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A minimization problem with free boundary
and its application to inverse scattering problems

Pu-Zhao Kow, Mikko Salo, and Henrik Shahgholian

Abstract. We study a minimization problem with free boundary, resulting in hybrid quadrature
domains for the Helmholtz equation, as well as some applications to inverse scattering problems.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
2. Applications to inverse scattering problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
3. Existence of minimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
4. The Euler–Lagrange equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
5. Comparison of minimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
6. Some properties of local minimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
7. Relation with hybrid quadrature domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
A. Functions of bounded variation and sets with finite perimeter . . . . . . . . . . . . . . . . . . . 443
B. Further properties of local minimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
C. Computations related to Bessel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
D. Examples of hybrid k-quadrature domains with real-analytic boundary . . . . . . . . . . . . 462
E. Some remarks on null k-quadrature domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
Notation index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

1. Introduction

Motivated by questions in inverse scattering theory, the article [23] introduced the notion
of quadrature domains for the Helmholtz operator � C k2 with k > 0, also called k-
quadrature domains. Given any � 2 E0.Rn/, a bounded open set D � Rn is called a
k-quadrature domain with respect to � if � 2 E0.D/ andZ

D

w.x/ dx D h�;wi;
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for allw 2L1.D/ satisfying .�C k2/wD 0 inD. The case kD 0 corresponds to classical
quadrature domains for harmonic functions. As a consequence of a mean value theorem
for the Helmholtz equation (which goes back to H. Weber; see, e.g., [23, Proposition A.6]
or [6, p. 289]), balls are always k-quadrature domains with � being a multiple of the Dirac
delta function. The work [23] gave further examples of k-quadrature domains including
cardioid-type domains in the plane, implemented a partial balayage procedure to construct
such domains, and showed that such domains may be non-scattering domains for certain
incident waves. The results were based on the following PDE characterization (see [23,
Proposition 2.1]): a bounded open setD � Rn is a k-quadrature domain for � 2 E0.D/ if
and only if there is u 2 D0.Rn/ satisfying (an obstacle-like free boundary problem)´

.�C k2/u D �D � � in Rn;

u D jruj D 0 in Rn nD:
(1.1)

In this work we study k-quadrature domains in the presence of densities both on D
and @D. Let � 2 E0.Rn/. If we only have one density h � 0 on D, we may look for
bounded domains D for which � 2 E0.D/ andZ

D

w.x/h.x/ dx D h�;wi

for all w 2 L1.D/ solving .�C k2/w D 0 inD. Such a setD could be called a weighted
k-quadrature domain. More generally, if we also have a density g � 0 on @D, we consider
the following Bernoulli-type free boundary problem generalizing (1.1):8̂̂<̂

:̂
.�C k2/u D h � � in D;

u D 0 on @D;

jruj D g on @D;

(1.2)

where the Bernoulli condition jruj D g is in a very weak sense; see Proposition B.4
or [18, Theorem 2.3]. Given any � 2 E0.Rn/, a bounded domain D for which � 2 E0.D/

and (1.2) has a solution uwill be called a hybrid k-quadrature domain. The main theme of
this paper is to study such domains. We will establish the existence of hybrid k-quadrature
domains for suitable � via a minimization problem. We will also give examples of such
domains with real-analytic boundary, and show that hybrid k-quadrature domains may
be non-scattering domains in the presence of certain boundary sources. We will closely
follow [18], which studied the case k D 0. It turns out that many of our results can be
reduced to the situation in [18], but certain parts will require modifications. Even though
part of the treatment is very similar to [18], we will try to give enough details so that
readers who are not experts on this topic can also follow the presentation.

1.1. Minimization problem

Let� � Rn be an open set in Rn (with n � 2). Let C1c .�/ consist of C1.Rn/ functions
which are supported in �, and denote by H 1

0 .�/ the completion of C1c .�/ with respect
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to the H 1.�/-norm. We define the set1

K.�/ WD
®
u 2 H 1

0 .�/ j u � 0
¯
;

and for each u 2 H 1
0 .�/, we define

¹u > 0º D
®
x0 2 � j there exists non-negative � 2 C1c .�/

with �.x0/ > 0 such that u � � in �
¯
:

Let � 2 R. For given functions f; g 2 L1.Rn/ with g � 0, we define the functional

Jf;g;�;�.u/ WD

Z
�

.jru.x/j2 � �ju.x/j2 � 2f .x/u.x/C g2.x/�¹u>0º/ dx; (1.3)

which is well-defined for all u 2 H 1
0 .�/. The main purpose of this paper is to study the

following minimization problem:

minimize Jf;g;�;�.u/ subject to u 2 K.�/: (1.4)

It is easy to see that
inf

u2K.�/
Jf;g;�;�.u/ � Jf;g;�;�.0/ D 0: (1.5)

We will show that there exists a minimizer of (1.4) when � is a bounded Lipschitz
domain and �1 < � < ��.�/ (Proposition 3.6). Here ��.�/ is the fundamental tone
of �, defined by

��.�/ WD inf
�2C1c .�/;� 6�0

kr�k2
L2.�/

k�k2
L2.�/

:

It is well known that ��.�/ is the infimum of the Dirichlet spectrum of �� on �. In
addition, when� is C 1, we will show that there exists a countable set Z � .�1; ��.�//
such that the minimizer of (1.4) is unique for all � 2 .�1; ��.�// nZ (Proposition 5.4).
The functional Jf;g;�;� is unbounded below in K.�/ when � > ��.�/ (Lemma 3.1),
which shows the non-existence of a global minimizer of (1.4) for � > ��.�/.

1.2. Quadrature domains via minimization

Given two non-negative functions h and g in Rn (n � 2), and a positive measure � with
compact support in Rn, we wish to find a bounded domain D with Hausdorff .n � 1/-
dimensional boundary @D containing supp .�/ such that the potential ‰k � � (see Defi-
nition 1.1) for any fundamental solution ‰k of �.�C k2/ agrees outside D with that of

1In particular, the inequality u � 0 in the definition of K.�/ can be interpreted in the almost every-
where pointwise sense; see, for example, [22, Definition II.5.1].
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the measure
� WD hLnbD C gHn�1

b@D; (1.6)

where LnbD and Hn�1b@D denote the Lebesgue measure restricted toD and the .n� 1/-
dimensional Hausdorff measure on @D, respectively.

We now introduce a hybrid version of a quadrature domain in the following definition:

Definition 1.1. Let k > 0 and let D be a bounded open set in Rn with the boundary @D
having finite .n� 1/-dimensional Hausdorff measure. Let � be the measure given by (1.6).
The set D � Rn is called a hybrid k-quadrature domain, corresponding to distribution
� 2 E0.D/ (with supp .�/ � D) and density .g; h/ 2 L1.@D/ � L1.D/, if�

‰k � .gH
n�1
b@D/

�
.x/ is well-defined pointwise for all x 2 @D (1.7)

and
‰k � � D ‰k � � in Rn nD; (1.8)

for all fundamental solutions ‰k of the Helmholtz operator �.�C k2/, that is, �.�C
k2/‰k D ı0 in D0.Rn/.

Remark 1.2. In general, condition (1.7) does not follow from standard elliptic regularity
results. Some extra assumptions (see, e.g., Theorem 1.5) are required to ensure (1.7) holds.

Remark 1.3. Let ‰k be any fundamental solution for �.� C k2/ in Rn. Given any
bounded Lipschitz domain D, let  W H 1

loc.R
n/! H 1=2.@D/ be the trace operator. The

adjoint � of  is defined by

h� ; �i D h ; �i@D for all � 2 C1c .R
n/. (1.9)

In particular, � maps H�
1
2 .@D/ to H�1.Rn/. Using [26, Theorem 6.11], we can define

the single-layer potential by

SL W H�
1
2 .@D/! H 1

loc.R
n/; SL.g/ WD ‰k � .�g/: (1.10)

In this case, (1.8) simply reads as

‰k � � D ‰k � .h�D/C SL.g/:

Remark 1.4. WhenD is a hybrid k-quadrature domain with g � 0, using an L1 -density
theorem (see [23, Proposition 2.4]) and a similar argument as in [23, Theorem 1.2], we
know that

h�;wi D

Z
D

w.x/h.x/ dx

for all w 2 L1.D/ such that .�C k2/w D 0 in D. In this case, if (1.8) is true for one
fundamental solution, then it is true for all fundamental solutions.



Minimization problem with application to inverse scattering problems 419

We have the following theorem (see Theorem 7.6 for a more detailed statement):

Theorem 1.5. Let n � 2, and assume h and g are sufficiently regular. If � is a non-
negative measure on Rn with mass concentrated near a point and R > 0, then for each
sufficiently small k > 0, there exists a bounded open domain D in Rn with the bound-
ary @D having finite .n� 1/-dimensional Hausdorff measure such that (1.7) holds, which
is a hybrid k-quadrature domain corresponding to distribution � and density .g; h/ sat-
isfying D � Bˇk�1 . In particular, when g > 0 is Hölder continuous in BR, there exists a
portion E � @D with Hn�1.@D n E/ D 0 such that E is locally C 1;˛ . In the case when
n D 2, we can even choose E D @D.

Remark 1.6. The hybrid k-quadrature domain constructed in Theorem 1.5 can be rep-
resented by D D ¹u� > 0º, where u� is a minimizer of Jf;g;k2;BR in K.BR/ with f D
� � h�D when � is bounded (for general �, we consider some suitable mollifiers). Since
the minimizer is unique for k outside a countable set, so is the constructed domain; see
Proposition 5.4. See also Proposition 7.5 for the case when � is bounded.

1.3. Real-analytic quadrature domains

We can construct examples of hybrid k-quadrature domains using the Cauchy–Kowalevski
theorem. Let D be a bounded domain in Rn with real-analytic boundary. Let g be real-
analytic on a neighborhood of @D with g >0 on @D. For each k� 0, there exists a bounded
positive measure �1 with supp .�1/ � D such that D is a hybrid k-quadrature domain
corresponding to �1 with density .g; 0/. Moreover, if 0 � k < j n�2

2 ;1R
�1 (where j˛;1

is the first positive zero of the Bessel function J˛), D � BR, and if h is a non-negative
integrable function nearD which is real-analytic near @D, thenD is a hybrid k-quadrature
domain corresponding to some measure �2 with density .0; h/. The proofs follow easily
by solving suitable Cauchy problems near @D by the Cauchy–Kowalevski theorem, and
defining �1 and �2 in terms of the obtained solutions. For the details, see Appendix D.

Organization

We first discuss the application to inverse problems in Section 2. Then, we prove the
existence of global minimizers of Jf;g;�;� in K.�/ in Section 3. We study the relation
between local minimizers and partial differential equations in Section 4. Next, we study
the local minimizers in Section 5 and Section 6. With these ingredients at hand, we prove
Theorem 1.5 in Section 7. For the reader’s convenience, we add several appendices to
make the paper self-contained. In Appendix A we recall a few facts about functions of
bounded variation and sets with finite perimeter. Appendix B provides detailed statements
and proofs of results analogous to [18, Section 2]. We then exhibit the detailed proof
of Lemma 7.2 in Appendix C. Appendix D discusses examples of hybrid k-quadrature
domains with real-analytic boundary. Finally, we give some remarks on null k-quadrature
domains in Appendix E.
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2. Applications to inverse scattering problems

We say that a solution u of .�C k20/u D 0 in Rn n BR (for some R > 0) is outgoing if it
satisfies the following Sommerfeld radiation condition:

lim
jxj!1

jxj
n�1
2 .@ru � ik0u/ D 0 uniformly in all directions yx D

x

jxj
2 �n�1;

where @r denotes the radial derivative. There exists a unique u1 2 L2.�d�1/, which is
called the far-field pattern of u, such that

u.x/ D n;k0
eik0jxj

jxj
n�1
2

u1.yx/C O.jxj�
nC1
2 / as jxj ! 1;

uniformly in all directions yx 2 �d�1, where we make the choice (as in [33, Section 1.2.3])

n;k0 D
e�

.n�3/�i
4

2.2�/
n�1
2

k
n�3
2

0 :

For n D 2, we have 2;k0 D
e
i�
4

p
8�k0

, while when n D 3, we have 3;k0 D
1
4�

.
Let D be a bounded domain in Rn, which represents a penetrable obstacle with con-

trast � 2 L1.D/ satisfying j�j � c > 0 almost everywhere near @D. When one probes the
obstacle .D; �/ using an incident wave u0 satisfying .�C k20/u0 D 0 in Rn, it produces
an outgoing scattered field usc solving

.�C k20 C ��D/.u0 C usc/ D 0 in Rn.

We say that the obstacle .D; �/ is non-scattering with respect to the incident field u0 and
the wave number k0 if the far-field pattern u1sc of the corresponding scattered field usc

vanishes identically. Using the Rellich uniqueness theorem [5,19], we know that u1sc � 0

if and only if usc D 0 in Rn n BR for some R > 0, therefore, this definition coincides
with [23, Definition 1.8]. The next theorem extends [23, Corollary 1.9]. We remind the
readers that there are some significant differences between 0-quadrature domains and k-
quadrature domains; see Appendix E for more details.

Theorem 2.1. LetD be a bounded hybrid k-quadrature domain, corresponding to distri-
bution � 2 E0.D/ and density .0; h/ with h 2 L1.D/ and jhj � c > 0 near @D. Assume
that there exist a wave number k0 � 0 (which may differ from k) and

a solution u0 of .�C k20/u0 D 0 in Rn such that u0 > 0 on @D. (2.1)

Then, there exists a contrast � 2L1.D/ satisfying j�j � c > 0 almost everywhere near @D
such that .D; �/ is non-scattering with respect to the incident field u0 and the wave num-
ber k0.
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Remark 2.2. Using the result in [24] (see also [30]), we know that (2.1) holds at least
when

(A) D is Lipschitz so that Rn nD is connected and k20 is not a Dirichlet eigenvalue
of �� in D; or

(B) D is a compact set contained in a bounded Lipschitz domain� such that Rn n�
is connected and j�j � jBr j, where r D j n�2

2 ;1k
�1
0 .

Proof of Theorem 2.1. Following the same ideas in [23, Theorem 1.2 and Remark 1.3],
one can show that there is a neighborhood U of @D in Rn and a distribution u 2 D0.U /

satisfying ´
.�C k20/u D ..k

2
0 � k

2/uC h/�D in U ,

u D jruj D 0 in U nD.

By elliptic regularity, one has u 2 C 1;˛.U /. The function v0 D uC u0 satisfies´
.�C k20 C �0�D/v0 D .�0v0 C .k

2
0 � k

2/uC h/�D in U ,

v0jUnD D u0jUnD :

By choosing �0 D �
.k20�k

2/uCh

v0
near @D, one can verify that v0 2 C 1;˛.U / and j�0j

� c > 0 near @D. Hence, the theorem follows by applying the next lemma (Lemma 2.3)
with g � 0.

