
J. Noncommut. Geom. 18 (2024), 771–801
DOI 10.4171/JNCG/574

© 2024 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Orbifold semiorthogonal decompositions for
Abelian varieties

Bronson Lim and Franco Rota

Abstract. Suppose G is a finite group acting on an Abelian variety A such that the coarse moduli
space A=G is smooth. Using the recent classification result due to Auffarth, Lucchini Arteche,
and Quezada, we construct an orbifold semiorthogonal decomposition for D ŒA=G� provided G D
T ÌH with T a subgroup of translations and H is a subgroup of group automorphisms.

1. Introduction

1.1. Orbifold semiorthogonal decompositions

Suppose G is a finite group acting effectively on a smooth quasi-projective variety X . If
each of the quotients X� D X�=C.�/ is smooth, where X� is the fixed locus of � 2 G
and C.�/ is the centralizer of � 2 G, then there is an orthogonal decomposition

HH�.ŒX=G�/ D
M
�2G=�

HH�.X�/ (1)

where G=� is the set of conjugacy classes. This decomposition holds for any additive
invariant, see [22, Remark 1.26]. In [19], the authors conjecture that this remains true on
the derived (or dg) level. Since the derived category decomposes orthogonally if and only
if the variety is not connected, we should not expect a fully orthogonal decomposition but
only a semiorthogonal decomposition, see Definition 2.1.

Conjecture 1.1 (Orbifold semiorthogonal decomposition [19, Conjecture A]). SupposeG
is a finite group acting effectively on a smooth varietyX and that for all � 2G=� the quo-
tient X� D X�=C.�/ is smooth. Then D ŒX=G� admits a semiorthogonal decomposition
where the components CŒ�� are in bijection with conjugacy classes and CŒ�� Š D.X�/.

A semiorthogonal decomposition satisfying the conditions of Conjecture 1.1 is called
an orbifold semiorthogonal decomposition, see Definition 2.2. It is induced by the orbifold
structure of ŒX=G�, and it induces the decomposition (1), which is motivic in the sense of
[22] and [23]. There are several known cases of the conjecture which we list now.
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• The natural actions of complex reflection groups of typesA;B;G2;F4, andG.m;1;n/
acting on An, [19, Theorem C].

• Semi-direct product actions of type G Ì Sn on C n where C is a curve and G is an
effective group acting on C , [19, §4.3].

• Dihedral group actions on A2, [20, Corollary 6.5.5].

• Curves, [18, Theorem 1.2].

• Cyclic group quotients, [11, Theorem 4.1], [9].

1.2. Main result

Our main result is an affirmative answer to Conjecture 1.1 when A is an Abelian variety
and G D T Ì H with T a translation subgroup and H a subgroup of group homomor-
phisms.

Theorem 1.2 (Theorem 5.10). LetA be an Abelian variety andG D T ÌH a finite group
of automorphisms ofA such that the quotientA=G is smooth. Then there exists an orbifold
semiorthogonal decomposition for D ŒA=G�.

Remark 1.3. We did not have to add the hypothesis that A�=CG.�/ is smooth for all �.
This is because it is automatically satisfied provided A=G is smooth by the classification
results in [1, 2] which we review in Section 2.

As an application, we get another proof of the orthogonal decomposition of the non-
commutative motive for ŒA=G�, see [22, Theorem 1.24, Theorem 1.27].

Corollary 1.4. Let A be an Abelian variety and G D T ÌH a finite group of automor-
phisms of A such that the coarse moduli space A=G is smooth. Let U be the universal
additive invariant. Then the motive U.ŒA=G�/ decomposes orthogonally,

U.ŒA=G�/ Š
M
�2G=�

U.A�/;

where A� D A�=C.�/.

1.3. Outline of proof

We rely on the recent work in [1, 2] characterizing smooth quotients of Abelian varieties
A by finite groups. In particular, there are only finitely many cases where A=G is smooth
and T0.A/ is an irreducible representation of G (see Section 2.3). With this classification,
we prove Theorem 1.2 by using the known orbifold semiorthogonal decomposition for
products of curves, by applying the results of [13], and by constructing a new decompo-
sition for the stacky surface ŒE � E=G.4; 2; 2/�, where E D C=ZŒi � is the elliptic curve
with automorphism group �4.
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1.4. Outline of paper

Section 2 is a preliminary section. Section 3 is devoted to the construction of an orb-
ifold semiorthogonal decomposition for D ŒA2=G.4; 2; 2/�. This is a local model of the
exceptional case in the classification of smooth quotients of Abelian varieties. The proof
of the global exceptional case is in Section 4. In Section 5, we complete the proof of
Theorem 1.2. Lastly, in Section 6, we explicitly compute orbifold semiorthogonal decom-
positions for Abelian surfaces in the irreducible cases.

1.5. Conventions and notation

We work over C. Unless otherwise stated, all functors are assumed to be derived. For X
a scheme or stack, by D.X/ we mean the bounded derived category of coherent sheaves
on X .

2. Preliminaries

We recall preliminaries on equivariant derived categories, orbifold semiorthogonal decom-
positions, and smooth quotients of Abelian varieties. Throughout, X is a smooth quasi-
projective variety and G is a finite group acting on X . In particular, X D X=G is a
quasi-projective variety. We refer to [5, Section 4] for a review of G-equivariant derived
categories and [10] for a survey of semiorthogonal decompositions in algebraic geometry.

2.1. Equivariant derived categories

For computational purposes it is often convenient to work with the G-equivariant derived
category ofX instead of the derived category of ŒX=G�. These are equivalent: D ŒX=G�Š

DG.X/.
The structure map � WX ! pt is trivially G-equivariant and therefore descends to the

stack quotients: � W ŒX=G� ! BG. Here BG D Œpt=G� is the classifying space of G-
bundles. Any finite-dimensional representation V of G determines a coherent sheaf on
BG and hence an object in D.BG/. For any object F 2 DG.X/ we therefore have an
operation of tensoring by finite-dimensional representations,

F ˝ V WD F ˝ ��.V /:

For any two G-equivariant sheaves on X , say E;F 2 DG.X/, the set of morphisms
is a complex of G-representations

RHom.E;F / 2 D.BG/

and we have
Ext�ŒX=G�.E;F / Š .H

�RHom.E;F //G :
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2.2. Orbifold semiorthogonal decompositions

Definition 2.1. Let T be a triangulated category. A semiorthogonal decomposition of T

is a pair A;B of full triangulated subcategories of T such that

• HomT .b; a/ D 0 for all a 2 A; b 2 B;

• for all t 2 T , there exist at 2 A and bt 2 B such that

bt ! t ! at ! bt Œ1�

is an exact triangle.

In this case, we write T D hA;Bi.

We can iterate Definition 2.1 to get semiorthogonal decompositions with an arbitrary
finite number of subcategories

T D hA1; : : : ;Ari:

As suggested in the introduction, the following definition is motivated by the motivic
decomposition (1).

Definition 2.2. Suppose a finite group G acts effectively on a smooth variety X with
smooth quotients X�i =C.�i /. An orbifold semiorthogonal decomposition of D ŒX=G� is
the data of

• a total order �1; : : : ; �r on the set of conjugacy classes G=�;

• admissible embedding functors

ˆ�i WD.X�i =C.�i // ,! D ŒX=G�

for each �i 2 G=�;

• a semiorthogonal decomposition

D ŒX=G� D hC1; : : : ;Cri;

where Ci is the image of ˆ�i .

Remark 2.3. An orbifold semiorthogonal decomposition respects the orbifold structure
of ŒX=G�: the quotients X�i =C.�i / are precisely the connected components of the inertia
variety of ŒX=G�.

Remark 2.4. In all cases where Conjecture 1.1 has been established, the functorsˆ�i are
linear over D.X=G/. That is, tensoring with pull-backs from X=G preserves the image
of ˆ�i . While linearity does not appear as a condition in the conjecture, it is used to
simplify several base change arguments in [13]. We point out, moreover, that the functors
defining the decompositions of Theorem 1.2 are linear (this follows from the definition of
the Fourier–Mukai kernels in Section 3.2).
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Example 2.5. The simplest example of an orbifold semiorthogonal decomposition is
when�2 acts on a smooth varietyX fixing a smooth divisor Y pointwise. ThenX DX=�2
is smooth. Set �W Y ,! X to be the inclusion, which is �2-equivariant, and � WX ! X

the quotient mapping. Then it is straightforward to check that there is a semiorthogonal
decomposition

D ŒX=�2� D h�
�D.X/; ��D.Y /i:

This semiorthogonal decomposition is D.X/-linear and hence defines an orbifold semi-
orthogonal decomposition.

