems and the Monge–Ampère equa-
tion.” His contributions are not limited to these fields, they include
problems in fluid mechanics, optimal transportation, non-local
operators, homogenization, and other topics with important con-
nections with other sciences. In a series of landmark contributions
Luis used brilliant geometric insights together with ingenious an-
alytical tools to study areas of nonlinear mathematics that were
barely explored some decades ago and are now in full bloom.
This text combines a description of Luis’s main contributions with
a glimpse into his life and personality.

Introduction

The Norwegian Academy of Sciences and Letters has awarded the
2023 Abel Prize to Luis Ángel Caffarelli, a mathematician from the
University of Texas at Austin, USA. The prize is generally consid-
ered the mathematical equivalent of the Nobel Prizes of the Royal
Swedish Academy of Sciences and has been awarded since 2003 to
individuals who have made “outstanding scientific work in the field
of mathematics.” The citation about Caffarelli’s work specifically
says: “for his seminal contributions to regularity theory for nonlinear
partial differential equations including free-boundary problems and
the Monge–Ampère equation.” But his contributions are not limited
to the already mentioned fields, they also include problems in fluid
mechanics, optimal transportation, calculus of variations, non-local
operators, homogenization, and other topics that have important
connections with other sciences. According to the American Math-
ematical Society: “Some of his most significant contributions are
the regularity of free boundary problems and solutions to nonlinear
elliptic partial differential equations, optimal transportation theory,
and, more recently, results in the theory of homogenization.”1

1 Notices of the AMS: https://www.ams.org/notices/201404/rnoti-p393.pdf.
See also: https://www.ams.org/journals/notices/201808/rnoti-p1019.pdf

Luis Caffarelli, photo from the University of Texas at Austin, USA.

His work on the regularity of free boundaries has opened re-
markable ways for geometric methods to play a relevant role in
the analysis of equations. Free boundary problems appear naturally
in very different contexts, ranging from fluid filtration, elasticity,
optimal strategies in finance, economics, metal industry, interacting
particle systems in physics, to topics in biology and ecology.

As Norwegian mathematician Helge Holden, chair of the Abel
Committee, noted: “Combining brilliant geometric insight with
ingenious analytical tools” to pioneer a field of mathematics that
was barely explored four decades ago. And, later, Holden added:
“Caffarelli’s theorems have radically changed our understanding
of classes of nonlinear partial differential equations with wide
applications. The results go to the core of thematter, the techniques
show at the same time virtuosity and simplicity, and cover many
different areas of mathematics and its applications.” Many other
prominent mathematicians have pondered on his gifts. Francesco
Maggi, a colleague of Luis at the University of Texas at Austin, said:
“Forty years after these papers appeared, we have digested them,
and we know how to do some of these things more efficiently.
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© Alf Simensen – NTB / The Abel Prize

But when they appeared back in the day, in the 80s, these were
alien mathematics.”2 Many of us have often wondered about his
unexpected insights combined with skillful use of analytical tools…
plus a touch of deceivingly simple geometry.

Biographic highlights

Luis Caffarelli was born in 1948 in Buenos Aires, Argentina, where
he got his PhD degree in mathematics in 1972. He has lived in the
US since 1973. His early American years were spent in Minnesota,
a beautiful state of the Midwest with quite extreme weather that
has been home to brilliant science during the 20th century. The
University of Minnesota, where he taught, brings back very fond
memories to many Spanish scientists of the generation that began
their research careers in the 1970s, especially experts in economics,
medicine, and mathematics.

