J. Noncommut. Geom. 18 (2024), 995-1039 ©2023 European Mathematical Society
DOI 10.4171/INCG/546 Published by EMS Press
This work is licensed under a CC BY 4.0 license

Relative Poisson bialgebras and Frobenius
Jacobi algebras

Guilai Liu and Chengming Bai

Abstract. Jacobi algebras, as the algebraic counterparts of Jacobi manifolds, are exactly the unital
relative Poisson algebras. The direct approach of constructing Frobenius Jacobi algebras in terms of
Manin triples is not available due to the existence of the units, and hence alternatively we replace
it by studying Manin triples of relative Poisson algebras. Such structures are equivalent to certain
bialgebra structures, namely, relative Poisson bialgebras. The study of coboundary cases leads to
the introduction of the relative Poisson Yang—Baxter equation (RPYBE). Antisymmetric solutions
of the RPYBE give coboundary relative Poisson bialgebras. The notions of @-operators of relative
Poisson algebras and relative pre-Poisson algebras are introduced to give antisymmetric solutions
of the RPYBE. A direct application is that relative Poisson bialgebras can be used to construct
Frobenius Jacobi algebras, and in particular, there is a construction of Frobenius Jacobi algebras
from relative pre-Poisson algebras.

1. Introduction

The aim of this paper is to give a bialgebra theory for relative Poisson algebras, in which
one of the motivations is to construct Frobenius Jacobi algebras.

1.1. Generalizations of Poisson algebras

Poisson algebras arose in the study of Poisson geometry ([9,30,39]) and are closely related
to a lot of topics in mathematics and physics. Recall that a Poisson algebra is a vector
space A equipped with two bilinear operations -, [—,—] : A ® A — A such that (4,-)isa
commutative associative algebra, (A4, [—, —]) is a Lie algebra and they are compatible in
the sense of the Leibniz rule,

z,x-y] =z, x]-y+x-[z,¥], Vx,y,z € A. €))

There are generalizations of Poisson algebras such as noncommutative Poisson alge-
bras in which the commutativity of the associative algebras is canceled ([40]) or variations
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of algebraic structures by changing the compatible condition (1) (cf. [8, 15,34]). Among
the latter, Jacobi algebras are abstract algebraic counterparts of Jacobi manifolds ([26,31]),
which are generalizations of symplectic or more generally Poisson manifolds. Recall that
a Jacobi manifold is a smooth manifold endowed with a bivector A and a vector field E
satisfying some compatible conditions, or equivalently, it is a smooth manifold M such
that the commutative associative algebra A := C (M) of real smooth functions on M is
endowed with a Lie bracket [—, —] satisfying

[z.x-yl=[z.x]-y+x-[z.y] + x-y-[la.z],  Vx,y.z€A4, ()

where 14 is the unit of A. Correspondingly, a Jacobi algebra is a triple (A4, -, [—, —]), such
that (A, -) is a unital commutative associative algebra, (A4, [—, —]) is a Lie algebra, and
they satisfy equation (2).

Taking z = 14 in equation (2), one gets

(Mg, x -yl =[la,x]-y + x-[l4, y], Vx,y € A.

Hence ad(14) is a derivation of both (4, -) and (A4, [—, —]), where ad(14)(x) = [14, x] for
all x € A. Therefore there is the following natural generalization of a Jacobi algebra.

Definition 1.1. A relative Poisson algebra is a quadruple (4, -, [—, —], P), where (4, -) is
a commutative associative algebra, (A4, [—, —]) is a Lie algebra, P is a derivation of both
(A,-) and (A4, [—, —]), that is, P satisfies the following conditions:

P(x-y)=P(x)-y+x-P(y),
P([x,y]) = [P(x), y] + [x, P(y)],

for all x, y € A, and the relative Leibniz rule is satisfied, that is,
[z,x-y]=[z,x]-y+x-[z,y] + x-y- P(2), Vx,y,z € A. 3)
We also denote it simply by (A4, P).

A relative Poisson algebra (4, -, [—, —], P) is called unital if (4, -) is a unital commu-
tative associative algebra. There is a one-to-one correspondence between Jacobi algebras
and unital relative Poisson algebras: a Jacobi algebra (4, -, [—, —]) is a unital relative Pois-
son algebra (4, -,[—, —],ad(14)), whereas a unital relative Poisson algebra (4, -, [—, —], P)
is a Jacobi algebra since one gets P(x) = [l4, x] for all x € A by equation (3). Moreover,
one can derive unital relative Poisson algebras (and thus Jacobi algebras) from not neces-
sarily unital ones (see Lemma 5.5). That is, relative Poisson algebras not only generalize
Jacobi algebras in a natural way, but also provide a good supplement for the latter. It is
also natural to consider the possible geometry related to relative Poisson algebras, which
is still little known and will be an interesting topic in the future study.

On the other hand, relative Poisson algebras are motivated by different approaches. In
fact, they appeared first in a graded form under the name of generalized Poisson super-
algebras ([12]), which arose in the classification of a class of simple Jordan superalgebras,
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named Kantor series ([21,25]). See [13,23] for more details and the related topics. Note
that there are other different algebraic structures also called generalized Poisson algebras
([36,38]). Hence we adopt the present notion of relative Poisson algebras.

Note that any Poisson algebra can be viewed as a relative Poisson algebra with the
derivation P = 0. On the other hand, a relative Poisson algebra (4, -, [—, —], P) in which
the commutative associative algebra (A4, -) is trivial, that is, x - y = 0 for all x, y € A, is
exactly the structure consisting of a Lie algebra (A, [—, —]) and a derivation P of it. A less
trivial example of a relative Poisson algebra is given as follows.

Example 1.2. Let (A, ) be a commutative associative algebra with a derivation P. Define
[x,y]=x-P(y)— P(x) -y, Vx,y € A. 4)

Then (A4, [—, —]) is a Lie algebra and (A4, -, [—, —], P) is a relative Poisson algebra.

1.2. Frobenius Jacobi algebras and relative Poisson bialgebras

It is important to study Frobenius algebras due to their close relationships with many areas
such as topology, algebraic geometry, category theory, Hochschild cohomology and graph
theory ([7,19,27,29]). An associative algebra (4, -) is called Frobenius ([10, 18]) if there
exists a nondegenerate bilinear form $B which is invariant in the sense that

B(x-y,z) = B(x,y-2), Vx,y,z € A. (5)

Note that if (A, -) is unital and commutative, then equation (5) requires B to be symmetric.
Such bilinear forms on associative algebras reflect a certain natural symmetry, character-
izing the so-called Frobenius property. In the context of Lie algebras, that is, a Lie algebra
(g, [—, —]) equipped with a nondegenerate bilinear form B which is invariant in the sense
that

B([x,yl.2) = B(x.[y.z]),  Vx,y.z€g, (6)

is called self-dual ([17]). When 8B is symmetric, such a structure is also called a quadratic
([35]) or a metric Lie algebra ([22]).

In order to study the Frobenius property of Jacobi algebras, the notion of Frobenius
Jacobi algebras was introduced in [1]. That is, a Jacobi algebra (4, -, [, —]) is called
Frobenius if there exists a nondegenerate symmetric bilinear form B on A such that equa-
tions (5) and (6) hold. To get more examples of Frobenius Jacobi algebras is obviously an
important problem.

An important class of quadratic Lie algebras is given by the following construction of
(standard) Manin triples of Lie algebras ([14]). Suppose that g is a Lie algebra and there
exists a Lie algebra structure on the linear dual space g*, such that there is a Lie algebra
structure on the direct sum g @ g* of vector spaces including g and g* as Lie subalgebras
and the bilinear form

Ba(x +a*,y +b*) = (x,b*) + (a*, y), Vx,y €gq,a* b* €q”, @)
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on g @ g* is invariant. Then, (g & g*, g, g*) is called a (standard) Manin triple of Lie
algebras and obviously, the Lie algebra g @ g* with the symmetric nondegenerate bilin-
ear form B, given by equation (7) is a quadratic Lie algebra. The above construction in
the context of associative algebras is called a double construction of a Frobenius alge-
bra ([7]), whereas in the context of Poisson algebras is called a Manin triple of Poisson
algebras ([37]).

On the other hand, the above constructions also correspond to certain bialgebra struc-
tures with different motivations and applications. A bialgebra is a coupling of an algebra
and a coalgebra satisfying certain compatible conditions. In fact, a Manin triple of Lie
algebras is equivalent to a Lie bialgebra ([14, 16]) which serves as the algebraic structure
of a Poisson-Lie group and plays an important role in the infinitesimalization of a quan-
tum group. A double construction of a Frobenius algebra is equivalent to an antisymmetric
infinitesimal bialgebra ([2, 4,5, 7]), which is a special infinitesimal bialgebra introduced
by Joni and Rota in order to provide an algebraic framework for the calculus of divided
differences ([20]). A Manin triple of Poisson algebras is equivalent to a Poisson bialge-
bra ([37]), which naturally fits into a framework to construct compatible Poisson brackets
in integrable systems.