To investigate the case when g is non-trivial, we need the following technical lemma,
which is a refinement of [30, Lemma 2.3]:

Lemma 2.3. Let k0 � 0, letD be a bounded open set in Rn with the boundary @D having
finite .n � 1/-dimensional Hausdorff measure, and let g 2 L1.@D/. Given any u0 as
in (2.1), any open neighborhood U of @D in Rn, any �0 2 L1.U / with j�0j � c > 0

near @D, and any v0 2 C
0;1
loc .U / such that´

.�C k20 C �0�D/v0 D gH
n�1b@D in U ,

v0jUnD D u0jUnD;
(2.2)

there exist � 2 L1.Rn/ and v 2 C 0;1loc .R
n/, with � D �0 and v D v0 near @D, such that´

.�C k20 C ��D/v D gH
n�1b@D in Rn,

vjRnnD D u0jRnnD :
(2.3)

Proof. By (2.1), (2.2), and continuity of v0, one sees that v0 is positive in some neighbor-
hood U 0 � U of @D. Choose  2 C1c .U

0/ such that 0 �  � 1 and  D 1 near @D, and
define

v D

´
v0 C .1 �  / in D,

u0 in Rn nD.
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Then, v 2 C 0;1loc .R
n/ is positive near D and satisfies v D v0 near @D. We observe that the

function defined by

� D

8<: �
.�C k20/v

v
in D,

 �0 in Rn nD,
(2.4)

is L1 in D and satisfies � D �0 near @D, which implies that � 2 L1.Rn/. From (2.4), it
is not difficult to see that

.�C k20 C ��D/v D 0 D gH
n�1
b@D in D. (2.5a)

Since v D v0 and � D �0 near @D, from (2.2), we see that

.�C k20 C ��D/v D gH
n�1
b@D near @D. (2.5b)

Since v D u0 in Rn nD, we also have

.�C k20 C ��D/v D .�C k
2
0/v D 0 D gH

n�1
b@D in Rn nD. (2.5c)

By combining (2.5a), (2.5b), and (2.5c), we conclude that (2.3) holds.

We are now ready to prove the following theorem:

Theorem 2.4. LetD D ¹u� > 0º be the hybrid k-quadrature domain constructed in The-
orem 7.6 or Theorem 1.5 corresponding to density .g; h/. Given any u0 as in (2.1), there
exist � 2 L1.Rn/ with j�j � c > 0 near @D and u�;g 2 C

0;1
loc .R

n/ such that´
.�C k20 C ��D/u�;g D gH

n�1b@D in Rn,

u�;g D u0 in Rn nD.
(2.6)

Proof. There exists an open neighborhood U of @D in Rn such that´
.�C k20/u� D ..k

2
0 � k

2/u� C h/L
nbD C gHn�1b@D in U ,

u�jUnD D 0:

Since the function v0 D u� C u0 satisfies

.�C k20 C �0�D/v0 D .�0v0 C .k
2
0 � k

2/u� C h/L
n
bD C gHn�1

b@D;

by choosing �0D�
.k20�k

2/u�Ch

v0
near @D, one can verify that v0 2C 0;1.U 0/, �0 2L1.U 0/

with j�0j � c > 0 in U 0 and´
.�C k20 C �0�D/v0 D gH

n�1b@D in U 0,

v0jU 0nD D u0jU 0nD;

for some open neighborhood U 0 of @D in U . Finally, we conclude Theorem 2.4 using
Lemma 2.3.
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We will now discuss how Theorem 2.4 can be interpreted as a non-scattering result. It
is easy to see that the function w�;g WD u�;g � u0 satisfies´

.�C k20/w�;g D ��u�;gL
nbD C gHn�1b@D in Rn,

w�;g D 0 in Rn nD.

SinceD is bounded, w�;g 2 E0.Rn/. Let ‰k0 be any fundamental solution for �.�C k20/
in Rn. By the properties of convolution for distributions, we have

w�;g D ı0 � w�;g D �.�C k
2
0/‰k0 � w�;g D �‰k0 � .�C k

2
0/w�;g

D ‰k0 � .�u�;g�D/ �‰k0 � .gH
n�1
b@D/;

that is,
u�;g D u0 C‰k0 � .�u�;g�D/ �‰k0 � .gH

n�1
b@D/: (2.7)

When @D above is Lipschitz (by Theorem 7.6, this is true, for example, when n D 2), the
outer unit normal vector � on @D is Hn�1-almost everywhere well-defined in the sense of
[13, Theorem 5.8.1]. Now let � be the adjoint of the trace operator on @D as in (1.9). In
this case, we can write (2.7) as

u�;g D u0 C‰k0 � .�u�;g�D/ � SL .g/;

where SL .g/ is the single-layer potential as in (1.10). Since �u�;g�D 2L1.Rn/, one sees
that u0 C‰k0 � .�u�;g�D/ 2 C

1
loc.R

n/. Consequently, by using the jump relations of the
layer potential in [26, Theorem 6.11], we have

@C� u�;g � @
�
� u�;g D g in the H�

1
2 .@D/-sense. (2.8a)

Here @�� (resp. @C� ) denotes the normal derivative from the interior (resp. exterior) of D.
Obviously, u�;g 2 C

0;1
loc .R

n/ satisfies

.�C k20 C �/u�;g D 0 in D, (2.8b)

u�;g jRnnD D u0jRnnD : (2.8c)

By (2.8a)–(2.8c), we can interpret gHn�1b@D in (2.6) as a non-radiating surface
source with respect to the incident field u0 and potential � 2 L1.D/. In other words,
the obstacle D is non-scattering with respect to both the contrast � in D and surface
source g on @D. We could formally also write equation (2.6) as´

.�C k20 C .��D C zgH
n�1b@D//u�;g D 0 in Rn,

u�;g D u0 in Rn nD,

where zg D g=u�;g on @D, which would correspond to a non-scattering domain with sin-
gular contrast. See also [25] for a discussion about surface sources on Lipschitz surfaces.
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We now discuss the case when the background medium is anisotropic and inhomoge-
neous. Let m > n

2
be an integer; let � 2 Cm�1;1loc .Rn/; and let A 2 .Cm;1loc .Rn//n�nsym satisfy

the uniform ellipticity condition, that is, there exists a constant c0 > 0 such that

� � A.x/� � c0j�j
2 for all x; � 2 Rn. (2.9)

Let u0 2 H 1
loc.R

n/ satisfy

.r � Ar C k20�/u0 D 0 in Rn. (2.10)

By using [15, Theorem 8.10] and Sobolev embedding, one sees that

u0 2 H
mC2
loc .Rn/ � C 2loc.R

n/:

Definition 2.5. We say that the isotropic homogeneous penetrable obstacleD (which is a
bounded domain in Rn) is non-scattering with respect to some external source � 2 E0.D/
and the incident field u0 as in (2.10), if there exists a uto, which is in H 2

loc near Rn nD,
such that

.r � zAr C k20 z�/u
to
D �� in Rn; uto

jRnnD D u0jRnnD; (2.11)

where zA WD A�RnnD C Id�D and z� WD ��RnnD C 1�D .

By writing usc WD uto � u0 in Rn, one observes that, in the case when D is a bounded
Lipschitz domain in Rn, (2.11) is equivalent to the following transmission problem:´

.�C k20/u
sc D ��C h in D,

uscjRnnD D 0; @�� u
scj@D D �g;

(2.12)

where

g WD �� � .A � Id/ru0j@D 2 L1.@D/; h D �.�C k20/u0 2 L
1.D/: (2.13)

Here we used that @�� u
scj@D D @

�
� .u

to � u0/j@D D zAr
�uto � �j@D � @�u0j@D D Ar

Cu0 �

�j@D � @�u0j@D , since uto is H 2
loc near @D. Based on the above observation, we are now

able to prove the following theorem:

Theorem 2.6. Let m > n
2

be an integer, let � 2 Cm�1;1loc .Rn/, let A 2 .Cm;1loc .Rn//n�nsym
satisfy the uniform ellipticity condition in (2.9), and let u0 be an incident field as in (2.10).
If D is a bounded Lipschitz domain in Rn such that it is a hybrid k-quadrature domain
corresponding to distribution � 2 E0.D/ and density .g; h/ as in (2.13), then there exists
a total field uto satisfying (2.11).

Proof. Let ‰k0 be any fundamental solution for �.�C k20/ in Rn, and define

usc
WD ‰k0 � � �‰k0 � .h�D/ � SL .g/ in Rn.

Since D is a hybrid k-quadrature domain, by Remark 1.3, we know that uscjRnnD D 0.
Since usc 2 E0.Rn/ and ‰k0 � � � ‰k0 � .h�D/ is C 1 near @D, similarly to (2.8a), one
sees that usc satisfies (2.12). By using the equivalence of (2.11) and (2.12), we conclude
the theorem.
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3. Existence of minimizers

We first show the boundedness of the functional Jf;g;�;� given in (1.3).

Lemma 3.1. Let f; g 2 L1.Rn/ with g � 0, and let j�j < 1. If �1 < � < ��.�/,
then Jf;g;�;� is coercive inH 1

0 .�/. If � > ��.�/, then Jf;g;�;� is unbounded from below
in K.�/.

Remark 3.2. Here we allow supp .fC/ to be unbounded.

Proof of Lemma 3.1. If � < ��.�/, then there exists a  > 0 such thatZ
�

.jruj2 � �juj2/ dx � kuk2
H1.�/

for all u 2 H 1
0 .�/:

Observe thatˇ̌̌
2

Z
�

f u
ˇ̌̌
� 2kukL2.�/j�j

1
2 kf kL1.�/ � "kuk

2
L2.�/

C "�1j�jkf k2L1.�/

for all " > 0. Consequently, we have

Jf;g;�;�.u/ D

Z
�

.jruj2 � �juj2/ dx � 2

Z
�

f udx C

Z
�

g2�¹u>0º dx

� kuk2
H1.�/

� "kuk2
L2.�/

� "�1j�jkf k2L1.�/:

Choosing " D 
2

, we reach

Jf;g;�;�.u/ �


2
kuk2

H1.�/
�
2j�jkf k2

L1.�/


for all u 2 H 1

0 .�/: (3.1)

This proves the claim for � < ��.�/.
We now consider the case when � > ��.�/. There exists u 2 C1c .�/ so that

kruk2
L2.�/

< �kuk2
L2.�/

. Moreover, juj 2 H 1
0 .�/ and

krjujk2
L2.�/

D kruk2
L2.�/

< �kuk2
L2.�/

:

Therefore, we know that t juj 2 K.�/ for all t � 0. Hence, we know that

Jf;g;�;�.t juj/ D t
2.krjujk2

L2.�/
� �kuk2

L2.�/
/ � 2t

Z
�

f juj dx C

Z
�

g2�¹juj>0º dx

� t2.

<0‚ …„ ƒ
krjujk2

L2.�/
� �kuk2

L2.�/
/ � 2t

>0‚ …„ ƒZ
�

f juj dxC

<1‚ …„ ƒ
jsupp .u/jkgk2L1.�/;

which implies
lim sup
t!1

Jf;g;�;�.t juj/ D �1I

thus, the second claim of the lemma is proved.
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Remark 3.3. If u 2 K.�/, by observing that

Jf;g;�;�.u/ D

Z
�

.jruj2 � �juj2/ dx � 2

Z
�

fCudx C

�0‚ …„ ƒ
2

Z
�

f�udx

C

Z
�

jgj2�¹u>0º dx

� kuk2
H1.�/

� "kuk2
L2.�/

� "�1j�jkfCk
2
L1.�/;

we can obtain

Jf;g;�;�.u/ �


2
kuk2

H1.�/
�
2j�jkfCk

2
L1.�/


for all u 2 K.�/: (3.2)

Note that (3.2) is a refinement of (3.1) for functions in K.�/.

Using Lemma 3.1 and following the proof of [12, Section 8.2, Theorem 1], we have
the following lemma:

Lemma 3.4. Let f; g 2 L1.Rn/ with g � 0. Assume that � is bounded with Lips-
chitz boundary and �1 < � < ��.�/. Then, Jf;g;�;� is weakly lower semi-continuous
on H 1

0 .�/, that is,
Jf;g;�;�.u/ � lim inf

j!1
Jf;g;�;�.uj /

whenever ¹uj º1jD1 [ ¹uº � H
1
0 .�/ satisfies´
uj ! u weakly in L2.�/;

ruj ! ru weakly in L2.�/:

Remark 3.5. Here we remind the readers that the proof of Lemma 3.4 involves the com-
pact embeddingH 1.�/ ,! L2.�/, which follows from the Rellich–Kondrachov theorem
as long as there is a bounded extension operator from H 1.�/ to H 1.Rn/, which is true,
for example, for Lipschitz domains.

Using Lemma 3.4 and following the proof of [12, Section 8.2], we have the following
proposition:

Proposition 3.6. Let f; g 2 L1.Rn/ with g � 0. Assume further that � is a bounded
open set with Lipschitz boundary and �1 < � < ��.�/. Then, there exists a global
minimizer u� 2 K.�/ of the functional Jf;g;�;� in K.�/, that is,

Jf;g;�;�.u�/ D min
u2K.�/

Jf;g;�;�.u/:
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Remark 3.7. Let u0 2 K.�/ be any global minimizer of Jf;g;�;� in K.�/. Using (3.2),
we see that

0 D Jf;g;�;�.0/ � Jf;g;�;�.u0/ �


2
ku0k

2
H1.�/

�
2j�jkfCk

2
L1.�/


;

which shows that ku0kH1.�/ � C for some constant C independent of u0. In particular,
the set of minimizers of Jf;g;�;� in K.�/ is compact in L2.�/.

Remark 3.8. From (3.2), we know that if f � 0 in �, then the minimum is zero and
attained only by u D 0.

Remark 3.9. If the set ¹f > 0º \ ¹gD 0º has non-empty interior in�, then Jf;g;�;�.t�/

is negative for any non-trivial � 2 C1c .¹f > 0º \ ¹g D 0º \�/ with t > 0 sufficiently
small. Consequently, we have

inf
u2K.�/

Jf;g;�;�.u/ < 0;

and then all minimizers are non-trivial.

4. The Euler–Lagrange equation

In order to generalize some of our results, we introduce the following definition:

Definition 4.1. Let� be an open set in Rn and let � 2 R. A function u� 2K.�/ is called
a local minimizer of Jf;g;�;� in K.�/ if there exists " > 0 such that

Jf;g;�;�.u�/ � Jf;g;�;�.u/

for all u 2 K.�/ withZ
�

.jr.u � u�/j
2
C j�¹u>0º � �¹u�>0ºj/ dx < ": (4.1)

Clearly, each (global) minimizer is also a local minimizer. We first prove the next
proposition, which is an extension of [18, Lemma 2.2]. In Proposition B.4, we give an
extension of [18, Theorem 2.3].

Proposition 4.2. Let f; g 2 L1.Rn/ be such that g � 0. Let � be an open set in Rn and
let � 2 R. If u� 2 K.�/ is a local minimizer of Jf;g;�;� in K.�/, then2

�u� � �.f C �u�/C in �; (4.2a)

�u� D �.f C �u�/ in ¹u� > 0º; (4.2b)

�u� � �.f C �u�/ in � n supp .g/: (4.2c)

2When � � 0, (4.2a) implies that .�C �/u� � �fC in �.



