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Symmetry and asymmetry in a multi-phase
overdetermined problem

Lorenzo Cavallina

Abstract. A celebrated theorem of Serrin asserts that one overdetermined condition on the bound-
ary is enough to obtain radial symmetry in the so-called one-phase overdetermined torsion problem.
It is also known that imposing just one overdetermined condition on the boundary is not enough to
obtain radial symmetry in the corresponding multi-phase overdetermined problem. In this paper we
show that, in order to obtain radial symmetry in the two-phase overdetermined torsion problem, two
overdetermined conditions are needed. Moreover, it is noteworthy that this pattern does not extend to
multi-phase problems with three or more layers, for which we show the existence of nonradial con-
figurations satisfying countably infinitely many overdetermined conditions on the outer boundary.

1. Introduction

Let N denote the set of positive integers. For some fixed number m 2 N, let us intro-
duce the problem setting and notation related to multi-phase (m-layered) elliptic overde-
termined problems (see Figure 1).

Let �k (k 2 ¹0; 1; : : : ; mº) be a collection of bounded domains of RN (N � 2) satis-
fying

; DW �0 �� �1 �� � � � �� �m DW �;

where A �� B means that “A is compactly contained in B”, that is, A � B . Also, for
k 2 ¹1; : : : ;mº, we will assume that the setsDk WD �k n�k�1 are connected. Moreover,
let � be the piece-wise constant function defined as

� WD

mX
kD1

�kXDk ;

where �k are positive constants satisfying

�k�1 ¤ �k for k 2 ¹2; : : : ; mº: (1.1)
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Figure 1. Problem setting for m D 4.

Finally, let n denote the outward unit normal vector to �k (k D 1; : : : ; m) and let @n
be the corresponding normal derivative. Similarly, let .@n/j denote the so-called j th-order
normal derivative, which is given by the following expression:

.@n/
ju.x/ WD

X
jˇ jDj

@ˇu.x/nˇ .x/;

where the summation is taken over all multi-indices ˇ D .ˇ1; : : : ; ˇN / of length k and

@ˇ WD
@j

@x
ˇ1
1 : : : @x

ˇN
N

; nˇ D .n1; : : : ; nN /
ˇ
WD n

ˇ1
1 : : : n

ˇN
N :

In this paper, we will consider the following boundary value problem, which will be
referred to as the multi-phase torsion problem:´

� div.�ru/ D 1 in �;

u D 0 on @�:
(1.2)

We recall that even when no additional smoothness assumptions are imposed on �k , the
weak solution to (1.2) is defined as the unique function u 2 H 1

0 .�/ satisfyingZ
�

�ru � r� D

Z
�

� for all � 2 H 1
0 .�/:

It is a well-known fact (see [4]) that, under suitable smoothness assumptions, the
boundary value problem in (1.2) can be rewritten as the following transmission problem
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(the name diffraction problem is also used, see [15, Chapter 16]):8̂̂̂̂
<̂
ˆ̂̂:
��k�u D 1 in Dk .k D 1; : : : ; m/;

JuK D 0 on @�k .k D 1; : : : ; m � 1/;

J�@nuK D 0 on @�k .k D 1; : : : ; m � 1/;

u D 0 on @�m:

(1.3)

Here, the quantity J�K, called the jump through the interface @�k , is defined as follows:
for any function f 2 H 1.�m/, we set

Jf K WDfkC1j@�k �fkj@�k on @�k ;

where fj WDf jDj (j D 1; : : : ; m).
If the domains �k are concentric balls then, by unique solvability, there exist real

constants ¹ckºk2N such that the solution u of (1.2) satisfies .@n/ku � ck on @� for all k.
The aim of this paper is to investigate to what extent the reverse implication holds. It may
not be surprising to know that the answer depends on the number of layers m.

The case m D 1 was solved by Serrin. By adapting the famous reflection principle of
Alexandrov (see [1] and Theorem C), he showed the following symmetry result:

Theorem A ([18]). Let m D 1. Problem (1.2) admits a solution u 2 C 1.�/ \ C 2.�/
satisfying @nu � c on @� for some constant c 2 R if and only if � is a ball.

We refer the interested reader to the survey paper [16] for an overview of some qual-
itative and quantitative results related to Theorems A and C.

As shown by the author and Yachimura by making use of a perturbation method rely-
ing on the implicit function theorem, one overdetermined condition is not enough to obtain
symmetry when m D 2.