Since �2 acts trivially on ��D.Y /, we can tensor by irreducible representations to
get different objects. Let �W�2 ! C� be the unique nontrivial representation. Then for
any object ��F 2 ��D.Y /, we can consider the object ��F ˝ �. This is still an object
in D ŒX=�2� but no longer in ��D.Y /. More precisely, the G-equivariant adjunction for-
mula shows the Serre functor comes with an additional tensoring by �. Applying Serre
duality (which in this context coincides with a mutation, see [4]) we have another orbifold
semiorthogonal decomposition

D ŒX=�2� D h��D.Y /˝ �; ��D.X/i:

This example indicates one of the central problems in solving this conjecture. A canon-
ical ordering on embeddings does not exist: one could have fully-faithful embedding
functors but they (or any reordering) are not necessarily semiorthogonal.

2.3. Smooth quotients of Abelian varieties

We recall the main results of [1,2]. LetG be a finite group of automorphisms of an Abelian
variety A such that G D T ÌH with T a group of translations and H a group of group
homomorphisms.

Theorem 2.6 ([2, Theorem 2.7]). SupposeG acts without translations and dim.AG/D0.1

If G acts reducibly on Te.A/, then there exist direct product decompositions A Š A1 �
� � � �Ak and G Š G1 � � � � �Gk where the action is diagonal and Gi acts irreducibly on
Te.Ai /.

By [13, Lemma 2.4.1], it suffices to construct an orbifold semiorthogonal decomposi-
tion for the factors ŒAi=Gi �, so we can assume that G acts irreducibly.

Theorem 2.7 ([2, Theorem 1.1], [1, Theorem 1.1]). Suppose G fixes the identity,
dim.AG/ D 0, G acts irreducibly on Te.A/, and A=G is smooth. If dim.A/ � 3, then
there exists an elliptic curve E such that A Š En and either

1If AG has positive dimension, the theorem does not necessarily hold, but A=G fibers over an Abelian
variety with smooth fibers satisfying Theorem 2.6 [2, Proposition 2.9]. In the notation of Section 5.2, the
base of the fibration is A0=�, and the fibers are isomorphic to PG=G.



B. Lim and F. Rota 776

(A) G Š C n Ì Sn where C ¤ 1 is a finite cyclic group acting on E so that C n acts
diagonally and Sn permutes the factors; or

(B) G Š SnC1 and acts on A D ¹.x1; : : : ; xnC1/ 2 EnC1 j x1 C � � � C xnC1 D eº by
permutations.

If dim.A/ D 2, then both (A) and (B) can happen and there is a third case:

(C) E Š C=ZŒi � and G D G.4; 2; 2/ŠK Ì S2, whereK D ¹.ia; ib/ j aC b �2 0º.

The case dim.A/ D 0 is well known: every pair .A; G/ has P1 as a quotient. We
comment on this class of examples in Section 6.1.

We will refer to the cases of Theorem 2.7 as irreducible quotients of types (A), (B), and
(C). Orbifold semiorthogonal decompositions of type (A) have been constructed in [19].
Types (B) and (C) have not yet been considered. We will construct one for type (C) in
Section 4. We will show they exist for type (B) in Theorem 5.3.

3. Orbifold semiorthogonal decomposition for ŒA2=G.4; 2; 2/�

Before constructing an orbifold semiorthogonal decomposition for type (C), we start by
studying the local case of G.4; 2; 2/ acting naturally on A2.

3.1. Representation theory of G.4; 2; 2/

We will need the representation theory of G.4; 2; 2/. We recall this information now.
The complex reflection group G.4; 2; 2/ is constructed as follows. Fix � D

p
�1 to be a

primitive fourth root of unity, let �24 D h.�; 1/; .1; �/i and K the subgroup given by

K D ¹.�a; �b/ 2 �24 j aC b �2 0º:

The symmetric group S2 D h�i acts on K by

�.�a; �b/ D .�b; �a/

and we set
G WD G.4; 2; 2/ D K Ì S2:

The group �24 acts on X WD A2 via matrix multiplication and S2 acts by permuting
coordinates. This defines an action of G on X , which is an irreducible two-dimensional
representation. We call it the natural action of G and denote it V .

More explicitly, .�1; 1; 1/; .��; �; 1/; .1; 1; �/ are generators for G, and the natural
action is defined by matrix multiplication with

.�1; 1; 1/ 7!

�
�1 0

0 1

�
; .��; �; 1/ 7!

�
� 0

0 �

�
; .1; 1; �/ 7!

�
0 1

1 0

�
: (2)
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Note that V is not self-dual, as �V .�; �; 1/ D 2� is purely complex. We have X D
A2 Š Spec.Sym.V _//. Explicitly, we will write X D Spec.CŒx; y�/ and the action of G
on linear terms is the dual representation

.�a; �b; 1/x D ��ax; .�a; �b; 1/y D ��by; .1; 1; �/.x/ D y: (3)

Remark 3.1. The groupG is also known in the literature as the Pauli group. It is a central
product of C4 andD4, and it is the 13th group of order 16 in the small group database [6].
We gave the definition via complex reflection groups, which seems natural from the point
of view of equivariant geometry. We point out, however, that the natural action is not the
only matrix action of G in this work (see Section 4).

Proposition 3.2. There are ten irreducible representations of G. Eight of the irreducible
representations are one-dimensional and the remaining two are two-dimensional. More-
over, the one-dimensional irreducible representations are 2-torsion.

Proof. The element .�1;�1; 1/ lies in the center ofG and the quotient by it is an elemen-
tary Abelian 2-group of order 8,

G=h.�1;�1; 1/i D �32:

Indeed, define a homomorphism �WG ! �32 by

�.�a; �b; �c/ D .�aCb; �a�b; sgn.�c//:

It is a homomorphism as �a�b D �b�a in this case. The kernel is .�1;�1; 1/ and it is
evidently surjective. It follows that there are eight irreducible one-dimensional represen-
tations. Since the sum of the squares of the dimensions of the irreducible representations
must be jGj D 16 we have

8C dim.V1/2 C � � � C dim.Vk/2 D 16

and thus k D 2 and dim.V1/ D dim.V2/ D 2. These two-dimensional representations are
V and V _.

Let �WG ! �32 to be the surjective homomorphism from the proof of Proposition 3.2
and �iC1W�32 ! C� the projection onto the i th factor character. Then set

�i D �i ı �WG ! C�:

Explicitly,

�2.�
a; �b; �c/ D �aCb;

�3.�
a; �b; �c/ D �a�b;

�4.�
a; �b; �c/ D sgn.�c/:
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The characters �2; �3; and �4 have order 2 and commute with one another. They gen-
erate the character group of G, since they generate a subgroup .�2/3 of the same size.

Note that we have V2
V D �2�4; (4)

since det� D �aCbsgn.�c/, for � the matrix associated to .�a; �b; �c/ via the natural
action (2).

Proposition 3.3. There are isomorphisms of representations

V ˝ V Š �2�4 ˚ �2�3 ˚ �2�3�4 ˚ �2;

V _ Š V ˝ �2�4 Š V ˝ �2�3 Š V ˝ �2�3�4 Š V ˝ �2;

V ˝ V _ Š �3�4 ˚ 1˚ �4 ˚ �3:

Proof. For the isomorphism on the first line we exhibit an explicit decomposition. Pick
the standard basis e1; e2 for V . Then, for example,

.�a; �b;�c/.e1˝ e1C e2˝ e2/D �
2a.e1˝ e1/C �

2b.e2˝ e2/D �
2a.e1˝ e1C e2˝ e2/

because 2a �4 �2a �4 2b by definition of K. Since �2a D �2�3.�a; �b; �c/, we have

�2�3 D Span¹e1 ˝ e1 C e2 ˝ e2º:

Arguing similarly, we obtain

�2�4 D Span¹e1 ˝ e2 � e2 ˝ e1º;

�2�3�4 D Span¹e1 ˝ e1 � e2 ˝ e2º;

�2 D Span¹e1 ˝ e2 C e2 ˝ e1º:

The first isomorphism on the second line is a standard identity (using (4)). For the
others, recall the dual action described in (3). Then, suppose for example that e01; e

0
2 are a

basis of V ˝ �2�3 and check

.�a; �b/e01 D �
�ae01; .�a; �b/e02 D �

�be01; �.e01/ D e
0
2

(again working modulo 4), which shows that .x; y/ 7! .e01; e
0
2/ induces V _ Š V ˝ �2�3.