P.-Z. Kow, M. Salo, and H. Shahgholian 428

Proof. Let 0 � � 2 C1c .�/. For each " > 0, we define v" WD .u� � "�/C. Since u� 2
K.�/, we know that

v" 2 K.�/ and 0 � v" � u� in �:

Since u� 2 K.�/ is a local minimizer,

Jf;g;�;�.u�/ � Jf;g;�;�.v"/ for all sufficiently small " > 0: (4.3)

We observe that

Jf;g;�;�.v"/ � Jf;g;�;�.u�/ D

Z
�

.jrv"j
2
� �jv"j

2/ dx �

Z
�

.jru�j
2
� �ju�j

2/ dx

� 2

Z
�

f .v" � u�/ dx C

Z
�

g2.�¹v">0º � �¹u�>0º/ dx

D

Z
¹v">0º

jr.u� � "�/j
2 dx �

Z
�

jru�j
2 dx

� �
�Z
¹v">0º

ju� � "�j
2 dx �

Z
�

ju�j
2 dx

�
C 2"

Z
¹v">0º

f � dx C 2

Z
¹v"D0º

f u� dx �

Z
¹v"D0º\¹u�>0º

jgj2 dx

D �2"

Z
¹v">0º

ru� � r� dx C "
2

Z
¹v">0º

jr�j2 dx

�0‚ …„ ƒ
�

Z
¹v"D0º

jru�j
2 dx

C

�2"
R
¹v">0º

.fC�u�/C� dx‚ …„ ƒ
2"

Z
¹v">0º

.f C �u�/� dxC

�2
R
¹v"D0º

.fC�u�/Cu� dx‚ …„ ƒ
2

Z
¹v"D0º

.f C �u�/u� dx

�0‚ …„ ƒ
��"2

Z
¹v">0º

j�j2 dx �

Z
¹v"D0º\¹u�>0º

jgj2 dx

� �2"

Z
¹v">0º

ru� � r� dx C "
2

Z
¹v">0º

jr�j2 dx

C 2"

Z
¹v">0º

.f C �u�/C� dx C

�2"
R
¹v"D0º

.fC�u�/C� dx‚ …„ ƒ
2

Z
¹v"D0º

.f C �u�/Cu� dx

� �2"

Z
¹v">0º

ru� � r� dx C 2"

Z
�

.f C �u�/C� dx C "
2

Z
¹v">0º

jr�j2 dx:

This implies that

lim sup
"&0

1

2"
.Jf;g;�;�.v"/ � Jf;g;�;�.u�// � �

Z
�

ru� � r� dx C

Z
�

.f C �u�/C� dx:
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Combining this inequality with (4.3), we conclude with (4.2a).
If supp .�/ � ¹u� > 0º, we define v˙" D u� ˙ "� 2 K.�/ for small " > 0. Note that

¹v˙" > 0º D ¹u� > 0º for small " > 0. Therefore, for small " > 0, we have

Jf;g;�;�.v
˙
" / � Jf;g;�;�.u�/

D

Z
¹u�>0º

.jrv˙" j
2
� �jv˙" j

2/ dx �

Z
¹u�>0º

.jru�j
2
� �ju�j

2/ dx

� 2

Z
¹u�>0º

f .v˙" � u�/ dx

D ˙2"
�Z
¹u�>0º

ru� � r� dx � �

Z
¹u�>0º

u�� dx
�
� 2"

Z
¹u�>0º

f � dx

C "2
�Z
¹u�>0º

jr�j2 dx � �

Z
¹u�>0º

j�j2 dx
�
:

Using (4.3) and dividing both sides of the inequality above by " and letting "! 0, we
conclude with (4.2b).

If supp .�/ \ supp .g/ D ;, taking zv" D u� C "�, we have

Jf;g;�;�.zv"/ � Jf;g;�;�.u�/

D

Z
�

.jrzv"j
2
� �jzv"j

2/ dx �

Z
�

.jru�j
2
� �ju�j

2/ dx � 2

Z
�

f .zv" � u�/ dx

D 2"
�Z
�nsupp .g/

ru� � r� dx � �

Z
�nsupp .g/

u�� dx
�
� 2"

Z
�nsupp .g/

f � dx

C "2
�Z
�

jr�j2 dx � �

Z
�

j�j2 dx
�
:

Using (4.3) and dividing both sides of the inequality above by " and letting "! 0, we
conclude with (4.2c).

Remark 4.3. We now give some observations when ¹u� > 0º has Lipschitz boundary.
Using integration by parts on the Lipschitz domain ¹u� > 0º and from (4.2b), we have

Jf;g;�;�.u�/ D

Z
�

.g2�¹u�>0º � f u�/ dx: (4.4)

If u� is a local minimizer of Jf;g;�;� in K.�/with Jf;g;�;�.u�/ < 0, using (4.4) we know
that Z

¹u�>0º\¹f >0º

f u� dx �

Z
�

f u� dx >

Z
�

g2�¹u�>0º dx � 0;

which immediately implies j¹u� > 0º \ ¹f > 0ºj > 0. If we additionally assume that
g � 0 and � � 0, from (4.2c), we know that .�C �/u� C f � 0 in �. From this, we
know that

�u� � �f � �u� � 0 in ¹f > 0º \�;

because u� � 0 in �. Using the strong minimum principle for super-solutions (as formu-
lated in [15, Theorem 8.19]), we know that u� > 0 in ¹f > 0º \�.
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5. Comparison of minimizers

The main purpose of this section is to prove the L1-regularity of the minimizers. We first
prove the following comparison principle, which is analogous to [18, Lemma 1.1]:

Proposition 5.1. For fm; gm 2 L1.Rn/ with gm � 0 for each m D 1; 2, suppose

f1 � f2; g1 � g2 � 0 in Rn: (5.1)

Assume further that �1 < �1 � �2 < C1 and that �m � Rn are open sets satisfying
�1 � �2. For each um 2 K.�m/, we define v WD min¹u1; u2º and w WD max¹u1; u2º.
Then, v 2 K.�1/, w 2 K.�2/ satisfy

Jf1;g1;�1;�1.v/C Jf2;g2;�2;�2.w/ � Jf1;g1;�1;�1.u1/C Jf2;g2;�2;�2.u2/:

We also have the following statements:

(1) If u1 is a (global) minimizer of Jf1;g1;�1;�1 in K.�1/, then

Jf2;g2;�2;�2.w/ � Jf2;g2;�2;�2.u2/:

(2) If u2 is a (global) minimizer of Jf2;g2;�2;�2 in K.�2/, then

Jf1;g1;�1;�1.v/ � Jf1;g1;�1;�1.u1/:

(3) If each um is a (global) minimizer of Jfm;gm;�m;�m in K.�m/, then v is a (global)
minimizer of Jf1;g1;�1;�1 in K.�1/, whilew is a (global) minimizer of Jf2;g2;�2;�2
in K.�2/.

Remark 5.2. When �1 D �2 D �, we only need to assume (5.1) in �.

Proof of Proposition 5.1. We first show that, if ˆ.t/ is a non-decreasing function of
t 2 Œ0;1/ and h1 � h2 in Rn, thenZ

Rn

.h1ˆ.u1/C h2ˆ.u2// dx �

Z
Rn

.h1ˆ.v/C h2ˆ.w// dx: (5.2)

Indeed, by definition, we haveZ
Rn

h1.ˆ.u1/ �ˆ.v// dx D

Z
¹u1�u2º

h1.ˆ.u1/ �ˆ.u2// dx

�

Z
¹u1�u2º

h2.ˆ.u1/ �ˆ.u2// dx

D

Z
Rn

h2.ˆ.w/ �ˆ.u2// dx;

where we used that ˆ.u1/ �ˆ.u2/ � 0 in ¹u1 � u2º. Hence, we conclude (5.2).
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From (5.2), we find thatZ
Rn

.f1u1 C f2u2/ dx �

Z
Rn

.f1v C f2w/ dx .choosing hj D fj and ˆ.t/ D t /;Z
Rn

.k21u
2
1 C k

2
2u
2
2/ dx �

Z
Rn

.k21v
2
C k22w

2/ dx .choosing hj D k2j and ˆ.t/ D t2/:

On the other hand, choosing hj D �g2j and

ˆ.t/ D

´
0 t � 0;

1 t > 0;

we obtain Z
Rn

.g21�¹u1>0º C g
2
2�¹u2>0º/ dx �

Z
Rn

.g21�¹v>0º C g
2
2�¹w>0º/ dx:

By observing thatZ
Rn

.jru1j
2
C jru2j

2/ dx D

Z
Rn

.jrvj2 C jrwj2/ dx;

we conclude the proof by putting these inequalities together.

We now prove the following lemma using Propositions 3.6 and 5.1:

Lemma 5.3. Let f;g 2 L1.Rn/ be such that g � 0. Let� be a bounded domain with C 1

boundary. Assume that u0 is a non-trivial (global) minimizer of Jf;g;�0;� in K.�/ with
�1 < �0 < ��.�/. Then, for each � with �0 < � < ��.�/, there exists a non-trivial
(global) minimizer of Jf;g;�;� in K.�/. In addition, any (global) minimizer u� of Jf;g;�;�
in K.�/ satisfies

u� � u0 in �; (5.3a)

u� > u0 in ¹u0 > 0º: (5.3b)

Proof. We first show existence of non-trivial minimizer. Using Proposition 3.6, there
exists a (global) minimizer u� of Jf;g;�;� in K.�/. Note that

inf
u2K.�/

Jf;g;�;�.u/ � Jf;g;�;�.u0/ D Jf;g;�0;�.u0/ � .� � �0/ku0k
2
L2.�/

:

Since u0 is non-trivial, ku0k2L2.�/ > 0. Therefore, using (1.5), we have

inf
u2K.�/

Jf;g;�;�.u/ < 0;

which shows that 0 is not a minimizer of Jf;g;�;�.u/ in K.�/. Consequently, u� 6� 0.
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To prove (5.3a), we let u� be any (global) minimizer of Jf;g;�;�.u/ in K.�/. Using
Proposition 5.1, we know thatw WDmax¹u0;u�º is also a (global) minimizer ofJf;g;�;�.u/
in K.�/. Using (4.2b) in Proposition 4.2, we know that

�u0 D �f � �0u0 in ¹u0 > 0º;

�w D �f � �w in ¹w > 0º:

Note that u0 D w in ¹u0 > u�º and ¹u0 > u�º � ¹w > 0º \ ¹u0 > 0º; then, restricting
the above two identities in ¹u0 > u�º yields

�w C �w D �w C �0w D �f in ¹u0 > u�º:

Since �0 < �,
w D u0 D 0 in ¹u0 > u�ºI

hence, we know that j¹u0 > u�ºj D 0, which allows us to conclude with (5.3a).
Finally, to prove (5.3b), we define v D u� � u0 � 0 in BR and note that

�v D �.� � �0/v � 0 in ¹u0 > 0º;

v � 0 on @¹u0 > 0º:

Using the strong minimum principle for super-solutions (as formulated in [15, Theo-
rem 8.19]), we know that u>u0 in ¹u0 >0º, because u 6� u0, which allows us to conclude
with (5.3b).

We now prove the minimizer is unique for all except countably many �.

Proposition 5.4. We assume that� is bounded with C 1 boundary and�1<�< ��.�/.
Let f; g 2 L1.�/ with g � 0. Then, there exist smallest and largest (in the pointwise
sense) minimizers of Jf;g;�;� in K.�/. We define the functions

m.�/ WD min
®
kukL2.�/ j Jf;g;�;�.u/ D inf

v2K.�/
Jf;g;�;�.v/

¯
for all �1 < � < ��.�/;

M.�/ WD max
®
kukL2.�/ j Jf;g;�;�.u/ D inf

v2K.�/
Jf;g;�;�.v/

¯
for all �1 < � < ��.�/:

Then, the functions

m W .�1; ��.�//! R; M W .�1; ��.�//! R

are strictly increasing. Moreover, we have

M.� � "/ < m.�/ for all �1 < � < ��.�/ and " > 0: (5.4)

Consequently, there exists a countable set Z � .�1; ��.�// such that the minimizer
of Jf;g;�;� in K.�/ is unique for all � 2 .�1; ��.�// nZ.
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Proof. From Remark 3.7, we know that the set of minimizers is compact in L2.�/.
Since L2.�/ is separable, there exists a countable dense set in the set of minimizers.
Taking the pointwise supremum, as well as the pointwise infimum, in this countable set
produces two new minimizers. This proves the first part of the proposition, and hence, the
functions m and M are well-defined.

The strict monotonicity of m and M follows from Lemma 5.3. Choosing �0 D � � "
in Lemma 5.3, we also know that any minimizer of Jf;g;�;� is larger than all minimiz-
ers of Jf;g;��";� (in particular, the largest one), and we conclude with (5.4). The final
claim follows from (5.4) and the fact that monotone functions are continuous except for a
countable set of jump discontinuities.

Lemma 5.5. We assume that � is bounded with C 1 boundary. Let f; g 2 L1.�/ with
g � 0, and define

ˆ.�/ WD inf
v2K.�/

Jf;g;�;�.v/ for all � 2 .�1; ��.�//:

Then, ˆ W .�1; ��.�// ! .�1; 0� is concave and, hence, continuous. In addition, if
ˆ.�0/ < 0, then it is strictly decreasing near � D �0.

Proof. Fix �1 < �0 < �
�.�/ and let u0 2 K.�/ be such that

Jf;g;�0;�.u0/ D inf
v2K.�/

Jf;g;�0;�.v/ � ˆ.�0/:

For each � 2 .�1; ��.�//, we have

ˆ.�/ D inf
v2K.�/

Jf;g;�;�.v/ � Jf;g;�;�.u0/ D Jf;g;�0;�.u0/ � .� � �0/ku0k
2
L2.�/

D ˆ.�0/ � .� � �0/ku0k
2
L2.�/

;

which proves the claimed concavity. In addition, if ˆ.�0/ < 0, then u0 6� 0 (since
Jf;g;�0;�.0/ D 0), which implies that the function is strictly decreasing near � D �0.

We now prove the L1-regularity of the minimizers.

Proposition 5.6. We assume that� is bounded with C 1 boundary and�1<�< ��.�/.
Let f; g 2 L1.�/ with g � 0. Let v 2 H 1

0 .�/ be the unique solution of .�C �/v D �1
in �. If u� 2 K.�/ is a global minimizer Jf;g;�;� in K.�/, then

0 � u�.x/ � kfCkL1.�/v.x/ for all x 2 �:

Remark 5.7. Using [15, Theorem 8.15], we also know that v 2 L1.�/. Therefore, we
know that ku�kL1.�/ � C.�;�/kfCkL1.�/.
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Proof of Proposition 5.6. In view of Remark 3.8, we only need to consider the case when
kfCkL1.�/ > 0. We define v0 WD kfCkL1.�/v, which is a minimizer of JkfCkL1.�/;0;�;�
in K.�/. Using Proposition 5.1, we know that max¹u�; v0º is also a minimizer of
JkfCkL1.�/;0;�;� in K.�/. By (4.2a) and (4.2c) in Proposition 4.2, it follows that both v0
and max¹u�; v0º satisfy ´

.�C �/u D �kfCkL1.�/ in �;

u D 0 on @�:
(5.5)

Since �1 < � < ��.�/, the solution of (5.5) is unique. The uniqueness of solution
of (5.5) implies

v0 D max¹u�; v0º in �;

which concludes the pointwise bound.

6. Some properties of local minimizers

We shall study the regularity of local minimizers and obtain some consequences for the
case when � � 0.

Lemma 6.1. Let � be an open set in Rn, and let � � 0. Let f; g 2 L1.�/ be such that
g � 0. If u� is a local minimizer of Jf;g;�;� in K.�/, then it is also a local minimizer
of JfC�u�;g;0;� in K.�/.

Proof. Write zf D f C �u�. For each v 2 H 1
0 .�/, we have

J zf ;g;0;�.v/ D

Z
�

.jrvj2 � 2 zf v C g2�¹v>0º/ dx D Jf;g;�;�.v/C �

Z
�

.v2 � 2u�v/ dx

D Jf;g;�;�.v/C �

Z
�

.v � u�/
2 dx � �

Z
�

u2� dx:

Since � � 0, we see that

J zf ;g;0;�.v/ � Jf;g;�;�.u�/ � �

Z
�

u2� dx D J zf ;g;0;�.u�/; (6.1)

and the equality holds in (6.1) if and only if v D u�. Hence, we conclude the proof.