Theorem B ([10]). Let m D 2. Then, there exist infinitely many pairs of domains �1
���2 that are not concentric balls but such that the solution u of (1.2) satisfies @nu� c
on @�2 for some constant c 2 R.

Regarding the study of nontrivial solutions to the above two-phase overdetermined
problem, further analysis has been carried out concerning local bifurcation (see [11]) and
stability (see [9]).

The difference in behaviors between one-phase and two-phase elliptic overdetermined
problems presented by Theorems A and B admits the following heuristic interpretation:
the one-phase overdetermined problem of Theorem A has one constraint (the overde-
termined condition) and one degree of freedom (the shape of �). On the other hand, the
two-phase overdetermined problem of Theorem B also has one constraint (the overde-
termined condition) but two degrees of freedom (the shapes of both �1 and �2). In other
words, Theorem B shows that, when the number of degrees of freedom exceeds that of
constraints, the overdetermined problem admits nontrivial solutions.
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By combining the soap bubble theorem of Alexandrov [1] and a symmetry result by
Sakaguchi [17], we obtain the following result:

Theorem I. Let m D 2 and let �1 �� �2 be bounded domains of class C 2 such that
D1 WD �2 n �1 is connected. Then, problem (1.2) admits a solution u of class C 2 in
a neighborhood of @�2 satisfying .@n/ku � ck on @�2 (k D 1; 2) for some constants
c1; c2 2 R if and only if .�1; �2/ are concentric balls.

In light of this result, together with Theorem A, one might be tempted to formulate the
following (false!) conjecture:

Conjecture 1.1 (False). Letm 2 N and let�k , k 2 ¹1; : : : ;mº, be as in the introduction.
Then, problem (1.2) admits a solution u of class Cm is a neighborhood of @�m satisfying

.@n/
ku � ck on @�m .k D 1; 2; : : : ; m/

for some constants ck 2 R if and only if the sets �k are concentric balls.

We will show that Conjecture 1.1 does not hold for m � 3. As a matter of fact, we are
able to exhibit a counterexample as follows:

Theorem II. Letm� 3. Then, for all �1; : : : ; �m > 0 satisfying (1.1), there exist infinitely
many domains �1 �� � � � �� �m where .�1;�2/ are not concentric balls but such that
the solution u of (1.2) satisfies

.@n/
ku � ck on @�m; 8k 2 N (1.4)

for some constants ck 2 R.

This paper is organized as follows: in Section 2, we show Theorem I, while the
subsequent sections are devoted to the proof of Theorem II. In Section 3, we introduce
some preliminary results concerning the shape differentiability of state functions in two-
phase problems. In Section 4, we study the invertibility properties of a linearized operator
(Dirichlet-to-Neumann map). Then, in Section 5 we combine the results of the two pre-
ceding sections to give a proof of Theorem II by means of the implicit function theorem.
Finally, Section 6 is devoted to some comments on the proof of Theorem II and how it
relates to the existing literature.

2. Proof of Theorem I

In this section, we will give a simple proof of Theorem I. To this end, we will need the
following symmetry results:

Theorem C ([1]). A compact hypersurface, embedded in RN , that has constant mean
curvature must be a sphere.
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Theorem D ([17]). Let m D 2. Let �2 be an open ball and let �1 �� �2 be a bounded
open set of class C 2 with finitely many connected components such thatD1 WD�2 n�1 is
connected. Then, problem (1.2) admits a solution u satisfying @nu � c1 on @�2 for some
real constant c1 if and only if .�1; �2/ are concentric balls.

We remark that both theorems above were originally stated in a more general setting
(see also [2]), but the formulations above are enough for our purposes.

Theorem I now follows by combining the two theorems above.

Proof of Theorem I. Let m D 2 and let the sets �1 and �2 satisfy the hypotheses of
the theorem. In what follows, we will assume that problem (1.2) admits a solution u of
class C 2 in a neighborhood of @�2 satisfying

@nu � c1; .@n/
2u � c2 on @�2 (2.1)

for some real constants c1; c2 and then show that .�1; �2/ must be concentric balls. The
reverse implication is trivial and therefore omitted.

