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A cocyclic construction of S 1-equivariant homology and
application to string topology

Yi Wang

Abstract. Given a space with a circle action, we study certain cocyclic chain complexes and prove
a theorem relating cyclic homology to S1-equivariant homology, in the spirit of celebrated work of
Jones. As an application, we describe a chain level refinement of the gravity algebra structure on the
(negative) S1-equivariant homology of the free loop space of a closed oriented smooth manifold,
based on work of Irie on chain level string topology and work of Ward on an S1-equivariant version
of operadic Deligne’s conjecture.

1. Introduction

LetM be a closed oriented smooth manifold and LM D C1.S1;M/ be the smooth free
loop space of M . In a seminal paper [3] (and a sequel [4]), Chas–Sullivan discovered
rich algebraic structures on the ordinary homology and S1-equivariant homology of LM ,
initiating the study of string topology. In particular, there is a Batalin–Vilkovisky (BV)
algebra structure on (shifted) H�.LM/ ([3, Theorem 5.4]), which naturally induces a
gravity algebra structure on (shifted) HS1

� .LM/ ([3, Section 6], [4, page 18]).
The goal of this paper is to describe a chain level refinement of the string topology

gravity algebra, and compare it with an algebraic counterpart related to the de Rham dg
algebra�.M/. Along the way we also obtain results on the relation between cyclic homol-
ogy and S1-equivariant homology, and an S1-equivariant version of Deligne’s conjecture.

In spirit, this paper may be compared with work of Westerland [33]. Westerland
gave a homotopy theoretic generalization of the gravity operations on the (negative) S1-
equivariant homology of LM , whereas we describe a chain level refinement.

Cyclic homology and S 1-equivariant homology. The close connection between cy-
clic homology (algebra) and S1-equivariant homology (topology) was first systematically
studied by Jones in [21]. One of the main theorems in that paper ([21, Theorem 3.3]) says
that the singular chains ¹Sk.X/ºk�0 of an S1-space X can be made into a cyclic module,
such that there are natural isomorphisms between three versions of cyclic homology (pos-
itive, periodic, negative) of ¹Sk.X/ºk�0 and three versions of S1-equivariant homology
of X , in a way compatible with long exact sequences.
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The first result in this paper is a theorem “cyclic dual” to Jones’ theorem. As far as the
author knows, such a result did not appear in the literature.

Theorem 1.1 (See Theorem 3.1). Let X be a topological space with an S1-action. Then
¹S�.X � �

k/ºk�0 can be made into a cocyclic chain complex, such that there are nat-
ural isomorphisms between three versions of cyclic homology of ¹S�.X � �k/ºk�0 and
three versions of S1-equivariant homology of X , in a way compatible with long exact
sequences.

Jones dealt with the cyclic set ¹Map.�k ; X/ºk and the cyclic module ¹Sk.X/ºk , while
we deal with the cocyclic space ¹X ��kºk and the cocyclic complex ¹S�.X ��k/ºk . It
is in this sense that these two theorems are “cyclic dual” to each other. In the special case
that X is the free loop space of a topological space Y , Theorem 1.1 may also be viewed
as “cyclic dual” to a result of Goodwillie ([18, Lemma V.1.4]). As does Jones’ theorem,
Theorem 1.1 has the advantage that it works for all S1-spaces.

The cyclic structure on singular chains plays no role in Theorem 1.1; what matters
is the cocyclic space. Indeed, the main motivation for the author to seek for a result like
Theorem 1.1 is to study the S1-equivariant homology of LM , using a novel chain model
of loop space homology defined via certain “de Rham chains”, introduced by Irie [20].

Deligne’s conjecture. What is called Deligne’s conjecture asks whether there is an action
of a certain chain model of the little disks operad on the Hochschild cochain complex of
an associative algebra, inducing the Gerstenhaber algebra structure on Hochschild coho-
mology discovered by Gerstenhaber [12]. This conjecture, as well as some variations and
generalizations, has been answered affirmatively by many authors, to whom we are apolo-
getic not to list here. What is of most interest and importance to us is work of Ward [31].

Ward ([31, Theorem C]) gave a general solution to the question when a certain com-
plex of cyclic (co)invariants admits an action of a chain model of the gravity operad,
inducing the gravity algebra structure on cyclic cohomology. Recall that the gravity operad
was introduced by Getzler [16] and is the S1-equivariant homology of the little disks
operad. So Ward’s result can be viewed as an S1-equivariant version of the operadic
Deligne’s conjecture ([31, Corollary 5.22]).

The second result in this paper is an extension, in a special case, of Ward’s theorem.
To state our result, let A be a dg algebra equipped with a symmetric, cyclic, bilinear form
h; i W A˝A! R of degreem 2 Z satisfying the Leibniz rule (see Example 5.9). Then h; i
induces a dg A-bimodule map � W A! A_Œm�, and hence a cochain map‚ W CH.A;A/!
CH.A;A_Œm�/ between Hochschild cochains. Let CHcyc.A;A

_Œm�/ be the subcomplex of
cyclic invariants in CH.A; A_Œm�/. Let M	 be the chain model of the gravity operad that
Ward constructed (see also Example 5.3 (3)).

Theorem 1.2 (See Corollary 6.8). GivenA; h; i; �;‚ as above, there is an action of M	 on
‚�1.CHcyc.A;A

_Œm�//, giving rise to a structure of a gravity algebra up to homotopy. If �
is a quasi-isomorphism and‚ restricts to a quasi-isomorphism‚�1.CHcyc.A;A

_Œm�//!
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CHcyc.A; A
_Œm�/, this descends to a gravity algebra structure on the cyclic cohomology

of A, which is compatible with the BV algebra structure on Hochschild cohomology.

Here the BV algebra structure on the Hochschild cohomology ofA (when � is a quasi-
isomorphism) is well-known (e.g., Menichi [28, Theorem 18]), where the BV operator is
given by Connes’ operator (Example 2.6). By compatibility with a BV algebra structure
we mean the content of Lemma 5.1. Note that Ward’s original theorem only applies to the
situation that � is an isomorphism ([31, Corollary 6.2]).

Chain level structures in S 1-equivariant string topology. Let us say more about Irie’s
work [20]. Using his chain model and results of Ward ([31, Theorem A, Theorem B]),
Irie obtained an operadic chain level refinement of the string topology BV algebra, and
compared it with a solution to the ordinary Deligne’s conjecture via a chain map defined
by iterated integrals of differential forms.

The third result in this paper is a similar story in the S1-equivariant context. Note
that the string topology BV algebra induces gravity algebra structures on two versions
(positive, i.e., ordinary, and negative) of S1-equivariant homology of LM (Example 7.1).

Theorem 1.3 (See Theorem 7.6). For any closed oriented C1-manifold M , there exists
a chain complex zOcyc

M satisfying the following properties. Firstly, the homology of zOcyc
M is

isomorphic to the negative S1-equivariant homology of LM , and zOcyc
M admits an action

of M	 (hence an up-to-homotopy gravity algebra structure) which lifts the gravity algebra
structure mentioned above. Secondly, there is a morphism of M	-algebras

zO
cyc
M ! ‚�1.CHcyc.�.M/;�.M/_Œ� dimM�// (1.1)

which is induced by iterated integrals of differential forms, where the structure on the
right-hand side follows from Theorem 1.2 and ‚ comes from the Poincaré pairing. At
homology level, the morphism (1.1) descends to a map (part of arrow 4 below) which fits
into a commutative diagram of gravity algebra homomorphisms

A B

C D:

1

2 3

4

(1.2)

Here A is the S1-equivariant homology of LM , B is the negative cyclic cohomology of
�.M/, C is the negative S1-equivariant homology of LM , D is the cyclic cohomology
of �.M/. Arrows 1, 4 are defined by iterated integrals on free loop space, and arrow 2
(resp. 3) is the connecting map in the tautological long exact sequence for S1-equivariant
homology theories (resp. cyclic homology theories).

The crucial part of Theorem 1.3 is, of course, the chain level statement that fits well
with structures on homology. The first part of Theorem 1.3 was conjectured by Ward in
[31, Example 6.12], but the correct statement turns out to be more complicated, as we
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actually lift gravity algebra structures on negative S1-equivariant homology rather than
S1-equivariant homology, whereas they are naturally related by a morphism (arrow 2).

Other than the chain level statement, part of the results at homology level is known.
For example, the fact that arrow 1 is a Lie algebra homomorphism appeared in work of
Abbaspour–Tradler–Zeinalian as [1, Theorem 11]; the fact that (1.2) commutes was of
importance to Cieliebak–Volkov [8] (the arrows are only treated as linear maps there).

In a forthcoming paper, the author is going to apply results in this paper to Lagrangian
Floer theory, in view of cyclic symmetry therein (Fukaya [11]).

Outline

In Section 2, we review cyclic homology of mixed complexes. In Section 3, we prove
Theorem 1.1. In Section 4, we review Irie’s de Rham chain complex of differentiable
spaces and apply Theorem 1.1 to it. In Section 5, we review basics of operads and algebraic
structures. In Section 6, we prove Theorem 1.2. In Section 7, we prove Theorem 1.3.

Conventions

Vector spaces are over R, algebras are associative and unital, graded objects are Z-graded.
Homological and cohomological gradings are mixed by the understanding C� D C��,
C � D C��. As for sign rules, see Appendix A. For the sake of convenience, we may write
.�1/" for a sign that is apparent from the Koszul sign rule (Appendix A.1).

2. Preliminaries on cyclic homology

A convenient way to study different versions of cyclic homology is to work in the context
of mixed complexes, which was introduced by Kassel [22]. By definition, a mixed cochain
complex is a triple .C �; b; B/ consisting of a graded vector space C � and linear maps
b W C � ! C �C1, B W C � ! C ��1 such that

b2 D 0; B2 D 0; bB C Bb D 0:

Let u be a formal variable of degree 2. Define graded RŒu�-modules C ŒŒu���, C ŒŒu; u�1��,
C Œu�1�� by

C ŒŒu��n WD
°X
i�0

ciu
i
j ci 2 C

n�2i
±
;

C ŒŒu; u�1�n WD
° X
i��k

ciu
i
j k 2 Z�0; ci 2 C

n�2i
±
;

C Œu�1�n WD
° X
�k�i�0

ciu
i
j k 2 Z�0; ci 2 C

n�2i
±
:



A cocyclic construction of S1-equivariant homology and application to string topology 957

Here the RŒu�-module structure on C Œu�1� is induced by the identification C Œu�1� D
C ŒŒu; u�1�=uC ŒŒu��. Then b C uB is a differential on C ŒŒu���, C ŒŒu; u�1��, C Œu�1��,
resulting in cohomology groups denoted by

HC�ŒŒu��.C /; HC�
ŒŒu;u�1�

.C /; HC�
Œu�1�

.C /:

These are three classical versions of cyclic homology of mixed complexes, called the neg-
ative, periodic and ordinary (positive) cyclic homology of .C �; b; B/, respectively. We
prefer to distinguish them by suggestive symbols (ŒŒu��, ŒŒu;u�1�, Œu�1�) rather than names,
as did in [8]. Here cohomological grading is used for cyclic homology since we deal with
cochain complexes. If we move to homological grading C� WD C�� and replace u by v (a
formal variable of degree �2), then the mixed chain complex .C�; b; B/ gives negative,
periodic and ordinary (positive) cyclic homology theories

HCŒŒv��� D HC��ŒŒu��; HCŒŒv;v
�1�

� D HC��
ŒŒu;u�1�

; HCŒv
�1�
� D HC��

Œu�1�
:

([8] also takes the Hom dual ofC to define cyclic cohomology theories of .C;b;B/, which
we try to avoid in this article.)

For any mixed cochain complex .C �; b; B/, there is a tautological exact sequence

� � � ! HC�ŒŒu��.C /
i�
�! HC�

ŒŒu;u�1�
.C /

u�p�
���! HC�C2

Œu�1�
.C /

B0�
��! HC�C1

ŒŒu��
.C /! � � � (2.1)

which is induced by the short exact sequence

0! C ŒŒu��
i
�! C ŒŒu; u�1�

p
�! C ŒŒu; u�1�=C ŒŒu��! 0

and the .b C uB/-cochain isomorphism

.C ŒŒu; u�1�=C ŒŒu��/�
�u
�!
Š
C Œu�1��C2I

X
�k�i��1

ciu
i
7!

X
�k�i��1

ciu
iC1:

The connecting map B0� W HC�C2
Œu�1�

.C /! HC�C1
ŒŒu��

.C / is induced by an anti-cochain map

B0 W C Œu
�1��C2 ! C ŒŒu���C1I

X
�k�i�0

ciu
i
7! B.c0/:

Similarly, from the short exact sequences

0! C ŒŒu��=uC ŒŒu��
i
�! C ŒŒu; u�1�=uC ŒŒu��

p
�! C ŒŒu; u�1�=C ŒŒu��! 0;

0! uC ŒŒu��
iC

�! C ŒŒu��
p0
�! C ŒŒu��=uC ŒŒu��! 0

one obtains the Gysin–Connes exact sequences

� � � ! H�.C; b/
i�
�! HC�

Œu�1�
.C /

u�p�
���! HC�C2

Œu�1�
.C /

B0�
��! H�C1.C; b/! � � � ; (2.2a)

� � � ! HC��2ŒŒu��.C /
iC� �u
���! HC�ŒŒu��.C /

p0�
��! H�.C; b/

B�
��! HC��1ŒŒu��.C /! � � � : (2.2b)

The connecting maps HC�C2
Œu�1�

.C /
B0�
��! H�C1.C; b/ and H�.C; b/

B�
��! HC��1ŒŒu��.C / are

induced by anti-cochain maps B0 and B , respectively.
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Lemma 2.1. The map B0� W HC�C2
Œu�1�

.C /! HC�C1
ŒŒu��

.C / in (2.1) and the exact sequences
(2.2) fit into the following commutative diagram:

� � � ! H�.C; b/ HC�
Œu�1�

.C / HC�C2
Œu�1�

.C / H�C1.C; b/! � � �

� � � ! H�.C; b/ HC��1ŒŒu��.C / HC�C1
ŒŒu��

.C / H�C1.C; b/! � � � :

i�

id

u�p�

B0�

B0�

B0� id

B� iC� �u p0�

Proof. The left and the right squares commute since they commute at the level of cocy-
cles. As for the middle square, let c D

P0
jD�k cju

j 2 Z�.C Œu�1�/, then B0.u � p.c// D
B.c�1/ and iC.u � B0.c// D B.c0/u. Since c is a cocycle,

0 D .b C uB/.c/ D

0X
jD�k

.b.cj /C B.cj�1//u
j
2 C Œu�1�:

In particular, b.c0/C B.c�1/ D 0, so B.c0/u � B.c�1/ D .b C uB/.c0/ is exact. This
proves B0� ı .u � p�/ D .iC� � u/ ı B0�.