The other isomorphisms are shown similarly.
The last isomorphism follows from the first two.

The following is straightforward. We include it for labeling purposes.
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Proposition 3.4. The conjugacy classes of G are 2

D1 D ¹Idº; D2 D ¹.1; 1; �/; .�1;�1; �/º;

D3 D ¹.1;�1; 1/; .�1; 1; 1/º; D4 D ¹.�;��; �/; .��; �; �/º;

D5 D ¹.�1;�1; 1/º; D6 D ¹.�; �; 1/º;

D7 D ¹.�; �; �/; .��;��; �/º; D8 D ¹.��;��; 1/º;

D9 D ¹.1;�1; �/; .�1; 1; �/º; D10 D ¹.�;��; 1/; .��; �; 1/º:

The centralizers of each conjugacy class are

C1 D G; C2 D h.�; �; 1/; .1; 1; �/i Š �4 � �2;

C3 D K; C4 D h.�; �; 1/; .�
2; 1; �/i Š �4 � �2;

C5 D G; C6 D G;

C7 D h.�; �; 1/; .1; 1; �/i Š �4 � �2; C8 D G;

C9 D h.�; �; 1/; .1; �
2; �/i Š �4 � �2; C10 D K:

For all i D 1; : : : ; 10, let �i denote a representative of Di . Then, the fixed loci Xi WD X�i

are
X1 D X; X5 D � � � D X10 D ¹0º; (5)

and X2; X3; X4 are lines intersecting at the origin.

3.2. Fourier–Mukai kernels

For i D 1; : : : ; 10, we define Fourier–Mukai kernels by constructing Hi � G-invariant
subschemes Zi of Xi �X as follows. Define

Zi D
[
g2G

g��i

where �i is the graph of the inclusion Xi ,! X , and we give Zi its reduced scheme
structure. ThenZi is anHi �G- invariant subscheme and so OZi can be taken as a kernel
for the Fourier–Mukai functor

ˆi D ˆOZi
ı ��i WD.Xi /! D ŒX=G.4; 2; 2/�;

where �i WXi !Xi is the quotient mapping. Equivalently, letZi be the image ofZi under
the quotient .�i ; Id/WXi �X ! Xi �X , then

ˆi D ˆOZi
:

2Identifying the group G with the Pauli group ¹˙�k ;˙��kºkD0;1;2;3 via the natural action, the reader
will readily recognize the 10 conjugacy classes as ¹Idº, ¹�Idº, ¹�Idº, ¹��Idº and ¹˙�kº, ¹˙��kº for
k D 1; 2; 3.
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We note that ifXi is a point, thenZi is also a point and the correspondingˆi is simply the
push-forward along the inclusion of the origin which is G-invariant. If Xi is a line, then
Zi is the union of two lines in Xi �X Š A3 as the centralizer has index two. If Xi D X ,
then ˆ1 D ��, the pull-back functor from the coarse space.

We proceed to compute the images of points via the functors ˆi , for i D 1; 2; 3; 4. We
begin by fixing some notation.

For p 2Xi DXi=Ci , we define a subsetLp �X as follows: pick a point q 2��1i .p/�

Xi . Regard q as a point of X under the inclusion Xi ,! X and let Lp be the G-orbit of q.
It is straightforward to check that Lp only depends on p. For example, in the case i D 1,
Lp is precisely the orbit represented by p 2 X1 D X=G.

We will write 0 2 Xi for the image of 0 2 Xi for all i D 1; : : : ; 10.

Proposition 3.5. We have one of the following cases:

• p D 0 and q D 0. Then

ˆ1.O0/ D CŒx; y�=.x2y2; x4 C y4/:

• p is a free orbit and q has trivial stabilizer. Then Lp consists of 16 distinct points and

ˆ1.Op/ D OLp :

• p is not a free orbit and q has a �2 stabilizer. In this case, the orbit Lp of p contains
8 points, and ˆ1.Op/ is a sheaf supported on Lp with a nilpotent of order 2 at every
point.

Proof. The functor ˆ1 is the pull-back �� from the coarse moduli space. The maximal
ideal of the origin pulls back to the ideal of G-invariant polynomials .x2y2; x4 C y4/,
and a point p ¤ 0 pulls back to its orbit.

If q has trivial stabilizer, thenLp consists of 16 points, all belonging to the locus where
the quotient map is a local isomorphism.

If q has a �2 stabilizer, then there are 8 points in its orbit, and the pull-back
��.O�.p// is non-reduced of length 2: locally around q the quotient map X ! X is given
by CŒu; v2�! CŒu; v� and p D �.q/ pulls back to CŒu; v�=.u; v2/.

There are no other possibilities for the stabilizer of a point 0 ¤ q 2 X : any such q
either has trivial stabilizer, or belongs to a translate of Xi for some i D 2; 3, or 4. In the
latter case, the stabilizer is �2, generated by one of the elements of Di .

Proposition 3.6. For i D 2; 3; 4 and p D 0 2 Xi , we have

ˆi .O0/ D

8̂̂<̂
:̂

CŒx; y�=.x2y2; x2 � y2/ i D 2;

CŒx; y�=.xy; .x C y/4/ i D 3;

CŒx; y�=.x2y2; x2 C y2/ i D 4:
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For any other point 0¤ p 2Xi , there are four distinct points q1; q2; q3; q4 in the preimage
of p. Then

Lp D ¹q1; q2; q3; q4; 
q1; 
q2; 
q3; 
q4º

where 
 is a nontrivial coset representative of Ci in G. In this case,

ˆi .Op/ Š OLp :

Proof. The second statement (p ¤ 0) follows since the centralizers have order 8 but do
not act faithfully on Xi . Hence, the pull-back of Op under the quotient map Xi ! Xi is

��i .Op/ Š

4M
jD1

Oqj :

Finally, let 
 be a coset representative of the only nontrivial coset. Then, when we equi-
variantize to build Zi , 
 just translates each of the four points qj to 
qj .

The first statement is more involved. We will only do the computation for i D 3 as the
other computations are analogous under a linear change of coordinates. Pick � WD �3 D
.1;�1; 1/. Thus X3 � X Š A1z � A2x;y and �� has equation z D x. We can take � WD
.1; 1; �/ as a nontrivial coset representative for C.�/ D C3 in G. Thus Z� D �� [ ����
with its reduced scheme structure. As modules we have

H 0.OZ�/ Š CŒz; x; y�=.z � x � y; xy/:

Let X3 ! X3 denote the quotient map. Note that C.�/=.�/ D K=.�/ Š �4, and it
acts in the natural way on X3. In particular, if x is the coordinate on X3, then the quotient
map is x 7! x4. It follows that for 0 2 X3 Š A1, we have

��3 .O0/ D O0;4

where O0;4 is a non-reduced zero-dimensional subscheme of length 4 of X3, concentrated
at the origin. In other words, the complex z4WOX3 ! OX3 is a resolution of O0;4 on X3.
Pull back the resolution to X3 �X . Tensoring with OZ� yields

OZ�
z4

�! OZ� :

Since the map z4 is injective, this complex is quasi-isomorphic to

CŒz; x; y�=.z � x � y; xy; z4/;

which pushes forward to CŒx; y�=.xy; .x C y/4/.

Corollary 3.7. Let R denote the regular representation of G. Then

ˆ1.O0/ Š R:
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Moreover, we have the following isomorphisms of representations:

ˆ2.O0/ Š 1˚ V _ ˚ V ˚ �2 ˚ �2�3 ˚ �3;
ˆ3.O0/ Š 1˚ V _ ˚ V ˚ �2�3 ˚ �2�3�4 ˚ �4;
ˆ4.O0/ Š 1˚ V _ ˚ V ˚ �2 ˚ �2�3�4 ˚ �3�4:

Proof. This is straightforward. For example, the 16 monomials spanning ˆ1.O0/ as a
C-vector space can be grouped in representations as follows:

C¹1º Š 1; C¹x; y; x5; x4yº Š .V _/˚2;

C¹x3; x2y; xy2; y3º Š V ˚2; C¹x2; y2º Š �2�3 ˚ �2�3�4;

C¹x3y; xy3º Š �3 ˚ �3�4; C¹xyº Š �2;

C¹x4º Š �4; C¹x5yº Š �2�4:

Proposition 3.8. For each i D 1; : : : ; 10, the Fourier–Mukai functors

ˆi WD.Xi /! D ŒX=G.4; 2; 2/�

are fully-faithful.

