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1 Why should we consider the converses of our results
more seriously?

Although mathematics, and sciences in general, owe a lot to our
predecessors, it appears that in mathematics some of them are
also responsible, unintentionally, for our possible negligences with
regard to the forms of the statements of some results. Most of the
results in Euclidean geometry, number theory, and on the subject
of inequalities, and so on, in the literature are of the form “if P
then Q.” In particular, almost all the exercises and problems in the
elementary textbooks on Euclidean geometry are of this form (see,
e.g., [1, 6, 7, 18]). In the results presented in this form, Q is not
asserted, only that Q is a necessary consequence of P. This style
of thinking (called here briefly pq-style), which refers generally to
thinking in the form “if P thenQ” for presenting results, is somehow
deep-seated in some of us for a long time. Perhaps, from the time
of our learning secondary school mathematics. Later, it has also
led some of us on, and made us so overwhelmed with this kind of
thinking, that we are still generally attempting to draw necessary
conclusions.

This is perhaps why Peirce, defining mathematics, begins his
lengthy article [20], with “Mathematics is the science which draws
necessary conclusions.” And more explicitly, Bertrand Russell, in [23,
Chapter 1], essentially says: “Pure Mathematics is the class of all
propositions of the form ‘p implies q,’ where p and q are propo-
sitions containing one or more variables, the same in the two
propositions, and neither p nor q contains any constants except
logical constants.” At the same time, there are also some results
in the literature which, even though not stated in the “if, and only
if” form, are, in fact, intrinsically of this form. However, the actual
forms are not emphasized on.

For example, in a triangle with two different angles we can
state that an angle is bigger if, and only if, it has a shorter bisector,
or equivalently if, and only if, the altitude which goes through the
vertex of that angle is shorter, and finally if, and only if, the median
which goes through the vertex of that angle is shorter (for the latter,
less familiar fact, see the expression of the lengths of medians in
terms of the lengths of the sides in [1, Theorem 106]). Most of the
related books which contain some of these results state them in

pq-style, see for example [1, Theorem 114], [7, Lemma 1.512], [6,
Exercise 7, p. 9]. If we were used to presenting our results in the
“if, and only if” style, perhaps the notorious old query concerning
a direct proof of the Steiner–Lehmus theorem could not stay open
in the literature for such a long time. Some students and their
teachers, throughout the world, still have some trouble with this
question, see [4,13], for more details. Or, if the Morley’s trisector
theorem had been stated in the “if, and only if” style, perhaps this
theorem would not have seemed mysterious to so many authors,
see [12, Corollary 1] for a statement of the theorem in the latter
form, and also see the recently published books on the philosophy
of mathematics, [21, pp. 41–43, and p. 46] and [17, p. 253]. Even in
most elementary textbooks on geometry, the fact that Euclid’s fifth
axiom is valid if, and only if, the sum of the angles in any triangle
is 180∘, is not emphasized on. It goes without saying that this fact
could have helped the kids in high school to learn at an early age
that in non-Euclidean geometry this sum is certainly not 180∘, even
without knowing anything about this geometry. Or, after Andrew
Wiles’s proof of Fermat’s Last Theorem (FLT), we could state the
theorem as: The equation xn + yn = zn, where x, y, z, and n > 0
are integers, has nontrivial solutions if, and only if, n= 2 (note that,
in the case n ≥ 2 the solutions with xyz = 0 are considered trivial,
and all the solutions in case n = 1 may be considered trivial, too).
In this form, FLT also gives a unique characterization of 2, which
is not its evenness. However, apparently everyone still prefers to
state FLT in the pq-form.

