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Almost minimizers for the thin obstacle problem with
variable coefficients

Seongmin Jeon, Arshak Petrosyan, and Mariana Smit Vega Garcia

Abstract. We study almost minimizers for the thin obstacle problem with variable Holder continu-
ous coefficients and zero thin obstacle, and establish their C 1-# regularity on the either side of the
thin space. Under an additional assumption of quasisymmetry, we establish the optimal growth of
almost minimizers as well as the regularity of the regular set and a structural theorem on the singular
set. The proofs are based on the generalization of Weiss- and Almgren-type monotonicity formulas
for almost minimizers established earlier in the case of constant coefficients.
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1. Introduction and main results

1.1. The thin obstacle (or Signorini) problem with variable coefficients

Let D be a domain in R”, n > 2, and IT a smooth hypersurface (the thin space), that
splits D into two subdomains D*: D \ II = D* U D~. Let ¥: II — R be a certain
(smooth) function (the thin obstacle) and g: dD — R (the boundary values). Let also
A(x) = (aij(x)) be an n x n symmetric uniformly elliptic matrix, «-H6lder continuous
as a function of x € D, for some 0 < @ < 1, with ellipticity constants 0 < A <1 < A < o0:

MEP < (A(0EE) < AlE]?, xe D, EeR"

Then consider the minimizer U of the energy functional
Fap(V) = / (A(X)VV,VV)dx,
D

over a closed convex set Ky ¢ (D, I1) C W12(D) defined by
Ky g(D, T :={V e WH3(D) |V = gondD,V > ¢y on 1N D}.

Because of the unilateral constraint on the thin space I, the problem is known as the thin
obstacle problem. Away from II, the minimizer solves a uniformly elliptic divergence
form equation with variable coefficients

div(A(x)VU) =0 inDtTUD™.
On the thin space, the minimizers satisfy

U>vy, (AVUvT) 4+ (AVU,v™) >0,
(U = y¥)(AVU,vT) + (AVU,v™)) =0 on D NTI,

in a certain weak sense, where v are the exterior normals to DT on IT and (AVU,v i) are

understood as the limits from inside D*. These are known as the Signorini complemen-
tarity conditions and therefore the problem is often referred to as the Signorini problem
with variable coefficients (or A-Signorini problem, for short). One of the main objects of
the study is the free boundary

T(U) = dn{x € IT | U(x) = y(x)} N D,

which separates the coincidence set {U = v} from the noncoincidence set {U > v} in
D N TII. The set I'(U) is also called a thin free boundary as it lives in IT and is expected
to be of codimension two with respect to the domain D.

These types of problems go back to the original Signorini problem in elastostatics [41],
but also appear in many applications ranging from math biology (semipermeable mem-
branes) to boundary heat control [21] or more recently in math finance, with connection to
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the obstacle problem for the fractional Laplacian, through the Caffarelli-Silvestre exten-
sion [8]. The presence of the free boundary makes the problem particularly challenging
and while the C'-# regularity of the minimizers (on either side of the thin space) was
known already in [9,32,43], the study of the free boundary became possible only after the
breakthrough work of [3] on the optimal C'-!/2 regularity of the minimizers. Since then
there has been a significant effort in the literature to understand the structure and regu-
larity properties of the free boundary in many different settings including equations with
variable coefficients, problems for the fractional Laplacian, as well as the time-dependent
problems, see e.g. [4—7,10-13, 18,23-28,33-37,39,40,42], and many others.

1.2. Almost minimizers

The approach we take in this paper is by considering the so-called almost minimizers
of the functional 4, p in the sense of Anzellotti [2]. For this we need a gauge function
:(0,rg) — [0, 00), ro > 0, which is a nondecreasing function with w(0+) = 0, as well
as a family {E, (xo)}o<r<r, Of open sets for any xo € D, comparable to balls centered at
Xo (in what comes next, we will take it to be a family of ellipsoids).

Definition 1.1 (Almost minimizers). We say U is an almost minimizer for the A-Signorini
problemin D if U € WIiC’Z(D), U > on D NTI, and forany E,(xo) € D with0 < r <
ro, we have
/ (AVU,VU) < (1 + w(r)) (AVV,VV), 1.1)
Er(x0) Er(x0)

for any competitor function V' € Ky, v (E;(xo), IT), i.e., V satisfying
V=U ondE,(xg), V=% onE,(x9)NIIL

In fact, observing that for x,xo € D,and § e R*, £ #£ 0

(1= Cl — xol®) = ACOEE _ oy ygje),

(A(x)§.§)
with C depending on the ellipticity of A and || A||coe(p), we can rewrite (1.1) in the form
with frozen coefficients

/ (A(xo)VU,VU) < (1 + w(r)) (A(xo)VV,VV), (1.2)
E(x0) Ey(x0)
by replacing the gauge w(r) with C(w(r) + r%) if necessary.

An example of an almost minimizer is given in Appendix. Generally, we view almost
minimizers as perturbations of minimizers in a certain sense, but in the case of variable
coefficients there are even some advantages of treating minimizers themselves as almost
minimizers, particularly in the sense of frozen coefficients (1.2).

Almost minimizers for the Signorini problem have already been studied in [31] in the
case A(x) = I, where their C!#-regularity (on either side of the thin space) has been
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established and a number of technical tools such as Weiss- and Almgren-type monotonic-
ity formulas were proved. In combination with the epiperimetric and log-epiperimetric
inequalities these tools allowed to establish the optimal growth and prove the C ¥ -regu-
larity of the regular set and a structural theorem on the singular set. The aim of this paper is
to extend these results to the variable coefficient case. It is noteworthy that the results that
we obtain (see Theorems I-IV below) for almost minimizers improve even on some of the
results available for the minimizers. For example, we only need the coefficients A(x) to
be C%* with arbitrary 0 < @ < 1 in order to study the free boundary, compared to W -7,
p >n,in [36] or C%%, 1/2 < a < 1, in [40] for the regular part of the free boundary and
C%! in [27] for the singular set.

A related notion of almost minimizers has been considered recently in [30] for the
obstacle problem for the fractional Laplacian, with the help of the Caffarelli-Silvestre
extension. While the C A regularity of almost minimizers holds for the fractional orders
1/2 < s < 1, the study of the free boundary still remains open.

Almost minimizers have been studied also for other free boundary problems, particu-
larly Alt—Caffarelli-type (or Bernoulli-type) problems [15, 16, 19], their thin counterpart
[20], as well as the variable coefficient versions [14, 17]. We have to mention that the
Signorini problem is quite different from Alt—Caffarelli-type problems, as the solutions
may grow at different rates near the free boundary (such as 3/2, 2, 7/2, 4, ..., powers
of the distance), as opposed to a specific rate in Alt—Caffarelli-type problems (linear in
the classical case and the square root of the distance in the thin counterpart). Therefore,
it is quite important that the almost minimizing property that we impose for the Signorini
problem is multiplicative, to allow the capture of all possible rates, while the almost min-
imizing property in the Alt—Caffarelli-type problems can be also imposed in an additive
way, see [14].

1.3. Main results

Since we are interested in local regularity results, we will assume that D = By, the unit
ball in R”, and that
I =R""!x{0}

after a local diffeomorphism. In this paper, we will consider only the case when the thin
obstacle is identically zero: ¢ = 0.

Further, we will assume r9 = 1 in Definition 1.1 and take {E,(x¢)} to be the family
of ellipsoids associated with the positive symmetric matrix A(xo):

Ey(x0) := A'2(x0)(By) + Xo.
By the ellipticity of A(xg), we have
B2, (x0) C Er(x0) C Bpis2,(xo).
To simplify the tracking of the constants, we will assume that there is M > 0 such that

[Alcowsy <M, AV A<M, or)<Mr®, O0O<a<l. (1.3)
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Then we can go between almost minimizing properties (1.1) and (1.2) by changing M if
necessary.
Then our first result is as follows.

Theorem I (C'-A-regularity of almost minimizers). Let U € W'2(B}) be an almost

minimizer for the A-Signorini problem in By, under the assumptions above. Then, U €
ColBiEUBY) for B = ple.n) € (0.1) and

1Ullcraky = CIU w2,y
forany K € BljE UBjandC =C(n,a, M, K).

The proof is obtained by using Morrey and Campanato space estimates, following the
original idea of Anzellotti [2] that was successfully used in the constant coefficient case
of our problem in [31]. We explicitly mention, however, that in the above theorem we do
not require the even symmetry of the almost minimizer in the x,-variable, so Theorem I
extends the corresponding result in [31] also in that respect.

To state our results related to the free boundary, we need to assume the following
quasisymmetry condition. For xo € B = B; N II, let

A(xo)en ® ey
ann(xo)

be a matrix corresponding to the reflection with respect to IT in the conormal direction
A(xop)en at xo. Note that Py x = x for any x € IT and P, E,(x9) = E,(xo). Then, for a
function U in B; define

Py =1-2

U(x) + U(Pxyx)

S —

Note that Uy, may not be defined in all of By, but is defined in any ellipsoid E;(xo) as
long as it is contained in Bj. Note also that U = U;O on II.

Uy, (x) :=

Definition 1.2 (Quasisymmetry). We say that U € W12(B,) is A-quasisymmetric with
respect to IT, if there is a constant Q such that

/ (A(x0)VU,VU) < O (A(x0)VU, VUL),
E;(x0) Er(xo0)

for any ellipsoid E,(x¢) € Bj centered at any xg € Bi.
We will assume Q < M throughout the paper, in addition to (1.3).

Note that when A(x) = I and U is even in x,, then it is automatically quasisymmetric
in the sense of the above definition. The quasisymmetry condition will also hold for even
minimizers if e, is an eigenvector of A(xo) for any xo € B, i.e., when

ain(x0) =0, fori=1,...,n—1, xo € B].

This condition is typically imposed in the existing literature and can be satisfied with an
application of a local C "*-diffeomorphism that preserves I1, see [28,40,44]. The reason
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for a quasisymmetry condition is that the growth rate of the symmetrization Uy over the
ellipsoids E (xo) captures that of U = Uy on the thin space IT at xg € I'(U), while in the
nonsymmetric case there could be a mismatch in those rates caused by the odd component
of U, vanishing on IT.

More specifically, the growth rate of U on II at xo € I'(U) is determined by the
following quantity

rfEr(xO)(A(xo)VU;O,VU;O)
faEr(xo)(U;o)zﬂxo (x —xo)

NA(r U x0) =

which is a version of Almgren’s frequency functional [1] written in the geometric terms

. -1/2 . .
determined by A(xg), where jix,(z) = % is the conformal factor. As in the con-
stant coefficient case, this quantity is of paramount importance for the classification of

free boundary points.

Theorem II (Monotonicity of the truncated frequency). Let U be as in Theorem 1 and
assume additionally that U is A-quasisymmetric with respect to I1. Then for any ko > 2,
there isb = b(n, o, M, k) such that the truncated frequency

rHﬁ,‘f()(r,U;‘o,xo) = min{ NA(r, U;‘O,xo),/co}

1—bre
is monotone increasing for xq € Bi/z NT(u), and 0 < r < ro(n,o, M, ky). Moreover, if
we define

k(xo) := N (04, Uy . xo),

the frequency of U at xg, then we have that either
k(x0) =3/2 or k(xg)>2.

The monotonicity of the truncated frequency follows from that of a one-parametric
family of the so-called Weiss-type energy functionals {WKA}0<K<K0, see Section 7, which
also play a fundamental role in the analysis of the free boundary.

The theorem above gives the following decomposition of the free boundary

T(U) =T32(U) U | Te(U),

K>2

where
Le(U) :={xo € T'(U) | k(x0) = &}.
The set I'3/5 (U ), where the frequency is minimal is known as the regular set and is also

denoted by R(U).

Theorem III (Regularity of the regular set). Let U be as in Theorem 11. Then R(U) is a
relatively open subset of the free boundary I'(U) and is an (n — 2)-dimensional manifold
of class C17 .



Almost minimizers for the thin obstacle problem with variable coefficients 327

Finally, we state our main result for the so-called singular set. A free boundary point
xo € T'(U) is called singular if the coincidence set A(U) := {x € Bj: U(x) = 0} has
H"_l-density zero at X, i.€.,

. H" Y(AU) N B (x0))
lim =

0.
r—0-+ H"1(B.)

We denote the set of all singular points by X (U) and call it the singular set. It can be
shown that if k (xg) < ko, then xo € Z(U) if and only if k(x) = 2m, m € N (see Propo-
sition 12.2). For such values of k, we then define

e (U) := T (U).

Theorem IV (Structure of the singular set). Let U be as in Theorem 11. Then, for any
Kk =2m < kg, m € N, X, (U) is contained in a countable union of (n — 2)-dimensional
manifolds of class C 1°¢,

A more refined version of this result is given in Theorem 12.8.

Theorems III and IV follow by establishing the uniqueness and continuous depen-
dence of almost homogeneous blowups with Holder modulus of continuity in the case
of regular free boundary points and a logarithmic one in the case of the singular points.
These follow from optimal growth and rotation estimates which are based on the use of
Weiss-type monotonicity formulas in conjunction with the so-called epiperimetric [26]
and log-epiperimetric [11] inequalities for the solutions of the Signorini problem.

1.3.1. Proofs of Theorems I-IV. While we don’t give formal proofs of the theorems
above in the main body of the paper, they are contained in the following results proved
there:

o Theorem I is essentially the same as Theorem 5.2.
o Theorem II follows by combining Theorem 7.2 and Corollary 11.4.
o The statement of Theorem III is contained in that of Theorem 11.7.

o The statement of Theorem IV is contained in that of Theorem 12.8.

1.4. Notation

We use the following notation throughout the paper.

R” stands for the n-dimensional Euclidean space. The points of R” are denoted by x =
(x", xp), where x’ = (x1....,x,—1) € R"1. We often identify x’ € R*~! with (x’,0) €
R"™1 x {0}. R” stand for open halfspaces {x € R" | +x, > 0}.

For £, n € R", the standard inner product is denoted by (£, n). Thus, |§|> = (£, £),
where |£] is the Euclidean norm of £.