Definition 2.2. Let .C �; b; B/, .C 00�; b00; B 00/ be mixed cochain complexes.

(1) A series of linear maps ¹fi WC �! .C 00/��2iºi2Z�0 is called an1-morphism from
C � to C 00� if

P
i�0 u

ifi W .C ŒŒu; u
�1��; b C uB/! .C 00ŒŒu; u�1��; b00 C uB 00/

is a cochain map, or equivalently, if ¹fiºi�0 satisfies b00f0 D f0b and B 00fi�1 C
b00fi D fi�1B C fib (i � 1).

(2) An1-morphism f D ¹fiºi�0 W C
�! C 00� is called an1-quasi-isomorphism if

f0 W .C
�; b/! .C 00�; b00/ is a cochain quasi-isomorphism.

(3) Given two 1-morphisms ¹fiºi�0; ¹giºi�0 W C � ! C 00�, a series of linear maps
¹hi W C

� ! .C 00/��2i�1ºi2Z�0 is called an 1-homotopy between them if h DP
i�0u

ihi WC ŒŒu;u
�1��!C 00ŒŒu;u�1�� is a .bCuB;b00CuB 00/-cochain homo-

topy between
P
i�0 u

ifi and
P
i�0 u

igi , or equivalently, if ¹hiºi�0 satisfies f0 �
g0 D b

00h0 C h0b and fi � gi D b00hi C hib C B 00hi�1 C hi�1B (i � 1).

A morphism between mixed complexes is an1-morphism ¹fiºi�0 such that fi D 0
for all i > 0, namely a single degree 0 linear map that commutes with both b and B . A
quasi-isomorphism between mixed complexes is a morphism that is also a .b; b00/-quasi-
isomorphism. A homotopy between two morphisms f; g W .C �; b; B/! .C 00�; b00; B 00/ is
an1-homotopy ¹hiºi�0 such that hi D 0 for all i > 0, namely a single degree �1 linear
map h satisfying f � g D b00hC hb and B 00hC hB D 0.

The following important lemma goes back to [21, Lemma 2.1], and is a special case of
[34, Lemma 2.3] which is stated for S1-complexes (an1-version of mixed complexes).
The proof is a spectral sequence argument using the u-adic filtration on C ŒŒu��� etc..

Lemma 2.3. Let ¹fiºi�0 W .C �;b;B/! .C 00�;b00;B 00/ be an1-quasi-isomorphism. ThenP
i�0 u

ifi induces isomorphisms on HC�ŒŒu��, HC�
ŒŒu;u�1�

and HC�
Œu�1�

.
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The following lemma illustrates the naturality of the tautological exact sequence and
Connes–Gysin exact sequences for cyclic homology, with respect to 1-morphisms be-
tween mixed complexes.

Lemma 2.4. Let f D ¹fiºi�0 W .C �; b; B/! .C 00�; b00; B 00/ be an1-morphism. Then
f D

P
i u
ifi induces a morphism between the exact sequence (2.1) forC andC 00, namely

there is a commutative diagram

� � � HC�ŒŒu��.C / HC�
ŒŒu;u�1�

.C / HC�C2
Œu�1�

.C / HC�C1
ŒŒu��

.C / � � �

� � � HC�ŒŒu��.C
00/ HC�

ŒŒu;u�1�
.C 00/ HC�C2

Œu�1�
.C 00/ HC�C1

ŒŒu��
.C 00/ � � � :

i�

f�

u�p�

f�

B0�

f� f�

i 00� u�p00� B 000�

Similarly, for the exact sequence (2.2a), there is a commutative diagram

� � �H�.C; b/ HC�
Œu�1�

.C / HC�C2
Œu�1�

.C / H�C1.C; b/ � � �

� � �H�.C 00; b00/ HC��1
Œu�1�

.C 00/ HC�C1
Œu�1�

.C 00/ H�C1.C 00; b00/ � � � :

i�

f0�

u�p�

f�

B0�

f� f0�

i 00� u�p00� B 000�

The case of the exact sequence (2.2b) is also similar.

Proof. We only write the proof for the first diagram since the others are similar. The left
and the middle squares commute since they commute at the level of cocycles. Now let c DPk
jD0 c�ju

�j 2 Z�C2.C Œu�1�/. Then, .b C uB/.c/ D 0 says b.c�j /C B.c�j�1/ D 0
for all j 2 ¹0; : : : ;kº. Also recall the1-morphism f satisfiesB 00fi�1C b00fi D fi�1B C
fib. Using these relations, it is a straightforward computation to seeX
i�0

fi .B.c0// � u
i
� B 00

� X
0�j�k

fj .c�j /
�
D .b00 C uB 00/

�X
i�0

X
0�j�k

fiCjC1.c�j / � u
i
�
:

The left-hand side is .f ı B0 � B 000 ı f /.c/, and the right-hand side is exact, so commu-
tativity of the right square is proved.

We now discuss some important examples of mixed (co)chain complexes and their
cyclic homologies. Recall that a cosimplicial object in some category is a sequence of
objects C.k/ (k 2 Z�0) together with morphisms

ıi W C.k � 1/! C.k/ .0 � i � k/; �i W C.k C 1/! C.k/ .0 � i � k/;

satisfying the following relations:

ıj ıi D ıiıj�1 .i < j /I

�j�i D �i�jC1 .i � j /I
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�j ıi D

8̂̂<̂
:̂
ıi�j�1 .i < j /;

id .i D j; j C 1/;

ıi�1�j .i > j C 1/:

A cocyclic object is a cosimplicial object ¹C.k/ºk together with morphisms �k W C.k/!
C.k/ satisfying the following relations:

�kC1
k
D idI

�kıi D ıi�1�k�1 .1 � i � k/; �kı0 D ık I

�k�i D �i�1�kC1 .1 � i � k/; �k�0 D �k�
2
kC1:

For example, let �0 WD R0, �k WD ¹.t1; : : : ; tk/ 2 Rk j 0 � t1 � � � � � tk � 1º (k > 0)
be the standard simplices, then ¹�kºk2Z�0 is a cocyclic set (topological space, etc.) with
standard cocyclic maps ıi W �k�1 ! �k , �i W �kC1 ! �k , �k W �k ! �k defined by

ıi .t1; : : : ; tk�1/ WD

8̂̂<̂
:̂
.0; t1; : : : ; tk�1/ .i D 0/;

.t1; : : : ; ti ; ti ; : : : ; tk�1/ .1 � i � k � 1/;

.t1; : : : ; tk�1; 1/ .i D k/;

(2.3a)

�i .t1; : : : ; tkC1/ WD .t1; : : : ;btiC1; : : : ; tkC1/ .miss tiC1/ .0 � i � k/; (2.3b)

�k.t1; : : : ; tk/ WD .t2 � t1; : : : ; tk � t1; 1 � t1/: (2.3c)

Remark 2.5. Equivalently, for z�k WD ¹.s0; s1; : : : ; sk/ 2 Œ0; 1�kC1 j s0 C s1 C � � � C sk
D 1º (k � 0), �k W z�k ! z�k reads �k.s0; s1; : : : ; sk/ D .s1; : : : ; sk ; s0/.

Example 2.6 (Cocyclic complex and Connes’ version of cyclic cohomology). Consider
the category of cochain complexes where the morphisms are degree 0 cochain maps. Let
..C.k/�; d /; ıi ; �i ; �k/ be a cocyclic cochain complex, then a mixed cochain complex
.C; b; B/ is obtained as follows. Let

ı W C.k � 1/� ! C.k/�I ck�1 7! .�1/jck�1jCk�1
X
0�i�k

.�1/iıi .ck�1/; (2.4)

then ı2 D 0, ıd C dı D 0. Let .C �; b/ be the product total complex of the double com-
plex .C.k/l ; d; ı/k2Z�0

l2Z ,

C � WD
Y

lCkD�

C.k/l D
Y
k�0

C.k/��k ; b D d C ı:

For later purpose we also introduce the normalized subcomplex .C �nm; b/ of .C �; b/,

C �nm WD
Y
k�0

Cnm.k/
��k ; Cnm.k/ WD

\
0�i�k�1

Ker
�
�i W C.k/! C.k � 1/

�
:
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Note that the natural inclusion ¹Cnm.k/º � ¹C.k/º is not cosimplicial since ıj does not
restrict to Cnm.k/. The natural inclusion .C �nm; b/ ,! .C �; b/ is a quasi-isomorphism (see
[25, Proposition 1.6.5] or [20, Lemma 2.5]). Next, define the operator B W C �! C ��1 by

B WD Ns.1 � �/ .Connes’ operator/;

where �;N; s are given by (here jcj is the degree of c D .ck/k�0 2
Q
k�0 C.k/ in C �)

�jC.k/ WD .�1/
k�k ;

N jC.k/ WD 1C �C � � � C �
k ;

s.c/ WD .�1/jcj�1.�k�kC1.ckC1//k�0:

Although Cnm is not closed under �, N , it is closed under s, B . For ckC1 2 Cnm.k C 1/
�,

there holds

s.�.ckC1// D .�1/
jckC1j�k�

2
kC1.ckC1/ D .�1/

jckC1j�k�0.ckC1/ D 0;

so Connes’ operator B has a simpler form on a normalized subcomplex,

BjCnm D Ns:

To see .C �; b; B/ is a mixed complex, define

b0 W C � ! C �C1; c 7! b.c/ � ..�1/jck�1j�1ık.ck�1//k�0:

It is a routine calculation to see .b0/2D0,N.1� �/D.1� �/ND0, .1 � �/bDb0.1 � �/,
bN D Nb0 and b0s C sb0 D 1. It follows that B2 D Ns..1 � �/N /s.1 � �/ D 0 and
bB C Bb D Nb0s.1� �/CNsb0.1� �/ D N.1� �/ D 0, as desired. The identity .1�
�/b D b0.1 � �/ also implies that the space of cyclic invariants,

Ccyc WD Ker.1 � �/ � .C; b/;

forms a subcomplex (we denote this inclusion by i�). This leads to Connes’ version of
cyclic cohomology of the cocyclic cochain complex,

HC��.C / D HC��.C.k/; d; ıi ; �i ; �k/ WD H
�.Ccyc; b/:

Since B D Ns.1 � �/ vanishes on Ccyc, .C �cyc; b/ is also naturally a subcomplex of
.C ŒŒu���; b C uB/. By an argument similar to [25, Theorems 2.1.5, 2.1.8] one sees that
this inclusion I� W .C �cyc; b/ ,! .C ŒŒu���; b C uB/ induces an isomorphism

I�� W HC��.C / Š HC�ŒŒu��.C /: (2.5)

The short exact sequence 0! .Ccyc; b/
i�
�! .C; b/

p�
�! .C=Ccyc; b/! 0 induces Connes’

long exact sequence (we follow the presentation of [23, Section 3.7])

� � � ! HC��.C /
i��
��! H�.C; b/

B�
��! HC��1� .C /

S�
�! HC�C1

�
.C /! � � � : (2.6)
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Here we have made use of an isomorphism HC��1� .C / Š H�.C=Ccyc; b/, which is a
consequence of another short exact sequence

0! .C=Ccyc; b/
1��
��! .C; b0/

N
�! .Ccyc; b/! 0 (2.7)

and the fact that .C; b0/ is acyclic (since b0s C sb0 D 1). Lemma 2.9 below says (2.6) can
be identified with (2.2b). Finally, we mention that HC�ŒŒu��.Cnm/ŠHC�ŒŒu��.C /ŠHC��.C /,
where the first isomorphism follows from Lemma 2.3.

A subexample of Example 2.6 is as follows.

Example 2.7 (Cyclic cohomology of dg algebras). Let A� be a dg algebra with unit 1A.
Then ¹Hom�.A˝kC1;R/ºk�0 has the structure of a cocyclic cochain complex, where ıi W
Hom�.A˝k ;R/! Hom�.A˝kC1;R/, �i W Hom�.A˝kC2;R/! Hom�.A˝kC1;R/ and
�k W Hom�.A˝kC1;R/! Hom�.A˝kC1;R/ are

ıi .'/.a1 ˝ � � � ˝ akC1/ WD

´
.�1/"'.a2 ˝ � � � ˝ ak ˝ akC1a1/ .i D 0/;

'.a1 ˝ � � � ˝ aiaiC1 ˝ � � � ˝ akC1/ .1 � i � k/;

�i .'/.a1 ˝ � � � ˝ akC1/ WD '.a1 ˝ � � � ˝ ai ˝ 1A ˝ aiC1 ˝ � � � ˝ akC1/ .0 � i � k/;

�k.'/.a1 ˝ � � � ˝ akC1/ WD .�1/
"'.akC1 ˝ a1 � � � ˝ ak/: (2.8)

The associated mixed total complex is denoted by CH�.A; A_/. For simplicity, denote
cyclic homologies of CH�.A; A_/ by HC�

Œu�1�
.A; A_/, HC�ŒŒu��.A; A

_/ Š HC��.A; A
_/,

etc.. Classically, HC��.A;A
_/ is called (Connes’) cyclic cohomology of A.

Let us also recall that for any dg A-bimoduleM �, there is a structure of a cosimplicial
complex on ¹Hom�.A˝k ; M/ºk�0, where ıi W Hom�.A˝k�1; M/ ! Hom�.A˝k ; M/,
�i W Hom�.A˝kC1;M/! Hom�.A˝k ;M/ are

ıi .f /.a1 ˝ � � � ˝ ak/ WD

8̂̂<̂
:̂
.�1/"a1 � f .a2 ˝ � � � ˝ ak/ .i D 0/;

f .a1 ˝ � � � ˝ aiaiC1 ˝ � � � ˝ ak/ .1 � i � k � 1/;

f .a1 ˝ � � � ˝ ak�1/ � ak .i D k/;

�i .f /.a1 ˝ � � � ˝ ak/ WD f .a1 ˝ � � � ˝ ai ˝ 1A ˝ aiC1 ˝ � � � ˝ � � � ˝ ak/ .0 � i � k/:

The associated total complex, denoted by CH�.A;M/, is called the Hochschild cochain
complex, whose cohomology group, denoted by HH�.A; M/, is called the Hochschild
cohomology. Taking M � D .A_/� D Hom�.A;R/ with dg A-bimodule structure satisfy-
ing

.d'/.a/C .�1/j'j'.da/ D 0; '.ab/ D .�1/.jajCj'j/jbj.b � '/.a/ D .' � a/.b/; (2.9)

one sees that the cosimplicial structure on ¹Hom�.A˝k ; A_/ºk is the same as that on
¹Hom�.A˝kC1;R/º described previously, in view of the natural isomorphism

Hom�.A˝k ; A_/ Š Hom�.A˝k ˝ A;R/ D Hom�.A˝kC1;R/

from Hom-˝ adjunction. See Example 5.9 for further discussion.
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Remark 2.8. We shall use the name “Connes’ version of cyclic cohomology” for “cocy-
clic complex”, even if we work with chain complexes rather than cochain complexes. For
a cocyclic chain complex ..C.k/�; @/; ıj ; �i ; �k/, Connes’ version of cyclic cohomology
is HC��.C / WD H�.C

cyc; b/ where C cyc
� WD Ker.1 � �/ � C�, and HC��.C / is isomorphic

to HCŒŒv��� of the mixed chain complex .C�; b; B/ D .
Q
k�0 C.k/�Ck ; @C ı;Ns.1 � �//.