Since the solution u is of class C 2 in a neighborhood of @�2, the decomposition
formula for the Laplace operator ([13, Proposition 5.4.12]) combined with (2.1) yields:

�1

�2
D �u D .@n/

2uCH@nuC��u D c2 CHc1 on @�2; (2.2)

where �� D div� ır� denotes the tangential Laplacian (that is, the tangential divergence
of the tangential gradient, also known as the “Laplace–Beltrami operator”; see [13, Defin-
itions 5.4.5, 5.4.6 and 5.4.11]) on @�2 and H is the (additive) mean curvature given by
the tangential divergence of the outward unit normal n (notice that, under this definition,
the mean curvature of a ball of radius R is N�1

R
).

The terms in (2.2) can be rearranged to show that the mean curvatureH is constant on
the entire @�2. Thus, by applying Theorem C to each connected component of @�2, we
obtain that @�2 is the disjoint union of a finite number of spheres with the same radius
and orientation. This leaves us with just one possibility, that is, @�2 is a sphere and �2 is
a ball. The conclusion readily follows from Theorem D.

Remark 2.1. Notice that in the proof above, we did not use the connectedness of�1 (nor
of @�2), but just that of �2 and D1 D �2 n�1.

In [5, 6], the authors showed the radial symmetry of the solutions to a similar multi-
phase overdetermined problem in RN (in the elliptic and parabolic settings, respectively),
where the overdetermined condition considered requires the solution u to be constant of
each interface. In our setting, the following analogous result holds:

Corollary 2.2. Let m 2 N and let �k , k 2 ¹1; : : : ; mº, be as in the introduction. If the
solution u to (1.3) satisfies

u � ˛k on @�k .k D 1; : : : ; m � 1/;

@nu � c on @�m;
(2.3)
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for some real constants ˛1; : : : ; ˛m�1 and c, then the sets�k are concentric balls and the
function u is radial.

Proof. We will show the claim by induction on the number of layers m. The base case
m D 1 is exactly Serrin’s result (Theorem A). In what follows, let us assume that the
claim holds when the number of layers is strictly less thanm and then show that the claim
holds for m as well. Let u be the solution to (1.3) with m layers �1 �� � � � �� �m and
assume that u satisfies the overdetermined conditions given by (2.3). Let

zu WD

´
�1
�2
.u � ˛1/C ˛1 in �1;

u in �m n�1:

By construction, zu solves transmission problem (1.3) with m � 1 layers �2 �� : : :
�� �m. Moreover, zu also satisfies the overdetermined conditions given by (2.3) (starting
from the “first” interface @�2). Thus, by the inductive hypothesis, �2; : : : ; �m are con-
centric balls and zu is radial. As a consequence, u is also radial and, since @�1 is a level set
of u, the remaining set�1 is also a ball concentric with�m. This concludes the proof.

3. Preliminaries on shape derivatives

In this section, we are going to introduce the main definitions and known results con-
cerning shape calculus for two-phase problems that are going to be useful in the proof of
Theorem II. The experienced reader might therefore skip this section.

In what follows, let �1 and �2 be concentric balls of radii R 2 .0; 1/ and 1 respect-
ively. Also, without loss of generality, suppose that �2 WD 1. Let ˛ 2 .0; 1/. For sufficiently
small � 2 C 2;˛.@�1/ and � 2 C 2;˛.@�2/, letD� and�� be the bounded domains whose
boundaries are given by

@D� WD
®
x C �.x/n.x/ j x 2 @�1

¯
; @�� WD

®
x C �.x/n.x/ j x 2 @�2

¯
: (3.1)

Let v�;� be the solution to the following two-phase boundary value problem associated
to the pair .D�; ��/: ´

� div.��;�rv�;�/ D 1; in �� ;

v�;� D f on @�� ;
(3.2)

where ��;� WD �1XD� C �2X��nD�
and f 2 C 2;˛.RN / is a given function.

The machinery of shape derivatives is the right tool to give a quantitative description
of how v�;� depends on the perturbations .�; �/. The main technical difficulties lie in the
following two points: firstly, the functions v�;� depend on two parameters, and secondly,
each v�;� lies in a different function space depending on the pair .�; �/. To overcome these
difficulties, let ‚ WD C 2;˛.RN ;RN / and consider the following construction: For small
� 2 ‚, set

D� WD .IdC �/.�1/; �� WD .IdC �/.�2/; �� WD �1XD� CX��nD�



Symmetry and asymmetry in a multi-phase overdetermined problem 479

and let v� be the unique solution to (3.2) with respect to the pair .D� ;�� /. Moreover, set

V.�/ WD v� ı .IdC �/ 2 H 1.�2/ for small � 2 ‚: (3.3)

Then, the (first-order) shape derivative of v� at � D 0 is defined as

v0Œ� � WD V 0.0/Œ�� � rV.0/ � � for � 2 ‚; (3.4)

where V 0.0/Œ�� denotes the Fréchet derivative of V at � D 0 in the direction � 2 ‚.
Notice that the definition in (3.4) is given in such a way as to be compatible with a formal
application of partial differentiation with respect to � in (3.3).

