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Almost minimizers for the thin obstacle problem with
variable coefficients

Seongmin Jeon, Arshak Petrosyan, and Mariana Smit Vega Garcia

Abstract. We study almost minimizers for the thin obstacle problem with variable Hölder continu-
ous coefficients and zero thin obstacle, and establish their C 1;ˇ regularity on the either side of the
thin space. Under an additional assumption of quasisymmetry, we establish the optimal growth of
almost minimizers as well as the regularity of the regular set and a structural theorem on the singular
set. The proofs are based on the generalization of Weiss- and Almgren-type monotonicity formulas
for almost minimizers established earlier in the case of constant coefficients.
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1. Introduction and main results

1.1. The thin obstacle (or Signorini) problem with variable coefficients

Let D be a domain in Rn, n � 2, and … a smooth hypersurface (the thin space), that
splits D into two subdomains D˙: D n … D DC [ D�. Let  W… ! R be a certain
(smooth) function (the thin obstacle) and gW @D ! R (the boundary values). Let also
A.x/ D .aij .x// be an n � n symmetric uniformly elliptic matrix, ˛-Hölder continuous
as a function of x 2D, for some 0 < ˛ < 1, with ellipticity constants 0 < �� 1�ƒ<1:

�j�j2 � hA.x/�; �i � ƒj�j2; x 2 D; � 2 Rn:

Then consider the minimizer U of the energy functional

JA;D.V / D

Z
D

hA.x/rV;rV idx;

over a closed convex set K ;g.D;…/ � W
1;2.D/ defined by

K ;g.D;…/´ ¹V 2 W
1;2.D/ j V D g on @D, V �  on … \Dº:

Because of the unilateral constraint on the thin space …, the problem is known as the thin
obstacle problem. Away from …, the minimizer solves a uniformly elliptic divergence
form equation with variable coefficients

div.A.x/rU/ D 0 in DC [D�:

On the thin space, the minimizers satisfy

U �  ; hArU; �Ci C hArU; ��i � 0;

.U �  /.hArU; �Ci C hArU; ��i/ D 0 on D \…;

in a certain weak sense, where �˙ are the exterior normals toD˙ on… and hArU; �˙i are
understood as the limits from inside D˙. These are known as the Signorini complemen-
tarity conditions and therefore the problem is often referred to as the Signorini problem
with variable coefficients (or A-Signorini problem, for short). One of the main objects of
the study is the free boundary

�.U / D @…¹x 2 … j U.x/ D  .x/º \D;

which separates the coincidence set ¹U D  º from the noncoincidence set ¹U >  º in
D \…. The set �.U / is also called a thin free boundary as it lives in … and is expected
to be of codimension two with respect to the domain D.

These types of problems go back to the original Signorini problem in elastostatics [41],
but also appear in many applications ranging from math biology (semipermeable mem-
branes) to boundary heat control [21] or more recently in math finance, with connection to
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the obstacle problem for the fractional Laplacian, through the Caffarelli–Silvestre exten-
sion [8]. The presence of the free boundary makes the problem particularly challenging
and while the C 1;ˇ regularity of the minimizers (on either side of the thin space) was
known already in [9,32,43], the study of the free boundary became possible only after the
breakthrough work of [3] on the optimal C 1;1=2 regularity of the minimizers. Since then
there has been a significant effort in the literature to understand the structure and regu-
larity properties of the free boundary in many different settings including equations with
variable coefficients, problems for the fractional Laplacian, as well as the time-dependent
problems, see e.g. [4–7, 10–13, 18, 23–28, 33–37, 39, 40, 42], and many others.

1.2. Almost minimizers

The approach we take in this paper is by considering the so-called almost minimizers
of the functional JA;D in the sense of Anzellotti [2]. For this we need a gauge function
!W .0; r0/! Œ0;1/, r0 > 0, which is a nondecreasing function with !.0C/ D 0, as well
as a family ¹Er .x0/º0<r<r0 of open sets for any x0 2 D, comparable to balls centered at
x0 (in what comes next, we will take it to be a family of ellipsoids).

Definition 1.1 (Almost minimizers). We sayU is an almost minimizer for theA-Signorini
problem inD if U 2W 1;2

loc .D/, U �  onD \…, and for any Er .x0/ bD with 0 < r <
r0, we have Z

Er .x0/

hArU;rU i � .1C !.r//

Z
Er .x0/

hArV;rV i; (1.1)

for any competitor function V 2 K ;U .Er .x0/;…/, i.e., V satisfying

V D U on @Er .x0/; V �  on Er .x0/ \…:

In fact, observing that for x; x0 2 D, and � 2 Rn, � ¤ 0

.1 � C jx � x0j
˛/ �

hA.x0/�; �i

hA.x/�; �i
� .1C C jx � x0j

˛/;

with C depending on the ellipticity of A and kAkC 0;˛.D/, we can rewrite (1.1) in the form
with frozen coefficientsZ

Er .x0/

hA.x0/rU;rU i � .1C !.r//

Z
Er .x0/

hA.x0/rV;rV i; (1.2)

by replacing the gauge !.r/ with C.!.r/C r˛/ if necessary.
An example of an almost minimizer is given in Appendix. Generally, we view almost

minimizers as perturbations of minimizers in a certain sense, but in the case of variable
coefficients there are even some advantages of treating minimizers themselves as almost
minimizers, particularly in the sense of frozen coefficients (1.2).

Almost minimizers for the Signorini problem have already been studied in [31] in the
case A.x/ � I , where their C 1;ˇ -regularity (on either side of the thin space) has been
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established and a number of technical tools such as Weiss- and Almgren-type monotonic-
ity formulas were proved. In combination with the epiperimetric and log-epiperimetric
inequalities these tools allowed to establish the optimal growth and prove the C 1;
 -regu-
larity of the regular set and a structural theorem on the singular set. The aim of this paper is
to extend these results to the variable coefficient case. It is noteworthy that the results that
we obtain (see Theorems I–IV below) for almost minimizers improve even on some of the
results available for the minimizers. For example, we only need the coefficients A.x/ to
be C 0;˛ with arbitrary 0 < ˛ < 1 in order to study the free boundary, compared to W 1;p ,
p > n, in [36] or C 0;˛ , 1=2 < ˛ < 1, in [40] for the regular part of the free boundary and
C 0;1 in [27] for the singular set.

A related notion of almost minimizers has been considered recently in [30] for the
obstacle problem for the fractional Laplacian, with the help of the Caffarelli–Silvestre
extension. While the C 1;ˇ regularity of almost minimizers holds for the fractional orders
1=2 � s < 1, the study of the free boundary still remains open.

Almost minimizers have been studied also for other free boundary problems, particu-
larly Alt–Caffarelli-type (or Bernoulli-type) problems [15, 16, 19], their thin counterpart
[20], as well as the variable coefficient versions [14, 17]. We have to mention that the
Signorini problem is quite different from Alt–Caffarelli-type problems, as the solutions
may grow at different rates near the free boundary (such as 3=2, 2, 7=2, 4, . . ., powers
of the distance), as opposed to a specific rate in Alt–Caffarelli-type problems (linear in
the classical case and the square root of the distance in the thin counterpart). Therefore,
it is quite important that the almost minimizing property that we impose for the Signorini
problem is multiplicative, to allow the capture of all possible rates, while the almost min-
imizing property in the Alt–Caffarelli-type problems can be also imposed in an additive
way, see [14].

1.3. Main results

Since we are interested in local regularity results, we will assume that D D B1, the unit
ball in Rn, and that

… D Rn�1 � ¹0º

after a local diffeomorphism. In this paper, we will consider only the case when the thin
obstacle is identically zero:  � 0.

Further, we will assume r0 D 1 in Definition 1.1 and take ¹Er .x0/º to be the family
of ellipsoids associated with the positive symmetric matrix A.x0/:

Er .x0/´ A1=2.x0/.Br /C x0:

By the ellipticity of A.x0/, we have

B�1=2r .x0/ � Er .x0/ � Bƒ1=2r .x0/:

To simplify the tracking of the constants, we will assume that there is M > 0 such that

kAkC 0;˛.B1/ �M; ��1; ƒ �M; !.r/ �Mr˛; 0 < ˛ < 1: (1.3)
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Then we can go between almost minimizing properties (1.1) and (1.2) by changing M if
necessary.

Then our first result is as follows.

Theorem I (C 1;ˇ -regularity of almost minimizers). Let U 2 W 1;2.B1/ be an almost
minimizer for the A-Signorini problem in B1, under the assumptions above. Then, U 2
C
1;ˇ
loc .B

˙
1 [B

0
1/ for ˇ D ˇ.˛; n/ 2 .0; 1/ and

kU kC 1;ˇ .K/ � CkU kW 1;2.B1/;

for any K b B˙1 [ B
0
1 and C D C.n; ˛;M;K/.

The proof is obtained by using Morrey and Campanato space estimates, following the
original idea of Anzellotti [2] that was successfully used in the constant coefficient case
of our problem in [31]. We explicitly mention, however, that in the above theorem we do
not require the even symmetry of the almost minimizer in the xn-variable, so Theorem I
extends the corresponding result in [31] also in that respect.

To state our results related to the free boundary, we need to assume the following
quasisymmetry condition. For x0 2 B 01 D B1 \…, let

Px0 D I � 2
A.x0/en ˝ en

ann.x0/

be a matrix corresponding to the reflection with respect to … in the conormal direction
A.x0/en at x0. Note that Px0x D x for any x 2… and Px0Er .x0/ D Er .x0/. Then, for a
function U in B1 define

U �x0.x/´
U.x/C U.Px0x/

2
:

Note that U �x0 may not be defined in all of B1, but is defined in any ellipsoid Er .x0/ as
long as it is contained in B1. Note also that U D U �x0 on ….

Definition 1.2 (Quasisymmetry). We say that U 2 W 1;2.B1/ is A-quasisymmetric with
respect to …, if there is a constant Q such thatZ

Er .x0/

hA.x0/rU;rU i � Q

Z
Er .x0/

hA.x0/rU
�
x0
;rU �x0i;

for any ellipsoid Er .x0/ b B1 centered at any x0 2 B 01.
We will assume Q �M throughout the paper, in addition to (1.3).

Note that when A.x/� I and U is even in xn, then it is automatically quasisymmetric
in the sense of the above definition. The quasisymmetry condition will also hold for even
minimizers if en is an eigenvector of A.x0/ for any x0 2 B 01, i.e., when

ain.x0/ D 0; for i D 1; : : : ; n � 1; x0 2 B 01:

This condition is typically imposed in the existing literature and can be satisfied with an
application of a local C 1;˛-diffeomorphism that preserves …, see [28, 40, 44]. The reason
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for a quasisymmetry condition is that the growth rate of the symmetrization U �x0 over the
ellipsoidsEr .x0/ captures that of U DU �x0 on the thin space… at x0 2 �.U /, while in the
nonsymmetric case there could be a mismatch in those rates caused by the odd component
of U , vanishing on ….

More specifically, the growth rate of U on … at x0 2 �.U / is determined by the
following quantity

NA.r; U �x0 ; x0/´
r
R
Er .x0/

hA.x0/rU
�
x0
;rU �x0iR

@Er .x0/
.U �x0/

2�x0.x � x0/
;

which is a version of Almgren’s frequency functional [1] written in the geometric terms
determined by A.x0/, where �x0.z/ D

jA�1=2.x0/zj

jA�1.x0/zj
is the conformal factor. As in the con-

stant coefficient case, this quantity is of paramount importance for the classification of
free boundary points.

Theorem II (Monotonicity of the truncated frequency). Let U be as in Theorem I and
assume additionally that U is A-quasisymmetric with respect to …. Then for any �0 � 2,
there is b D b.n; ˛;M; �0/ such that the truncated frequency

r 7! bNA
�0
.r; U �x0 ; x0/´ min

²
1

1 � br˛
NA.r; U �x0 ; x0/; �0

³
is monotone increasing for x0 2 B 01=2 \ �.u/, and 0 < r < r0.n; ˛;M; �0/. Moreover, if
we define

�.x0/´ bNA
�0
.0C; U �x0 ; x0/;

the frequency of U at x0, then we have that either

�.x0/ D 3=2 or �.x0/ � 2:

The monotonicity of the truncated frequency follows from that of a one-parametric
family of the so-called Weiss-type energy functionals ¹W A

� º0<�<�0 , see Section 7, which
also play a fundamental role in the analysis of the free boundary.

The theorem above gives the following decomposition of the free boundary

�.U / D �3=2.U / [
[
��2

��.U /;

where
��.U /´ ¹x0 2 �.U / j �.x0/ D �º:

The set �3=2.U /, where the frequency is minimal is known as the regular set and is also
denoted by R.U /.

Theorem III (Regularity of the regular set). Let U be as in Theorem II. Then R.U / is a
relatively open subset of the free boundary �.U / and is an .n � 2/-dimensional manifold
of class C 1;
 .
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Finally, we state our main result for the so-called singular set. A free boundary point
x0 2 �.U / is called singular if the coincidence set ƒ.U /´ ¹x 2 B 01WU.x/ D 0º has
Hn�1-density zero at x0, i.e.,

lim
r!0C

Hn�1.ƒ.U / \ B 0r .x0//

Hn�1.B 0r /
D 0:

We denote the set of all singular points by †.U / and call it the singular set. It can be
shown that if �.x0/ < �0, then x0 2 †.U / if and only if �.x0/ D 2m, m 2 N (see Propo-
sition 12.2). For such values of �, we then define

†�.U /´ ��.U /:

Theorem IV (Structure of the singular set). Let U be as in Theorem II. Then, for any
� D 2m < �0, m 2 N, †�.U / is contained in a countable union of .n � 2/-dimensional
manifolds of class C 1;log.

A more refined version of this result is given in Theorem 12.8.
Theorems III and IV follow by establishing the uniqueness and continuous depen-

dence of almost homogeneous blowups with Hölder modulus of continuity in the case
of regular free boundary points and a logarithmic one in the case of the singular points.
These follow from optimal growth and rotation estimates which are based on the use of
Weiss-type monotonicity formulas in conjunction with the so-called epiperimetric [26]
and log-epiperimetric [11] inequalities for the solutions of the Signorini problem.

1.3.1. Proofs of Theorems I–IV. While we don’t give formal proofs of the theorems
above in the main body of the paper, they are contained in the following results proved
there:

ı Theorem I is essentially the same as Theorem 5.2.

ı Theorem II follows by combining Theorem 7.2 and Corollary 11.4.

ı The statement of Theorem III is contained in that of Theorem 11.7.

ı The statement of Theorem IV is contained in that of Theorem 12.8.

1.4. Notation

We use the following notation throughout the paper.
Rn stands for the n-dimensional Euclidean space. The points of Rn are denoted by xD

.x0; xn/, where x0 D .x1; : : : ; xn�1/ 2 Rn�1. We often identify x0 2 Rn�1 with .x0; 0/ 2
Rn�1 � ¹0º. Rn

˙
stand for open halfspaces ¹x 2 Rn j ˙xn > 0º.

For �; � 2 Rn, the standard inner product is denoted by h�; �i. Thus, j�j2 D h�; �i,
where j�j is the Euclidean norm of �.

For x 2 Rn, r > 0, we denote

Br .x/´ ¹y 2 Rn j jx � yj < rº; ball in Rn,
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B˙r .x
0/´ Br .x

0; 0/ \ ¹˙xn > 0º; half-ball in Rn,

B 0r .x
0/´ Br .x

0; 0/ \ ¹xn D 0º; ball in Rn�1, or thin ball.

We typically drop the center from the notation if it is the origin. Thus, Br ´ Br .0/,
B 0r ´ B 0r .0/, etc.

For a function f in Rn, rf denotes its gradient (in the classical or weak sense)

rf ´ .@x1f; @x2f; : : : ; @xnf /;

where @xif are the partial derivatives in the variables xi , i D 1; 2; : : : ; n.
In integrals, we often drop the variable and the measure of integration if it is with

respect to the Lebesgue measure or the surface measure. Thus,Z
Br

f D

Z
Br

f .x/dx;

Z
@Br

f D

Z
@Br

f .x/dSx ;

where Sx stands for the surface measure.
If E is a set of positive and finite Lebesgue measure, we indicate by hf iE the integral

mean value of a function u over E. That is,

hf iE ´ �

Z
E

f D
1

jEj

Z
E

f:

2. Coordinate transformations

In order to use the results available for almost minimizers in the case of A � I , proved
in [31], in this section we describe a “deskewing procedure” or coordinate transformations
to straighten A.x0/, x0 2 B1.