In what follows we will define a concept of “good complete”
theorem (briefly, gc-theorem), not only for Euclidean geometry,
but also for all parts of mathematics, wherever possible. Before
this, let us explain the rationale for the “converse” behind our
initial question. Clearly, the converse of a mathematical result is
not always necessarily true. In that case, the author may provide
counterexamples and then, by studying the properties of these
counterexamples, she/he might be motivated to add some extra
properties to the statement of the original result, in order to get an
eligible new result whose converse is also true. This might look as
a drawback that causes a loss. However, the author may present the
original result without any converse, separately, as an immediate
corollary of the above new result, and thus easily overcome the
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loss (note, certainly the proof of the original result is a part of the
proof of the above new result, hence the above corollary, which
is in fact the original result, is indeed immediate). We should also
emphasize that if the converse of a result in pq-style holds, then
stating it the “if, and only if” style not only does not cause a loss,
on the contrary, it is all about gaining advantages. Of course, we
admit that turning a result into “if, and only if” form is not always
easy, and even providing counterexamples in some particular cases
may remain an open problem for years. An example is provided
by FLT in the above form. However, we should admit that when
a result is stated in the “if, and only if” form, a better understanding
of the result is reached. Even more, in this case, each part of the
result might give a clue for the proof of the other part.

There are some results in our field of expertise (topology and
algebra) which are stated in the latter form, where none of the
parts can be proved completely without invoking something from
the other part, see for example [16, proof of Theorem 1.3]. This
means that no part could exist separately. There are also some
results which can be stated in the “if and only if” form, in which
case they need no proof at all, but if stated in pq-form one runs into
difficulties, see [12, Problem 2, Corollary 4], and [12, Problem 1,
Corollary 3] for some examples of this kind. Let us recall briefly
that [12, Problem 2] was originally stated in pq-style, and I believe
that this form of the problem might have misled Terence Tao to
explain and justify, in three pages, his trigonometric solution of
the problem, and to give up any hope for presenting a possible
geometric solution of the problem; see the comment preceding
[12, Problem 2]. Whereas if we state this problem in “if, and only if”
form, as in [12, Corollary 4], then by invoking a simple geometric
fact we notice that the latter corollary needs no proof, a fortiori, the
latter problem needs no solution at all. However, see the proof of
the corollary in [12], which is given there to justify our latter claim.
It is folklore that the fuller statement of any result in mathematics
is easier to understand and be proved than a restricted one, let
alone if this fuller statement is also stated properly in the “if, and
only if” form.

In my opinion, in general presenting a result properly in “if,
and only if” form causes no serious drawbacks or any losses, as
far as mathematics is concerned, except possibly that we have
to devote much time to either guessing a proper converse, or to
finding appropriate counterexamples in case the converse is not
true. It is also possible that this will slow down the speed of our
publications – but this is not a significant loss for most people, and
I am one of them, for this is not a loss in terms of mathematics. So
one should generally attempt to examine seriously the question of
the validity of converse results.

In what follows we give some appropriate examples to show
that when the converse of a result fails, we might be able to resolve
it in the way described above. To start, we all know that if a triangle
△ABC is isosceles with apex A, then in △ABC the altitude, the
bisector, and the median that go through the vertex A coincide.

The converse is also obvious. We may recast the previous fact by
asserting that the bisector of the angle A is also the bisector of
the angle between the altitude and the median of this triangle
that go through the vertex A. However, in this case, unfortunately,
the converse is not true in general (note that the right triangles
also have the latter property and may serve as counterexamples).
Now let us consider a converse for the latter case and present the
next interesting and useful theorem in the “if, and only if” form
to justify our claim that considering the converses of our results is
important.

Theorem 1.1. In any triangle △ABC, the bisector of the angle
∠A is also the bisector of the angle between the altitude and the
median which go through the vertex A, if and only if, the triangle
△ABC is either isosceles with apex A, or is a right triangle with
∠A = 90∘.

We can easily provide a proof by invoking the well-known fact
that in every triangle △ABC the bisector of the angle ∠A and
the perpendicular bisector of the side BC either coincide, or meet
each other on the circumcircle of the triangle. Is it not interest-
ing that, by just considering a converse for the previous recast
statement of an obvious fact we have obtained a nontrivial re-
sult which shows that isosceles triangles and right triangles have,
in fact, a common characterization? A fact which seems to have
been overlooked in the literature, see [12, Corollary 3] for another
new common characterization of this kind. Despite their common
characterizations, the following new fact in the “if, and only if”
form which shows that a certain kind of these two triangles cannot
coexist gives a new natural geometric proof of the irrationality
of √2, see [5, 19] for various proofs of this irrationality. Should
we not admit that we owe this to thinking in the “if, and only if”
style?