Lemma 3.1. The following statements hold:

(i) The map � 7! V.�/ 2 H 1.�2/ is Fréchet differentiable in a neighborhood
of 0 2 ‚.

(ii) Let U be a neighborhood of @�2 that does not intersect �1 and set K WD U \
�2. Then, � 7! V.�/jK 2 C

2;˛.K/ is Fréchet differentiable in a neighborhood
of 0 2 ‚.

(iii) Let E W C 2;˛.@�2/ � C 2;˛.@�1/! ‚ be a bounded linear extension operator
such that

E.�; �/j@�1 D �n; E.�; �/j@�2 D �n for .�; �/ 2 C 2;˛.@�2/ � C 2;˛.@�1/:

Following (3.3), set V.�;�/ WD V.E.�;�//. Then, the mappings .�;�/ 7! V.�;�/2

H 1.�2/ and .�; �/ 7!V.�; �/jK 2 C 2;˛.K/ are Fréchet differentiable in a neigh-
borhood of .0; 0/ 2 C 2;˛.@�2/ � C 2;˛.@�1/.

(iv) Following (3.4), let v0Œ�� WD v0ŒE.�; 0/� denote the shape derivative of v� with
respect to the outer perturbation � only. Then, v0Œ�� is independent of the exten-
sion operator E and can be characterized as the unique solution to the following
boundary value problem:´

� div.�rv0Œ��/ D 0 in �2;

v0Œ�� D .@nf � @nV.0//� on @�2:
(3.5)

Sketch of the proof. In the case of the Laplace operator (� � 1) with homogeneous Dirich-
let boundary conditions (f � 0), claims (i)–(iv) are well-known results which can be
obtained by a standard procedure that combines the implicit function theorem (see The-
orem E) and the Schauder regularity theory [12, Chapter 6]; see, for instance, [13, Sec-
tion 5.3] and the final remark therein. Also, the case of two-phase boundary value prob-
lems with homogeneous Dirichlet boundary conditions has been dealt with in [8, Appen-
dix], while the case of general boundary conditions for the Laplace operator has been
briefly covered in [13, Section 5.6] and the references therein. Finally, as far as the exten-
sion operator E is concerned, we refer the interested reader to [12, Section 6.9].
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Here, we will just limit to showing a simple trick that allows us to reduce to the cases
mentioned above. For small � 2 ‚, let v� be the solution to (3.2) with respect to the
pair .D� ; �� / and let

w� WD v� � f 2H
1
0 .�� /\C

2;˛.K� /; W.�/ WDw� ı .IdC �/ 2H 1
0 .�2/\C

2;˛.K/;

where K� WD .IdC �/.K/. Notice that, by construction, w� is a weak solution to´
� div.��rw� / D F� in �� ;

w� D 0 on @�� ;

where the function F� 2H�1.�� /\ C 2;˛.K� / is given by F� WD 1C div.��rf /. Also,
notice that, by construction, F� admits an extension to RN that is independent of �. There-
fore, results (i)–(iv) hold for w� . Since v� D w� C f by definition, it is clear that (i)–(iii)
hold for v� as well. To conclude, we just need to check that v0Œ�� solves (3.5). To this end,
notice that, by definition, we have w� D v� � f . As a result, w0Œ�� D v0Œ�� and thus, v0Œ��
satisfies the equation in (3.5). On the other hand, notice that W.0/ D V.0/ � f holds by
construction, while, by (iv), w0Œ�� satisfies the boundary condition

w0Œ�� D �@nW.0/� on @�2:

Claim (iv) for v� follows by combining the identities above.