For the notational convenience, we will denote

ax0 D A
1=2.x0/; x0 2 B1

so that
hA.x0/�; �i D jax0�j

2; � 2 Rn:

Then ax0 is a symmetric positive definite matrix, with eigenvalues between �1=2 andƒ1=2

and the mapping x0 7! ax0 is ˛-Hölder continuous for x0 2 B1. For every x0 2 B1, we
define an affine transformation Tx0 by

Tx0.x/ D a�1x0 .x � x0/:

Note that T �1x0 .y/ D ax0y C x0. Then for the ellipsoids Er .x0/, we have

Er .x0/ D T
�1
x0
.Br / D ax0Br C x0; Tx0.Er .x0// D Br :

Further, we let
…x0 ´ Tx0.…/:

Then …x0 is a hyperplane parallel to a linear subspace a�1x0… spanned by the vectors
a�1x0 e1, a�1x0 e2, . . ., a�1x0 en�1 and with a normal ax0en. Generally, this hyperplane will be
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tilted with respect to …, unless ax0en is a multiple of en, or equivalently that en is an
eigenvector of the matrix A.x0/, or that ain.x0/ D 0 for i D 1; : : : ; n � 1 for its entries.
To rectify that, we construct a family of orthogonal transformations Ox0 , x0 2 B1, by
applying the Gram–Schmidt process to the ordered basis ¹a�1x0 e1;a

�1
x0
e2; : : : ;a

�1
x0
en�1º of

a�1x0…. Namely, let

e
x0
1 ´

a�1x0 e1

ja�1x0 e1j
;

e
x0
2 ´

a�1x0 e2 � ha
�1
x0
e2; e

x0
1 ie

x0
1

ja�1x0 e2 � ha
�1
x0
e2; e

x0
1 ie

x0
1 j
;

e
x0
3 ´

a�1x0 e3 � ha
�1
x0
e3; e

x0
1 ie

x0
1 � ha

�1
x0
e3; e

x0
2 ie

x0
2

ja�1x0 e3 � ha
�1
x0
e3; e

x0
1 ie

x0
1 � ha

�1
x0
e3; e

x0
2 ie

x0
2 j

:::

Moreover, letting

ex0n ´
ax0en

jax0enj
;

we obtain an ordered orthonormal basis ¹ex01 ; : : : ; e
x0
n�1; e

x0
n º of Rn. Then consider the

rotation Ox0 of Rn that takes the standard basis ¹e1; e2; : : : ; enº to the one above, i.e.,

Ox0 WR
n
! Rn; Ox0.ei / D e

x0
i ; i D 1; 2; : : : ; n:

Note that the Gram–Schmidt process above guarantees that x0 7! Ox0 is ˛-Hölder con-
tinuous. We also have that by construction

O�1x0 a�1x0… D …:

In particular, when x0 2 …, we have …x0 D a�1x0… and therefore

O�1x0 .…x0/ D …:

Because of this property, we also define the modifications of the matrices ax0 and the
transformations Tx0 as follows:

Nax0 D ax0Ox0 ; NTx0 D O
�1
x0
ı Tx0 ;

so that NTx0.x/ D Na
�1
x0
.x � x0/. Since Ox0 is a rotation, we still have

Er .x0/ D NT
�1
x0
.Br /; NTx0.Er .x0// D Br ;

see Figure 1.
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Tx0
))

O�1x0
))

NTx0

11

Er .x0/ Br

… …x0
…

Figure 1. Deskewing: coordinate transformations Tx0 , O�1x0 , NTx0 .

Next, for a function U WB1!R and a point x0 2B1, we define its “deskewed” version
at x0 by

ux0 D U ı
NT �1x0 :

As we will see, if U is an almost minimizer, the transformed function ux0 will satisfy an
almost minimizing property with the identity matrix I at the origin. Before we state and
prove that fact, we need the following basic change of variable formulas:Z

Er .x0/

U 2 D det ax0

Z
Br

u2x0 (2.1)Z
Er .x0/

hA.x0/rU;rU i D det ax0

Z
Br

jrux0 j
2 (2.2)Z

@Er .x0/

U 2�x0.x � x0/ D det ax0

Z
@Br

u2x0 ; (2.3)

with the conformal factor

�x0.z/´
ja�1x0 zj

jA�1.x0/zj
: (2.4)

We also have the following modified version of (2.2).Z
Er .x0/

jax0rU � hax0rU iEr .x0/j
2
D det ax0

Z
Br

jrux0 � hrux0iBr j
2: (2.5)

While (2.1)–(2.2) and (2.5) are clear, let us give more details on (2.3). If we let f .x/´
ja�1x0 .x � x0/j, then ¹f D tº D @Et .x0/, t > 0, and by the coarea formulaZ

Er .x0/

U 2dx D

Z r

0

Z
@Et .x0/

U 2

jrf .x/j
dSxdt:

Using now that 1=jrf .x/j D
ja�1x0 .x�x0/j

jA�1.x0/.x�x0/j
D�x0.x � x0/ and then differentiating (2.1),

we obtain (2.3).
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We will also need the following estimate for the conformal factor �x0 :

�1=2 � �x0.z/ � ƒ
1=2:

Indeed, if y D A�1.x0/z, then

�x0.z/ D
jax0yj

jyj
2 Œ�1=2; ƒ1=2�:

Definition 2.1 (Almost Signorini property at a point). A function u 2 W 1;2.BR/ satisfies
the almost Signorini property at 0 in BR ifZ

Br

jruj2 � .1C !.r//

Z
Br

jrvj2;

for all 0 < r < R and v 2 K0;u.Br ;…/.

Lemma 2.2. Suppose U is an almost minimizer of the A-Signorini problem in B1. Let
x0 2 B

0
1 be such that ER.x0/ � B1. Then ux0 D U ı NT

�1
x0

satisfies the almost Signorini
property at 0 in BR.

Proof. Let V be the energy minimizer of
R
Er .x0/

hA.x0/rV;rV i on K0;U .Er .x0/; …/,
0 < r <R. Then vx0 D V ı NT

�1
x0

is the energy minimizer of
R
Br
jrvx0 j

2 on K0;ux0
.Br ;…/.

Moreover, by (2.2),Z
Br

jrux0 j
2
D det a�1x0

Z
Er .x0/

hA.x0/rU;rU i

� .1C !.r// det a�1x0

Z
Er .x0/

hA.x0/rV;rV i

D .1C !.r//

Z
Br

jrvx0 j
2:

This completes the proof.

3. Almost A-harmonic functions

We start our analysis of almost minimizers in the absence of the thin obstacle. We call
such functions almost A-harmonic functions. In this section, we establish their C 1;˛=2

regularity (Theorem 3.6). A similar result has already been proved by Anzellotti [2], but
for almost minimizers over balls ¹Br .x0/º rather than ellipsoids ¹Er .x0/º; nevertheless,
the proofs are similar. The proofs in this section also illustrate how we are going to use
the results available for “deskewed” functions ux0 D U ı NT

�1
x0

to infer the corresponding
results for almost minimizers U .
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Definition 3.1 (Almost A-harmonic functions). We say that U is an almost A-harmonic
function in B1 if U 2 W 1;2.B1/ andZ

Er .x0/

hArU;rU i � .1C !.r//

Z
Er .x0/

hArV;rV i;

whenever Er .x0/ b B1 and V 2 KU .Er .x0//´ U CW
1;2
0 .Er .x0//.

Note that similarly to the case of A-Signorini problem, we can write the almost mini-
mizing property above in the form with frozen coefficientsZ

Er .x0/

hA.x0/rU;rU i � .1C !.r//

Z
Er .x0/

hA.x0/rV;rV i:

Definition 3.2 (Almost harmonic property at a point). A function u 2W 1;2.BR/ satisfies
almost harmonic property at 0 in BR ifZ

Br

jruj2 � .1C !.r//

Z
Br

jrvj2;

for all 0 < r < R and v 2 Ku.Br /.

Lemma 3.3. If U is an almost A-harmonic function in B1 and x0 2 B1 with ER.x0/ �
B1, then ux0 satisfies the almost harmonic property at 0 in BR.

Proof. The proof is similar to that of Lemma 2.2.

Proposition 3.4 (cf. [31, Proposition 2.3]). Let U be an almost A-harmonic function in
B1. Then for any Br .x0/ b B1 and 0 < � < r , we haveZ

B�.x0/

jrU j2�C

���
r

�n
C r˛

� Z
Br .x0/

jrU j2; (3.1)Z
B�.x0 /̌̌

rU�hrU iB�.x0/
ˇ̌2
�C

��
r

�nC2Z
Br .x0/

jrU�hrU iBr .x0/j
2
C Cr˛

Z
Br .x0/

jrU j2;

(3.2)

with C D C.n; ˛;M/.

Proof. Since ux0 satisfies the almost harmonic property at 0, if h is the harmonic replace-
ment of ux0 in Br (i.e., h is harmonic in Br with h D ux0 on @Br ), thenZ

Br

jrux0 j
2
� .1CMr˛/

Z
Br

jrhj2:

This is enough to repeat the arguments in [31, Proposition 2.3], to obtainZ
B�

jrux0 j
2
� 2

���
r

�n
CMr˛

� Z
Br

jrux0 j
2;
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B�

jrux0 � hrux0iB� j
2
� 9

��
r

�nC2 Z
Br

jrux0 � hrux0iBr j
2
C 24Mr˛

Z
Br

jrux0 j
2:

Then, by the change of variables in formulas (2.2) and (2.5), we haveZ
E�.x0/

hA.x0/rU;rU i � 2

���
r

�n
CMr˛

� Z
Er .x0/

hA.x0/rU;rU i;

(3.3)Z
E�.x0/

jax0rU � hax0rU iE�.x0/j
2
� 9

��
r

�nC2 Z
Er .x0/

jax0rU � hax0rU iEr .x0/j
2

C 24Mr˛
Z
Er .x0/

hA.x0/rU;rU i: (3.4)

To show now that (3.3)–(3.4) imply (3.1)–(3.2), we first consider the case

0 < � < .�=ƒ/1=2r:

Then, using the inclusions

B�.x0/ � E��1=2�.x0/ � Eƒ�1=2r .x0/ � Br .x0/;

applying (3.3)–(3.4) with ��1=2� andƒ�1=2r in place of � and r , and using the ellipticity
of A.x0/, we obtain (3.1)–(3.2) in this case.

In the remaining case
.�=ƒ/1=2r � � � r;

the inequalities (3.1)–(3.2) hold readily, asZ
B�.x0/

jrU � hrU iB�.x0/j
2
�

Z
B�.x0/

jrU � hrU iBr .x0/j
2

�

�
ƒ

�

� nC2
2
�
�

r

�nC2 Z
Br .x0/

jrU � hrU iBr .x0/j
2:

We now recall a useful lemma, the proof of which can be found e.g. in [29].

Lemma 3.5. Let r0 > 0 be a positive number and 'W .0; r0/! .0;1/ a nondecreasing
function. Let a, ˇ, and 
 be such that a > 0, 
 > ˇ > 0. There exist two positive numbers
" D ".a; 
; ˇ/, c D c.a; 
; ˇ/ such that if

'.�/ � a
h��
r

�

C "

i
'.r/C b rˇ ;

for all �, r with 0 < � � r < r0, where b � 0, then one also has, still for 0 < � < r < r0,

'.�/ � c
h��
r

�ˇ
'.r/C b�ˇ

i
:
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Theorem 3.6. Let U be an almost A-harmonic function in B1. Then U 2 C 1;˛=2.B1/
with

kU kC 1;˛=2.K/ � CkU kW 1;2.B1/;

for any K b B1, with C D C.n; ˛;M;K/.

Proof. LetKbB1 and x02eK´ ¹y2B1 j dist.y; @B1/�r0º, where r0D 1
2

dist.K; @B1/.
For � 2 .0; 1/, a direct application of Lemma 3.5 to (3.1) givesZ

Br .x0/

jrU j2 � CkrU k2
L2.B1/

rn�2C2� ;

for any 0 < r < r0, with C depending on n, ˛, � , M , K. Combining this with (3.2) also
gives Z

B�.x0/

jrU � hrU iB�.x0/j
2
� C

��
r

�nC2 Z
Br .x0/

jrU � hrU iBr .x0/j
2

C CkrU k2
L2.B1/

rn�2C2�C˛; (3.5)

for any 0< � < r < r0. If we take � 2 .0;1/ such that ˛0´ �2C2�C˛
2

>0, then Lemma 3.5
produces Z

B�.x0/

jrU � hrU iB�.x0/j
2
� CkrU k2

L2.B1/
�nC2˛

0

and this readily impliesrU 2C 0;˛
0

.eK/. Now we know thatrU is bounded in eK, and thusR
Br .x0/

jrU j2 � CkrU k2
L2.B1/

rn. Plugging this in the last term of (3.2) and repeating the

arguments above, we conclude that U 2 C 1;˛=2.

4. Almost Lipschitz regularity of almost minimizers

In this section, we make the first step towards the regularity of almost minimizers for
the A-Signorini problem and show that they are almost Lipschitz, i.e., C 0;� for every
0 < � < 1 (Theorem 4.3). The proof is based on the Morrey space embedding, similar
to the case of almost A-harmonic functions, as well as the case of almost minimizers
with A D I , treated in [31]. We want to emphasize, however, that the results on almost
Lipschitz and C 1;ˇ regularity of almost minimizers (in the next section) do not require
any symmetry condition that was imposed in [31].

We start with an auxiliary result on the solutions of the Signorini problem.

Proposition 4.1. Let h be a solution of the Signorini problem in B1. ThenZ
B�

jrhj2 �
� �
R

�n Z
BR

jrhj2; 0 < � < R < 1: (4.1)
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Proof. The difference of this proposition from [31, Proposition 3.2] is that h.y/ is not
assumed to be even symmetric in yn-variable. To circumvent that, we decompose h into
the sum of even and odd functions in yn, i.e.,

h.y0; yn/ D
h.y0; yn/C h.y

0;�yn/

2
C
h.y0; yn/ � h.y

0;�yn/

2
(4.2)

µ h�.y0; yn/C h
].y0; yn/:

It is easy to see that h� is a solution of the Signorini problem, even in yn-variable, and h]

is a harmonic function, odd in yn-variable.
Then both jrh�j2 and jrh]j2 are subharmonic functions in B1 (see [31, Proposi-

tion 3.2] for h�), which implies that for 0 < � < R < 1Z
B�

jrh�j2 �
� �
R

�n Z
BR

jrh�j2;Z
B�

jrh]j2 �
� �
R

�n Z
BR

jrh]j2:

Now observing that
R
Bt
jrhj2 D

R
Bt

�
jrh�j2 C jrh]j2

�
, for 0 < t � R, we obtain (4.1).

Proposition 4.2 (cf. [31, Proposition 3.3]). Let U be an almost minimizer for the A-
Signorini problem in B1, and BR.x0/ b B1. Then, there is C1 D C1.n; M/ > 1 such
that Z

B�.x0/

jrU j2 � C1

�� �
R

�n
CR˛

� Z
BR.x0/

jrU j2; 0 < � < R: (4.3)

Proof. Case 1. Suppose x0 2 B 01. Note that ux0 satisfies the Signorini property at 0 in Br
with r D ƒ�1=2R. If h is the Signorini replacement of ux0 in Br (that is, h solves the
Signorini problem in Br with thin obstacle 0 on… and boundary values hD ux0 on @Br ),
then h satisfies Z

Br

hrh;r.v � h/i � 0;

for any v 2 K0;ux0
.Br ; …/, which easily follows from the standard first variation argu-

ment. Plugging in v D ux0 , we obtainZ
Br

hrh;rux0i �

Z
Br

jrhj2:

Then it follows thatZ
Br

jr.ux0 � h/j
2
D

Z
Br

�
jrux0 j

2
Cjrhj2�2hrux0 ;rhi

�
�

Z
Br

jrux0 j
2
�

Z
Br

jrhj2

� .1CMr˛/

Z
Br

jrhj2 �

Z
Br

jrhj2 �Mr˛
Z
Br

jrux0 j
2;
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where in the last inequality we have used that h is the energy minimizer of the Dirichlet
integral in K0;ux0

.Br ;…/. Then, for � � r , we haveZ
B�

jrux0 j
2
� 2

Z
B�

jrhj2 C 2

Z
B�

jr.ux0 � h/j
2

� 2
��
r

�n Z
Br

jrhj2 C 2Mr˛
Z
Br

jrux0 j
2

� C

���
r

�n
C r˛

� Z
Br

jrux0 j
2:

Now, we transform back from ux0 to U as we did in Proposition 3.4 to obtain (4.3) in this
case.

Case 2. Now consider the case x0 2 BC1 . If � � r=4, then we simply haveZ
B�.x0/

jrU j2 � 4n
��
r

�n Z
Br .x0/

jrU j2:

Thus, we may assume � < r=4. Then, let d´ dist.x0;B 01/ > 0 and let x1 2 @Bd .x0/\B 01.

Case 2.1. If � � d , then we use B�.x0/ � B2�.x1/ � Br=2.x1/ � Br .x0/ and the result
of Case 1 to writeZ

B�.x0/

jrU j2 �

Z
B2�.x1/

jrU j2 � C

�� 2�
r=2

�n
C .r=2/˛

� Z
Br=2.x1/

jrU j2

� C

���
r

�n
C r˛

� Z
Br .x0/

jrU j2:

Case 2.2. Suppose now d > �. If d > r , then Br .x0/ b BC1 . Since U is almost harmonic
in BC1 , we can apply Proposition 3.4 to obtainZ

B�.x0/

jrU j2 � C

���
r

�n
C r˛

� Z
Br .x0/

jrU j2:

Thus, we may assume d � r . Then we note that Bd .x0/� BC1 and by a limiting argument
from the previous estimate, we obtainZ

B�.x0/

jrU j2 � C

�� �
d

�n
C r˛

� Z
Bd .x0/

jrU j2:

To estimate
R
Bd .x0/

jrU j2 in the right-hand side of the above inequality, we further con-
sider the two subcases.