Therefore in order to get Frobenius Jacobi algebras, it is natural to consider generaliz-
ing the above construction to the case of Jacobi algebras, that is, to consider the analogue
structures like “Manin triples of Jacobi algebras” or “double constructions of Frobe-
nius Jacobi algebras” and the corresponding bialgebra structures. Unfortunately, such an
approach is unavailable, since in general a unital commutative associative algebra cannot
be decomposed into the direct sum of the underlying vector spaces of two unital commuta-
tive associative subalgebras. That is, the structure of Manin triples does not make sense for
Jacobi algebras due to the existence of the units in the commutative associative algebras.
On the other hand, alternatively, the approach is still available for relative Poisson alge-
bras, that is, “Manin triples of relative Poisson algebras” make sense for relative Poisson
algebras without “the constraint of the units”. More interestingly, we still may get exam-
ples of Frobenius Jacobi algebras from Manin triples of relative Poisson algebras due to
the fact that a unital commutative associative algebra might be decomposed into the direct
sum of the underlying vector spaces of two commutative associative subalgebras, in which
one of them is unital.

In this paper, we realize the above approach for relative Poisson algebras to construct
Frobenius Jacobi algebras. Explicitly, we introduce the notions of Manin triples of relative
Poisson algebras and the corresponding bialgebra structures, namely, relative Poisson bi-
algebras. The equivalence between them is interpreted in terms of matched pairs of relative
Poisson algebras. Relative Poisson bialgebras share some similar properties of Lie bi-
algebras or antisymmetric infinitesimal bialgebras. In particular, there are also coboundary
cases which lead to the introduction of an analogue of the classical Yang—Baxter equation
in a Lie algebra, called relative Poisson Yang—Baxter equation (RPYBE) in a relative
Poisson algebra. Antisymmetric solutions of the RPYBE in relative Poisson algebras give
rise to coboundary relative Poisson bialgebras, whereas the notions of (-operators of
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relative Poisson algebras and relative pre-Poisson algebras are introduced to construct
such solutions. Moreover, one can get Frobenius Jacobi algebras from relative Poisson
bialgebras satisfying some additional conditions, and in particular, there is a construction
of Frobenius Jacobi algebras from relative pre-Poisson algebras.

1.3. Layout of the paper

The paper is organized as follows.

In Section 2, we introduce the notions of representations and matched pairs of relative
Poisson algebras. The condition that a relative Poisson algebra is dually represented is
considered in order to construct a reasonable representation on the dual space. There is
a relationship between representations of relative Poisson algebras and representations
of Jacobi algebras. We also explain why there is not a “matched pair theory” for Jacobi
algebras.

In Section 3, we introduce the notion of Manin triples of relative Poisson algebras,
which are equivalent to certain matched pairs of relative Poisson algebras. Then we intro-
duce the notion of relative Poisson bialgebras as the equivalent structures to the two former
structures.

In Section 4, the coboundary relative Poisson bialgebras are studied, leading to the
introduction of the RPYBE in a relative Poisson algebra. Antisymmetric solutions of the
RPYBE in relative Poisson algebras give rise to coboundary relative Poisson bialgebras.
The notions of (@-operators of relative Poisson algebras and relative pre-Poisson alge-
bras are introduced to construct antisymmetric solutions of the RPYBE and hence relative
Poisson bialgebras.

In Section 5, we give a construction of Frobenius Jacobi algebras from relative Poisson
bialgebras. In particular, Frobenius Jacobi algebras can be obtained from relative pre-
Poisson algebras.

Throughout this paper, unless otherwise specified, all the vector spaces and algebras
are finite-dimensional over an algebraically closed field K of characteristic zero, although
many results and notions remain valid in the infinite-dimensional case.

2. Representations and matched pairs of relative Poisson algebras

In Section 2.1, we introduce the notion of a representation of a relative Poisson algebra.
The case when a relative Poisson algebra is dually represented is then studied, which
gives a reasonable representation on the dual space. We also give a relationship between
representations of relative Poisson algebras and representations of Jacobi algebras given
in [1]. In Section 2.2, we introduce the notion of matched pairs of relative Poisson algebras
and explain that a “matched pair theory” is not available for Jacobi algebras.
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2.1. Representations of relative Poisson algebras and Jacobi algebras

Let (A4, -) be a commutative associative algebra. A pair (u, V) is called a representation
of (A,-)if V is a vector space and i : A — End(V') is a linear map satisfying

pux - y) = p(x)m(y), Vx,y € A.

Moreover, if (A, -) is unital with the unit 14, then the representation is assumed to be
unital, that is, we assume pu(ly4)v = v, Vv € V. In fact, (u, V) is a representation of a
(unital) commutative associative algebra (4, -) if and only if the direct sum A & V of
vector spaces is a (unital) commutative associative algebra (the semi-direct product) by
defining the multiplication on A @ V by

x+u)-(y+v)=x-y+ pnx)v+ pny)u, Vx,y € A, u,v eV. 8)

We denote it by A x,, V. If 14 is the unit of (A4, -), then it is also the unit of 4 x,, V.

Let £ : A — End(A) be a linear map defined by £(x)(y) = x - y for all x, y € A.
Then (&£, A) is a representation of (A4, -), called the adjoint representation of (A, -).

Let V be a vector space. For a linear map ¢ : A — End(V'), define a linear map ¢* :
A — End(V*) by

{e*(x)u*, v) = —(u™, p(x)v), VxeA u*eV* veV,

where (—, —) is the ordinary pair between V and V*. If (i, V) is a representation of a
commutative associative algebra (A4, -), then (—u™*, V*) is also a representation of (4, -).
In particular, (—£*, A*) is a representation of (4, -).

Similarly, let (A, [—, —]) be a Lie algebra. A pair (p, V) is called a representation of
(A,[—,—]) if V is a vector space and p : A — End(V') is a linear map satisfying

p([x, y]) = [p(x), p(¥)], Vx,y € A.

In fact, (p, V') is a representation of a Lie algebra (A, [—, —]) if and only if A @ V is a Lie
algebra (the semi-direct product) by defining the multiplication on A & V by

[x +u,y+v] =[x,y]+ px)v — p(y)u, Vx,y € A, u,vev. ©)

We denote it by A x, V.

Letad : A — End(A) be a linear map defined by ad(x)(y) = [x, y] forall x, y € A.
Then (ad, A) is a representation of (A, [—, —]), called the adjoint representation of
(A, [, —]). Moreover, if (p, V) is a representation of a Lie algebra (A, [—, —]), then
(p*, V*) is also a representation of (A, [—, —]). In particular, (ad*, A*) is a representa-
tion of (4, [—, —]).

Definition 2.1. Let (4, -, [—, —], P) be a relative Poisson algebra, (i, V') be a represen-
tation of the commutative associative algebra (A4, -) and (p, V') be a representation of the
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Lie algebra (4, [, —]). We say the two representations (i, V') and (p, V') are compatible,
or (u, p, V) is a compatible structure on (A, P) if the following equation holds:

PV p(x)v = pm(x)p(y)v + p(lx, yDv—pu(x- P(y))v =0,  Vx,ye A, veV. (10)

If in addition, there is a linear map o : V' — V satisfying

a(u(x)v) — u(P(x))v — u(x)a(v) = 0, (11)
a(p(x)v) — p(P(x))v — p(x)a(v) = 0, (12)
p(x - y)v — u(x)p(y)v — w(y)p(x)v + p(x - y)a(v) =0, (13)

forall x,y € A,v € V, we say the quadruple (u, p, o, V) is a representation of (A, P).
Two representations (w1, p1, o1, V1) and (2, p2, a2, V2) of a relative Poisson algebra
(A, P) are called equivalent if there exists a linear isomorphism ¢ : V7 — V5 such that
P(u1(x)v) = p2(x)e(v),
e(p1(x)v) = p2(X)p(v), VxeAdvel (14)
p(a1(v)) = a2(p(v)),
For vector spaces V; and V5, and linear maps ¢; : Vi — Vi and ¢ : Vo — V5, we
abbreviate ¢; + ¢, for the linear map
Vi@V — V1 8 Vs,
ier ! 2 ! 2 VU] c Vl, Uy € V2.
Pviev, (V1 +v2) == 1(v1) + @2(v2),

Proposition 2.2. Let (A, P) be a relative Poisson algebra, V be a vector space, and
w,p:A—End(V)anda :V — V be linear maps. Define two bilinear operations -, [—, —]
on A @V by equations (8) and (9) respectively. Then (A® V,-,[—,—], P + «) is a relative
Poisson algebra if and only if (1, p,a, V) is a representation of (A, P). We denote this
relative Poisson algebra structure (semi-direct product) on A @ V by (A, , V, P + a)
or simply (AX V, P + ).