For x € R”, r > 0, we denote

B,(x):={yeR"||x—y|<r}, balinR",
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BX(x') := B,(x',0) N {£x, > 0}, half-ball in R",
B/(x") := B,(x',0) N {x, =0},  ballin R""!, or thin ball.
We typically drop the center from the notation if it is the origin. Thus, B, := B,(0),
B/ := B} (0), etc.
For a function f in R”, V f denotes its gradient (in the classical or weak sense)

Vfi=0xfi0x, /s 0x, 1),

where 0y, f are the partial derivatives in the variables x;,7 = 1,2,...,n.
In integrals, we often drop the variable and the measure of integration if it is with
respect to the Lebesgue measure or the surface measure. Thus,

where S stands for the surface measure.
If E is a set of positive and finite Lebesgue measure, we indicate by ( /) g the integral
mean value of a function u over E£. That is,

<.f>E:=][Ef=%/Ef.

2. Coordinate transformations

In order to use the results available for almost minimizers in the case of A = I, proved
in [31], in this section we describe a “deskewing procedure” or coordinate transformations
to straighten A(xg), xo € Bj.

For the notational convenience, we will denote

Axy = AI/Z(X()), X0 € Bl

so that

(A(x0)§.8) = |ax,&*, & eR"
Then a, is a symmetric positive definite matrix, with eigenvalues between A'/? and A'/2
and the mapping xo — ay, is a-Holder continuous for xo € Bj. For every xo € B;, we
define an affine transformation 7, by

Tyo(x) = a;ol (x — xp).
Note that TX_O1 (y) = ax,y + xo. Then for the ellipsoids E,(xo), we have
E;(x0) = Ty (Br) = axy By + x0,  Txo(Er(x0)) = By.

Further, we let

Iy, := T, (I).
Then ITy, is a hyperplane parallel to a linear subspace a;oll'l spanned by the vectors
agler, agles, ..., ayle,—1 and with a normal ay,e,. Generally, this hyperplane will be
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tilted with respect to I, unless ay,e, is a multiple of e,, or equivalently that e, is an
eigenvector of the matrix A(xg), or that a;,(x9) = 0 fori = 1,...,n — 1 for its entries.
To rectify that, we construct a family of orthogonal transformations Oy,, X0 € By, by
applylng the Gram—Schmidt process to the ordered basis {a ey, a; lez, ceey a;ol en—1} of

ay 17, Namely, let

-1

X0 .__ axo €1
1 |a_1e1|’
o0 T €2 —( xo les,e1’
2 - JC()
Ia —(azles. ey ) |
X0
o —(azles.e1’)er® — (ay)es.ex%)es
ey =
3 xo
|a €3_( €3 e1> (er3,62)2|
Moreover, letting
o0 . dxoCn ,
n
laxoenl
we obtain an ordered orthonormal basis {e7°, ..., €)%, e;"} of R". Then consider the
rotation Oy, of R” that takes the standard basis {e;, ez, ..., e, } to the one above, i.e.,

Oxy:R" > R", Oy (ej) =¢€;°, i =1,2,....,n.

Note that the Gram—Schmidt process above guarantees that xo — Oy, is a-Holder con-
tinuous. We also have that by construction

Oy la T =11
In particular, when xo € II, we have I, = a;ol IT and therefore
03 (My) =TI

Because of this property, we also define the modifications of the matrices ay, and the
transformations Ty, as follows:

C_Ixo = Qx, Oxo’ = 0_1 xo,
so that Ty, (x) = &;01 (x — Xx¢). Since Oy, is a rotation, we still have
Er(xo) = T;()I(Br)» 7_1xo(Er(xO)) = B,

see Figure 1.
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E, (xo) ()

1 T

X0

Figure 1. Deskewing: coordinate transformations Ty, O

Next, for a function U: B — R and a point xo € B;, we define its “deskewed” version
at xo by
Uy, =Uo Tx_ol.
As we will see, if U is an almost minimizer, the transformed function u, will satisfy an
almost minimizing property with the identity matrix / at the origin. Before we state and
prove that fact, we need the following basic change of variable formulas:

/E - U? = detaxO/B u)zco 2.1
r\Xo r
/E ( )(A(xo)VU, VU) = detaxO/B Vg, |2 (2.2)
r(Xo r
/ U? e (x — X0) = detay, / uio, (2.3)
J0E, (x0) JdB,
with the conformal factor
(z) := M (2.4)
ol T T (g2 '

We also have the following modified version of (2.2).

/ laxo VU — {axo VU)E, (xo)|* = detaxof |Vity, — (Viix,) B, % (2.35)
E;(x0) r

While (2.1)—(2.2) and (2.5) are clear, let us give more details on (2.3). If we let f(x) :=
|a;01 (x —xp)|, then { f =t} = dE¢(x¢),t > 0, and by the coarea formula

) r U2
U~dx =/ / ——dS,dt.
/E,(xo) o Jor, o) IV

g (x—xo)|

Using now that 1/|Vf(x)| = m

we obtain (2.3).

= [Lx, (X — Xo) and then differentiating (2.1),
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We will also need the following estimate for the conformal factor piy,:
AI/Z < MxO(Z) < Al/Z.

Indeed, if y = A7!(x)z, then

|ax Y|
Mxo(2) = B)—O| e A2, A7),

Definition 2.1 (Almost Signorini property at a point). A function u € W 1-2(Bp) satisfies
the almost Signorini property at 0 in Bg if

/ VP < (1 +w(r)>/ IVol?.
B, B,

forall0 <r < Rand v € Koy (B, IT).

Lemma 2.2. Suppose U is an almost minimizer of the A-Signorini problem in B;. Let
Xo € Bj be such that Eg(xo) C By. Then uy, = U o Tx_o1 satisfies the almost Signorini
property at 0 in BR.

Proof. Let V be the energy minimizer of fEr(xo)(A(XO)V V,VV) on Ko,u(Er(x0), IT),
0 <r < R.Thenvy, =V o T ! is the energy minimizer of 5, 1VUxo|? 0n Ko, (Br, T0).
Moreover, by (2.2),

/ |V, | :deta;;/ (A(xo)VU,VU)
B, E;(xo0)

< (1 + w(r)) deta;()l/ (A(x0)VV,VV)

E;(x0)

=(1 +w(r))/B |va0|2.

This completes the proof. u

3. Almost A -harmonic functions

We start our analysis of almost minimizers in the absence of the thin obstacle. We call
such functions almost A-harmonic functions. In this section, we establish their C La/2
regularity (Theorem 3.6). A similar result has already been proved by Anzellotti [2], but
for almost minimizers over balls { B (xg)} rather than ellipsoids { £, (x)}; nevertheless,
the proofs are similar. The proofs in this section also illustrate how we are going to use
the results available for “deskewed” functions uy, = U o Tx_ol to infer the corresponding
results for almost minimizers U.
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Definition 3.1 (Almost A-harmonic functions). We say that U is an almost A-harmonic
function in By if U € W2(B;) and

/ (AVU,VU) < (1 + o(r)) (AVV,VV),
Ey(x0) Ey(x0)

whenever E,(xo) € By and V € Ky (E,(x0)) := U + W, > (E;(x0)).

Note that similarly to the case of A-Signorini problem, we can write the almost mini-
mizing property above in the form with frozen coefficients

[ (A(xO)VU,VU)§(1+w(r))/ (A(xo)VV,VV).
E;(x0) E;(x0)

r(xo

Definition 3.2 (Almost harmonic property at a point). A function u € W !-2(Bp) satisfies
almost harmonic property at 0 in Bp if

/ VP < (1 +w(r)>/ Vol?.
B, B,

forall0 <r < Rand v € &,(By).

Lemma 3.3. If U is an almost A-harmonic function in By and xo € By with ERr(xg) C
B1, then uy, satisfies the almost harmonic property at 0 in Bp.

Proof. The proof is similar to that of Lemma 2.2. ]

Proposition 3.4 (cf. [31, Proposition 2.3]). Let U be an almost A-harmonic function in
Bj. Then for any B, (x¢) €@ By and 0 < p < r, we have

n
/ |VU|2§C|:(£) +r°‘i|/ VU2, 3.1)
Bp(x()) r B (x0)

2 P n+2 2 o 2
VU=(VU),00 =€ () VU—(VU) B>+ Cr* | |VUP,
Bp(x()) r By (x0) By (xo0)
(3.2)
withC = C(n,a, M).

Proof. Since uy, satisfies the almost harmonic property at 0, if / is the harmonic replace-
ment of Uy, in B, (i.e., & is harmonic in B, with & = u,, on 0B,), then

/ |Vuy,|* < (1 —i—Mr"‘)/ |Vh|?.
B, B,

This is enough to repeat the arguments in [3 1, Proposition 2.3], to obtain

n
/ |VuxO|2§2|:(/—)> —I—Mr"‘]/ |Vitzo 2,
B r B,

P
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n+2
/ [Vitay = (Vg g, 12 = 9( ) / Vitzy — (Vi) s, > + 24Mr”‘/ Vg, 2.
B, B,

r
-

Then, by the change of variables in formulas (2.2) and (2.5), we have

/Ep(xo)(A(xo)VU, vU) < 2[(§)n + Mr“] /Er(xo)(A(xO)VU, vu),

(3.3)

p n+2
[ 10 o V0l <9(E) [ e VU (Vo
Ep(x()) r E;(x0)

+24Mr°‘/ (A(x0)VU,VU). (3.4
E;(x0)

To show now that (3.3)—(3.4) imply (3.1)—(3.2), we first consider the case
0<p<(A/AN)V?r.
Then, using the inclusions
By(x0) C Ej-1/25(x0) C Ep-1/2,(x0) C By(xo),

applying (3.3)—(3.4) with A~1/2p and A~'/2r in place of p and r, and using the ellipticity
of A(xg), we obtain (3.1)—(3.2) in this case.
In the remaining case
(A/A)l/zr <p<r,

the inequalities (3.1)—(3.2) hold readily, as

/ VU — (VU g, e < / VU — (VU) g, o)
B, (xo0) B, (x0)

n+2
A\ 2 n+2
(8) O s
r By (x0)

We now recall a useful lemma, the proof of which can be found e.g. in [29].

Lemma 3.5. Let ro > 0 be a positive number and ¢: (0, rg) — (0, 00) a nondecreasing
Sfunction. Let a, B, and y be such that a > 0, y > B > 0. There exist two positive numbers
e =z¢(a,y,B), ¢ = c(a,y. B) such that if

o(p) < a[(;p)y + s]w(r) +brb,

forall p, r withO < p <r < rg, where b > 0, then one also has, still for0 < p <r < ry,

o0 = e[ (2) o) + 10?]
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Theorem 3.6. Let U be an almost A-harmonic function in By. Then U € C1%/2(By)
with

1Ullcreriky < ClIU w2,y
forany K € By, withC = C(n,a, M, K).

Proof. Let K € B; and x¢ € K = {y € By | dist(y,dB1)>ro}, where ro = % dist(K, dBy).
For o € (0, 1), a direct application of Lemma 3.5 to (3.1) gives

[ IVUP < CIVU g2+,
By (x0)

for any 0 < r < rg, with C depending on n, «, 0, M, K. Combining this with (3.2) also
gives

o n+2
[ U= 0P = (B) [ 19U~ (V0
By (xo0) r By (xo)

+ C||VU||I%2(Bl)rn—2+20+a’ (3.5)

w > 0, then Lemma 3.5

forany 0 < p <r <rg. If we take o € (0, 1) such thate’ :=
produces

[ 19U~ (VU l? = CIVU gy
Bp(xo)

and this readily implies VU € C % (k). Now we know that VU is bounded in K, and thus
fBr(x()) VU <C|VU ||22(Bl)r”. Plugging this in the last term of (3.2) and repeating the

arguments above, we conclude that U € C La/2, [

4. Almost Lipschitz regularity of almost minimizers

In this section, we make the first step towards the regularity of almost minimizers for
the A-Signorini problem and show that they are almost Lipschitz, i.e., C%° for every
0 < 0 < 1 (Theorem 4.3). The proof is based on the Morrey space embedding, similar
to the case of almost A-harmonic functions, as well as the case of almost minimizers
with A = I, treated in [31]. We want to emphasize, however, that the results on almost
Lipschitz and C'# regularity of almost minimizers (in the next section) do not require
any symmetry condition that was imposed in [31].
We start with an auxiliary result on the solutions of the Signorini problem.

Proposition 4.1. Let h be a solution of the Signorini problem in By. Then

n
vh)? < (£ / Vh?2, 0<p<R<l. 4.1)
/B,,' P (R) [ e o<
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Proof. The difference of this proposition from [31, Proposition 3.2] is that /(y) is not
assumed to be even symmetric in y,-variable. To circumvent that, we decompose / into
the sum of even and odd functions in yy,, i.e.,

h(Y',yn) + (Y, =yn) | RV, yn) = h(Y', —yn)

h(y', yn) = 5 + 5 (4.2)

= h*(y' yn) + H* (Y. ).

It is easy to see that 4* is a solution of the Signorini problem, even in y,-variable, and A#
is a harmonic function, odd in y,-variable.

Then both |VA*|? and |VA#|? are subharmonic functions in B; (see [31, Proposi-
tion 3.2] for #*), which implies that for0 < p < R < 1

n
Vh*zf ﬁ / Vh*z,
f, e = (F) [, o
Vht|? < ﬁ"/ VhEP.
[, wree = (R)" [ o

Now observing that [ |Vh|? = I3, (|Vh*|2 + |th|2), for 0 < ¢ < R, we obtain (4.1).
n

Proposition 4.2 (cf. [31, Proposition 3.3]). Let U be an almost minimizer for the A-
Signorini problem in By, and Br(xo) € By. Then, there is C1 = C1(n, M) > 1 such

that
n
/ IVU|? < C [(ﬁ) n R“:|/ VU, 0<p<R. 4.3)
By (x0) R Br(xo)

Proof. Case 1. Suppose xo € B]. Note that u,, satisfies the Signorini property at 0 in B,
with r = A™Y2R_If h is the Signorini replacement of Uy, in B, (that is, & solves the
Signorini problem in B, with thin obstacle 0 on IT and boundary values & = uy, on 9B, ),
then / satisfies

[ whve-m)=o
for any v € Ko u,, (B, IT), which easily follows from the standard first variation argu-
ment. Plugging in v = u,,, we obtain

/(Vh,VuxO)z/ |Vh|*.
r Br
Then it follows that

/ V(e — )P = / (|Vux0|2+|Vh|2—2<VuxO,Vh)) < / Vit P / Vi
B, B, B, B,

< (1+Mr°‘)/B |Vh|* — i |Vh|2§Mr°‘/B | Vg, |2,



S. Jeon, A. Petrosyan, and M. Smit Vega Garcia 336

where in the last inequality we have used that / is the energy minimizer of the Dirichlet
integral in Rg,um (B, IT). Then, for p < r, we have

/|VuxO|2sz/ |Vh|2+2/ IV iy — )P

o By By

n
52(5) / |Vh|2+2Mr°‘/ [Vity, |2
r B, B,

=Y e ] e

Now, we transform back from uy, to U as we did in Proposition 3.4 to obtain (4.3) in this
case.