Luis rose to worldwide fame at the end of that decade because
of his surprising work on the regularity of the so-called free bound-
aries, nowadays familiar to a wide scientific public largely thanks
to his work. We will see a brief description of these concepts later
on. Luis surprised everyone in the mathematical community with
the article “The regularity of free boundaries in higher dimensions,”
published in 1977 [4]. This very remarkable work laid the basis of
his future fame. It is where his ingenuity in mixing partial differen-
tial equations (PDEs) and geometry first manifested. The novelty
and brilliance of his treatment of the obstacle problem is already
a classic reference in pure and applied mathematics, a paradig-
matic example of what we call free boundary problems. It is worth
highlighting the contributions that Luis has made to the Stefan

2 Quoted from the article in New Scientist, “Mathematician wins Abel Prize
for solving equations with geometry,” 22 March 2023, by Alex Wilkins.

problem, which mathematically describes solid–liquid phase tran-
sitions. It models, among other applications, the evolution of the
ice–water system with its fine separation interface, a topic that
reaches the general public through the process of melting glaciers
or ice cubes melting in water. The substances in the applications
need not be ice and water. Thus, in the continuous casting process
employed in the steel industry, the free boundary problem concerns
the determination of the solid–liquid steel interface.

A second work by Luis that was to have a great impact dates
back to 1982. It arose as the result of a collaboration with Robert
Kohn and Louis Nirenberg and deals with fluids. The paper, “Partial
regularity of suitable weak solutions of the Navier–Stokes equa-
tion,” was published in 1982 [1]. The work was carried out during
Caffarelli’s first period as a professor at the Courant Institute of
Mathematical Sciences in New York. Louis Nirenberg, also an Abel
Prize winner (in 2015), was his supporter in those years and re-
mained his friend for life. Years went by and this beautiful result,
the theorem known as CKN in honor of its authors, continues to
stand out as the last great contribution made in the study of regu-
larity of solutions of the Navier–Stokes equations for viscous fluids.
Here we are talking about one of the famous seven “Millennium
Prize Problems” of the Clay Mathematics Institute.

We have specifically cited these two works by Luis because the
work of great mathematicians is often linked to some influential
articles containing far-reaching results, or to books presenting
deep theories. The 1980s were a prodigious time for Caffarelli.
A cascade of articles with various coauthors established him as
the best worldwide representative of the legacy of David Hilbert
(circa 1900) and Ennio de Giorgi (circa 1960) on “how to study the
regularity inherent in the solutions of the problems of the calculus
of variations.” Luis added to the program of the great Ennio the
study of free boundary problems that we will deal with shortly.
These problems had challenged the best experts during the 1960s
and 1970s due to their intricate combination of difficulties from
analysis and geometry.

Luis is one of the world’s leading experts in the field of nonlinear
partial differential equations. Partial differential equations have
been studied for hundreds of years and describe almost every sort
of physical process, ranging from fluids and combustion engines
to financial models. Caffarelli’s most important work concerns
nonlinear PDEs, which describe complex relationships between
the variables of the system and their derivatives. The influence of
geometrical thinking permeates his highly original contributions.

From 1986 to 1996 Luis was a permanent professor at the
Institute for Advanced Study, Princeton, an institution famous for
legendary figures such as Albert Einstein, John von Neumann, and
Robert Oppenheimer. After that, Luis went back as a professor to
the Courant Institute, and finally moved in 1997 to the University
of Texas at Austin, where he is still a professor (Sid W. Richardson
Foundation Regents’ Chair in Mathematics No. 1). Social recogni-
tion for him and his work has been continuous and growing. Since
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Luis Caffarelli in younger years.

1991 he has been an outstanding scientist in the US and a mem-
ber of the National Academy of Sciences. In addition, a series of
international awards came to recognize the impact of his scientific
contributions: in the present century, the Rolf Schock Prize, from
the Royal Swedish Academy of Sciences (2005); the Leroy P. Steele
Prize “for lifetime achievement” from the American Mathematical
Society (AMS, 2009); the very prestigious Wolf Prize (2012); the
Solomon Lefschetz Medal, from the Mathematical Council of the
Americas (2013); again, a Leroy P. Steele Prize, this time “for sem-
inal contribution to research” for the landmark article published
in 1982 with Robert Kohn and Louis Nirenberg, from AMS (2014);
as well as the Shaw Prize in Mathematics, which is considered the
“Asian Nobel Prize” (2018). A brief glimpse of his greatest scientific
achievements will be shown in the next section.