Proof. We use the Bondal–Orlov fully-faithfulness criterion3. The functor ˆ1 is the pull-
back from X=G.4; 2; 2/, which is fully-faithful by the projection formula. For the other
cases, we apply the Bondal–Orlov fully-faithfulness criterion. If i D 5; : : : ; 10, ˆi is just
the push-forward along the inclusion ¹0º ,! X , which is fully-faithful since the structure
sheaf of the origin is exceptional

Ext�X .O0;O0/
G
D

�
1Œ0�˚ V Œ�1�˚

V2
V Œ�2�

�G
D 1Œ0�: (6)

The computations for i D 2; 3; 4 are all similar. For notational convenience, we will
compute the case of i D 3. In this case, we have two types of points. If p ¤ 0, then we
look at the orbit of a preimage under the quotient map. By Proposition 3.6, the orbit is a
reduced subscheme of length 8, Lp D

F8
jD1 pj . Moreover, we have

Ext�X .OLp ;OLp /
G
D

� 8M
jD1

Ext�X .Opj ;Opj /
�G
:

Clearly, when � D 0 the G-action permutes the hom-sets and so the 8-dimensional hom-
space has only one copy of the trivial representation. If � D 2, then we have� 8M

jD1

TpjXi ˝NpjXi

�G
and since X3 is codimension 1 it must be that �3 acts nontrivially on the normal bundle.
Thus there are no invariants and we have the necessary vanishing.

3The criterion applies to the current case of a quasi-projective domain and an arbitrary triangulated
target by combining [15] and [12, Theorem 2.7.1].
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For p D 0, recall from Proposition 3.6 that �.ˆ3.O0// Š CŒx; y�=.xy; .x C y/4/.
Hence,

Hom.ˆ3.O0/; ˆ3.O0//G Š C

as any map is determined by the image of 1 and ˆ3.O0/G Š 1. For the vanishing of the
second Ext group we use Serre duality4

Ext2.ˆ3.O0/; ˆ3.O0// Š Hom
�
ˆ3.O0/; ˆ3.O0/˝

V2
V
�_

and by Corollary 3.7

ˆ3.O0/ Š 1˚ V ˚ V _ ˚ �2�3 ˚ �2�3�4 ˚ �4

and so .ˆ3.O0/˝
V2

V /G D 0. This implies the vanishing of the second Ext group and
completes the proof.

3.3. Assembling the orbifold semiorthogonal decomposition

In this section, we construct an orbifold semiorthogonal decomposition of ŒX=G� using
the functorsˆi . We start by observing that the positive-dimensional loci have semiorthog-
onal images.

Lemma 3.9. (1) Let i D 2; 3; 4 and p 2 Xi . We have

Ext�.ˆi .Op/; ˆ1.Op//G D 0:

(2) For i; j D 2; 3; 4, j ¤ i ,

Ext�.ˆi .O0/; ĵ .O0//
G
D 0:

Proof. Recall that ˆ1 D ��, and observe

Ext2��.ˆi .Op/; ��.Op// Š Ext�
�
��.Op/; ˆi .Op/˝

V2

V
�_

Š Ext�
�
Op; ��

�
ˆi .Op/˝

V2

V
��_

D 0;

by Serre duality, and where the last equality follows because ˆi .Op/˝
V2

V has no
invariants (see Corollary 3.7 for p D 0, and Proposition 3.6 for p ¤ 0).

4As illustrated in [5, §4.3], the canonical bundle with itsG-structure gives a Serre functor in the derived
category of compactly supported, G-equivariant sheaves on a quasi-projective variety. On an affine variety,
these are G-equivariant sheaves with finite support. We will always refer to this version of Serre duality in
the rest of the paper.
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The argument is slightly more involved for the second statement. We only illustrate
the case i D 2 and j D 3, the others are analogous. A resolution of ˆ2.O0/ is the Koszul
complex

CŒx; y�˝ �2�3�4

�
y2�x2

x2y2

�
������!

CŒx; y�
˚

CŒx; y�˝ �2�3�4

�.x2y2 x2�y2 /
����������! CŒx; y�

where �2�3�4 is the weight of x2 � y2. Applying Hom.�; ˆ3.O0// yields

ˆ3.O0/

�
0

y2�x2

�
������!

ˆ3.O0/

˚

ˆ3.O0/˝ �2�3�4

�.x2�y2 0 /
��������! ˆ3.O0/˝ �2�3�4: (7)

Recall from Proposition 3.6 that ˆ3.O0/ Š CŒx; y�=.xy; .x C y/4/. The kernel of multi-
plication by y2 � x2 is the submodule

.x2 C y2/ Š C¹x2 C y2; x3; y3; x4º Š �2�3 ˚ V ˚ �4:

The cokernel of multiplication by x2 � y2 is

CŒx; y�=.xy; x2 � y2/˝ �2�3�4 Š �2�3�4 ˚ V ˚ �4:

Observe that the middle cohomology is the sum of the above kernel and cokernel. Then,
none of the cohomologies of (7) have invariant summands.

Next, we focus on the zero-dimensional loci and compare them to the positive-dimen-
sional ones. We start from the following computation.

Lemma 3.10. We have isomorphisms in D.BG/,

RHom.O0; ˆ1.O0// Š �2�4Œ0�˚ .�2�4/˚2Œ�1�˚ �2�4Œ�2�;

RHom.O0; ˆ2.O0// Š �3Œ0�˚ .�3 ˚ �2�4/Œ�1�˚ �2�4Œ�2�;

RHom.O0; ˆ3.O0// Š �4Œ0�˚ .�4 ˚ �2�4/Œ�1�˚ �2�4Œ�2�;

RHom.O0; ˆ4.O0// Š �3�4Œ0�˚ .�3�4 ˚ �2�4/Œ�1�˚ �2�4Œ�2�:

Proof. We again only compute the case of ˆ3. It is computationally simpler to use Serre
duality first,

Ext�ŒX=G�.O0; ˆ3.O0// Š Ext2��ŒX=G�

�
ˆ3.O0/;O0 ˝

V2

V
�_
:

We resolve ˆ3.O0/ (computed in Proposition 3.6) by the Koszul complex noting that xy
has weight �2,

Ext�ŒX=G�
�
ˆ3.O0/;O0 ˝

V2

V
�
Š .H�.O0�2�4 ! O0�2�4 ˚O0�4 ! O0�4/

_/G ;

and hence the statement follows.
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�

� 1 �2 �3 �4 �2�3 �2�4 �3�4 �2�3�4 V V _

1 X X X X X X X
�2 X X X X X X X
�3 X X X X X X X
�4 X X X X X X X

�2�3 X X X X X X X
�2�4 X X X X X X X
�3�4 X X X X X X X

�2�3�4 X X X X X X X
V X X X X
V _ X X X X

Table 1. Vanishing of the groups Ext�
ŒX=G�

.O0 ˝ �;O0 ˝ �/

Finally, we study Hom spaces between zero-dimensional loci.

Lemma 3.11. Let �; � be irreducible representations of G. Then, the position .�; �/ is
marked by a Xin Table 1 if and only if

Ext�ŒX=G�.O0 ˝ �;O0 ˝ �/ D 0:

Proof. Twisting the (6) we obtain

Ext�ŒX=G�.O0 ˝ �;O0 ˝ �/ D
h�

1Œ0�˚ V Œ�1�˚
V2

V Œ�2�
�
˝ .�_ ˝ �/Œ0�

iG
;

and one checks which choices of .�; �/ produce invariant summands, using Proposi-
tion 3.3.

It follows from Lemma 3.10 that O0, O0˝ �2, and O0˝ V
_ are in the left orthogonal

of the images of the positive-dimensional loci. In particular, the sheafM WDCŒx;y�=.x2C
y2; x2 � y2/ is also in the left orthogonal, since as a representation

M Š 1˚ V _ ˚ �2: (8)

Proposition 3.12. The collection

.O0 ˝ �2;M;O0 ˝ �2�3;O0 ˝ �2�3�4;O0 ˝ V;O0/ (9)

is an exceptional collection in D ŒX=G�.