Case 2.2.1. If r=4 � d , thenZ
Bd .x0/

jrU j2 � 4n
�d
r

�n Z
Br .x0/

jrU j2;

which immediately implies (4.3).
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Case 2.2.2. It remains to consider the case � < d < r=4. Using Case 1 again, we haveZ
Bd .x0/

jrU j2 �

Z
B2d .x1/

jrU j2 � C

�� 2d
r=2

�n
C .r=2/˛

� Z
Br=2.x1/

jrU j2

� C

��d
r

�n
C r˛

� Z
Br .x0/

jrU j2;

which also implies (4.3). This concludes the proof of the proposition.

As we have seen in [31], Proposition 4.2 implies the almost Lipschitz regularity of
almost minimizers.

Theorem 4.3. Let U be an almost minimizer for the A-Signorini problem in B1. Then
U 2 C 0;� .B1/ for all 0 < � < 1. Moreover, for any K b B1,

kU kC 0;� .K/ � CkU kW 1;2.B1/;

with C D C.n; ˛;M; �;K/.

Proof. The proof is essentially identical to that of [31, Theorem 3.1]. Let K b B1 and
x0 2K. Take r0D r0.n;˛;M;�;K/> 0 such that r0 < dist.K;@B1/ and r˛0 � ".C1;n;nC
2� � 2/, where " D ".C1; n; nC 2� � 2/ is as in Lemma 3.5 and C1 D C1.n;M/ is as in
Proposition 4.2. Then for all 0 < � < r < r0, by Proposition 4.2,Z

B�.x0/

jrU j2 � C1

���
r

�n
C r˛

� Z
Br .x0/

jrU j2:

By Lemma 3.5, we getZ
B�.x0/

jrU j2 � C.n;M; �/
��
r

�nC2��2 Z
Br .x0/

jrU j2:

Taking r % r0, we conclude thatZ
B�.x0/

jrU j2 � C.n; ˛;M; �;K/krU k2
L2.B1/

�nC2��2: (4.4)

By the Morrey space embedding [29, Corollary 3.2], we obtain U 2 C 0;� .K/ with

kU kC 0;� .K/ � C.n; ˛;M; �;K/kU kW 1;2.B1/; (4.5)

completing the proof.
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5. C 1;ˇ regularity of almost minimizers

In this section we prove C 1;ˇ regularity of the almost minimizers for the A-Signorini
problem (Theorem 5.2). While we take advantage of the results available for the even sym-
metric almost minimizers with A D I in [31], removing the symmetry condition requires
new additional steps, combined with “deskewing” arguments to generalize to the variable
coefficient case.

We start again with an auxiliary result for the solutions of the Signorini problem.

Proposition 5.1. Let h be a solution of the Signorini problem in Br , 0 < r < 1. Define

crh´ ´
rh.y0; yn/ for yn � 0;

rh.y0;�yn/ for yn < 0;

the even extension of rh from BCr to Br . Then for 0 < ˛ < 1, there are C1 D C1.n; ˛/,
C2 D C2.n; ˛/ such that for all 0 < � � s � .3=4/r ,Z

B�

jcrh � hcrhiB� j2 � C1��s �nC˛
Z
Bs

jcrh � hcrhiBs j2 C C2� Z
Br

h2
� snC1
rnC3

: (5.1)

Proof. This proposition differs from [31, Proposition 4.4] only by not requiring h.y/ to
be even in the yn-variable. As in the proof of Proposition 4.1 we split h into its even and
odd parts

h.y/ D h�.y/C h].y/; y 2 Br :

Recall that h� is still a solution of the Signorini problem in Br , but now even in yn and h]

is a harmonic function in Br , odd in yn. Then, by [31, Proposition 4.4], we haveZ
B�

jbrh� � hbrh�iB� j2 � C1
��
s

�nC˛ Z
Bs

jbrh� � hbrh�iBs j2 C C2
�Z

Br

.h�/2
�
snC1

rnC3
:

(5.2)
Now we need a similar estimate for h]. Since h] is harmonic, by the standard interior
estimates, we have

sup
B.3=4/r

jD2h]j �
C.n/

r2

�
1

rn

Z
Br

.h]/2
�1=2

:

Thus, taking the averages on BC� , we will therefore haveZ
BC�

jrh] � hrh]iBC� j
2
� C.n/

�
sup
B�

jD2h]j
�2
�nC2 � C.n/

�Z
Br

.h]/2
�
�nC2

rnC4

� C.n/

�Z
Br

.h]/2
�
snC1

rnC3
; 0 < � < s � .3=4/r;
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which can be rewritten asZ
B�

j
b
rh] � h

b
rh]iB� j

2
� C.n/

�Z
Br

.h]/2
�
snC1

rnC3
: (5.3)

Now using that crh � hcrhiB� D Œbrh� � hbrh�iB� �C Œbrh] � hbrh]iB� � in B�, we deduce
from (5.3) thatZ

B�

jcrh � hcrhiB� j2 � 2 Z
B�

jbrh� � hbrh�iB� j2 C 2
Z
B�

j
b
rh] � h

b
rh]iB� j

2

� 2

Z
B�

jbrh� � hbrh�iB� j2 C C.n/
�Z

Br

.h]/2
�
snC1

rnC3
: (5.4)

Similarly, representing brh� � hbrh�iBs D Œcrh � hcrhiBs � � Œbrh] � hbrh]iBs � in Bs , we
deduce from (5.3) (by taking � D s) thatZ

Bs

jbrh� � hbrh�iBs j2 � 2
Z
Bs

jcrh � hcrhiBs j2 C C.n/�Z
Br

.h]/2
�
snC1

rnC3
: (5.5)

Hence, combining (5.2)–(5.5), and using that both
R
Br
.h�/2 and

R
Br
.h]/2 cannot exceedR

Br
h2, we obtain the claimed estimate (5.1).

Theorem 5.2. Let U be an almost minimizer of the A-Signorini problem in B1. Then

U 2 C 1;ˇ .B˙1 [ B
0
1/ with ˇ D

˛

4.2nC ˛/
:

Moreover, for any K b B˙1 [ B
0
1, we have

kU kC 1;ˇ .K/ � C.n; ˛;M;K/kU kW 1;2.B1/: (5.6)

Proof. LetK be a ball centered at 0. Fix a small r0 D r0.n;˛;M;K/ > 0 to be determined

later. In particular, we will ask r1´ r
2n
2nC˛

0 ƒ1=2 � .1=2/ dist.K; @B1/, which implies that

eK ´ ¹y 2 B1W dist.y;K/ � r1º b B1:

Define

brU.y0; yn/´
´
rU.y0; yn/ for yn � 0;

rU.y0;�yn/ for yn < 0:

Our goal is to show that for x0 2 K, 0 < � < r < r0,Z
B�.x0/

jbrU � hbrU iB�.x0/j2 � C.n; ˛;M/
��
r

�nC˛ Z
Br .x0/

jbrU � hbrU iBr .x0/j2

C C.n; ˛;M;K/kU k2
W 1;2.B1/

rnC2ˇ : (5.7)
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Case 1. Suppose x0 2 K \ B 01. For given 0 < r < r0, we denote ˛0 ´ 1 � ˛
8n
2 .0; 1/,

R´ r
2n
2nC˛ . We then consider two cases:

sup
@ER.x0/

jU j � C3.ƒ
1=2R/˛

0

and sup
@ER.x0/

jU j > C3.ƒ
1=2R/˛

0

;

where C3 D 2ŒU �0;˛0;eK D 2 sup
y;z2eK
y¤z

jU.y/�U.z/j

jy�zj˛
0 .

Case 1.1. Assume that sup@ER.x0/ jU j �C3.ƒ
1=2R/˛

0

. Then ux0 satisfies almost Signorini
property at 0 in BR with

sup
@BR

jux0 j � C3.ƒ
1=2R/˛

0

:

Let h be the Signorini replacement of ux0 in BR. If we define

1rux0.y0; yn/´
´
rux0.y

0; yn/ for yn � 0;

rux0.y
0;�yn/ for yn < 0;

and

crh.y0; yn/´ ´
rh.y0; yn/ for yn � 0;

rh.y0;�yn/ for yn < 0;

then we haveZ
B�

j1rux0 � h1rux0iB� j2 � 3
Z
B�

jcrh � hcrhiB� j2 C 6 Z
B�

j1rux0 � crhj2; (5.8)Z
Br

jcrh � hcrhiBr j2 � 3 Z
Br

j1rux0 � h1rux0iBr j2 C 6
Z
Br

j1rux0 � crhj2: (5.9)

Note that if r0 � .3=4/
2nC˛
˛ , then r < .3=4/R, thus by Proposition 5.1, the Signorini

replacement h satisfies, for 0 < � < r ,Z
B�

jcrh � hcrhiB� j2 � C.n; ˛/��r �nC˛
Z
Br

jcrh � hcrhiBr j2 C C.n; ˛/� sup
@BR

h2
�rnC1
R3

:

Combining the above three inequalities, we obtainZ
B�

j1rux0 � h1rux0iB� j2 � C.n; ˛/
��
r

�nC˛ Z
Br

j1rux0 � h1rux0iBr j2

C C.n; ˛/
�

sup
@BR

h2
�rnC1
R3
C C.n; ˛/

Z
Br

j1rux0 � crhj2:
(5.10)

Let us estimate the last term in the right-hand side of (5.10). Take ı D ı.n; ˛;M;K/ > 0
such that ı < dist.K; @B1/ and ı˛ � " D ".C1; n; nC 2˛0 � 2/, where C1 D C1.n;M/ is
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as in Proposition 4.2 and " is as in Lemma 3.5. If r0 �
�
ƒ�1=2ı

� 2nC˛
2n , then ƒ1=2R < ı,

thus, by following the proof of Theorem 4.3 up to (4.4), we haveZ
B
ƒ1=2R

.x0/

jrU j2 � C.n; ˛;M;K/krU k2
L2.B1/

�
ƒ1=2R

�nC2˛0�2
:

It follows that Z
ER.x0/

hA.x0/rU;rU i � ƒ

Z
B
ƒ1=2R

.x0/

jrU j2

� CkrU k2
L2.B1/

RnC2˛
0�2:

Then by the change of variables in (2.2), we haveZ
BR

jrux0 j
2
� CkrU k2

L2.B1/
RnC2˛

0�2: (5.11)

Now we can estimate the third term in the right-hand side of (5.10):Z
Br

j1rux0 � crhj2 D 2 Z
BCr

jrux0 � rhj
2

� 2

Z
BR

jrux0 � rhj
2
� 2

�Z
BR

jrux0 j
2
�

Z
BR

jrhj2
�

� 2MR˛
Z
BR

jrhj2 � 2MR˛
Z
BR

jrux0 j
2

� CkrU k2
L2.B1/

RnC˛C2˛
0�2

D CkrU k2
L2.B1/

rnC
˛

2nC˛ .n�
1
2 /:

(5.12)

To estimate the second term in the right-hand side of (5.10), we observe that

sup
@BR

h2 D sup
@BR

u2x0 D sup
@ER.x0/

U 2 � C 23 .ƒ
1=2R/2˛

0

:

Note that by (4.5), C3 � C.n; ˛;M;K/kU kW 1;2.B1/. Thus,�
sup
@BR

h2
�
rnC1

R3
� CkU k2

W 1;2.B1/
r
nC ˛

2.2nC˛/ :

Now (5.10) becomesZ
B�

j1rux0 � h1rux0iB� j2 � C.n; ˛/
��
r

�nC˛ Z
Br

j1rux0 � h1rux0iBr j2

C CkU k2
W 1;2.B1/

r
nC ˛

2.2nC˛/ : (5.13)

We now want to deduce (5.7) from (5.13). The complication here is that the mapping NT �1x0
does not preserve the even symmetry with respect to the thin plane, since the conormal
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direction A.x0/en might be different from the normal direction en to … at x0. To address
this issue, by using the even symmetry of 1rux0 , we rewrite (5.13) in terms of halfballs
BCr D Br \RnCZ

BC�

jrux0 � hrux0iBC� j
2
� C.n; ˛/

��
r

�nC˛ Z
BCr

jrux0 � hrux0iBCr j
2

C CkU k2
W 1;2.B1/

r
nC ˛

2.2nC˛/ : (5.14)

Similarly, if we denote ECr .x0/ D Er .x0/ \ RnC, then using that NTx0.E
C
t .x0// D BCt ,

t > 0, (5.14) becomesZ
EC� .x0/

jax0rU�hax0rU iEC� .x0/j
2
� C.n; ˛/

��
r

�nC̨Z
ECr .x0/

jax0rU�hax0rU iECr .x0/j
2

C C det ax0kU k
2
W 1;2.B1/

r
nC ˛

2.2nC˛/ :

Repeating the argument that (3.4) implies (3.2) in the proof of Proposition 3.4, we haveZ
BC� .x0/

jrU � hrU iBC� .x0/j
2
� C

��
r

�nC˛ Z
BCr .x0/

jrU � hrU iBCr .x0/j
2

C CkU k2
W 1;2.B1/

r
nC ˛

2.2nC˛/ : (5.15)

Then by the even symmetry of brU , (5.15) implies (5.7).

Case 1.2. Now we assume that sup@ER.x0/ jU j > C3.ƒ
1=2R/˛

0

. By the choice of C3 D
2ŒU �

0;˛0;eK , we have either

U � .C3=2/ .ƒ
1=2R/˛

0

in ER.x0/; or

U � � .C3=2/ .ƒ
1=2R/˛

0

in ER.x0/:

However, from U � 0 on B 01, the only possibility is

U � .C3=2/ .ƒ
1=2R/˛

0

in ER.x0/:

Consequently,
ux0 � .C3=2/ .ƒ

1=2R/˛
0

in BR:

If we let h again be the Signorini replacement of ux0 in BR, then the positivity of h D
ux0 > 0 on @BR and superharmonicity of h in BR give that h > 0 in BR, and hence h is
harmonic in BR. Thus,Z

B�

jrh � hrhiB� j
2
�

��
r

�nC2 Z
Br

jrh � hrhiBr j
2; 0 < � < r:
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We next decompose h D h� C h] in BR as in (4.2). Note that since both h and h] are
harmonic, h� must be harmonic as well. Then we haveZ

B�

jcrh � hcrhiB� j2 � 3 Z
B�

jrh � hrhiB� j
2
C 6

Z
B�

jcrh � rhj2
D 3

Z
B�

jrh � hrhiB� j
2
C 6

Z
B��

�
j2ry0h

]
j
2
C j2@ynh

�
j
2
�

D 3

Z
B�

jrh � hrhiB� j
2
C 12

Z
B�

�
jry0h

]
j
2
C j@ynh

�
j
2
�
;

and similarly,Z
Br

jrh � hrhiBr j
2
� 3

Z
Br

jcrh � hcrhiBr j2 C 12 Z
Br

�
jry0h

]
j
2
C j@ynh

�
j
2
�
:

Combining the above three inequalities, we have that for all 0 < � < rZ
B�

jcrh � hcrhiB� j2 � 3��r �nC2
Z
Br

jcrh � hcrhiBr j2 C 48 Z
Br

�
jry0h

]
j
2
C j@ynh

�
j
2
�
:

(5.16)

Now, note that if r0 � .1=2/
2nC˛
˛ , then r � R=2. By the harmonicity of both h� and h] in

BR, we have

sup
BR=2

jD2h�j C sup
BR=2

jD2h]j �
C.n/

R

�
sup
B.3=4/R

jrh�j C sup
B.3=4/R

jrh]j

�
�
C.n/

R1C
n
2

�Z
BR

jrh�j2 C

Z
BR

jrh]j2
�1=2

D
C.n/

R1C
n
2

�Z
BR

jrhj2
�1=2

�
C.n/

R1C
n
2

�Z
BR

jrux0 j
2

�1=2
� C.n; ˛;M;K/krU kL2.B1/R

˛0�2;

where the last inequality follows from (5.11). Also, note that ry0h] D @ynh
� D 0 onB 0

R=2
.