Theorem 1.2. √2 is irrational if, and only if, there exists no isosce-
les right triangle with rational sides.

The proof of the theorem is evident in view of the fact that
all the isosceles right triangles are similar to each other and, in
particular, they are all similar to the one with the side lengths
1, 1,√2. However, to infer from this theorem that √2 is indeed
irrational, we may prove the second part of the statement of the
theorem without invoking the irrationality of √2. To this end, just
notice that if there is such a triangle, then bymultiplying the sides by
an appropriate integer we get isosceles right triangles with integer
sides. Hence, there is the smallest isosceles right triangle among the
latter ones (i.e., with the integer sides). But the bisector of the right
angle in this smallest triangle divides into two congruent smaller
isosceles right triangles and still with the integer sides (note, the
length of the hypotenuse is even in all the isosceles right triangles
with integer sides), which is a contradiction.
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Also, see [14, Introduction] for the non-familiar converse of
an obvious fact which leads us to some useful nontrivial and over-
looked results in the “if, and only if” form in elementary number
theory.

Definition 1.3. A theorem is called a gc-theorem, if its statement
is of the form of “if, and only if” with no part that consists of
facts that are too obvious to mention, unless some part is just the
definition of a mathematical object.

Although, generally there should not be any restriction to cer-
tain kinds of methods (except the correctness of the methods) for
the proofs of mathematical results, in my opinion in the case of
gc-theorems, the proof of at least one part of the theorem should
be motivated.

Needless to say, if a definition contains a statement that is
a personal opinion, then one should provide enough explanations
to justify this opinion. Accordingly, in what follows, some comments
are given to clarify the definition as much as possible, and make
it unambiguous. By considering almost any significant result of
the form “if, and only if” (or, if not of this form, it can be easily
turned into this form) in the literature, which might be regarded
naturally by anyone as a gc-theorem, one immediately notices that
the proofs of at least one part of such a result is usually motivated.
We should emphasize that a proof is motivated if each step in the
proof can be done by some reasoning and if it is also free of any
kind of deus ex machina; see [12, p. 298], for some non-motivated
proofs, and see [21, pp. 41–43] for a discussion of a motivated
proof of Morley’s trisector theorem. An appropriate example of
latter kind is Hilbert’s weak Nullstellensatz, which asserts that every
maximal ideal M of R = K[x1,…, xn], where K is an algebraically
closed field, is of the form M = (x1 − a1,…, xn − an) for some
point x = (a1,…, an) in Kn. But, we know that this theorem of
Hilbert is nothing but a generalization of the fact that over any
field F, every non-constant polynomial has a root if, and only if,
F is algebraically closed. Therefore, the weak Nullstellensatz can
be easily turned into a gc-theorem, by claiming that M is of the
above form if, and only if, K is algebraically closed (note, every
non-constant polynomial in R is contained in a maximal ideal).

We should bear in mind that most authors are usually moti-
vated by the existing results in the literature to obtain new results,
whether in the form of gc-theorems or not. And in some cases
they might also use proofs similar to those of the existing results.
When the proofs of the two parts of an “if, and only if”-style result
are simultaneously non-motivated and are also too complicated,
it seems that the result may be artificially created. For example,
see [11, Theorem 3], for such an artificial result, which is given
there for some purpose. One can easily notice that the proof of
the latter theorem is not motivated, and it is extremely difficult, if
not impossible, to be given by anyone who does not already know
the side lengths of the required triangles in the statement of the