Mathematical area and contributions in some detail

Caffarelli’s scientific work developed inside the mathematical field
of nonlinear partial differential equations (NL PDEs), but it is impor-
tant to highlight the interest that Luis showed for the connections
between nonlinear PDEs and other sciences since his pre-doctoral
studies. We reproduce some fragments of the citation for the Abel
Prize 2023: “Partial differential arise naturally as laws of nature,
from the description of the flow of water to the growth of popu-
lations. These equations have been the constant subject of intense
study since the days of Newton and Leibniz. However, despite
substantial efforts by mathematicians over the centuries, funda-
mental questions related to stability or even uniqueness and the
occurrence of singularities remain unresolved for some key equa-
tions. Throughout more than 40 years, Luis Caffarelli has made
pioneering contributions to rule out or characterize singularities.
This is known as regularity theory, and it captures key qualita-

tive features of solutions, beyond the original functional analytic
configuration.”

The above quote touches on two major themes. The first one
is “differential equations,” which appear as a very powerful tool to
describe the movement of bodies and the variation of geometric
figures, as well as their states of equilibrium. These equations came
to life as part of the differential calculus in the 17th century. They
relate certain magnitudes (called system variables) with their relative
rate of variation (i.e., with their derivatives). When the unknown
variables depend on several space and/or time coordinates, the
resulting equations are called “partial differential equations (PDEs).”

Over the last centuries the number of such equations with
relevance in mathematics, physics, biology, and engineering has not
stopped growing. Today the study of these equations is one of the
most active branches of mathematics, and it is going through one
of its golden periods due to the enormous influence of its results
and techniques in diverse applications. Indeed, partial differential
equations are used to mathematically describe processes that occur
in nature and in so many fields of technology. The fundamental
PDEs of physics describe phenomena arising in the study of waves
and vibrations, the motion of fluids, the behavior of structures,
electromagnetism, or the fundamentals of quantum mechanics.
In topics closer to daily life, we find them in the study of the
propagation of natural phenomena, such as fires or tsunamis, or
the dynamics of invasive species, or the evolution of a disease in an
organism or pandemic in a population. Let us also mention Euler’s
equations for fluids, Maxwell’s for electromagnetism, Einstein’s for
gravitation, Schrödinger’s and Dirac’s for quantum mechanics, or
the Hamilton–Jacobi equations…, as major topics known to the
public. Within mathematics itself, PDEs have deep connections with
other fields such as the calculus of variations, differential geometry,
harmonic analysis, probability theory, geometric measure theory,
or computational mathematics.
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Another important aspect of the equations studied by Caffarelli
is “nonlinearity.” Let us examine this feature. Although nature
has the good taste to resort to linear processes for many of its
basic models, such as the transmission of waves or heat, and
also the equations of quantum theory, it is well known that many
of the most important processes in science are nonlinear, and
understanding that added difficulty is part of the glory and the
cross of the current mathematical profession.

Nonlinear PDEs are more difficult to solve than linear PDEs,
and it may happen that they produce solutions that make no
sense in the physical world. Hence, the work of deep analytical
minds is needed to sort out the correct concepts and to show how
to calculate with them. In the world of nonlinear problems, the
superposition principle, which is a basic instrument in linear science,
does not apply. Grosso modo, in a linear system the response
corresponding to the sum of two data (whether input functions or
external forces) is the sum of the two individual responses obtained
separately with each of the data. This is the case, for example,
in the world of Fourier analysis. However, in a nonlinear system,
this is no longer true, and as a consequence the problem with
general data cannot be reduced to the sum of solutions of certain
basic blocks. Typical nonlinear analysis graphs are not flat surfaces
or straight lines, but instead involve more arbitrary curves and
surfaces.