The proof is omitted since this result is a special case of the matched pairs of relative
Poisson algebras in Proposition 2.17, when A, = V is equipped with the zero multiplica-
tion.

Example 2.3. Let (4, P) be a relative Poisson algebra. Then (&£, ad, P, A) is a represen-
tation of (A, P), called the adjoint representation of (A, P).

Lemma 2.4. Let (A, P) be a relative Poisson algebra. If (i, p, V') is a compatible struc-
ture on (A, P), then (—u*, p*, V*) is also a compatible structure on (A, P).

Proof. Forallx,y € A,u™ € V*, v eV, wehave
(=p* ™ (x) + pu* () p* (y) — 1™ ([x, y]) + u*(x - P(y))u*, v)
= (u*, p(Y)(x)v — p(x)p(y)v + w(lx, yhv — u(x - P(y))v) = 0.

Hence the conclusion holds. [
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Let V1, V5 be two vector spaces and T : V3 — V, be a linear map. Denote the dual
map T* : V) — V" by

(v, T*(v3)) = (T(v1), v3), Vv, € V1, v3 € V5

Proposition 2.5. Let (A, P) be a relative Poisson algebra and (u, p, V') be a compati-
ble structure on (A, P). Let B : V — V be a linear map. Then (—u*, p*, B*,V*) is a
representation of (A, P) if and only if the following equations are satisfied:

u(x)B(v) — w(P(x))v — B(u(x)v) = 0, (15)
p(x)B(v) — p(P(x))v — B(p(x)v) =0, (16)
—p(x - y)v + p(y)u(x)v + p(x)u(y)v + B(u(x - y)v) =0, (17)

forallx,y € A,velV.

Proof. Forallx,y € A,u* € V*,v € V, we have

(™ (P o)™ 4+ p* () B* ™) — B*(u* (x)u™), v)
= (u*, —p(P(x))v — B(p(x)v) + u(x)B(v)),

{(p* (P(x)u™ + p*(x)B* (u™) — B*(p* (x)u™), v)
= (u*, —p(P(x))v — B(p(x)v) + p(x)B(v)),

(p* (x - y)u™ + p* ()p* (Y)u™ + p* ()" (u* — p*(x - y)B* "), v)
= (u*, —p(x - y)v + p()p(xX)v + p(x)u(y)v + B(u(x - y)v)).

Then by Definition 2.1, (—u*, p*, 8%, V*) is a representation of (A4, P) if and only if
equations (15)—(17) hold. [ ]

Definition 2.6. Let (A4, P) be a relative Poisson algebra and (i, p, V) be a compatible
structure on (4, P). Let B : V — V be a linear map. If (—u*, p*, B*, V*) is a represen-
tation of (A4, P), that is, equations (15)—(17) hold, then we say that 8 dually represents
(A, P) on (1, p, V). When (u, p, V) is taken to be (£, ad, A) which is the compati-
ble structure of the relative Poisson algebra (A, P) composing the adjoint representation
(£, ad, P, A), we simply say that 8 dually represents (A, P).

By Proposition 2.5, we have the following conclusion.

Corollary 2.7. Let (A, P) be a relative Poisson algebra. A linear map Q : A — A dually
represents (A, P) if and only if the following equations are satisfied:

x-Q(y)—Px)-y—0(x-y)=0, (18)
[x, O] = [P(x),y] — O([x,y]) =0, 19)
[x,y-z]+[y,z-x]+[z,x-y] + Q(x-y-2) =0, (20

forall x,y,z € A.
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Proposition 2.8. Let (A, P) be a relative Poisson algebra, (j4, p,a, V') be a representation
of (A, P)and B : V — V be a linear map.

(1) Equation (15) holds if and only if the following condition holds:
(@ + A (u()v) —px)(@+ p)(v) =0,  Vxed velV.  (21)

(2) Equation (16) holds if and only if the following condition holds:
@+ p)(p(x)v) —p(xX)(@ + p)(v) =0,  VxedveV.  (22)

(3) Equation (17) holds if and only if the following equation holds:
(¢ + B)(u(x-yv) =0, Vx,ye A, veV. (23)

(4) If equation (15) holds, then equation (23) holds if and only if the following equa-
tion holds:
px-y)a+pv=0  Vx,yed vel. (24)

Proof. Letx,y € Aandv € V.
(1) By equation (11), we have
p(x)B) — n(P)v = B(p(x)v) = —(a + B)(n(x)v) + u(x) (e + B)(v).

Hence equation (15) holds if and only if equation (21) holds.
(2) By equation (12), we have

PP ) — p(P(X))v = B(p(x)v) = —(a + B)(p(x)v) + p(x)(a + B)(v).

Hence equation (16) holds if and only if equation (22) holds.
(3) We have

—p(x-y)v+ p(yY)u(x)v + p(x)u(y)v + Bu(x - y)v)

= pw(x)p()v = ()P + 1(x - ) (®) + p(¥)(x)
+ p(x)u(y)v + B(u(x - y)v)
u(x - P(y)) — p([x. yDv — p(y)p(x)v + u(y - P(x)) — u([y. xPv
—p(X)u(y)v + u(x - y)a(v) + p(Y)u(x)v + p(x)w(y)v + B(p(x - y)v)
= w(P(x-y)v + u(x - y)a(v) + f(u(x - y)v)
= (@ + Bulx -y,

Thus equation (17) holds if and only if equation (23) holds.
(4) If equation (15) holds, then by equation (11) again, we have

(@ + B)u(x-y)v = pu(x-y)B) —u(P(x-y)v + pn(P(x-y)v + pu(x - y)a(v)
= p(x - y) (e + P,

Hence in this case, equation (23) holds if and only if equation (24) holds. ]

(10)
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Corollary 2.9. Let (i, p,a, V') be a representation of a relative Poisson algebra (A, P).
Then —a dually represents (A, P) on (u, p, V') automatically, that is, (—u*, p*, —a™*, V'*)
is a representation of (A, P). In particular, — P dually represents (A, P).

Proof. The first part of the conclusion follows from Proposition 2.8 since § = —a« sat-
isfies equations (21)—(23). The second part of the conclusion follows immediately when
(u, p,a, V) is taken to be the adjoint representation (£, ad, P, A). |

Corollary 2.10. Let (A, P) be a relative Poisson algebra and Q : A — A be a linear
map. Then Q dually represents (A, P) if and only if equations (18), (19) and the following
equation hold:

(P+0Q)x-y-z)=0, Vx,y,z € A. (25)

In particular, if Q dually represents (A, P), then the following equation holds:
x.y.(P—i-Q)(Z):O, VX,y,ZEA. (26)

Proof. 1t follows from Proposition 2.8 when the representation (i, p, o, V) is taken to be
the adjoint representation (&£, ad, P, A) of (A4, P). [

At the end of the subsection, we give a relationship between representations of Jacobi
algebras and representations of (unital) relative Poisson algebras.

Definition 2.11 ([1]). Let (4, -, [—, —]) be a Jacobi algebra. A triple (i, p, V) is called
a representation of (A, -, [—, —]) if (i, V) is a representation of the unital commutative
associative algebra (4, ), (p, V) is a representation of the Lie algebra (4, [—, —]), and
they satisfy the following conditions:

p(x - y)v — u(x)p(y)v — w(y)p(x)v + u(x - y)p(lg)v = 0, (27)
PV p(x)v — u(x)p(y)v + p(x, yhv — pu(x - [1a, yhv = 0, (28)

forallx,y €e A,veV.
The following conclusion is a direct consequence of [1, Theorem 3.2].

Proposition 2.12. Suppose that (A, -, [—, —]) is a Jacobi algebra, V is a vector space and
i, p: A— End(V) are linear maps. Then (i, p, V) is a representation of (A, -, [—, —]) if
and only if there is a Jacobi algebra structure on the direct sum A @ V of vector spaces,
where the bilinear operations - and [—,—] on A @ V are given by equations (8) and (9)
respectively. We denote this Jacobi algebra structure on A® V by Awx, , V.