Case 2. Now consider the case xg € BlJr .If p > r/4, then we simply have

n
/ |VU|2§4"(£) / VU2,
B, (xo0) r By (x0)

Thus, we may assume p < /4. Then, let d := dist(xo, B]) > 0 and let x; € dB4(x0) N Bj.

Case 2.1. If p > d, then we use B,(xg) C Bzy(x1) C Byj2(x1) C B (x¢) and the result
of Case 1 to write

2 n
[ owoes [ vupsc|(ZR) s epr] [ vop
B, (x0) Bap(x1) r/2 Byja(x1)

< c[(ﬁ)" + r“:| / VUP.
r B, (x0)

Case 2.2. Suppose now d > p.If d > r, then B,(x¢) € BlJr . Since U is almost harmonic
in B1+ , we can apply Proposition 3.4 to obtain

n
/ VU < C[(B) +r°‘]/ VU 2.
By (xo0) r By (x0)

Thus, we may assume d < r. Then we note that By (xo) C B 1+ and by a limiting argument
from the previous estimate, we obtain

/ VU < c[(ﬁ)" + r“i|/ VU 2.
B, (x0) d B (x0)

To estimate || By (x0) VU |? in the right-hand side of the above inequality, we further con-
sider the two subcases.

Case 2.2.1. If r /4 < d, then

d\n
/ vup <4 (%) / vUPR,
Bg(x0) r B, (x0)

which immediately implies (4.3).
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Case 2.2.2. It remains to consider the case p < d < r/4. Using Case 1 again, we have

2d
[owues [ wopse|(Zh) o] [ wor
By (x0) Boa(x1) r/2 Byja(x1)

c[() ][ wor

which also implies (4.3). This concludes the proof of the proposition. ]

As we have seen in [31], Proposition 4.2 implies the almost Lipschitz regularity of
almost minimizers.

Theorem 4.3. Let U be an almost minimizer for the A-Signorini problem in By. Then
U e C%9(By) forall 0 < o < 1. Moreover, for any K € By,

[Ullcooxy < CIIU w12y
withC = C(n,a, M, 0, K).

Proof. The proof is essentially identical to that of [31, Theorem 3.1]. Let K € B; and
X9 € K. Take ro =ro(n,0, M, 0, K) > O such that rg < dist(K,9B;) and r§ <e&(Cy,n,n +
20 —2), where ¢ = ¢(Cy,n,n 4+ 20 —2) is as in Lemma 3.5 and C; = C;(n, M) is as in
Proposition 4.2. Then for all 0 < p < r < rg, by Proposition 4.2,

n
/ VU2 5cl[(f) +r“i|/ VU2,
Bp(xo) r By (x0)

By Lemma 3.5, we get

n+20—-2
/ IVUP < C(n, M, a)(f) / IVUP.
By (xo0) r B

r(XO)

Taking r ' r¢, we conclude that
[ VUP < Ca Moo KU a2 (44)
By (xo0)
By the Morrey space embedding [29, Corollary 3.2], we obtain U € C %7 (K) with

1Ullcooxy < Cn,a, Mo, K)|U |lw1r2(s,)- (4.5)

completing the proof. ]
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5. C1? regularity of almost minimizers

In this section we prove C!# regularity of the almost minimizers for the A-Signorini
problem (Theorem 5.2). While we take advantage of the results available for the even sym-
metric almost minimizers with A = [ in [31], removing the symmetry condition requires
new additional steps, combined with “deskewing” arguments to generalize to the variable
coefficient case.

We start again with an auxiliary result for the solutions of the Signorini problem.

Proposition 5.1. Let h be a solution of the Signorini problem in B,, 0 < r < 1. Define

Vi = Vh(y',yn)  for yn =0,
Vh(y',—yn) for y, <O,

the even extension of Vh from B} to B,. Then for 0 < a < 1, there are C; = Cy(n, ),
Cy = Cr(n, ) such that forall 0 < p < s < (3/4)r,

n+1

[, 19— = e (8) 190 @[ 2) T 6
By

Proof. This proposition differs from [31, Proposition 4.4] only by not requiring 4(y) to
be even in the y,-variable. As in the proof of Proposition 4.1 we split % into its even and
odd parts

h(y) = h*(y) + h*(y). v € Br.

Recall that /2* is still a solution of the Signorini problem in B,, but now even in y, and h*
is a harmonic function in B;, odd in y,. Then, by [31, Proposition 4.4], we have

n+l
/z;p'Vh* (V3,7 < €1 (2 /Wh* (VI*)s, |2+c2(/ (h))rn+3

5.2)
Now we need a similar estimate for 4%, Since At is harmonic, by the standard interior

estimates, we have

1/2

n

sup |D2h“|<ﬁ( /(h**)) .
B3/4)r " JB,

Thus, taking the averages on B+, we will therefore have

n+2

. 19 = @it = con(swpip2atl) o < con( [ ) £

§C(n)(/ (h#)) :: 0<p<s<(@3/dr
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which can be rewritten as

— — n+1
V= (V) P = co [ 7)o 63)
B, B,

Now using that Vi — (Vh) g, = [Vh* — (Vh*)g,] + [Vh* — (Vh¥)g ] in B,, we deduce
from (5.3) that

/@—@)Bmfz/ |v7?‘—<v7?‘>3p|2+2/ VIE — (ViP), 2
p B, B,

+1
STF o 2 g2 "
<2 Bp|Vh (Vi*)p,| +C(n)(/Br(h ) )rn+3. (5.4)

Similarly, representing Vh* — (@‘)BS = [ﬁz — (@)BS] — [Vh¥ — (Vh*)p ] in Bs, we
deduce from (5.3) (by taking p = s) that

Sn+1

9 = (Ta P <2 [ (T Fa rcon( [ ah2) i 69
By B, r

By

Hence, combining (5.2)—(5.5), and using that both [, B, (h*)? and /. B, (h*)2 cannot exceed
f B, h?, we obtain the claimed estimate (5.1). [ ]

Theorem 5.2. Let U be an almost minimizer of the A-Signorini problem in By. Then

UeCY¥(BEUB!) withf=—2 .
(Bi 1) with B 42n + )
Moreover, for any K € BljE U B{, we have
1Ullc18xy < Cn o, M, K)|U||w12(p,)- (5.6)

Proof. Let K be aball centered at 0. Fix a small rg = ro(n,a, M, K) > 0 to be determined
_2n__
later. In particular, we will ask r; :=rg" ™ A 112 < (1/2) dist(K, 8By ), which implies that

K :={y € By:dist(y,K) < ri} € By.

Define

ﬁ](yl yn) = VU(y/7 Yn) for yn 2 07
VU(y',—y,) fory, <DO.

Our goal is to show that for xg € K,0 < p <r <1y,

— — 2 p n+a — — 5
/ VU = (VO)3, 0002 = Cln.0, M)(2) / VU — (VU)3, (xo)]
Bp(xo) r B

7 (x0)

+C(n,a, M, K)||U||§V1,2(Bl)r"+23. (5.7)
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Case 1. §uppose xo € K N Bj. For given 0 < r < rg, we denote o’ := 1 — g~ € (0, 1),
n .
R := r2n+a. We then consider two cases:

sup |U| < C3(AY2R)* and  sup |U|> C3(AV2R)Y,
JER(x0) 0ER (x0)

U(y)-U
where C3 = 2[U]O,a’,’l\5 =2 SUPy 2K | g)—z\aszn :

y#z
Case 1.1. Assume that supyg, () 1U| < C3(A /2Ry’ Then u., satisfies almost Signorini
property at 0 in Br with
sup |y, | < C3(A1/2R)°‘/.

0BR

Let & be the Signorini replacement of u, in Bg. If we define

vuxo(y/vyn) for y, >0,

Vi, (v, yn) 1=
xo (V' Yn) {Vuxo(y”_yn) for y, <0,

and

Vh(y', yn) for y, >0,

ﬂ /7 n =
O m) {Vh(yc—yn) for y, < 0,

then we have

/W/u?o—(v/u?mpﬁsz/ |v71—<v7>3,,|2+6/ Vg — VAP, (58)
B, B, By

[ 190 (Thya, P <3 [ Vi, — (T P46 [ (G, - V2 59
B, B, r

2n+a

Note that if rog < (3/4) « , then r < (3/4)R, thus by Proposition 5.1, the Signorini
replacement £ satisfies, for0 < p < r,

n+1

R3

o~ —~ + —~ o~
/ Vi — (Vh)g, > < C(n,a)(ﬁ)" “/ \Vh — (Vh)g, |2 + C(n,(x)(sup hz) d
B, r B, 9BRr

Combining the above three inequalities, we obtain

— — n+o — —
[ i = F)a = conen(8) [ 19, ~ (Virz)a
B, r B,
n+1

R3

r

—i—C(n,oz)(suphz) —i—C(n,oz)/ |V/u?0—§71|2.
0BR B,
(5.10)

Let us estimate the last term in the right-hand side of (5.10). Take § = §(n, o, M, K) > 0
such that § < dist(K,dB1) and §* < & = &(Cy1,n,n + 2a’ — 2), where C; = C1(n, M) is
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as in Proposition 4.2 and ¢ is as in Lemma 3.5. If ry < (A 1/28) £ ,then AV/2R < §,
thus, by following the proof of Theorem 4.3 up to (4.4), we have

+2a/—2
/ IVUP < C(n,a. M, K)|[VU|[72(5,, (A2 R)" 7.
a1/2 g (%0)
It follows that

/ (A(x0)VU,VU) < A [ VUP?
ERr(x0) B, 1/2 g (x0)

< C ||VU||22(31)R1’L+20£ —2‘

Then by the change of variables in (2.2), we have
f Vitgy|? < C[VU 725, R* 272, (5.11)
Bpr

Now we can estimate the third term in the right-hand side of (5.10):

/B |Vitgy — Vi|? =2/B+ |V, — Vh|?

52/ |Viuy, — Vh|? 52(/ |Vux0|2—/ |Vh|2)
Br Bpr Br

<2MR“* Vh|? < 2MR* Viy, 2
= 0
Bpr B

R (5.12)
< C||VU||i2(BI)Rn+a+2a’—2
= C||VU |22, 55 "),
To estimate the second term in the right-hand side of (5.10), we observe that
sup h? = supuio = sup U?< C32(A1/2R)2°‘/.
dBR 0BR AER(x0)
Note that by (4.5), C3 < C(n,a, M, K)||U||yr1.2(g,)- Thus,
S\t
(Eﬁﬁh ) 7 = U2, oD,
Now (5.10) becomes
[, 190 = Fia, = Coneo () [ 19, — (Vi)
o
+ CIIUIIWIZ(B NaaEo) (5.13)

We now want to deduce (5.7) from (5.13). The complication here is that the mapping 7_’;] 1
does not preserve the even symmetry with respect to the thin plane, since the conormal
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direction A(x¢)e, might be different from the normal direction e, to IT at x(. To address
this issue, by using the even symmetry of Vuy,, we rewrite (5.13) in terms of halfballs
B} = B, NR"

2 Pyt 2
/+ [Vitzy = (Vg g I = Cln, ) (2) /+ |Vitzy — (Vitxy) gt |
B} r B;
+ ClU 3125, 2. (5.14)

Similarly, if we denote E(xo) = E,(xo) N R™, then using that Ty, (E; (xo)) = B,
t > 0, (5.14) becomes

p n+o
/E |C(x0VU_<C[)COVU>E;'(x0)|2 = C(”v“)(?) /E

3 (xo0)

|‘1xoVU_<‘1xoVU>E,+(xO)|2

+(x0)

+ Cdetay, |U ||%V1,2(Bl)r”+z‘(z45+a) .

Repeating the argument that (3.4) implies (3.2) in the proof of Proposition 3.4, we have

p n+o 5
VU = (VU)o 2 = € (£) / VU = (VU) g x|
/B;f(xo) B2 (x0) r B (30) Br o)
+ CNU 120, 2050 (5.15)

Then by the even symmetry of VU, (5.15) implies (5.7).

Case 1.2. Now we assume that supyz ) 1U| > C3(A'2R)Y . By the choice of C3 =

2[U], , &> We have either

U = (C3/2) (A2R)* in Er(xo). or
U <—(C3/D (PR in Er(xo).
However, from U > 0 on Bj, the only possibility is
U = (C3/2) (AR in Ep(xo).

Consequently, /
ux, = (C3/2) (AY2R)™  in Bg.