Nonlinear equations appear in many natural phenomena, from
the movement of fluids to phase transitions, from the shape of
space-time to the behavior of stocks. These phenomena do not
really obey the “principle of superposition of effects” and some
of their “key features” (such as turbulence in fluids) are clearly the
result of the “nonlinear” character of some underlying PDEs. These
key features often show up as “oddities” where the equations that
are used no longer hold in the usual way. Furthermore, there is
no way to avoid the issue since such singularities are inherent to
many problems. It is the mathematician’s task to understanding
them and explaining to the scientist or engineer how to deal with
them. Singularities are not a passing nuisance, on the contrary, they
contain important, often crucial, information about the process
where the model appears.

We may gladly declare that the mathematics of the late 20th
century have been excellent in the study of those nonlinear pro-
cesses that represent a stage of difficulty superior to the study of
linear processes. Nonlinearity is an infinite source of complexity,
and it is the origin of a many highly innovative theories. Chaos,
shock waves, black holes, or climate evolution models are relevant
scientific objects originated in the nonlinear worlds.

Caffarelli’s theorems have radically changed our understanding
of a large class of nonlinear PDEs. The union of geometry and math-
ematical physics around the analysis of the equations produces
pages of great beauty. We describe below the main mathematical
contributions of Luis in more detail. The less expert reader may
skip the details, at least on a first reading.

A. Regularity theory for free boundary problems
A central part of Caffarelli’s work concerns the regularity of the
so-called free-boundary problems. These problems occur both in
stationary processes and in processes that evolve with time. “Reg-
ularity” refers to the functions that appear as data or solutions,
and it means in this context that such functions must have as
many derivatives as they are required to ensure that they satisfy the
equations in which they appear. The problem arises because we
usually solve these and similar mathematical problems by resorting
to approximate or numerical methods, after which the limit of such
approximations is taken as the candidate to be a correct solution.
The question is whether this limit is regular enough to satisfy the
governing differential equation. This is an essential difficulty that
Caffarelli tackles since his early papers, and to the study of which
he contributed for many years. It is also remarkable that a lucky
situation occurs: there are certain basic problems where the essen-
tial difficulties can be thoroughly examined and which have simple
statements. It is true that in solving these “model problems” one
encounters considerable technical difficulties, but this fact delights
the researchers with a strong mathematical mind. Moreover, it was
proved by additional research that solving the model problems
opened the way for the mathematical study of realistic problems
in different applications. Let us mention at this point that in this
area there are multiple useful scientific and industrial applications.

We will present next some of these “model problems” where
Caffarelli made fundamental contributions: the obstacle problem,
the Stefan problem, the porous medium equation.

“Obstacle problem” (OP)
This is the model example for free boundaries of the stationary
type.

Suppose we are interested in determining the position of an
elastic membrane that is subject to different forces, and that in
addition certain conditions are imposed on the border that encloses
it (technically called “the boundary”). According to the laws of
elasticity, the equilibrium position of the membrane is described by
an equation of state that in the simplest case reads

Δu+ f = 0 in Ω, (E)

where u(x,y) represents the vertical position of the membrane over
a point (x, y) of a domain Ω of the plane, f = f(x, y) represents
the possible forces acting on the membrane, and Δ is the Laplace
operator. We are also given the function z= g(x,y) that represents
the known height on the enclosing set where the membrane is
attached to the border (the so-called “boundary conditions”). Then,
it is well known in PDE theory that equation (E) together with the
boundary conditions allow us to obtain a unique solution of the
problem. Furthermore, if f(x, y) is a fairly regular function, then
u(x, y) is also regular, even if the boundary conditions are not.
These claims have been rigorously proven in the first half of the
20th century and were well known and studied years before.