theorem. Incidentally, the statement of this artificial theorem can
be easily turned into “if, and only if” form. We must admit that
we know of no useful such results in the literature. In a nutshell,
if a result in the form of “if, and only if” is to be considered as
a genuine gc-theorem, it is reasonable to expect that at least one
part of it should be stated in a natural way (i.e., not described in
a convoluted way) with a rational motivated method for its proof.
Can we call an “if, and only if” result a good complete theorem
(i.e., a gc-theorem), if the proof of each part of the result is non-
motivated and consisting of, say, more than 100 pages? Should
we not naturally ask in this case, how on earth, could anyone have
arrived at the idea of guessing such a result? Fortunately, there do
not seem to be such results in the literature yet (at least, not to my
knowledge). Let us, as a last remark in this regard, recall Fermat’s
Last Theorem, in the “if, and only if” form suggested above. Is
it not true that the short, simple, and motivated proof of its first
part, i.e., the case n = 2, had a major role in motivating Fermat
to further work on the theorem and also for his correct guessing
of the statement of its converse? And should we not emphasize
that it was this motivated and simple proof of the first part that
attracted the attention of so many mathematicians and students
alike (not to mention the mathematical cranks) to the theorem,
when it was still unresolved? Finally, it is this motivated and simple
proof of the first part of FLT, and the simplicity of its statement, that
is the source of its popularity, even among the high school kids.

We should emphasize that not all the results in the “if, and
only if” form are genuine gc-theorems. For example, Fermat’s little
theorem in the form: “A prime number p divides ap−1 − 1, where
a is a natural number, if, and only if (a, p) = 1,” and similarly
Wilson’s theorem (i.e., an integer p is prime if, and only if, p divides
(p− 1)!+ 1) are not genuine gc-theorems, because one part of
their statements is too obvious (note that although these theorems
are very useful, they are rarely used to recognize prime numbers).
Also, the Steiner–Lehmus theorem in the form: “In a triangle, angle
bisectors are equal if, and only if, they bisect equal angles” may
not be considered as a gc-theorem either, for the same reason.
Since the obviousness of a result might differ from individual to
individual, in order to make the statement of our previous definition
more precise, I suggest that although the form of results similar
to the previous theorems might be improved whenever possible,
in my opinion it is still preferable to formulate these three non-
genuine gc-theorems in pq-style, and perhaps refer to them as
almost gc-theorems.

For example, for the converse of Fermat’s theorem one may
claim that if n divides an−1 − 1 and n− 1 is the smallest among
the natural numbers m with the property that n divides am − 1,
then n must be prime (note, if n is not prime, then 𝜙(n) < n− 1,
where𝜙(n) is Euler’s totient function). However, since there is no to
place the phrase “if, and only if” between the statement of Fermat’s
theorem and the latter statement for its converse, we cannot get
a gc-theorem by just combining the two statements. Otherwise,
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we could present Fermat’s theorem as a genuine gc-theorem, too.
As for the Steiner–Lehmus theorem, we have already stated it
as a gc-theorem, namely, in a triangle with two different angles
say, an angle is bigger if, and only if, it has a shorter bisector. We
should emphasize that in this form only one direction needs a proof;
the reader is referred to [4] and [1, Theorem 114] for the same
proof of the theorem, which uses the similarity concept. In [4],
the reader may also consult some other different proofs of this
theorem, see also [7, Lemmas 1.511, 1.512] and [6, p. 420] for
the history and more proofs. In particular, the notorious old query
of finding a direct proof of this theorem is discussed in [4]; see
also [13, last paragraph] to see a contrast between a very short
proof of the theorem in its latter form and its possible formal, too
lengthy, direct proof. It goes without saying that if a statement
of a theorem consists of several equivalent statements, then the
result can be considered as a gc-theorem. However, we should
also emphasize that it seems that by inserting the phrase “if, and
only if” between any two statements, A and B, say, with the same
truth-value, we might get a result which looks like a gc-theorem.
But here we must remind ourselves that by the equivalence of these
kinds of statements we should mean that a proof of B must be
deduced from A and vice versa, see [14, last theorem]. Therefore,
this prevents us from interpreting any such artificial gc-theorems
as genuine ones. We should also remind the reader that there
are many important mathematical results that are mutually non-
artificially equivalent, in the sense explained above (e.g., the axiom
of choice, Zorn’s lemma, Tychonoff’s theorem, the fact that every
set of independent vectors in a vector space can be extended
to a basis of the space, the fact that every ring with unity has
a maximal ideal). Indeed, it is well known that all these statements
are equivalent, see [10]; for another example of a gc-theorem of
this kind, see [14, last theorem].