Thus, for y D .y0; yn/ 2 Br , we have

jry0h
]
j C j@ynh

�
j � jynj

�
sup
BR=2

jD2h�j C sup
BR=2

jD2h]j
�

� CkrU kL2.B1/rR
˛0�2

D CkrU kL2.B1/r
1C 2n

2nC˛ .˛
0�2/;

with C D .n; ˛;M;K/. Hence, it follows thatZ
Br

jry0h
]
j
2
C j@ynh

�
j
2
� CkrU k2

L2.B1/
rnC2C

4n
2nC˛ .˛

0�2/

� CkrU k2
L2.B1/

r
nC ˛

2.2nC˛/ :

(5.17)
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Combining (5.16) and (5.17), we obtainZ
B�

jcrh � hcrhiB� j2 � 3��r �nC2
Z
Br

jcrh � hcrhiBr j2 C CkrU k2L2.B1/rnC ˛
2.2nC˛/ :

(5.18)
Note that (5.12) was induced in Case 1.1 without the use of the assumption sup@Er .x0/jU j�

C3
�
ƒ1=2R

�˛0
, so it is also valid in this case. Finally, (5.8), (5.9), (5.12) and (5.18) giveZ

B�

j1rux0�h1rux0iB�j2 � 3
Z
B�

jcrh � hcrhiB� j2C6Z
B�

j1rux0 � crhj2
� 9

��
r

�nC2Z
Br

jcrh � hcrhiBr j2CCkrU k2L2.B1/rnC ˛
2.2nC̨ /

C6

Z
B�

j1rux0 � crhj2
� 27

��
r

�nC2Z
Br

j1rux0 � h1rux0iBr j2CCkrU k2L2.B1/r
nC ˛

2.2nC̨ /

C60

Z
Br

j1rux0 � crhj2
� 27

��
r

�nC2Z
Br

j1rux0 � h1rux0iBr j2CCkrU k2L2.B1/r
nC ˛

2.2nC̨ /

CCkrU k2
L2.B1/

rnC
˛

2nC̨ .n�1=2/

� 27
��
r

�nC2Z
Br

j1rux0 � h1rux0iBr j2CCkrU k2L2.B1/r
nC ˛

2.2nC̨ / :

As we have seen in Case 1.1, this implies (5.7). This completes the proof of (5.7) when
x0 2 K \ B

0
1.

Case 2. The extension of (5.7) to general x0 2 K follows from the combination of Case 1
and (3.5). The argument is the same as Case 2 in the proof of Theorem 4.6 in [31].

Thus, the estimate (5.7) holds in all possible cases.
To complete the proof of the theorem, we now apply Lemma 3.5 to the estimate (5.7)

to obtain for 0 < � < r < r0Z
B�.x0/

jbrU � hbrU iB�.x0/j2 � C
���
r

�nC2ˇ Z
Br .x0/

jbrU � hbrU iBr .x0/j2

C kU k2
W 1;2.B1/

�nC2ˇ
�
:

Taking r % r0 D r0.n; ˛;M;K/, we haveZ
B�.x0/

jbrU � hbrU iB�.x0/j2 � CkU k2W 1;2.B1/
�nC2ˇ ;
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with C D C.n; ˛;M;K/. Then by the Campanato space embedding this readily implies
that brU 2 C 0;ˇ .K/ with

kbrU kC 0;ˇ .K/ � CkU kW 1;2.B1/:

Since brU D rU in BC1 [ B
0
1, we therefore conclude that

U 2 C 1;ˇ .K \ .BC1 [ B
0
1//;

and combining with the bound in Theorem 4.3, we also deduce that

kU kC 1;ˇ .K\.BC1 [B
0
1//
� C.n; ˛;M;K/kU kW 1;2.B1/:

To see theC 1;ˇ regularity ofU inB�1 [B
0
1, we simply observe that the functionU.y0;�yn/

is also an almost minimizer of the Signorini problem with the appropriately modified
coefficient matrix A.

6. Quasisymmetric almost minimizers

In the study of the free boundary in the Signorini problem, the even symmetry of the
minimizer with respect to the thin space plays a crucial role. The even symmetry guar-
antees that the growth rate of the minimizer u over “thick” balls Br .x0/ � Rn matches
the growth rate over thin balls B 0r .x0/ � …. This allows to use tools such as Almgren’s
monotonicity formula (see the next section) to classify the free boundary points. Without
even symmetry, minimizers may have an odd component, vanishing on the thin space …
that may create a mismatch of growth rates on the thick and thin spaces.

In the case of minimizers of the Signorini problem (with A D I ) or harmonic func-
tions, it is easy to see that the even symmetrization

u�.x/ D
u.x0; xn/C u.x

0;�xn/

2

is still a minimizer. Unfortunately, the even symmetrization may destroy the almost min-
imizing property, as well as the minimizing property with variable coefficients, as can be
seen from the following simple example.

Example 6.1. Let uW .�1; 1/! R be defined by u.x/ D x C x2=4. Then u is an almost
harmonic function in .�1; 1/ with a gauge function !.r/D C.˛/r˛ for 0 < ˛ < 1. In fact,
u is a minimizer of the energy functionalZ

.1C x=2/�1.v0/2

with a Lipschitz function A.x/ D .1 C x=2/�1 in .�1; 1/. On the other hand, the even
symmetrization

u�.x/ D
u.x/C u.�x/

2
D
x2

4
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is not almost harmonic for any gauge function !.r/. Indeed, for any small ı > 0, if we
take a competitor v D ı2=4 in .�ı; ı/, then it satisfies

R ı
�ı
jv0j2 D 0 and if u� were almost

harmonic, we would have that
R ı
�ı
j.u�/0j2 D 0 as well, implying that u� is constant in

.�ı; ı/, a contradiction.

To overcome this difficulty, we need to impose the A-quasisymmetry condition on
almost minimizers U , that we have already stated in Definition 1.2. In this section, we
give more details on quasisymmetric almost minimizers.

Recall that for each x0 2 B 01, we defined a reflection matrix Px0 by

Px0 D I � 2
A.x0/en ˝ en

ann.x0/
:

From the ellipticity of A, we have ann.x0/ � �, thus Px0 is well-defined. Note that
P 2x0 D I . Besides, Px0

ˇ̌
…
D I

ˇ̌
…

and Px0Er .x0/D Er .x0/. We then define the “skewed”
even/odd symmetrizations of the almost minimizer U in B1 by

U �x0.x/´
U.x/C U.Px0x/

2
;

U ]x0.x/´
U.x/ � U.Px0x/

2
:

Note that U �x0 and U ]x0 may not be defined in all of B1, but are defined in any ellipsoid

NTx0
))

Er .x0/ Br

… …

x0

x

Nx 0

yNy

Figure 2. Reflection Px0 : here Nx D Px0x, y D NTx0.x/, and Ny D .y0;�yn/ D NTx0. Nx/

Er .x0/ as long as it is contained in B1. Note also that U D U �x0 and U ]x0 D 0 on ….
Further, we note that transformed with NTx0 , Px0 becomes an even reflection with respect
to …, i.e.,

NTx0 ı Px0 ı
NT �1x0 .y/ D .y

0;�yn/;
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see Figure 2. Therefore, denoting

u�x0.y/´
ux0.y

0; yn/C ux0.y
0;�yn/

2
;

u]x0.y/´
ux0.y

0; yn/ � ux0.y
0;�yn/

2
;

the even/odd symmetrizations of ux0 about …, we will have

U �x0 ı
NT �1x0 D u

�
x0
; U ]x0 ı

NT �1x0 D u
]
x0
:

We also observe that the symmetries of u�x0 and u]x0 imply the following decompositionsZ
Br

u2x0 D

Z
Br

.u�x0/
2
C

Z
Br

.u]x0/
2;Z

Br

jrux0 j
2
D

Z
Br

jru�x0 j
2
C

Z
Br

jru]x0 j
2;

which after a change of variables, can also be written asZ
Er .x0/

U 2 D

Z
Er .x0/

.U �x0/
2
C

Z
Er .x0/

.U ]x0/
2; (6.1)Z

Er .x0/

hA.x0/rU;rU i D

Z
Er .x0/

hA.x0/rU
�
x0
;rU �x0i C

Z
Er .x0/

hA.x0/rU
]
x0
;rU ]x0i:

(6.2)

We now recall that by Definition 1.2, U 2 W 1;2.B1/ is called A-quasisymmetric if there
is a constant Q > 0 such thatZ

Er .x0/

hA.x0/rU;rU i � Q

Z
Er .x0/

hA.x0/rU
�
x0
;rU �x0i; (6.3)

whenever Er .x0/ b B1 and x0 2 B 01. By the uniform ellipticity of A, (6.3) is equivalent
to Z

Er .x0/

jrU j2 � Q

Z
Er .x0/

jrU �x0 j
2;

by changing Q to Q.ƒ=�/, if necessary. Besides, using (6.2), (6.3) is also equivalent toZ
Er .x0/

hA.x0/rU
]
x0
;rU ]x0i � C

Z
Er .x0/

hA.x0/rU
�
x0
;rU �x0i; (6.4)

with some C D C.Q/.

Lemma 6.2. Let U be an A-quasisymmetric almost minimizer for the A-Signorini prob-
lem in B1, with constant Q > 0. Then there are r1 D r1.n; ˛; M; Q/ > 0 and M1 D

M1.n;M;Q/ > 0 such thatZ
Er .x0/

hA.x0/rU
�
x0
;rU �x0i � .1CM1r

˛/

Z
Er .x0/

hA.x0/rW;rW i; (6.5)

whenever Er .x0/ b B1, x0 2 B 01, 0 < r < r1, and W 2 K0;U �x0
.Er .x0/;…/.
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Remark 6.3. Since we are interested in local results, in what follows, we will assume
without loss of generality that r1 D 1 and M1 DM .

Proof. Let V be the energy minimizer ofZ
Er .x0/

hA.x0/rV;rV i on K0;U .Er .x0/;…/:

Then vx0 D V ı NT
�1
x0

is the energy minimizer ofZ
Br

jrvx0 j
2 on K0;ux0

.Br ;…/:

Note that v�x0 is a solution of the Signorini problem, even in yn, with v�x0 D u
�
x0

on @Br .

Similarly, v]x0 is a harmonic function, odd in yn, with v]x0 D u
]
x0 on @Br . Thus, v�x0 is the

energy minimizer of Z
Br

jrv�x0 j
2 on K0;u�x0

.Br ;…/;

and so V �x0 is the energy minimizer ofZ
Er .x0/

hA.x0/rV
�
x0
;rV �x0i on K0;U �x0

.Er .x0/;…/:

Thus, to show (6.5), it is enough to showZ
Br

jru�x0 j
2
� .1CM1r

˛/

Z
Br

jrv�x0 j
2:

To this end, we first observe that the quasisymmetry of U implies the quasisymmetry of
ux0 : Z

Br

jru]x0 j
2
� C

Z
Br

jru�x0 j
2:

Using this, together with the symmetry of u�x0 , u]x0 , v�x0 and v]x0 , we haveZ
Br

jru�x0 j
2
D

Z
Br

jrux0 j
2
�

Z
Br

jru]x0 j
2

� .1CMr˛/

Z
Br

jrvx0 j
2
�

Z
Br

jru]x0 j
2

D .1CMr˛/

Z
Br

jrv�x0 j
2
C .1CMr˛/

Z
Br

jrv]x0 j
2
�

Z
Br

jru]x0 j
2

� .1CMr˛/

Z
Br

jrv�x0 j
2
CMr˛

Z
Br

jru]x0 j
2

� .1CMr˛/

Z
Br

jrv�x0 j
2
C CMr˛

Z
Br

jru�x0 j
2:
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Therefore,Z
Br

jru�x0 j
2
�

1CMr˛

1 � CMr˛

Z
Br

jrv�x0 j
2
� .1CM1r

˛/

Z
Br

jrv�x0 j
2;

for 0 < r < r1 D .2CM/�1=˛ , as desired.

Remark 6.4. If U satisfies the following weak quasisymmetry with order �
 :Z
Er .x0/

jrU j2 � Qr�

Z
Er .x0/

jrU �x0 j
2;

whenever Er .x0/ b B1, x0 2 B 01 for some 0 < 
 < ˛, then it is easy to see from the proof
of Lemma 6.2 that U �x0 satisfies (6.5), but with ˛ � 
 > 0 instead of ˛.

Theorem 6.5. Let U be an A-quasisymmetric almost minimizer for the A-Signorini prob-
lem in B1. Then for x0 2 B 01=2 and 0 < r � .1=2/ƒ�1=2, we have U �x0 2 C

1;ˇ .E˙r .x0/[

E 0r .x0// with ˇ D ˛
4.2nC˛/

. Moreover,

kU �x0kC 1;ˇ .K/ � C.n; ˛;M;K; r/kU
�
x0
kW 1;2.Er .x0//;

for any K b E˙r .x0/ [E
0
r .x0/. Similarly, u�x0 2 C

1;ˇ .B˙r [ B
0
r / with

ku�x0kC 1;ˇ .K/ � C.n; ˛;M;K; r/ku
�
x0
kW 1;2.Br /;

for any K b B˙r [ B
0
r .

Proof. From Theorem 5.2, we haveU 2C 1;ˇ .B˙1 [B
0
1/, which immediately givesU �x0 2

C 1;ˇ .E˙r .x0/ [E
0
r .x0//, by using the inclusion Er .x0/ � Bƒ1=2r .x0/ � B1. Thus, for

1rU �x0.x0; xn/´
´
rU �x0.x

0; xn/ if xn � 0;

rU �x0.x
0;�xn/ if xn < 0;

we have 1rU �x0 2 C 0;ˇ .Er .x0// with

k1rU �x0kC 0;ˇ .K/ � C.n; ˛;M;K; r/kU kW 1;2.Er .x0//;

for any K b Er .x0/. Hence, it is enough to show that

kU kW 1;2.Er .x0// � CkU
�
x0
kW 1;2.Er .x0//:

Now, note that by (6.1)–(6.2), we readily have

kU kW 1;2.Er .x0// � C
�
kU �x0kW 1;2.Er .x0// C kU

]
x0
kW 1;2.Er .x0//

�
;

and thus, it will suffice to show that

kU ]x0kW 1;2.Er .x0// � CkU
�
x0
kW 1;2.Er .x0//:
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By the symmetry again,
hU ]x0iEr .x0/ D hu

]
x0
iBr D 0;

thus, by Poincare’s inequality,

kU ]x0kL2.Er .x0// � C.n;M/rkrU ]x0kL2.Er .x0//:

Finally, by the quasisymmetry of U , we have

krU ]x0kL2.Er .x0// � CkrU
�
x0
kL2.Er .x0//;

see (6.4). This completes the proof of the theorem for U �x0 .
Applying the affine transformation NTx0, we obtain the part of the theorem for u�x0 .

We complete this section with a version of Signorini’s complementarity condition that
will play an important role in the analysis of the free boundary.

Lemma 6.6 (Complementarity condition). Let U be an A-quasisymmetric almost mini-
mizer for the A-Signorini problem in B1, and x0 2 B 01=2. Then u�x0 satisfies the following
complementarity condition

u�x0.@
C
yn
u�x0/ D 0 on B 0R0 ; R0 D .1=2/ƒ

�1=2;

where @Cynu
�
x0

on B 0R0 is computed as the limit from inside BCR0 . Moreover, if x0 2 �.U /,
then

u�x0.0/ D 0 and j1ru�x0.0/j D 0:
Proof. Let y0 2B 0R0 be such that u�x0.y0/ > 0. Then we need to show that @Cynu

�
x0
.y0/D 0.

Since ux0 D u
�
x0

on …, we have ux0.y0/ > 0 and by continuity ux0 > 0 in a small ball
Bı.y0/. Then U > 0 in � D NT �1x0 .Bı.y0//. We claim now that U is almost A-harmonic
in �. Indeed, if Er .y/ b � (not necessarily with y 2 B 01) and V is the A.y/-harmonic
replacement of U on Er .y/ (i.e., div.A.y/rV / D 0 in Er .y/ with V D U on @Er .y/),
then since V D U > 0 on @Er .y/, by the minimum principle V > 0 onEr .y/. This means
that V 2 K0;U .Er .y/;…/ and therefore we must haveZ

Er .y/

hA.y/rU;rU i � .1C !.r//

Z
Er .y/

hA.y/rV;rV i;

which also implies that U is an almost A-harmonic function in�. Hence, U 2 C 1;˛=2.�/
by Theorem 3.6, implying also that ux0 2 C

1;˛=2.Bı.y0//. Consequently, also u�x0 2
C 1;˛=2.Bı.y0// and by even symmetry in the yn-variable, we therefore conclude that
@Cynu

�
x0
.y0/ D 0.

The second part of the lemma now follows by the C 1;ˇ regularity and the complemen-
tarity condition.



Almost minimizers for the thin obstacle problem with variable coefficients 351

7. Weiss- and Almgren-type monotonicity formulas

In this section we introduce two technical tools: Weiss- and Almgren-type monotonic-
ity formulas, that will play a fundamental role in the analysis of the free boundary. In
fact, the proofs of these formulas follow immediately from the case A � I , following the
deskewing procedure.

To proceed, we fix a constant �0 > 0. We can take it as large as we want, however,
some constants in what follows, will depend on �0. Then for 0 < � < �0, we consider the
Weiss-type energy functional introduced in [31]:

W�.t; v; x0/´
eat

˛

tnC2��2

� Z
Bt .x0/

jrvj2 � �
1 � bt˛

t

Z
@Bt .x0/

v2
�
;

with

a D a� D
M.nC 2� � 2/

˛
; b D

M.nC 2�0/

˛
:

(The formula in [31] corresponds to the case M D 1.) Based on that, we define an appro-
priate version of Weiss’ functional for our problem. For a function V in Er .x0/, let

W A
� .t; V; x0/´

eat
˛

tnC2��2

� Z
Et .x0/

hA.x0/rV;rV i � �
1 � bt˛

t

Z
@Et .x0/

V 2�x0.x � x0/

�
;

for 0 < t < r , with a, b same as above, where the weight �x0 is as in (2.4). Note that by
the change of variables in formulas (2.1)–(2.3), we have

W A
� .t; V; x0/´ det ax0W�.t; vx0 ; 0/; vx0 D V ı

NT �1x0 :

Let now U be an A-quasisymmetric almost minimizer for the A-Signorini problem in
B1 and x0 2 B 01=2. By Lemma 6.2, U �x0 satisfies the almost A-Signorini property at x0 in
E.1=2/ƒ�1=2.x0/. Thus, u�x0 also satisfies the almost Signorini property at 0 in B.1=2/ƒ�1=2 .
By using this observation, we then have the following Weiss-type monotonicity formulas
for U �x0 and u�x0 .