Proof. First, we observe that all objects are exceptional. The exceptionality of the twists
of O0 by the characters is immediate. For the twist by V , it follows from Proposition 3.3.
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We check M now. Its endomorphism algebra is computed by resolving M by a Koszul
complex and computing the cohomology of

M
0
�!M�2�3 ˚M�2�3�4

0
�!M�4

(�2�3 and �2�3�4 are the weights of x2 C y2, x2 � y2 respectively), so by (8) it only
has one invariant summand in degree 0, i.e., M is exceptional.

We now check orthogonalities. All the conditions not involving M follow from Lem-
ma 3.11, and all the ones involving M are similar: we only compute Ext�.M; O0 ˝
�2/

G D 0 as an example. Once again, resolve M with a Koszul complex and consider
the cohomology of

O0�2 ! O0�3 ˚O0�3�4 ! O0�2�4;

which has no invariant summands.

For i D 1; : : : ; 4, let Ci denote the image ofˆi WD.Xi /!D ŒX=G�. For i � 5, define
Ci to be the image of the twisted functors

ˆ05 D ˆ5.�/˝ �2; ˆ08 D ˆ8.�/˝ �2�3�4;

ˆ06 D ˆ6.�/˝M; ˆ09 D ˆ9.�/˝ V;

ˆ07 D ˆ7.�/˝ �2�3; ˆ010 D ˆ10.�/:

Theorem 3.13. There is an orbifold semiorthogonal decomposition

D ŒX=G� D hC1;C2;C3;C4;C5;C6;C7;C8;C9;C10i: (10)

Proof. For all i D 1; : : : ; 10, the component Ci is equivalent to D.Xi /. This is the content
of Proposition 3.8 (the generators of C5; : : : ;C10 are still exceptional objects by Proposi-
tion 3.12).

Proposition 3.12 also shows that C5; : : : ;C10 are semiorthogonal. Moreover, it imme-
diately follows from Lemma 3.10 that Ext�

ŒX=G�
.Cj ;Ci / D 0 for i D 1; 2; 3; 4 and j D

5; : : : ; 10. The first statement of Lemma 3.9 implies Ext�
ŒX=G�

.Ci ;C1/ D 0 for i D 2; 3; 4.
Now let i; j be distinct elements of ¹2; 3; 4º. Then, the Fourier–Mukai kernels Zi and
Zj only intersect at the origin, therefore the second statement of Lemma 3.9 implies the
vanishing Ext�

ŒX=G�
.Ci ;Cj / D 0.

It remains to show that the subcategory T WD hC1; : : : ;C10i coincides with D ŒX=G�.
A special case of the spanning classes of [14, Proposition 2.1] is given by

� WD
®
Op ˝ � j p 2 X; � 2 Irrep.Gp/

¯
(here Gp denotes the stabilizer of p in G). Then, it suffices to show that T contains �.
Indeed, if � � T , every object E 2 T ? satisfies Hom.!; E/ D 0 for all ! 2 �, which
implies E D 0 by definition of a spanning class, and therefore T ? D ¹0º.
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Recall from the proof of Proposition 3.5 thatGp can only beG (if pD 0),�2 (if p 2Xi
for some i D 2; 3; 4) or trivial. If p D 0, then Gp Š G, and we recover all irreducible
representations as follows: from the exceptional collection (9) we get

�2; �2�3; �2�3�4; V; 1; and V _

(the last one from the composition series ofM , whose factors are .�2; V _; 1/). With these,
and using Corollary 3.7, we obtain �3; �4; �3�4, and �2�4.

Suppose p ¤ 0 has a �2 stabilizer. On the one hand, the pull-back along Xi ! Xi
contains Op as a direct summand as in the proof of Proposition 3.6. On the other hand, the
pull-back ��.O�.p// is non-reduced of length 2 at every point of its support by the proof
of Proposition 3.5. Then, the nontrivial irreducible representation is obtained as the kernel
of the map

��.O�.p//! Op:

If Gp D 0, then ˆ1.O�.p// contains Op as a direct summand (by Proposition 3.5),
hence Op 2 T .

4. Orbifold semiorthogonal decomposition for type (C)

4.1. Setup

The construction of the orbifold semiorthogonal decomposition for type (C) (see Theo-
rem 2.7) will heavily rely on the local analysis carried out in Section 3. We recall here the
construction of type (C) quotients, following [1]. Let ƒ D ZŒ�� be the Gaussian lattice
and E Š C=ƒ the corresponding elliptic curve with �4 automorphism group. The natural
action (2) of G WD G.4; 2; 2/ on A2 ' C2 preserves the lattice ƒ˚2 and descends to an
action on B WD E2. However, this is not the correct action to consider, since the quotient
B=G is not smooth5. One can instead define another action of G on E2 as follows. Con-
sider another copy of the Abelian surface A WD E2 and an isogeny � WB ! A defined by
the matrix

� D

�
1 �1

0 � � 1

�
:

Let t0 denote the only nontrivial �-invariant element of E, then the kernel of � is

� WD ker.�/ D h.t0; t0/i;

5Consider the point .e; t0/ 2 B , where e 2 E is the origin and t0 2 E is the only nontrivial �-invariant
point. Let G act through the natural action on the universal cover (2). A direct computation shows that
the stabilizer of .e; t0/ is the subgroup K < G (since the coordinates cannot be permuted). K is generated
by .�; �; 1/; .�1; 1; 1/. One checks directly that the only elements of K acting by pseudoreflections are
.�1; 1; 1/ and .1;�1; 1/. In particular, .�; �; 1/ is not generated by pseudoreflections in K (see [2, Proposi-
tion 3.4]).
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and we have B=� Š A. Moreover, G acts trivially on �, so we have an action of � �G
on B . This action descends to an action of G on A and induces a natural isomorphism
B=� � G Š A=G. Explicitly, every element g of G acts on A via the matrix ����1

where � is the matrix expression of g acting on A2 via (2). In particular, the generators
.�1; 1; 1/; .��; �; 1/; .1; 1; �/ act on A, respectively, via the matrices

˛ D

�
�1 1C �

0 1

�
; ˇ D

�
�� � � 1

0 �

�
; 
 D

�
�1 0

� � 1 1

�
: (11)

4.2. Fixed loci and stabilizers

We use the numbering of Proposition 3.4 for the conjugacy classes and the centralizers
of G, and we list representatives of conjugacy classes and fixed loci. By EŒn� we denote
the set ¹x 2 E j nx D 0º of n-torsion points. The conjugacy classes are listed in Propo-
sition 3.4. For convenience, we recall them here and write every element in terms of the
matrices (11),

D1 D ¹Idº; D2 D ¹
;�
º;

D3 D ¹˛;�˛º; D4 D ¹ˇ
;�ˇ
º;

D5 D ¹ˇ
2
º; D6 D ¹˛ˇº;

D7 D ¹˛ˇ
;�˛ˇ
º; D8 D ¹�˛ˇº;

D9 D ¹˛
;�˛
º; D10 D ¹ˇ;�ˇº:

We compute the corresponding fixed loci (we pick the first element listed in every
conjugacy class as its representative). For example,

A3 D A
˛
D ¹.x; y/ 2 A j .x; y/ D ˛.x; y/ D .�x C .1C �/y; y/º

D ¹.x; y/ 2 A j 2x D .1C �/yº

D

°
.x; y/ 2 A j x D

1

2
.1C �/y CEŒ2�

±
' EŒ2� �E:

Similarly,
A1 D A;

A2 D ¹.x; y/ 2 A j x D �xº Š ¹e; t0º �E;

A3 D ¹.x; y/ 2 A j 2x D .1C �/yº Š EŒ2� �E;

A4 D ¹.x; y/ 2 A j x D �yº Š E;

A5 D EŒ2�
2;

A6 D � � � D A10 D ¹e; t0º
2;

where ¹e; t0º2 is a shorthand for ¹.e; e/; .e; t0/; .t0; e/; .t0; t0/º. We point out that the only
points of A with nontrivial stabilizers are the ones given in Table 2.
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Points Stabilizer

¹e; t0º
2 G

EŒ2�2 n ¹e; t0º
2 �2 � �2

.A2 [ A3 [ A4/ nEŒ2�2 �2

Table 2. Points of A with nontrivial stabilizers

Finally, we compute the quotients Ai . Observe that the group G acts on EŒ2�2 with
seven orbits. Four orbits are given by elements of ¹e; t0º2, which are fixed by G. The
remaining three orbits (let a WD 1

2
and b WD �

2
) are the sets

¹e; t0º � ¹a; bº; ¹a; bº � ¹e; t0º; ¹a; bº
2:

This shows immediately that A5 D EŒ2�2=G consists of the seven orbits above, and
that the quotients

A6 D � � � D A10 D ¹e; t0º
2:

We have A1 D P2 by [1, Theorem 1.1]. It is left to compute the quotients of the one-
dimensional loci. The computations are similar for i D 2; 3; 4. For example, we have

A3 D ¹.x; y/ 2 A j x D t0y CEŒ2�º=h˛; ˇi;

and one sees that, for any t 2 EŒ2�, we have

ˇ

�
t0y C t

y

�
D

�
t0.�y/ � �t

�y

�
:

In other words, ˇ acts by identifying two copies of E (and by negation on each of them)
and by the order 4 automorphism on the other two copies,

A3 ' P1 t P1 t P1:

Similarly, one sees A2 D P1 t P1 and A4 D P1.