With this lemma at hand, one can prove that the minimizer u� is Lipschitz continuous,
as well as some results analogous to those in [18, Sections 2 and 5], by using the corre-
sponding results in [18] where one just replaces f 2 L1.�/ with f C �u� 2 L1.�/
(see Proposition 5.6). This works, since the proofs in [18] only rely on variations of u�
locally. The detailed statements and proofs can be found in Appendix B. Here we high-
light some results which we will use later. The following proposition concerns the PDE
characterization of the minimizer u�:
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Proposition 6.2. Let � be a bounded open set in Rn with C 1 boundary and 0 � �
< ��.�/. Let f; g 2 L1.�/ be such that g � 0 and g2 2 W 1;1.�/. Suppose that u� is a
local minimizer of Jf;g;�;� in K.�/. If @¹g > 0º \� ¤ ;, we further assume that there
exists 0 < ˛ � 1 such that g is C ˛ near @¹g > 0º \� and Hn�1C˛.@¹g > 0º \�/ D 0.
We assume that ¹u� > 0º � �. Then, ¹u� > 0º has locally finite perimeter in ¹g > 0º,

Hn�1..@¹u� > 0º n @red¹u� > 0º/ \ ¹g > 0º/ D 0; (6.2)

and

.�C �/u� C f L
n
b¹u� > 0º D gH

n�1
b@¹u� > 0º D gH

n�1
b@red¹u� > 0º: (6.3)

The following proposition concerns the regularity of the reduced free boundary
@red¹u� > 0º:

Proposition 6.3. Let � be a bounded open set in Rn with C 1 boundary and 0 � �
< ��.�/. Let f , g, and u� be functions given in Proposition 6.2. If there exists a ball
Br .x0/ � � such that g is Hölder continuous and satisfies g � constant > 0 in Br .x0/,
then @red¹u� > 0º is locally C 1;˛ in such a ball Br .x0/, and in the case when n D 2, we
even have @red¹u� > 0º D @¹u� > 0º.

Remark 6.4. If g > 0 is Hölder continuous in �, together with (6.2), we then know that
@red¹u� > 0º is locally C 1;˛ with Hn�1.@¹u� > 0º n @red¹u� > 0º/ D 0.

7. Relation with hybrid quadrature domains

We now obtain the following simple lemma:

Lemma 7.1. Suppose the assumptions in Proposition 6.2 hold. We write �D k2. If we fur-
ther assume that ¹u� > 0º � � and f D � � h�¹u�>0º 2 L

1.�/ for some � 2

E0.¹u� > 0º/ and h 2 L1.¹u� > 0º/, then .‰k � .gHn�1b@¹u� > 0º//.x/ is pointwise
well-defined for all x 2 @¹u� > 0º. Moreover, we also know that ¹u� > 0º is a hybrid
k-quadrature domain (Definition 1.1), corresponding to distribution � and density .g; h/.

Proof. Let‰k 2L1loc.R
n/\C1.Rn n ¹0º/ be any fundamental solution of the Helmholtz

operator �.�C k2/ and let D D ¹u� > 0º. By the properties of convolution for distribu-
tions and by (6.3), we have

u� D ı0 � u� D �.�C k
2/‰k � u�

D �‰k � .�C k
2/u� D ‰k � .f L

n
bD � gHn�1

b@D/: (7.1)

By using the fact u� 2 C
0;1
loc .�/ (see Appendix B) and the assumption ¹u� > 0º � �,

from (7.1) we conclude the first result. The second result immediately follows from the
observation u� D 0 in Rn n ¹u� > 0º.
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Finally, we want to show that there exists some � so that

supp .�/ � ¹u� > 0º and ¹u� > 0º � �:

We first study a particular radially symmetric case (the case when � D 0 was considered
in [18, Lemma 1.2]).

Lemma 7.2. Let � D BR with R > 0 and 0 < � < ��.BR/ � j 2n�2
2 ;1

R�2. Suppose that

f D a�Br1 � b with a > b > 0 and 0 < r1 < R;

and let g be a radially non-decreasing function g with g D 0 in Br1 . Then, there exists
u� 2 K.BR/ such that

Jf;g;�;BR.u�/ D inf
v2K.BR/

Jf;g;�;BR.v/ < 0:

Moreover, the following hold:

(1) Any global minimizer u� of Jf;g;�;BR in K.BR/ is continuous, radially symmetric,
and radially non-increasing, and satisfies

Br1 � ¹u� > 0º:

(2) If we set

R0 D max
°
� 2 .r1; R� j

b

a
�
r
n
2
1 J n2 .

p
�r1/

�
n
2 J n

2
.
p
��/
� 0

±
> r1; (7.2)

then u� has support in the ball BR0 . In particular, R0 < R, whenever

b

a
>
r
n
2
1 J n2 .

p
�r1/

R
n
2 J n

2
.
p
�R/

:

Proof. The existence of minimizers was established in Proposition 3.6. Since

Br1 � ¹f > 0º \ ¹g D 0º \ BR;

from Remark 3.9, we know that all minimizers are non-trivial.
Step 1: Rearrangement. Given any u 2 K.BR/, let urad denote its radially symmetric

decreasing rearrangement, that is,

urad.x/ WD

Z 1
0

�¹u>tºrad.x/ dt;

whereAradD¹x 2Rn j!njxjn < jAjº for any measurable setA�Rn. Then, urad 2K.BR/
and Z

BR

jurad
j
2 dx D

Z
BR

juj2 dx; (7.3a)
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BR

jrurad
j
2 dx �

Z
BR

jruj2 dx; (7.3b)Z
BR

f urad dx �

Z
BR

f udx; (7.3c)Z
BR

jgj2�¹urad>0º dx �

Z
BR

jgj2�¹u>0º dx: (7.3d)

Here (7.3b) is the classical Pólya–Szegő inequality [3, Theorem 1.1], and (7.3c) and (7.3d)
follow by the fact that f is non-increasing and g is non-decreasing as functions of r D jxj.
It follows that

Jf;g;�;BR.u
rad/ � Jf;g;�;BR.u/: (7.4)

We define
Krad.BR/ D

®
u 2 K.BR/ j u D u

rad¯:
Using (7.4), there exists urad

� 2 Krad.BR/ such that

Jf;g;�;BR.u
rad
� / D inf

v2K.BR/
Jf;g;�;BR.v/: (7.5)

Step 2: Minimizers in Krad.BR/. Let zu 2 Krad.BR/ be any function such that

Jf;g;�;BR.zu/ D inf
v2K.BR/

Jf;g;�;BR.v/:

From (4.2b) in Proposition 4.2, we know that zu satisfies the equation

.�C �/zuC f D 0 in ¹zu > 0º:

In polar coordinates, the above equation reads as

jzu.0/j<1; zu00.r/C
n � 1

r
zu0.r/C �zu.r/C a�¹r<r1º � b D 0 for r 2 .0; �/; (7.6a)

with zu0.r/ � 0 for all r 2 .0; �/ and zu.r/ D 0 for all r � �, where � 2 .0;R�. In addition,
one has (see Proposition B.4)

zu0.�/ D �g.�/ � 0; (7.6b)

and zu is the unique solution of ODE system (7.6a)–(7.6b).
We now compute an explicit formula for zu. Let u be the unique solution of8<:u00.r/C

n � 1

r
u0.r/C �u.r/C a�¹r<r1º � b D 0 for r 2 .�;1/;

u.�/ D zu.�/; u0.�/ D zu0.�/:

By defining uj.0;�/ D zu, one sees that u 2 C 1loc.R/ and

u00.r/C
n � 1

r
u0.r/C �u.r/C a�¹r<r1º � b D 0 for r 2 .0;1/: (7.7)
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By direct computations (see Appendix C for details), one sees that the general solution
of (7.7) is

u.r/ D
b � a

�
C c1r

2�n
2 J n�2

2
.
p
�r/

C �¹r>r1º

ha
�
C
a�r

n
2
1

2
p
�
r
2�n
2
�
Y n
2
.
p
�r1/J n�2

2
.
p
�r/ � J n

2
.
p
�r1/Y n�2

2
.
p
�r/

�i
(7.8)

with c1 2 R. Since u D zu is positive and decreasing near 0, we have c1 > 0. By direct
computations (see Appendix C for details), one sees that there exists a zero �0 2 .0; R�
of u such that

u is positive and non-increasing on .0; �0/; (7.9)

therefore, �0 D �, where � is the constant given in (7.6a). We now impose the boundary
condition u0.�/ D �g.�/. Using assumptions on g, direct computations (see Appendix C
for details) yield

� 2 .r1; R
0/; where R0 is given in (7.2). (7.10)

From this, we conclude that Br1 � ¹zu > 0º as well as supp .zu/ D B� � BR0 .
Step 3: All minimizers belong to Krad.BR/. Let u� 2 K.BR/ be a minimizer

of Jf;g;�;BR in K.BR/. Using (7.4), we see that its radially symmetric decreasing rear-
rangement urad

� 2 Krad.BR/ satisfies (7.5), that is, urad
� is one of our radial solutions, and

we have Z
BR

jrurad
� j

2 dx D

Z
BR

jru�j
2 dx:

Since the radial solutions are radially strictly decreasing on the positivity set, we deduce
that urad

� is strictly decreasing on .0; �/ with

supp .urad
� / D B�:

Therefore, from [3, Theorem 1.1], we know that

u�.x/ D u
rad
� .x � x0/ for some x0:

Now, by way of contradiction, suppose that x0 ¤ 0. Since urad
� satisfies (7.5), Proposi-

tion 5.1 tells us that w D max¹u�; urad
� º does also, but w is not radially decreasing around

some x0, which contradicts the minimality of u�.

Remark 7.3. If r1 D R, from the general solution and the boundary condition zu.�/ D 0,
we know that

zu.r/ D
b � a

k2

�
1 �

r
2�n
2 J n�2

2
.
p
�r/

�
2�n
2 J n�2

2
.
p
��/

�
�¹r<�º for some � 2 Œ0; R�:
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Since ¹zu > 0º is a Lipschitz domain, using Remark 4.3, we compute that

Jf;g;�;BR.zu/ D

Z
B�

g2 dx � .a � b/

Z
B�

zudx

D

Z
B�

g2 dx C
.a � b/2

�

�
jB�j �

1

�
2�n
2 J n�2

2
.k�/
jB1j

Z �

0

J n�2
2
.kr/r

n
2 dr

�
D

Z
B�

g2 dx C
.a � b/2

�

�
jB�j �

1

�
2�n
2 J n�2

2
.k�/
jB1j

�
n
2 J n

2
.k�/

k

�
D

Z
B�

g2 dx C
.a � b/2

�
jB�j

�
1 �

J n
2
.k�/

k�J n�2
2
.k�/

�
D

Z
B�

g2 dx C
.a � b/2

�
jB�j

�
1 �

�.n
2
/

2�.1C n
2
/

�
D

Z
B�

g2 dx C
.a � b/2

�
jB�j.n � 1/

�.n
2
/

2�.1C n
2
/
:

Since a > b, from (1.5), we conclude that �D 0, that is, zu� 0 inBR. Since all minimizers
belong to Krad.BR/, in this case each minimizer of Jf;g;�;BR in K.BR/ must be trivial.

Combining Lemma 7.2 with the comparison principle (Proposition 5.1), we have the
following proposition:

Proposition 7.4. Let � D BR with R > 0 and 0 < � < ��.BR/ � j 2n�2
2 ;1

R�2. Suppose

that f D � � h with

a0�Br1 � �.x/ � a�Br2 ; b � h.x/ � b0 for all x 2 BR (7.11)

for some constants r1; r2; a; a0; b; b0 satisfying

0 < b � b0 < a0 � a; 0 < r1 � r2 < R;

r
n
2

1 J n2 .
p
�r1/

r
n
2

2 J n2 .
p
�r2/

>
b0

a0
�
b

a
>
r
n
2

2 J n2 .
p
�r2/

R
n
2 J n

2
.
p
�R/

:
(7.12)

We also assume that g 2 L1.Rn/ with

g D 0 in supp .�/ � Br1 :

There exists u� such that

Jf;g;�;BR.u�/ D inf
u2K.BR/

Jf;g;�;BR.u�/:

Moreover, each minimizer u� of Jf;g;�;BR in K.BR/ satisfies

supp .�/ � BR00 � ¹u� > 0º and supp .u�/ � BR

for some R00 > 0.



P.-Z. Kow, M. Salo, and H. Shahgholian 440

Proof. Since 0< �< j 2n�2
2 ;1

R�2, r 7! r
n
2 J n

2
.
p
�r/ is monotonically increasing on .0;R/.

Then, we have

b0

a0
>
b

a
>
r
n
2

2 J n2 .
p
�r2/

R
n
2 J n

2
.
p
�R/

�
r
n
2

1 J n2 .
p
�r1/

R
n
2 J n

2
.
p
�R/

:

By (7.11) and (7.12), we know that � � h D f � zf D a�Br2 � b. Let u and zu be the
respective minimizers of Jf;g;�;BR and J zf ;0;�;BR

in K.BR/. Using Proposition 5.1, we
know that max¹u; zuº minimizes J zf ;g;�;BR

. By Lemma 7.2, we know that

supp .u/ � supp .max¹u; zuº/ � BR0 � BR;

with

R0 D max
°
� 2 .0; R� j

b

a
�
r
n
2
1 J n2 .

p
�r2/

�
n
2 J n

2
.
p
��/
� 0

±
> r2:

On the other hand, by (7.11) and (7.12), we know that � � h D f � zf0 D a0�Br1 � b0.
Let u0 and zu0 be minimizers of Jf;g;�;BR and J zf0;zg0;�;BR

in K.BR/, respectively, where

zg0 D kgkL1.Rn/�RnnBr1
:

Using Proposition 5.1, we know that max¹u0; zu0º minimizes Jf;g;�;BR in K.BR/. By
choosing u0 to be the largest (pointwise) minimizer of Jf;g;�;BR in K.BR/, we have

u0 � max¹u0; zu0º in BR;

which implies u0 � zu0 in BR. By Lemma 7.2, we know that zu0 > 0 in BR00 with

R00 D max
°
� 2 .0; R� j

b0

a0
�
r
n
2
1 J n2 .

p
�r1/

�
n
2 J n

2
.
p
��/
� 0

±
> r1:

Since we have
b0

a0
�
r
n
2

1 J n2 .
p
�r1/

r
n
2
2 J n2 .

p
�r2/

< 0;

we have R00 > r2, which implies that

supp .�/ � Br2 � BR00 � ¹u� > 0º:

This completes the proof of the proposition.

Combining Proposition 6.2, Proposition 6.3, Lemma 7.1, and Proposition 7.4 with
� D k2 and f D � � h�D , we arrive at the following theorem (with D D ¹u� > 0º):
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Proposition 7.5. Let 0 < k < j n�2
2 ;1R

�1,

a0�Br1 � �.x/ � a�Br2 ; b � h.x/ � b0 for all x 2 BR

for some constants r1; r2; a; a0; b; b0 with 0 < b � b0 < a0 � a and 0 < r1 � r2 < R

satisfying3

r
n
2
1 J n2 .kr1/

r
n
2
2 J n2 .kr2/

>
b0

a0
�
b

a
>
r
n
2
2 J n2 .kr2/

R
n
2 J n

2
.kR/

; (7.13)

such that g 2 L1.BR/ with g � 0 and g2 2 W 1;1.BR/. If @¹g > 0º \ BR ¤ ;, we fur-
ther assume that there exists 0 < ˛ � 1 such that g is C ˛ near @¹g > 0º \ BR and
Hn�1C˛.@¹g > 0º \ BR/ D 0. Then, there exists a bounded open domain D in Rn with
the boundary @D having finite .n � 1/-dimensional Hausdorff measure such that�

‰k � .gH
n�1
b@D/

�
.x/ is pointwise well-defined for all x 2 @D

for all fundamental solutions ‰k of the Helmholtz operator �.�C k2/. The set D is a
hybrid k-quadrature domain D, corresponding to distribution � and density .g; h/, with
D � BR. Moreover, there exists u� 2 C

0;1
loc .Bˇk�1/ such that D D ¹u� > 0º and

.�C k2/u� D ��C hL
n
bD C gHn�1

b@D:

If in addition we assume that g > 0 is Hölder continuous inBR, then @redD is locallyC 1;˛
0

with Hn�1.@D n @redD/ D 0. In the case when n D 2, we even have @D D @redD.