Theorem 7.1 (Weiss-type monotonicity formula). Let U be an A-quasisymmetric almost
minimizer for the A-Signorini problem in B1. Suppose x0 2 B 01=2 and U.x0/ D 0. Let
0 < � < �0 with a fixed �0 > 0. Then, for 0 < t < t0 D t0.n; ˛; �0;M/,

d

dt
W�.t; u

�
x0
; 0/ �

eat
˛

tnC2��2

Z
@Bt

�
@�u
�
x0
�
�.1 � bt˛/

t
u�x0

�2
;

d

dt
W A
� .t; U

�
x0
; x0/ �

eat
˛

tnC2��2

Z
@Et .x0/

�
hax0rU

�
x0
; �i �

�.1 � bt˛/

t
U �x0

�2
�x0.x � x0/:

In particular, W�.t; u�x0 ; 0/ and W A
� .t; U

�
x0
; x0/ are nondecreasing in t for 0 < t < t0.
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Proof. We note that the proof of [31, Theorem 5.1] for the monotonicity of W�.t; v; x0/
requires the function v to be an almost minimizer for the Signorini problem with v.x0/D 0
for the monotonicity of its energy. However, it is not hard to see that the almost minimizing
property of v is used only when it is compared with the �-homogeneous replacement w
of v on balls centered at the given point x0 to obtainZ

Bt .x0/

jrwj2 �
1

1C t˛

Z
Bt .x0/

jrvj2;

see [31, (5.2)]. This means that the argument in the proof of [31, Theorem 5.1] also works
in our case as long as u�x0.0/ D U.x0/ D 0 and implies the part of the theorem for u�x0 .
We note that the constants a� and b in our case will have an additional factor of M , as we
work with !.r/DMr˛ rather than !.r/D r˛ in our case, but this change of the constants
can be easily traced.

The part of the theorem for U �x0 follows by a change of variables.

The families of monotonicity formulas ¹W�º0<�<�0 and ¹W A
� º0<�<�0 have an impor-

tant feature that their intervals of monotonicity and the constant b can be taken the same
for all 0 < � < �0. Because of that, their monotonicity indirectly implies that of another
important quantity that we describe below. Namely, recall that for a function v in Br .x0/,
Almgren’s frequency of v at x0 is defined as

N.t; v; x0/´
t
R
Bt .x0/

jrvj2R
@Bt .x0/

v2
; 0 < t < r:

Note that this quantity is well-defined when v has an almost Signorini property at x0 and
x0 2 �.v/, since vanishing of

R
@Bt .x0/

v2 for any t > 0 would imply vanishing of v in
Bt .x0/ by taking 0 as a competitor and consequently that x0 … �.v/.

Next consider a modification of N , which we call the truncated frequency:

bN �0.t; v; x0/´ min
²

1

1 � bt˛
N.t; v; x0/; �0

³
;

where b is as in Weiss-type monotonicity formulas for � < �0. We next define the appro-
priate version of N , bN �0 in our setting. For a function V in Er .x0/, we define

NA.t; V; x0/´ N.t; vx0 ; 0/;bNA
�0
.t; V; x0/´ bN �0.t; vx0 ; 0/;

for 0 < t < r , where vx0 D V ı NT
�1
x0

. More explicitly, we have

NA.t; V; x0/´
t
R
Et .x0/

hA.x0/rV;rV iR
@Et .x0/

V 2�x0.x � x0/
;

bNA
�0
.t; V; x0/´ min

²
1

1 � bt˛
NA.t; V; x0/; �0

³
:
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As observed in [31, Theorem 5.4], the Weiss-type monotonicity formula implies the fol-
lowing monotonicity of bNA

�0
.

Theorem 7.2 (Almgren-type monotonicity formula). Let U , �0, and t0 be as in Theo-
rem 7.1, and x0 2 B 01=2 a free boundary point. Then

t 7! bNA
�0
.t; U �x0 ; x0/ D

bN �0.t; u
�
x0
; 0/

is nondecreasing for 0 < t < t0.

Definition 7.3 (Almgren’s frequency at free boundary point). For an A-quasisymmetric
almost minimizer U of the A-Signorini problem in B1 and x0 2 �.U / let

�.x0/´ bNA
�0
.0C; U �x0 ; x0/ D

bN �0.0C; u
�
x0
; 0/:

We call �.x0/ the Almgren’s frequency at x0.

Remark 7.4. Note that even though the monotonicity of the truncated frequency is stated
in Theorem 7.2 only for x0 2 B 01=2 \ �.U /, by a simple recentering and a scaling argu-
ment, it will be monotone also at all x0 2 �.U /, but for a possibly shorter interval of
values 0 < t < t0.x0/ depending on x0. Thus, �.x0/ exists at all x0 2 �.U /.

Further, note that when �.x0/ < �0, then bNA
�0
.t; U �x0 ; x0/ D

1
1�bt˛

NA.t; U �x0 ; x0/ for
small t and therefore

�.x0/ D N
A.0C; U �x0 ; x0/;

which means that it will not change if we replace �0 with a larger value.

8. Almgren rescalings and blowups

Our analysis of the free boundary is based on the analysis of blowups, which are the limits
of rescalings of the solutions at free boundary points. In Signorini problem, there are a few
types of rescalings that use different normalizations. In this section, we look at so-called
Almgren rescalings and blowups that play well with the Almgren frequency formula.

Let V 2W 1;2.B1/ and x0 2 B 01=2 be a free boundary point. For small r > 0 define the
Almgren rescaling of V at x0 by

V Ax0;r .x/´
V.rx C x0/�

1
rn�1

R
@Er .x0/

V 2�x0.x � x0/

�1=2 :
The Almgren rescalings have the following normalization and scaling properties

kV Ax0;rkL2.ax0@B1/
D 1;

NA.x0/.�; V Ax0;r ; 0/ D N
A.�r; V; x0/:
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Here NA.x0/ denotes Almgren’s frequency for a constant matrix A.x0/. Thus, we also
have NA.r; V; x0/ D N

A.x0/.r; V; x0/. Note that when A D I , then

V Ix0;r D
V.rx C x0/�

1
rn�1

R
@Br .x0/

V 2
�1=2

is same as the Almgren rescaling in [31], and satisfies

kV Ix0;rkL2.@B1/ D 1;

N.�; V Ix0;r ; 0/ D N.�r; V; x0/:

We will call the limits of V Ax0;r over any subsequence r D rj ! 0C Almgren blowups of
V at x0 and denote them by V Ax0;0.

By using a change of variables, we can express Almgren rescalings of V in terms of
those of vx0 D V ı NT

�1
x0

and vice versa. Namely, we have

.vx0/
I
r .y/ D .det ax0/

1=2V Ax0;r . Nax0y/;

wherever they are defined. Applied to the particular case V D U �x0 , we have

.u�x0/
I
r .y/ D .det ax0/

1=2.U �x0/
A
x0;r

. Nax0y/:

Proposition 8.1 (Existence of Almgren blowups). Let U be an A-quasisymmetric almost
minimizer for theA-Signorini problem inB1, and x0 2B 01=2 \�.U / be such that �.x0/ <
�0. Then, every sequence of Almgren rescalings .U �x0/

A
x0;tj

, with tj ! 0C, contains a
subsequence, still denoted tj such that for a function .U �x0/

A
x0;0
2 C 1loc.ax0.B

˙
1 [ B

0
1//

.U �x0/
A
x0;tj
! .U �x0/

A
x0;0

in C 1loc.ax0.B
˙
1 [ B

0
1//:

Moreover, .U �x0/
A
x0;0

extends to a nonzero solution of the A.x0/-Signorini problem in Rn,
.U �x0/

A
x0;0

.x/ D .U �x0/
A
x0;0

.Px0x/, and it is homogeneous of degree �.x0/ in Rn.
Similarly, every sequence of Almgren rescalings .u�x0/

I
tj

, with tj ! 0C contains a
subsequence, still denoted tj such that for a function .u�x0/

I
0 2 C

1
loc.B

˙
1 [ B

0
1/

.u�x0/
I
tj
! .u�x0/

I
0 in C 1loc.B

˙
1 [ B

0
1/:

Moreover, .u�x0/
I
0 extends to a nonzero solution of the Signorini problem in Rn, even in

yn, and it is homogeneous of degree �.x0/ in Rn.

Proof. Step 1. Since �.x0/ < �0, we must have N.t; u�x0 ; 0/ < �0 for small t > 0. Then,
for such t Z

B1

jr.u�x0/
I
t j
2
D N.1; .u�x0/

I
t ; 0/ D N.t; u

�
x0
; 0/ � �0;
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and combined with the normalization
R
@B1

�
.u�x0/

I
t

�2
D 1, we see that the family .u�x0/

I
t

is bounded in W 1;2.B1/, for small t > 0. Hence, for any sequence tj ! 0C, there is a
function .u�x0/

I
0 2 W

1;2.B1/ such that, over a subsequence,

.u�x0/
I
tj
! .u�x0/

I
0 weakly in W 1;2.B1/;

.u�x0/
I
tj
! .u�x0/

I
0 strongly in L2.@B1/:

In particular,
R
@B1

�
.u�x0/

I
0

�2
D 1, implying that .u�x0/

I
0 6� 0 in B1.

Step 2. For 0 < t < 1 and x 2 B1=.2t/.x0/, let

Ux0;t .x/ D U.x0 C t .x � x0//; Ax0;t .x/ D A.x0 C t .x � x0//:

Then by a simple scaling argument, we have thatUx0;t is an almost minimizer of theAx0;t -
Signorini problem in B1=.2t/.x0/ with a gauge function �t .r/D .t r/˛ � r˛ . In particular,
for any R > 0, we will have that Ux0;t 2 C

1;ˇ .E˙R .x0/ [ E
0
R.x0// for 0 < t < t.R;M/

with
kUx0;tkC 1;ˇ .K/ � CkUx0;tkW 1;2.ER.x0//;

with C D C.n; ˛; M; R; K/, for any K b E˙R .x0/ [ E
0
R.x0/. Then, arguing as in the

proof of Theorem 6.5, by using the quasisymmetry of U , we obtain that

k.Ux0;t /
�
x0
kC 1;ˇ .K/ � Ck.Ux0;t /

�
x0
kW 1;2.ER.x0//;

where

.Ux0;t /
�
x0
.x/ D

Ux0;t .x/C Ux0;t .Px0x/

2
:

Next, observing that .u�x0/
I
t is a positive constant multiple of .Ux0;t /

�
x0
ı NT �1x0 , we obtain

that
k.u�x0/

I
t kC 1;ˇ .K/ � Ck.u

�
x0
/It kW 1;2.BR/;

for any K b B˙R [ B
0
R. Taking R D 1, combined with the boundedness of .u�x0/

I
t in

W 1;2.B1/ for small t > 0, it follows that up to a subsequence,

.u�x0/
I
tj
! .u�x0/

I
0 in C 1loc.B

˙
1 [ B

0
1/:

Step 3. Next, we claim that the blowup .u�x0/
I
0 is a solution of the Signorini problem in

B1. Indeed, fix 0 < R < 1, and for each tj let htj be the Signorini replacement of .u�x0/
I
tj

in BR. Then a first variation argument gives (see [31, (3.2)])Z
BR

hrhtj ;r..u
�
x0
/Itj � htj /i � 0:

Since .u�x0/
I
tj

has an almost Signorini property at 0 with a gauge function r 7! C.tj r/
˛ , it

follows that Z
BR

jr..u�x0/
I
tj
� htj /j

2
� C.Rtj /

˛

Z
BR

jr.u�x0/
I
tj
j
2:



S. Jeon, A. Petrosyan, and M. Smit Vega Garcia 356

This implies that htj ! .u�x0/
I
0 weakly in W 1;2.BR/. On the other hand, by the bounded-

ness of the sequence htj in W 1;2.BR/, we have also boundedness in C 1;1=2 norm locally
in .B˙R [ B

0
R/ and hence, over a subsequence, htj ! .u�x0/

I
0 in C 1loc.B

˙
R [ B

0
R/. By this

convergence, we then conclude that .u�x0/
I
0 satisfies

�.u�x0/
I
0 D 0 in BR n B 0R

.u�x0/
I
0 � 0; �@

C
yn
.u�x0/

I
0 � 0; .u�x0/

I
0@
C
yn
.u�x0/

I
0 D 0 on B 0R;

and hence, by letting R! 1, .u�x0/
I
0 itself solves the Signorini problem in B1.

Step 4. Recall now that the blowup .u�x0/
I
0 is nonzero inB1. In particular,

R
@Br
..u�x0/

I
0/
2>

0 for any 0 < r < 1, otherwise we would have that .u�x0/
I
0 is identically zero on @Br and

consequently also on Br . Using this fact, combined with C 1loc convergence in B˙1 [ B
0
1,

we have that for any 0 < r < 1

N.r; .u�x0/
I
0 ; 0/ D lim

tj!0
N.r; .u�x0/

I
tj
; 0/

D lim
tj!0

N.rtj ; u
�
x0
; 0/

D N.0C; u�x0 ; 0/

D �.x0/:

Thus, Almgren’s frequency of .u�x0/
I
0 is constant �.x0/ on 0 < r < 1 which is possible

only if .u�x0/
I
0 is a �.x0/-homogeneous solution of the Signorini problem in B1, see [38,

Theorem 9.4]. Finally, by using the homogeneity, we readily extend .u�x0/
I
0 to a solution

of the Signorini problem in all of Rn. This completes the proof for .u�x0/
I
0 .

The corresponding result for .U �x0/
A
x0;tj

follows now by a change of variables.

With Proposition 8.1 at hand, we can repeat the argument in the proof of [31, Lemma
6.2] with u�x0 to obtain the following, which is possible since u�x0 satisfies the complemen-
tarity condition and an Almgren-type monotonicity formula with a blowup as a nonzero
solution of the Signorini problem.

Lemma 8.2 (Minimal frequency). Let U be an A-quasisymmetric almost minimizer for
the A-Signorini problem in B1. If x0 2 B 01=2 \ �.U /, then

�.x0/ �
3

2
:

Consequently, we also havebNA
�0
.t; U �x0 ; x0/ D

bN �0.t; u
�
x0
; 0/ � 3=2 for 0 < t < t0:

Lemma 8.2 readily gives the following (see [31, Corollary 6.3]).

Corollary 8.3. LetU be anA-quasisymmetric almost minimizer for theA-Signorini prob-
lem in B1 and x0 a free boundary point. Then

W A
3=2.t; U

�
x0
; x0/ D det ax0W3=2.t; u

�
x0
; 0/ � 0; for 0 < t < t0:
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9. Growth estimates

The first result in this section (Lemma 9.1) provides growth estimates for the quasisym-
metric almost minimizers near free boundary points x0 with �.x0/ � �. Such estimates
were obtained in [31, Lemma 7.1] in the case A � I as a consequence of Weiss-type
monotonicity formulas. However, they contain an unwanted logarithmic term that creates
difficulties in the blowup analysis of the problem.

The next two results (Lemmas 9.2 and 9.3) remove the logarithmic term from these
estimates for � D 3=2, by establishing first a growth rate for W3=2. (Recall that �.x0/ �
3=2 at every free boundary point x0, by Lemma 8.2.) These are analogous to [31, Lem-
mas 7.3, 7.4] in the case A � I and follow from the so-called epiperimetric inequality
for � D 3=2 (see e.g. [31, Theorem 7.2]). Later, in Section 12, we remove the logarithmic
term also in the case � D 2m < �0, m 2 N, see Lemma 12.3.

The results in this section are stated in terms of both u�x0 and U �x0 , as we need both
forms in the subsequent arguments. We note that the estimates for u�x0 follow directly
from [31, Lemmas 7.1, 7.3, 7.4] and the ones for U �x0 are obtained by using the deskewing
procedure, and therefore we skip all proofs in this section.

In the estimates below, as well as in the rest of the paper, we use the notation

R0´ .1=2/ƒ�1=2;

which is the radius of the largest ball BR0 , where u�x0 is guaranteed to exist for any x0 2
B 0
1=2

for an almost minimizer U in B1.