4.3. The orbifold semiorthogonal decomposition

We construct Fourier–Mukai functors as in Section 3.2, by taking the structure sheaves
of (equivariantized) graphs of the inclusions of the fixed loci in Ai � A. We denote by
ˆi WD.Ai /!D ŒA=G� the corresponding Fourier–Mukai functors. The fixed lociAi with
i � 6 only contain points that are fixed by G. Locally at each of these points, the action
of G coincides with that described in Section 3, so we can modify the ˆi by twisting

ˆ06 D ˆ6.�/˝M; ˆ09 D ˆ9.�/˝ V;

ˆ07 D ˆ7.�/˝ �2�3; ˆ010 D ˆ10.�/;

ˆ08 D ˆ8.�/˝ �2�3�4;
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where M is the torsion sheaf supported at ¹e; t0º2 whose fiber at every point is locally
isomorphic to the module CŒx; y�=.x2 C y2; x2 � y2/ (see Section 3.3).

We then modify ˆ5 by only twisting by a character on points with stabilizer G, and
defining for X 2 D.A5/

ˆ05.X/ WD

´
ˆ5.X/˝ �2 if Supp.X/ � ¹e; t0º2;

ˆ5.X/ if Supp.X/ � A5 n ¹e; t0º2

and extending additively to D.A5/. Then we have the following theorem.

Theorem 4.1. In the case of a smooth quotient A=G of type (C), the functorsˆ1; : : : ;ˆ4,
ˆ05; : : : ; ˆ

0
10 give rise to an orbifold semiorthogonal decomposition

D ŒA=G� D hD.A1/; : : : ;D.A10/i: (12)

Proof. Everything can be checked locally around each point p 2 A, so it suffices to per-
form a local computation based on stabilizer types: G, �2 � �2, �2.

For example, suppose p 2 A satisfies StabG.p/ D G and x 2 Ai is such that ˆi .Ox/
is supported at p. Pick a G-invariant affine open subset Spec.R/ containing p and let m

be the corresponding maximal ideal. Then

Ext�ŒA=G�.ˆi .Ox/; ˆi .Ox// Š Ext�R.ˆi .Ox/; ˆi .Ox//
G :

Since ˆi .Ox/ are of finite type and supported at m, we can pass to the completion

Ext�R.ˆi .Ox/; ˆi .Ox//
G
Š Ext�

yR
.ˆi .Ox/; ˆi .Ox//

G :

But yR Š CŒŒa; b�� since A is smooth. Since we have the usual identification

C¹a; bº Š m=m2
Š TpA;

it follows that C¹a; bº is an irreducible representation of G and hence isomorphic to V
or V _. Hence, if the stabilizer is isomorphic to G itself the decomposition (12) coincides
locally with the one in (10), and the statement follows from Theorem 3.13.

Suppose now that p has a �2 � �2 stabilizer: the local model around p is A2 where
each copy of �2 acts by negating a coordinate, and it has an orbifold semiorthogonal
decomposition

D ŒA2=�2 � �2� D hD.A2/;D.A1/;D.A1/;D.pt/i: (13)

When restricted to some neighborhood of p, the categories in (12) yield the semi-
orthogonal decomposition (13). For example, let p D .e; a/. We have

p 2 A1 \ A2 \ ˛�A
2
\ A5:
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Then we have local isomorphisms

ˆ1.Op/ ' CŒu; v�=.u2; v2/;

ˆ2.Op/ ' CŒu; v�=.u2; uv; v2/;

ˆ5.Op/ ' CŒu; v�=.u; v/;

which satisfy the correct orthogonalities by (13) and generate D ŒA=G� at p.
The case of stabilizer of type �2 is similar.

Corollary 4.2. The category D ŒA=G� admits a full exceptional collection of length 42.

Proof. In fact, each of the pieces D.Ai / appearing in (12) admits a full exceptional col-
lection: the Ai are computed in Section 4.2 and are unions of projective spaces and points.
In particular, the two-dimensional quotient contributes 3 exceptional objects, the one-
dimensional quotients (6 copies of the projective line) contribute 12 exceptional objects,
and there are 7C 5 � 4 irreducible components in the zero-dimensional quotients.

5. Orbifold semiorthogonal decompositions for DŒA=G�

In this Section, we prove Theorem 1.2. We will break the proof up into three parts. In
Section 5.1, we prove the case of zero-dimensional fixed loci where G acts by group
automorphisms. In Section 5.2, we prove the case of positive-dimensional fixed loci where
G acts by group automorphisms. In Section 5.3, we use the results of Section 5.1 and
Section 5.2 to prove the case of arbitrary G D T Ì H , with T a normal subgroup of
translations and H the subgroup of group automorphisms.

5.1. Zero-dimensional fixed loci

Suppose G acts on A by group automorphisms. We assume G acts irreducibly on Te.A/
and that dim.AG/ D 0. We will need the following result from [13]. We recall it here and
show how it applies to the current case.

Theorem 5.1 ([13, Theorem 1.2.1]). Suppose G is a finite group acting effectively on a
smooth quasi-projective variety X , and that D ŒX=G� admits an orbifold semiorthogonal
decomposition. Let H � X be a smooth G-invariant divisor. If H satisfies the generality
assumption (�) below, then D ŒH=G� also admits an orbifold semiorthogonal decomposi-
tion.

For each conjugacy class � let W� be the quotient of C.�/ acting effectively on X�
and write X fr

�
for the locus where the action is free. Then the assumption is

for every �, H does not contain X� and H \X fr
� is dense in H \X�: (�)
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Recall quotients of type (B) from Theorem 2.7: the groupG' SnC1 acts by permuting
the variables on the product X D EnC1 of an elliptic curve E with itself, and A � X is
the smooth SnC1-invariant divisor defined by x1 C � � � C xnC1 D 0.

Lemma 5.2. If A is as in type (B) of Theorem 2.7, then D ŒA=SnC1� admits an orbifold
semiorthogonal decomposition.

Proof. We check that Theorem 5.1 applies. First of all, D ŒX=SnC1� admits an orbifold
semiorthogonal decomposition by [19, Theorem B]. Next, we check condition (�).

Write � D .1r1/.2r2/ � � � .krk /. Then we can identify

W� D C.�/=h�i Š Sr1 � Sr2 � � � � � Srk ;

and
X� Š E

r1 �Er2 � � � � �Erk :

Thus, A \X� is identified with the set of points e 2 X such that

e1 C � � � C er1 C 2er1C1 C � � � C 2er1Cr2 C � � � C ker1C���Crk�1C1 C � � � C ker1C���Crk

D 0: (14)

On the other hand, A \X fr
�

is the subset of A \X� lying in the complement of the
diagonals in the factors of X�. More explicitly, e 2 A \X fr

�
if8̂̂̂̂

<̂
ˆ̂̂:

all of the e1; : : : ; er1 are distinct, and

all of the er1C1; : : : ; er1Cr2 are distinct, and

: : :

all of the er1C���Crk�1C1; : : : ; er1C���Crk are distinct.

This is clearly open in A\X�, and any non-free point of A\X� can be deformed to one
of A \ X fr

�
while satisfying equation (14). In other words, A \ X fr

�
is dense in A \ X�.

We conclude that D ŒA=SnC1� admits an orbifold semiorthogonal decomposition.