Proposition 2.13. Let (A, -, [—, —]) be a Jacobi algebra and (A, -, [—, —], ad(14)) be the
corresponding unital relative Poisson algebra. Then (u, p, V') is a representation of the
Jacobi algebra (A, -,[—, —]) if and only if (i, p, p(14), V) is a representation of the unital
relative Poisson algebra (A, -, [—, —], ad(14)).
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Proof. Suppose that (i, p, V) is a representation of the Jacobi algebra (A4, -, [—, —]). Then
A, oV is also a Jacobi algebra with the unit 14. Since

[14,x +u] =14, x] + p(1g0)u = (ad(14) + p(14))(x + u), Vxe A, vev,

we have that (4 %, , V,ad(14) + p(14)) is a unital relative Poisson algebra. Hence by
Proposition 2.2, (u, p, p(14), V) is a representation of the unital relative Poisson algebra
(A,-,[—,—],ad(14)). Conversely, by a similar proof, the conclusion is obtained. [

Corollary 2.14. Let (i, p, V') be a representation of a Jacobi algebra (A, -,[—, —]). Then
(—p*, p*, V*) is also a representation of (A, -, [—, —]).

Proof. Since
(p*(lA)M*,’U) = (M*,—p(lA)U) = (—(p(lA))*M*, l)), Yu* e V*’ v € V?

we have p*(14) = —(p(14))*. If (u, p, V) is a representation of a Jacobi algebra
(A, -, [—,—]), then by Proposition 2.13, (u, p, p(14), V) is a representation of the uni-
tal relative Poisson algebra (4, -, [—, —], ad(14)). By Corollary 2.9,

(_M*’ p*» _(p(lA))* = IO*(IA)’ V*)

is a representation of the unital relative Poisson algebra (4, -, [—, —], ad(14)). By Proposi-
tion 2.13 again, (—u*, p*, V*) is a representation of the Jacobi algebra (4,-,[—,—]). =

Remark 2.15. Note that for a representation (i, p, V') of a Jacobi algebra (4, -, [—, —]),
(—p*, p*, V*) is automatically a representation of (4, -, [—, —]) without any additional
condition, whereas in [1], there is the following additional equation for (—u*, p*, V*) to
be a representation of the Jacobi algebra (4, -, [—, —]):

—p(x - y)v + p(M)u(x)v + p(x)u(y)v — p(ly)u(x - y)v = 0, Vx,yeAd veV

(29)
In fact, equation (29) is not needed, that is, by a direct proof, equation (29) can be obtained
by equations (27) and (28).

2.2. Matched pairs of relative Poisson algebras

We first recall the notions of matched pairs of commutative associative algebras ([7]) and
Lie algebras ([33]) respectively.

Let (A1,-1) and (A5, -2) be two commutative associative algebras, and (i1, A2) and
(p2, A1) be representations of (A1, 1) and (A3, -2) respectively. If the following equations
are satisfied:

n1(x)(a-2b) = (ni1(x)a) 2 b + p1(u2(a)x)b,
pa(@)(x -1 y) = (u2(a)x) -1y + pa(pi(x)a)y,
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forall x,y € Ay,a,b € Ay, then (Ay, Aa, 1, 42) is called a matched pair of commutative
associative algebras. In this case, there exists a commutative associative algebra structure
on the vector space A; @ A, given by

(x+a)-(y+b)=x-1y+ u2a)y + pa(b)x
+a2b+ pr1(x)b+ pn1(y)a, Vx,y € A1, a,b € A,. (30)

Moreover, every commutative associative algebra which is the direct sum of the underly-
ing vector spaces of two subalgebras can be obtained from a matched pair of commutative
associative algebras.

Let (A1, [—,—]1) and (43, [—, —]2) be two Lie algebras, and (p1, A>) and (pz, A1) be
representations of (Aq, [—, —]1) and (A3, [—, —]2) respectively. If the following equations
are satisfied:

p1(x)[a, bl — [p1(x)a, bl — [a, p1(x)b]2 + p1(p2(a)x)b — p1(p2(b)x)a = 0,
p2(a@)[x, yI1 — [p2(a)x, y]1 — [x, p2(@)y]1 + p2(p1(x)a)y — p2(p1(y)a)x = 0,

forall x,y € Ay,a,b € A,, then (A1, A2, p1, p2) is called a matched pair of Lie algebras.
In this case, there is a Lie algebra structure on the vector space A1 @ A, given by

[x +a.y +b] = [x.yh + p2(a)y — p2(b)x
+ [a,b]a + p1(x)b — p1(¥)a, Vx,y € A1,a,b € A,.  (31)

Moreover, every Lie algebra which is the direct sum of the underlying vector spaces of
two subalgebras can be obtained from a matched pair of Lie algebras.
Now we consider the case of relative Poisson algebras.

Definition 2.16. Let (Ay,-1,[—,—]1, P1) and (A5, 2, [—, —]2, P») be two relative Poisson
algebras. Suppose that (w1, p1, P2, A2) is a representation of (A4y, -1, [—, —]1, P1) and
(2, p2, Py, Ay) is a representation of (A, 2, [—, —]2, P2), such that (Ay, Az, i1, 12) is
a matched pair of commutative associative algebras and (A1, A2, p1, p2) is a matched pair
of Lie algebras. Suppose that the following compatible conditions are satisfied:

p2(a)(x -1 y) + p2(p1(¥)a)x — x -1 pa(a)y + pa(p1(x)a)y

=y -1 p2(@)x — p2(P2(a))(x -1 y) =0, (32)
p1(x)(a 2 b) + pi(p2(b)x)a —a -2 p1(x)b + p1(p2(a)x)b

—b - pi(x)a—p1(P1(x))(a-2b) =0, (33)
p2(p1(x)a)y + [pa(a)x, yli — x -1 p2(a)y + pa(p1(y)a)x

— pa(@)([x, y]1) + p2(@)(x -1 P1(y)) =0, (34)
p1(p2(a)x)b + [pi(x)a, bla —a -2 p1(x)b + p1(p2(b)x)a

— u1(x)([a, b]2) + p1(x)(a 2 P2(b)) =0, (35)

forall x,y € Ay, a,b € A,. Such a structure is called a matched pair of relative Poisson
algebras (A1, P1) and (A2, P>). We denote it by (A1, P1). (A2, P2). i1, p1, U2, p2).
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Proposition 2.17. Suppose that (A, P1) and (A2, Py) are relative Poisson algebras. For
linear maps ji1,p1: A1 — End(Ay) and p2, p2 : Ay — End(Ay), define two bilinear oper-
ations - and [—, —] on A1 & A, by equations (30) and (31) respectively. Then (A, & A,
- [—, =], P1 + P2) is a relative Poisson algebra if and only if (A1, P1), (A2, P2), 1, p1,
2, p2) is a matched pair of relative Poisson algebras. In this case, we denote this relative
Poisson algebra by (A1 < Ay, Py + P,). Moreover, every relative Poisson algebra which
is the direct sum of the underlying vector spaces of two subalgebras can be obtained from
a matched pair of relative Poisson algebras.

Proof. Tt is known that (A & A, ) is a commutative associative algebra if and only if

(A1, Az, 1, 42) is a matched pair of commutative associative algebras and (4; & A,,

[—,—]) is a Lie algebra if and only if (A1, A2, p1, p2) is a matched pair of Lie algebras.
Letx,y € Aj,a,b € A,. By equation (31), we have

(P1 + P2)([x +a,y + b)) = Pi([x, y]1 + p2(a)y — p2(b)x)
+ Pa([a. b]z + p1(x)b — p1(y)a).

[(P1+ P2)(x +a),y +b] = [P1(x), y]1 + p2(P2(a)y) — p2(b) P1(x)
+ [P2(a), bl2 + p1(P1(x))D — p1(y) P2(a),

[x +a,(P1+ P2)(y +b)] =[x, Pr(Y)]1 + p2(a) P1(y) — p2(P2(D))x
+ [a, P2(D)]2 + p1(x) P2(b) — p1(P1(y))a.

If Py + P, is a derivation of the Lie algebra (A; @ A,, [—, —]), then Py and P, are deriva-
tions of the Lie algebras (41,[—,—]1) and (43,[—,—]2) by takinga =b=0andx =y =0
respectively. Moreover, equation (12) holds for (w1, p1, P2, A2) and (u2, p2, P1, A1) as the
representations of (A, Py) and (A, P,) by takinga = y = 0 and x = b = O respectively.
Conversely, if Py and P, are derivations of the Lie algebras (A1, [—, —]1) and (42, [—, —])
respectively and (i1, p1, P2, A2) and (2, p2, P1, A1) are representations of (A1, P1) and
(A,, P,) respectively, then by equation (12), P; + P, is a derivation of the Lie algebra
(A1 & A3,[—,—])- Similarly, P; + P is a derivation of the commutative associative alge-
bra (A; @ A, -) if and only if P; and P, are derivations of the commutative associative
algebras (A1, 1) and (A3, -2) respectively and equation (11) holds for (u1, p1, P2, A2)
and (W2, p2, P1, A1) as the representations of (A1, P1) and (A,, P») respectively.
Letx,y,z € Ay,a,b,c € A,. We consider the relative Leibniz rule (3) on A1 & A5,

zZ+e(x+a)-(y+D]=x+a) [z+c,y+bl+[z+c,x+a]-(y+b)
+x+a)-(y+b)-(P1+ P)(z+c). (36)