Finally, we want to generalize Proposition 7.5 for unbounded non-negative mea-
sures �. Assume that � satisfies

� D 0 outside B" (7.14)

for some parameter " > 0. We define

�2" WD .c
MVT
n;k;2"/

�1�B2" with cMVT
n;k;2" WD .2�/

n
2 k�

n
2 .2"/

n
2 J n

2
.2k"/:

It is easy to see that

� � �2" is supported in B3" and � � �2".x/ D .cMVT
n;k;2"/

�1�.B2".x// for all x 2 B3":

Thus, we see that

� � �2".x/

´
� .cMVT

n;k;2"
/�1�.Rn/ for all x 2 B3";

D .cMVT
n;k;2"

/�1�.Rn/ for all x 2 B";

3Since t 7! t
n
2 J n

2
.t/ is strictly increasing on Œ0; j n�2

2 ;1�, the second condition of (7.13) implies b0 < a0.
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and thus,
.cMVT
n;k;2"/

�1�.Rn/�B" � � � �2" � .c
MVT
n;k;2"/

�1�.Rn/�B3" :

We choose r1 D " and r2 D 3", as well as

a0 D a D .c
MVT
n;k;2"/

�1�.Rn/:

Then, (7.13) is equivalent to

."/
n
2 J n

2
.k"/

.3"/
n
2 J n

2
.3k"/

>
b0

.cMVT
n;k;2"

/�1�.Rn/
; (7.15a)

b

.cMVT
n;k;2"

/�1�.Rn/
>
.3"/

n
2 J n

2
.3k"/

R
n
2 J n

2
.kR/

: (7.15b)

We can write (7.15a) as

�.Rn/ > 3
n
2

J n
2
.3k"/

J n
2
.k"/

b0

.cMVT
n;k;ı

/�1.2"/n
.2"/n:

Using [23, (8.19)], we know that

�
n
2

�.1C n
2
/
�

1

.cMVT
n;k;ı

/�1.2"/n
:

Hence, (7.15a) is fulfilled, provided

�.Rn/ > Cnb0"
n with Cn � 2

n .3�/
n
2

�.1C n
2
/

J n
2
.j n�2

2 ;1/

J n
2
.j n�2

2 ;1=3/
: (7.16)

Using the definition of cMVT
n;k;2"

, we now write (7.15b) as

kn <
�4�
3

� n
2 1

�.Rn/
b.kR/

n
2 J n

2
.kR/

J n
2
.2k"/

J n
2
.3k"/

:

We now fix any parameter 0 < ˇ < j n�2
2 ;1 and we choose R D ˇk�1. If

k < min
°1
3
;
�
Cn;ˇ

b

�.Rn/

� 1
n
±

with Cn;ˇ D
�4�
3

� n
2
ˇ
n
2 J n

2
.ˇ/

J n
2
.2
3
j n�2

2 ;1/

J n
2
.j n�2

2 ;1/
; (7.17)

then (7.15b) holds. The above discussion is valid for 0 < " < ˇ.
Using Proposition 7.5 on� � �2", we then know that there exists a hybrid k-quadrature

domain D, corresponding to the distribution � � �2" and density .g; h/, with D � BR.
Using the mean value theorem for the Helmholtz equation [23, Appendix A], we have

h� � �2"; wi D h�;w � �2"i D h�;wi

for all w satisfying .� C k2/w D 0 in D. Hence, such a D is indeed also a hybrid
k-quadrature domain D, corresponding to distribution � and density .g; h/. We now con-
clude the above discussions in the following theorem (cf. Theorem 1.5):
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Theorem 7.6. Fix parameters 0 < b � b0 and 0 < ˇ < j n�2
2 ;1. Let 0 < " < ˇ,

b � h.x/ � b0 for all x 2 Bˇk�1 ;

and g 2 L1.Bˇk�1/ with g � 0 and g2 2 W 1;1.Bˇk�1/. If @¹g > 0º \ BR ¤ ;, we
further assume that there exists 0 < ˛ � 1 such that g is C ˛ near @¹g > 0º \ BR and
Hn�1C˛.@¹g > 0º \BR/D 0. If� is a non-negative measure satisfying (7.14) and (7.16),
then for each k that satisfies (7.17), there exists a bounded open domainD in Rn with the
boundary @D having finite .n � 1/-dimensional Hausdorff measure such that�

‰k � .gH
n�1
b@D/

�
.x/ is pointwise well-defined for all x 2 @D

for all fundamental solutions ‰k of the Helmholtz operator �.�C k2/. This domain D
is a hybrid k-quadrature domain corresponding to distribution � and density .g; h/ and
it satisfies D � Bˇk�1 . Moreover, there exists a non-negative function u� 2 C

0;1
loc .Bˇk�1/

such that D D ¹u� > 0º and

.�C k2/u� D �z�C hL
n
bD C gHn�1

b@D

for some non-negative z� 2 L1.D/ \ E0.D/. If we additionally assume that g > 0 is
Hölder continuous in BR, then @redD is locally C 1;˛

0

with Hn�1.@D n @redD/ D 0. In the
case when n D 2, we even have @D D @redD.

A. Functions of bounded variation and sets with finite perimeter

We recall a few facts about functions of bounded variation and sets with finite perimeter.
Here we refer to the monographs [13, 16] for more details. The following definition can
be found in [16, Definition 1.6]:

Definition A.1. Let E be a Borel set and � an open set in Rn. We define the perimeter
of E in E0 as

P .E;E0/ WD

Z
E0

jr�E j dx � sup
�2.C 1c .�//n;j�.x/j�1

Z
E0

r � � dx:

We say that E is a Caccioppoli set, if E has locally finite perimeter, that is,

P .E;K/ <1 for every compact set K in Rn:

In other words, the function �E has locally bounded variation in Rn; see [13, Section 5.1].

The following definition can be found in [16, Definition 3.3] (this concept was intro-
duced by De Giorgi [7]; see also [13, Section 5.7]):
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Definition A.2. Assuming that E is a Caccioppoli set, we define the reduced bound-
ary @redE of E by the set of points x 2 Rn for which the following hold:

(1)
R
Br .x/

jr�E j dx > 0 for all r > 0;

(2) the limit �E .x/ WD limr!0 �
r
E .x/ exists, where

�rE .x/ WD �

R
Br .x/

r�E dxR
Br .x/

jr�E j dx
;

and j�E .x/j D 1.

From the Besicovitch differentiation of measures, it follows that �E .x/ exists and
j�E .x/j D 1 for jr�E j-almost all x 2 Rn, and furthermore, that

r�E D ��E jr�E j:

Using [16, Theorem 4.4], we indeed know that

jr�E j D Hn�1
b@redE and @redE is a dense subset of @E:

Thus, we have

P .E;E0/ D Hn�1.E0 \ @redE/ and r�E D ��EH
n�1
b@redE; (A.1)

and then we immediately have the following generalized Gauss–Green theorem:Z
E

r � � dx D

Z
@mesE

' � �E dH
n�1 for all � 2 .C 1c .R

n//nI

see also [13, Section 5.8, Theorem 1].

Remark A.3. If @E is a C 1 hypersurface, then @redE D @E and �E .x/ is the unit outward
normal vector to @E at x; however, if @E is Lipschitz, @redE is in general strictly contained
in @E; see [16, Remark 3.4] for details. Therefore, we also refer to �E as the measure
theoretic outward unit normal vector of E on @redE.

From [13, Section 5.8, Lemma 1], we also know that

@redE � @mesE and Hn�1.@mesE n @redE/ D 0: (A.2)

Combining (A.1) and (A.2), we then know that

E is a Caccioppoli set if and only if Hn�1.@mesE \K/ <1 for each compact

set K in RnI

see also [13, Section 5.11, Theorem 1]. We also recall [13, Section 2.3, Theorem 2] regard-
ing the Hausdorff measure below.

Lemma A.4. Let 0 < s < n. If Hs.E/ <1, then

1

2s
� lim sup

r!0

Hs.Br .x/ \E/

!srs
� 1 for Hs-a.e. x 2 E;

where !s D �s=2

�. s2C1/
.
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B. Further properties of local minimizers

In this appendix we provide detailed statements and proofs which are analogous to results
in [18, Section 2].

The following lemma concerns the growth rate of the integral-mean of minimizers:

Lemma B.1. Let � be an open set in Rn and let � � 0. Let f; g 2 L1.�/ be such that
g � 0. If u� is a local minimizer of Jf;g;�;� in K.�/, then there is an r0 > 0 such that for
any Br .x0/ with 0 < r < r0 and Br .x0/ � �, we have

1

r
�

Z
@Br .x0/

u� dS > 2
n
� r
n
k.f C �u�/�kL1.Br .x0// C kgkL1.Br .x0//

�
H) Br .x0/ � ¹u� > 0º and u� is continuous in Br .x0/;

(B.1)

where �
R
@Br .x0/

D
1

Hn�1.@Br /

R
@Br .x0/

denotes the average integral.

Proof. Let u� be a local minimizer of Jf;g;�;� in K.�/. Using Lemma 6.1, we know
that u� is also a local minimizer of J zf ;g;0;� in K.�/ with zf D f C �u�. Without loss of
generality, we may assume that x0 D 0, and we write Br D Br .x0/. Define v 2H 1.�/ by´

�v D � zf in Br ;

v D u� in � n Br :
(B.2)

It is easy to see that v 2 C.Br /. In particular, using elliptic regularity and Sobolev embed-
ding, we know that

v 2
\

1<p<1

W
2;p

loc .Br / �
\

0<˛<1

C
1;˛
loc .Br /: (B.3)

It is easy to compute

J zf ;g;0;�.u�/ � J zf ;g;0;�.v/

D

Z
�

.jru�j
2
� jrvj2/ dx � 2

Z
�

zf .u� � v/ dx C

Z
�

g2.�¹u�>0º � �¹v>0º/ dx

D

Z
�

.jru�j
2
� jrvj2/ dx C 2

Z
�

�v.u� � v/ dx �

Z
Br

g2.�¹v>0º\¹u�D0º/ dx

D

Z
�

.jru�j
2
� jrvj2/ dx � 2

Z
�

rv � ru� dx C 2

Z
�

jrvj2 dx

�

Z
Br

g2.�¹v>0º\¹u�D0º/ dx

D

Z
Br

jr.u� � v/j
2 dx �

Z
Br

g2.�¹v>0º\¹u�D0º/ dx

�

Z
Br

jr.u� � v/j
2 dx � j¹u D 0º \ Br j sup

Br

g2: (B.4)
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Next, we want to show that v 2 K.�/. Applying [18, Lemma 2.4(a)] to v, we show that

v.x/ � rn
r � jxj

.r C jxj/n�1

� 1
r2
�

Z
@Br

u� dS �
2n�1M

n

�
for all x 2 Br ; (B.5)

where M D k zf�kL1.Br /. The assumption in (B.1) implies

1

r2
�

Z
@Br

u� dS �
2nM

n
I

then, we have

v.x/ �
rn

2

r � jxj

.r C jxj/n�1
1

r2
�

Z
@Br

u� dS

� 2�n.r � jxj/
1

r
�

Z
@Br

u� dS for all x 2 Br ; (B.6)

which shows that v 2K.�/. Since u� is a local minimizer, by choosing r0 > 0 sufficiently
small, we know that

J zf ;g;0;�.u�/ � J zf ;g;0;�.v/;

and hence, from (B.4), we know thatZ
Br

jr.u� � v/j
2 dx � j¹u� D 0º \ Br j sup

Br

g2 for each 0 < r < r0: (B.7)

To estimate the left-hand side of (B.7), from (B.6), we have

�¹u�D0º

�1
r
�

Z
@Br

u� dS
�2
.r � jxj/2 � 22n�¹u�D0ºjv.x/j

2 for all x 2 Br : (B.8)

For each 0 ¤ x 2 Br , writing yx D x=jxj, note that

�¹u�D0ºjv.x/j
2
D �¹u�D0º

�Z r

jxj

@jzj.u� � v/.syx/ ds
�2

� �¹u�D0º

�Z r

jxj

12 ds
��Z r

jxj

j@jzj.u� � v/.syx/j
2 ds

�
� �¹u�D0º.r � jxj/

�Z r

jxj

jr.u� � v/.syx/j
2 ds

�
;

and hence, from (B.8), we have

.r � jxj/�¹u�D0º

�1
r
�

Z
@Br

u� dS
�2

� 22n�¹u�D0º

�Z r

jxj

jr.u� � v/.syx/j
2 ds

�
for all 0 ¤ x 2 Br : (B.9)
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We consider � 2 �n�1 such that u�.s�/D 0 for some 0 < s < r . For such � , we can define

s� WD inf
®
0 < s < r j u�.s�/ D 0

¯
:

Then, (B.9) implies

.r � s� /�¹u�D0º\Br .s��/
�1
r
�

Z
@Br

u� dS
�2

� 22n�¹u�D0º\Br .s��/

Z r

s�

jr.u� � v/.s�/j
2 ds for all � 2 �n�1: (B.10)

Integrating (B.10) over � 2 �n�1, we reach

j¹u� D 0º \ Br j
�1
r
�

Z
@Br

u� dS
�2
� 22n

Z
Br

jr.u� � v/j
2 dx: (B.11)

Combining (B.7) and (B.11), we reach

j¹u� D 0
¯
\ Br

ˇ̌�1
r
�

Z
@Br

u� dS
�2
� 22nj¹u D 0º \ Br j sup

Br

g2:

The assumption in (B.1) implies

1

r
�

Z
@Br .x0/

u� dS > 2
n sup
Br .x0/

gI

then, we necessarily have
j¹u� D 0º \ Br j D 0: (B.12)

From (B.7), we know that Z
Br

jr.u� � v/j
2 dx D 0;

and thus, we also showed that u� D v 2 C.Br /. Using (B.3) and (B.12), we conclude that
Br � ¹u� > 0º.

The following proposition concerns the continuity of the local minimizers:

Proposition B.2. Let � be a bounded open set in Rn with C 1 boundary and 0 � �
< ��.�/. Let f; g 2 L1.�/ be such that g � 0. If u� is a local minimizer of Jf;g;�;�
in K.�/, then u� 2 C.�/ and there exists a constant Cn such that

u�.x/ � Cnd.x/
�
kgkL1.B2d.x/.x// C kf C �u�kL1.B2d.x/.x//d.x/

�
; (B.13)

for all x 2 � near @¹u� > 0º, where d.x/ D dist .x;Rn n ¹u� > 0º/.

Remark B.3. The assumptions on� ensure that u� 2 L1.�/; see Proposition 5.6. From
this, we know that

kf C �u�kL1.�/ � C.�;�/kf kL1.�/:
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Proof of Proposition B.2. Let u� be a local minimizer Jf;g;�;� in K.�/. Using Lem-
ma 6.1, we know that u� is also a local minimizer of J zf ;g;0;� in K.�/with zf D f C�u�.
Using Proposition 5.6, we know that zf is bounded.