We can now prove the following theorem.

Theorem 5.3. Suppose G is a finite group of automorphisms of an Abelian variety A that
fixes the identity. Assume that G acts irreducibly on Te.A/ and that dim.AG/ D 0. Then
D ŒA=G� has an orbifold semiorthogonal decomposition.

Proof. Under the assumptions, the classification of Theorem 2.7 holds, so we need to
cover three cases.

The case G Š .�k/
n Ì Sn with k ¤ 1 is covered in [19, Section 4.3]. Type (B) is

covered in Lemma 5.2. Lastly, if A is a surface of type (C), this is Theorem 4.1.
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5.2. Positive-dimensional fixed loci

Suppose now that dim.AG/ > 0. We will reduce this case to the setting of Section 5.1.
Intuitively, we would like to decompose A as a product of Abelian varieties PG � A0,
where A0 � AG is the connected component containing the identity and G acts on PG
with dim.PG/G D 0. Then, we could apply Theorem 5.3 to ŒPG=G� and combine it with
the trivial action of G on A0 to prove the theorem for A.

This is subtle in general, since A is only isogenous to such a product. More precisely,
there is an isogeny

PG � A0 ! A

with kernel6 � D PG \ A0. Moreover, � acts freely on A0 and there is an isomorphism

PG � A0=� Š A:

Set zAD PG �A0 for convenience. Composing the above isomorphism with push-forward
along Œ zA=��! zA=� Š A induces an equivalence

D. zA/� Š D.A/:

Moreover, since � � AG , we see that � and G commute with each other inside
Aut.PG � A0/. So we can consider Œ zA=G � �� and the corresponding derived equiva-
lence

D Œ zA=G�� Š D Œ zA=G ��� Š D ŒA=G�:

(Note, � acts diagonally, on both PG and A0).
Our goal is then to obtain an orbifold semiorthogonal decomposition for Œ zA=G� and to

modify it suitably to make it �-equivariant and descend it to ŒA=G�.
Observe that the quotient stack Œ zA=G� possesses an orbifold semiorthogonal decom-

position. In fact, we may write

zA=G D .PG � A0/=G D .PG=G/ � A0

since G acts trivially on A0. By construction, dim.PG/G D 0, so ŒPG=G� admits an
orbifold semiorthogonal decomposition by Theorem 5.3. Then so does Œ zA=G� using [13,
Lemma 2.4.1].

Consider the functors defining the decomposition

ˆ�WD.P �G=CG.�/ � A0/ ,! D Œ zA=G�:

The functor ˆ� corresponds to a G-equivariant kernel K� on zA� � zA, where G acts on
the right.

6Here, PG is taken to be a complementary Abelian subvariety of A0. We refer the reader to [3, Sec-
tion 5.3] for generalities on complementary Abelian varieties, and to [2, §2.3] for a construction similar to
the one at hand. The notation PG is reminiscent of the fact that if A is the Jacobian of a curve X andG acts
on X , then PG is the Prym variety of the morphism X ! X=G.
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Define the subscheme of .P �G � A0/ � zA,

Z�� D
[

.g;ı/2G��

.g; ı/��;

with its reduced scheme structure, where � is the graph of the inclusion. Equivalently, if
Z� is the Fourier–Mukai kernel defining ˆ�, then

Z�� D
[
ı2�

ı�Z�:

Lemma 5.4. For each distinct ı; � 2 � the subschemes ı�Z� and ��Z� do not intersect.

Proof. It suffices to prove the claim when � is the identity. Suppose .x; g.x// D

.x; ı.h.x/// for some g; h 2 G. Since the action of G commutes with � we have x D
ı.g�1h.x//. But � acts freely on the quotient space zA=G as it acts freely on A0, a con-
tradiction.

Theorem 5.5. For each �2G=�, the functorsˆ� are fully-faithful and there exists a total
order on G=� such that the ˆ� give rise to an orbifold semiorthogonal decomposition of
D ŒA=G�.

Proof. We show that the functors defining orbifold semiorthogonal decompositions for
D Œ zA=G� descend to a semiorthogonal decomposition of�-equivariant derived categories
by showing that they are invariant under the action of �. To that end, notice that there are
isomorphisms

zA�=CG.�/ �� Š A=CG.�/

which give derived equivalences

D. zA�=CG.�//
�
Š D.A=CG.�//

and
D Œ zA=G�� Š D ŒA=G�:

Since A=G is smooth, so is PG=G. If G does not act irreducibly on Te.PG/, then
as before the orbifold decompositions will decompose as well. So we can assume that
ŒPG=G� is of type (A), (B), or (C).

In each of the irreducible cases, the kernels defining Fourier–Mukai functors are sup-
ported on

Z� D
[
g2G

g���

with its reduced structure. By Lemma 5.4, the corresponding �-equivariantized Fourier–
Mukai kernels do not intersect. It follows from this that the Fourier–Mukai functors

ˆ�� D ˆO
Z�
�

WD.P �G � A0=.C.�/ ��//! D Œ zA=� �G�
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remain fully-faithful, semiorthogonal, and generate the D ŒA=G�. Finally, we have the
identification

P �G � A0=.C.�/ ��/ Š A
�=C.�/

which completes the argument.

5.3. Translations

Suppose now that G does not fix the origin. That is, G possesses a normal subgroup of
translations. Let T � G be the subgroup generated by translations and H be the sub-
group that fixes the origin. Notice that T acts freely and G admits a semi-direct product
decomposition

G D T ÌH:

Let AT D A=T , which is again an Abelian variety. The action of H on A descends to an
action on AT given by h.a/D h.a/, where a is any preimage of a under the quotient map
� WA! AT . This is well defined as T is a normal subgroup. Our goal will be to construct
an orbifold semiorthogonal decomposition of D ŒA=G� by using the one we know exists
for D ŒAT =H�.

In fact, we can prove a more general statement. Suppose a finite groupGDK ÌH acts
effectively on a smooth quasi-projective varietyX withK acting freely so thatXK DX=K
is also a smooth quasi-projective variety. Then H acts on XK .

Lemma 5.6. Pick conjugacy class representatives .k1; h/; : : : ; .kr ; h/ so that .k; h/ is
conjugate to one of .ki ; h/. Then there is an isomorphism of varieties

ra
iD1

X .ki ;h/=CG..ki ; h//
f
�! XhK=CH .h/:

Proof. First, we define f : for x 2 X .ki ;h/, we have

.ki ; h/x D x;

.k�1i ; 1/.ki ; h/x D .k
�1
i ; 1/x;

.1; h/x D .k�1i ; 1/x:

Writing the equality modulo K, we have h.x/ D x. This defines a map f 0WX .ki ;h/ !
XhK ! XhK=CH .h/ for each ki . To factor this map through X .ki ;h/=CG..ki ; h// and
obtain f , it suffices to show that if .k; h0/ 2 CG..ki ; h// then h0 2 CH .h/, but this is
straightforward.

It follows from Zariski’s main theorem [8, Théorème 4.4.3] that a bijective morphism
between connected, normal, complex varieties is an isomorphism. Then it suffices to show
that f maps each connected component of the domain bijectively onto its image.

For surjectivity, we take x 2 XhK and show that there exist k 2 K; h 2 H and x 2 X
so that .k; h/.x/ D x and x is conjugate to the image of x under the quotient X ! XK .
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Pick any lift x of x. Since h.x/ D x, h.x/ is in the same orbit as x under the action of K.
That is, there exists k 2 K so that k.h.x// D x. There exists .k0; h0/ so that conjugating
.k; h/ by .k0; h0/ is one of the .ki ; h/ classes. It follows that x is conjugate to the image of
ki .h.x// under the action of H . This proves surjectivity.

Since the action of K is free if k ¤ k0, X .k;h/ \ X .k
0;h/ D ;. Indeed, any x in the

intersection would force k�1k0h.x/ D h.x/ and hence k�1k0 stabilizes a point. But only
the identity stabilizes a point. Hence, we have X .ki ;h/ \X .kj ;h/ D ; for i ¤ j .

Now, if xi 2 X .ki ;h/ and xj 2 X .kj ;h/, then the images of xi and xj are not identified
by an element in the centralizer of CH .h/. Indeed, suppose they were, i.e., that there exists
h0 2 H with h0h D h0h and h0.xi / D xj . Then h0.xi / 2 X .kj ;h/. So

xi D .1; h
0/�1.kj ; h/.h

0.xi // D .k
h0

j ; h/.xi /:

Hence, .kj ; h/ is conjugate to .ki ; h/ but this cannot happen if i ¤ j . It follows that
disjoint components have disjoint images.