If we let i again be the Signorini replacement of u,, in Bg, then the positivity of & =
Ux, > 0 on dBg and superharmonicity of & in Bg give that 2 > 0 in Bg, and hence # is
harmonic in Bg. Thus,

+2
/ IVh— (Vh)g,|* < (3)" / \Vh— (VR)p 2. 0<p<r.
B, r B,
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We next decompose & = h* + h¥ in Bg as in (4.2). Note that since both 4 and h* are

harmonic, 2* must be harmonic as well. Then we have
Vi~ (Th)a, <3 [ 1Vh— (T, 6 [ (T VP
BP

I, A
=3 [ 19— (Vh)a 6 [ (29 h P+ 2P
0 By

= 3/ |Vh —(Vh)g,|* + 12/ (|vy,hﬁ|2 + |aynh*|2),
B, B,

and similarly,
Vi — (Vi)g, > <3 | [Vh—(VR)s, > + 12/ (V32 + [a, 1" 2).
B, r

B,
Combining the above three inequalities, we have that forall0 < p < r

o~ o~ n+2 —~ —
[ 1= @y, <3(8)" [ 1 (Tha, s [ (1985 12, 577).
B, r B, B,
(5.16)

Now, note that if ro < (1/2) 2 , then r < R/2. By the harmonicity of both 7* and A¥ in

Bpr, we have
C
sup |D*h*| + sup |D2h¥| < ﬂ( sup |VA*| + sup |Vhﬁ|)
B/ B/ R Bia/ar Biaiayr
51—(/ |V +/ |VAH| )
R +2 BpRr BRr
C 12 ¢ 1/2
- ﬂ(/ |Vh|2) < cw) (/ |Vux0|2)
R1+§ BR R1+i BR
< C(n,a,M,K)||[VU |28 R¥ 2,
where the last inequality follows from (5.11). Also, note that Vy/hﬁ =0,,h* =0on B;e/z'
Thus, for y = (y’, y») € By, we have
[V h¥| =+ 183,17 ] < Lyl sup [D2h%] + sup D)
Bgr/2 Bgr/2
< C||VU||L2(5,yrR* 2
= C||VU |2z, r' 7%,
with C = (n,a, M, K). Hence, it follows that
(5.17)

_4n_ (o
/ Vy > 4 18y, h*[> < C[|VU |72, r" 2 mta @2

(03
< CIIVU 725, " 2050,
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Combining (5.16) and (5.17), we obtain

—~ — n+2 — — o
[ = Fha, 2 < 3(2)" [ (95— (Fh)a, P+ CIVU g7
o r

(5.18)
Note that (5.12) was induced in Case 1.1 without the use of the assumption sup,g, (xo)|U |<

Cs (Al/zR)a/, so it is also valid in this case. Finally, (5.8), (5.9), (5.12) and (5.18) give

/Wuxo (Gidaf =3 [ 19— (Tg, P+ (¥, - i

B, By

n+2 _ o .
59(;) /B IVh—<Vh)B,|2+C||VU||§2(BI)r"+m

+6/ Virn, — VhI?

B,

n+2 o — — a
< 27(’;) /|vux0 — (Vitxg)B, P+ CIVU |25, 1" 700
B,
+60 / |Vitgg — Vi|?
Br
< 27 v WV 2 CI\VU n+2(2n+ot)
| Uxy — ( uxo)B| +Cl ||L2(B)

+C||VU||L2(Bl)r”+W‘" 2

n+2 — — ]
< 27(‘;’) f|wxo — (Vi) 5, P H+C VU |2, " 2000
B,
As we have seen in Case 1.1, this implies (5.7). This completes the proof of (5.7) when
X0 € KN Bi

Case 2. The extension of (5.7) to general xo € K follows from the combination of Case |
and (3.5). The argument is the same as Case 2 in the proof of Theorem 4.6 in [31].

Thus, the estimate (5.7) holds in all possible cases.

To complete the proof of the theorem, we now apply Lemma 3.5 to the estimate (5.7)
toobtainfor0 < p <r <ry

— . P n+2pB — —
[ 10 Tl <c|(£) V0 — (V0), (e
Bp(xo) r B, (xo0)

2 +2,
v

Taking r /" ro = ro(n, o, M, K), we have

[ 190~ (0l = €U By raay .
By (xo0)
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with C = C(n,a, M, K). Then by the Campanato space embedding this readily implies
that VU € C%(K) with

IVT llcoscxy < CIU lwrgs,-
Since VU = VU in Bl+ U Bi, we therefore conclude that
U e CY(Kn (B UBY)),
and combining with the bound in Theorem 4.3, we also deduce that
1Ull skt usy < Co.a. MK [U iz,

To see the C ' regularity of U in By U B}, we simply observe that the function U(y’,~y»)
is also an almost minimizer of the Signorini problem with the appropriately modified
coefficient matrix A. n

6. Quasisymmetric almost minimizers

In the study of the free boundary in the Signorini problem, the even symmetry of the
minimizer with respect to the thin space plays a crucial role. The even symmetry guar-
antees that the growth rate of the minimizer u over “thick” balls B,(xo) C R” matches
the growth rate over thin balls B/.(xo) C II. This allows to use tools such as Almgren’s
monotonicity formula (see the next section) to classify the free boundary points. Without
even symmetry, minimizers may have an odd component, vanishing on the thin space I1
that may create a mismatch of growth rates on the thick and thin spaces.

In the case of minimizers of the Signorini problem (with A = I') or harmonic func-
tions, it is easy to see that the even symmetrization

u(x’, xn) +u(x’, —xy)
2
is still a minimizer. Unfortunately, the even symmetrization may destroy the almost min-

imizing property, as well as the minimizing property with variable coefficients, as can be
seen from the following simple example.

u*(x) =

Example 6.1. Let u: (—1,1) — R be defined by u(x) = x + x2/4. Then u is an almost
harmonic function in (—1, 1) with a gauge function w(r) = C(a)r® for 0 < o < 1. In fact,
u is a minimizer of the energy functional

/ (1 +x/2)7' )2

with a Lipschitz function A(x) = (1 4+ x/2)~! in (=1, 1). On the other hand, the even
symmetrization
ou(x) Fu(=x) x?

u* (x) 2 4
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is not almost harmonic for any gauge function w(r). Indeed, for any small § > 0, if we
take a competitor v = §2/4 in (=8, §), then it satisfies f_88 |v'|? = 0 and if u* were almost
harmonic, we would have that fig [(u*)'|? = 0 as well, implying that u* is constant in
(=6, 6), a contradiction.

To overcome this difficulty, we need to impose the A-quasisymmetry condition on
almost minimizers U, that we have already stated in Definition 1.2. In this section, we
give more details on quasisymmetric almost minimizers.

Recall that for each xo € B, we defined a reflection matrix Py, by
Py = 1 — A0 S en
ann(Xo)

From the ellipticity of A, we have an,(xo) > A, thus Py, is well-defined. Note that
P2 = I.Besides, Py,|; = I | and Py, E,(xo) = E(xo). We then define the “skewed”
even/odd symmetrizations of the almost minimizer U in B; by

U(x) + U(Pxyx)

Uz, (x) = _ ,
U)icio(x) = w

Note that Uy, and Ufo may not be defined in all of By, but are defined in any ellipsoid

E(x0) | %

Figure 2. Reflection Py,: here X = Pyyx, y = 7_"x0 (x),and y = (¥, —yn) = Txo (%)

E,(xo) as long as it is contained in B;. Note also that U = U;‘o and Ufo = 0 on II.
Further, we note that transformed with 75,, Py, becomes an even reflection with respect
to IT, i.e.,

Tyy 0 Pxy 0 T);)l ) = 0" =),
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see Figure 2. Therefore, denoting

uxo(y/, yn) + uxo (ylv _yn)

uy, (v) = 3 ,

il () = Uxo (Y, yn) —zuxo(y’,—yn)’
the even/odd symmetrizations of u,, about IT, we will have

Uy, o 7_");)1 =y, Uﬁo o Tx_ol = uio.

We also observe that the symmetries of uy, and uio imply the following decompositions

2 2 t\2
/B, w2, ‘/B,(”;O) +Lr(uxo> ,
/|Vux0|2=/ Vit P+ /IW 2.
r B B,

which after a change of variables, can also be written as

/ UZ=[ ()2[ (Uh ), ©.1)
Er(xO) Er(xo Er(xo

/ (A(xo)VU,VU)=/ (A(xo)VUY . VUE) + / (A(x0)VUE . VUE ).
E;(xo) E; (xo) E;(xo)
(6.2)

We now recall that by Definition 1.2, U € W12(B;) is called A-quasisymmetric if there
is a constant Q > 0 such that

/ (A(xo)VU,VU) < 0 (A(xo)VU. xQ, VU* ), (6.3)
Er(x0) Ey(xo0)

whenever E,(xo) € By and x¢ € B{. By the uniform ellipticity of A, (6.3) is equivalent

to
f vup<o [ |vUip.
Er(xo) Er(xo)

by changing Q to Q(A/A), if necessary. Besides, using (6.2), (6.3) is also equivalent to
[ waeovuivubsc [ aeovevun. 64
Er(x0) E;(xo)

with some C = C(Q).

Lemma 6.2. Let U be an A-quasisymmetric almost minimizer for the A-Signorini prob-
lem in By, with constant Q > 0. Then there are r1 = ri(n,o, M, Q) > 0 and M, =
Mi(n, M, Q) > 0 such that

/ (A(x0)VU. xo’ *0) < (14 Mir%) (A(xo) VW, VW), (6.5)
E,(x0) E;(x0)

whenever E,(xo) € By, xo € B],0<r <r,and W € *QO,U)?‘O (Er(xo), IT).
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Remark 6.3. Since we are interested in local results, in what follows, we will assume
without loss of generality thatr; = 1 and M} = M.

Proof. Let V be the energy minimizer of
/ (A(x0)VV.VV) on Kou(Er(xo). IT).
E;(x0)
Then vy, =V o 7_";01 is the energy minimizer of

|vaO|2 on Koy, (B, II).
B, 0

Note that v} is a solution of the Signorini problem, even in y,, with vy = u3 on dB;.

Similarly, vio is a harmonic function, odd in y,, with vio = uio on dB,. Thus, v;O is the

energy minimizer of

|Vv:0 |> on Ro,u;o (B, 10),
B,

and so Vy; is the energy minimizer of
[ ATV TV on g, (B (o). ).
r(Xo
Thus, to show (6.5), it is enough to show
/ Vug <1+ er“)/ |Voy >
B, B,
To this end, we first observe that the quasisymmetry of U implies the quasisymmetry of

/ IVt |? 5c/ |V |2
B, B,

Using this, together with the symmetry of uy, , u,ﬁm, v} and vfco, we have

X0
2 2 2
/ vut,| =/ Vity,| —/ Vat, |
B, B, B,

<@ +Mr"‘)/B |va0|2—/B |Vut |2

Uxy:

=(1 +Mr°‘)/ IVur 1>+ (1 +Mr"‘)/ |Vv§0|2—/ IVt |?
B, B, B,
S Y AR T A

< +Mr"‘)/B |vu;;0|2+CMr“[B [V, 2.
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Therefore,
14+ Mr®
* 2 * 12 a * |2
/);2,|VMXO| Smﬁr|vvxo| =+ Mr )/Br |va0| ’
for0 <r <ry = QCM)~%, as desired. n

Remark 6.4. If U satisfies the following weak quasisymmetry with order —y:

/ |VU|25Qr—V/ VU P2,
Er(XO) Er(xO)

whenever E,(x9) € By, xo € Bi for some 0 < y < «, then it is easy to see from the proof
of Lemma 6.2 that U;‘O satisfies (6.5), but with « — y > 0 instead of «.

Theorem 6.5. Let U be an A-quasisymmetric almost minimizer for the A-Signorini prob-
lem in By. Then for xo € B, ,, and 0 < r < (1/2)A~'/2, we have Uy, € C1=ﬂ(Eri(x0) U

1/2
E/(x0)) with = Moreover,

1Ug Icrexy < Cn,a, M, K, )| UL lwi2(E, (xo))»
forany K €@ EE(xo) U E}(xo). Similarly, u}, € C'P(BE U B}) with
uX, ey < Cn,a, M, K, r)|luy, lwi2s,)

forany K € BX U B..

Proof. From Theorem 5.2, we have U € C 1A (BljE U Bj), which immediately gives Uy, €
clA (E,:IE (x0) U E’(x0)), by using the inclusion E,(x¢) C Bp1/2,(x9) C B;. Thus, for

VU (X', xn) if x, >0,

0

VU] (x',—x,) ifx, <0,

0

V/Uj*o(x/,x,,) = {

we have V/l—]?”‘0 € CO%P(E,(xo)) with

—

IVUZ I cosky < Cnoo, M, K 1)U llw12(E, (x0))
for any K € E,(xo). Hence, it is enough to show that
1U w128, (xoy) < C U lw12(E, (xo))-
Now, note that by (6.1)—(6.2), we readily have
10wz, con = € (103 Iwrace, oy + 10U Iwrace, on)
and thus, it will suffice to show that

U Iwr2(E, o < CIUE lwr2(E, (xon-
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By the symmetry again,
(U)g[))Er(xo) = (ugco)Br = 0’

thus, by Poincare’s inequality,

IUE NL2(E, (xoy) < C, MYPIVUE |12k, (x0))-

Finally, by the quasisymmetry of U, we have

IVUE 1128, oy < CIVUEL2(E, (o))

see (6.4). This completes the proof of the theorem for Uy .
Applying the affine transformation 7Y, we obtain the part of the theorem for uy . m

We complete this section with a version of Signorini’s complementarity condition that
will play an important role in the analysis of the free boundary.

Lemma 6.6 (Complementarity condition). Let U be an A-quasisymmetric almost mini-
mizer for the A-Signorini problem in By, and x¢ € B;/z. Then “;0 satisfies the following
complementarity condition

wh, (O uk) =0 on Bk, Ro=(1/2A7"2,

where 8;” uy, on B;zo is computed as the limit from inside B;O. Moreover, if xog € T'(U),
then -
uy, (0) =0 and |Vuy (0)] =0.

Proof. Let yg € B}eo be such that u3 (yo) > 0. Then we need to show that B;Fn uy, (yo) =0.
Since uy, = u} on I1, we have ux,(yo) > 0 and by continuity uy, > 0 in a small ball
Bs(y9)- ThenU > 0in Q = Tx_ol (Bs(y0))- We claim now that U is almost A-harmonic
in Q. Indeed, if E,(y) € Q (not necessarily with y € B}) and V is the A(y)-harmonic
replacement of U on E,(y) (i.e., div(A(y)VV) = 0in E,(y) with V = U on 0E,(y)),
then since V' = U > 0 on dE,(y), by the minimum principle V' > 0 on E, (y). This means
that V € Ko, (Er(y), IT) and therefore we must have

/ (A(y)VU,VU) < (1 + a)(r))/ (A(Y)VV,VV),
E:(y) E,(y)

which also implies that U is an almost A-harmonic function in . Hence, U € C*/2(Q)
by Theorem 3.6, implying also that u,, € C1*/2(Bs(yy)). Consequently, also uy, €
C1*/2(Bs(y,)) and by even symmetry in the y,-variable, we therefore conclude that
33 ux, (vo) = 0.