Lemma 2.9. In the situation of Example 2.6, the isomorphism (2.5) and the long exact
sequences (2.6) and (2.2b) fit into the following commutative diagram:

� � � HC��.C / H�.C; b/ HC��1� .C / HC�C1
�

.C / � � �

� � � HC�ŒŒu��.C / H�.C; b/ HC��1ŒŒu��.C / HC�C1
ŒŒu��

.C / � � � :

i��

I��Š

B�

id

�S�

I��Š I��Š

p0� B� iC� �u

Proof. The left square commutes since it commutes at cochain level. To verify com-
mutativity of the other two squares, we need explicit formulas of B� and S�. Since
.1 � �/b D b0.1 � �/, there is a cochain isomorphism

.C=Ccyc; b/
1��
��!
Š

.Im.1 � �/; b0/:

Also note that Ccyc D ImN and N jCcyc D ..k C 1/idKer.1�.�1/k�k//k�0 W Ccyc ! Ccyc is a
linear isomorphism. By definition, B� is the composition

H�.C; b/
p��
��! H�.C=Ccyc; b/

1��
��!
Š

H�.Im.1 � �/; b0/
Q�1
��
���!
Š

HC��1� .C /;

where by examining (2.7), Q�� W HC��1� .C /
Š
�! H�.Im.1 � �/; b0/ is given on cocycles

by
Q� W Z

��1.Ccyc; b/! Z�.Im.1 � �/; b0/I x 7! .b0 ı .N jCcyc/
�1/.x/:

Let us calculate that on Z.C; b/,

Q�B D Q�Ns.1 � �/ D b
0s.1 � �/ D .1 � sb0/.1 � �/

D 1 � � � s.1 � �/b D 1 � �: (2.10)

Thus .BjC!Ccyc/� D .Q��/
�1 ı .1 � �/ ı p�� D B�, which says the middle square com-

mutes. Similarly, S� is the composition

HC��1� .C /
Q��
��!
Š

H�.Im.1 � �/; b0/
.1��/�1

�����!
Š

H�.C=Ccyc; b/
R��
��! HC�C1

�
.C /;

where R�� W H�.C=Ccyc; b/! HC�C1
�

.C / is induced by the map

R� W ¹y 2 C
�
j b.y/ 2 Ccycº ! Z�C1.Ccyc; b/I y 7! b.y/:

(2.10) also holds on Z.C=Ccyc; b/, and implies .1 � �/�1Q�� D .BjC=Ccyc!Ccyc/
�1
� .
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Therefore for x 2 Z��1.Ccyc; b/,

S�.Œx�/ D Œb.y/� 2 HC�C1
�

.C /;

where y is any choice of elements in C � satisfying B.y/D x and .1� �/.b.y//D 0. For
such x and y, �b.y/ � x � u D .b C uB/.�y/ is exact in C �C1ŒŒu��, so I�� ı .�S�/ D
.iC� � u/ ı I��, i.e., the right square commutes.

Example 2.10 (S1-equivariant homology theories [21]). Let X be a topological S1-
space, namely a topological space with a continuous S1-action FX W S1 � X ! X . Let
.C�; b/D .S�.X/; @/ be the singular chain complex ofX , and define the rotation operator
B D J W S�.X/! S�C1.X/ by

J.a/ WD FX� .ŒS
1� � a/; a 2 S�.X/: (2.11)

Here ŒS1� 2 S1.S1/ is the fundamental cycle of S1, namely ŒS1� D ��
1

S1
W �1 D Œ0; 1�!

R=Z D S1, and � is the simplicial cross product induced by standard decomposition of
�l ��k into .k C l/-simplices (see [19, page 278]). Then @J C J@ D 0 since

@.ŒS1� � a/ D @ŒS1� � aC .�1/degŒS1�ŒS1� � @a D �ŒS1� � @a:

To see J 2 D 0, let us write down the cross product with ŒS1� explicitly. For k 2 Z�0 and
j 2 ¹0; : : : ; kº, consider the embeddings �k;j W �kC1 ! �1 ��k defined by

�k;j .t1; : : : ; tkC1/ WD .tjC1; .t1; : : : ; tj ; tjC2; : : : ; tkC1//;

then for .� W �k ! X/ 2 Sk.X/,

ŒS1� � � D
X
0�j�k

.�1/j .��
1

S1
� �/ ı �k;j 2 SkC1.S

1
�X/:

Let F S
1
W S1 � S1 ! S1, .Œt �; Œt 0�/ 7! Œt C t 0� be the rotation S1-action on S1, then

F S
1

� .ŒS1� � ŒS1�/ D F S
1

ı .��
1

S1
� ��

1

S1
/ ı �1;0 � F

S1
ı .��

1

S1
� ��

1

S1
/ ı �1;1 D 0:

From the commutative diagram

S1 � S1 �X S1 �X

S1 �X X;

idS1�F
X

F S
1
�idX

F X

F X

.Œt �; Œt 0�; x/ .Œt C t 0�; x/

.Œt �; FX .Œt 0�; x// FX .Œt C t 0�; x/

we conclude that for any a 2 S�.X/,

J 2.a/ D FX� .ŒS
1� � FX� .ŒS

1� � a// D FX� .F
S1

� .ŒS1� � ŒS1�/ � a// D 0:
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For the mixed chain complex .C�; b; B/ D .S�.X/; @; J /, there is a natural isomorphism
([21, Lemma 5.1])

HCŒv
�1�
� .S.X// Š HS1

� .X/ WD H�.X �S1 ES
1/;

namely HCŒv
�1�
� .S.X// is isomorphic to the S1-equivariant homology of X , i.e., homol-

ogy of the homotopy quotient (Borel construction). The other two cyclic homology groups
of .S�.X/; @; J / are called the negative and periodic S1-equivariant homology of X , and
are denoted by

GS
1

� .X/ WD HCŒŒv��� .S.X//; yHS1

� .X/ WD HCŒŒv;v
�1�

� .S.X//;

respectively. The tautological exact sequence (2.1) translates into

� � � ! GS
1

� .X/!
yHS1

� .X/! HS1

��2.X/! GS
1

��1.X/! � � � ; (2.12)

and the Connes–Gysin exact sequences (2.2) translate into

� � � ! H�.X/! HS1

� .X/! HS1

��2.X/! H��1.X/! � � � ; (2.13a)

� � � ! GS
1

�C2.X/! GS
1

� .X/! H�.X/! GS
1

�C1.X/! � � � : (2.13b)

We end this example by mentioning that (2.13a) coincides with the Gysin sequence asso-
ciated to the S1-fibration X �ES1 ! X �S1 ES

1.

Remark 2.11. There seems to be no interpretation of GS
1

� .X/ and yHS1

� .X/ as homol-
ogy groups of some spaces naturally associated to X , but there are homotopy theoretic
interpretations. For example, when X is a (finite) S1-CW complex, [2, Lemma 4.4] says
GS

1

� .X/ is naturally isomorphic to the homotopy groups of the homotopy fixed point
spectrum .H ^XC/hS

1
, where H is the Eilenberg–MacLane spectrum ¹K.Z; n/º.

3. A cocyclic complex and an1-quasi-isomorphism

Let X be a topological space with S1-action FX W S1 � X ! X . There is a cocyclic
structure on ¹X ��kºk2Z�0 , where ıX��

k

i WD idX � ı�
k

i , �X��
k

i WD idX � ��
k

i (ı�
k

i ,
��

k

i are as in (2.3)), and �X��
k

k
W X ��k ! X ��k is defined by

�X��
k

k .x; t1; : : : ; tk/ WD .F
X .Œt1�; x/; t2 � t1; : : : ; tk � t1; 1 � t1/:

Taking singular chains of the cocyclic space ¹X ��kºk�0 yields a cocyclic chain complex
¹S�.X ��

k/ºk�0. Let us denote the associated mixed complex by

.SX�� ; b; B/ WD
�Y
k�0

S�Ck.X ��
k/; @C ı;Ns.1 � �/

�
:
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The S1-action on X extends to X ��k where the S1-action on�k is trivial, and then the
rotation operator J W S�.X/! S�C1.X/ defined in Example 2.10 extends component-by-
component to SX�� by

J W SX�� ! SX��C1; .xk/k�0 7! .J.xk//k�0:

By Example 2.10, J 2 D 0 and @J C J@ D 0. Since S1 acts trivially on �k , J com-
mutes with ıi ; �i . It follows that ıJ C J ı D 0 and J.SX�;nm/� SX�;nm, so .SX�� ; b; J /,
.S
X�;nm
� ; b; J / are also mixed complexes. J also commutes with �X��

k

k
because of the

commutative diagram

S1 �X ��k S1 �X ��k

X ��k X ��k ;

F X��
k

idS1��
X��k

k

F X��
k

�X��
k

k

(3.1)

.Œt �; x; t1; : : : ; tk/ .Œt �; FX .Œt1�; x/; t2 � t1; : : : ; 1 � t1/

.FX .Œt �; x/; t1; : : : ; tk/ .FX .Œt C t1�; x/; t2 � t1; : : : ; 1 � t1/;

so JB C BJ D 0. We will analyze the relationship between the mixed complexes

.SX�� ; b; B/; .SX�� ; b; J /; .S�.X/; @; J /:

If there is no risk of confusion, we shall write ıX��
k

i , �X��
k

i , �X��
k

k
and the induced

maps on singular chain complexes as ıi ; �i ; �k for short. Note that ıi ; �i do not involve
S1-action, so if we forget the S1-action, there is still a total complex .SX�� ; b D @C ı/

from the cosimplicial chain complex ¹S�.X ��k/ºk2Z�0 .
Let us state the main theorem of this section.

Theorem 3.1. LetX be a topological S1-space. Then for both of the mixed complex struc-
tures .b;B/ and .b; J / on SX�� D

Q
k�0 S�Ck.X ��

k/, there are natural isomorphisms

HCŒv
�1�
� .SX�/ Š HS1

� .X/ as RŒv�1�-modules;

HCŒŒv;v
�1�

� .SX�/ Š yHS1

� .X/ as RŒŒv; v�1�-modules;

HCŒŒv��� .SX�/ Š GS
1

� .X/ as RŒŒv��-modules:

Furthermore, these isomorphisms throw the (tautological and Connes–Gysin) exact se-
quences (2.1), (2.2) for cyclic homology theories onto the (tautological and Gysin) exact
sequences for S1-equivariant homology theories.

Proof. The statement about isomorphisms is a consequence of Lemma 2.3, Corollary 3.5
and Proposition 3.7 below. The statement about long exact sequences is then a conse-
quence of Lemma 2.4.
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Corollary 3.2. For any topological S1-space X , Connes’ version of cyclic cohomology
of the cocyclic chain complex ¹S�.X ��k/ºk2Z�0 is naturally isomorphic to the negative
S1-equivariant homology of X .

Lemma 3.3. For any topological space X, the projection chain map

pr0 W .S
X�
� ; b/! .S�.X/; @/I .ck/k�0 7! c0

is a quasi-isomorphism.

Proof. Since pr0 is surjective, it suffices to prove Ker.pr0/� D
Q
k�1 S�Ck.X ��

k/ is b-
acyclic. Let us write zS� WD Ker.pr0/� and consider the decreasing filtration Fp (p 2 Z�1)
on zS defined by Fp zS� WD

Q
k�p S�Ck.X ��

k/. The E1-page of the spectral sequence
of this filtration is divided into columns indexed by q 2 Z�0, each of which looks like

0! Hq.X ��
1/

ı�
�! Hq.X ��

2/
ı�
�! Hq.X ��

3/
ı�
�! � � � : (3.2)

For each k � 1, the map pk WD �0�1 � � ��k�1 WX ��k!X ��0 DX , .x; t1; : : : ; tk/ 7!
.x; 0/D x is a homotopy equivalence. Since pkC1 D pk�k and �j ıi D id (i D j; j C 1),
we conclude that for any k � 1 and 0 � i � k,

H�.X ��
k�1/

.ıi /�
���! H�.X ��

k/

is an isomorphism such that .ıi /� D .�k�1/�1� . Then since

ıjSq.�k�1�X/ D .�1/
qCk

kX
iD0

.�1/iıi ;

(3.2) is nothing but

0! Hq.X ��
1/

.�1/q.�1/
�1
�

��������!
Š

Hq.X ��
2/

0
�! Hq.X ��

3/
.�1/q.�3/

�1
�

��������!
Š

� � � :

Thus all E2-terms vanish. Finally, since the filtration Fp on zS is complete (namely zS D
lim
 �
zS=Fp zS ) and bounded above (since zS� D F1 zS�), a standard convergence theorem [32,

Theorem 5.5.10(2)] gives H�. zS; b/ D 0.

Remark 3.4. The proof of Lemma 3.3 implies that more generally, for a cosimplicial
complex ¹.C.k/�; @/ºk�0, if �0�1 � � � �k�1 W C.k/ ! C.0/ is a quasi-isomorphism for
each k � 1, then so is pr0 W .

Q
k�0 C.k/�Ck ; @C ı/! .C.0/�; @/ ([20, Lemma 8.3]).

Corollary 3.5. For any topological S1-space X , pr0 W .S
X�
� ; b; J /! .S�.X/; @; J / is a

mixed complex quasi-isomorphism.

Note that S�.X/ D SX�� .0/ D S
X�;nm
� .0/ by a vacuum normalized condition. Since

.S
X�;nm
� ; b/ ,! .SX�� ; b/ is a quasi-isomorphism, Lemma 3.3 and Corollary 3.5 also hold
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true if SX�� is replaced by SX�;nm
� . In the following, we may use SX�;nm

� to simplify
calculation involving Connes’ operator B . One could also stick with SX�� , though.

Recall the augmentation map " W S0.X/! R,
P
�i � .�

0
ui
�! X/ 7!

P
�i .

Lemma 3.6. Consider the topological S1-space S1 with rotation action on itself.

(1) There exists a sequence of elements ¹�n D .�n
k
/k�0 2 S

S1�;nm
2n ºn2Z�0 such that

".�00 / D 1; b.�0/ D 0; b.�n/ D .J � B/.�n�1/ .n � 1/:

(2) Suppose ¹�nºn�0, ¹� 0nºn�0 both satisfy the conditions in (1). Then there exists a
sequence of elements ¹�n D .�n

k
/k�0 2 S

S1�;nm
2nC1 ºn2Z�0 such that

�0 � � 00 D b.�0/; �n � � 0n D b.�n/ � .J � B/.�n�1/ .n � 1/:

Proof. (1) Consider the isomorphisms .pr0/� W H0.S
S1�;nm; b/

Š
�! H0.S

1/ from Lem-
ma 3.3 and "� W H0.S1/

Š
�! R induced by augmentation. Choose a 0-cycle �0 in the

homology class ."� ı .pr0/�/
�1.1/ 2 H0.S

S1�;nm; b/, then �0 D .�0
k
/k�0 is as desired.