Lemma 9.1 (Weak growth estimate). Let U be an A-quasisymmetric almost minimizer
for the A-Signorini problem in B1 and x0 2 B 01=2 \ �.U /. If

�.x0/ � �

for some � � �0, thenZ
@Bt

.u�x0/
2
� Cku�x0k

2
W 1;2.BR0 /

�
log

1

t

�
tnC2��1;Z

Bt

jru�x0 j
2
� Cku�x0k

2
W 1;2.BR0 /

�
log

1

t

�
tnC2��2;Z

@Et .x0/

.U �x0/
2
� CkU k2

W 1;2.B1/

�
log

1

t

�
tnC2��1;Z

Et .x0/

jrU �x0 j
2
� CkU k2

W 1;2.B1/

�
log

1

t

�
tnC2��2;

for 0 < t < t0 D t0.n; ˛;M; �0/ and C D C.n; ˛;M; �0/.
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Lemma 9.2. Let U and x0 be as above. Then, there exists ı D ı.n; ˛/ > 0 such that

0 � W3=2.t; u
�
x0
; 0/ � Cku�x0k

2
W 1;2.BR0 /

tı ;

0 � W A
3=2.t; U

�
x0
; x0/ � CkU k

2
W 1;2.B1/

tı ;

for 0 < t < t0 D t0.n; ˛;M/ and C D C.n; ˛;M/.

Lemma 9.3 (Optimal growth estimate). Let U and x0 be as above. Then,Z
@Bt

.u�x0/
2
� Cku�x0k

2
W 1;2.BR0 /

tnC2;Z
Bt

jru�x0 j
2
� Cku�x0k

2
W 1;2.BR0 /

tnC1;Z
@Et .x0/

.U �x0/
2
� CkU k2

W 1;2.B1/
tnC2;Z

Et .x0/

jrU �x0 j
2
� CkU k2

W 1;2.B1/
tnC1;

for 0 < t < t0 D t0.n; ˛;M/ and C D C.n; ˛;M/.

10. 3=2-almost homogeneous rescalings and blowups

In this section we study another kind of rescalings and blowups that will play a funda-
mental role in the analysis of regular free boundary points where �.x0/ D 3=2 (see the
next section), namely, 3=2-almost homogeneous blowups. The main result that we prove
in this section is the uniqueness and Hölder continuous dependence of such blowups at a
free boundary point x0 (Lemma 10.3).

For a function v in B1 and x0 2 B 01=2, we define the 3=2-almost homogeneous rescal-
ings of v at x0 by

v
�
x0;t
.x/ D

v.tx C x0/

�.t/
; �.t/ D e�.

3b
2˛ /t

˛

t3=2;

with b as in the Weiss-type monotonicity formulas W A
3=2

and W3=2. When x0 D 0, we

simply write v�0;t D v
�
t .

The name is explained by the fact that

lim
t!0

�.t/

t3=2
D 1;

and the reason to look at such rescalings instead of 3=2-homogeneous rescalings (that
would correspond to �.t/D t3=2) is how they play well with the Weiss-type monotonicity
formulas W A

3=2
and W3=2.
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Now, if U is an A-quasisymmetric almost minimizer and x0 2 B 01=2 \ �.U /, then for
any fixed R > 1, if t D tj > 0 is small, then by Lemma 9.3,Z

BR

jr.u�x0/
�
t j
2
D
e
3b
˛ t

˛

tnC1

Z
BRt

jru�x0 j
2
� Cku�x0k

2
W 1;2.BR0 /

RnC1; (10.1)Z
@BR

..u�x0/
�
t /
2
D
e
3b
˛ t

˛

tnC2

Z
@BRt

.u�x0/
2
� Cku�x0k

2
W 1;2.BR0 /

RnC2;

with C D C.n; ˛;M/, R0 D .1=2/ƒ�1=2. Therefore, .u�x0/
�
tj

is a bounded sequence in
W 1;2.BR/. Next, arguing as in the proof of Proposition 8.1, we will have that

k
3
r.u�x0/

�
t kC 0;ˇ .K/ � Ck.u

�
x0
/
�
t kW 1;2.BR/; (10.2)

with C D C.n; ˛;M; R; K/ for K b BR. Thus, by letting R !1 and using Cantor’s
diagonal argument, we can conclude that over a subsequence t D tj ! 0C,

.u�x0/
�
tj
! .u�x0/

�
0 in C 1loc.R

n
˙ [Rn�1/:

We call such .u�x0/
�
0 a 3=2-homogeneous blowup of u�x0 at 0. (We may skip the “almost”

modifier here as the limit is the same as for 3=2-homogeneous rescalings.) Furthermore,
from the relation

.u�x0/
�
t .y/ D .U

�
x0
/
�
x0;t
. Nax0y/;

we also conclude that for any sequence tj ! 0C, there is a subsequence, still denoted by
tj , such that

.U �x0/
�
x0;tj
! .U �x0/

�
x0;0

in C 1loc.R
n
˙ [Rn�1/:

Apriori, the blowups .u�x0/
�
0 and .U �x0/

�
x0;0

may depend on the sequence tj ! 0C.
However, this does not happen in the case of 3=2-homogeneous blowups. We start with
what we call a rotation estimate for rescalings.

Lemma 10.1 (Rotation estimate). Let U be an A-quasisymmetric almost minimizer for
the A-Signorini problem in B1, x0 2 B 01=2 a free boundary point, and ı as in Lemma 9.2.
Then, Z

@B1

j.u�x0/
�
t � .u

�
x0
/�s j � Cku

�
x0
kW 1;2.BR0 /

tı=2;Z
ax0@B1

j.U �x0/
�
x0;t
� .U �x0/

�
x0;s
j � CkU kW 1;2.B1/t

ı=2;

for s < t < t0 D t0.n; ˛;M/ and C D C.n; ˛;M/.

Proof. This is an analogue of [31, Lemma 8.2], which follows from the computation done
in the proof of [31, Lemma 7.1], the growth estimate for W3=2 in [31, Lemma 7.3] and
a dyadic argument. The analogues of those results in our case are stated in Lemma 9.1
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and 9.2. This proves the lemma for u�x0 . The estimate for .U �x0/
�
x0;t

then follows from the
equality

.u�x0/
�
t .y/ D .U

�
x0
/
�
x0;t
. Nax0y/; y 2 BR0=t :

The uniqueness of 3=2-homogeneous blowup now follows.

Lemma 10.2. Let .U �x0/
�
x0;0

and .u�x0/
�
0 be blowups of .U �x0/

�
x0;t

and .u�x0/
�
t , respectively,

at a free boundary point x0 2 B 01=2. Then,Z
@B1

j.u�x0/
�
t � .u

�
x0
/
�
0 j � Cku

�
x0
kW 1;2.BR0 /

tı=2;Z
ax0@B1

j.U �x0/
�
x0;t
� .U �x0/

�
x0;0
j � CkU kW 1;2.B1/t

ı=2;

for 0 < t < t0.n;˛;M/ and C D C.n;˛;M/, where ı D ı.n;˛/ > 0 is as in Lemma 10.1.
In particular, the blowups .u�x0/

�
0 and .U �x0/

�
x0;0

are unique.

Proof. If .u�x0/
�
0 is the limit of .u�x0/

�
tj

for tj ! 0, then the first part of the lemma follows
immediately from Lemma 10.1, by taking s D tj ! 0 and passing to the limit.

To see the uniqueness of blowups, we observe that .u�x0/
�
0 is a solution of the Signorini

problem in B1, by arguing as in the proof of Proposition 8.1 for Almgren blowups. Now,
if v0 is another blowup, over a possibly different sequence t 0j ! 0, then passing to the
limit in the first part of the lemma we will haveZ

@B1

jv0 � .u
�
x0
/
�
0 j
2
D 0;

implying that both v0 and .u�x0/
�
0 are solutions of the Signorini problem in B1 with the

same boundary values on @B1. By the uniqueness of such solutions, we have v0 D .u�x0/
�
0

in B1. The equality propagates to all of Rn by the unique continuation of harmonic func-
tions in Rn

˙
. This completes the proof for u�x0 . An analogous argument holds forU �x0 using

the equalities

.u�x0/
�
t .y/ D .U

�
x0
/
�
x0;t
. Nax0y/; y 2 BR0=t ;

.u�x0/
�
0 .y/ D .U

�
x0
/
�
x0;0

. Nax0y/; y 2 Rn:

The rotation estimate for rescalings implies not only the uniqueness of blowups and
the convergence rate to blowups, but also the continuous dependence of blowups on a free
boundary point.

Lemma 10.3 (Continuous dependence of blowups). There exists �D �.n;˛;M/ > 0 such
that if x0; y0 2 B 0� are free boundary points of U , thenZ

ax0@B1

j.U �x0/
�
x0;0
� .U �y0/

�
y0;0
j � C jx0 � y0j


 ; (10.3)Z
@B1

j.u�x0/
�
0 � .u

�
y0
/
�
0 j � C jx0 � y0j


 ; (10.4)
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@B 01

j.u�x0/
�
0 � .u

�
y0
/
�
0 j � C jx0 � y0j


 ; (10.5)

with C D C.n; ˛;M; kU kW 1;2.B1//, 
 D 
.n; ˛;M/ > 0.

Proof. Step 1. Let d D jx0 � y0j and d � � r � 2d � with � D �.˛/ 2 .0; 1/ to be deter-
mined later.

Next note that we can incorporate the weight �x0=det ax0 with �x0 as in (2.4) in the
integral on the left-hand side of (10.3) because of the bounds� �

ƒ

�1=2
�

�x0
det ax0

�

�ƒ
�

�1=2
:

Then, by using Lemma 10.2, we haveZ
ax0@B1

ˇ̌
.U �x0/

�
x0;0
� .U �y0/

�
y0;0

ˇ̌ �x0
det ax0

�

Z
ax0@B1

�ˇ̌
.U �x0/

�
x0;0
� .U �x0/

�
x0;r

ˇ̌
C
ˇ̌
.U �x0/

�
x0;r
� .U �x0/

�
y0;r

ˇ̌
C
ˇ̌
.U �x0/

�
y0;r
� .U �y0/

�
y0;r

ˇ̌
C
ˇ̌
.U �y0/

�
y0;r
� .U �y0/

�
y0;0

ˇ̌� �x0
det ax0

C

Z
ay0@B1

ˇ̌
.U �y0/

�
y0;r
� .U �y0/

�
y0;0

ˇ̌ �y0
det ay0

�

Z
ay0@B1

ˇ̌
.U �y0/

�
y0;r
� .U �y0/

�
y0;0

ˇ̌ �y0
det ay0

� 2Crı=2 C Ir C IIr C IIIr

� Cd �ı=2 C Ir C IIr C IIIr ;

where

Ir D
Z

ax0@B1

j.U �x0/
�
x0;r
� .U �x0/

�
y0;r
j
�x0

det ax0
;

IIr D
Z

ax0@B1

j.U �x0/
�
y0;r
� .U �y0/

�
y0;r
j
�x0

det ax0
;

IIIr D
Z

ax0@B1

j.U �y0/
�
y0;r
� .U �y0/

�
y0;0
j
�x0

det ax0

�

Z
ay0@B1

j.U �y0/
�
y0;r
� .U �y0/

�
y0;0
j
�y0

det ay0
:

Step 2. By the definition of the almost homogeneous rescalings, we have

Ir �
C

d �.nC1=2/

Z
ax0@Br

jU �x0.z C x0/ � U
�
x0
.z C y0/jdSz :
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This gives

1

d �

Z 2d �

d �
Ir dr �

C

d �.nC3=2/

Z 2d �

d �

Z
ax0@Br

ˇ̌
U �x0.z C x0/ � U

�
x0
.z C y0/

ˇ̌
dSzdr

�
C

d �.nC3=2/

Z
ax0 .B2d� nBd� /

ˇ̌
U �x0.z C x0/ � U

�
x0
.z C y0/

ˇ̌
dz

D
C

d �.nC3=2/

Z
ax0 .B2d� nBd� /

ˇ̌̌̌Z 1

0

d

ds

h
U �x0.z C x0.1 � s/C y0s/

i
ds

ˇ̌̌̌
dz

�
C

d �.nC3=2/

ˇ̌
x0 � y0

ˇ̌ Z 1

0

Z
ax0 .B2d� nBd� /

ˇ̌
rU �x0.z C x0.1 � s/C y0s/

ˇ̌
dzds

�
C

d �.nC3=2/�1

Z 1

0

Z
ax0B2d�CŒx0.1�s/Cy0s�

ˇ̌
rU �x0

ˇ̌
dzds:

Notice that the last integral is taken over

ax0B2d � C Œx0.1 � s/C y0s� D ax0 ŒB2d � C sa
�1
x0
.y0 � x0/�C x0

� ax0B2d �C��1=2d C x0 � E3d � .x0/;

if � D �.n; ˛;M/ is small so that .2�/1�� � �1=2 which readily implies d1�� � �1=2.
Thus,

1

d �

Z 2d �

d �
Ir dr �

C

d �.nC3=2/�1

Z 1

0

Z
E3d� .x0/

jrU �x0 jdzds

�
C

d �.n=2C3=2/�1

�Z
E3d� .x0/

jrU �x0 j
2

�1=2
� CkU kW 1;2.B1/d

1�� ;

where the third inequality follows from Lemma 9.3.

Step 3. By the definition of rescalings and symmetrizations, we have

IIr �
C

d �.nC1=2/

Z
ax0@BrCy0

jU �x0.z/ � U
�
y0
.z/jdSz

�
C

d �.nC1=2/

Z
ax0@BrCy0

jU.Px0z/ � U.Py0z/jdSz :

This gives

1

d �

Z 2d �

d �
IIr dr �

C

d �.nC3=2/

Z
ax0 .B2d� nBd� /Cy0

jU.Px0z/ � U.Py0z/jdz

�
C

d �.nC3=2/

Z
ax0 .B2d� nBd� /Cy0

Z 1

0

ˇ̌̌ d
ds
ŒU.Œ.1 � s/Px0 C sPy0 �z/�

ˇ̌̌
dsdz

�
C jPx0 � Py0 j

d �.nC3=2/

Z 1

0

Z
ax0 .B2d� nBd� /Cy0

jrU.Œ.1 � s/Px0 C sPy0 �z/jdzds:
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Now we do the change of variables

y D Œ.1 � s/Px0 C sPy0 �z:

Since Px0 and Py0 are upper-triangular matrices with diagonal entries 1; 1; : : : ; 1;�1, so
is .1 � s/Px0 C sPy0 . Thus, ˇ̌

detŒ.1 � s/Px0 C sPy0 �
ˇ̌
D 1:

Moreover, y 2 Œ.1 � s/Px0 C sPy0 �.ax0B2d � C y0/. Since

ax0B2d � C y0 � ay0B2.ƒ=�/1=2d � C y0 D E2.ƒ=�/1=2d � .y0/;

we have

Py0.ax0B2d � C y0/ � Py0E2.ƒ=�/1=2d � .y0/ D E2.ƒ=�/1=2d � .y0/:

Similarly, since

ax0B2d � C y0 D E2d � .x0/C .y0 � x0/ � B2ƒ1=2d � .x0/C .y0 � x0/

� B4ƒ1=2d � .x0/ � E4.ƒ=�/1=2d � .x0/;

we have
Px0.ax0B2d � C y0/ � E4.ƒ=�/1=2d � .x0/:

Thus,

y 2 .1 � s/Px0.ax0B2d � C y0/C sPy0.ax0B2d � C y0/

� .1 � s/E4.ƒ=�/1=2d � .x0/C sE2.ƒ=�/1=2d � .y0/

� B6.ƒ=�1=2/d � C x0 C s.y0 � x0/

� B7.ƒ=�1=2/d � C x0 � E7.ƒ=�/d � .x0/:

Therefore,

1

d �

Z 2d �

d �
IIr dr �

C

d �.nC3=2/�˛

Z 1

0

Z
E7.ƒ=�/d� .x0/

jrU jdzds

�
C

d �.n=2C3=2/�˛

�Z
E7.ƒ=�/d� .x0/

jrU j2
�1=2

�
C

d �.n=2C3=2/�˛

�Z
E7.ƒ=�/d� .x0/

jrU �x0 j
2

�1=2
� CkU kW 1;2.B1/d

˛�� ;

for small �, where the third inequality follows from the quasisymmetry property and the
last inequality from Lemma 9.3.
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Step 4. By the change of variables, we have

IIIrD
Z
@B1

j.U �y0/
�
y0;r

.ax0z/�.U
�
y0
/
�
y0;0

.ax0z/j�

Z
@B1

j.U �y0/
�
y0;r

.ay0z/�.U
�
y0
/
�
y0;0

.ay0z/j

�

Z
@B1

j.U �y0/
�
y0;r

.ax0z/ � .U
�
y0
/�y0;r .ay0z/j C

Z
@B1

j.U �y0/
�
y0;0

.ax0z/ � .U
�
y0
/
�
y0;0

.ay0z/j

� C
�
kr.U �y0/

�
y0;r
kL1.B

ƒ1=2
/ C kr.U

�
y0
/
�
y0;0
kL1.B

ƒ1=2
/

�
jax0 � ay0 j;

where we have used the fact that both ax0z and ay0z are contained in Bƒ1=2 for z 2 @B1.
To estimate the gradients of rescalings we first observe that by the inclusion Brƒ1=2.y0/�
Er.ƒ=�/1=2.y0/ � Brƒ=�1=2.y0/, we have

kr.U �y0/
�
y0;r
kL1.B

ƒ1=2
/ �

C

r1=2
krU �y0kL1.Brƒ1=2 .y0//

�
C

r1=2
krU kL1.B

rƒ=�1=2
.y0//:

Let Uy0;r .x/´ U.r.x � y0/C y0/. Then, arguing as in the proof of Proposition 8.1, we
have

krUy0;rkL1.Bƒ=�1=2 .y0//
� C.n; ˛;M/kUy0;rkW 1;2.B

2ƒ=�1=2
.y0//:

Thus,

krU kL1.B
rƒ=�1=2

.y0// D
1

r
krUy0;rkL1.Bƒ=�1=2 .y0//

�
C

r
kUy0;rkW 1;2.B

2ƒ=�1=2
.y0//

�
C

rn=2C1
kU kL2.B

2rƒ=�1=2
.y0// C

C

rn=2
krU kL2.B

2rƒ=�1=2
.y0//

�
C

rn=2C1
kU �y0kL2.E2rƒ=�.y0// C

C

rn=2
krU �y0kL2.E2rƒ=�.y0//

� Cr1=2kU kW 1;2.B1/;

where we have used the inclusion B2rƒ=�1=2.y0/ � E2rƒ=�.y0/ and the quasisymmetry
property in the third inequality and Lemma 9.3 in the forth. Therefore,

kr.U �y0/
�
y0;r
kL1.B

ƒ1=2
/ �

C

r1=2
krU kL1.B

rƒ=�1=2
.y0// � CkU kW 1;2.B1/:

Moreover, by C 1loc convergence of .U �y0/
�
y0;r to .U �y0/

�
y0;0

, we also have

kr.U �y0/
�
y0;0
kL1.B

ƒ1=2
/ D lim

rj!0C
kr.U �y0/

�
y0;rj
kL1.B

ƒ1=2
/ � CkU kW 1;2.B1/: (10.6)

Therefore,

IIIr � C jax0 � ay0 jkU kW 1;2.B1/

� CkU kW 1;2.B1/d
˛:
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Step 5. Now we are ready to prove (10.3). Using the estimates in Steps 2–4 and taking the
average over d � � r � 2d � , we haveZ

ax0@B1

j.U �x0/
�
x0;0
� .U �y0/

�
y0;0
j � CkU kW 1;2.B1/.d

�ı=2
C d1�� C d˛�� C d˛/:

If we simply take � D ˛=2, then we concludeZ
ax0@B1

j.U �x0/
�
x0;0
� .U �y0/

�
y0;0
j � C jx0 � y0j


 ;

with 
 D ˛ı=4 and C D C.n; ˛;M; kU kW 1;2.B1//.