The second part of the lemma now follows by the C '-# regularity and the complemen-

tarity condition. n
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7. Weiss- and Almgren-type monotonicity formulas

In this section we introduce two technical tools: Weiss- and Almgren-type monotonic-
ity formulas, that will play a fundamental role in the analysis of the free boundary. In
fact, the proofs of these formulas follow immediately from the case A = I, following the
deskewing procedure.

To proceed, we fix a constant ko > 0. We can take it as large as we want, however,
some constants in what follows, will depend on «¢. Then for 0 < k¥ < k¢, we consider the
Weiss-type energy functional introduced in [31]:

et” 1 —bt®
WK(Z,U,X()) Zm[/ |VU|2—K / U2:|,
! B (xo) 4 3B (x0)

M0 +2-2) b_M(n+2/c0)
- a b - a .

with

a = ag

(The formula in [31] corresponds to the case M = 1.) Based on that, we define an appro-
priate version of Weiss’ functional for our problem. For a function V in E,(x¢), let

WAV x0) = 2 U (A(xo)VV,VV) l_b’a/ V200 ( )]
, ¥V, Xo) 1= w9 X0 5 —K I‘L X — X0 )
‘ 22 B (x) e B

for 0 < t < r, with a, b same as above, where the weight jix, is as in (2.4). Note that by
the change of variables in formulas (2.1)—(2.3), we have

WKA(t, V,x0) i=detax, We(t,vx,,0), vy, =V o 7_’);)1.

Let now U be an A-quasisymmetric almost minimizer for the A-Signorini problem in
By and xo € B} /2 By Lemma 6.2, U} satisfies the almost A-Signorini property at xo in
E1/2ya-1/2(x0). Thus, u};  also satisfies the almost Signorini property at 0 in By /5y p-1/2.
By using this observation, we then have the following Weiss-type monotonicity formulas
for Uy, and uy, .

Theorem 7.1 (Weiss-type monotonicity formula). Let U be an A-quasisymmetric almost
minimizer for the A-Signorini problem in By. Suppose x¢ € Bi/z and U(xg) = 0. Let
0 < k < ko with a fixed kg > 0. Then, for 0 <t <ty =to(n,a, ko, M),

d i e?t” . k(1=br%) N2
a0 Vel 0) 2 Sy /313, (Bur, = =% )

k(1= bt%)

. 2
P Uxo) /’LXO(X —.X()).

d y eat"‘
L WAG U xo) > ———— ( VU*
dt ¥ (t. Uy, xo) 2 nt2e=2 /3E,(xo) Vo VU v)

*
X0’

In particular, Wy (t,u}_,0) and WKA (1, Uy, xo) are nondecreasing in t for 0 <t < fo.
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Proof. We note that the proof of [31, Theorem 5.1] for the monotonicity of W, (¢, v, x¢)
requires the function v to be an almost minimizer for the Signorini problem with v(xg) =0
for the monotonicity of its energy. However, it is not hard to see that the almost minimizing
property of v is used only when it is compared with the k-homogeneous replacement w
of v on balls centered at the given point x¢ to obtain

1
f VuP = / VP2,
Bi(x0) L +1% JB,(x)

see [31, (5.2)]. This means that the argument in the proof of [31, Theorem 5.1] also works
in our case as long as uy (0) = U(xo) = 0 and implies the part of the theorem for u%, .
We note that the constants a, and b in our case will have an additional factor of M, as we
work with w(r) = M r* rather than w(r) = r® in our case, but this change of the constants
can be easily traced.

The part of the theorem for Uy follows by a change of variables. ]

The families of monotonicity formulas {Wj }o<c<«, and {WKA}O<K<K0 have an impor-
tant feature that their intervals of monotonicity and the constant » can be taken the same
for all 0 < k < ko. Because of that, their monotonicity indirectly implies that of another
important quantity that we describe below. Namely, recall that for a function v in B (xy),
Almgren’s frequency of v at x¢ is defined as

! [p,x0) VI

N(t,v,x9) =
( v JoB,(xo) V2

, O<t<r.

Note that this quantity is well-defined when v has an almost Signorini property at xo and
xo € I'(v), since vanishing of fa B (xo) v? for any ¢ > 0 would imply vanishing of v in
B;(xo) by taking 0 as a competitor and consequently that xo ¢ I"(v).

Next consider a modification of N, which we call the truncated frequency:

NKO(Z, U,)C()) ‘= min {m

N(z, v,xo),Ko},

where b is as in Weiss-type monotonicity formulas for x < k¢. We next define the appro-
priate version of N, N, in our setting. For a function V' in E,(x¢), we define

NAt, V. x0) := N(,0y,.0).
ﬁ[fo(ta V» xO) = ],\\IK(](I? vayo)a
forO <t <r,wherevy, =V o Tx_ol. More explicitly, we have

tht(xO)<A(XQ)VV, \a%!
fE)E,(xo) Vzllvxo (x — xo) '

NA@t, V., x0) :=

Z/\\f,fo(t,V,xo) = min{ NA(I,V,xo),KO}.

1 —bte
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As observed in [31, Theorem 5.4], the Weiss-type monotonicity formula implies the fol-
lowing monotonicity of N ,‘;10.

Theorem 7.2 (Almgren-type monotonicity formula). Let U, ko, and ty be as in Theo-
rem 7.1, and xo € B;/z a free boundary point. Then

t— NA@ U

0 0’

xX0) = N (1. 1%, 0)

is nondecreasing for 0 <t < ty.

Definition 7.3 (Almgren’s frequency at free boundary point). For an A-quasisymmetric
almost minimizer U of the A-Signorini problem in B; and xo € I'(U) let

K(x0) = NA (04, U} . x0) = Ny (0+, uk, . 0).

X0’
We call k(x¢) the Almgren’s frequency at x.

Remark 7.4. Note that even though the monotonicity of the truncated frequency is stated
in Theorem 7.2 only for xo € B /2N I'(U), by a simple recentering and a scaling argu-
ment, it will be monotone also at all xo € I'(U), but for a possibly shorter interval of
values 0 < ¢ < ty(xo) depending on xq. Thus, k(x) exists at all xo € I'(U).

Further, note that when «(xg) < kg, then N,fo (1, Uz, x0) = ﬁNA(I, Uy, xo) for
small ¢ and therefore

k(xo) = N4(0+, Uy, xo).

which means that it will not change if we replace ko with a larger value.

8. Almgren rescalings and blowups

Our analysis of the free boundary is based on the analysis of blowups, which are the limits
of rescalings of the solutions at free boundary points. In Signorini problem, there are a few
types of rescalings that use different normalizations. In this section, we look at so-called
Almgren rescalings and blowups that play well with the Almgren frequency formula.

Let V e WH2(By) and xg € B;/z be a free boundary point. For small » > 0 define the
Almgren rescaling of V at xo by

V(rx + xo)

/2"
(7 o V2130t =30

VXAOJ (x):=

The Almgren rescalings have the following normalization and scaling properties

||fo,,r||L2(axoaBl) =1,
A A A
N4 (p, VA | 0) = N4(pr. V. xo).
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Here N4*0) denotes Almgren’s frequency for a constant matrix A(xo). Thus, we also
have NA(r, V,x0) = NA(XO)(r, V, x¢). Note that when A = I, then

I V(rx + xo)

on,r - 1/2
1
(r"__l fBBr(xO) V2)

is same as the Almgren rescaling in [31], and satisfies

VL rz2@my) = 1.
N(p, VL ,,0) = N(pr, V, xo).

0,7’

We will call the limits of Von,r over any subsequence r = r; — 0+ Almgren blowups of
V at xo and denote them by Vx‘i,o.
By using a change of variables, we can express Almgren rescalings of V' in terms of

those of vy, = V o T);)l and vice versa. Namely, we have

(vx0)] () = (detax))/2VA (@x,¥),

wherever they are defined. Applied to the particular case V' = Uy, we have

ki )E() = (detay,) V(US4 (x, ).

Proposition 8.1 (Existence of Almgren blowups). Let U be an A-quasisymmetric almost

minimizer for the A-Signorini problem in By, and x € Bi/z N T (U) be such that k (x¢) <

ko. Then, every sequence of Almgren rescalings (U;o)fo,t,-’ with t; — 0+, contains a
subsequence, still denoted t; such that for a function (U;‘O)A e Cl (ax, (BljE U B}))

X0,0 loc

(Uxo)xo,l‘j - (Uxo)xo,o n Cl()c

(axy (B U BY)).

Moreover, (Uy, ;40’0 extends to a nonzero solution of the A(xq)-Signorini problem in R",

(U;O)ﬁo’o(x) = (U;o);clo,o(PxO‘x)’ and it is homogeneous of degree k(xg) in R".
Similarly, every sequence of Almgren rescalings (u;o)t[j, with t; — 0+ contains a

subsequence, still denoted t; such that for a function (u;o)(l) € CléC(Bli U B))

* 1 * N\ . 1 + ’
(uxO)tj — (uxO)0 in C\..(Bi" U By).
Moreover, (u} o)é extends to a nonzero solution of the Signorini problem in R", even in
Yn, and it is homogeneous of degree k(xg) in R”.

Proof. Step 1. Since k(xo) < ko, we must have N(t,u, ,0) < ko for small 7 > 0. Then,

for such ¢

/B Vi)l = N1, (u},)f.0) = N(t,u%,.0) < ko,
1
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and combined with the normalization /[, B, ((”;O)zl )2 = 1, we see that the family (u} )!
is bounded in W1’2(Bl), for small ¢+ > 0. Hence, for any sequence #; — 0+, there is a
function (u},)4 € W'2(B) such that, over a subsequence,

(ujgo){j — (u})e  weaklyin Wh2(By),

(M:O){j — (ujzo)é strongly in L2(3B;).

In particular, faBl ((”;0)6)2 = 1, implying that (”;0)(1) # 0in B;.
Step 2. For0 <t < land x € By@21)(xo), let
Uyt (x) = U(xo + t(x — x0)), Axe.t(x) = A(xo + t(x — x0)).

Then by a simple scaling argument, we have that Uy, ; is an almost minimizer of the Ay, ;-
Signorini problem in By /(2s)(xo) with a gauge function p;(r) = (17)* < r*. In particular,
for any R > 0, we will have that Uy, ; € clp (E;F(xo) U ER(xg)) for0 <t <t(R, M)
with

[Uxo.tlcr8ky < CllUxgtllwi2(Eg(xo))
with C = C(n,a, M, R, K), for any K € Ef;(xo) U E}e(xo). Then, arguing as in the
proof of Theorem 6.5, by using the quasisymmetry of U, we obtain that

||(Uxo,t):0||cl,ﬂ(1() = C”(Uxo,t);o||W1’2(ER(x0))’
where
Usg,t () + Usxq,t (PxyX)
> .
Next, observing that (u;O),I is a positive constant multiple of (U, )%, © TX_O 1. we obtain
that

(Uxo,)%, () =

Gz )] lersxy < ClAGDT Iwr2(sg)-
for any K € BE U Bj. Taking R = 1, combined with the boundedness of (uj‘co){ in
W2(By) for small t > 0, it follows that up to a subsequence,

(u3)f, = (3y)g  in Co(Bi U BY).

Step 3. Next, we claim that the blowup (uj‘co)(l) is a solution of the Signorini problem in
Bj.Indeed, fix 0 < R < 1, and for each ¢; let &, ; be the Signorini replacement of (u;O){j
in Bg. Then a first variation argument gives (see [31, (3.2)])

fB (Vh, V(@)1 = hyy)) = 0.

Since (v} O)fj has an almost Signorini property at O with a gauge function r — C(z;7)%, it
follows that

[ 9!~ )P = crep [ 1vas)) P
R R
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This implies that /1;, — (uy,) I weakly in W1-2(Bg). On the other hand, by the bounded-
ness of the sequence /; in W12(BR), we have also boundedness in C ''/2 norm locally
in (BljeE U BY%) and hence, over a subsequence, /;, — (u;o){, in CIE)C(B}:Qt U Bj). By this
convergence, we then conclude that (u;O)(I, satisfies

A(ut)s =0 inBg\ By

wi)e =0, —0f ui)d >0, 3)60) (ui)f =0 onBp,

n

and hence, by letting R — 1, (u} 0){) itself solves the Signorini problem in Bj.

Step 4. Recall now that the blowup (v 0)6 is nonzero in B;. In particular, [, 3B, ((u3 0)é)2 >
0 for any 0 < r < 1, otherwise we would have that (u;O)(I, is identically zero on 0B, and
consequently also on B,. Using this fact, combined with C,._ convergence in Bli U B,
we have that forany 0 < r < 1

N(r.(},)5.0) = lim N(r. (u3,)y,.0)
J

= lim N(rt;,u* .0
tj—>0 ( J Xo )

N@O+,u% ,0)

X0’

= k(x0).

Thus, Almgren’s frequency of (”;0)(1) is constant k(xg) on 0 < r < 1 which is possible
only if (”;0)6 is a K (x¢)-homogeneous solution of the Signorini problem in By, see [38,
Theorem 9.4]. Finally, by using the homogeneity, we readily extend (u;o)(l) to a solution
of the Signorini problem in all of R”. This completes the proof for (u;O)é.

The corresponding result for (U;‘O)ﬁo,tj follows now by a change of variables. ]

With Proposition 8.1 at hand, we can repeat the argument in the proof of [31, Lemma
6.2] with u, to obtain the following, which is possible since u}, satisfies the complemen-
tarity condition and an Almgren-type monotonicity formula with a blowup as a nonzero
solution of the Signorini problem.

Lemma 8.2 (Minimal frequency). Let U be an A-quasisymmetric almost minimizer for

the A-Signorini problem in B1. If xg € B;/z NT(U), then

3
k(xg) > >
Consequently, we also have
NA& (1, UL x0) = Neo(t,u%,.0) = 3/2 for0 <1t < to.

Lemma 8.2 readily gives the following (see [31, Corollary 6.3]).