Next, since bB D�Bb and bJ D�Jb, B.�0/ and J.�0/ are 1-cycles. We claim that they
are homologous. Since pr0 is a quasi-isomorphism, it suffices to look at pr0.B.�

0// and
pr0.J.�

0//. By definition,

pr0.B.�
0// D .Ns.�0//0 D �0�1.�

0
1 /; pr0.J.�

0// D J.�00 / D F
S1

� .ŒS1� � �00 /:

By construction, �00 2 S0.S
1/ is homologous to the map �0 3 0 7! Œ0� 2 S1, and �01 2

S1.S
1 � �1/ is homologous to the map �1 3 t 7! .Œ0�; t/ 2 S1 � �1. So pr0.B.�

0//,
pr0.J.�

0// are homologous to

�1 ! S1 ��1
�1
�! S1 ��1

�0
�! S1I t 7! .Œ0�; t/ 7! .Œt �; 1 � t / 7! Œt �;

�1 ! �1 ��0 ! S1 � S1
F S

1

���! S1I t 7! .t; 0/ 7! .Œt �; Œ0�/ 7! Œt �;

respectively. Namely they are both homologous to ŒS1�. This proves the existence of �1 2
S
S1�;nm
2 satisfying b.�1/ D .J � B/.�0/. Now suppose �0; �1; : : : ; �n (n � 1) have been

chosen as desired, to find �nC1, simply notice that .J � B/.�n/ is a .2nC 1/-cycle,

b..J � B/.�n// D �.J � B/.b.�n// D �.J � B/2.�n�1/ D 0;

where .J � B/2 D 0 since J 2 D 0, B2 D 0 and JB C BJ D 0 (see (3.1)). Since

H2nC1.S
S1�;nm; b/ Š H2nC1.S

1/ D 0 .n � 1/;

.J � B/.�n/ is exact, i.e., �nC1 exists.
(2) By construction, �0 is homologous to � 00, so �0 exists. To inductively find �n for

n � 1, simply check that �n � � 0n C .J � B/.�n�1/ is a 2n-cycle, which is then exact
since H2n.S1/ D 0 (n � 1).
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Proposition 3.7. Let X be a topological S1-space. Denote the transposition X � S1 !
S1 �X by �.

(1) Choose � D ¹�nºn�0 as in Lemma 3.6 (1). Define a sequence of linear maps f � D
¹f

�
n W S�.X/! S

X�;nm
�C2n ºn�0 by

f �n .a/ WD
�
.FX��

k

ı .� � id�k //�.a � �
n
k /
�
k�0

:

Then f � is an1-quasi-isomorphism from .S�.X/; @; J / to .SX�;nm
� ; b; B/.

(2) For two choices �; � 0, the1-quasi-isomorphisms f � ; f �
0

are1-homotopic.

Proof. (1) The verification of f �0 ı @ � b ı f
�
0 D 0 is simpler than f �n ı @ � b ı f

�
n D

B ı f
�
n�1 � f

�
n�1 ı J (n � 1), so we omit it. Let us write Fk WD FX��

k
ı .� � id�k / W

X � S1 ��k ! X ��k . For n � 1,�
.f �n ı @ � b ı f

�
n /.a/

�
k
D .Fk/�.@a � �

n
k � @.a � �

n
k / � ı.a � �

n
k�1//

D .Fk/�..�1/
jaja � .�@�nk � ı�

n
k�1//

D .�1/jaj.Fk/�.a � .B.�
n�1
kC1/ � J.�

n�1
k ///;

where the last equality follows from b.�n/ D .J � B/.�n�1/. Now introduce maps

Gk W X � S
1
��k ! X ��k ;

.x; Œt �; t1; : : : ; tk/ 7! .FX .Œt C t1�; x/; t2 � t1; : : : ; 1 � t1/;

Hk W X � S
1
� S1 ��k ! X ��k ;

.x; Œt �; Œt 0�; t1; : : : ; tk/ 7! .FX .Œt C t 0�; x/; t1; : : : ; tk/;

then

Gk D Fk ı .idX � �S
1��k

k / D �X��
k

k ı Fk ;

Hk D Fk ı .idX � F S
1��k / D Fk ı .F

X
� idS1��k / ı .� � idS1��k /:

It follows that

.�1/jaj.Fk/�.a � B.�
n�1
kC1// D B..Fk/�.a � �

n�1
kC1//;

.�1/jaj.Fk/�.a � J.�
n�1
k // D .Fk/�.J.a/ � �

n�1
k /:

This implies .f �n ı @ � b ı f
�
n /.a/ D .B ı f

�
n�1 � f

�
n�1 ı J /.a/, so f � is an 1-mor-

phism. It remains to show that f �0 is a quasi-isomorphism. Since �00 is homologous to
the 0-chain �0 ! S1, 0 7! Œ0�, pr0 ıf

�
0 is chain homotopic to idS�.X/. Since pr0 is a

quasi-isomorphism, so is f �0 .
(2) Choose � as in Lemma 3.6 (2). Define a sequence of linear maps h� D ¹h�n W

S�.X/! S
X�;nm
�C2nC1ºn�0 by

h�n.a/ WD .�1/
jaj
�
.FX��

k

ı .� � id�k //�.a � �
n
k/
�
k�0

:

Then similar calculation as before shows h� is an1-homotopy between f � and f �
0

.
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4. The story of differentiable spaces

4.1. Differentiable spaces and de Rham chains

Materials in this subsection are collected from Irie [20]. The notion of differentiable spaces
is a modification of that utilized by Chen [6], and the notion of de Rham chains is inspired
by an idea of Fukaya [10].

Let U WD
`
n�m�0 Un;m where Un;m denotes the set of oriented m-dimensional C1-

submanifolds of Rn. Let X be a set. A differentiable structure P.X/ on X is a family of
maps ¹.U; '/º called plots, such that

• every plot is a map ' from some U 2 U to X ;

• if ' W U ! X is a plot, U 0 2 U and � W U 0! U is a submersion, then ' ı � W U 0! X

is a plot.

A differentiable space is a pair of a set and a differentiable structure on it. A map f WX !
Y between differentiable spaces is called smooth, if .U; f ı '/ 2 P.Y / for any .U; '/ 2
P.X/. A subset of a differentiable space and the product of a family of differentiable
spaces admit naturally induced differentiable structures ([20, Example 4.2 (iii), (iv)]).

Remark 4.1. Differentiable structures are defined on sets rather than topological spaces.
For later purpose, we say a differentiable structure and a topology on a set X are compat-
ible if every plot is continuous.

Example 4.2. Here are some important examples of differentiable spaces.

(1) Let M be a C1-manifold. Consider two differentiable structures on it:

(a) define .U; '/ 2 P.M/ if ' W U !M is a C1-map;

(b) define .U; '/ 2 P.Mreg/ if ' W U !M is a (C1-)submersion.

The set-theoretic identity map idM WMreg !M is smooth, but its inverse is not.

(2) Let LM WD C1.S1;M/ be the smooth free loop space of M , where S1 D R=Z.
There is a differentiable structure P.LM / on LM defined by: .U; '/ 2 P.L/ iff
U � S1 !M , .u; Œt �/ 7! '.u/.t/ is a C1-map.

(3) For each k 2 Z�0, the smooth free loop space of M with k inner marked points,
denoted by LkC1M , is defined as

¹.
; t1; : : : ; tk/ 2 LM ��k j @mt 
.0/ D @
m
t 
.tj / D 0 .1 � 8j � k; 8m � 1/º:

It has induced differentiable structure P.LM
kC1

/ as a subspace of LM ��k , where
�k is viewed as a subspace of Rk with the differentiable structure in (1a).

(4) The smooth free Moore path space of M , denoted by …M , is defined as

¹.T; 
/ j T 2 R�0; 
 2 C
1.Œ0; T �;M/; @mt 
.0/ D @

m
t 
.T / D 0 .8m � 1/º:

Consider two differentiable structures P.…M /;P.…M
reg/ on …M .
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(a) Define .U; '/ 2 P.…M / if ' D .'T ; '
 / W U ! …M satisfies the following
conditions:

• 'T W U ! R�0 is a C1-map.

• The map

zU WD ¹.u; t/ j u 2 U; t 2 Œ0; 'T .u/�º !M I .u; t/ 7! '
 .u/.t/

extends to a C1-map from an open neighborhood of zU in U �R to M .

(b) Define .U; '/ 2 P.…M
reg/ if: .U; '/ 2 P.…M / and the map U ! M , u 7!

'
 .u/.t0/ is a submersion for t0 D 0; T .

(5) For each k 2 Z�0, the smooth free Moore loop space of M with k inner marked
points, denoted by LkC1M , is defined as

¹..T0; 
0/; : : : ; .Tk ; 
k// 2 .…M/kC1 j 
j .Tj / D 
jC1.0/ .0 � j � k � 1/;


k.Tk/ D 
0.0/º

D ¹.T; 
; t1; : : : ; tk/ 2 …M �Rk j 0 � t1 � � � � � tk � T; 
.0/ D 
.T /;

@mt 
.tj / D 0 .1 � 8j � k; 8m � 1/º:

Apparently there are two ways to endow the set LkC1M with differentiable struc-
tures, namely as a subset of .…M/kC1 or of …M �Rk . It basically follows from
[20, Lemma 7.2] that these two ways are equivalent. Let us denote by LM

kC1
(resp.

LM
kC1;reg) the differentiable space obtained from …M (resp. …M

reg).

Note that the inclusion of sets LkC1M D ¹T D 1º � LkC1M , induced by the inclusion
L1M ��

k � …M �Rk , is also an inclusion of differentiable spaces LM
kC1

,! LM
kC1

.

The de Rham chain complex .C dR
� .X/; @/ of a differentiable space X is defined as

follows. For n 2 Z, let zC dR
n .X/ WD

L
.U;'/2P.X/ �

dimU�n
c .U /: For any .U; '/ 2 P.X/

and ! 2�dimU�n
c .U /, denote the image of ! under the natural inclusion�dimU�n

c .U / ,!
zC dR
n .X/ by .U; '; !/. Let Zn � zC dR

n .X/ be the subspace spanned by all elements of the
form .U; '; �Š!

0/ � .U 0; ' ı �; !0/, where .U; '/ 2 P.X/, U 0 2 U, !0 2 �dimU 0�n
c .U 0/,

and � W U 0 ! U is a submersion. Then define C dR
n .X/ WD

zC dR
n .X/=Zn. By abuse of

notation we still denote the image of .U;';!/ under the quotient map zC dR
n .X/!C dR

n .X/

by .U; '; !/. Then @ W C dR
� .X/! C dR

��1.X/ is defined by @.U; '; !/ WD .U; '; d!/. The
homology of .C dR

� .X/; @/ is denoted by H dR
� .X/.

Remark 4.3. For any oriented C1-manifold M , there exists n 2 Z�0 and an embed-
ding � W M ,! Rn. Then .�.M/; ��1/ 2 P.Mreg/ � P.M/, and .�.M/; ��1; .��1/�!/ 2

C dR
� .Mreg/ � C

dR
� .M/ for any ! 2 �c.M/. Such a de Rham chain is independent of

choices of n and �, and by abuse of notation we write it as .M; idM ; !/. If M is closed
oriented, we call .M; idM ; 1/ the fundamental de Rham cycle of M (or Mreg).
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Let X; Y be differentiable spaces. The cross product on de Rham chains is a chain
map C dR

k
.X/˝ C dR

l
.Y /! C dR

kCl
.X � Y /, defined by

.U; '; !/ � .V; �;  / WD .�1/l �dimU .U � V; ' �  ;! � �/: (4.1)

4.2. S 1-equivariant homology of differentiable S 1-spaces

Let X be a differentiable S1-space, namely X is a differentiable space with a smooth
map FX W S1 �X ! X , where S1 is endowed with the differentiable structure in Exam-
ple 4.2 ((1a)). Let .S1; idS1 ; 1/ 2 C dR

1 .S
1/ be the fundamental de Rham 1-cycle of S1.

Define
J W C dR

� .X/! C dR
�C1.X/I a 7! FX� ..S

1; idS1 ; 1/ � a/;

then J is clearly an anti-chain map. We claim J 2 D 0. Let g W S1 � S1 ! S1 be the
smooth map .Œt �; Œt 0�/ 7! Œt C t 0�, then by the same arguments as in Example 2.10, to see
J 2 D 0, it suffices to prove g�..S1; idS1 ; 1/� .S1; idS1 ; 1//D 0 2 C dR

2 .S
1/. This is easy,

as we can see by the following:

g�..S
1; idS1 ; 1/ � .S

1; idS1 ; 1//
(4.1)
DDD �g�..S

1
� S1; idS1�S1 ; 1//

D �.S1 � S1; idS1 ı g; 1/ D �.S
1; idS1 ; gŠ.1// D 0:

The middle equality on the second line holds since g is a submersion. Thus .C dR
� .X/;@;J /

is a mixed chain complex. One can then define the positive (ordinary), periodic and neg-
ative “S1-equivariant de Rham homology” of X as the HCŒv

�1�
� , HCŒŒv��� and HCŒŒv;v

�1�
�

versions of cyclic homology of .C dR
� .X/; @; J /.

Consider �k as a differentiable subspace of Rk . Then the cocyclic maps ıi ; �i ; �k
among ¹X ��kºk2Z�0 , defined by the same formulas as in Section 3, are smooth maps
between differentiable spaces. So ¹X � �kºk2Z�0 is a cocyclic differentiable space and
¹C dR
� .X ��

k/ºk2Z�0 is a cocyclic chain complex, which gives rise to a mixed complex

.C dR;X�
� ; b; B/ WD

�Y
k�0

C dR
�Ck.X ��

k/; @C ı;Ns.1 � �/
�
:

The smooth S1-action S1 �X ! X also extends trivially to S1 �X ��k ! X ��k

and gives a mixed complex .CX�� ; b; J /.
There is a counterpart of Theorem 3.1 for differentiable S1-spaces, whose proof is

also similar. We omit the details since we will not make essential use of it.
The smooth singular chain complex .C sm

� .X/; @/ of a differentiable space X , intro-
duced in [20, Section 4.7], is defined in a similar way as the singular chain complex of
topological spaces, except that only “strongly smooth” maps�k!X are considered. The
homology of .C sm

� .X/; @/ is denoted by H sm
� .X/.

Smooth singular homology is related to singular homology and de Rham homology in
the following way.
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• Let X be a differentiable space with a fixed compatible topology (Remark 4.1). Then
every strongly smooth map �k ! X is continuous, hence there is a natural inclusion
.C sm
� .X/; @/ ,! .S�.X/; @/.