EMS MAGAZINE 132 (2024) 17



The problem we have just described changes in difficulty when
an “obstacle” is placed under the elastic membrane, u(x, y) ≥
φ(x, y). Then we have to consider the points inside the membrane
(not on the boundary) where the membrane touches the obstacle.
Obviously, the previous analysis does not apply. The modified analy-
sis is best done if the domain Ω is divided into two parts: a “contact
set,” in which the membrane rests on the obstacle, and the remain-
ing part in which the position of the membrane is located above
the obstacle, the “non-contact set.” It then happens that in the
latter region the elasticity equations must be satisfied, and it is
proved that the equation of state (E) is valid there. In the best-
case scenario, there is a clear line of separation between the two
sets. It is called the free boundary, FB, so named because it is not
known a priori, it must be calculated as part of solving the problem.
Summing up, the whole problem becomes more complicated. It is
about achieving two related goals, namely:

(1) Finding the set representing the part of the membrane that
does not touch the obstacle.

(2) Solving the previous boundary problem (but now only in
the domain where there is no contact) to find the position of the
membrane. In the rest of the domain the membrane coincides with
the obstacle.

This is the obstacle problem (OP). In short, the OP is a typical free
boundary problem, FBP. Solving it requires combining the analysis
of equations with differential geometry, two major areas of modern
mathematics. Achieving such a combination is what constitutes the
difficulty of the problem, which occupied the best minds in the field
in the 1960s and 1970s. In 1977 Caffarelli surprised everyone with
the seminal article in Acta Mathematica, where he considered the
weak solutions of the OP (a class of possibly non-regular solutions
obtained by functional methods, for example by minimizing the
energy of the system), and then he proved that they are actually
regular functions far away from the free boundary (provided the
obstacle and the forces fulfill some minimal conditions).

free boundary
contact set

φ(x)

u(x)

Ω

Membrane over an obstacle. Notation x instead of (x, y).

And he also proved that this is true not only in two spatial
dimensions, but also in all higher spatial dimensions. Furthermore,

he showed that the free boundaries are indeed regular (hyper)sur-
faces, except for a possible “exceptional set” of singular points
that are anyway very rare (technically, they form a set of small
geometric measure).

The aforementioned singularities are not merely hypothetical;
they do occur in practice. Thus, a duality is established: generic
regularity versus exceptional singularity, a result that set the pace
for further mathematical research on related topics ever since. The
found regularity is technically called “Hölderian continuity,” and
this has been the field of excellence of Luis Caffarelli. For details of
the theory, see [5].

The result we have described uses quite novel methods that
enabled Caffarelli in subsequent years to provide insightful solutions
to a whole series of free boundary problems with applications to
solid–liquid interfaces, jet and cavitation flows, and gas and liquid
flows in porous media, as well as financial mathematics. Caffarelli’s
regularity results are based on successively expanding the region
close to the free boundary (a process called blow-up) and classifying
the resulting extensions, where non-generic extensions correspond
to the singularities of the free boundary. Exceptions to the regularity
can occur, but they have a smaller dimension (as sets). The blow-up
analysis is a very delicate technique that we will not explain further
here.

“Stefan problem” (SP)
The most typical example of an evolution problem with a free
boundary to be determined as part of the solution concerns the
process of ice melting into water, called “Stefan problem” after
the great mathematician-physicist Josef Stefan. This is a so-called
phase transition problem. Here the free boundary is the interface
between two phases of a medium, for example, water and ice.
That interface is an unknown in the problem, that is, part of the
whole solution that must be determined. Its location and properties
are perhaps the most interesting features.

As this interface moves over time, it can be more precisely called
a “moving free boundary.” The SP is the standard problem in the
mathematical description of phase transitions, with applications
that include ecology, finance, and industry among many others.

There are many stationary and evolution free boundary prob-
lems in the theory of nonlinear PDEs that attracted Luis’s attention.
We may just mention the problems of jet flows and cavities, the
dam problem, or flows in porous media. This last problem allowed
me to interact with him.

B. My scientific life and friendship with Luis, the porous
medium equation
After meeting Luis Caffarelli and Don Aronson at a conference
on free boundaries in Italy in the summer of 1981, I spent the
academic year 1982–83 as a visitor in Minnesota, where Luis and
Don were professors at the time, and we began to work on the
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interphase water

ice

Water–ice system and its separation by a free boundary. The arrow in the right picture indicates free boundary motion from water to ice.

regularity of the free boundary of the nonlinear version of the heat
equation, now called PME, porous medium equation:

ut = Δum, m > 1.