Corollary 8.3. Let U be an A-quasisymmetric almost minimizer for the A-Signorini prob-
lem in By and x¢ a free boundary point. Then

Wi, (1. Uy xo) = detag, Waya(t.u%,,0) = 0, for0 <1 <.

X0’
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9. Growth estimates

The first result in this section (Lemma 9.1) provides growth estimates for the quasisym-
metric almost minimizers near free boundary points x¢ with «(x¢) > «. Such estimates
were obtained in [31, Lemma 7.1] in the case A = [ as a consequence of Weiss-type
monotonicity formulas. However, they contain an unwanted logarithmic term that creates
difficulties in the blowup analysis of the problem.

The next two results (Lemmas 9.2 and 9.3) remove the logarithmic term from these
estimates for k = 3/2, by establishing first a growth rate for W3,,. (Recall that « (xg) >
3/2 at every free boundary point x¢, by Lemma 8.2.) These are analogous to [31, Lem-
mas 7.3, 7.4] in the case A = I and follow from the so-called epiperimetric inequality
for k =3/2 (see e.g. [31, Theorem 7.2]). Later, in Section 12, we remove the logarithmic
term also in the case k = 2m < kg, m € N, see Lemma 12.3.

The results in this section are stated in terms of both u} and Uy, as we need both
forms in the subsequent arguments. We note that the estimates for u}  follow directly
from [31, Lemmas 7.1, 7.3, 7.4] and the ones for U;‘O are obtained by using the deskewing
procedure, and therefore we skip all proofs in this section.

In the estimates below, as well as in the rest of the paper, we use the notation

Ro := (1/2)A™V2,

which is the radius of the largest ball Bg,, where u} is guaranteed to exist for any xo €

Bi/z for an almost minimizer U in Bj.

Lemma 9.1 (Weak growth estimate). Let U be an A-quasisymmetric almost minimizer

for the A-Signorini problem in By and x¢ € Bi/z Nrw).iIf

k(xo) >«

Jfor some Kk =< ko, then
/8& (wr)? < Cllu, II%Vl,z(BRO)(k,g ;)tn+21<—l’
/B[ |Vu}, > < Clluk, ”%VI,Z(BRO)(IOg ;)tn+2/<—2,
/f;E,(xo)(U;")z <C ||U||%V1‘2(Bl)(10g ;)tn+2k—1’
/Et(xo) |VU;L|2 < C“U”%Vl»z(Bl)(lOg %)tn+2x—27

for0 <t <ty=ty(n,a, M,kp) and C = C(n,a, M, ko).
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Lemma 9.2. Let U and x¢ be as above. Then, there exists § = §(n, ) > 0 such that

0 < Waya(t.16%,.0) < Clluy [512a,, 1

0< W;}z([, U;o, XO) = CHU”%VI,Z(BI)IS,
forO0 <t <ty=tog(n,a,M)and C = C(n,a, M).
Lemma 9.3 (Optimal growth estimate). Let U and xo be as above. Then,
* \2 * 12 +2
/ 08 = CI g+
* |2 * 12 +1
[, 178 = I g ™.
(U* )2 < C”U”2 ’ tn+2,
/3Et(XO) 0 WhABD
[ IVULP < CIUB gy
E¢(x0)

forO0<t <ty=to(n,a,M)and C = C(n,a, M).

10. 3/2-almost homogeneous rescalings and blowups

In this section we study another kind of rescalings and blowups that will play a funda-
mental role in the analysis of regular free boundary points where «(xo) = 3/2 (see the
next section), namely, 3/2-almost homogeneous blowups. The main result that we prove
in this section is the uniqueness and Holder continuous dependence of such blowups at a
free boundary point x¢ (Lemma 10.3).

For a function v in By and xo € B’ ,,, we define the 3/2-almost homogeneous rescal-

1/2°
ings of v at x¢ by
P v(1x + xo) —(3),3/2
vy (X)) = ———=, 1) =e ‘)t e
xo,l‘( ) ¢([) ¢( )
with b as in the Weiss-type monotonicity formulas W;}z and W3/,. When xo = 0, we

simply write vg’t = v?.

The name is explained by the fact that

o) _ |

1 —_—
1—0 ¢3/2

’

and the reason to look at such rescalings instead of 3/2-homogeneous rescalings (that
would correspond to ¢ (¢) = 13/2) is how they play well with the Weiss-type monotonicity
formulas W;}z and W3/5.
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Now, if U is an A-quasisymmetric almost minimizer and x¢ € B! ,, N T'(U), then for

1/2
any fixed R > 1,if t = ¢; > 0 is small, then by Lemma 9.3,

3b s
al

* e
| ovas e =S [V = B R o
Bg BRg:

NN e« * 2 * 2 n+2
u = u <Cllu R"™7,
/azzR(( T /33R,( x0)" = Clt B2y,

3b 1o

with C = C(n,a, M), Ry = (1/2)A~/2. Therefore, (u;O)‘z is a bounded sequence in
W12(BR). Next, arguing as in the proof of Proposition 8.1, we will have that

IV @)Y llcos iy < Cl@E)T lwrzag)- (10.2)

with C = C(n,a, M, R, K) for K € Bpg. Thus, by letting R — oo and using Cantor’s
diagonal argument, we can conclude that over a subsequence ¢ = ¢; — 0+,

i) — @i)d in CLERLUR™D).

We call such (u;O)g a 3/2-homogeneous blowup of u}, at 0. (We may skip the “almost”
modifier here as the limit is the same as for 3/2-homogeneous rescalings.) Furthermore,
from the relation

W) () = (UE)S, 1(@x ).

we also conclude that for any sequence #; — 0+, there is a subsequence, still denoted by
t;, such that
U3 % = Us)5o in Cy

0/x0,0 loc

(R UR™ ).

Apriori, the blowups (u;O)g and (U;O)fo,o may depend on the sequence t; — 0+.
However, this does not happen in the case of 3/2-homogeneous blowups. We start with
what we call a rotation estimate for rescalings.

Lemma 10.1 (Rotation estimate). Let U be an A-quasisymmetric almost minimizer for

the A-Signorini problem in By, x¢ € Bi/z a free boundary point, and § as in Lemma 9.2.

Then,

§/2
/; 10 = 003,021 = Clh, a2

1

/ (U2, — (U | < ClIU wragant™.
Ay, 1

0

fors <t <ty =to(n,a,M)and C = C(n,a, M).

Proof. This is an analogue of [31, Lemma 8.2], which follows from the computation done
in the proof of [31, Lemma 7.1], the growth estimate for W3/, in [31, Lemma 7.3] and
a dyadic argument. The analogues of those results in our case are stated in Lemma 9.1
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and 9.2. This proves the lemma for u7, . The estimate for (Uy ) xo,¢ then follows from the
equality
57 0) = (U3)%4@x0Y). ¥ € Broyr. .

The uniqueness of 3/2-homogeneous blowup now follows.

Lemma 10.2. Let (U, ) oand (u;o)g be blowups of (U ) xo,¢ and (”xo)t , respectively,
at a free boundary point xo € Bi/z' Then,

] §/2
10 = )81 = €l lsaca i,
1

/ (U8, — (UE)E o] < ClU ),
ax B

forO<t <to(n,a,M)and C = C(n,a, M), where § = §(n,a) > 0 is as in Lemma 10.1.
In particular, the blowups (u;‘;o)‘é7 and (U);"O)fo’0 are unique.

Proof. If (u} )0 is the limit of (ujo)'z_ for t; — 0, then the first part of the lemma follows
immediately from Lemma 10.1, by taking s = #; — 0 and passing to the limit.

To see the uniqueness of blowups, we observe that (ujzo)gJ is a solution of the Signorini
problem in Bj, by arguing as in the proof of Proposition 8.1 for Almgren blowups. Now,
if vg is another blowup, over a possibly different sequence t]f — 0, then passing to the
limit in the first part of the lemma we will have

/ o — (%)) =
0B,

implying that both vy and (u;‘;o)g’ are solutions of the Signorini problem in B; with the
same boundary values on dB;. By the uniqueness of such solutions, we have vy = (u;o)g
in B1. The equality propagates to all of R” by the unique continuation of harmonic func-
tions in R’ . This completes the proof for u¥ . An analogous argument holds for Uy using
the equalities

Wi ) = (U3 @xoy). ¥ € Brose.
WS = (UL)E o@xy). v €R™ -

The rotation estimate for rescalings implies not only the uniqueness of blowups and
the convergence rate to blowups, but also the continuous dependence of blowups on a free
boundary point.

Lemma 10.3 (Continuous dependence of blowups). There exists p = p(n,o, M) > 0 such
that if xo, Yo € B;) are free boundary points of U, then

f (WU o — (U o] < Clxo— yol”. (103)
[£89

»B1

/8 100308 = 3, )81 = Clxo = ol (104)
1
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[ 108 = 561 = Clxo = ol (105)

1
withC = C(n,a, M, |U|lw12(p,)), v = y(n,a, M) > 0.

Proof. Step 1. Letd = |x¢9 — yo| and d* < r < 2d7 with t = t(«) € (0, 1) to be deter-
mined later.

Next note that we can incorporate the weight iy, /det ay, with iy, as in (2.4) in the
integral on the left-hand side of (10.3) because of the bounds

AN /
&) a0

Then, by using Lemma 10.2, we have

_Hxo
/ax 3B, ICH x°° - )y°° det ay,

s/axoa&(u SRECA IR S UM

Hxo
O = U+ 1O = Wi of ) 222
0
Hyo
/%a W58, <yo>yo,|demyo
Hyo
- — U
/WBIM Do~ Ui ol g
<2Cr%2 41, + 11, + 111,
<Cd®? +1, + 10, + 111,
where
Mo
I, = ,
r= L Wi~ Wit g
Mo
I, = - ,
r= L W = gl
Ix
I, = up) . — U 0
= [ O~ Gl
Hyo
- U2 . —WUS
/a 1o 3B Yo.r Y0/0,0 detayo

Step 2. By the definition of the almost homogeneous rescalings, we have

C * *
LS e /axoas, U3 (2 + x0) = U3 = + yo)ldS:.
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This gives

1 2d7 2d*
*
E_/dr I.dr < dr(n+3/2) / /(;XO Br| (Z +X())—UXO(Z —I—yo)|dSzdr

5 /
< Uy, (z + x0) = Uy (z + o) |dz
dr(n+3/2) axO(Bzdf\Bdr)| X0 Xo |

/01 js[ ¥ (z+x0(1—s)+ yos)]ds

__C [
dv+3/2) o (Bye\Byr)

C 1
< ———|x0— Yo / / VU (z + xo(1 —5) + yos)|dzds
77| | 0 axo(BZdr\Bdw' o |

D — VU? |dzds.
dr(n+3/2)—1 \/0 LXOBzdr+[xO(1—S)+y0S]| i

Notice that the last integral is taken over

axo Baar + [xo(1 — 5) + yos] = ax,[Baar + say, (yo — Xo)] + xo
C axyBygeyy-124 + Xo C E3q7(x0),

if p = p(n,a, M) is small so that (2p)'~% < A1/2 which readily implies d'~% < A1/2.

Thus,
1 2d* C 1 )
ar /dr rdr = m /0 /;Emr(xo) |VUXO|dst

C 1/2
= t(n/2+3/2)—1 (/ |VU;0|2)
d Esge (x0)

< CllUlwr2pyd ',
where the third inequality follows from Lemma 9.3.

Step 3. By the definition of rescalings and symmetrizations, we have

1 U (2) — U (2)]dS:

C
r S 1/2)
dr(n+ ax033r+yo

C
< 4T +1/2) /axoaB,+y0 |U(Pxyz) — U(Pyyz)|dS;.

This gives

1 /Zd’ C f

— I0,dr < ——~= |U(Pxyz) — U(Py,z)|dz
dr ;e dr(n+3/2) axg (Baar\Ba)+ 70 X0 Yo

| /ld[U([a )Py + sPyl2)]|dsd
—_— —_ — S z sSdz
dv 3/ o (Bye\Bar)+yo Jo 1ds o

C|Px0 — PJ/O| /1 /
< — IVU([(1 — 5) Py, + sPy,]2)|dzds.
AT+ o o BB +yo X0 Vo
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Now we do the change of variables
y =[(1 =5)Px, + 5Py,]z.

Since Py, and Py, are upper-triangular matrices with diagonal entries 1,1,...,1,—1, so
is (1 — ) Py, + sPy,. Thus,

|det[(1 — 5) Px, 4+ sPy,]| = 1.
Moreover, y € [(1 — )Py, + 5Py,](ax, B2a+ + yo). Since
axoBaar + Yo C ayoBya ay/2qc + Yo = Exayayrzar (Vo).
we have
Pyy(axyBage + yo) C PyoEz(A/,x)l/Zdr(J’O) = Ez(A/A)l/de(yO)‘
Similarly, since

o Bagr + yo = Ezg7(x0) + (yo — X0) C Byp1/24:(x0) + (Yo — Xo)
C B4A1/2df(x0) C E4(A/A)1/zdr(x0),

we have
Pxo(axoBzdf + yo) C E4(A/A)1/2d’(x0)-
Thus,
¥y € (1 = 5) Py (axyBrgr + yo) + SPyo(axoBzdt + o)

C (1 =5)Eqa/nyrizge(x0) + SExa py1/247 (Y0)

C Bga/a1/2)ar + Xo + 5(yo — Xo)

C B7(A/Al/2)d‘r + xo9 C E7(A/;L)dr(x0).
Therefore,

1 /*2(1’t C 1
— 1L, dr < —/ / \VU|dzds
dt dc r dr(n+3/2)—a 0 JEsa/mar (o)
C 1/2
= t(n/243/2)—«a (/ |VU|2)
d E7a/2)at (x0)

C 1/2
= t(n/243/2)—a (/ |VU;0|2)
d E7(a/2ydt (x0)

S ClUlwr2g)d® ™",

for small p, where the third inequality follows from the quasisymmetry property and the
last inequality from Lemma 9.3.