• C sm
� , C dR

� are functors from the category of differentiable spaces to the category of
chain complexes. Given a cocycle u D .uk/k�0 2 C

dR;pt�
0 D

Q
k�0 C

dR
k
.�k/ in the

class 1 2 R Š H dR
0 .pt/ Š H dR;pt

0 , there is a natural transformation �u W C sm
� ! C dR

�

defined by �u.X/k W C sm
k
.X/! C dR

k
.X/, � 7! ��.uk/. The homotopy class of �u.X/

does not depend on u (since H dR;pt
n D 0 when n > 0).

Assumption 4.4. X is a differentiable space with a fixed compatible topology, such that

the chain maps discussed above induce isomorphisms H�.X/
Š
 � H sm

� .X/
Š
�! H dR

� .X/.

Proposition 4.5. Let X be a set which satisfies Assumption 4.4 and admits an S1-action
that is both smooth (with respect to the differentiable structure) and continuous (with
respect to topology). Then there are natural isomorphisms HCŒv

�1�
� .C dR;X�/ Š HS1

� .X/,
HCŒŒv;v

�1�
� .C dR;X�/Š yHS1

� .X/, as well as HC��.C
dR;X�/ŠHCŒŒv��� .C dR;X�/ŠGS

1

� .X/,
which are compatible with tautological and Connes–Gysin long exact sequences.

Proof. Consider the mixed complex .C sm;X�
� ; b; B/ associated to the cocyclic complex

¹C sm
�Ck

.X � �kºk . For any k � 0, X � �k is a differentiable and topological S1-space
satisfying Assumption 4.4. By construction, the inclusions .C sm

� .X ��
k/;@/ ,! .S�.X �

�k/; @/ commute with the cocyclic maps ıi ; �i ; �k , so there is an inclusion .C sm;X�
� ; b;B/

,! .SX�� ; b; B/. On the other hand, given a choice of u, the chain maps �u.X � �k/� W
C sm
� .X ��

k/! C dR
� .X ��

k/ commute with cocyclic maps since �u is a natural trans-
formation, so we obtain a morphism .C

sm;X�
� ; b;B/! .C

dR;X�
� ; b;B/, whose homotopy

class does not depend on u. Now consider the following commutative diagram of chain
maps:

.SX�� ; b/ .C
sm;X�
� ; b/ .C

dR;X�
� ; b/

.S�.X/; @/ .C sm
� .X/; @/ .C dR

� .X/; @/:

pr0 pr0 pr0

By Lemma 3.3 and Remark 3.4, all vertical arrows are quasi-isomorphisms, and by as-
sumption, the arrows in the second row are quasi-isomorphisms. Thus the arrows in the
first row are quasi-isomorphisms. In this way we obtain quasi-isomorphisms of mixed
complexes .SX�� ; b; B/  .C

sm;X�
� ; b; B/ ! .C

dR;X�
� ; b; B/, and get the desired iso-

morphisms by Lemma 2.3, Theorem 3.1 and Corollary 3.2. Compatibility with long exact
sequences is a consequence of Lemma 2.4 and Lemma 2.9.

Example 4.6. Let M be a closed oriented C1-manifold. It is proved in [20, Section
5, Section 6] that Assumption 4.4 is satisfied for M;Mreg (with manifold topology) and
LM (with Fréchet topology) in Example 4.2. Moreover, LM is an S1-space that Proposi-
tion 4.5 applies to.



Y. Wang 974

4.3. Application to marked Moore loop spaces

Consider the various versions of smooth loop spaces in Example 4.2. The following lemma
is proved in [20, Section 7].

Lemma 4.7. For any closed oriented C1-manifold M and k 2 Z�0, the zig-zag of
smooth maps between differentiable spaces

LMkC1;reg

idLkC1M
������! LMkC1

TD1
 ���- LM

kC1 ,! LM
��k

induces a zig-zag of isomorphisms between de Rham homology groups

H dR
� .L

M
kC1;reg/

Š
�! H dR

� .L
M
kC1/

Š
 � H dR

� .L
M
kC1/

Š
�! H dR

� .L
M
��k/:

The cocyclic structure on ¹LM ��kºk restricts to ¹LM
kC1
ºk . There is also a similar

structure of a cocyclic set on ¹LkC1M ºk as follows. Regarding LkC1M � .…M/kC1,
ıi W LkM ! LkC1M , �i W LkC2M ! LkC1M , �k W LkC1M ! LkC1M are

ıi .T; 
; t1; : : : ; tk�1/ WD

8̂̂<̂
:̂
.T; 
; 0; t1; : : : ; tk�1/ .i D 0/;

.T; 
; t1; : : : ; ti ; ti ; : : : ; tk�1/ .1 � i � k � 1/;

.T; 
; t1; : : : ; tk�1; T / .i D k/;

(4.2a)

�i .T; 
; t1; : : : ; tkC1/ WD .T; 
; t1; : : : ;btiC1; : : : ; tkC1/ .0 � i � k/; (4.2b)

�k.T; 
; t1; : : : ; tk/ WD .T; 

t1 ; t2 � t1; : : : ; tk � t1; T � t1/; (4.2c)

where 
 t1.t/ WD 
.t C t1/. These cocyclic maps are smooth for both ¹LM
kC1
ºk and

¹LM
kC1;regºk . Note that if we view LkC1M � .…M/kC1, then (4.2c) can be written as

�k..T0; 
0/; : : : ; .Tk ; 
k// D ..T1; 
1/; : : : ; .Tk ; 
k/; .T0; 
0//.
Let us write .CL

� ; b; B/ WD .
Q
k�0 C

dR
�Ck

.LM
kC1;reg/; @C ı; Ns.1 � �// for the mixed

total complex of the cocyclic chain complex ¹C dR
� .L

M
kC1;reg/ºk .

Proposition 4.8. For any closed oriented C1-manifold M , there are natural isomor-
phisms HCŒv

�1�
� .CL/ Š HS1

� .LM/, HCŒŒv;v
�1�

� .CL/ Š yHS1

� .LM/, and HC��.C
L/ Š

HCŒŒv��� .CL/ Š GS
1

� .LM/, which are compatible with long exact sequences.

Proof. The smooth maps LM
kC1;reg

id
�! LM

kC1

TD1
 ���- LM

kC1
,! LM ��k commute with

cocyclic maps, inducing a zig-zag of mixed complex morphisms between the mixed total
complexes associated to the cocyclic de Rham chain complexes of these cocyclic differ-
entiable spaces. By Lemma 4.7, this is a zig-zag of mixed complex quasi-isomorphisms.
The rest is obvious in view of Lemma 2.3, Proposition 4.5 and Example 4.6.
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5. Preliminaries on operads and algebraic structures

Let V D ¹Viºi2Z be a (homologically) graded vector space.
A Lie bracket of degree n 2 Z is a Lie bracket on V Œ�n�, namely a bilinear map

Œ; � W V ˝ V ! V of degree n satisfying shifted skew-symmetry and Jacobi identity,

Œa; b� D �.�1/.jaj�n/.jbj�n/Œb; a�; Œa; Œb; c�� D ŒŒa; b�; c�C .�1/.jaj�n/.jbj�n/Œb; Œa; c��:

Note that in this definition, there is no need to apply sign change (A.1).
A structure of a Gerstenhaber algebra is a Lie bracket of degree 1 and a graded com-

mutative (and associative, by default) product � satisfying the Poisson relation

Œa; b � c� D Œa; b� � c C .�1/.jajC1/jbjb � Œa; c�:

A structure of a Batalin–Vilkovisky (BV) algebra is a graded commutative product �
and a linear map � W V� ! V�C1 (called the BV operator) such that �2 D 0, and

�.a � b � c/ D �.a � b/ � c C .�1/jaja ��.b � c/C .�1/.jajC1/jbjb ��.a � c/

��a � b � c � .�1/jaja ��b � c � .�1/jajCjbja � b ��c: (5.1)

By induction, the defining relation (5.1) implies that for any k � 2,

�.a1 � a2 � � � � � ak/ D
X

1�i<j�k

.�1/".i;j /�.ai � aj / � a1 � � � � bai � � � baj � � � � ak
� .k � 2/

X
1�i�k

.�1/ja1jC���Cjak ja1 � � � � ��ai � � � � � ak ; (5.2)

where ".i; j / is from the Koszul sign rule. By [15, Proposition 1.2], a BV algebra is
equivalently a Gerstenhaber algebra with a linear map � W V� ! V�C1 such that �2 D 0
and

Œa; b� D .�1/jaj�.a � b/ � .�1/jaj�a � b � a ��b: (5.3)

Following Getzler [16], a structure of a gravity algebra is a sequence of graded sym-
metric linear maps V ˝k ! V (k � 2) of degree 1, a1 ˝ � � � ˝ ak 7! ¹a1; : : : ; akº (which
we call k-th bracket), satisfying the following generalized Jacobi relations:X

1�i<j�k

.�1/".i;j /¹¹ai ; aj º; a1; : : : ; bai ; : : : ; baj ; : : : ; ak ; b1; : : : ; blº
D

´
¹¹a1; : : : ; akº; b1; : : : ; blº .l > 0/;

0 .l D 0/:

Note that the relation for .k; l/ D .3; 0/ implies that, with sign change (A.1), the second
bracket becomes an honest Lie bracket on V Œ�1�.

The following lemma, which goes back to [3, Theorem 6.1], is well known to experts.
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Lemma 5.1. Let .V�; �; �/ be a BV algebra, W� be a graded vector space, with linear
maps ˛ W W� ! V�, ˇ W V� ! W�C1 such that � D ˛ ı ˇ and ˇ ı ˛ D 0. Then,

(1) W� is a gravity algebra where the brackets W ˝k ! W are

x1 ˝ � � � ˝ xk 7! ¹x1; : : : ; xkº WD ˇ.˛.x1/ � � � � � ˛.xk// .k � 2/: (5.4)

(2) Let Œ; � be the Gerstenhaber bracket (5.3) on V�. Then for any x1; x2 2 W ,

˛.¹x1; x2º/ D .�1/
jx1jŒ˛.x1/; ˛.x2/�:

Proof. To prove (1), first note that since � is graded commutative, ¹x1; : : : ; xkº is graded
symmetric in its variables. Next, the generalized Jacobi relations follow from a straight-
forward calculation based on (5.2) (see the proof of [7, Theorem 8.5]), and is omitted. The
proof of (2) is trivial.

A BV algebra homomorphism between two BV algebras is an algebra homomorphism
that commutes with their BV operators. The case of gravity algebras is similar. The fol-
lowing lemma is obvious.

Lemma 5.2. Suppose there is a commutative diagram of linear maps

W� V� W�C1

W 0� V 0� W 0�C1

˛

f

ˇ

g f

˛0 ˇ 0

such that .V�; W�; ˛; ˇ/ and .V 0�; W
0
�; ˛
0; ˇ0/ satisfy the assumptions in Lemma 5.1, and

g is a BV algebra homomorphism. Then f is a gravity algebra homomorphism (for the
induced structures on W ,W 0).

Next we need to work in the language of operads. We collect some basics below, and
refer the reader to [20, Section 2] or standard references [26, 27] for more details.

Let .C;˝; 1C/ be a symmetric monoidal category. A nonsymmetric operad (ns operad
for short) O in C consists of the following data:

• an object O.k/ in C for each k 2 Z�0;

• morphisms ıi W O.k/˝ O.l/! O.k C l � 1/ for each 1 � i � k and l � 0, called
partial compositions, that are associative: for x 2 O.k/, y 2 O.l/, z 2 O.m/,

.x ıi y/ ıiCj�1 z D x ıi .y ıj z/ .1 � i � k; 1 � j � l; m � 0/; (5.5a)

.x ıi y/ ılCj�1 z D .x ıj z/ ıi y .1 � i < j � k; l � 0; m � 0/I (5.5b)

• a morphism 1O W 1C ! O.1/, which is a two-sided unit for ıi .

An operad is an ns operad such that each O.k/ admits a right action of the symmetric
group Sk (S0 is the trivial group), in a way compatible with partial compositions.
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An (ns) operad in the symmetric monoidal category of dg (resp. graded) vector spaces
is called a (ns) dg (resp. graded) operad. A Koszul sign .�1/jyjjzj should appear in (5.5b)
in graded and dg cases. Taking homology yields a functor from the category of (ns) dg
operads to the category of (ns) graded operads.

Example 5.3. Here are some examples of dg operads and graded operads.

(1) (Endomorphism operad EndV .) For any dg (resp. graded) vector space V�, there is
a dg (resp. graded) operad EndV defined as follows. For each k � 0, EndV .k/� WD
Hom�.V ˝k ; V /, where Hom�.V ˝0; V / D Hom�.R; V / D V�. For 1 � i � k,
l � 0, f 2 Hom�.V ˝k ; V /, g 2 Hom�.V ˝l ; V /, and � 2 Sk ,

.f ıi g/.v1 ˝ � � � ˝ vkCl�1/ WD .�1/
"f .v1 ˝ � � � ˝ g.vi ˝ � � � /˝ � � � /;

.f � �/.v1 ˝ � � � ˝ vk/ WD .�1/
"f .v��1.1/ ˝ � � � ˝ v��1.n//;

1EndV WD idV 2 Hom0.V; V /:

Let O be a (ns) graded operad or dg operad. A structure of algebra over O on V ,
or say an action of O on V , means a morphism O ! EndV as (ns) operads.

(2) (Gerstenhaber operad G er, BV operad BV , and gravity operad G rav.) These are
graded operads that can be defined in terms of generators subject to the relations
defining Gerstenhaber/BV/gravity algebras. A Gerstenhaber/BV/gravity algebra
is exactly an algebra over G er/BV /G rav.

(3) (Ward’s construction [31].) There is a dg operad M	 constructed from certain
“labeled A1 trees”, such that H�.M	/ Š G rav as graded operads, and there are
explicit homotopies measuring the failure of gravity relations on M	 (while the
Jacobi relation for the second bracket strictly holds). For this reason, an algebra
over M	 can be viewed as a gravity algebra up to homotopy. M	 is closely related
to the operad of “cyclic brace operations” (Section 6). There are other important
properties of M	 that we will use later (Proposition 5.6 (5)). Indeed, the notation
of Ward [31] is M˚, but we use M	 for the reason of Remark 5.5.

Definition 5.4. ([20, Definition 2.6, 2.9].) Let O be an ns dg operad.