4. The two-phase Dirichlet-to-Neumann map

As in the previous section, let �1 and �2 be concentric balls of radii R 2 .0; 1/ and 1,
respectively, and let �2 WD 1. Let us introduce the following two-phase Dirichlet-to-
Neumann map N W C 2;˛.@�2/! C 1;˛.@�2/ defined as � 7! @nwŒ��, where wŒ�� is the
unique solution to the following boundary value problem:´

� div.�rw/ D 0 in �2;

w D � on @�2:
(4.1)

Let ¹Yk;iºk;i (k 2 ¹0; 1; : : : º, i 2 ¹1; 2; : : : ; dkº) be a maximal family of linearly inde-
pendent solutions to the eigenvalue problem

���Yk;i D �kYk;i on @�2;

with kth eigenvalue �k D k.N C k � 2/ of multiplicity dk and normalized in such a way
that kYk;ikL2.@�2/D 1. The functions ¹Yk;iº are usually referred to as spherical harmonics.
By the method of separation of variables, it can be shown that the spherical harmonics
form an orthonormal basis of eigenfunctions of N in L2.@�2/. The eigenvalues of N

have been computed in [10].
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Lemma 4.1. For k 2 N [ ¹0º and i 2 ¹1; : : : ; dkº, we have

N .Yk;i / D k
.2 �N � k/.1 � �1/C .N � 2C k C k�1/R

2�N�2k

F
Yk;i ; (4.2)

where
F WD k.1 � �1/C .N � 2C k C k�1/R

2�N�2k > 0:

Moreover, N .Yk;i / D 0 if and only if k D 0.

Proof. Since the eigenvalues of (4.2) have been computed in [10], in what follows we only
need to check that the right-hand side in (4.2) vanishes if and only if k D 0. Furthermore,
since N .Y0;i /D 0 by construction, it will suffice to show that N .Yk;i /¤ 0 for k 2 N. To
this end, let � denote the numerator in the right-hand side of (4.2), that is

�.R/ WD .2 �N � k/ � �1.2 �N � k/C .N � 2C k C k�1/R
2�N�2k :

We will show that �.R/ > 0 for all R 2 .0; 1� and k 2 N, proving the claim. First, notice
that � is a decreasing function of R. Thus, for all R 2 .0; 1�,

�.R/ � �.1/ D .2 �N � k/ � �1.2 �N � k/C .N � 2C k C k�1/

D �1.2k � 2CN/ > 0;

which is what we wanted to show.

Let C i;˛� .@�2/ denote the set of all functions in C i;˛.@�2/ with zero average over
@�2 (i 2 ¹1; 2º). Notice that, by Lemma 4.1, N fixes the eigenspaces of the Laplace–
Beltrami operator; hence, N is a well-defined operator from C

2;˛
� .@�2/ into C 1;˛� .@�2/.

Also by Lemma 4.1, N is injective. Actually, it can be shown that N W C
2;˛
� .@�2/ !

C
1;˛
� .@�2/ is a bijection. In order to show this, we first need the following lemma:

Lemma 4.2. The map IdCN W C 2;˛.@�2/! C 1;˛.@�2/ is a bijection.

Proof. We will show that, for all � 2 C 1;˛.@�2/, there exists a unique � 2 C 2;˛.@�2/
that satisfies

N � C � D �:

First of all, let us consider the Sobolev space H 1.�2/ endowed with the (equivalent)
norm k kH1.�2/ WD kr kL2.�2/ C k j@�2kL2.@�2/ and consider the bilinear form B W

H 1.�2/ �H
1.�2/! R given by

B. ; �/ WD

Z
�2

�r � r� C

Z
@�2

 �:

Notice that, by construction, B is bilinear, continuous, and coercive. Now fix an element
� 2 C 1;˛.@�2/ � L

2.@�2/. By the Lax–Milgram theorem, there exists a unique function
w 2 H 1.�2/ such that

B.w; �/ D h�;�j@�2iL2.@�2/ for all � 2 H 1.�2/: (4.3)
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Now, if we restrict the identity above to � in H 1
0 .�2/, then we realize that w must satisfyZ

�2

�rw � r� D 0 for all � 2 H 1
0 .�2/:

In other words, w satisfies the equation

��w D 0 in �1 [ .�2 n�1/ (4.4)

and the transmission conditions

JwK D 0; J�@nwK D 0 on @�1: (4.5)

Moreover, integration by parts in (4.3) and the arbitrariness of the trace of � 2 H 1.�2/

on @�2 yield
@nw C w D � on @�2: (4.6)