S. Jeon, A. Petrosyan, and M. Smit Vega Garcia 364

Step 4. By the change of variables, we have
m, = /3 ] |(U;;)ﬁo,,(ax0z>—<u;;,);"o,o(axoz)|—/; U5 @502 = (U5 0202
1 1
< /a U 002) = U5 a0 2) | + /a U5 0(@507) = (U5 o)
1 1
< (1YW, i) + IV, olleym o — asol.

where we have used the fact that both ax,z and ay,z are contained in B1/> for z € 9B;.
To estimate the gradients of rescalings we first observe that by the inclusion B, 51/2(y0) C

Er(A/A)l/z(yo) - BrA/Al/z(yo), we have

C c
IV (Uye) 3y  Lo(B, 1)) < mHVU;)”Lw(B,Auz(yO)) = 5 IVUlL>,, 1000

Let Uy, - (x) := U(r(x — yo) + yo). Then, arguing as in the proof of Proposition 8.1, we
have
IVUyorllLoos, 10000 = €10 M) [ Uyg rllwras, 17 o))

Thus,

Ivu ”LOO(BrA//\l/Z(YO)) - IVUyy.r ||L°°(BA/,11/2 o))

C
. [ Uyo,r ”Wl’z(BZAMl/z (30))

IA

C
rn/2+1 ”U”LZ(BZ,AMUz(yo)) + /2 HVUllLZ(BZ,AMl/z(YO))

= Fn/2+1 ”U)?:)”Lz(Eer/A(yo)) + /2 ||VU;:]”L2(E2rA/A(y0))

Cr'2||U |wra2s,).

IA

where we have used the inclusion By, /31/2(y0) C E2,4/2(yo) and the quasisymmetry
property in the third inequality and Lemma 9.3 in the forth. Therefore,

C
”V(U;))?o,r”Loo(BAl/z) = 172 ”VU”L""(B,A/,U/z(yo)) = C”U”WI’Z(BI)‘

Moreover, by C/!. convergence of (Uy*;)go,r to (U;‘o);’fo o0» We also have

loc
IV ol = i VWS, 1 es, 0 = CIU w2y (106)
Therefore,

1, < C|axo - ayo|||U||W1’2(Bl)
< C||U||W1,2(Bl)da.
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Step 5. Now we are ready to prove (10.3). Using the estimates in Steps 2—4 and taking the
average over d* < r < 2dT%, we have

/ Us)%0 = U3l < ClU w2y (@72 +d' 7 +d*7F +d%).
axOE)Bl
If we simply take t = «/2, then we conclude

[ 180~ W5l = Clxo = ol

axOE)Bl

withy = ad/4and C = C(n,a, M, |U ||w12(g,))-

Step 6. To prove (10.4), we first observe that from (10.3),
/a . ()0 (2) — ul)S (@) axy2)| = /8 i (U2 0(@xe2) — (Ug)0 o(dxe2)]
1

_ / [C2AR AP (AR TN

2B

Hxo
detay,

< Clxo — yol”.
On the other hand,

Mxo
detay,

/3 L 5,)800) = 05,0865 5202) = f . 05850 2) — ()8 (@5 o))

1) ~—1 ——1
E C”V(M;O)O ||LOO(B(A/A)1/2)|ax0 - yO

< CIVW;)S, olle, 12 x0 = vol*
< CU|lwr2(8y)1x0 — yol®.

where the last inequality follows from (10.6). (It is easy to see that we can enlarge the
domain in (10.6).) Therefore, combining the preceding two estimates, we conclude that

/BB 165)8 — 3)8] < Clxo — ol
1

Step 7. Finally, (10.4) implies (10.5), by arguing precisely as in [26, Proposition 7.4]. m

11. Regularity of the regular set

In this section we combine the uniqueness and Holder continuous dependence of 3/2-
homogeneous blowups of the symmetrized almost minimizers (U;o)f(),o (Lemma 10.3)
with a classification of such blowups at so-called regular points (Proposition 11.3) to prove
one of the main results of this paper, the C ¥ regularity of the regular set (Theorem 11.7).
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While some arguments follow directly from those in the case A = I by a coordinate
transformation Txo, the dependence of these transformations on x( creates an additional
difficulty.

We start by defining the regular set.

Definition 11.1 (Regular points). For an A-quasisymmetric almost minimizer U for the
A-Signorini problem in By, we say that a free boundary point x¢ of U is regular if

k(xg) = 3/2.

We denote the set of all regular points of U by R(U) and call it the regular set.

We explicitly observe here that 3/2 < 2 < kg, so the fact xg € R(U) is independent
of the choice of k¢ > 2, see Remark 7.4.

The proofs of the following two results (Lemma 11.2 and Proposition 11.3) are estab-
lished precisely as in [31, Lemma 9.2, Proposition 9.3] for the transformed functions u%, .
The equivalent statements for Uy, are obtained by changing back to the original variables.

Lemma 11.2 (Nondegeneracy at regular points). Let xo € B ;2N R(U) for an A-quasi-

symmetric almost minimizer U for the A-Signorini problem in By. Then, for k = 3/2,

t—0

liminf / (UE)?, )P ix, = detay, liminf / ()92 > 0.
aanBl ’ t—0 831

Proposition 11.3. If «(xg) < 2, then necessarily «(x¢) = 3/2 and

WE )8 (2) = axy Re(z' - vxy + |22 ])¥/2,
(U)? 0(x) = ax, Re((@5 %) - vy, +i|(@5 ) )¥2,
for some ay, > 0, vy, € dB].

The next two corollaries are obtained by repeating the same arguments as in [31,
Corollaries 9.4 and 9.5].

Corollary 11.4 (Almgren’s frequency gap). Let U and x¢ be as in Lemma 11.2. Then
either
k(x0) =3/2 or K(xo)>2.

Corollary 11.5. The regular set R(U) is a relatively open subset of the free boundary.
The combination of Proposition 11.3 and Lemma 10.3 implies the following lemma.
Lemma 11.6. Let U and xq be as in Lemma 11.2. Then there exists p > 0, depending on

xo such that B,(xo) N T'(U) C R(U) and if

W)?(z) = azRe(z' - vz +i|za])*?
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is the unique 3/2-homogeneous blowup of u% at X € B},(xo) N I"(u), then
laz —az| < Colx — 717,
vz —v3| < Colx — 317,
forany x,y € B") (x0) N T'(u) with a constant Cy depending on x.

Proof. The proof follows by repeating the argument presented in [26, Lemma 7.5] with
*\9 *\@
(u;c)oa (uy)0~ n

Now we are ready to prove the main result on the regularity of the regular set.

Theorem 11.7 (C ¥ regularity of the regular set). Let U be an A-quasisymmetric almost

minimizer for the A-Signorini problem in Bi. Then, if xo € Bi/z N R(U), there exists

p > 0, depending on xq such that, after a possible rotation of coordinate axes in R"™1,
one has B,(xo) N T'(U) C R(U), and

B, (x0) NT(U) = B,(x0) N {xn—1 = g(x1,...,Xn—2)},
for g € CYY(R"2) with an exponent y = y(n,a, M) € (0, 1).

Proof. The proof of the theorem is similar to those of in [31, Theorem 9.7] and [26,
Theorem 1.2]. However, we provide full details since there are technical differences.

Step 1. By relative openness of R(U) in T'(U), for small p > 0 we have Bép(xo) N
['(U) C R(U). We then claim that for any & > 0, there is ¢ > 0 such that for X € B},(xo) N
I'(U), r < re, we have that

10D)? = DYl gz, <&

Assuming the contrary, there is a sequence of points X; € B (xo) N I'(U) and radii r; — 0
such that

1), = @3l oo ) = <o
for some g9 > 0. Taking a subsequence if necessary, we may assume x; — Xo € B, (xo) N
I'(U). Using estimates (10.1)—(10.2), we can see that V(u;j )‘f] are uniformly bounded in
C% (B3 U B)). Since (u;j )?j (0) = 0, we also have that (u;j )?j is uniformly bounded in

chp (B2i U B)). Thus, we may assume that for some w
. 1, p+
(u;‘—cj);”] —w in CY(BY).

By arguing as in the proof of Proposition 8.1, we see that the limit w is a solution of the
Signorini problem in Bj. Further, by Lemma 10.2, we have

1z)? = wE)S IL1omy — 0.
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On the other hand, by Lemma 11.6, we have
%)y — )y in C'(BY),

and thus
w= (u;o)g on dB;.

Since both w and (u}o)g are solutions of the Signorini problem, they must coincide also
in B;. Therefore, o
W%)f — w3y in C'(BE),

implying also that
1) = @)l ez, = O
which contradicts our assumption.
Step 2. For a given & > 0 and a unit vector v € R”~! define the cone

C(v) = {x eR" | x"v > elx/|).

By Lemma 11.6, we may assume axz > % for x € B;,(xo) N I'(U) by taking p small. For
such p, we then claim that for any ¢ > 0, there is r, > 0 such that for any x € B;, (xo) N
'(U), we have

€ (vz) N B C {u3(-,0) > 0}.
Indeed, denoting K.(v) = €, N BB; /2> We have for some universal C, > 0

* * a
Ke(vs) €{@HFC0) > 0k By and  @DF(,0) = axCe = Z2C, on Ke(vs).

Since %Cg is independent of x, by Step 1 we can find r, > 0 such that for r < 2r,
W?(,0) >0 on Ke(vz).
This implies that for r < 2r,,
u;(0) >0 on rKe(vz) = C(vz) NIB, ).
Taking the union over all r < 2r,, we obtain
uz(~0) >0 onC(vz) N By .
Step 3. We claim that for given & > 0, there exists r, > 0 such that for any X € B (xp) N
['(U), we have — (€;(vz) N B ) C {u(-,0) = 0}.

Indeed, we first note that

" a
_ajn(u)_c)‘g >azCe > (%)Cg on — K.(vx),
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for a universal constant C; > 0. From Step 1, there exists r, > 0 such that for r < 2r,,
—3F W?(.00>0 on — Kc(vs).
By arguing as in Step 2, we obtain
—9% ui(,0)>0 on —(€(vzx) N By).
By the complementarity condition in Lemma 6.6, we therefore conclude that
—(€(vx) N B}) C {=035 u3(-.0) > 0} C {u}(-,0) = 0}.

Step 4. By direct computation, we have

Carzp-12,(0) N B}, Cax (Ce(vz) N By,),

where .,

A._ (ay )"z

T aghvg|
(Here (-)'* stands for the transpose of the matrix.) Indeed, if y’ € €12 kl/za(v;l) N
Bf/ll/ng’ then

- __1 -
y' e B,/ll/ng = a;(ai Bil/%) C azB; .

and

@ty ve) = (v, @)%z = (' v @) vzl
> (AP0 2]y ) (ATY/?)
= A712¢)y"| = elazly’].

Combining this with Step 2 and Step 3, for X € B},(xo) N ['(U),

X+ (\61\1/2}_*1/23(‘);_;1) N B,ﬁ/z,g) C X +az (C(vz) N B,)
C{U; (- 0) > 0},
i (\eAl/zA—l/zs(U;—;l) N ijzrs) C {UZ(,0) = O},

Step 5. By rotation in R”~! we may assume vfo = e,—1. Forany ¢ > 0, by Lemma 11.6
and the Holder continuity of A, we can take p, = p(xo, &, M), possibly smaller than p in
the previous steps, such that

/ A /
€2A1/21—1/23(en—1) N B)Ll/zrg C \€A1/2A—1/23(V;‘g) n B)Ll/zrg7

for X € B}, (xo) N I'(U). By Step 4, we also have

%+ (Caarzaiaglens) N Byyya,, ) € {UC,0) > O,
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)E - (€2A]/2)\_1/28(6n_1) N Bil/zrg) C {U(?O) = 0}

Now, fixing & = &g, by the standard arguments, we conclude that there exists a Lipschitz
function g: R"~2 — R with |Vg| < Cy, a/ &0 such that

B}, (x0) N{U(-.0) = 0} = B),_(x0) N{xn_1 < g(x")}.
By, (x0) N{U(-,0) > 0} = B, (x0) N {xn—1 > g(x")}.

Step 6. Taking e — 0in Step 5, I'(U) is differentiable at xo with normal v;fo. Recentering
at any X € B;)EO (xo) NT'(U), we see that T'(U) has a normal vé at X. By noticing that
X v;-;‘ is C%7, we conclude that the function g in Step 5 is C!*¥. This completes the
proof. ]

12. Singular points

In this section we study another type of free boundary points for almost minimizers, the
so-called singular set X (U). Because of the machinery developed in the earlier sections,
we are able to prove a stratification type result for 3 (U) (Theorem 12.8), following a
similar approach for the minimizers and almost minimizers with A = 1.

Definition 12.1 (Singular points). Let U be an A-quasisymmetric almost minimizer for
the A-Signorini problem in B;. We say that a free boundary point x¢ is singular if the
coincidence set A(U) = {U(-,0) = 0} C Bj has zero H"!-density at xo, i.e.,

- H" ' (A(U) N BJ(x0))

= 0.
r—0-+ H"1(B!)

We denote the set of all singular points by X (U) and call it the singular set.

Denote by &;O the (n — 1) x (n — 1) submatrix of a,, formed by the first (n — 1) rows
and columns. We then claim that there are constants C, ¢ > 0 depending only on 7, A, and
A such that

¢ <|detd) | < C. (12.1)

Indeed, this follows from the ellipticity of ay, and the invariance of both R”~! x {0} and
{0} x R under ay,, since we have

|deta’y (Gxo)nn| = |detay,| = |detay,|

and
|@xo)nnl = Hdxoen. en)| = laxoen| € [AV/2, AV,
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Recall now that for xo € I'(u), ux,(y) = U(ax,y + Xo) and note that a\; B, + xo =
E/(x0). Thus,

H""Y(A(U) N E}(xo)) = | detd), |H" ' (A(u},) N By). (12.2)
Now, by (12.2) and (12.1), together with Bj1/2,(x9) C Er(x0) C Bp1/2,(x0), we have

H™' (A(U) N Bl(x0)) H™ ' (AU) N EL(x0))

li =0 li =0
o, H1(BY) >0+ H"(EL(x0)
H"' (A(u%,) N B}
< lim (A, ’):o

r—>0+ H"1(B})
In terms of Almgren rescalings (u}, ) I we can rewrite the condition above as
: - I
rgr(gl-i- H" 1(A((u;km)r) N Bi) = 0.

We then have the following characterization of singular points.