If equation (36) holds, then equation (3) holds for (A1, P1) and (A3, P») as relative Pois-
son algebras and the following equations hold:

[e,x 1yl =x-[e,y]+[c.x] -y + (x-1y) - Pa(0), @37
[z.awbl=a-[z.b]+[z.a] b+ (a2 b)- Pi(2), (38)
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[z,x bl =x-[z,b] + [z.x]1 - b+ b (x 1 P1(2)), (39)

[e.x-b]=0b-[c.x]+[c.bl2-x 4+ x- (b2 Pa2(c)), (40)
bytakinga =b=c=0,x=y=z=0,a=b=z=0,x=y=c=0,a=y=c=0,
a =y = z = 0 respectively in equation (36). Conversely, since (A, P1) and (A3, P,) are
relative Poisson algebras, if equations (37)—(40) hold, then it is straightforward to show
that equation (36) holds on A; @ A,. Moreover, we have

[e.x 1 y] = p2(c)(x-1y) = p1(x -1 y)e,
x-le.yl=x-(p2(c)y — p1(y)c) = x 1 p2(c)y — p1(X)p1(¥)e — pa(p1(y)e)x,
[e.x]-y = (p2(c)x = p1(x)c) - y = pa(c)x -1 y — pa(¥)p1(X)c — pa(p1(x)c)y,
(x-1¥)- Pa(c) = pa(x -1 y)Palc) + pa(P2(c))(x -1 y).
Therefore equation (37) holds if and only if equation (32) by replacing a by ¢, and equa-
tion (13) for (1, p1, P2, A2) as a representation of (A, P;) hold. Similarly, we have

(1) equation (38) holds if and only if equation (33) by replacing x by z, and equa-
tion (13) for (w2, p2, P1, A1) as a representation of (A4,, P) hold,;

(2) equation (39) holds if and only if equation (34) by replacing a by b, y by z, and
equation (10) for (w1, p1, P2, A2) as a representation of (41, Py) hold;

(3) equation (40) holds if and only if equation (35) by replacing a by b, b by ¢, and
equation (10) for (uz, p2, P1, A1) as a representation of (A, P;) hold.

Hence the conclusion holds. ]
Example 2.18. Let (A1, 1) and (A3, -2) be two commutative associative algebras, and
P; and P, be their derivations respectively. Let (A, [—, —]1) and (45, [—, —]2) be the
Lie algebras defined by equation (4) respectively. Hence (41, -1, [—, —]1, P1) and (A3, -2,
[—, —]2, P2) are relative Poisson algebras. Suppose that there are linear maps ;1 : A1 —
End(A3) and p, : A — End(A), such that (Ay, Az, i1, 42) is a matched pair of com-
mutative associative algebras and the following conditions hold:

Pr(p1(x)a) — pr(Pr(x))a — pi(x) Pa(a) =0, 41)
P1(pa(a)x) — pa(Pa(a))x — pa(a)P1(x) =0, (42)
forall x € A1,a € A,. Then Py + P, is a derivation of the resulting commutative associa-
tive algebra (41 @ A,, ) defined by equation (30). Moreover, there is a Lie bracket [—, —]
on A; @ A, given by
[x+a,y+bl=(x+a) (Pi(y)+ P2(b)) — (P1(x) + P2(a)) - (y + b)
=x-1 P1(y) + p2(a) Pr(y) + p2(P2(b))x + a2 P2(b)
+ p1(x) P2(b) + w1 (Pr(y))a — (P1(x) - y + pu2(Pa2(a))y
+ p2(b) Py (x) + Pa(a) -2 b + p1(P1(x))b + p1(y) P2(a))
= [x.yli + p2(a)y — p2(b)x + [a, bl> + p1(x)b — p1(y)a.
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forall x,y € Ay,a,b € Ay. Here p; : Ay — End(A3) and p, : A, — End(A;) are linear
maps given by

p1(x)a = 1 (x)Pr(a) — p1(P1(x))a,
p2(a)x = pa(a) Pi(x) — pa(Pa(a))x,

for all x € A1, a € A,. Then by Example 1.2, (4; & A,, -, [—, —], P1 + P») is a rela-
tive Poisson algebra. Hence by Proposition 2.17, ((A1, P1), (A2, P2), 41, p1, L2, p2) is a
matched pair of relative Poisson algebras.

Remark 2.19. We would like to point out that there is not a “matched pair theory” for
Jacobi algebras or unital commutative associative algebras due to the appearance of the
units. In fact, if a unital commutative associative algebra (A & B, l4¢p) is decomposed
into the direct sum of the underlying spaces of two unital commutative associative alge-
bras (A, 14) and (B, 1p), then there are representations (up, A) and (w4, B) of the
commutative associative algebras B and A respectively such that equation (30) gives the
commutative associative algebra structure on A @ B due to the matched pairs of commu-
tative associative algebras. Suppose that 1465 = a + b, where a € A, b € B. Then

la=1la-luep =1la-(a+b)=a+ ps(la)b + up()la =a +b + up)la.

Therefore b = 0 and a = 14. Thus l4gp = 14. Similarly, 1495 = 15. Hence lygp €
AN B = {0}, which is a contradiction.

3. Relative Poisson bialgebras

We introduce the notions of Manin triples of relative Poisson algebras and relative Poisson
bialgebras. The equivalence between them is interpreted in terms of certain matched pairs
of relative Poisson algebras.

3.1. Frobenius relative Poisson algebras and Manin triples of relative Poisson
algebras

We generalize the notion of Frobenius Jacobi algebras ([1]) to the following notion of
Frobenius relative Poisson algebras.

Definition 3.1. A bilinear form 8B on a relative Poisson algebra (A4, P) is called invariant
if it satisfies the following equations:

B(x-y,z) = B(x,y-2), 43)
B([x,y],2) = B(x, [y, z]), (44)

for all x, y,z € A. A relative Poisson algebra (A, P) is called Frobenius if there is a
nondegenerate invariant bilinear form B on (A4, P), which is denoted by (4, P, B).
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Let B be a nondegenerate bilinear form on a relative Poisson algebra (A, P). Then
there is a unique map P : A — A given by

B(P(x),y) = B(x, P(y)), Vx,yeA,

that is, P is the adjoint linear transformation of P under the nondegenerate bilinear
form B.
We have the following characterization of Frobenius relative Poisson algebras.

Proposition 3.2. Let (A, P, B) be a Frobenius relative Poisson algebra. Let P be the
adjoint map of P with respect to B. Then P dually represents (A, P), that is, (—£*, ad”,
P*, A™*) is a representation of (A, P). Furthermore, as representations of (A, P), (—£*,
ad*, P*, A*) and (£,ad, P, A) are equivalent. Conversely, let (A, P) be a relative Poisson
algebra and Q : A — A be a linear map. If (—£*,ad*, Q*, A*) is a representation which
is equivalent to (£, ad, P, A), then there exists a nondegenerate bilinear form 8B such that
(A, P, 8B) is a Frobenius relative Poisson algebra and Q = P.

Proof. Letx,y,z,w € A. Since P is a derivation of the Lie algebra (4, [—, —]), we have

0=B(P([x,y]) = [P(x). y] =[x, P(y)]. 2)
= B(x,y], P(2)) = B(P(x), [y, 2]) — B(x,[P(y), 2])
= B(x.,[y, P)] = P([y.z) = [P(7). 2D
Thus by the nondegeneracy of 8, equation (19) holds. Similarly, equation (18) holds since
P is a derivation of the commutative associative algebra (A4, -). Moreover, by equation (3),
we have
0=3B(x-yz]-x-[yz]=[x,z]-y +x-y- P(z), w)
=Bz, [w,x-y]+ [x,y - w]+[y,w-x]+ ﬁ(w-x-y)).
Thus equation (20) holds. Hence P dually represents (A, P). Define a linear map ¢ : A —
A* by
(p(x),y) = B(x,y),  Vx,yeA (45)

By the nondegeneracy of B, ¢ is a linear isomorphism. Moreover, we have
{pad(x)y), z) = {p([x, y]), 2) = B([x,y], z) = =B(y, [x,z])
= —{p().[x.z]) = (ad* (x)e(y). 2).

Thus pad(x) = ad*(x)g for all x € A. Similarly ¢ £(x) = —£*(x)g for all x € A. More-
over, we have

(@p(P(x)),y) = B(P(x).y) = B(x, P(y)) = (p(x). P()) = (P*(p(x)), ).