The equation with the exponent m = 2 models the flow of wa-
ter that permeates through a porous medium (Boussinesq, 1903).
Here, u(x, t) denotes the height of the wet region over a flat imper-
meable bed. As usual, Δ is the Laplace operator. In this problem,
the interface between the wet and dry parts of the medium must
be found along with the solution. The equation appears also (with
different exponentsm> 1) in the study of the propagation of com-
pressible gases in porous media following Darcy’s law (hence the
popular name) and is applied in modeling oil reservoirs since the
1930s (Leibenzon and Muskat). There, the function u(x, t) stands
for the gas density. Applications to plasma physics (in the Zeldovich
school, 1950, Oleinik et al., 1958) and biology (population dynam-
ics, Gurtin and McCamy, 1974) appeared later.3 As part of the
problem, in all of these applications there is a moving free bound-
ary whose location is to be calculated (issue of specific application,
say, engineering interest) and whose regularity as a surface is to be
determined (topic of high interest in mathematics). Note that the
existence of such a free boundary is implicit, i.e., it is not explicitly
mentioned as part of the initial problem statement, it happens
that it is present as part of the geometry of the solution. In any
case, this problem is one of the motivations for a broad theory of
degenerate diffusions in which Caffarelli was a dominant figure.

My collaboration with Luis became a lasting friendship. During
all these decades I paid regular visits to him at his different locations:
Chicago, Princeton, Courant, and Texas, as did many of his long-
time collaborators, and the meetings included the many events that

3 Information about these references and further applied literature can be
found in [10].

Luis (co)organized worldwide, motivated by his scientific leadership
and generosity. These events had the added charm of his friendly
character and down-to-earth approach.

Since the 1980s we worked on the regularity of free boundaries
(1985, 1987), the heat propagation arising in combustion (1995),
and the theory of viscosity solutions (1999). When, at the beginning
of the new century, I was invited by Oxford University Press to write
a book about the theory of the porous medium equation, which
was by then well developed, I asked Luis to be coauthor and leader
of the project. He replied by encouraging me to do it myself and
offering me his help in any difficulties I could encounter, with an
invitation to visit Texas when needed. The book [10] took time to
be written and appeared in 2007. This is maybe a good place to
express once more my gratitude and recall the many pages of the
book that contain the master’s ideas.

Life went on. In the same year, 2007, Luis invited me to embark
on the study of non-local parabolic equations, his passion at the
time, as we will see below. Non-local parabolic equations and
fractional Laplacian operators have occupied much of my time,
and the time of my students and collaborators, ever since. But that
is recent history, let us return to the older times and visit other
provinces where Luis soon showed his best mathematics.

C. The regularity of viscous fluids, the Navier–Stokes equations
In 2014 the American Mathematical Society (AMS) awarded the
Leroy P. Steele Prize, one of the highest honors in mathematics, to
Luis Caffarelli along with Robert Kohn and Louis Nirenberg. It did
so for his “seminal contribution to research,” being honored for his
aforementioned 1982 article [1] on the regularity or possible sin-
gularity of solutions to the Navier–Stokes equations which govern
the motion of viscous fluids. The mention says: “This paper was
and remains a milestone in the understanding of the behavior of
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solutions to the Navier–Stokes equations and has been a source of
inspiration for a generation of mathematicians.” The Navier–Stokes
equations are fundamental to the mathematical understanding of
fluid dynamics and the existence and smoothness of solutions is
one of the seven Clay Mathematics Institute’s Millennium Prize
Problems.