Fortunately, many of the important results in the literature are
genuine gc-theorems. We should remind the reader that the bicon-
ditional logical connective phrase “if, and only if” is used commonly
enough in mathematics that it has its own abbreviation “iff.” Appar-
ently this abbreviation appeared first in John L. Kelly’s 1955 book
General Topology, where its invention is credited to Paul R. Halmos,
see the last four lines in the preface of this book. However, in the
literature there are still thousands of useful theorems, propositions,
corollaries, lemmas and problems, which are not even in the “if,
and only if” form, let alone gc-theorems. In what follows we like
to consider some of these results and turn them into gc-theorems.
Naturally, their selection is somewhat personal. We may deal with
many important results, whether elementary or not, and try to
turn them into gc-theorems. However, because of the scope of this
essay only a few apparently non-elementary cases will be treated,
to demonstrate that the literature abounds with non-elementary
non-gc-theorems, too. Let us also emphasize that our discussion
here is not intended to be a pq-style vs. gc-theorems argument:
rather, our aim is to show that among the aforementioned impor-

tant and useful non-gc-theorems many are eligible to be presented
as gc-theorems.

2 Some gc-theorems in topology, algebra, and analysis

There are thousands of useful non-gc-theorems in the three fields
listed above, where most of them are eligible to be reconsidered
as gc-theorems, see also [8, Section 6.1]. As prototypes, in the
following subsections I mention only three of them (one from each
field, in reverse order), which are also in the textbooks.

2.1 When does an infinite set in ℝn have a limit point?
Without further ado, we believe the following classical and very
important non-gc-theorem is a good candidate to begin with, for
it can, immediately, be turned into a gc-theorem which settles the
question in the title.

Theorem (Bolzano–Weierstrass). Every infinite bounded subset of
ℝn has a limit point.

This result appears in every introductory textbook on analy-
sis, see, e.g., [2, Theorems 3.13, 3.29] and [22, Theorem 2.42].
It seems that the existence of some unbounded countable subsets
such as ℕ or ℤ in ℝ is responsible for the above boundedness
constraint. At the same time, the set of rational numbers, the set of
irrational numbers, and many other infinite sets in ℝ, which are not
bounded, have limit points, but not directly as a consequence of
the above theorem. However, with a little thought we may restate
and record the above theorem as follows, which takes care of these
sets, too.

Theorem 2.1 (Bolzano–Weierstrass). Let A⊆ℝn. Then A has a limit
point if, and only if, A is either uncountable, or it has a countably
infinite bounded subset (or equivalently, if, and only if, A has the
latter property).

Proof. The proof for the case n= 1, which follows, can be imitated
word-for-word for the general case. If A has a limit point, say x∈ℝ,
then let x ∈ (a, b), where a, b ∈ ℝ. Obviously, A ∩ (a, b) is an
infinite set that contains an infinite countable subset of A which
is clearly bounded. For the converse, we may only show that if
A is uncountable without a limit point, we get a contradiction.
Put B = {(r, s) ∶ r, s ∈ ℚ}. Since A has no limit point, for each
a ∈ A the set Fa = {G ∈ B ∶ G∩ A = {a}} is nonempty. Now, by
the Axiom of Choice, for each a ∈ A we can choose an element
Ga ∈ Fa and put E = {Ga ∶ Ga ∈ Fa}. Obviously, E ⊆ B, hence E is
countable. But the function f ∶ A → E, where f(a) = Ga for each
a ∈ A, is clearly one-to-one, which implies that A is countable too,
a contradiction.
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Let us comment on what one might lose if we do not care about
the converses of our results. Sure, the set theoretic distinction of
cardinality was not, perhaps, on the mind of anybody in those days.
At the same time, we believe that, had the above two outstanding
mathematicians of their time cared about a converse for their result,
they could have easily, somehow, formulated one. And then, as
a consequence, they could have had some understanding of the
concept of the cardinality of a set before Cantor, and even they
could have become the inventors of set theory instead of Cantor.