(1) A cyclic structure .�k/k�0 on O is a sequence of morphisms �k W O.k/! O.k/

(k � 0) such that �kC1
k
D idO.k/, �1.1O/D 1O , and that for any 1 � i � k, l � 0,

x 2 O.k/, y 2 O.l/,

�kCl�1.x ıi y/ D

8̂̂<̂
:̂
�kx ıi�1 y .i � 2/;

.�1/jxjjyj�ly ıl �kx .i D 1; l � 1/;

�2
k
x ık y .i D 1; l D 0/:

(2) A multiplication � and a unit " in O are elements � 2O.2/0, " 2O.0/0 satisfying
@� D 0, � ı1 � D � ı2 �, @" D 0 and � ı1 " D � ı2 " D 1O .
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Remark 5.5. An operad with a cyclic structure is called a cyclic operad. The cyclic rela-
tion in Definition 5.4 differs from some authors (in particular, Ward [31]) in the orientation
of performing cyclic permutation, but they are equivalent. See, e.g., [28, Section 3].

Let O D .O.k//k�0 be an ns dg operad endowed with a multiplication � and a unit ".
Then ¹.O.k/�; @/ºk�0 is a cosimplicial chain complex where ıi W O.k � 1/� ! O.k/�,
�i W O.k C 1/� ! O.k/� (0 � i � k) are

ıi .x/ WD

8̂̂<̂
:̂
� ı2 x .i D 0/;

x ıi � .1 � i � k � 1/;

� ı1 x .i D k/;

�i .x/ WD x ıiC1 ": (5.6)

Denote the associated total complex by . zO�; b/. If there is also a cyclic structure .�k/k�0
on O such that � is cyclically invariant, i.e., �2.�/ D �, then ¹.O.k/�; @/; ıi ; �i ; �kºk�0
is a cocyclic chain complex. Denote the associated mixed complex by . zO�; b; B/.

Proposition 5.6. Let O D .O.k/�; @/k�0 be an ns dg operad. Define binary operations ı
and Œ; � on zO� WD

Q
k�0 O.k/�Ck by the following: for x D .xk/k�0, y D .yk/k�0,

.x ı y/k WD
X

lCmDkC1
1�i�l

.�1/.i�1/.m�1/C.l�1/.jyjCm/xl ıi ym; (5.7a)

Œx; y� WD x ı y � .�1/.jxj�1/.jyj�1/y ı x: (5.7b)

Then for . zO�; @/, statement (1a) below holds true.
If there is a multiplication � and a unit " on O, define a binary operation � on zO� by

.x � y/k WD
X

lCmDk

.�1/ljyj.� ı1 xl / ılC1 ym: (5.8)

Then for . zO�; b/, statements (1b), (2a) below hold true.
If there is a cyclic structure .�k/k�0 on O, then for zOcyc

� DKer.1� �/� zO�, statement
(3) below holds true.

If there is a multiplication �, a unit " and a cyclic structure .�k/k�0 on O such that
�2.�/ D �, then for . zO�; b; B/ and zOcyc

� , the other statements below hold true.

(1) (a) . zO�; @; ı/ is a dg pre-Lie algebra (with shifted grading) such that Œ; � is a Lie
bracket of degree 1.

(b) . zO�; b; ı/ is a dg pre-Lie algebra (with shifted grading) such that Œ; � is a Lie
bracket of degree 1, and . zO�; b; �/ is a dg algebra.

(2) (a) � and Œ; � induce a Gerstenhaber algebra structure on H�. zO; b/.

(b) � and Connes’ operator B induce a BV algebra structure on H�. zO; b/ where
the BV operator is � D B�.

(c) The above two structures on H�. zO; b/ are related by (5.3).
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(3) zOcyc
� is closed under the operation Œ; �. The restriction of Œ; � to zOcyc

� is called the
cyclic bracket.

(4) (a) The BV algebra structure on H�. zO; b/ obtained in (2b) naturally induces
gravity algebra structures on HC��. zO/, HCŒŒv��� . zO/ and HCŒv

�1�
� . zO/Œ�1�.

(b) The map B0� W HCŒv
�1�
� . zO/Œ�1�! HCŒŒv��� . zO/ in (2.1) is a gravity algebra

homomorphism. The map I�� W HC��. zO/ Š HCŒŒv��� . zO/ in (2.5) is a gravity
algebra isomorphism.

(c) The Lie bracket on HC��. zO/Œ�1� induced from (3) coincides with the second
bracket of its gravity algebra structure, up to sign change (A.1).

(5) zOcyc
� admits an action of the operad M	 (see Example 5.3) which covers the cyclic

bracket in (3). Via the isomorphism H�.M	/ Š G rav, this induces a gravity alge-
bra structure on HC��. zO/ which is the same as that in (4a).

Proof. Statements (1), (2a) are exactly [20, Theorem 2.8 (i)–(iii)], which in turn follows
from [31, Lemma 2.32]. Statements (2b), (2c) follow from [20, Theorem 2.10], which
in turn is a consequence of [31, Theorem B]. Note that [20, Theorem 2.10] uses the
normalized subcomplex zOnm

� , but there is no difference on homology: as explained in
[20, Section 2.5.4], the BV operator is just induced by Connes’ operator B D Ns on zOnm.

Statement (3) is a straightforward consequence of [31, Corollary 3.3]. Alternatively,
it is quite handy to use definition of cyclic structures to verify that if �kixi D .�1/kixi
(xi 2 O.ki /, i D 1; 2), then �k1Ck2�1Œx1; x2� D .�1/

k1Ck2�1Œx1; x2�.
Statement (4a) is an application of Lemma 5.1 (1) to a part of the exact sequences

(2.2), (2.6). Note that there is a transition between (co)homological gradings.

• For HCŒŒv��� , take V� D H�. zO; b/, W� D HCŒŒv��� . zO/, ˛ D p0�, and ˇ D B�.

• For HCŒv
�1�
��1 , take V� D H�. zO; b/, W� D HCŒv

�1�
� . zO/Œ�1� D HCŒv

�1�
��1 .

zO/, ˛ D B0�,
and ˇ D i�.

• For HC��, take V� D H�. zO; b/, W� D HC��. zO/, ˛ D i��, and ˇ D B�. Here the con-
dition ˛ ı ˇ D � is satisfied because of Lemma 2.9.

Statement (4b) follows from Lemma 5.2, Lemma 2.1 and Lemma 2.9. Statement (4c)
follows from Lemma 5.1 (2) and statement (2c).

Statement (5) is a consequence of [31, Theorem C], where the Maurer–Cartan element
� D .�k/k�2 is taken as �2 D �� and �k D 0 (k ¤ 2).

To see statement (5) covers statement (3), we need a concrete description of the action
of M	 on zOcyc

� . For arity 2 it is the same as cyclic brace operations (see Example 6.3).

Remark 5.7. The sign in (5.7a) comes from operadic suspension (see Appendix A.3).
Indeed, zO D .

Q
n�0 sO.n//Œ�1�.

Remark 5.8. Indeed, [20, Theorem 2.8 and 2.10] and [31, Theorem A and B] contain
much stronger statements than Proposition 5.6 (1), (2) which we do not need (e.g., exis-
tence of an action of a chain model of the (framed) little 2-disks operad on zO or zOnm).
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Proposition 5.6 (1), (2) themselves were known much earlier, e.g., see [28, Section 1.2
and Theorem 1.3].

Example 5.9. Let .A�; d; �/ be a dg algebra with unit 1A. Then EndA admits a multiplica-
tion and a unit given by �.a1 ˝ a2/ WD a1 � a2, " WD 1A. Viewing A as a dg A-bimodule,
the cosimplicial maps ıi ; �i in Example 2.7 are the same as (5.6) for .EndA;�;"/ in (1). To
discuss cyclic structures, suppose there is a graded symmetric bilinear form h; i WA�A!
R of degree m 2 Z, such that

d ha; bi D hda; bi C .�1/jajha; dbi; hab; ci D ha; bci .8a; b; c 2 A/:

Namely,A is a dg version of a Frobenius algebra, but we do not require dimRA to be finite
or h; i to be nondegenerate. Note that since h; i is symmetric, the relation hab; ci D ha; bci
is equivalent to h; i being cyclic, i.e.,

hab; ci D .�1/jaj.jbjCjcj/hbc; ai: (5.9)

Now consider A_Œm� with a dg A-bimodule structure characterized by (2.9) (the degree
of ' 2 A_Œm� is now shifted). The degree 0 map

� W A! A_Œm�I �.a/.b/ WD ha; bi .8a; b 2 A/ (5.10)

is a dg A-bimodule map, and Hom.�; �/ W Hom�.A˝k ; A/! Hom�.A˝k ; A_Œm�/ is a
morphism of cosimplicial complexes. ¹Hom�.A˝k ; A_Œm�/ D Hom�Cm.A˝kC1;R/ºk�0
is moreover cocyclic with cyclic permutations .�k/k�0 given in Example 2.7.

If � happens to be an isomorphism, then ¹Hom.�; �/�1 ı �k ıHom.�; �/ºk�0 endows
.EndA;�; "/ with a cyclic structure. All statements of Proposition 5.6 hold for O D EndA.

If � is a quasi-isomorphism, then AEndA D CH�.A;A/ and CH�.A;A_Œm�/ are quasi-
isomorphic through a natural map induced by � . In this case, let us examine the statements
(1)–(5) in Proposition 5.6 for O D EndA.

(1)0 Statement (1) still holds honestly (it is irrelevant to � ).

(2)0 Statement (2a) holds honestly (it is irrelevant to � ). Statements (2b), (2c) “hold
weakly” in the following sense: Connes’ operator B on CH�.A; A_Œm�/ induces
a BV operator on HH�.A; A/ Š HH�.A; A_Œm�/, making HH�.A; A/ into a
BV algebra, which is compatible with its Gerstenhaber algebra structure. This
is proved by Menichi [29, Theorem 18].

(3)0 Statement (3) “holds weakly” in the sense that the subspace of weakly cyclic
invariants in CH�.A; A/, ‚�1.CH�cyc.A; A

_Œm�//, is closed under the bracket
(5.7b), and hence is a dg Lie subalgebra. Here‚ W CH�.A;A/! CH�.A;A_Œm�/
is the cochain map induced by (5.10), and CH�cyc.A;A

_Œm�/ WD Ker.1� �/ is the
subcomplex of cyclic invariants in CH�.A; A_Œm�/, with respect to the cocyclic
structure on ¹Hom�Cm.A˝kC1;R/ºk�0. This result is rather simple and should
be well known, e.g., it is stated without proof in [30, Lemma 4].
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(4)0 Statement (4) “holds weakly” in the following sense: there are gravity alge-
bra structures on HC��.A; A

_Œm�/ Š HC�ŒŒu��.A; A
_Œm�/ Š HC�ŒŒu��.A; A/ and on

HC�
Œu�1�

.A; A_Œm�/ Š HC�
Œu�1�

.A; A/, induced by the BV algebra structure on
HH�.A;A/ Š HH�.A;A_Œm�/ described in (3)0.

(5)0 Statement (5) “holds weakly” by Corollary 6.8, which largely generalizes (3)0.

Remark 5.10. Statements (3)0, (5)0 above hold true even if � W A! A_Œm� is not a quasi-
isomorphism. If � is a quasi-isomorphism, then so is ‚ W CH.A; A/! CH.A; A_Œm�/.
If ‚ also restricts to a quasi-isomorphism ‚�1.CHcyc.A; A

_Œm�//! CHcyc.A; A
_Œm�/,

then the structures in (3)0, (5)0 are compatible with those in (2)0, (4)0.

Remark 5.11. Statement (3)0 in Example 5.9 is irrelevant to the algebra structure on A. It
holds true when A is just a graded vector space endowed with a symmetric bilinear form
h; i WA�A!R of degreem. In this case, we shall write‚�1.

Q
k�0Hom�Cmcyc .AkC1;R//

in place of ‚�1.CH�cyc.A;A
_Œm�//.

6. Cyclic brace operations

This section is devoted to the proof of Theorem 1.3. Recall zO WD
Q
k�0 O.k/ if O is dg

operad, and zOcyc WD Ker.1 � �/ � zO if O is a dg cyclic operad .

Definition 6.1 (Brace operations via concrete formulas). Let O be a dg operad. For each
n 2 Z�0, define an .nC 1/-ary operation on zO as follows. When n D 0, for a 2 O.r/, let
a¹º WD a. When n > 0, for a 2 O.r/ and bj 2 O.tj / (1 � j � n), let

a¹b1; : : : ; bnº WD
X
i1;:::;in

˙.� � � ..a ıi1 b1/ ıi2 b2/ � � � ıin bn/; (6.1)

where the summation is taken over tuples .i1; : : : ; in/ 2 Zn�1 satisfying ijC1 � ij C tj and
in � r � nC 1C

Pn�1
lD1 tl . The sign˙ is from iteration of (A.2).

Brace operations were first described by Getzler [14] in Hochschild context (generaliz-
ing the Gerstenhaber bracket [12] which corresponds to nD 2) and later by Gerstenhaber–
Voronov [13] in operadic context. There is also an interpretation of brace operations via
planar rooted trees, going back to the “minimal operad” of Kontsevich–Soibelman [24]
(see also [9, Sections 7–9]), which allows for a variation in the cyclic invariant set-
ting ([31]).

Let us fix terminologies about trees before moving to more details.

• A tree without tails is a contractible 1-dimensional finite CW complex. A 0-cell is
called a vertex; the closure of a 1-cell is called an edge (identified with Œ0; 1�).

• A tree with tails is a tree without tails attached with copies of Œ0; 1/ called tails by
gluing each 0 2 Œ0; 1/ to some vertex.
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The set of vertices, edges and tails in a tree T is denoted by VT , ET and LT , respec-
tively. The set of edges and tails at v 2 VT is denoted by Ev and Lv , respectively. The
valence of a vertex v is the number jEv [ Lvj. The arity of a vertex is its valence �1.

• An oriented tree is a tree with a choice of direction for each edge, from one vertex to
the other. Such a choice of directions is called an orientation of the tree.

• A rooted tree is a tree with a choice of a distinguished tail called the root.

Every rooted tree is naturally oriented by directions towards the root.

• A planar tree is a tree with a cyclic order on Ev [ Lv for each vertex v.

Every planar tree can be embedded into the plane in a way unique up to isotopy, so
that at each vertex v, the cyclic order on Ev [ Lv is counterclockwise.

Every planar rooted tree T carries a natural total order on ET [ LT , which can be
obtained by moving counterclockwise along the boundary of a small tubular neighborhood
of T in the plane. It starts from the root and is compatible with the cyclic order onEv [Lv
for each v 2 VT , and also restricts to total orders on ET , LT and Ev , Lv for each v 2 VT .

• An n-labeled tree is a tree T with a bijection between ¹1; 2; : : : ; nº and VT . If the
number of vertices is not specified, it is just called a labeled tree.

The vertex with label i in an n-labeled tree T is denoted by vi .T /, with arity ai .T /.
The notion of isomorphisms of trees (with various structures) is obvious. We shall view
isomorphic trees as the same.

For n 2 Z�1, let Bs.n/ be the set of n-labeled planar rooted trees without non-root
tails, and let B.n/ be the vector space spanned by Bs.n/. Let xBs.n/ be the set of n-labeled
planar rooted trees with tails, and let xB.n/ be the vector space spanned by xBs.n/.