We first show that ¹u� > 0º is an open set and that u� is continuous in it. Let
x 2 ¹u� > 0º. Using (4.2a) of Proposition 4.2, we know that

�u� � � zfC � �k zfCkL1.Br .x// in Br .x/

for all r > 0 whenever Br .x/ � �. Therefore, using [18, Lemma 2.4(b)], we know that

u�.y C x/ � r
n r C jyj

.r � jyj/n�1

� 1
r2
�

Z
@Br .x/

u� dS

C
k zfCkL1.Br .x//

2n

�
for all y 2 Br .0/: (B.14)

Choosing y D 0 in (B.14), we have

u�.x/ � �

Z
@Br .x/

u� dS C r
2 k
zfCkL1.Br .x//

2n
for all r > 0 with Br .x/ � �;

that is,

1

r
�

Z
@Br .x/

u� dS �
1

r
u�.x/ � r

k zfCkL1.Br .x//

2n
for all r > 0 with Br .x/ � �: (B.15)

Since u�.x0/ > 0, we can choose r0 > 0 sufficiently small such that

1

r
u�.x/ � r

k zfCkL1.Br .x//

2n

> 2n
� r
n
k zf�kL1.Br .x// C kgkL1.Br .x//

�
for all 0 < r � r0; (B.16)

and hence, (B.1) is satisfied for all 0 < r < r0. Therefore, Lemma B.1 implies that
Br0.x/ � ¹u� > 0º and u� is continuous in Br0.x/, which shows that

¹u� > 0º is an open set and u� is continuous in ¹u� > 0º: (B.17)

To prove (B.13), we only need to show (B.13) for x 2 ¹u�>0º. Clearly, (B.16) cannot hold
when r D 2d.x/, otherwise using the same argument will show thatB2d.x/.x/� ¹u� > 0º,
which contradicts the fact that Bd.x/.x/ touches @¹u� > 0º. Thus, we have

1

2d.x/
u�.x/ � 2d.x/

k zfCkL1.B2d.x/.x//

2n

� 2n
�2d.x/

n
k zf�kL1.B2d.x/.x// C kgkL1.B2d.x/.x//

�
for all x 2 ¹u� > 0º near @¹u� > 0º, which implies (B.13). Combining (B.17) and (B.13),
we know that u� 2 C.�/.
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Using Sard’s theorem and the coarea formula, one can show that jru�j D g in some
suitable sense. This is stated in the next proposition.

Proposition B.4. Let f; g 2 L1.Rn/ be such that g � 0. Let� be an open set in Rn and
let �� 0. Let u� 2K.�/ be a local minimizer of Jf;g;�;� in K.�/. If g2 2W 1;1.�/, then
(for a suitable sequence of "j )

lim
"j&0

Z
@¹u>"j º

.jru�j
2
� g2/� � �"j dS D 0;

for all � 2 .C1c .BR//
n. Here �"j denotes the outward normal vector of @¹u� > "j º.

Proof. Let � 2 .C1c .�//
n and " > 0 be small. We define u" 2 K.�/ by u".�".x//

D u�.x/, where �".x/ D x C "�.x/. From equation (4.2b) in Proposition 4.2, it is easy to
see that u� 2 C 1.¹u� > 0º/. Note that

0 � Jf;g;�;�.u"/ � Jf;g;�;�.u�/

D

Z
¹u�>0º

�
jru�j

2
jr�"j

�2
� �ju�j

2
� 2.f ı �"/u� C g

2
ı �"

�
det.r�"/ dx

�

Z
¹u�>0º

.jru�j
2
� �ju�j

2
� 2f u� C g

2/ dx

D "

Z
¹u�>0º

.jru�j
2
� g2/r � � dx

C "

Z
¹u�>0º

.�2ru� � .r�/ru� Cr.g
2/ � �/ dx C o."/;

where

lim
"&0

o."/

"
D 0:

We denote by˝ W Rn �Rn ! Rn�n the juxtaposition operator defined by a˝ b WD abT

for all a; b 2 Rn. Dividing both sides of the inequality above by " and letting "! 0, we
obtain

0 D

Z
¹u�>0º

r � ..jru�j
2
C g2/� � 2.�˝ru�/ru� dx

D lim
"&0

Z
¹u�>"º

r � ..jru�j
2
C g2/� � 2.�˝ru�/ru�/ dx

D lim
"&0

Z
@¹u�>"º

�
.jru�j

2
C g2/� � �" � 2

Djru�j
2���"‚ …„ ƒ

..�˝ru�/ru�/ � �"

�
dS

D lim
"&0

Z
@¹u�>"º

.�jru�j
2
C g2/� � �" dS;

which conclude our proposition.
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We now show that the local minimizer is Lipschitz.

Proposition B.5. Let � be a bounded open set in Rn with C 1 boundary and 0 � �
< ��.�/. Let f; g 2 L1.�/ be such that g � 0 and g2 2 W 1;1.�/. If u� is a local
minimizer of Jf;g;�;� in K.�/, then u� 2 C

0;1
loc .�/ and there exists a constant Cn such

that

jru�.x/j � Cn
�
kgkL1.B2d.x/.x// C kf C �u�kL1.B2d.x/.x//d.x/

�
; (B.18)

for all x 2 � near @¹u� > 0º.

Proof. It is easy to see that jru�.x/j D 0 for all x 2 � n ¹u� > 0º. Since g2 2 W 1;1.�/

and g 2 C.�/, we know that jru�.x/j D g.x/ D kgkL1.Bd.x/.x// for all x 2 @¹u� > 0º.
It is remains to show (B.18) holds for x 2 ¹u� > 0º.

SinceBd.x/.x/� ¹u� > 0º, using equation (4.2b) of Proposition 4.2, we have j�u�j D
j zf j � k zf kL1.Bd.x/.x// in Bd.x/.x/. Therefore, using [18, Lemma 2.4(d)], we know that

jru�.x/j � n
� 1

d.x/
�

Z
@Bd.x/.x/

u� dS C
k zf kL1.Bd.x/.x//

nC 1
d.x/

�
: (B.19)

Since Bd.x/C".x/ 6� ¹u� > 0º, using Lemma B.1, we know that4

1

d.x/C "
�

Z
@Bd.x/C".x/

u� dS � 2
n
�d.x/C "

n
k zf�kL1.Bd.x/C".x// C kgkL1.Bd.x/C".x//

�
� 2n

�d.x/C "
n

k zf�kL1.B2d.x/.x// C kgkL1.B2d.x/.x//

�
for all sufficiently small " > 0. Using the continuity of u�, taking "! 0C yields

1

d.x/
�

Z
@Bd.x/.x/

u� dS � 2
n
�d.x/
n
k zf�kL1.B2d.x/.x// C kgkL1.B2d.x/.x//

�
: (B.20)

Combining (B.19) and (B.20), we conclude that equation (B.18) holds for all x 2 ¹u� > 0º
near @¹u� > 0º.

The following lemma gives a sufficient condition in terms of mean averages to ensure
the local vanishing property of a local minimizer:

Lemma B.6. Let� be a bounded open set in Rn with C 1 boundary and 0 � � < ��.�/.
Let f; g 2 L1.�/ be such that g � 0. Suppose that u� is a local minimizer of Jf;g;�;�
in K.�/. If there exists an open set �0 with �0 � � such that

g � c > 0 in �0;

4If f; g 2 C.�/, we can improve (B.18) by replacing 2d by d.
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then there exists a constant C > 0 such that for any sufficiently small ball Br .x0/ � �0,
we have

1

r
�

Z
@Br .x0/

u� � C H) u� D 0 in B r
4
.x0/: (B.21)

The constant C depends only on infBr .x0/g, rk.f C �u�/CkL1.Br .x0// and n. More-
over, C is positive whenever infBr .x0/g > 0 and rk.f C �u�/CkL1.Br .x0// is sufficiently
small.

Remark B.7. If g � c > 0 in a neighborhood of a point x0 2 @¹u� > 0º, then

u�.x/ � C dist .x;Rn n ¹u� > 0º/ (B.22)

for some constant C > 0. We only need to show (B.22) for x 2 ¹u� > 0º near x0. Write
r D dist .x;Rn n ¹u� > 0º/. In particular, from the contra-positive statement of (B.21),
we know that

1

r
�

Z
@Br .x/

u� > C1

for some constant C1 > 0. Using (4.2b) in Proposition 4.2, we have

�u� D � zf � C2 WD k zf kL1.Br .x// in Br .x/ � ¹u� > 0º

with zf D f C �u�. Using [18, Lemma 2.4(a)], we have

u�.x/ � �

Z
@Br

u �
2n�1C2

n
r2 � C1r �

2n�1C2

n
r2 � Cr;

provided r D dist .x;Rn n ¹u� > 0º/ is sufficiently small.

Proof of Lemma B.6. Without loss of generality, we may assume that x0 D 0. From equa-
tion (B.14), we have

u�.y/ � C1 �

Z
@Br

u� dS C C2r
2
k zfCkL1.Br / for all y 2 B r

2
(B.23)

for some absolute constants C1 and C2, with zf D f C �u�. We define m WD infBr g,
M WD k zfCkL1.Br /, and

Jr .v/ WD

Z
B r
2

.jrvj2 � 2 zf v C g2�¹v>0º/ dx;

zJr .v/ WD

Z
B r
2

.jrvj2 � 2Mv Cm2�¹v>0º/ dx:

Now given a constant ˇ > 0, we consider the problem of minimizing zJr over

Kˇ D
®
v 2 H 1.B r

2
/ j v � 0 in B r

2
and v D ˇ on @B r

2

¯
:
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Following similar arguments as in [18, Conclusion of Lemma 2.8], we know that there
exists a sufficiently small constant ˇ0 D ˇ0.r;m;M/ such that if

0 <
r

2
<
nm

M
and 0 < ˇ � ˇ0;

then the largest minimizer vˇ of zJr in Kˇ satisfies

vˇ D 0 in B r
4
: (B.24)

From [18, (2.13)], we have

ˇ0.r;m;M/ D rˇ0.1;m; rM/:

Next, we let vˇ0 be the largest minimizer of zJr in Kˇ0 and let

w D

´
min¹u�; vˇ0º in B r

2
;

u� outside B r
2
:

If
C1
1

r
�

Z
@Br .x0/

u� < 2ˇ0.1;m; rM/;

then for each sufficiently small r , we have (because ˇ0.1; m; 0/ > 0 when m > 0 and
ˇ0.1;m; �/ is continuous)

C1
1

r
�

Z
@Br .x0/

u� C C2rM < ˇ0.1;m; rM/:

Consequently, from (B.23), we have

u� < ˇ0.r;m;M/ � rˇ0.1;m; rM/ on @B r
2
:

Since we consider small r > 0, we know that w 2 K.�/ and it is close to u� in the sense
of (4.1). Since u� is a local minimizer of Jf;g;�;� in K.�/, by Lemma 6.1, we know that
it is also a local minimizer of J zf ;g;0;� in K.�/. Hence, we know that

Jr .u�/ � Jr .w/ � Jr .min¹u�; vˇ0º/: (B.25)

Since vˇ0 is a minimizer of zJr in Kˇ0 , then

zJr .vˇ0/ �
zJr .max¹u�; vˇ0º/: (B.26)

Combining (B.25) and (B.26), we have

Jr .u�/C zJr .vˇ0/ � Jr .min¹u�; vˇ0º/C zJr .max¹u�; vˇ0º/: (B.27)

Following the proof of Proposition 5.1, we can show that

Jr .min¹u1; u2º/C zJr .max¹u1; u2º/ � Jr .u1/C zJr .u2/ (B.28)
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for any u1; u2 2 H 1.B r
2
/ with u1 � 0 and u2 � 0. Combining (B.27) and (B.28), we

obtain
Jr .u�/C zJr .vˇ0/ D Jr .min¹u�; vˇ0º/C zJr .max¹u�; vˇ0º/:

Since vˇ0 is the largest minimizer of zJr in Kˇ0 , we have max¹u�; vˇ0º � vˇ0 , which
implies 0 � u� � vˇ0 in B r

2
. Combining this with (B.24), we conclude with (B.21) with

C D 2C�11 ˇ0.1;m; rM/.

The next lemma concerns the density of the boundary of ¹u� > 0º.

Lemma B.8. Let� be a bounded open set in Rn with C 1 boundary and 0 � � < ��.�/.
Let f; g 2 L1.�/ be such that g � 0 and g2 2 H 1;1.�/. Suppose that u� is a local
minimizer of Jf;g;�;� in K.�/. If g � c > 0 in a neighborhood of a point x0 2 @¹u� > 0º,
then there exist constants c1 and c2 such that

0 < c1 �
jBr .x0/ \ ¹u� > 0ºj

jBr .x0/j
� c2 < 1 for all sufficiently small r > 0: (B.29)

Remark B.9. For each (Lebesgue) measurable set E � Rn, it is well known that

lim
r!0

jBr .x0/ \Ej

jBr .x0/j
D

´
1 for a.e. x 2 E;

0 for a.e. x 2 Rn nE:

Therefore, the measure theoretic boundary @mesE of E is defined to be the set of points
x 2 Rn such that both E and Rn n E have positive upper Lebesgue density at x. In par-
ticular, @mesE � @E. As an immediate corollary of Lemma B.8, we know that

@¹u� > 0º \ ¹g > 0º D @mes¹u� > 0º \ ¹g > 0º:

Proof of Lemma B.8. Without loss of generality, we may assume that x0 D 0. Using
Remark B.7, we know that there exist a point y 2 @B r

2
and a constant c > 0 such that

u�.y/ � cr . Using (B.15) on B�r .y/ � �, provided � > 0 is small, we have

1

�r
�

Z
@B�r .y/

u� dS �
1

�r
u�.y/ � �r

k zfCkL1.B�r .y//

2n
�
c

�
:

Using Lemma B.1, we know that B�r .y/ � ¹u� > 0º \ Br for sufficiently small � > 0,
and hence,

jBr \ ¹u� > 0ºj

jBr j
�
jB�r .y/j

jBr j
D
jB�r j

jBr j
D �n; (B.30)

which proves the lower bound of (B.29) with c1 D �n.
Combining (B.30) with Lemma B.6, we know that

�

Z
@Br

u� � cr: (B.31)
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Now let v be as in (B.2). From (B.7) and Poincaré’s inequality, we have

jBr \ ¹u� D 0ºj � c

Z
Br

jr.u� � v/j
2 dx �

c

r2

Z
Br

ju� � vj
2 dx (B.32)

for each sufficiently small r > 0. By restricting (B.5) on B�r , we obtain

v.y/ �
.1 � �/

.1C �/n�1

�
�

Z
@Br

u� dS � Cr
2
�

for all y 2 B�r : (B.33)

Using Proposition B.5 (which required g2 2W 1;1.�/), we know that u� is Lipschitz, and
hence, we know that

u�.y/ � C�r for all y 2 B�r ; (B.34)

because 0 2 @¹u� > 0º. Combining (B.34) with (B.33) as well as (B.31), for all sufficiently
small r > 0, we have

.v�u�/.y/�
.1 � �/

.1C �/n�1
�

Z
@Br

u�dS �C�r �Cr
2
� .c �C�/r � c0r for all y 2B�r ;

provided � > 0 is sufficiently small. Hence,

j.v � u�/j D v � u� � c
0r in B�r :

Therefore, from (B.32), we have

jBr \ ¹u� D 0ºj �
c

r2

Z
B�r

ju� � vj
2 dx �

c

r2
jB�r j.c

0/2r2 D c00jBr j�
n;

and consequently,

jBr \ ¹u� > 0ºj

jBr j
D 1 �

jBr \ ¹u� D 0ºj

jBr j
� 1 �

c00jBr j�
n

jBr j
D 1 � c00�n;

which proves the upper bound of (B.29) with c2 D 1 � c00�n.

Proof of Proposition 6.2. Here we only prove the result when @¹g > 0º \� ¤ ;, as the
case when @¹g > 0º \� D ; can be easily proved using the same idea by omitting some
paragraphs.

Step 1: Initialization. Using Proposition 5.6, we know that zf D f C �u� 2 L1.�/.
Using (4.2a) in Proposition 4.2, we know that �u� is a signed Radon measure in � and
�u� � � zf � �k zf kL1.�/ in �. Then, we see that

�
�
u� C

k zf kL1.�/

2n
jxj2

�
D �u� C k zf kL1.�/ � 0 in �:

Since u� � 0 in �, using [18, Lemma 2.16], we know that �u� � 0 in � n ¹u� > 0º. We
now define

� WD �u� C zf �¹u�>0º:
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Using (4.2b) in Proposition 4.2, we know that

� D 0 in ¹u� > 0º: (B.35)

Clearly, � D 0 in the open set � n ¹u� > 0º; therefore, we know that

� WD �u� C zf �¹u�>0º is a non-negative Radon measure supported on @¹u� > 0º:

Furthermore, from (4.2c), we know that

� WD �u� C zf �¹u�>0º is a non-negative Radon measure

supported on @¹u� > 0º \ ¹g > 0º:
(B.36)

For each x0 2 �, we estimateˇ̌̌Z
Br .x0/

�u� dx
ˇ̌̌
�

Z
@Br .x0/

jru�j dS � Cr
n�1 sup

@Br .x/

jru�j � Cr
n�1 (B.37)

for all sufficiently small r > 0, where the last inequality follows from (B.18) in Propo-
sition B.5 and the assumption ¹u� > 0º � �. This shows that �u�, as well as �, is
absolutely continuous with respect to Hn�1.