Hence ¢P = ﬁ*(p. Therefore as representations of (4, P), (—£*, ad*, P*, A*) and
(£, ad, P, A) are equivalent.
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Conversely, suppose that ¢ : A — A* is the linear isomorphism giving the equivalence
between the two representations (—£*, ad*, 0*, A*) and (£, ad, P, A). Define a bilinear
form B on A by equation (45). Then by a similar proof as above, B is a nondegenerate
invariant bilinear form on (A, P) such that Q = P. [

Definition 3.3. Let (A, P) be a relative Poisson algebra. Suppose that (4*, Q*) is a rel-
ative Poisson algebra. If there is a relative Poisson algebra structure on the direct sum
A @ A* of vector spaces such that (4 & A*, P + Q*, B;) is a Frobenius relative Poisson
algebra, where B, is given by

Ba(x +a*,y +b*) = (x,b*) + (a*, y), Vx,y €A, a*, b* € A%, (46)

and both (4, P) and (A*, Q*) are relative Poisson subalgebras, then ((A @ A*, P + Q*,
Ba), (A, P), (A*, 0*)) is called a Manin triple of relative Poisson algebras. We denote
itby (4 >t A*, P 4+ 0%, Bg), (A, P), (4%, 0%)).

The notation A <t A* is justified since the relative Poisson algebra structure on A & A*
comes from a matched pair of relative Poisson algebras (A, P) and (A*, Q*) in Proposi-
tion 2.17.

Lemma3.4. Let (A><A*, P + Q*,8By),(A, P),(A*, Q%)) be a Manin triple of relative
Poisson algebras.

(1) The adjoint m of P + Q™ with respect to By is Q + P*. Further Q + P*
dually represents (A > A*, P + Q™).

(2) O dually represents (A, P).
(3) P* dually represents (A*, Q™).

Proof. Letx,y € A,a*,b* € A*. Then we have

Ba((P + Q%) (x +4a%).y +b%) = By (P(x) + Q%(a"),y +b%)
= (P(x).0%) + (0% (@"). )
= (x, P*(0™)) + (a*. Q(»)
=Ba(x+a*.(Q+ P*)(y +b")).
Hence the adjoint ﬁ:—? of P + Q* with respect to B, is Q + P*. Then by Propo-

sition 3.2, Q + P* dually represents (4 > A*, P + Q*). By Corollary 2.10, it holds if
and only if forall x, y,z € A,a*,b*,c* € A%,

(x+a*)-(Q+ P*)(y +b*) = (P + Q") (x +a*)- (y +b%)
—(Q+ PH)((x +a®)-(y + b)) =0,

[x +a*,(Q+ P*)(y + b)) = [(P + Q") (x +a”),y + b7]
—(Q + PH[(x +a*) - (y +5M)] =0,

(P+O0"+0+PH((x+a*)-(y+b*)-(z+c*)=0.
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Now taking a* = b* = ¢* = 0 in the above equations, we get equations (18), (19)
and (25). Hence Q dually represents (A, P). Similarly, P* dually represents (4*, 0*) by
takingx =y =z =0. ]

Theorem 3.5. Let (A,-4,[—,—]4, P) be a relative Poisson algebra. Suppose that there is a
relative Poisson algebra structure (A*,-g4x,[—,—]a*, Q™) on the dual space A*. Then there
is a Manin triple of relative Poisson algebras (A< A*, P + Q*, 84), (A4, P), (A%, 0%))
if and only if ((A, P), (A*, Q%), =&}, ady, —£%., ad}.) is a matched pair of relative
Poisson algebras.

Proof. Tt is known in [14] that there is a Lie algebra structure on the direct sum A & A*
of vector spaces such that both (A4, [—, —]4) and (A*, [, —]4+) are Lie subalgebras and
the bilinear form B; on A @& A* given by equation (46) satisfies equation (44) if and
only if (A, A*, ad}, ad}.) is a matched pair of Lie algebras. Similarly, by [7], there is a
commutative associative algebra structure on A @ A* such that both (A4, -4) and (4%, -4+)
are commutative associative subalgebras and B, satisfies equation (43) if and only if
(A, A*, =&}, —&£}.) is a matched pair of commutative associative algebras. Hence if
(A A*, P 4+ Q*,84), (A, P),(A*, Q*)) is a Manin triple of relative Poisson algebras,
then by Proposition 2.17 with

A1=A, Pl:P» AZZA*» P2:Q*7
ur = —&£4, p1 =ady,  po=—L;, p2 = adjs,

((A, P), (A%, Q%), =&}, ady, —£}., ady.) is a matched pair of relative Poisson algebras.
Conversely, if ((4, P), (A*, Q%), =&}, ady, —£}., ad}.) is a matched pair of relative
Poisson algebras, then by Proposition 2.17 again, there is a relative Poisson algebra (A4 <
A*, P + Q%) obtained from the matched pair with both (A4, P) and (A*, Q*) as relative
Poisson subalgebras. Moreover, the bilinear form 8, is invariant on (4 >< A*, P + Q™).
Hence ((A b A*, P + Q*, B4), (A, P), (A*, Q%)) is a Manin triple of relative Poisson
algebras. ]

3.2. Relative Poisson bialgebras

We recall the notions of (commutative and cocommutative) infinitesimal bialgebras ([7])
and Lie bialgebras ([14]) before we introduce the notion of relative Poisson bialgebras.

Definition 3.6. A cocommutative coassociative coalgebra is a pair (A, A), such that A is
a vector space and A : A — A ® A is a linear map satisfying

TA=A,
d® A)A = (A ®id)A,

where 7 : A ® A — A ® A is the exchanging operator defined as t(x ® y) = y ® x, for
all x,y € A.
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Definition 3.7. A commutative and cocommutative infinitesimal bialgebra is a triple
(A,-, A) such that

(1) (A,-)is a commutative associative algebra;
(2) (A, A) is a cocommutative coassociative coalgebra;

(3) A satisfies the following condition:
Alx-y) = (£(x) QidDA(Y) + (1d ® L£(¥))A(x), Vx,y € A. 47)

Definition 3.8. A Lie coalgebra is a pair (A, §), such that A is a vector space and § : A —
A ® A is a linear map satisfying
76 = =4,
(d+ £+ £H([d® ) =0,

where £ : AQ A® A —> A® A® A is the linear map defined as §E(x ® y ®z) =y ®
z®x,forall x,y,z € A.
Definition 3.9. A Lie bialgebra is a triple (A, [—, —], §), such that

(1) (A,[—,—]) is a Lie algebra;

(2) (A,9) is a Lie coalgebra;

(3) disa l-cocycle of (A, [—, —]) with values in A ® A, that is,

8([x,y]) = (ad(x) ® id 4 id ® ad(x))8(y)
— (ad(y) ® id + id ® ad(y))8(x), Vx,ye A (48)

Now we give the definitions of a relative Poisson coalgebra and a relative Poisson
bialgebra.

Definition 3.10. Let A be a vector space, and A,§: A - A® Aand Q : A — A be linear
maps. Then (A4, A, §, Q) is called a relative Poisson coalgebra if (A, A) is a cocommu-
tative coassociative coalgebra, (4, §) is a Lie coalgebra, and the following conditions are
satisfied:

AQ = (0 Qid+id® Q)A, (49)
§0 = (0 ®id+id ® 0)8, (50)
(id ® A)S(x) — (8 ® id)A(x) — (r ® id)(id ® §)A(x)

— (0 ®id®id)(A ® id)A(x) =0, Vx € A. (51)

Proposition 3.11. Under the finite-dimensional assumption, (A, A, 8, Q) is a relative
Poisson coalgebra if and only if (A*, A*,5*, Q%) is a relative Poisson algebra.

Proof. Clearly, (A, A) is a cocommutative coassociative coalgebra if and only if (4%, A*)
is a commutative associative algebra and (A4, §) is a Lie coalgebra if and only if (4*, §*)
is a Lie algebra.
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For all a*, b* € A*, set A*(a*™ ® b*) = a* - b*, §*(a* ® b*) = [a*, b*]. Then we
have
(Gd ® A)S(x),a* ®b* @ c*) = (x,6*(d® A*)(a* ® b* ® c*))
= (x,[a*,b* - c*]),
= (x,A*"(§* ®id)(a* @ b* ® ¢*))
= (x,[a*,b*]-c*),
{((t ®1id)(id ® §)A(x),a" @ b* ® c*)
={x,A*(d®§")(r ®id)(a* ® b* ® c*))
= (x,b"-[a".c"]),
(0 ®id®id)(A ® id)A(x),a* ® b* @ c*)
= (x,A"(A*®id)(0* ®id ®id)(a* ® b* ® c*))
= (x,0%(a")-b" - ),
for all x € A and a*, b*, c¢* € A*. Thus equation (3) holds for (A*, A*,§*, Q*) as a
relative Poisson algebra if and only if equation (51) holds. Similarly, Q* is a derivation of

(A*, A*) as a commutative associative algebra if and only if equation (49) holds and Q*
is a derivation of (A*, §*) as a Lie algebra if and only if equation (50) holds. |