Proposition 12.2 (Characterization of singular points). Let U be an A-quasisymmetric
almost minimizer for the A-Signorini problem in By, and xy € Bi/z N T'(U) be such that
k(x9) = k < ko. Then the following statements are equivalent.

(i) xo€ Z(U).

(i) Any Almgren blowup (u;o){) of uy, at 0 is a nonzero polynomial from the class

Q, = {q | q is homogeneous polynomial of degree k such that
Ag=0,q(y".0)=0. g0y, yn) =q('.—yn)}-

(iii)) Any Almgren blowup (U;‘O);‘O,O of U;‘O at xg is a nonzero polynomial from the

class

(Q,‘f’x" = {p | p is homogeneous polynomial of degree k such that
div(A(x0)Vp) =0, p(x".0) = 0, p(x) = p(PxyX)}.

@iv) «(xo) = 2m for some m € N.

Proof. This is the analogue of [31, Proposition 10.2] in the case A = 1.

Clearly, (ii) and (iii) are equivalent. By Proposition 8.1, any Almgren blowup (u;O)é
of u%, at 0 is a nonzero global solution of the Signorini problem, homogeneous of degree
K.*Moreover, (u;o){, is a Ckl)C limit of Almgren rescalings (u%, f] in R, U R" 1 Since

uy, also satisfies the complementarity condition in Lemma 6.6, the equivalence among
(1), (ii) and (iv) follows by repeating the arguments in [31, Proposition 10.2]. [ ]

In order to proceed with the blowup analysis at singular points, we need to remove
the logarithmic term from the growth estimates in Lemma 9.1. This was achieved in [31,
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Lemma 10.8] in the case A = I by using a bootstrapping argument [31, Lemmas 10.4—
10.6, Corollary 10.7], based on the log-epiperimetric inequality of [11]. All the arguments

above work directly for u%, (and then for Uy,

o> DY deskewing) and we obtain the following

optimal growth estimate.

Lemma 12.3 (Optimal growth estimate at singular points). Let U be an A-quasisym-
metric almost minimizer for the A-Signorini problem in Bi. If x¢ € Bl/2 NTU) and
K(x9) = Kk < kg, Kk = 2m, m € N, then there are ty and C, depending on n, a, M, k, ko,
1U llw1.2(B,), such that for 0 <t < to,

/ (u;O)Z < Cln+2K_1, / |Vu;0|2 < Cln+2K_2,
d0B; B;

/ (U;O)Z < Ctn+2K_l, / |VU;<O|2 < Ctn+2x—2.
E¢(x0) E;(xo0)

With this growth estimate at hand, we now proceed as in the beginning of Section 10
but with k = 2m < k¢ in place of k = 3/2. Namely, for such «, let

D) = be(r) = e D" 0 <1 <1,

where b = w is as in Weiss-type monotonicity formula. Then, define the «-almost
homogeneous rescalings of a function v at x¢ by
v(rx + xo)
vl () 1= ——
¢(r)

Again, when xo = 0, we simply write vg’,r = vg’.

The growth estimates in Lemma 12.3 enable us to consider k-homogeneous blowups
Wh)? — 38 in CL(RL UR™™),
( )xo t; ( )xo 0 in Cl(ljc(Rr:i: U Rnil)»

fort = t; — 0+, similar to 3/2-homogeneous blowups in Section 10.

Furthermore, the arguments in [31, Proposition 10.10] also go through for u;‘;o (and
then for Uy, by deskewing), and we obtain the following rotation estimate for almost
homogeneous rescalings.

Proposition 12.4 (Rotation estimate). For U and x¢ as in Lemma 12.3, there exist C > 0
and ty > 0 such that

=
¢ n—2
., 1050f )81 = € (10g ) 7.

/ax Z)Bl|( )xot (Uy )xosl_ (logl)_m’

0

for 0 < s <t < ty. In particular, the blowups (u;o)g and (U;o)io,o are unique.
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We next show that the rotation estimate as above holds uniformly for u, replaced

¢

: in the

with its Almgren rescalings (u},)f, 0 < r < 1. (Note that the objects [(u} )]
proposition below are «x-almost homogeneous rescalings of Almgren rescalings.)

Proposition 12.5. For U and x¢ as in Lemma 12.3 and 0 < r < 1, there are C > 0 and
to > 0, independent of r such that
1
n—2

/E)Bl = C(log %) ’
¢
0

for0 < s <t <ty Inparticular, the k-homogeneous blowup [(u;o)f] is unique.

[z )E17 = [ IS

Proof. We first observe that since uy, has the almost Signorini property at 0, (u;O)f
also has the almost Signorini property at 0. This implies that W (p, (u5, 7,0) and

N ko (05 (U3, I 0) are monotone nondecreasing on p. Thus,
Ny 0+, (u},)f.0) = ,}f}, Ny (p. u})F.0) = ,}2‘}) N o (pr.u},, 0)

= k(x9) = k.

Fix R > 1. If ¢ is small, then we can argue as in the proof of Proposition 8.1 to obtain that
for any K € B% U Bg,

[az)r?

t

= Clna M. R K| [05)1]?

CLA(K) W12(Bg)

Those are all we need to proceed all the arguments with (u;O)f as in [31, Lemmas 10.4—
10.6, Corollary 10.7, Lemma 10.8, and Proposition 10.10]. This completes the proof. =

Once we have Proposition 12.5, we can argue as in [31, Lemma 10.11] to obtain the
nondegeneracy for u, , and also for Uy .

Lemma 12.6 (Nondegeneracy at singular points). Let U and xo be as in Lemma 12.3.
Then

1
o N R TI ¥ \2
it [ OR)7 = it s [ 07 >0

lim inf
t—0 o d

0

1
U*\® 2=1irninf—/ Uz)?*>0.
Bl(( vo)x0.t) t—>0 (rt2e-1 aE,(xo)( =)

To state our main result on the singular set, we need to introduce certain subsets of
3(U).Fork =2m < kg, m € N, let

Ze(U) :={x0 € Z(U) | k(x0) =k} = I'c (V).

Note that the last equality follows from the implication (iv) = (i) in Proposition 12.2.
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Lemma 12.7. The set X, (U) is of topological type Fy; i.e., it is a countable union of
closed sets.

Proof. For j e N, j > 2, let

1

1 1
Fﬁ:.meE(UMW&q'|f§————/1 U< mr0<p<—f}
J { K i j = prtawl OE, (x0) xo 2j

Note that if x; — xo, then by the local uniform continuity of U and A4,

f UX)? — (UZ)>.
AE,(x;) 9E(x0)

Using this, together with Lemma 12.3, Lemma 12.6 and Lemma 9.1, we can argue as
in [31, Lemma 10.12] to prove that X, (U) = UJ?°°=2F]- and each Fj is closed. [ ]

Next, for k = 2m < kg, m € N and x¢ € X, (U), we define
d = dim{& € R"™ | £ Vy(ul )5 (»'.0) = 0on R"71},

which has the meaning of the dimension of X, (”;0) at 0, and where (u;"m)g is the unique
k-homogeneous blowup of u} at 0. We note here that dﬁﬁ) can only take the values 0,
1, ..., n — 2. Indeed, otherwise (uio)g would vanish identically on IT and consequently
on R”, since it is a solution of the Signorini problem, even symmetric with respect to

IT (see [24]). However, that would contradict the nondegeneracy Lemma 12.6. Then, for
d=0,1,...,n—2,let

S4(U) = {x0 € T (U) | d¥) = d}.

Theorem 12.8 (Structure of the singular set). Let U be an A-quasisymmetric almost min-
imizer for the A-Signorini problem in By. Then for every k = 2m < ko, m € N, and
d=0,1,...,n—2, the set E,‘f (U) is contained in the union of countably many subman-
ifolds of dimension d and class C 11°2,

Proof. We follow the idea in [31, Theorem 10.13]. For xg € X, (U) N B;/z’ let gy, €
@ denote the unique x-homogeneous blowup of uy at 0. By the optimal growth

(Lemma 12.3) and the nondegeneracy (Lemma 12.6), we can write

Axo = nxoq)io, Nxo > 0, ”q;oan(aBl) =1

where q)go € @, is the corresponding Almgren blowup. If x1, x, € X, (U) N Bi/z’ for
t > 0, to be chosen below, we can write
g2, = @ 1081y < gy — ) Lrcasyy + 103D = @5 L1 o)
+ llgxs — ) L1 o8,
N
= C(tog 1) N!0 i (12.3)
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where we have used Proposition 12.4 in the second inequality. Moreover, we have

1 _ _
@z )? = @i)? I omy) = %0 /BB |U(tax,y + x1) + U(Py, (135, y + X1))
1

— U(tag,y + X2) — U(Px, (tax,y + X2))| dSy

C

< Jaz,
+ |U(Py, (taz, y + x1)) — U(Py, (182, 5 + X2))|

+ |U(Px1 (tax,y + x2))—U(Px, (t0x,y + x2))|) dsy

IA

(\U(zaxly +x1) = Ultag,y + )]

IA

C _ _
[_KHVU”L“’(BI) (|ax1_ax2|+|xl —x2|+|Px1 _PxZ|)

o
X1 — x|

< cl = Clx1— x|, (12.4)

[K
if we choose = |x; — x|2¢ and have |x; — x5| < (1/4A_1)Ll/2)2<7'c. Combining (12.3)
and (12.4), we obtain

__1
n—2

1
_ < C(lo —)
||Qx1 QXz”Ll(BBl) = g lx1 — xa]

After this, we can repeat the argument in the proof of [31, Theorem 10.13] to obtain the

estimates that for xg € X, (U) N Bi/z’ there is § = §(x¢) > O such that

1 =
Inxl—nlefC(log—) ,
|x1 — x2]

1 - (nlf)
lgt, — g lLes)) < C(log m) 0D xs € Se(U) N Bs(xo).
1 — A2

li
1/2°

m e N, let py, € (,‘2,‘;1 **% be the unique k-homogeneous blowup of Uy, at xo. Then we can
write

Now, we also have the similar result for U;‘O. For xg € Z,(U)N B where k = 2m,

Pxo = ey Py: My > 0. 1P% 2208y = 1.
A

X0

where pZ € (Q,‘f’xo is the corresponding Almgren blowup of Uy . Using that

gl (2) = (detax))"/? pi (axe2),  xo(2) = Pro(axy2).

together with the ellipticity and Holder continuity of ay, and the homogeneity of blowups,

we easily conclude that for xo € X, (U) N B;/z, there is § = §(xg) > O such that

1 _+
4 _pA <C(1o —) 202
I, — M, | < g|xl_x2| ,

1 - (nl—)
P, — P llLosesy < C(log m) P x1.x2 € Be(U) N Bs(xo).
1 — A2
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Once we have these estimates, as well as Lemma 12.7, we can apply the Whitney
Extension Theorem of Fefferman [22] to complete the proof, similarly to that of [11, The-
orem 1.7]. [

A. Example of almost minimizers

Example A.1. Let U be a solution of the A-Signorini problem in B; with velocity field
be LP(By), p>n:

—div(AVU) + (b(x),VU) =0 in B,
U>0, (AVU ')+ (AVUv") >0, U(AVUv")+ (AVU,v7) =0 on B},

where vt = Fe, and (AVU, v¥) on B/ are understood as the limits from inside Bit. We
interpret this in the weak sense that U satisfies the variational inequality

/ (AVU, V(W =U)) + (b, VU)W =U) = 0,
B,

for any competitor W € &,y (B1, IT). Then U is an almost minimizer of the A-Signorini
problem in B; with thin obstacle ¥ = 0 on IT = R”~! x {0} and a gauge function w(r) =
Crl_n/p, C=C(n,p,A, A)||b||z,,(31).

Proof. Forany E,(xo) € By and W € Ko, (Er(x0), IT), we extend W as equal to U in
B1\ E,(x¢) to obtain
/ (AVU, V(W =U)) + (b, VU)(W =U) > 0. (A.1)
Er(xo)
Let V' be the minimizer of the energy functional

/ (AVV,VV) on Ko,u(Er(xo), I).
Er(xO)

Then it follows from a standard variation argument that V' satisfies the variational inequal-
ity
/ (AVV, V(W —V)) >0 forany W e Ko,u(E;(xo), I). (A.2)
E;(x0)

Taking W =U £ (U — V)T in(A.l)and W = V + (U — V)T in (A.2), we obtain
/ (AVWU = V)T, V(U -V)T) < —/ (b,VUYWU —V)™*.
E;(x0) Ey(xo0)
Similarly, taking W = U + (V = U)tin(A.)and W =V &£ (V — U)™ in (A.2), we
get

/ (AV(V =)t V(V -U)T) < / (b, YUYV —U)™.
Ey(x0) Ey(x0)
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These two inequalities give

/ (AV(U = V),V(U -V)) 5/ |b||IVUI||IU —V|.
E;(xo)

E;(x0)

Applying Holder’s inequality,

/ VU -WP <2 [ AU V).V - )
E;(x0) E;(x0)

< A7 UblLr & o IVU 2, cop 1T = VLo (£, (xo))

with p* =2p/(p—2).SinceU —V € WOI’Z(Er(xO)) and diam(E;, (xo)) < 2A'/2r, from
the Sobolev’s inequality,

U = VLo, (xoyy < €. p As AP PV (U = V) 12, (x0)-

Now we have

V(U = V)2 < cr2<1—"/1’)/ VU2, (A.3)

E;(x0) Ey(x0)

with C = C(n, p, A, A)||b||1%p(Bl). Thus,

/ (AVU,VU)—/ (AVV,VV) =/ (AV(U + V), V(U - V))
Ey(x0) E;(x0) Er(xo0)

§C/ V(U + VIV - V)|
E, (XO)

< cry/ (|VU|2 + |VV|2) + Cr_y/ V(U - V))?
Ey(x0) E

r(x0)

< Cry/ (AVU,VU)—i—Cr”/ (AVV,VV)
E;(xo0) E

r(X0)

N Crza—n/m—y/ (AVU,VU),
Ey(x0)

where we applied Young’s inequality and used (A.3) at the end. We choose y = 1—n/p

to complete the proof. [ ]

Funding. S.J. is supported in part by Purdue Research Foundation. A. P. is supported in
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