Given T 0 2 xB.n/ and k D .k1; : : : ; kn/ 2 Zn�0, define a set

T .T 0; k/ WD ¹T 00 2 xBs.n/ j T 00 can be obtained by attaching tails to T 0

so that ai .T 00/ D ki (1 � 8i � n)º: (6.2)

Definition 6.2 (Brace operations via trees). Let O be a dg operad. Define linear maps

�n W B.n/! Hom. zO˝n; zO/; x�n W xB.n/! Hom. zO˝n; zO/

as follows: �n is the restriction of x�n. For T 0 2 xBs.n/ and fi 2 O.ki / (1 � i � n),

x�n.T
0/.f1; f2; : : : ; fn/ WD

X
T 002T .T 0;k/

˙x�n.T
00/.f1; f2; : : : ; fn/;

where by convention summation over the empty set is zero. If ai .T 0/ D ki (1 � i � n),
then x�n.T 0/.f1; : : : ; fn/ is the operadic composition of f1; : : : ; fn in the obvious way
described by T 0, where fi is assigned to vi .T 0/. The sign˙ is from iteration of (A.2).

Definition 6.1 and Definition 6.2 describe the same operations on zO, as explained
below. Consider ˇn 2 Bs.nC 1/ characterized byEˇnD¹e1; : : : ; enº, VˇnD¹v1; : : : ; vnC1º
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where vi is labeled by i , Lˇn D ¹l1º, v1 D l1 \ e1 \ � � � \ en, viC1 2 ei (1 � 8i � n),
and the cyclic order on Ev1 [ Lv1 is .l1; e1; : : : ; en/. Then �nC1.ˇn/ 2 Hom. zO˝nC1; zO/
is exactly given by (6.1). Moreover, putting B.n/ in degree n � 1, B D ¹B.n/º carries
a reduced (meaning B.0/ D 0 and B.1/ D R) graded operad structure (see [31, Defi-
nitions 2.11 and 2.13]) so that ¹ˇnºn�0 generates B under operadic compositions and
symmetric permutations, and

� D ¹�nº W B! End zO (6.3)

is a morphism of operads. B is called the brace operad, which tautologically controls brace
operations on brace algebras, i.e., algebras over B. We have just seen that zO is naturally a
brace algebra. For the purpose of this paper we omitted details of operadic compositions
on B but explained how � is defined.

In [31, Section 3.2], Ward introduced an operad B	 which he called cyclic brace
operad. Let Bs

	
.n/ be the set of oriented n-labeled planar trees without tails. Then B	.n/

is the graded vector space spanned by Bs
	
.n/ modulo the relation that reversing direction

on an edge produces a negative sign. If there is no risk of confusion, we will by abuse
of notation not distinguish T	 2 Bs	.n/ from its image in B	.n/. There is a morphism of
operads � W B	 ! B, which is induced by maps

�sn W B
s
	
.n/! B.n/; T	 7!

X
T2R1.T	/

.�1/".T	;T /T; (6.4)

where R1.T	/ is the set of labeled planar rooted trees that can be obtained by adding
a root to the (non-rooted) tree underlying T	, and ".T	; T / is the number of edges in
ET	

D ET whose direction from T	 does not agree with the direction from the rooted
structure of T . Here and hereafter, in appropriate contexts we use f s to denote a set-
theoretic map which induces a linear map f .

A natural example of cyclic brace algebras, i.e., algebras over B	, is as follows.

Example 6.3 ([31, Corollary 3.11]). Let zO be a dg cyclic operad. Consider zOcyc � zO and
� W B! End zO in (6.3). For T 2 Bs

	
.n/, �.T / 2 B.n/ and .� ı �/.T / 2 Hom. zO˝n; zO/.

Restricting .� ı �/.T / to zOcyc gives an element in Hom.. zOcyc/˝n; zO/. Moreover, if fi 2
O.ki / (1 � i � n) are cyclic invariant, then so is .� ı �/.T /.f1; : : : ; fn/. (Such a claim
appears in [31, Theorem 5.5] where it is referred to [31, Proposition 3.10], but there is
no direct proof given in [31]. We will give a direct proof in a slightly different situation.)
Hence � ı � gives a morphism B	 ! End zOcyc .

Definition 6.4 (Cyclic brace operations). Let O be a dg cyclic operad. The cyclic brace
operations on zOcyc are those characterized by the linear maps

�n ı �n W B	.n/! Hom.. zOcyc/˝n; zOcyc/

discussed in Example 6.3.
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Remark 6.5. It seems hard to write a direct formula for cyclic brace operations on zOcyc

in terms of operadic compositions, in a way as explicit as (6.1).

Consider xBs
	
.n/ � Bs

	
.n/ and xB	.n/ � B	.n/ by extending the definitions to labeled

planar trees with tails. There is a forgetful map

wsn W xB
s.n/! xBs

	
.n/ n Bs

	
.n/

forgetting the choice of root but keeping the orientation from rooted structure. Note that
wsn induces wn W xB.n/! xB	.n/=B	.n/. There is also a map

rsn W xB
s
	
.n/ n Bs

	
.n/! xB.n/; T 0

	
7!

X
T 02R0.T

0
	
/

.�1/".T
0
	
;T 0/T 0;

where R0.T
0
	
/ is the set of n-labeled planar rooted trees obtained by choosing one of the

tails in T 0
	

as the root, and ".T 0
	
; T 0/ is defined similar to ".T	; T / in (6.4).

It is clear that .wn ı rn/.T 0	/ D jR0.T
0
	
/j � T 0

	
. To describe rn ı wn, consider a map

t sn W xB
s.n/! xBs.n/

so that T 0 and t sn.T
0/ are the same after forgetting the root, and the root of t sn.T

0/ is
the first non-root tail of T 0 (if there are no non-tail roots then t sn.T

0/ D T 0). Then for any
T 0 2R0.T

0
	
/, we have R0.T

0
	
/D ¹T 0; t sn.T

0/; : : : ; .t sn/
p.T 0/º, where p D jR0.T

0
	
/j � 1.

It follows that

.rn ı wn/.T
0/ D ".T 0

	
; T 0/ � rn.T

0
	
/ D

X
0�i�jR0.T

0
	
/j�1

.�1/".T
0;t in.T

0//
� t in.T

0/: (6.5)

Here ".T 0; t in.T
0// is the number of edges in ET 0 D Et in.T 0/ whose direction towards the

root of T 0 does not agree with the direction towards the root of t in.T
0/.

Given k D .k1; : : : ; kn/ 2 Zn�0, define a map

�sk W B
s
	
.n/! xB	.n/; T	 7!

X
T 0

	
2T .T	;k/

T 0
	
;

where T .k; T	/ � xBs	.n/ is defined similar to T .k; T / in (6.2).

Lemma 6.6. Let O be a dg operad. For any T	 2 Bs	.n/ and fi 2 O.ki / (1 � i � n),
there holds

.�n ı �
s
n/.T	/.f1; : : : ; fn/ D .x�n ı rn ı �

s
k/.T	/.f1; : : : ; fn/:

Proof. Consider the set of labeled planar rooted trees whose vertices have arities equal to
k D .k1; : : : ; kn/ in accordance with the labeling. Such a set can be represented as[

T2R1.T	/

T .T; k/ D
[

T 0
	
2T .T	;k/

R0.T
0
	
/;

and the result follows.
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In the rest of this section, we take O D EndA, where A is a dg algebra endowed with a
symmetric, cyclic, bilinear form h; i of degreem. Recall from Example 5.9 that h; i induces
� W A! A_Œm� and ‚ W CH.A; A/! CH.A; A_Œm�/. To deal with signs, we may work
with AŒ1� instead of A. As explained in Appendix A, the symmetric bilinear form h; i on
A becomes anti-symmetric on AŒ1�, and the cyclic permutation �k on Hom.A˝kC1;R/
reads as z�k D .�1/k�k D � on Hom.AŒ1�˝kC1;R/. Since s.EndA/ Š EndAŒ1�, there is
no need to take operadic suspension of B	, and B	.n/ stands in degree 0 when dealing
with AŒ1�.

Since the pairing h; i is not necessarily nondegenerate, there is not always a cyclic
structure on EndA compatible with cyclic permutations on ¹Hom.A˝kC1;R/º via the map
Hom.A˝k ; A/! Hom.A˝k ; A_Œm�/ induced by h; i, so the discussion of Example 6.3
does not directly apply here. However, the following is true.

Proposition 6.7. There is a natural action of B	 on ‚�1.
Q
k�0 Hom�Cmcyc .A˝kC1;R//.

Proof. (This proposition is irrelevant to the multiplication on A; compare Remark 5.11.)
Similar to Example 6.3, it suffices to show if T	 2 Bs	.n/ and fi 2 Hom.A˝ki ; A/ is
weakly cyclic invariant in the sense that �.� ı fi /D � ı fi , then .� ı �/.T	/.f1; : : : ; fn/

is weakly cyclic invariant. This is immediate from Lemma 6.6 and Lemma 6.9 below.

Corollary 6.8. The cochain complex .‚�1.CHcyc.A; A
_Œm�//; d C ı/ admits an action

of M	. Moreover, if � is a quasi-isomorphism and ‚ restricts to a quasi-isomorphism
from‚�1.CHcyc.A;A

_Œm�// to CHcyc.A;A
_Œm�/, this M	-action lifts the gravity algebra

structure on HC��.A; A
_Œm�/ induced by the BV algebra structure on HH�.A; A_Œm�/

(see Example 5.9 (4)0).

Proof. As explained in the proof of [31, Theorem 5.5], to show M	 acts on the space of
weakly cyclic invariants, it suffices to consider cyclic brace operations, which is nothing
but Proposition 6.7. In more details, Ward [31] defined a dg operad M using “A1-labeled
planar rooted black/white trees” (M is isomorphic to the “minimal operad” of Kontsevich–
Soibelman [24]), and M	 is the non-rooted version of M. M contains B as a graded sub-
operad, and acts on CH.A; A/ extending brace operations. What M does more than B to
CH.A;A/ is generated by the operation .f; g/ 7! �A¹f; gº where �A 2 Hom.A˝2; A/ is
the multiplication. The action of M	 on ‚�1.CHcyc.A; A

_Œm�// comes from an operad
morphism M	 ! M which extends the morphism B	 ! B from (6.4). Therefore, that
‚�1.CHcyc.A;A

_Œm�// is closed under the action of M	 on CH.A;A/ essentially follows
from Proposition 6.7 and weakly cyclic invariance of �A, i.e., (5.9).

Now we explain why the M	-action induces exactly the gravity algebra structure from
the BV structure on homology under quasi-isomorphism assumptions; this is just by def-
inition. The gravity algebra structure on HC��.A; A

_Œm�/ follows from Lemma 5.1 and
(2.6) with V� D HH��.A; A/ D HH��.A; A_Œm�/, W� D HC��� .A; A_Œm�/, ˛ D i��,
ˇ D B�. The product � (5.8) on CH.A;A/ is just the cup product .f;g/ 7!�A¹f;gº, so the
k-th gravity bracket (5.4) on HC�.A;A_Œm�/ is induced by the operation .f1; f2; : : : ; fk/
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7! �A¹f1; �A¹f2; �A¹� � � ; �A¹fk�1; fkº � � � ººº at chain level, which is represented by
a certain black/white tree with k � 1 adjacent black vertices labeled by �A. Edges with
both black vertices in such a tree should be contracted, creating a new tree with a single
black vertex, see [31, Appendix A, (A.10)]. This gives exactly the trees representing the
generators of H�.M	/, see [31, Definition 5.12, Figure 2].

Lemma 6.9. Let T 0
	
2 xB	.n/, T 0 2R0.T

0
	
/, fi 2Hom.AŒ1�˝ki ;AŒ1�/where ki D ai .T 0/

(1 � i � n). Suppose every fi is weakly cyclic invariant. Then

� ı ..x�n ı rn/.T
0
	
/.f1; : : : ; fn// D ".T

0
	
; T 0/ �N.� ı .x�n.T

0/.f1; : : : ; fn///:

Proof. In view of (6.5), it suffices to prove the following equality:

� ı ..x�n ı tn/.T
0/.f1; : : : ; fn// D ".T

0; tn.T
0// � �.� ı .x�n.T

0/.f1; : : : ; fn///: (6.6)

If there is only one tail or only one vertex (equivalently, no edges) in T 0, then tn acts
trivially on xB.n/, and (6.6) is obvious. Now suppose there are at least two tails and at
least one edge in T 0. Then there is a unique path in T 0 connecting the root l1 to the first
non-root tail l2, consisting of successive edges with successive vertices vi1 ; vi2 ; : : : ; vik
(k � 1), where vi1 , vik are vertices of l1, l2, respectively. Note that these k � 1 successive
edges are the only edges in T 0 whose directions towards l1 and l2 disagree, so

".T 0; tn.T
0// D k � 1:

If k D 1, (6.6) simply follows from cyclic invariance of � ı fi1 .
If k � 2, for each j 2 ¹1; : : : ; k � 1º, denote the edge joining vij to vijC1 by Œvij ; vijC1 �,

which is identified with Œ0; 1�. By removing 1
2
2 Œvij ; vijC1 � for all 1 � j � k � 1, T 0 is cut

into k pieces, where the j -th (1 � j � k) piece Tj contains vij . By regarding Œvij ;
1
2
/ and

.1
2
; vijC1 � as tails, these pieces become labeled planar trees, where the planar structures

are induced from T 0, and the vertex labeling is in the same order as T 0: say the vertices
of Tj are labeled by ij;1 < ij;2 < � � � < ij;nj in T 0, then put their labels as 1; 2; : : : ; nj
in Tj . Let T 0j;� (resp. T 0j;C) be the labeled planar rooted tree obtained by choosing the tail
.1
2
; vij � (resp. Œvij ;

1
2
/) in Tj as the root, where .1

2
; vi1 � is indeed l1 and Œvik ;

1
2
/ is indeed l2.