The Caffarelli–Kohn–Nirenberg result deals with partial regular-
ity, something already found in the study of free boundaries, but
now in a very different, seemingly unrelated topic: it states that
there is still the possibility of singularities appearing in the density of
the flow after some time, but in any case the set of singular points
(x, t) in space-time is very small, not very dense (technically, it has
a very small geometric measure). In particular, it cannot contain
any curve pieces. The possible singular Navier–Stokes turbulence
would therefore be quite an exceptional event, if it occurs. The
result represented a great advance in our understanding of these
equations and has motivated many subsequent developments and
simplifications. But the advances made from 1982 till today do not
have at all the depth and scope of the CKN result. The problem of
total regularity is still open.

D. Fully nonlinear problems, Monge–Ampère equation, optimal
transportation
Caffarelli’s regularity theorems from the 1990s represented a major
advance in our understanding in a third direction, again very dif-
ferent from the previous ones. This concerns the Monge–Ampère
equation, a highly nonlinear partial differential equation that is
used, for example, to construct surfaces of a prescribed Gaussian
curvature. The great Russian mathematician Pavel S. Alexandrov
obtained important existence results in this direction. Caffarelli, in
collaboration with Louis Nirenberg and Joel Spruck, established

Example of a turbulent fluid. © C. Fukushima and J. Westerweel

essential properties of the solutions, with notable additional con-
tributions from Lawrence C. Evans and Nicolai V. Krylov. Caffarelli
later closed the gap in our understanding of singularities by show-
ing that certain explicitly known examples of singular solutions are
the only possible ones.

Starting from the Monge–Ampère equation, Caffarelli devoted
several works to the study of the class of equations called com-
pletely nonlinear. His book, written in collaboration with Xavier
Cabré, Fully Nonlinear Elliptic Equations [6], is a mandatory refer-
ence on this topic.

Caffarelli, together with his collaborators, has applied these
results to the Monge–Kantorovich “optimal mass transportation”
problem, building on earlier work by Yann Brenier. His knowledge of
the Monge–Ampère equations enabled him to make fundamental
contributions in this area as well.

E. Integro-differential operators, anomalous diffusion, and
non-local processes
Since the beginning of this century, there has been an enormous in-
terest in research that deals with the interactions between particles
or populations, or in the world of information. Recently, this inter-
est has focused on considering actions at a distance, where notable
effects are felt far away from the origin of the signal. In particular,
these interactions do not follow the well-known Brownian-type
decay patterns. The canonical form of these interactions is what is
known as Lévy processes in probability and as “fractional Laplacian
operators” in mathematical analysis and PDEs. The growth of this
theory within PDEs has been spectacular in the last two decades.
A fundamental reference in the mathematical analysis of this area
is the 1970 article by Luis Caffarelli and Luis Silvestre: An exten-
sion problem related to the fractional Laplacian [3]. It heralded
a new era in the research on such diffusive phenomena, and it has
become a standard reference for scholars in the area.

The applications of fractional calculus are today varied and
numerous. To name a few, wemention quasi-geostrophic flows, tur-
bulence, molecular dynamics, stellar relativistic quantummechanics,
as well as various applications in probability and finance.

In a paradigmatic example, Luis Caffarelli and Alexis Vasseur
obtained deep regularity results for the quasi-geostrophic equa-
tion, a popular model with application to fluid theory. In their
2010 article, Drift diffusion equations with fractional diffusion and
the quasi-geostrophicequation [7], Caffarelli and Vasseur demon-
strate the total absence of singularities in this model. This result is
somewhat related to the possible existence of singularities in the
Navier–Stokes problem. Contrary to the current guess about the
existence of singularities for the NS problem, here the mathemat-
ical analysis is able to eliminate them. May this shed some light
on NS?

In another direction, the classical idea of minimal surface, and
that of perimeter of a solid have been successfully extended to
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the context of long-range interactions by Luis Caffarelli and his
collaborators, such as Jean-Michel Roquejoffre, Ovidiu Savin and
Enrico Valdinoci. These lines of research are supposed to have
a great future and reflect the deep interaction of geometry and
physics in Caffarelli’s mind, with the theory of probability close by.