2.2 Rings in which every maximal ideal is generated by an
idempotent

Let us first emphasize Cohen’s theorem, which says that a commu-
tative ring R is Noetherian (i.e., all ideals in R are finitely generated)
if, and only if, every prime ideal in R is finitely generated, is a very
useful gc-theorem in commutative ring theory, see, e.g., [3, The-
orem 12–6]. Incidentally, it is well known that if in this theorem
prime ideals are replaced by maximal ideals, its assertion is no
longer true, see, e.g., [9]. However, as a corollary to this theorem
it is proved in [3] that if every maximal ideal of R is generated by
an idempotent, then R is Noetherian too. Clearly, this corollary is
not a gc-theorem. In fact, a much stronger result holds if we try
to make it into a gc-theorem. We may say that: A commutative
ring R is a finite direct product of fields (in particular, it has only
a finite number of ideals, so a fortiori it is Artinian, which in turn
implies it is Noetherian too) if, and only if, every maximal ideal in R
is generated by an idempotent. Its proof is as easy as the proof
of the corollary. Indeed, since every maximal ideal of R is a direct
summand, we readily infer that the sum of its minimal ideals (i.e.,
the socle of R) cannot be contained in a maximal ideal, M say. For
ifM = eR, where e is idempotent, then (1− e)R is a minimal ideal
contained in the socle of R, which is not in M. Hence, the socle
of R must be equal to R, and we are done. We should remind the
reader that a generalization of the latter gc-theorem with the same
proof holds in more general (not necessarily commutative) rings,
see [15].

2.3 What are the topological spaces, in which closed sets
and boundary sets coincide?

Let us bring to the attention of the reader that, in [24, Exercise 3B],
it is asked to show that any closed subset of the plane ℝ2 is the
boundary of some set in ℝ2 (note that therein boundary is called
frontier). This is a good question, because the boundary of a set
is always closed, but the converse is not necessarily true in every
topological space (e.g., in a discrete space). However, we may ask
what is so special about ℝ2? Is this claim not true, for example,
in ℝn? Therefore, we may first pose an appropriate question. What
are the spaces X with the property that for any closed subset F ⊆ X
there is a subset A ⊆ X with F = b(A), where b(A) denotes the

boundary of A. Now, b(A) = A∖ A∘, where A is the closure of A
and A∘ is the interior of A. Hence, since X is closed, we must
have X = b(Y) = Y∖ Y∘ for some subset Y of X. This implies that
Y∘ =∅ and Y= X. So we have a clue, i.e., there must exist a dense
subset with empty interior. This leads us to state a new gc-theorem
which characterizes the closed sets, and hence the open sets, in
any topological space X, a characterization which seems to have
been overlooked in the literature.

Theorem 2.2. Let X be a topological space. Then F⊆ X is a closed
subset, if, and only if, for each dense subset Y ⊆ X there exists
a subset FY ⊆ X such that F = FY with F∘

Y = F∘ ∩ Y∘.

A proof of this theorem, which depends on the simple and well-
known fact that G∩ Y = G, where Y (resp., G) is any dense (resp.,
open) set in X, is not hard and is left to the reader, see also [8, p. 28].

The following immediate corollary, which is also a gc-theorem,
settles the above question in ℝn (note that ℚn is a dense subset
with empty interior in ℝn).

Corollary 2.3. Let X be a topological space. Then every closed
subset of X is the boundary of a subset of X if, and only if, X has
a dense subset with empty interior.

Let us conclude this article with two comments:
(1) Not only is the pq-style responsible for the overlooking of

some of the converses related to useful non-gc-theorems in
the literature, but also it is sometimes, equally responsible, for
our inveterate tendency to overlook some obvious useful facts;
see [12, Corollaries 1, 3, 4, Bisector Proposition] for some of
these facts.

(2) We may also search the literature, especially the textbooks, to
look for some interesting results which are non-gc-theorems.
And then do our best to present them, if possible, in the form
of gc-theorems. This would help to substantially reduce the
number of non-gc-theorems in the literature, or at least in
the textbooks, in the future. In particular, the mathematics
education students who may follow the latter comment, could
provide suitable materials for writing good dissertations.
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