Now, since w is the solution to the transmission problem given by (4.4), (4.5), and (4.6),
we can inductively bootstrap its regularity in a classical way by means of the standard
elliptic regularity estimates [12, Chapter 8] and the Schauder boundary estimates [12,
Chapter 6] (see, for example, the argument in the proof of [14, Proposition 5.2] after
.5:7/). We obtain that w is of class C 2;˛ in an open neighborhood of @�2 (whose closure
does not intersect �1). In particular, the function

� WDwj@�2 (4.7)

is a well-defined element of C 2;˛.@�2/. This, together with (4.4), (4.5), and (4.6), implies
that w is the solution to (4.1). In particular, by (4.7) and (4.6),

N � C � D @nw C w D � on @�2:

By the arbitrariness of � 2 C 1;˛.@�2/, the above shows that Id C N W C 2;˛.@�2/ !

C 1;˛.@�2/ is surjective. Injectivity follows from the coercivity of B. As a result, IdCN W

C 2;˛.@�2/ ! C 1;˛.@�2/ is a bijection (whose inverse is continuous, by the bounded
inverse theorem).

Lemma 4.3. The operator N is a bijection from C
2;˛
� .@�2/ into C 1;˛� .@�2/.

Proof. Let K W C 1;˛.@�2/! C 2;˛.@�2/ ,! C 1;˛.@�2/ denote the inverse of IdC N

(that exists by Lemma 4.2). Notice that, by the compactness of the embedding C 2;˛.@�2/
,! C 1;˛.@�2/, K is a compact operator from C 1;˛.@�2/ into itself. By Lemma 4.1 and
the Fredholm alternative (Riesz–Schauder theory) [7, Theorem 6.6 (c)], Id �K admits a
continuous inverse function T WC 1;˛� .@�2/!C

1;˛
� .@�2/. Thus, for .�;�/2C 2;˛� .@�2/�

C
1;˛
� .@�2/ we have

N � D � ” � CN � D � C � ” � D K.� C �/ ” .Id �K/� D K�

” � D TK�:

In other words, the operator N W C
2;˛
� .@�2/! C

1;˛
� .@�2/ admits a continuous inverse,

given by N �1 D T ıK.
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5. Proof of Theorem II

Let m � 3. For k D 1; : : : ; m, let �k be the open ball of radius Rk > 0 centered at the
origin. Also assume that 0<Rk <RkC1 for kD 1; : : : ;m� 1. Moreover, unless otherwise
specified, we will always assume R2 WD 1, �2 WD 1 (notice that this does not result in a
loss of generality).

In what follows, we will show Theorem II. In particular, we will find a nontrivial
collection of domains

D� �� �� �� �3 �� � � � �� �m (5.1)

such that (1.4) is satisfied.
To this end, we will employ the following version of the implicit function theorem for

Banach spaces (see [3, Theorem 2.3, page 38] for a proof):

Theorem E (Implicit function theorem). Let ‰ 2 Ck.X � ƒ;Z/, k 2 N, where Z is a
Banach space and X (resp. ƒ) is an open set of a Banach space zX (resp. zƒ). Suppose
that ‰.x�; ��/ D 0 and that the partial derivative @x‰.x�; ��/ is a bounded invertible
linear transformation from X to Z.

Then, there exist neighborhoods ƒ0 of �� in zƒ and X 0 of x� in zX , and a map � 2
Ck.ƒ0; X 0/ such that the following hold:

(i) ‰.�.�/; �/ D 0 for all � 2 ƒ,

(ii) If ‰.x; �/ D 0 for some .x; �/ 2 X 0 �ƒ0, then x D �.�/,

(iii) � 0.�/ D �.@x‰.p//�1 ı @�‰.p/, where p D .�.�/; �/ and � 2 ƒ0.