Step 6. To prove (10.4), we first observe that from (10.3),Z
@B1

j.u�x0/
�
0 .z/ � .u

�
y0
/
�
0 . Na
�1
y0
Nax0z/j D

Z
@B1

j.U �x0/
�
x0;0

. Nax0z/ � .U
�
y0
/
�
y0;0

. Nax0z/j

D

Z
ax0@B1

j.U �x0/
�
x0;0
� .U �y0/

�
y0;0
j
�x0

det ax0

� C jx0 � y0j

 :

On the other hand,Z
@B1

j.u�y0/
�
0 .z/ � .u

�
y0
/
�
0 . Na
�1
y0
Nax0z/j D

Z
ax0@B1

j.u�y0/
�
0 . Na
�1
x0
z/ � .u�y0/

�
0 . Na
�1
y0
z/j

�x0
det ax0

� Ckr.u�y0/
�
0kL1.B.ƒ=�/1=2 /

j Na�1x0 � Na
�1
y0
j

� Ckr.U �y0/
�
y0;0
kL1.B

ƒ=�1=2
/jx0 � y0j

˛

� CkU kW 1;2.B1/jx0 � y0j
˛;

where the last inequality follows from (10.6). (It is easy to see that we can enlarge the
domain in (10.6).) Therefore, combining the preceding two estimates, we conclude thatZ

@B1

j.u�x0/
�
0 � .u

�
y0
/
�
0 j � C jx0 � y0j


 :

Step 7. Finally, (10.4) implies (10.5), by arguing precisely as in [26, Proposition 7.4].

11. Regularity of the regular set

In this section we combine the uniqueness and Hölder continuous dependence of 3=2-
homogeneous blowups of the symmetrized almost minimizers .U �x0/

�
x0;0

(Lemma 10.3)
with a classification of such blowups at so-called regular points (Proposition 11.3) to prove
one of the main results of this paper, the C 1;
 regularity of the regular set (Theorem 11.7).
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While some arguments follow directly from those in the case A � I by a coordinate
transformation NTx0 , the dependence of these transformations on x0 creates an additional
difficulty.

We start by defining the regular set.

Definition 11.1 (Regular points). For an A-quasisymmetric almost minimizer U for the
A-Signorini problem in B1, we say that a free boundary point x0 of U is regular if

�.x0/ D 3=2:

We denote the set of all regular points of U by R.U / and call it the regular set.

We explicitly observe here that 3=2 < 2 � �0, so the fact x0 2 R.U / is independent
of the choice of �0 � 2, see Remark 7.4.

The proofs of the following two results (Lemma 11.2 and Proposition 11.3) are estab-
lished precisely as in [31, Lemma 9.2, Proposition 9.3] for the transformed functions u�x0 .
The equivalent statements for U �x0 are obtained by changing back to the original variables.

Lemma 11.2 (Nondegeneracy at regular points). Let x0 2 B 01=2 \R.U / for an A-quasi-
symmetric almost minimizer U for the A-Signorini problem in B1. Then, for � D 3=2,

lim inf
t!0

Z
ax0@B1

..U �x0/
�
x0;t
/2�x0 D det ax0 lim inf

t!0

Z
@B1

..u�x0/
�
t /
2 > 0:

Proposition 11.3. If �.x0/ < 2, then necessarily �.x0/ D 3=2 and

.u�x0/
�
0 .z/ D ax0 Re.z0 � �x0 C i jznj/

3=2;

.U �x0/
�
x0;0

.x/ D ax0 Re.. Na�1x0 x/
0
� �x0 C i j. Na

�1
x0
x/nj/

3=2;

for some ax0 > 0, �x0 2 @B
0
1.

The next two corollaries are obtained by repeating the same arguments as in [31,
Corollaries 9.4 and 9.5].

Corollary 11.4 (Almgren’s frequency gap). Let U and x0 be as in Lemma 11.2. Then
either

�.x0/ D 3=2 or �.x0/ � 2:

Corollary 11.5. The regular set R.U / is a relatively open subset of the free boundary.

The combination of Proposition 11.3 and Lemma 10.3 implies the following lemma.

Lemma 11.6. Let U and x0 be as in Lemma 11.2. Then there exists � > 0, depending on
x0 such that B 0�.x0/ \ �.U / � R.U / and if

.u�Nx/
�
0 .z/ D a Nx Re.z0 � � Nx C i jznj/3=2
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is the unique 3=2-homogeneous blowup of u�
Nx at Nx 2 B 0�.x0/ \ �.u/, then

ja Nx � a Ny j � C0j Nx � Nyj

 ;

j� Nx � � Ny j � C0j Nx � Nyj

 ;

for any Nx; Ny 2 B 0�.x0/ \ �.u/ with a constant C0 depending on x0.

Proof. The proof follows by repeating the argument presented in [26, Lemma 7.5] with
.u�
Nx/
�
0 , .u�

Ny/
�
0 .

Now we are ready to prove the main result on the regularity of the regular set.

Theorem 11.7 (C 1;
 regularity of the regular set). Let U be an A-quasisymmetric almost
minimizer for the A-Signorini problem in B1. Then, if x0 2 B 01=2 \R.U /, there exists
� > 0, depending on x0 such that, after a possible rotation of coordinate axes in Rn�1,
one has B 0�.x0/ \ �.U / � R.U /, and

B 0�.x0/ \ �.U / D B
0
�.x0/ \ ¹xn�1 D g.x1; : : : ; xn�2/º;

for g 2 C 1;
 .Rn�2/ with an exponent 
 D 
.n; ˛;M/ 2 .0; 1/.

Proof. The proof of the theorem is similar to those of in [31, Theorem 9.7] and [26,
Theorem 1.2]. However, we provide full details since there are technical differences.

Step 1. By relative openness of R.U / in �.U /, for small � > 0 we have B 02�.x0/ \
�.U /�R.U /. We then claim that for any " > 0, there is r" >0 such that for Nx 2B 0�.x0/\
�.U /, r < r", we have that

k.u�Nx/
�
r � .u

�
Nx/
�
0kC 1.B˙1 /

< ":

Assuming the contrary, there is a sequence of points Nxj 2B 0�.x0/\�.U / and radii rj ! 0

such that
k.u�Nxj /

�
rj
� .u�Nxj /

�
0kC 1.B˙1 /

� "0;

for some "0 > 0. Taking a subsequence if necessary, we may assume Nxj ! Nx0 2 B 0�.x0/\
�.U /. Using estimates (10.1)–(10.2), we can see that r.u�

Nxj
/
�
rj are uniformly bounded in

C 0;ˇ .B˙2 [B
0
2/. Since .u�

Nxj
/
�
rj .0/D 0, we also have that .u�

Nxj
/
�
rj is uniformly bounded in

C 1;ˇ .B˙2 [ B
0
2/. Thus, we may assume that for some w

.u�Nxj /
�
rj
! w in C 1.B˙1 /:

By arguing as in the proof of Proposition 8.1, we see that the limit w is a solution of the
Signorini problem in B1. Further, by Lemma 10.2, we have

k.u�Nxj /
�
rj
� .u�Nxj /

�
0kL1.@B1/ ! 0:
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On the other hand, by Lemma 11.6, we have

.u�Nxj /
�
0 ! .u�Nx0/

�
0 in C 1.B˙1 /;

and thus
w D .u�Nx0/

�
0 on @B1:

Since both w and .u�
Nx0
/
�
0 are solutions of the Signorini problem, they must coincide also

in B1. Therefore,
.u�Nxj /

�
rj
! .u�Nx0/

�
0 in C 1.B˙1 /;

implying also that
k.u�Nxj /

�
rj
� .u�Nxj /

�
0kC 1.B˙1 /

! 0;

which contradicts our assumption.

Step 2. For a given " > 0 and a unit vector � 2 Rn�1 define the cone

C".�/ D ¹x
0
2 Rn�1 j x0 � � > "jx0jº:

By Lemma 11.6, we may assume a Nx �
ax0
2

for Nx 2 B 0�.x0/\ �.U / by taking � small. For
such �, we then claim that for any " > 0, there is r" > 0 such that for any Nx 2 B 0�.x0/ \
�.U /, we have

C".� Nx/ \ B
0
r"
� ¹u�Nx.�; 0/ > 0º:

Indeed, denoting K".�/ D C" \ @B
0
1=2

, we have for some universal C" > 0

K".� Nx/ b ¹.u�Nx/
�
0 .�; 0/ > 0º \ B

0
1 and .u�Nx/

�
0 .�; 0/ � a NxC" �

ax0
2
C" on K".� Nx/:

Since ax0
2
C" is independent of Nx, by Step 1 we can find r" > 0 such that for r < 2r",

.u�Nx/
�
r .�; 0/ > 0 on K".� Nx/:

This implies that for r < 2r",

u�Nx.�; 0/ > 0 on rK".� Nx/ D C".� Nx/ \ @B
0
r=2:

Taking the union over all r < 2r", we obtain

u�Nx.�; 0/ > 0 on C".� Nx/ \ B
0
r"
:

Step 3. We claim that for given " > 0, there exists r" > 0 such that for any Nx 2 B 0�.x0/ \
�.U /, we have �

�
C".� Nx/ \ B

0
r"

�
� ¹u�

Nx.�; 0/ D 0º.
Indeed, we first note that

�@Cxn.u
�
Nx/
�
0 � a NxC" >

�ax0
2

�
C" on �K".� Nx/;
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for a universal constant C" > 0. From Step 1, there exists r" > 0 such that for r < 2r",

�@Cxn.u
�
Nx/
�
r .�; 0/ > 0 on �K".� Nx/:

By arguing as in Step 2, we obtain

�@Cxnu
�
Nx.�; 0/ > 0 on �

�
C.� Nx/ \ B

0
r"

�
:

By the complementarity condition in Lemma 6.6, we therefore conclude that

�
�
C.� Nx/ \ B

0
r"

�
� ¹�@Cxnu

�
Nx.�; 0/ > 0º � ¹u

�
Nx.�; 0/ D 0º:

Step 4. By direct computation, we have

Cƒ1=2��1=2".�
A
Nx / \ B

0

�1=2r"
� Na Nx

�
C".� Nx/ \ B

0
r"

�
;

where

�ANx ´
. Na�1x /

tr� Nx

j. Na�1x /
tr� Nxj

:

(Here .�/tr stands for the transpose of the matrix.) Indeed, if y0 2 Cƒ1=2��1=2".�
A
Nx / \

B 0
�1=2r"

, then

y0 2 B 0
�1=2r"

D Na Nx

�
Na�1Nx B

0

�1=2r"

�
� Na NxB

0
r"
;

and

hNa�1x y
0; � Nxi D hy

0; . Na�1x /
tr� Nxi D hy

0; �ANx ij. Na
�1
x /

tr� Nxj

� .ƒ1=2��1=2"jy0j/.ƒ�1=2/

D ��1=2"jy0j � "j Na�1Nx y
0
j:

Combining this with Step 2 and Step 3, for Nx 2 B 0�.x0/ \ �.U /,

Nx C
�
Cƒ1=2��1=2".�

A
Nx / \ B

0

�1=2r"

�
� Nx C Na Nx

�
C".� Nx/ \ B

0
r"

�
� ¹U �Nx .�; 0/ > 0º;

Nx �
�
Cƒ1=2��1=2".�

A
Nx / \ B

0

�1=2r"

�
� ¹U �Nx .�; 0/ D 0º:

Step 5. By rotation in Rn�1 we may assume �Ax0 D en�1. For any " > 0, by Lemma 11.6
and the Hölder continuity of A, we can take �" D �.x0; ";M/, possibly smaller than � in
the previous steps, such that

C2ƒ1=2��1=2".en�1/ \ B
0

�1=2r"
� Cƒ1=2��1=2".�

A
Nx / \ B

0

�1=2r"
;

for Nx 2 B 0�".x0/ \ �.U /. By Step 4, we also have

Nx C
�
C2ƒ1=2��1=2".en�1/ \ B

0

�1=2r"

�
� ¹U.�; 0/ > 0º;



S. Jeon, A. Petrosyan, and M. Smit Vega Garcia 370

Nx �
�
C2ƒ1=2��1=2".en�1/ \ B

0

�1=2r"

�
� ¹U.�; 0/ D 0º:

Now, fixing " D "0, by the standard arguments, we conclude that there exists a Lipschitz
function gWRn�2 ! R with jrgj � Cn;M="0 such that

B 0�"0
.x0/ \ ¹U.�; 0/ D 0º D B

0
�"0
.x0/ \ ¹xn�1 � g.x

00/º;

B 0�"0
.x0/ \ ¹U.�; 0/ > 0º D B

0
�"0
.x0/ \ ¹xn�1 > g.x

00/º:

Step 6. Taking "! 0 in Step 5, �.U / is differentiable at x0 with normal �Ax0 . Recentering
at any Nx 2 B 0�"0 .x0/ \ �.U /, we see that �.U / has a normal �A

Nx at Nx. By noticing that
Nx 7! �A

Nx is C 0;
 , we conclude that the function g in Step 5 is C 1;
 . This completes the
proof.

12. Singular points

In this section we study another type of free boundary points for almost minimizers, the
so-called singular set †.U /. Because of the machinery developed in the earlier sections,
we are able to prove a stratification type result for †.U / (Theorem 12.8), following a
similar approach for the minimizers and almost minimizers with A D I .

Definition 12.1 (Singular points). Let U be an A-quasisymmetric almost minimizer for
the A-Signorini problem in B1. We say that a free boundary point x0 is singular if the
coincidence set ƒ.U / D ¹U.�; 0/ D 0º � B 01 has zero Hn�1-density at x0, i.e.,

lim
r!0C

Hn�1
�
ƒ.U / \ B 0r .x0/

�
Hn�1.B 0r /

D 0:

We denote the set of all singular points by †.U / and call it the singular set.

Denote by Na0x0 the .n� 1/� .n� 1/ submatrix of Nax0 formed by the first .n� 1/ rows
and columns. We then claim that there are constants C; c > 0 depending only on n, �, and
ƒ such that

c � j det Na0x0 j � C: (12.1)

Indeed, this follows from the ellipticity of ax0 and the invariance of both Rn�1 � ¹0º and
¹0º �R under Nax0 , since we have

j det Na0x0. Nax0/nnj D j det Nax0 j D j det ax0 j

and
j. Nax0/nnj D jhNax0en; enij D jNax0enj 2 Œ�

1=2; ƒ1=2�:
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Recall now that for x0 2 �.u/, ux0.y/ D U. Nax0y C x0/ and note that Na0x0B
0
r C x0 D

E 0r .x0/. Thus,

Hn�1.ƒ.U / \E 0r .x0// D j det Na0x0 jH
n�1.ƒ.u�x0/ \ B

0
r /: (12.2)

Now, by (12.2) and (12.1), together with B�1=2r .x0/ � Er .x0/ � Bƒ1=2r .x0/, we have

lim
r!0C

Hn�1
�
ƒ.U / \ B 0r .x0/

�
Hn�1.B 0r /

D 0” lim
r!0C

Hn�1
�
ƒ.U / \E 0r .x0/

�
Hn�1.E 0r .x0//

D 0

” lim
r!0C

Hn�1
�
ƒ.u�x0/ \ B

0
r

�
Hn�1.B 0r /

D 0:

In terms of Almgren rescalings .u�x0/
I
r , we can rewrite the condition above as

lim
r!0C

Hn�1
�
ƒ..u�x0/

I
r / \ B

0
1

�
D 0:

We then have the following characterization of singular points.