(6 ®1d)A(x),a* @ b* @ c*)

Definition 3.12. A relative Poisson bialgebra is a collection (A4, -, [—, —], A, §, P, Q)
satisfying the following conditions:

(1) (A,-,[—,—], P) is arelative Poisson algebra;
(2) (A, A,$, Q) is arelative Poisson coalgebra;

(3) A satisfies equation (47) and hence (4, -, A) is a commutative and cocommutative
infinitesimal bialgebra;

(4) § satisfies equation (48) and hence (A4, [—, —], §) is a Lie bialgebra;
(5) Q dually represents (A, P), that is, equations (18), (19) and (25) hold;
(6) P* dually represents (4*, Q*), that is, the following equations hold:

AP = (P ®id—id ® Q)A, (52)
§P = (P ®id—id ® 0)8, (53)
(A ®id)A(P + Q) = 0; (54)

(7) the following equations hold:
§(x - y) — (id ® ad(y)) A(x) — (£(x) ® id)d(y) — (id ® ad(x))A(y)

— (L) ®id)s(x) — (id® Q)A(x-y) =0, (55)
A(x, y]) = (£(y) ® id)8(x) — (id ® ad(x))A(y) + (id ® £(y))8(x)
— (ad(x) ® id)A(y) + A(P(x) - y) = 0, (56)

forall x,y € A.
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Remark 3.13. The notion of a Poisson bialgebra given in [37] is recovered from the above
notion of a relative Poisson bialgebra by letting P = Q = 0.

Remark 3.14. Let (A, -4, [—, —]4, A4, 64, P, Q) be a relative Poisson bialgebra. It is
straightforward to show that (A%, -4x,[—, —] 4%, Ag*, 84+, Q*, P*) is also a relative Poisson
bialgebra, where - g+, [—, —]|4* : A* @ A* — A* and A g+, 84+ : A* — A* ® A* are respec-
tively given by

a* 4+ b* = Aj(a* ® b*), [@*,b*]4x = 85(a* @ b™),
(Aar(@®), x®y) = —(a* . xay),  (Sar(a@®).x ®y) = —(a” [x,y]a),

forall x,y € A,a*,b* € A*.

Theorem 3.15. Let (A, -4, [—, —]a, P) be a relative Poisson algebra. Suppose that there
is a relative Poisson algebra structure (A*,-gx, [—, —]a*, Q%) on the dual space A* which
is given by a relative Poisson coalgebra (A, A, 8, Q). Then (A, -4, [—, —]a, A, 8, P, Q) is
a relative Poisson bialgebra if and only if (A, P), (A*, Q*), =&}, ady, —£}.,ad}.) isa
matched pair of relative Poisson algebras.

Proof. By [14], § satisfies equation (48) if and only if (A, A*, ad}, ad}.) is a matched pair
of Lie algebras and by [7], A satisfies equation (47) if and only if (A4, A*, —&£%, —£L}.) isa
matched pair of commutative associative algebras. Moreover, by Definition 2.6, Q dually
represents (A, P) if and only if (—£7%, ad}, O*, A*) is a representation of (4, P), and
P* dually represents (A*, Q%) if and only if (—&£}.,ad}., P, A) is a representation of
(A*, 0*). Next we show that

(32) & (55) ¢ (35) and (33) & (56)< (34)

in the case that Py = P, P, = Q*, 1 = —&£}, o = —L4., p1 = ad}, p2 = adj.. As
an example, we give an explicit proof for the fact that equation (32) < equation (55). The
proof for the other equivalences is similar. Let x, y € A,a*,b* € A*. Then we have

(ady(@®)(x -4 ¥),b") = (x4 y,[p*,a"]ax) = (8(x -4 y),b* ® a*),
—(L«(ady(y)a®)x,b*) = (x,b* -4 (adj(y)a™))
= {x, A*(id ® ady(»)) (0" ® a¥))
= —({(id® ad4a(¥))A(x),b* @ a*),
—(x -ady. (a®)y, b*) = (adj. (a™)y, LY(x)b™) = (¥, [£4(x)D™, a*]a)
= (y.8"(L1(x) ®1d)(b* ® a¥))
= —((£4(x) ®id)3(y),b* ®@ a™),
=—(x-4y,b% 4x 0%(a"))
= —(x-4y, A*(id ® 0*)(b* ® a*))
= —((d® Q)A(x -4 y),b* ®a”").

(£3-(Q" (@) (x 4 ), b7)



G. Liu and C. Bai 1016

Thus equation (32) holds if and only if equation (55) holds. Therefore the conclusion
holds. ]

Combining Theorems 3.5 and 3.15, we have the following conclusion.

Corollary 3.16. Let (A, -4, [—, —]a, P) be a relative Poisson algebra. Suppose that there
is a relative Poisson algebra structure (A*,-gx, [—, —]a*x, Q%) on the dual space A* which
is given by a relative Poisson coalgebra (A, A, 6, Q). Then the following conditions are
equivalent:
(1) there is a Manin triple of relative Poisson algebras (A< A*, P + Q*, By),
(A, P), (A%, 0%));
(2) ((A, P), (A%, Q%), =&, ady, —£L3.. ad}.) is a matched pair of relative Poisson
algebras;
3) (A,-4,[-,—]a, A, 8, P, Q) is a relative Poisson bialgebra.

4. Coboundary relative Poisson bialgebras

We study the coboundary relative Poisson bialgebras, which lead to the introduction of
the relative Poisson Yang—Baxter equation (RPYBE) in a relative Poisson algebra. In par-
ticular, an antisymmetric solution of the RPYBE in a relative Poisson algebra gives a
coboundary relative Poisson bialgebra. We also introduce the notion of (9-operators of
relative Poisson algebras to interpret the RPYBE and an (-operator gives an antisym-
metric solution of the RPYBE in a semi-direct product relative Poisson algebra. Finally,
the notion of relative pre-Poisson algebras is introduced to construct @-operators of their
sub-adjacent relative Poisson algebras.

4.1. Coboundary relative Poisson bialgebras

Recall that a commutative and cocommutative infinitesimal bialgebra (4, -, A) is called
coboundary if there exists anr € A ® A such that

Ax) = (1{d® £(x) — £(x) ® id)r, Vx € A. (57)
A Lie bialgebra (A4, [—, —], §) is called coboundary if there exists an r € A ® A such that
8(x) = (ad(x) ® id + id ® ad(x))r, Vx € A. (58)

Therefore they motivate us to give the following notion.

Definition 4.1. A relative Poisson bialgebra (A4, -,[—,—], A, 8, P, Q) is called coboundary
if there exists an r € A ® A such that equations (57) and (58) hold.
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Let A be a vector space with a bilinear operationo: A® A - A.Letr =) ;a; ® b; €
A® A. Set

F12 013 = Zdi oaj ®b; ®bj,
i,J
T2 0123 = Zdi ® b; ¢ aj ® by,
i,J
riz Ory3 = Zai ®a; ® b; <>bj.
i
Let (A4, -) be a commutative associative algebra and A : A — A ® A be a linear map
defined by equation (57). Then A satisfies equation (47) automatically. Moreover, by [7],
A makes (A, A) into a cocommutative coassociative coalgebra such that (4, -, A) is a
commutative and cocommutative infinitesimal bialgebra if and only if for all x € A,

(d® £(x) —£(x) ®id)(r + =(r)) =0, (59)
(id ®id ® L(x) — £(x) ® id ® id)A(r) = 0, (60)

where
A(r) =ri2-ri3 —ri2 123 + 113 - 23. (61)

The equation A(r) = 0 is called associative Yang—Baxter equation (AYBE) in (A, -).

Let (A,[—,—]) be aLie algebraand § : A — A ® A be a linear map defined by equa-
tion (58). Then § satisfies equation (48) automatically. Moreover, by [14], § makes (4, §)
into a Lie coalgebra such that (4, [—, —], §) is a Lie bialgebra if and only if for all x € A4,

(ad(x) ® id + id ® ad(x))(r + t(r)) = 0, (62)
(ad(x) ® id ® id + id ® ad(x) ® id + id ® id ® ad(x))C(r) = 0, 63)

where
C(r) = [r12, r13] + [r12, 23] + [r13, r23]. (64)

The equation C(r) = 0 is called classical Yang—Baxter equation (CYBE) in (A4, [—, —]).

Proposition 4.2. Let (A, -, [—, =], P) be a relative Poisson algebra which is dually repre-
sentedby Q. Letr =) ,a; b, € AQ Aand A,§ : A — A ® A be linear maps defined
by equations (57) and (58) respectively. Define A(r) and C(r) by equations (61) and (64)
respectively.