Before giving the proof of Theorem II, let us first define some auxiliary functions. Set
R0 WD 0 and let u0 denote the following radial function:

u0.x/ WD

8<: 1
2N

�Pm�1
jDkC1

1
�jC1

.R2jC1 �R
2
j /C

1
�kC1

.R2
kC1
� jxj2/

�
if jxj 2 ŒRk ; RkC1�; .k D 0; : : : ; m � 1/;

(5.2)

where the value of the sum
Pm�1
jDkC1 is set to be zero if m � 1 < k C 1 (empty sum). It is

easy to check that u0 solves transmission problem (1.3). The following auxiliary function
will also play a crucial role in our construction:

v0.x/ WD

8<: 1
2N

�Pm�1
jD3

1
�jC1

.R2jC1 �R
2
j /C

1
�3
.R23 � jxj

2/
�

if jxj 2 Œ0; R3�;

u0.x/ if jxj 2 .R3; Rm�:
(5.3)

This is nothing but the solution to problem (1.3) in the case �1 D �2 D �3.
Let ˛ 2 .0;1/. For sufficiently small �2C 2;˛.@�1/ and � 2C 2;˛.@�2/, letD� and��

be the bounded domains whose boundaries are given by (3.1). Moreover, let v�;� be the
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solution to the following boundary value problem associated to the pair .D�; ��/:´
� div.��;�rv�;�/ D 1 in �� ;

v�;� D v0 on @�� ;
(5.4)

where ��;� WD �1XD� C �2X��nD�
. Notice thatv�;�j.�;�/D.0;0/ Du0j�2 .

Lemma 3.1 yields´
� div.�rv0Œ��/ D 0 in �2;

v0Œ�� D .@nv0 � @nu0/� D
1
N
.1 � 1

�3
/� on @�2:

(5.5)

Proof of Theorem II. We construct nontrivial domains D� and �� with � 2 C 2;˛.@�1/
and � 2 C 2;˛.@�2/ such that the solution v�;� to (5.4) satisfies

@n�v�;� D �3@n�v0 on @�� ; (5.6)

where @n� is the normal derivative in the outward direction on @�� . In other words, if (5.6)
holds, then the function

v WD

´
v�;� in �� ;

v0 in �m n��
solves transmission problem (1.3) with respect to (5.1). Moreover, since the function v
defined above is radial in �m n �� , in particular, it satisfies (1.4). We are therefore left
with the problem of finding a nontrivial pair of functions .�; �/ such that (5.6) holds. To
this end, consider the following mapping:

‰ W C 2;˛� .@�2/ � C
2;˛.@�1/! C 1;˛� .@�2/;

.�; �/ 7! ..@n�v�;� � �3@n�v0/ ı .IdC �n//J� .�/:
(5.7)

Let us first clarify the notation employed in the definition of ‰. Here, n stands for the
outward unit normal vector to the unperturbed boundary @�2 (we recall that the outer
normal to @�� is denoted by n� ) and IdC �n is the natural pullback mapping from @��
to @�2. Moreover, J� .�/ is the tangential Jacobian associated with the mapping IdC �n
(that is, it is the multiplicative term that appears in the integrand of a surface integral
after the corresponding change of variables; see [13, (5.67)–(5.68)]). It is known that both
n� and J� .�/ are differentiable with respect to � at � D 0 (see [13, Proposition 5.4.14 and
Lemma 5.4.15]). We remark that in [13, Proposition 5.4.14], only Gâteaux differentiability
is shown. This notwithstanding, the Fréchet differentiability of the normal can be shown
analogously or by noticing that a smooth extension of n can be written as the normalized
gradient of some subharmonic function vanishing on the boundary). These facts together
with Lemma 3.1 imply that‰ is a well-defined and Fréchet differentiable mapping from a
neighborhood of .0;0/ 2C 2;˛� .@�2/�C

2;˛.@�1/ into C 1;˛.@�2/. We just need to check
that, for small .�; �/ 2 C 2;˛� .@�2/ � C

2;˛.@�1/, the image ‰.�; �/ is indeed a function
of zero average over @�2. To this end, notice that

div.��;�rv�;�/ D �1 D �3�v0 in �� ;
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and thus, the divergence theorem and a change of variables yield the desired identity:Z
@�2

@n�v�;� ı .IdC �n/J� .�/ D
Z
@��

@n�v�;� D

Z
��

div.��;�rv�;�/

D �j�� j D

Z
��

�3�v0 D

Z
@��

�3@n�v0

D

Z
@�2

�3@n�v0 ı .IdC �n/J� .�/:

Moreover, since the tangential Jacobian J� never vanishes, it is clear by definition that
‰.�; �/ D 0 if and only if v�;� satisfies (5.6).