Suppose .1
2
; vij � (resp. Œvj ; 12 /) is the pj -th (resp. qj -th) non-root tail in the total order on

Lvij from the planar rooted structure of T 0j;C (resp. T 0j;�). Since l2 is the first non-root tail
in T 0, we have q1 D � � � D qk D 1, and

p1 C � � � C pk � k C 1 D jLT 0 j � 1 D k1 C � � � C kn C 1 � n DW K:

Denote

FCj WD x�nj .T
0
j;C/.fij;1 ; : : : ; fij;nj /; F �j WD x�nj .T

0
j;�/.fij;1 ; : : : ; fij;nj /:

Then for any x1; : : : ; xKC1 2 AŒ1�, there holds (Koszul sign .�1/" is taken w.r.t. AŒ1�)

h.x�n ı tn/.T
0/.f1; : : : ; fn/.x1 ˝ � � � ˝ xK/; xKC1i

D .�1/"hFC
k
ıpk .F

C

k�1
ıpk�1 .� � � ıp2 F

C
1 //.x1 ˝ � � � ˝ xK/; xKC1i

D .�1/"hF �k .� � � ˝ xpk�1/; F
C

k�1
ıpk�1 .� � � ıp2 F

C
1 /.xpk ˝ � � � /i

D �.�1/"hFC
k�1
ıpk�1 .� � � ıp2 F

C
1 /.xpk ˝ � � � /; F

�
k .� � � ˝ xpk�1/i; (6.7)
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where the second equality follows from cyclic invariance of � ı fik , and the third equality
follows from (anti-)symmetry of h; i. Iterating the above calculation by cyclic invariance
of � ı fik�1 ; � ı fik�2 ; : : : ; � ı fi1 and (anti-)symmetry of h; i, we see that (6.7) is equal to

.�1/k.�1/"hxp1C���Cpk�kC1; F
�
1 ıq1 .F

�
2 ıq2 .� � � ıqk�1 F

�
k //.� � � ˝ xp1C���Cpk�k/i

D .�1/k�1.�1/"hF �1 ı1 .F
�
2 ı1 .� � � ı1 F

�
k //.xKC1 ˝ x1 ˝ � � � ˝ xK�1/; xKi

D .�1/".T
0;tn.T

0//.�1/"hx�n.T
0/.f1; : : : ; fn/.xKC1 ˝ x1 ˝ � � � /; xKi:

Since z�K on Hom.AŒ1�˝K; AŒ1�_Œm�/ corresponds to � on Hom.A˝K; A_Œm�/, this proves
(6.6). The proof is now complete.

Remark 6.10. It is easy to generalize Proposition 6.7 toA1 algebras with cyclic invariant
symmetric bilinear forms (not necessarily nondegenerate), and the proof is similar.

7. Chain level structures in S 1-equivariant string topology

In this section, we describe chain level structures in S1-equivariant string topology, based
on the previous results. Let us first review the initial homology level structures discovered
by Chas–Sullivan, and the chain level construction due to Irie.

Example 7.1 (String topology BV algebra and gravity algebra). Let M be a closed ori-
ented manifold and LM be its free loop space. It was discovered by Chas–Sullivan in [3,4]
that:

• There is a BV algebra structure .�; �/ on H�.LM/ WD H�CdimM .LM/. Here � is
induced by the S1-action of rotating loops (i.e.,�D J� where J is defined by (2.11)),
� is induced by concatenation of crossing loops and is called the loop product. The
associated Gerstenhaber bracket is called the loop bracket. We call this BV algebra
the string topology BV algebra.

• There is a gravity algebra structure on HS1

�CdimM�1.LM/ (as an application of Lem-
ma 5.1 to a part of the Gysin sequence (2.13a)), whose second bracket is the string
bracket ([3, Theorem 6.1]) up to sign (A.1). We call this gravity algebra the string
topology gravity algebra.

A similar application of Lemma 5.1 to a part of the Connes–Gysin sequence (2.2b) for
the mixed complex .S�.LM/; @; J /, together with Lemma 2.1 and Lemma 5.2, yields the
following lemma.

Lemma 7.2. For any closed oriented manifold M , there is a gravity algebra structure
on GS

1

�CdimM .LM/, such that the natural map HS1

�CdimM�1.LM/! GS
1

�CdimM .LM/ in
(2.12) is a morphism of gravity algebras.
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Example 7.3 (Irie’s construction [20]). Given any closed oriented C1-manifold M , one
can associate to M an ns cyclic dg operad .OM ; .�k/k�0; �; "/ with a multiplication and
a unit, defined by:

• For each k 2 Z�0, .OM .k/�; @/ WD .C dR
�CdimM .L

M
kC1;reg/; @/.

• For each k 2 Z�1; k0 2 Z�0 and j 2 ¹1; : : : ; kº, the partial composition ıj WOM .k/˝
OM .k

0/! OM .k C k
0 � 1/ is defined by

x ıj x
0
WD .conj /�.xevj�ev0x

0/;

where evj�ev0 is the fiber product of de Rham chains with respect to evaluation maps
evj W LMkC1;reg !Mreg and ev0 W LMk0C1;reg !Mreg (it is well defined because of a
submersive condition), and conj W LkC1M evj�ev0Lk0C1M ! LkCk0M is the concate-
nation map defined by inserting the second loop into the first loop at the j -th marked
point.

• For each k 2 Z�0, �k W OM .k/� ! OM .k/� is induced by (4.2c).

• 1OM WD .M; i1; 1/ 2 OM .1/0, � WD .M; i2; 1/ 2 OM .2/0, " WD .M; i0; 1/ 2 OM .0/0.
Here for k � 0, ik WM ! LkC1M is the map p 7! .0; 
p; 0; : : : ; 0/, where 
p is the
constant loop of length 0 at p 2M .

By [20, Theorem 3.1 (ii)], there is an isomorphism H�. zOM ; b/ Š H�.LM/ of BV alge-
bras, where these BV algebra structures are from Proposition 5.6 and Example 7.1, respec-
tively. (The crucial thing about zOM is the chain level structure which refines the string
topology BV algebra, but we do not need to use it.)

Let .�.M/�; d;^/ be the dg algebra of differential forms on M . For each k � 0,
there is a chain map Ik WC dR

�CdimM .L
M
kC1;reg/!Hom��.�.M/˝k ;�.M//, called iterated

integral of differential forms: for �1; : : : ; �k 2 �.M/,

Ik.U; '; !/.�1 ˝ � � � ˝ �k/ WD .�1/
"0.'0/Š.! ^ '

�
1�1 ^ � � � ^ '

�
k�k/;

where "0 WD .dimU � dimM/.j�1j C � � � C j�kj/ and 'j WD evj ı ' (0 � j � k). More-
over, I D .Ik/k�0 W OM ! End�.M/ is a morphism of ns dg operads preserving multi-
plications and units ([20, Lemma 8.5]).

The paring h˛; ˇi WD
R
M
˛ ^ ˇ is a graded symmetric bilinear form on ��.M/ of

degree m D � dimM , in line with Example 5.9. The induced dg �.M/-bimodule map
� W ��.M/! .�.M/_Œ� dimM�/� is a quasi-isomorphism by Poincaré duality, hence
induces a quasi-isomorphism

‚ W CH.�.M/;�.M//
'
�! CH.�.M/;�.M/_Œ� dimM�/: (7.1)

Lemma 7.4. The composition

� ı Ik W OM .k/� ! Hom��.�.M/˝k ; �.M/_Œ� dimM�/ .k � 0/ (7.2)

is a morphism of cocyclic complexes.
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Proof. The composition ¹� ı Ikºk is one of cosimplicial maps, so it suffices to check
�k ı � ı Ik D � ı Ik ı �k , which is a simple computation by definition.

According to Lemma 7.4, ‚ ı I W zOM ! CH.�.M/; �.M/_Œ� dimM�/ preserves
cyclic invariants. Moreover, the following is true.

Lemma 7.5. The chain map

I W . zO
cyc
M /� ! ‚�1.CH��cyc.�.M/;�.M/_Œ� dimM�// (7.3)

is a morphism of M	-algebras.

Proof. First, (7.3) is a morphism of B	-algebras since I WOM ! End�.M/ is a morphism
of ns operads, and the (cyclic) brace operations on the associated complexes are defined
using operadic compositions. Then by the proof of Corollary 6.8, to show (7.3) is a mor-
phism of M	-algebras, it suffices to show I2.�/ D ^, where � D .M; i2; 1/ 2 OM .2/ is
the multiplication in OM . But this is obvious from definition.

Theorem 7.6. For any closed oriented C1-manifold M , the ns dg operad OM with
.�k/k�0, �, " in Example 7.3 gives rise to the following data:

(1) A chain complex zOcyc
M WD Ker.1 � �/ � zOM which is an algebra over M	. In par-

ticular, H�. zO
cyc
M / carries a gravity algebra structure.

(2) An isomorphismH�. zO
cyc
M /ŠGS

1

�CdimM .LM/ of gravity algebras, where the grav-
ity algebra structure on GS

1

�CdimM .LM/ is as in Lemma 7.2.

(3) A morphism I W . zO
cyc
M /� ! ‚�1.CH��cyc.�.M/;�.M/_Œ� dimM�// of M	-alge-

bras, such that the induced map in homology fits into the following commutative
diagram of gravity algebra homomorphisms:

HS1

�CdimM�1.LM/ HC��C1
Œu�1�

.CH.�.M/;�.M/_Œ� dimM�//

HC��ŒŒu��.CH.�.M/;�.M/_Œ� dimM�//

GS
1

�CdimM .LM/ HC��� .CH.�.M/;�.M/_Œ� dimM�//:

1

2

3

(2.5)

4

(7.4)

Here, arrows 1, 4 are induced by (7.2), arrow 2 is as in (2.12), arrow 3 is as
in (2.1). The gravity algebra structures are those on the (negative) S1-equivariant
homology of LM (Example 7.1, Lemma 7.2) and on the (negative) cyclic coho-
mology of �.M/ (Example 5.9) in view of the Poincaré duality.

Proof. Statement (1) follows from Proposition 5.6 (5). Statement (2) follows from Propo-
sition 5.6 (4) and Proposition 4.8. As for statement (3), I is defined in Lemma 7.5; arrows
2, 3 are gravity algebra homomorphisms by Proposition 5.6 (4) and Example 5.9; arrows
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1, 4 are gravity algebra homomorphisms by Lemma 7.4, Lemma 2.4 and Lemma 5.2; dia-
gram (7.4) commutes by Lemma 2.4. Strictly speaking, since the grading of OM .k/� has
been shifted by dimM from C dR

� .L
M
kC1;reg/, there is a minor sign change for ı (2.4) in

zOM compared to CL (the same thing happens in [20, Lemma 8.4]), and thus we should
repeat the proof of Proposition 4.8 under new signs and use new isomorphisms to make
the diagram commute without question of signs, but this is straightforward.

Remark 7.7. Theorem 7.6 (1) is an easy combination of work of Irie and Ward, so it is
not new. But it was not known before whether the chain level structures in statement (1)
correctly fit with known homology level structures in string topology (it was not even
known whether H�. zO

cyc
M / is isomorphic to the S1-equivariant homology of LM ), so

statement (2) is new. As for statement (3), some (perhaps not all) of the homology level
statements are known, see the discussion after Theorem 1.3; the chain level statement is
more crucial, and is new because the result that M	 (nontrivially) acts on

‚�1.CH��cyc.�.M/;�.M/_Œ� dimM�//

is new (Corollary 6.8).

Remark 7.8. It is known that if M is simply connected, then the iterated integral map
I W . zOM /� ! CH��.�.M/;�.M// is a quasi-isomorphism (proved by K. T. Chen [5]
and improved by Getzler–Jones–Petrack [17]). In this case, Lemma 2.3 implies that arrows
1, 4 in (7.4) are isomorphisms of gravity algebras.

Note that arrow 4 in (7.4) is not exactly induced by I , but is the composition ‚� ı I�.
The author does not know an answer to the following question.

Conjecture 7.9. For any closed oriented C1-manifold M , the quasi-isomorphism (7.1)
restricts to a quasi-isomorphism on (weakly) cyclic invariants,

‚�1.CH��cyc.�.M/;�.M/_Œ� dimM�//
'
�! CH��cyc.�.M/;�.M/_Œ� dimM�/:

A. Sign rules

A.1. Koszul sign rule

Compared to ungraded formulas, a sign .�1/jajjbj is produced in a graded setting whenever
a symbol a travels across another symbol b. For example if A;B are graded vector spaces,
the graded tensor product of graded linear maps f W A! B and g W C ! D, f ˝ g W
A˝ C ! B ˝D, is defined by .f ˝ g/.v ˝ w/ D .�1/jgjjvjf .v/˝ g.w/.

A.2. Sign change rule for (de)suspension

Let C D ¹C iºi2Z be a graded vector space. For any n 2 Z, define a shifted graded vec-
tor space C Œn� D ¹C Œn�iºi2Z by C Œn�i WD C iCn. (In homological grading this turns into
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C Œ�n��i WDC�i�n.) C Œ�1� is often denoted by†C and is called the suspension of C . Let
s W C ! C Œ�1�; x 7! sx be the shifted identity map which is of degree 1. By the Koszul
sign rule, for x1; : : : ; xk 2 C ,

s˝k.x1 ˝ � � � ˝ xk/ D .�1/
Pk
iD1.k�i/jxi jsx1 ˝ � � � ˝ sxk : (A.1)

Here jxi j denotes the degree of xi in C , and the sign .�1/.k�i/jxi j comes from exchanging
positions of k � i copies of s with that of xi . The sign change (A.1) identifies the graded
exterior algebra of C with the graded symmetric algebra of C Œ�1�, as

.s ˝ s/..�1/jx1jjx2jx2 ˝ x1/ D .�1/
jx1j..�1/1Cjsx1jjsx2jsx2 ˝ sx1/:

The same rule applies to the sign change between A and AŒ1�, the desuspension of A.

A.3. Operadic suspension

Let .O; ıi / be a dg operad in cohomological grading. The operadic suspension of O is a
dg operad .sO/ with partial compositions Qıi satisfying

sO.n/ D O.n/Œ1 � n�;

a Qıi b D .�1/
.i�1/.m�1/C.n�1/jbIO.m/j; (A.2)

where a 2 sO.n/, b 2 sO.m/, jbIO.m/j is the degree of b in O.m/. For an explanation
of signs (which comes from the Koszul sign rule), see, e.g., [20, Section 2.5.4].

When O D EndA is the endomorphism operad of a dg algebra A, there is an isomor-
phism of dg operads sO D s.EndA/ Š EndAŒ1�. Therefore, for signs related to s.EndA/,
one may alternatively use the Koszul sign rule forAŒ1� and perform (A.1) when necessary.

A.4. Cyclic permutation

If .O; ıi / is a cyclic dg operad, then .sO; Qıi / also carries a cyclic structure where z�k D
.�1/k�k under the naive identification sO.k/ D O.k/. On the other hand, let A be a dg
algebra, consider the cocyclic complex ¹Hom.A˝kC1;R/; �kº and the operation z�k on
Hom.AŒ�1�˝kC1;R/ induced by �k under the linear isomorphism s W A! AŒ�1�. Then
the following equality says z�k D .�1/k�k after sign change (A.1):

z�k ı s
˝kC1

D z�k ı .s
˝k
˝ s/ D .�1/k.s ˝ s˝k/ ı �k ;

where s˝k applies to x1 ˝ � � � ˝ xk 2 A˝k and s applies to xkC1 2 A. Therefore, when
discussing cyclic homology theories of A under the naive identification A D AŒ�1�, the
subspace of cyclic invariants in C.k/ is Ker.1 � �/ D Ker.1 � z�k/ and the operator N
satisfies N jC.k/ D

Pk
iD0 �

i D
Pk
iD0 z�

i
k

.
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