Step 2: Showing that �D 0 on @¹u� > 0º n ¹g > 0º. For each x0 2 @¹u� > 0º n ¹g > 0º,
using (B.18) in Proposition B.5, we have5ˇ̌̌Z

Br .x0/

�u� dx
ˇ̌̌
� Crn�1C˛ for all sufficiently small r > 0;

which shows that �u�, as well as �, is absolutely continuous with respect to Hn�1C˛ on
@¹u� > 0º n ¹g > 0º. Using the assumption Hn�1C˛.@¹g > 0º \�/ D 0, we know that

� D �u� D 0 on @¹u� > 0º \ @¹g > 0º: (B.38)

On the other hand, using (4.2a) and (4.2c) in Proposition 4.2, we know that

�.f C �u�/C � �u� � �.f C �u�/ in � n ¹g > 0º;

and thus, �u� 2 L1.� n ¹g > 0º/. Using [22, Chapter II, Lemma A.4], we know that

� D �u� D 0 on @¹u� > 0º n ¹g > 0º: (B.39)

Combining (B.38) and (B.39), we know that

� D 0 on @¹u� > 0º n ¹g > 0º:

Next, we want to study the behavior of � on @¹u� > 0º \ ¹g > 0º.

5In particular, when g � 0 in � (i.e., G \� D ;), we even can choose ˛ D 1.



P.-Z. Kow, M. Salo, and H. Shahgholian 456

Step 3: Proving ¹u� > 0º has locally finite perimeter in ¹g > 0º and (6.2). We first
show that there exists a constant C > 0, depending on infBr .x0/ g, such thatZ

Br .x0/

�u� dx � Cr
n�1 (B.40)

for all sufficiently small r > 0 and for all x0 2 @¹u� > 0º \ ¹g > 0º.
Let ˆy be the (positive) Green function for �� in Br .x0/ with pole y 2 Br .x0/,

that is, 8̂̂<̂
:̂
�ˆy D �ıy in Br .x0/;

ˆy � 0 in Br .x0/;

ˆy D 0 on @Br .x0/:

Using integration by parts, we can easily see thatZ
Br .x0/

ˆy�u� dx D �u�.y/C

Z
@Br .x0/

u�@��ˆy dS:

Using Lemma B.1, for each sufficiently small � > 0, there is a point y 2 @B�r .x0/ with

u�.y/ � c�r > 0;

and since u� is Lipschitz, we have

u�.y/ � C�r and u� > 0 in Bc.�/r .y/

for some constant c.�/. Hence, we haveZ
Br .x0/

ˆy�u� dx � �u�.y/C c �

Z
@Br .x0/

u� dS � �C�r C cr � c
0r; (B.41)

which can possibly be done by using a smaller � > 0.
On the other hand, using (B.35), we know that � D 0 in Bc.�/r .y/ � ¹u� > 0º; hence,

we haveZ
Br .x0/

ˆy�u� dx

D

Z
Br .x0/nBc.�/r .y/

ˆy�dx �

Z
Br .x0/

ˆy zf �¹u�>0º dx

D

Z
Br .x0/nBc.�/r .y/

ˆy�u� dx �

Z
Bc.�/r .y/

ˆy zf dx

� kˆykL1.Br .x0/nBc.�/r .y//

Z
Br .x0/

�u� dx C k zf kL1.�/

Z
Bc.�/r .y/

ˆy dx
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� C.�/r2�n
Z
Br .x0/

�u� dx C C.�/r
2 (B.42)

for all sufficiently small r > 0. Combining (B.41) and (B.42), we conclude with (B.40).
LetK be any compact set in @¹u� >0º \ ¹g > 0º. We now coverK by the ballsBr .x0/

given in (B.40), and we know that

Hn�1.K/ � C

Z
K

�u� dx
(B.37)
< 1;

which shows that ¹u� > 0º has locally finite perimeter in ¹g > 0º. Combining this with
Remark B.9 and (A.2), we conclude with (6.2).

Step 4: Sketching the proof of (6.3). Combining (6.2) and (B.36), we see that

�u� C zf �¹u�>0º D hH
n�1
b@red¹u� > 0º

for some Borel function h � 0 on @red� \ ¹g > 0º. It just remains to show

h.x0/ D g.x0/ for Hn�1-a.e. x0 2 @red¹u� > 0º \ ¹g > 0º: (B.43)

Despite the fact that the ideas are virtually same as in [1, 4.7–5.5], here we still present
the details for the reader’s convenience. It is enough to prove (B.43) for those x0 2
@red¹u� > 0º \ ¹g > 0º which satisfy

lim sup
r!1

Hn�1.Br .x0/ \ @¹u� > 0º/

!n�1rn�1
� 1 (see Lemma A.4); (B.44a)

lim sup
r!1

�

Z
@¹u�>0º\Br .x/

jh.x/ � h.x0/j dS.x/ D 0I (B.44b)

see [1, Remark 4.9]. Without loss of generality, we assume that

x0 D 0 and �¹u�>0º.0/ D en D .0; � � � ; 0; 1/:

Define the blow-up sequences

un.x/ D nu�.n
�1x/; zfn.x/ D n

�1 zf .n�1x/;

g.x/ D g.n�1x/; hn.x/ D h.n
�1x/; �n D ¹un > 0º:

Note that u; f; g are scaled according to [18, Remark 2.7 (with ˛ D �1)]. It is also easy
to see that

j zfnj � C=n; (B.45a)Z
B1

jg.n�1x/ � g.0/j dx ! 0; (B.45b)Z
@�n\B1

jh.n�1x/ � h.0/j dS.x/! 0 (B.45c)
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as n!1. We define the half-spaceH WD ¹xn < 0º. Using [13, Section 5.7.2, Theorem 1],
we know that

j.�n4H/ \ B1j ! 0 as n!1; (B.46)

where 4 denotes the symmetric difference between the sets. Using Proposition B.5
(together with the assumption ¹u� > 0º ��) and Remark B.7, we know that jrunj � C .
It follows that there exists a Lipschitz continuous limit function u0 � 0 such that, for a
subsequence,

un ! u0 uniformly in B1;

run ! ru0 L1.B1/-weak � :

Using Remark B.7, we know that un.x/ � C dist .x;Rn n�n/. Using (4.2b) in Proposi-
tion 4.2 and (B.45a), we know that

j�unj D j zfnj � C=n in �n:

Therefore, we know that u0 is harmonic in�0 and, in particular,�n \B1! �0 \B1 in
measure. Therefore, from (B.46), we have j�04H j D 0. Since �0 is open, we conclude
that

�0 � H and jH n�0j D 0:

Using [1, Theorem 4.8] together with (B.44a) and (B.44b), we know that

�0 D H and u0.x/ D h.0/.�xn/C:

On the other hand, using [1, Lemma 5.4], we know that u0 is a global minimum of

J0.v/ WD

Z
B

.jrvj2 C g.0/2�¹v>0º/ among all v 2 K.B1/:

Therefore, using Proposition B.4, we conclude that h.0/ D g.0/, and we thus complete
the proof.

C. Computations related to Bessel functions

The main purpose of this appendix is to exhibit the details of computation for Lemma 7.2.

Computations of (7.8). Since the solution space of u00.r/ C n�1
r
u0.r/ C �u.r/ D 0 for

r > 0 is spanned by

r
2�n
2 J n�2

2
.
p
�r/ and r

2�n
2 Y n�2

2
.
p
�r/;

the solution of (7.6a) must satisfy

u.r/ D
b � a

�
C c1r

2�n
2 J n�2

2
.
p
�r/ for r 2 .0; r1/;

u.r/ D
b

�
C c2r

2�n
2 J n�2

2
.
p
�r/C c3r

2�n
2 Y n�2

2
.
p
�r/ for r1 < r:
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So, we know that

u0.r/ D �c1
p
�r

2�n
2 J n

2
.
p
�r/ for r 2 .0; r1/;

u0.r/ D �c2
p
�r

2�n
2 J n

2
.
p
�r/ � c3

p
�r

2�n
2 Y n

2
.
p
�r/ for r1 < r:

Since u is C 1 at r1, and since � > 0 and r > 0, we have

.c2 � c1/J n�2
2
.
p
�r1/C c3Y n�2

2
.
p
�r1/ D �

ar
n�2
2

1

�
;

.c2 � c1/J n
2
.
p
�r1/C c3Y n

2
.
p
�r1/ D 0;

that is,  
J n�2

2
.
p
�r1/ Y n�2

2
.
p
�r1/

J n
2
.
p
�r1/ Y n

2
.
p
�r1/

!�
c2 � c1
c3

�
D �

ar
n�2
2

1

�

�
1

0

�
:

Note that

det

 
J n�2

2
.
p
�r1/ Y n�2

2
.
p
�r1/

J n
2
.
p
�r1/ Y n

2
.
p
�r1/

!
D �

2

�
p
�r1

;

so �
c2 � c1
c3

�
D
�
p
�r1

2

 
Y n
2
.
p
�r1/ �Y n�2

2
.
p
�r1/

�J n
2
.
p
�r1/ J n�2

2
.
p
�r1/

!
ar

n�2
2

1

�

�
1

0

�
D
a�r

n
2
1

2
p
�

 
Y n
2
.
p
�r1/

�J n
2
.
p
�r1/

!
:

Hence, we know that

u.r/ D �¹r<r1º

hb � a
�
C c1r

2�n
2 J n�2

2
.
p
�r/

i
C �¹r>r1º

hb
�
C c2r

2�n
2 J n�2

2
.
p
�r/C c3r

2�n
2 Y n�2

2
.
p
�r/

i
D �¹r<r1º

hb � a
�
C c1r

2�n
2 J n�2

2
.
p
�r/

i
C �¹r>r1º

hb
�
C

�
c1 C

a�r
n
2

1

2
p
�
Y n
2
.
p
�r1/

�
r
2�n
2 J n�2

2
.
p
�r/

�
a�r

n
2

1

2
p
�
J n
2
.
p
�r1/r

2�n
2 Y n�2

2
.
p
�r/

i
D
b � a

�
C c1r

2�n
2 J n�2

2
.
p
�r/

C �¹r>r1º

ha
�
C
a�r

n
2
1

2
p
�
r
2�n
2

�
Y n
2
.
p
�r1/J n�2

2
.
p
�r/ � J n

2
.
p
�r1/Y n�2

2
.
p
�r/

�i
;
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which shows (7.8) and

u0.r/ D �c1
p
�r

2�n
2 J n

2
.
p
�r/

� �¹r>r1º
a�r

n
2
1

2
r
2�n
2
�
Y n
2
.
p
�r1/J n

2
.
p
�r/ � J n

2
.
p
�r1/Y n

2
.
p
�r/

�
(C.1)

hold. The proof is complete.

Proof of (7.9). Since J n
2
.
p
�r/ is non-negative on .0; R/ by the assumption on �, we

deduce that u0 has constant sign on .0; r1/. We see that

u0.r/ D

>0‚ …„ ƒ
r
2�n
2 J n

2
.
p
�r/

h
�c1
p
� �

a�r
n
2
1

2

�
Y n
2
.
p
�r1/ � J n

2
.
p
�r1/

Y n
2
.
p
�r/

J n
2
.
p
�r/

�i
(C.2)

for all r > r1. Since

@

@r

�Y n
2
.
p
�r/

J n
2
.
p
�r/

�
D

2

�rJ n
2
.
p
�r/2

> 0 for r 2 .0; R/ � .0; j n�2
2 ;1�

� 12 /;

we deduce that there is at most one point r 0 2 .r1; R/ where u0.r 0/ D 0 and u0 is negative
on .r1; r 0/ and positive on .r 0; R/ (not excluding the possibilities that r 0 D r1 or r D R).
This implies that u can at most have two zeros in .0; R�. Since u has at least one zero
in .0; R�, we have the following cases:

(1) If u has exactly one zero 0 < �0 � R, then u0.�0/ � 0.

(2) If u has exactly two zeros 0 < �1 < �2 � R, then u0.�1/ � 0 and u0.�2/ � 0. In
this case, we choose �0 D �1.

In either case, we conclude with (7.9).

Proof of (7.10). Plugging u.�/ D 0 into (7.8), we have

0 D
b � a

�
C c1�

2�n
2 J n�2

2
.
p
��/

C �¹r>r1º

ha
�
C
a�r

n
2
1

2
p
�
�
2�n
2

�
Y n
2
.
p
�r1/J n�2

2
.
p
��/ � J n

2
.
p
�r1/Y n�2

2
.
p
��/

�i
:

We now show that � > r1. Suppose, on the contrary, that � � r1. From (7.8), we have

c1 D
a � b

�

1

�
2�n
2 J n�2

2
.
p
��/

> 0:

From (C.1) and (7.9), we know that

�g.�/ D u0.�/ D �
a � b
p
�

J n
2
.
p
��/

J n�2
2
.
p
��/

< 0I
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this contradicts the assumption g D 0 in Br1 . Therefore, � > r1, and hence, we know
that ¹zu > 0º � Br1 .

From (7.8), we have

0 D
b

�
C c1�

2�n
2 J n�2

2
.
p
��/

C
a�r

n
2
1

2
p
�
�
2�n
2
�
Y n
2
.
p
�r1/J n�2

2
.
p
��/ � J n

2
.
p
�r1/Y n�2

2
.
p
��/

�
D
b

�
C�

2�n
2 J n�2

2
.
p
��/

h
c1 C

a�r
n
2
1

2
p
�
Y n
2
.
p
�r1/

i
�
a�r

n
2
1

2
p
�
�
2�n
2 J n

2
.
p
�r1/Y n�2

2
.
p
��/;

which implies

�c1
p
� D

b
p
�

1

�
2�n
2 J n�2

2
.
p
��/
�
a�r

n
2
1

2
J n
2
.
p
�r1/

Y n�2
2
.
p
��/

J n�2
2
.
p
��/
C
a�r

n
2
1

2
Y n
2
.
p
�r1/:

From (C.2), we have

u0.�/ D �
2�n
2 J n

2
.
p
��/

h b
p
�

1

�
2�n
2 J n�2

2
.
p
��/

�
a�r

n
2
1

2
J n
2
.
p
�r1/

D 2

�
p
��J n�2

2
.
p
��/J n

2
.
p
��/‚ …„ ƒ�Y n�2

2
.
p
��/

J n�2
2
.
p
��/
�
Y n
2
.
p
��/

J n
2
.
p
��/

�i
D �

2�n
2 J n

2
.
p
��/

h b
p
�

1

�
2�n
2 J n�2

2
.
p
��/

�
a�r

n
2
1

2
J n
2
.
p
�r1/

2

�
p
��J n�2

2
.
p
��/J n

2
.
p
��/

i
D
b�

n
2 J n

2
.
p
��/ � ar

n
2
1 J n2 .

p
�r1/

�
n
2

p
�J n�2

2
.
p
��/

:

Since �
n
2

p
�J n�2

2
.
p
��/ > 0, the sign of u0.�/ is the same as that of

�.�/ �
b

a
�
r
n
2

1 J n2 .
p
�r1/

�
n
2 J n

2
.
p
��/

:

Note that � W Œr1;R�! R is monotonically increasing and �.r1/ D b�a
a
< 0. Let R0 > r1

as in (7.2). Then, �.R0/ D 0 and also u0.R0/ D 0. Since u is monotonically decreasing
on .0; R0/, we conclude with (7.10).
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D. Examples of hybrid k-quadrature domains with real-analytic
boundary

In this appendix we construct some examples of hybrid k-quadrature domains using the
Cauchy–Kowalevski theorem. We extend [17, Theorems 3.1 and 3.3] in the theorems
which follow.