Proposition 12.2 (Characterization of singular points). Let U be an A-quasisymmetric
almost minimizer for the A-Signorini problem in B1, and x0 2 B 01=2 \ �.U / be such that
�.x0/ D � < �0. Then the following statements are equivalent.

(i) x0 2 †.U /.

(ii) Any Almgren blowup .u�x0/
I
0 of u�x0 at 0 is a nonzero polynomial from the class

Q� D ¹q j q is homogeneous polynomial of degree � such that

�q D 0; q.y0; 0/ � 0; q.y0; yn/ D q.y
0;�yn/º:

(iii) Any Almgren blowup .U �x0/
A
x0;0

of U �x0 at x0 is a nonzero polynomial from the
class

QA;x0
� D ¹p j p is homogeneous polynomial of degree � such that

div.A.x0/rp/ D 0; p.x0; 0/ � 0; p.x/ D p.Px0x/º:

(iv) �.x0/ D 2m for some m 2 N.

Proof. This is the analogue of [31, Proposition 10.2] in the case A � I .
Clearly, (ii) and (iii) are equivalent. By Proposition 8.1, any Almgren blowup .u�x0/

I
0

of u�x0 at 0 is a nonzero global solution of the Signorini problem, homogeneous of degree
�. Moreover, .u�x0/

I
0 is a C 1loc limit of Almgren rescalings .u�x0/

I
tj

in Rn
˙
[ Rn�1. Since

u�x0 also satisfies the complementarity condition in Lemma 6.6, the equivalence among
(i), (ii) and (iv) follows by repeating the arguments in [31, Proposition 10.2].

In order to proceed with the blowup analysis at singular points, we need to remove
the logarithmic term from the growth estimates in Lemma 9.1. This was achieved in [31,
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Lemma 10.8] in the case A � I by using a bootstrapping argument [31, Lemmas 10.4–
10.6, Corollary 10.7], based on the log-epiperimetric inequality of [11]. All the arguments
above work directly for u�x0 (and then for U �x0 , by deskewing) and we obtain the following
optimal growth estimate.

Lemma 12.3 (Optimal growth estimate at singular points). Let U be an A-quasisym-
metric almost minimizer for the A-Signorini problem in B1. If x0 2 B 01=2 \ �.U / and
�.x0/ D � < �0, � D 2m, m 2 N, then there are t0 and C , depending on n, ˛, M , �, �0,
kU kW 1;2.B1/, such that for 0 < t < t0,Z

@Bt

.u�x0/
2
� CtnC2��1;

Z
Bt

jru�x0 j
2
� CtnC2��2;Z

@Et .x0/

.U �x0/
2
� CtnC2��1;

Z
Et .x0/

jrU �x0 j
2
� CtnC2��2:

With this growth estimate at hand, we now proceed as in the beginning of Section 10
but with � D 2m < �0 in place of � D 3=2. Namely, for such �, let

�.r/ D ��.r/´ e�.
�b
˛ /r

˛

r� ; 0 < r < t0;

where b D M.nC2�0/
˛

is as in Weiss-type monotonicity formula. Then, define the �-almost
homogeneous rescalings of a function v at x0 by

v�x0;r .x/´
v.rx C x0/

�.r/
:

Again, when x0 D 0, we simply write v�0;r D v
�
r .

The growth estimates in Lemma 12.3 enable us to consider �-homogeneous blowups

.u�x0/
�
tj
! .u�x0/

�
0 in C 1loc.R

n
˙ [Rn�1/;

.U �x0/
�
x0;tj
! .U �x0/

�
x0;0

in C 1loc.R
n
˙ [Rn�1/;

for t D tj ! 0C, similar to 3=2-homogeneous blowups in Section 10.
Furthermore, the arguments in [31, Proposition 10.10] also go through for u�x0 (and

then for U �x0 , by deskewing), and we obtain the following rotation estimate for almost
homogeneous rescalings.

Proposition 12.4 (Rotation estimate). For U and x0 as in Lemma 12.3, there exist C > 0

and t0 > 0 such that Z
@B1

j.u�x0/
�
t � .u

�
x0
/�s j � C

�
log

1

t

�� 1
n�2
;Z

ax0@B1

j.U �x0/
�
x0;t
� .U �x0/

�
x0;s
j � C

�
log

1

t

�� 1
n�2
;

for 0 < s < t < t0. In particular, the blowups .u�x0/
�
0 and .U �x0/

�
x0;0

are unique.
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We next show that the rotation estimate as above holds uniformly for u�x0 replaced

with its Almgren rescalings .u�x0/
I
r , 0 < r < 1. (Note that the objects

�
.u�x0/

I
r

��
t

in the
proposition below are �-almost homogeneous rescalings of Almgren rescalings.)

Proposition 12.5. For U and x0 as in Lemma 12.3 and 0 < r < 1, there are C > 0 and
t0 > 0, independent of r such thatZ

@B1

ˇ̌̌�
.u�x0/

I
r

��
t
�
�
.u�x0/

I
r

��
s

ˇ̌̌
� C

�
log

1

t

�� 1
n�2
;

for 0 < s < t < t0. In particular, the �-homogeneous blowup
�
.u�x0/

I
r

��
0

is unique.

Proof. We first observe that since u�x0 has the almost Signorini property at 0, .u�x0/
I
r

also has the almost Signorini property at 0. This implies that W�.�; .u�x0/
I
r ; 0/ andbN �0.�; .u

�
x0
/Ir ; 0/ are monotone nondecreasing on �. Thus,

bN �0.0C; .u
�
x0
/Ir ; 0/ D lim

�!0

bN �0.�; .u
�
x0
/Ir ; 0/ D lim

�!0

bN �0.�r; u
�
x0
; 0/

D �.x0/ D �:

Fix R > 1. If t is small, then we can argue as in the proof of Proposition 8.1 to obtain that
for any K b B˙R [ B

0
R,


�.u�x0/Ir ��t 


C 1;ˇ .K/ � C.n; ˛;M;R;K/


�.u�x0/Ir ��t 


W 1;2.BR/

:

Those are all we need to proceed all the arguments with .u�x0/
I
r as in [31, Lemmas 10.4–

10.6, Corollary 10.7, Lemma 10.8, and Proposition 10.10]. This completes the proof.

Once we have Proposition 12.5, we can argue as in [31, Lemma 10.11] to obtain the
nondegeneracy for u�x0 , and also for U �x0 .

Lemma 12.6 (Nondegeneracy at singular points). Let U and x0 be as in Lemma 12.3.
Then

lim inf
t!0

Z
@B1

..u�x0/
�
t /
2
D lim inf

t!0

1

tnC2��1

Z
@Bt

.u�x0/
2 > 0;

lim inf
t!0

Z
ax0@B1

..U �x0/
�
x0;t
/2 D lim inf

t!0

1

tnC2��1

Z
@Et .x0/

.U �x0/
2 > 0:

To state our main result on the singular set, we need to introduce certain subsets of
†.U /. For � D 2m < �0, m 2 N, let

†�.U /´ ¹x0 2 †.U / j �.x0/ D �º D ��.U /:

Note that the last equality follows from the implication (iv)) (i) in Proposition 12.2.
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Lemma 12.7. The set †�.U / is of topological type F� ; i.e., it is a countable union of
closed sets.

Proof. For j 2 N, j � 2, let

Fj ´

²
x0 2 †�.U /\B1�1=j j

1

j
�

1

�nC2��1

Z
@E�.x0/

.U �x0/
2
� j for 0 < � <

1

2j

³
:

Note that if xj ! x0, then by the local uniform continuity of U and A,Z
@E�.xj /

.U �xj /
2
!

Z
@E�.x0/

.U �x0/
2:

Using this, together with Lemma 12.3, Lemma 12.6 and Lemma 9.1, we can argue as
in [31, Lemma 10.12] to prove that †�.U / D [1jD2Fj and each Fj is closed.

Next, for � D 2m < �0, m 2 N and x0 2 †�.U /, we define

d .�/x0 ´ dim¹� 2 Rn�1 j � � ry0.u
�
x0
/
�
0 .y
0; 0/ � 0 on Rn�1º;

which has the meaning of the dimension of †�.u�x0/ at 0, and where .u�x0/
�
0 is the unique

�-homogeneous blowup of u�x0 at 0. We note here that d .�/x0 can only take the values 0,
1, : : : , n � 2. Indeed, otherwise .u�x0/

�
0 would vanish identically on … and consequently

on Rn, since it is a solution of the Signorini problem, even symmetric with respect to
… (see [24]). However, that would contradict the nondegeneracy Lemma 12.6. Then, for
d D 0; 1; : : : ; n � 2, let

†d� .U /´ ¹x0 2 †�.U / j d
.�/
x0
D dº:

Theorem 12.8 (Structure of the singular set). Let U be an A-quasisymmetric almost min-
imizer for the A-Signorini problem in B1. Then for every � D 2m < �0, m 2 N, and
d D 0; 1; : : : ; n � 2, the set †d� .U / is contained in the union of countably many subman-
ifolds of dimension d and class C 1;log.

Proof. We follow the idea in [31, Theorem 10.13]. For x0 2 †�.U / \ B 01=2, let qx0 2
Q� denote the unique �-homogeneous blowup of u�x0 at 0. By the optimal growth
(Lemma 12.3) and the nondegeneracy (Lemma 12.6), we can write

qx0 D �x0q
I
x0
; �x0 > 0; kq

I
x0
kL2.@B1/ D 1;

where qIx0 2 Q� is the corresponding Almgren blowup. If x1, x2 2 †�.U / \ B 01=2, for
t > 0, to be chosen below, we can write

kqx1 � qx2kL1.@B1/ � kqx1 � .u
�
x1
/
�
t kL1.@B1/ C k.u

�
x1
/
�
t � .u

�
x2
/
�
t kL1.@B1/

C kqx2 � .u
�
x2
/
�
t kL1.@B1

� C
�

log
1

t

�� 1
n�2
k.u�x1/

�
t � .u

�
x2
/
�
t kL1.@B1/; (12.3)
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where we have used Proposition 12.4 in the second inequality. Moreover, we have

k.u�x1/
�
t �.u

�
x2
/
�
t kL1.@B1/ D

1

2�.t/

Z
@B1

ˇ̌
U.t Nax1y C x1/C U.Px1.t Nax1y C x1//

� U.t Nax2y C x2/ � U.Px2.t Nax2y C x2//
ˇ̌
dSy

�
C

t�

Z
@B1

�ˇ̌
U.t Nax1y C x1/ � U.t Nax2y C x2/

ˇ̌
C
ˇ̌
U.Px1.t Nax1y C x1// � U.Px1.t Nax2y C x2//

ˇ̌
C
ˇ̌
U.Px1.t Nax2y C x2//�U.Px2.t Nax2y C x2//

ˇ̌�
dSy

�
C

t�
krU kL1.B1/ .j Nax1� Nax2 jCjx1�x2jCjPx1�Px2 j/

� C

ˇ̌
x1 � x2

ˇ̌˛
t�

D C
ˇ̌
x1 � x2

ˇ̌˛=2
; (12.4)

if we choose t D jx1 � x2j
˛
2� and have jx1 � x2j < .1=4ƒ�1�1=2/

2�
˛ . Combining (12.3)

and (12.4), we obtain

kqx1 � qx2kL1.@B1/ � C
�

log
1

jx1 � x2j

�� 1
n�2
:

After this, we can repeat the argument in the proof of [31, Theorem 10.13] to obtain the
estimates that for x0 2 †�.U / \ B 01=2, there is ı D ı.x0/ > 0 such that

j�x1 � �x2 j � C
�

log
1

jx1 � x2j

�� 1
2.n�2/

;

kqIx1 � q
I
x2
kL1.B1/ � C

�
log

1

jx1 � x2j

�� 1
2.n�2/

; x1; x2 2 †�.U / \ Bı.x0/:

Now, we also have the similar result for U �x0 . For x0 2 †�.U / \ B 01=2, where � D 2m,

m 2 N, let px0 2 Q
A;x0
� be the unique �-homogeneous blowup of U �x0 at x0. Then we can

write
px0 D �

A
x0
pAx0 ; �Ax0 > 0; kp

A
x0
kL2.@B1/ D 1;

where pAx0 2 Q
A;x0
� is the corresponding Almgren blowup of U �x0 . Using that

qIx0.z/ D .det ax0/
1=2 pAx0.ax0z/; qx0.z/ D px0.ax0z/;

together with the ellipticity and Hölder continuity of ax0 and the homogeneity of blowups,
we easily conclude that for x0 2 †�.U / \ B 01=2, there is ı D ı.x0/ > 0 such that

j�Ax1 � �
A
x2
j � C

�
log

1

jx1 � x2j

�� 1
2.n�2/

;

kpAx1 � p
A
x2
kL1.B1/ � C

�
log

1

jx1 � x2j

�� 1
2.n�2/

; x1; x2 2 †�.U / \ Bı.x0/:
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Once we have these estimates, as well as Lemma 12.7, we can apply the Whitney
Extension Theorem of Fefferman [22] to complete the proof, similarly to that of [11, The-
orem 1.7].

A. Example of almost minimizers

Example A.1. Let U be a solution of the A-Signorini problem in B1 with velocity field
b 2 Lp.B1/, p > n:

� div.ArU/C hb.x/;rU i D 0 in B˙1 ;

U � 0; hArU; �Ci C hArU; ��i � 0; U.hArU; �Ci C hArU; ��i/ D 0 on B 01;

where �˙ D�en and hArU; �˙i on B 01 are understood as the limits from inside B˙1 . We
interpret this in the weak sense that U satisfies the variational inequalityZ

B1

hArU;r.W � U/i C hb;rU i.W � U/ � 0;

for any competitorW 2 K0;U .B1;…/. Then U is an almost minimizer of the A-Signorini
problem in B1 with thin obstacle  D 0 on…DRn�1 � ¹0º and a gauge function !.r/D
Cr1�n=p , C D C.n; p; �;ƒ/kbk2

Lp.B1/
.

Proof. For any Er .x0/ b B1 and W 2 K0;U .Er .x0/;…/, we extend W as equal to U in
B1 nEr .x0/ to obtainZ

Er .x0/

hArU;r.W � U/i C hb;rU i.W � U/ � 0: (A.1)

Let V be the minimizer of the energy functionalZ
Er .x0/

hArV;rV i on K0;U .Er .x0/;…/:

Then it follows from a standard variation argument that V satisfies the variational inequal-
ity Z

Er .x0/

hArV;r.W � V /i � 0 for any W 2 K0;U .Er .x0/;…/: (A.2)

Taking W D U ˙ .U � V /C in (A.1) and W D V C .U � V /C in (A.2), we obtainZ
Er .x0/

hAr.U � V /C;r.U � V /Ci � �

Z
Er .x0/

hb;rU i.U � V /C:

Similarly, taking W D U C .V � U/C in (A.1) and W D V ˙ .V � U/C in (A.2), we
get Z

Er .x0/

hAr.V � U/C;r.V � U/Ci �

Z
Er .x0/

hb;rU i.V � U/C:
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These two inequalities giveZ
Er .x0/

hAr.U � V /;r.U � V /i �

Z
Er .x0/

jbjjrU jjU � V j:

Applying Hölder’s inequality,Z
Er .x0/

jr.U � V /j2 � ��1
Z
Er .x0/

hAr.U � V /;r.U � V /i

� ��1kbkLp.Er .x0//krU kL2.Er .x0//kU � V kLp� .Er .x0//;

with p� D 2p=.p � 2/. Since U � V 2W 1;2
0 .Er .x0// and diam.Er .x0//� 2ƒ1=2r , from

the Sobolev’s inequality,

kU � V kLp� .Er .x0// � C.n; p; �;ƒ/r
1�n=p

kr.U � V /kL2.Er .x0//:

Now we have Z
Er .x0/

jr.U � V /j2 � Cr2.1�n=p/
Z
Er .x0/

jrU j2; (A.3)

with C D C.n; p; �;ƒ/kbk2
Lp.B1/

. Thus,Z
Er .x0/

hArU;rU i �

Z
Er .x0/

hArV;rV i D

Z
Er .x0/

hAr.U C V /;r.U � V /i

� C

Z
Er .x0/

jr.U C V /jjr.U � V /j

� Cr

Z
Er .x0/

�
jrU j2 C jrV j2

�
C Cr�


Z
Er .x0/

jr.U � V /j2

� Cr

Z
Er .x0/

hArU;rU i C Cr

Z
Er .x0/

hArV;rV i

C Cr2.1�n=p/�

Z
Er .x0/

hArU;rU i;

where we applied Young’s inequality and used (A.3) at the end. We choose 
 D 1 � n=p
to complete the proof.
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