In what follows, we will apply the implicit function theorem (Theorem E) to the map-
ping‰ W C 2;˛� .@�2/�C

2;˛.@�1/! C
1;˛
� .@�2/. To this end, it will be sufficient to show

that the partial Fréchet derivative of ‰ with respect to � at � D 0 is a bijection between
C
2;˛
� .@�2/ andC 1;˛� .@�2/. A direct computation with (5.2), (5.3), (5.5), and (4.1) at hand

yields:

@�‰.0; 0/Œ�� D
�
@nu0 � �3@nv0„ ƒ‚ …

D0

�
J 0� .0/Œ��C .@nv

0Œ��C
�
.@n/

2u0 � �3.@n/
2v0„ ƒ‚ …

D0

�
�/ J� .0/„ƒ‚…

D1

D @nv
0Œ�� D

1

N

�
1 �

1

�3

�
N .�/:

We remark that the computation above is also dramatically simplified, because the Fréchet
derivative of n� ı .IdC �n/ at � D 0 is tangent to @�2, that is, orthogonal to n (as a matter
of fact, it is equal to �r�� by [13, Proposition 5.4.14]). Finally, since �3 ¤ �2 D 1, the
conclusion follows from Lemma 4.3.

6. Some final comments

In this section, we give some comments on the various topological and regularity assump-
tions used in this paper.

On the topological assumptions in Theorem D

Theorem D ensures spherical symmetry in a two-phase setting under the topological
assumption that �1 has finitely many connected components and D1 WD �2 n�1 is con-
nected. Notice that, by Theorem II, we know that the connectedness of D1 is necessary.
Indeed, since Theorem II holds in the “two-phase-three-layer” case (that is, m D 3 and
�1 D �3), there exists a nontrivial triplet of domains D� �� �� �� �3 such that (1.4)
holds. Renaming the domains as

�2 WD �3; �1 WD �� nD�; D2 WD �2 n�1 D D� P[ .�3 n��/
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gives the desired counterexample to Theorem D for disconnected D2 D �2 n�1. To the
best of my knowledge, it is still an open question whether there exists a counterexample
to Theorem D where �1 has infinitely many connected components without developing a
microstructure.

On the regularity

In Theorem II we constructed a pair of nontrivial domains D� �� �� of class C 2;˛ such
that (1.4) is satisfied. We remark that this particular choice of regularity has been made
only to simplify the exposition. Indeed, one could have chosen higher regularity spaces
such asC k;˛ (k � 3) in (5.7), or even different regularities altogether for � and �. The latter
can be done by the “simultaneous asymmetric perturbation method” introduced in [8].

On the choice of the mapping ‰

We remark that the choice of the mapping ‰ used in the proof of Theorem II is not by
chance. The reader might wonder why we opted for such a convoluted approach (cut-
ting the solution at the second phase, deforming it, and then gluing it back together with
the radial unperturbed solution) instead of the more direct approach given by a simple
Neumann-tracking on @�m. In what follows, we aim to give an intuitive explanation of
why such a naive method fails. Instead of the one defined in (5.7), let ‰ be the following
Neumann-tracking-type operator:

‰ W C 2;˛� .@�2/ � C
2;˛.@�1/! C k;˛� .@�m/;

.�; �/ 7! @nu�;� � c1;

where u�;� is the solution to (1.2) with respect to (5.1). First of all, notice that, by the
Schauder regularity theory, u�;� is of class C k;˛ (for all k � 2) in a neighborhood of @�m
and so the map‰ is well defined. Accordingly, one has to replace the Dirichlet-to-Neuman
map N with the following “jump-to-Neumann” map � 7! J.�/ WD @nwŒ��, where wŒ�� is
the solution to the following transmission problem:8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

��w D 0 in D1 [ � � � [Dm;

JwK D J�@nwK D 0 on @�i .i D 1; 3; 4; : : : ; m � 1/;

JwK D � on @�2;

J�@nwK D 0 on @�2;

w D 0 on @�m:

As briefly mentioned before, notice that the function @nwŒ�� is arbitrarily smooth, irre-
spective of the regularity of �. In other words, in passing from � to J.�/, all information
about the regularity of � gets lost, and thus, solving the equation

J.�/ WD @nwŒ�� D �
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in the appropriate Banach spaces becomes an ill-conditioned problem. As a result, Fred-
holmness is lost and the proofs of the analogs of Lemmas 4.2–4.3 fail. As a rule of thumb,
we can say that this sort of ill-conditioning usually happens when the “free boundary”
(in this case, @�� ) and the “overdetermined boundary” (that is, the boundary where the
tracking takes place—in this case, @�m) do not coincide.
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