Theorem D.1. Let D be a bounded domain in Rn with real-analytic boundary. Let g be
real analytic on a neighborhood of @D with g > 0 on @D. For each k � 0, there exists a
bounded positive measure �1 with supp .�1/ � D such that D is a hybrid k-quadrature
domain corresponding to �1 with density .g; 0/.

Theorem D.2. Let 0 � k < j n�2
2 ;1R

�1 and letD be a bounded domain such thatD�BR
and @D is real-analytic. Let h be a non-negative integrable function on a neighborhood
ofD, which is real-analytic on some neighborhood of @D. There exists a bounded positive
measure�2 with supp .�2/�D such thatD is a hybrid k-quadrature domain correspond-
ing to �2 with density .0; h/.

The main purpose of this section is to prove Theorems D.1 and D.2.

Proof of Theorem D.1. By the Cauchy–Kowalevski theorem, there exist a neighbor-
hood N of @D and a real-analytic function u satisfying8̂̂<̂

:̂
.�C k2/u D 0 in N ;

u D 0 on @D;

@�u D �g on @D:

Following [17, Proposition 3.2], there exist an open setW �D \N and a constant " > 0
such that

(1) u is positive on W ,

(2) @D � @W ,

(3) u.x/ D " for all x 2 @W n @D,

(4) @�u < 0 on @W n @D. In particular, ru vanishes nowhere on @W n @D, so
@W n @D is real-analytic.

For each w 2 H 1.D/ with .�C k2/w D 0 in D, we have

0 D

Z
W

.w�u � u�w/ dx D

Z
@W

.w@�u � u@�w/ dS;

where dS.x/ D dHn�1.x/ is the surface measure, and hence,Z
@D

w@�udS �

Z
@W n@D

w@�udS D

Z
@D

u@�w dS �

Z
@W n@D

u@�w dS:
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Let D0 be the region with @D0 D @W n @D (and thus, D0 � D); then, we see that

�

Z
@D

wg dS �

Z
@D0

w@�udS D �"

Z
@W n@D

@�w dS

D "

Z
D0
�w dx D �"k2

Z
D

�D0w dx;

that is, Z
@D

wg dS D "k2
Z
D

�D0w dx �

Z
@D0

w@�udS:

Finally, we define the measure �1 WD "k2LnbD0 � @�uHn�1b@D0. Note that supp .�1/
� D and �1 is positive and bounded; hence, we know that

h�1; wi D

Z
@D

gw dS (D.1)

for all w 2 H 1.D/ with .� C k2/w D 0 in D. For each y 2 Rn n D, choosing
w.x/ D ‰k.x; y/, where ‰ is any fundamental solution of �.�C k2/ in (D.1), we reach

‰k � �1 D ‰k � .gH
n�1
b@D/ in Rn nD. (D.2)

Since @D is real-analytic, the right-hand side of (D.2) is the single-layer potential. There-
fore, by continuity of the single-layer potential [26, Theorem 6.11] and since �1 is
bounded, we conclude our theorem.

Proof of Theorem D.2. If h vanishes identically on a neighborhood of @D, we have noth-
ing to prove. We now assume that this is not the case.

Let v 2 H 1
0 .D/ be the unique solution of´

.�C k2/v D h in D;

v D 0 on @D:

Since h � 0, using the strong maximum principle for the Helmholtz operator (see [23,
Appendix]), we know that v.x/ < 0 for all x 2 D. By the analyticity theorem for elliptic
equations, v extends real-analytically to some neighborhood of @D. Using integration by
parts, we have

h�2; wi D

Z
D

whdx D

Z
D

.w�v � v�w/ dx

D

Z
@D

.w@�v � v@�w/ dS D

Z
@D

w@�v dS; (D.3)

where �2 is the measure given as in (1.6).
Again, using the strong maximum principle for the Helmholtz operator, we know that

the unique solution u0 of ´
.�C k2/u0 D 0 in D,

u0 D 1 on @D
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must satisfy u0 > 0 in D. By observing that

.�C k2/v D u�10 r � u
2
0r.u

�1
0 v/ in D,

we can apply the Hopf maximum principle (see, e.g., [15, Lemma 3.4]) on u�10 v to ensure
@�.u

�1
0 v/ > 0 on @D. Since v D 0 on @D,

@�v D u0@�.u
�1
0 v/ > 0 on @D.

Since @D is real-analytic, @D locally has a representation as ¹y j '.y/ D 0º for some
real-analytic ' with non-vanishing gradient. We may choose ' to be positive outside D,
so

@�v D rv �
r'

jr'j
on @D;

that is, @�v can be extended real-analytically and is strictly positive near @D. Using The-
orem D.1, there exists a positive bounded measure �2 with supp .�2/ � D such that

h�2; wi D

Z
@D

w@�v dS: (D.4)

Combining (D.3) and (D.4), we conclude our theorem.

E. Some remarks on null k-quadrature domains

In this appendix we give some remarks on null k-quadrature domains. They are defined
by Definition 1.1 with g � 0, h � 1, and � � 0. It was confirmed in [10,11] that the null
0-quadrature domains in Rn with n � 2 must be either

• half-space,

• the complement of an ellipsoid,

• the complement of a paraboloid, or

• the complement of a cylinder with an ellipsoid or a paraboloid as its base;

see also [14, 20, 21, 28] for some classical works.
In addition, it is worth mentioning that in the two-dimensional case, starting from null

0-quadrature domains, we can always construct quadrature domains of positive measure
[29, Theorem 11.5]. This motivates us to study null k-quadrature domains for k > 0. We
also give some remarks showing that they are quite different.

As a consequence of the mean value theorem for the Helmholtz operator �.�C k2/
(see, e.g., [23, Appendix]), it is not difficult to see that a ball is a null k-quadrature domain
(i.e., � � 0) if and only if its radius r satisfies J n

2
.kr/ D 0, where J˛ denotes the Bessel

function of the first kind.
Following the ideas in [2], one can show the next theorem.
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Theorem E.1. Let n � 2 be an integer, k > 0, and � 2 .0; �
2
/. We consider the conical

domain

†� WD
®
.x; y/ 2 Rn�1 �R j y > �jxj tan �

¯
(see [2, Figure 1]):

If w 2 L1.†� / satisfies .�C k2/w D 0 in †� , then w � 0 in †� .

The notion of “null k-quadrature domains” for k > 0 therefore makes no sense for
general unbounded sets. Hence, it is natural to ask about the classification of bounded
null k-quadrature domains. As pointed out in our previous work [23], this problem is
equivalent to the well-known Pompeiu’s problem [27, 34], which is also equivalent to an
obstacle-type free boundary problem [31, 32]. The unanswered question is whether any
bounded (Lipschitz) null k-quadrature domain must be a ball. We also remark that (1.2) is
related to Schiffer’s problem, which asks whether the existence of a non-trivial solution u
of 8̂̂<̂

:̂
.�C k2/u D 0 in D;

u D 0 on @D;

jruj D 1 on @D

implies that such a (Lipschitz) bounded domain D must be a ball. We refer to [4] for
the Pompeiu problem for convex domains in R2, where several equivalent formulations
(including the equivalence with the Morera problem) as well as some partial results are
given. See also [8] for the case of domains in R2 which are strictly convex, and [9] for
domains in R2 under different assumptions.

It remains to prove Theorem E.1.

E.1. The case when n D 2

We denote by F1 the one-dimensional Fourier transform given by

F1'.�/ WD
1
p
2�

Z
R
'.x/e�ix� dx for all � 2 R;

which is clearly well-defined for ' 2 L1.R/ and can be extended for tempered distribu-
tions ' 2 S0.R/.

Lemma E.2. Given any " > 0 and k > 0, let v 2L1.R� .�";1// satisfy .�C k2/v D 0
in R � .�";1/. Then,

v.x; y/ D
1
p
2�

Z
j�j>k

eix�.F1v/.�; 0/e
�y
p
�2�k2 d�

for all .x; y/ 2 R � Œ0;1/ with

j.F1v/.�; 0/j �
1
p
2�
kvkL1.R�.�";1//

p
�2 � k2e�"

p
�2�k2 for all j�j > k;

.F1v/.�; 0/ D 0 for all j�j � k:

https://www.scilag.net/problem/G-180522.1
https://www.scilag.net/problem/P-180522.1
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Proof. Since v 2 L1.R � .�";1//, by Fubini’s theorem we have v.�; y/ 2 L1.R/ for
almost every y 2 .�";1/, and so F1v.�; y/ is continuous andZ 1

�"

kF1v.�; y/kL1.R/ dy �
1
p
2�

Z 1
�"

kv.�; y/kL1.R/ dy

D
1
p
2�
kvkL1.R�.�";1//: (E.1)

By applying the Fourier transform F1 on .�C k2/vD 0 in R� .�";1/, for almost every
� 2 R, we have

@2y.F1v/.�; y/C .k
2
� �2/.F1v/.�; y/ in D0.�";1/: (E.2)

Since F1v.�; y/ 2 L
1.R/, the general solution of ODE (E.2) is given by

.F1v/.�; y/ D

´
A.�/e�.yC"/

p
�2�k2 for j�j > k;

B1.�/e
�i.yC"/

p
k2��2 C B2.�/e

i.yC"/
p
k2��2 for j�j � k;

(E.3)

for some complex-valued functions A;B1; B2. For each j�j < k, we see that .F1v/.�; �/ is
periodic with respect to variable y. However, from (E.1), we must have

.F1v/.�; �/ D 0 for all j�j < k:

When j�j D k, we have .F1v/.�; y/ D B1.�/C B2.�/. Again, by (E.1), we must have

.F1v/.�; �/ D 0 for all j�j D k:

Therefore, we can write (E.3) as

.F1v/.�; y/ D A.�/e
�.yC"/

p
�2�k2 ; provided A.�/ D 0 for all j�j � k: (E.4)

Plugging (E.4) into (E.1) yields

1
p
2�
kvkL1.R�.�";1// � jA.�/j

Z 1
�"

e�.yC"/
p
�2�k2 dy D

jA.�/jp
�2 � k2

for all j�j > k:

Finally, using the Fourier inversion formula on (E.4), we conclude the proof.

Corollary E.3. Given any ` > 0, k > 0, and � 2 .0; �
2
/, we consider the half-planes

…˙�;" WD
®
.x; y/ j y > �`� x tan �

¯
�
®
.x; y/ j ˙x sin � C y cos � > �` cos �

¯
:

If w˙ 2 L1.…˙� / satisfies .�C k2/w˙ D 0 in …˙
�

, then

w˙.x; y/ D
1
p
2�

Z
j�j>k

ei.x cos ��y sin �/�
y'˙.�/e

�.˙x sin �Cy cos �/
p
�2�k2 d�

for all .x; y/ 2 ¹.x; y/ j y � �x tan �º, for some function y'˙ satisfying

jy'˙.�/j �
1
p
2�
kw˙kL1.…˙

�
/

p
�2 � k2e�` cos �

p
�2�k2 for all j�j > k;

y'˙.�/ D 0 for all j�j � k:
(E.5)
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Remark E.4. In particular, we have

w˙.x; 0/ D
1
p
2�

Z
j�j>k

ei.x cos �/�
y'˙.�/e

�x sin �
p
�2�k2 d�

for all x with˙x � 0.

Proof of Corollary E.3. Since the Laplacian is rotation invariant, the function v˙ is given
by

w˙.x; y/ D v˙.x cos � � y sin �;˙x sin � C y cos �/

and satisfies v˙ 2 L1.R � .�` cos �;1// with .�C k2/v˙ D 0 in R � .�` cos �;1/.
Therefore, using Lemma E.2 with " D ` cos � yields

v˙.x; y/ D
1
p
2�

Z
j�j>k

eix�.F1v˙/.�; 0/e
�y
p
�2�k2 d�

with

j.F1v˙/.�; 0/j �
1
p
2�
kw˙kL1.…˙

�
/

p
�2 � k2e�` cos �

p
�2�k2 for all j�j > k;

.F1v˙/.�; 0/ D 0 for all j�j � k;

because kv˙kL1.R�.�` cos �;1// D kw˙kL1.…˙
�
/, which concludes the proof.

We are now ready to prove Theorem E.1 for the case when n D 2.

Proof of Theorem E.1 when n D 2. For each ` > 0, we define

†`� WD
®
.x; y/ 2 Rn�1 �R j y C ` > �jxj tan �

¯
and it is easy to see that v.x; y/ D w.x; y C `/ satisfies v 2 L1.†`

�
/ and .�C k2/v D 0

in †`
�
. Since R � .�`;1/ � †`

�
, v admits the representation as described in Lemma E.2

with " D `. Since Fv.�; 0/ D 0 for all j�j � k2, to prove our theorem, we only need to
show that

F1v.�; 0/ is analytic in a neighborhood of the real axis. (E.6)

Since w.�; y/ 2 L1.R/ for almost every y 2 .0;1/, we can choose ` > 0 such that

v.�; 0/ � w.�; `/ 2 L1.R/;

so that we can write

F1v.�; 0/ D
1
p
2�

Z
RC

vjRC.x; 0/e
�ix� dx C

1
p
2�

Z
R�

vjR�.x; 0/e
�ix� dx:

Using Remark E.4 with w˙ D vjR˙ , we have

F1v.�; 0/ D
1

2�

X
˙

Z
R˙

�Z
j�j>k

ei.x cos �/�
y'˙.�/e

�jxj sin �
p
�2�k2 d�

�
e�ix� dx; (E.7)
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where y'� satisfies (E.5). The integral given by (E.7) is well-defined, sinceZ
R˙

�Z
j�j>k

jei.x cos �/�
y'˙.�/e

�jxj sin �
p
�2�k2

j d�
�
je�ix� j dx

D

Z
R˙

�Z
j�j>k

jy'˙.�/je
�jxj sin �

p
�2�k2 d�

�
dx

�
1
p
2�
kvkL1.†`

�
/

Z
j�j>k

p
�2 � k2e�` cos �

p
�2�k2

�Z
R˙

e�jxj sin �
p
�2�k2 dx

�
d�

D
1
p
2�

kvkL1.†`
�
/

sin �

Z
j�j>k

e�` cos �
p
�2�k2 d� <1;

which holds because sin � > 0 and cos � > 0. From this, we are also able to use Fubini’s
theorem on (E.7) to reach

F1v.�; 0/ D
1

2�

X
˙

Z
j�j>k

�Z
R˙

ei.x cos �/�e�jxj sin �
p
�2�k2e�ix� dx

�
y'˙.�/ d�

D

Z
j�j>k

1

2�

X
˙

�Z
R˙

ex.i.� cos ���/�sin �
p
�2�k2/ dx

�
y'˙.�/ d�

D

Z
j�j>k

F.�; �/ d�;

where

F.�; �/ D
1

2�

X
˙

y'˙.�/

�i.� cos � � �/C sin �
p
�2 � k2

:

Finally, following the proof in [2, Theorem 1.1] exactly, we conclude with (E.6), which
completes the proof.

E.2. The case when n > 2

The result for n > 2 can be proved exactly in the same way as in [2, Section 4], and hence,
its proof is omitted.

Notation index

LnbD Lebesgue measure restricted to D
Hn�1b@D .n � 1/-dimensional Hausdorff measure on @D
@mesE measure theoretic boundary
@redE reduced boundary
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