Now, if x; y 2 X .ki ;h/ are such that x D y, then, since K acts freely, there exists a
unique k 2 K such that k.x/ D y. We need to see that .k; 1/ centralizes .ki ; h/. Conjuga-
tion of .ki ; h/ by .k; 1/ fixes x:

.ki ; h/
.k;1/.x/ D .k; 1/�1.ki ; h/.k; 1/.x/ D .k; 1/

�1.hi ; k/.y/ D .k; 1/
�1.y/ D x:

We conclude that the fixed locus of .ki ; h/.k;1/ and .ki ; h/ intersect. But this only happens
if .ki ; h/.k;1/ D .ki ; h/ and hence .k; 1/ centralizes .ki ; h/.

The following is immediate.

Corollary 5.7. Let .k1; h/; : : : ; .kr ; h/ be as in Lemma 5.6. Then

D.XhK=CH .h// Š

rM
iD1

D.X .ki ;h/=CG.ki ; h//:

Lemma 5.8. There is an equivalence of categories,

coh.X/G Š coh.XK/
H ;

induced by the quotient map � WX ! XK . This functor can also be described by tak-
ing T -invariants. In particular, this equivalence of Abelian categories induces a derived
equivalence

D ŒX=G� Š D ŒXK=H�:

Proof. This is straightforward. If F is a sheaf on X , then a G-equivariant structure is the
data of a K-equivariant structure with a compatible H -equivariant structure. The data of
a K-equivariant structure is the data of a pull-back of a sheaf F on XK . The data of a
compatible H -equivariant structure is the data of an H -equivariant structure on F . The
details are left to the reader.
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Theorem 5.9. Suppose G D K ÌH acts on a smooth quasi-projective variety X so that
K acts freely. Consider the induced action ofH on the quotient XK D X=H and suppose
D ŒXK=H� admits an orbifold semiorthogonal decomposition of the form

D ŒXK=H� D hD.X
h1
K /; : : : ;D.X

ht
K /i:

Then D ŒX=G� admits an orbifold semiorthogonal decomposition.

Proof. The equivalence of Lemma 5.8 gives a derived equivalence

D ŒX=G� Š D ŒXK=H�:

The orbifold semiorthogonal decomposition of D ŒXK=H� directly induces one of
D ŒX=G�. The pieces D.Xh=CH .h// of the orbifold semiorthogonal decomposition of
D ŒXK=H� decompose into D.X .ki ;h/=CG.ki ; h//. Since these are pairwise completely
orthogonal, any total order suffices. Thus we get a semiorthogonal decomposition

D ŒX=G� D
D r1M
iD1

D.X .ki ;h1/=CG..ki ; h1///; : : : ;

rtM
iD1

D.X .ki ;ht /=CG..ki ; ht ///
E
:

Finally, D.X=G/-linearity follows from D.XK=H/-linearity using the canonical isomor-
phism X=G Š XK=H .

Combining Theorem 5.9 with our earlier work gives orbifold semiorthogonal decom-
positions for all Abelian varieties with smooth quotients.

Theorem 5.10. LetG D T ÌH be a finite group of automorphisms of an Abelian variety
A such that A=G is smooth. Then there exists an orbifold semiorthogonal decomposition
for D ŒA=G�.

6. Examples

6.1. Curves

The one-dimensional case, while it is not covered in this paper, is well studied in the lit-
erature. Quotients of an elliptic curve E by a finite group of group automorphisms are
weighted projective lines in the sense of Geigle and Lenzing [7]. The group G is �k for
k D 2; 3; 4, or 6 (hence, they all fall under the analog of type (A) of Theorem 2.7). All
quotients have P1 as a coarse space. There are 4 �2 stabilizers for the generic case k D 2
and 3 stabilizers for the other cases, of orders .3; 3; 3/, .4; 4; 2/, and .6; 3; 2/ respectively.
The categories cohŒE=G� are derived equivalently to the module categories over a canon-
ical algebra in the sense of Ringel [21]. The exceptional collections constructed in [16] on
D ŒE=G� give rise to orbifold semiorthogonal decompositions.
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6.2. Surfaces

In this section, we explicitly compute the orbifold semiorthogonal decompositions con-
structed here and in [19], when A is a surface and the action of G fixes e and acts
irreducibly on Te.A/. Such an action is one of the three types of Theorem 2.7. We have
already written out type (C) in Section 4. We begin with type (A).

Example 6.1. LetAŠE2 andG D�2
k

Ì S2 for kD 1;2;3;4;6. The generic case, kD 1,
has quotient Sym2.E/ and the nontrivial element fixes the diagonal. By [11, Theorem 4.1]
we have

D ŒA=G� D hD.Sym2.E//;D.E/i: (15)

The Abel map Sym2.E/! J.E/ ' E is a P1-bundle, hence the decomposition (15)
can be refined into one with three indecomposable components equivalent to D.E/ [17].

In all other cases, ŒA=G� admits a full exceptional collection. The coarse quotient is
Sym2.P1/ ' P2.

If k D 2, there are 5 conjugacy classes, whose fixed loci and centralizers are as given
in Table 3.

Representative g Ag C.g/ Ag

.1; 1; 1/ A G P2

.�1;�1; 1/ EŒ2� �EŒ2� G EŒ2�

.�1; 1; 1/ EŒ2� �E h.�1; 1; 1/; .�1;�1; 1/i EŒ2� � P1

.1; 1; �/ E h.1; 1; �/; .�1;�1; 1/i P1

.1;�1; �/ EŒ2� h.1;�1; �/i EŒ2�

Table 3. Conjugacy classes, fixed loci, and centralizers for k D 2

Thus we have

D ŒA=G� D hD.P2/;D.P1/; : : : ;D.P1/„ ƒ‚ …
5 copies

;D.pt/; : : : ;D.pt/„ ƒ‚ …
8 copies

i:

With a similar computation, we find the orbifold semiorthogonal decomposition in
the other cases. For k D 3 there are 9 conjugacy classes. The corresponding orbifold
semiorthogonal decomposition has one two-dimensional component, 3 one-dimensional
components, and 5 zero-dimensional components,

D ŒA=G� D hD.P2/;D.P1/; : : : ;D.P1/„ ƒ‚ …
7 copies

;D.pt/; : : : ;D.pt/„ ƒ‚ …
21 copies

i:
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For k D 4 there are 14 conjugacy classes. The corresponding orbifold semiorthogonal
decomposition has one two-dimensional component, 4 one-dimensional components, and
9 zero-dimensional components,

D ŒA=G� D hD.P2/;D.P1/; : : : ;D.P1/„ ƒ‚ …
6 copies

;D.pt/; : : : ;D.pt/„ ƒ‚ …
33 copies

i:

For k D 6 there are 27 conjugacy classes. The corresponding orbifold semiorthogonal
decomposition has one two-dimensional component, 6 one-dimensional components, and
20 zero-dimensional components,

D ŒA=G� D hD.P2/;D.P1/; : : : ;D.P1/„ ƒ‚ …
7 copies

;D.pt/; : : : ;D.pt/„ ƒ‚ …
26 copies

i:

For type (B) we have the following.

Example 6.2. Let E be an elliptic curve, and let A be the Abelian surface defined by
x1 C x2 C x3 D 0 in E3. Identify A with E2 by eliminating the variable x3. Then, S3
acts on E2 by permuting variables, and we consider ŒE2=S3�. The quotient is P2 by the
classification [1, Theorem 1.1]. The group S3 acts on Te.E2/ by

.1; 2/ D

�
0 1

1 0

�
; .1; 2; 3/ D

�
0 �1

1 �1

�
:

The conjugacy class corresponding to .1; 2/ fixes the diagonal � � E � E Š A. The
conjugacy class corresponding to .1; 2; 3/ fixes the anti-diagonal copy of the three-torsion
subgroupEŒ3�. The centralizer of .1; 2/ is h.1; 2/i, and similarly C..1; 2; 3//D h.1; 2; 3/i.
Then, the centralizers act trivially on the fixed loci. By Theorem 5.3, there is an orbifold
semiorthogonal decomposition of the form

D ŒE2=S3� D hD.P2/;D.E/;D.EŒ3�/i:
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