Finally, the combination of nonlinear diffusion ideas with non-
local interactions has given rise to the theories of “nonlinear and
non-local diffusion” that have been developed in recent years,
particularly in projects of Luis with Spanish collaborators, in a series
of influential applications, that are being used in the mathematical
modeling of processes in various fields of science. An example of
this vitality is, for example, the new book on the subject: Integro-
Differential Elliptic Equations, by Xavier Fernández-Real and Xavier
Ros-Oton [8].

In addition, Caffarelli has made outstanding contributions to
homogenization theory, which seeks to characterize the effective or
macroscopic behavior of media that have a microstructure, for ex-
ample, are made of a composite material. A typical problem in this
theory concerns a porous medium, such as a hydrocarbon reservoir,
where one has a solid rock with pores. The system has a com-
plex and largely unknown structure, through which fluids flow.
Nonlinear mathematics has done important inroads in that field.

Final notes

Caffarelli is an exceptionally prolific mathematician: he has writ-
ten more than 320 mathematical articles in the best journals with
more than 130 collaborators, ranging from some of the most distin-
guished mathematicians to very bright young people from all over
the world. He has had more than 30 doctoral students over a period
of almost 5 decades and has more than 160 descendants4. Luis has
always been a very open scientist and a dedicated organizer, who
keenly thought about reaching out to bright students everywhere.
He has a huge number of friends in the PDE community, and he
had a very strong influence on the work of many brilliant scientists.
The list of names goes from the old generation—let me just men-
tion Don Aronson, Avner Friedman, and Louis Nirenberg—to the
younger generation, which may be exemplified by Alessio Figalli,
Fields Medalist 2018, who stayed many years in Austin and added
brilliant pages to Luis’s heritage.

Luis Caffarelli was never very fond of writing monographs, and
that is a real pity. However, two long books reflect two areas of his
teaching. One of them is the already mentioned book with Xavier
Cabré [6], dating from his years at Courant, and the other is the
book with his long-time collaborator Sandro Salsa [2] with a very
suitable title: A Geometric Approach to Free Boundary Problems.

Luis has had and continues to have an enormous impact on the
field. In his speech in Oslo last May, Jan Philip Solovej, president

4161, according to the Mathematics Genealogy Project.

of the European Mathematical Society (EMS), recalled the impres-
sion made on him as a young man when reading some of Luis’s
articles: “There was this beautiful idea of controlling or taming
the scary difficulties by intuitive geometric ideas of shapes. Tam-
ing difficulties is what mathematics is often about, and Professor
Caffarelli has, more than anyone else, mastered the art of taming
irregularities.”

Luis Caffarelli has had a huge influence on the development
of partial differential equations in several countries, mainly the US,
Argentina, Spain, Italy, Greece, Korea, and China (to keep the list
short). His collaboration with Spanish authors dates back to the
1980s and 1990s, after we met in Italy. He collaborated with many
Spanish researchers, like Xavier Cabré, Antonio Córdoba, Ireneo
Peral, Rafael de la Llave, Fernando Soria, and several younger ones.
Luis has participated in numerous courses and schools in Spain,
most notably in the series of UIMP Santander Summer Courses that
we organized in the wonderful setting of the Magdalena Palace in
Santander, thanks to his support and presence. Luis was named
doctor honoris causa by the Autonomous University of Madrid
in 1992. Since 2015, he has been a foreign academician of the
Spanish Royal Academy of Sciences in recognition of his fruitful
involvement with Spanish mathematicians for so many years. Luis
received the Honorary Fellowship from RSME, the Royal Spanish
Mathematical Society, and then the Rey Pastor Award (2017), on
similar grounds.

Along with all of the above, we must mention his proverbial
hospitality and the well-deserved reputation of being a great cook,
in the Argentine-Italian tradition. Many of us remember memorable
dinners with Luis and his wife Irene Gamba, also a mathematician,
in their house in Austin.
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to Victoria Otero who coauthored an article with him to appear in
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about his influence in Spain.
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