(1) Equation (49) holds if and only if the following equation holds:

([d® £(x))(id® P — Q0 ®id)r
F () ®id)(d® 0 - P®id)r =0,  VYx € A. (65)

(2) Equation (50) holds if and only if the following equation holds:

(id®ad(x))(id ® P — Q0 ® id)r
—(d(x)®id)(id® Q- P®id)r =0, VYxeAd.  (66)
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(3) Equation (51) holds if and only if the following equation holds:

(ad(x) ®id ®id + 0 ® id ® £(x))A(r)
+([d®id® £(x) —id ® £(x) ® id)C(r)

+ ) (ad(a)) ® id)(£(x) ® id —id ® L(x))(r + 7(r)) ® b,
J

+ ) (d® L(x-a;))(Q ®id—id® P)r ® by
J

+Y ([d®id® £(x - b))
J
([d®T)((d® P - Q ®id)r ®aj) =0, Vxed. (67)

(4) Equation (52) holds if and only if the following equation holds:
@ L(x)—L(x)®id)(d® Q — P ®id)r =0, Vx € A. (63)
(5) Equation (53) holds if and only if the following equation holds:
(ad(x) ®id+ id ® ad(x))(id® QO — P ® id)r = 0, Vx € A. (69)
(6) Equation (54) holds if and only if the following equation holds:
(d®id® L(P + O)x)A(r) =0, Vx € A. (70)
(7) Equation (55) holds if and only if the following equation holds:
(L(x-y)®id)(id® Q0 — P ®id)r =0, Vx,y € A. (71)
(8) Equation (56) holds automatically.
Proof. Let x,y € A. (1) Substituting equation (57) into equation (65), we have
AQ(x)— (O ®id+id® Q)A(x)
=Y (@ ® Q) -bi — Q(x)-a; ®bj — Qi) ® x -bi + Q(x - a;) ® b;
i
—a; ® Q(x-b;) +x-a; ® O(b))
E3" (@ @ P(b1)-x — Pla) - x ® bi — Qa) ® x - by + x-a; ® O(by))
i
={d®L(x)Id® P -0 ®id)r + (£(x) ®id)(id® Q0 — P ®@id)r.

Thus equation (49) holds if and only if equation (65) holds.
(2) By a similar proof as the one of (1), equation (50) holds if and only if equation (65)
holds.
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(3) Substituting equations (57) and (58) into equation (51), we have

(id ® A)S(x) — (6 ® id)A(x) — (r ® id)(id ® ) A(x) — (0 ® id ® id)(A ® id)A(x)

=> (x.a]®a; ®bi-bj — [x.a;] ® bi -a; @ bj + a; ® aj ® [x.b;] - b
i,j
—a; @[x,b]-a; ®bj —la;,a;]®b; ® x-b;j —a; @ |a;, bj] ® x - b;
+[x-ai,a;]]®bj ®bi +a; ®[x-ai,bj]®b; —[x-bi,a;] ®a; ®Dbj
—aj ®a; @ [x-bi,bj]l+ [bi,a;]@x-a; ®b; +a; @ x-a; ® [b;,bj]
—0(@j)®a; - bj®x-b +0(a;-a;)®b; @x-b;
+0(a;) ®x-a;-bj @ b; — Q(x -a; -a;) ® b; ® b;)

= W) + WQ2) + W),

where

w() = Z([X,ai] ®a; ®b; -bj —[x,a;]®b; -a; ®b; +[x-a;,a;]@b; ®b;
i,J
—[x-bi,a;]®a; ® b; — Q(x - a; -a;) ® b; ® b;)
= (ad(x) ® id @ IAF) + Y (~[x.ai - a;] ® by ® by + [x - a1, a;] ® b; ® by
i,J
—[x-b,-,aj]®a,~®bj—Q(x-a,--aj)®bj ®b,)
Y (d(x) ® id ® id)A() + Y ([aj.x - ai] ® b; ® bj + [a;.x - bi] ® a; ® by)
i,J
= (ad(x) ® id ® IDA() + Y _(ad(a;) ® id)(Z(x) ® id)(r + T(r) ® bj.
J

W)=Y (~a; ® [x.b;]-a; ® bj +aj ® [x - a;.b;] @ b; + [bi.aj] ® x -a; ® b,
i,j

+aj ®x-a; ® [bi,bj] + Q(aj) ® x - a; - b; ® b;)
=Y (—ai®[x.hi]-a; ®b; +a; ® [x-a;.bj] ® b +a; ® x-a; ® [b;. b)]
i.j
+laj.ail® x-b; ® b; + 0(aj) @ x -a; - b ® b;)
= (ad(aj) ® £(x))(r + 7(r)) ® by
j
E ([d® L) ®IDCE) + > (—a;i ® [x.bi]-a; ® by
i.j
+a; @[x-a;,bi]®bj +a; @ x-[bi,a;] @ b; + Qa;) @ x-a; -b; Q b;)
= (ad(aj) ® £(x))(r + 7(r)) ® b;
J
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2 —(d® L) ®id)C(r) + Y (~a; ® x-a; - P(b) ® b,

i,J

+0@j)®x-a; b ® bi) - Z(ad(aj) ® L(x))(r + 1(r)) ® bj
J

= —([d® £(x) ®id)C(r) + Y _(id ® L(x -a;) ® id)

J
(@ ®id—id® P)r @ by) — Y (ad(a;) ® £(x))(r + 1(r)) ® b;.
j
wW(@3) = Z(ai ®a; Q[x,bi]-bj —la;,a;]®b; ®x-b; —a; la;,bj]@x-b;
i,J

—aj ®ai®[x-bi,bj]—Q(aj)®ai-bj ®x-bi+0(a;-a;)®b; ®X-bi)
(A ®id® L))CE) + Y (~a; ® a; ® x - [bi.bj] + a; ® a; @ [x.b;] - by
i,j
—a; ®a; ® [x-bj,bi]— Q(aj) ®ai-bj @ x -bi + Q(a; -a;) ® bj @ x - b;)
2(d®id® L)Cr) + Y (@ ®a; ® x-b; - P(br)
i,j
—Q0(j)®a; - bj®x-bi +0(a;-a;)®b; ®x-b,~)
Z ([d®id® LE)CE) + D (a ®a; ®x-b; - P(by)
i,j
—0(ai)®a; ® x-b; -b;) + (0 ®id ® £(x)A(r)
= ([d®id ® £(x))C(r) + (0 ® id ® L(x))A(r)
+) (d®id® £(x-5))(d® )((d® P — Q ®id)r ®a)).

J

Thus equation (51) holds if and only if equation (67) holds.

(4) By a similar proof as the one of (1), equation (52) holds if and only if equation (68)
holds.

(5) By a similar proof as of the one (1), equation (53) holds if and only if equation (69)
holds.

(6) Substituting equation (57) into equation (54), we have
(A ®id)A(P + Q)(x)

ZZ(%’ Qai-b;@((P+Q)x)-bi—a;-a; @b; @ (P + Q)x)-b;

i,

+(((P +Q)x)-ai)-aj ®b; @b —a; ® (P + Q)x)-ai) - b; ® b;)
29

i,j

(aj ®ai-b; @ ((P+0)x)-bi—a;-a; @b; ® (P + Q)x)-b;
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—a; ®a; ® (P + Q)x) - b; - bj)
= —(d®id® L((P + Q)x))A(r).
Thus equation (54) holds if and only if equation (70) holds.
(7) Substituting equations (57) and (58) into equation (55), we have
8(x-y) — ([d®ad(y))A(x) — (£(x) ®id)§(y) — (id ® ad(x)) A(y)
—(£(y) ®id)§(x) — (id ® Q)A(x - y)
=Y (x-yal®b+a; @ [x-y.b]—a; ®[y.x bi]+x-a; ®[y.bi

—a; @[x,y-bil+y-a; ®[x,bi]—x-[y,a;] ®bj —x-a; ® [y, b;]
—y-[xal®bi—y-a;®[x.bj]—a; @ Q(x-y-bi))+x-y-a; @ Qb))

ZZ(ai Qx-y.bil—ai ®[y.x-bil—a; ®[x.y-bi]—a; ® Q(x -y - b))
:

4

+Z([x-y,a,~]®b,-—x-[y,a,~]®b,~ —y-[xa]®bi+x-y-a;® Q(b,))
@)

4

(x-y.ail®bi —x-[y.a;]®@b; —y-[x,a;] ®b; +x-y-a; ® Q(b;))

@Z(—x-y-P(ai)®bi +x-y-a; ® Qb))

=(£(x-y)®id)(id® Q — P ® id)r.
Thus equation (55) holds if and only if equation (71) holds.
(8) Substituting equations (57) and (58) into equation (56), we have
A(lx, y]) = (£(y) ® id)d(x) + (id ® £(y))(x) — (id ® ad(x)) A(y)
— (ad(x) ® id)A(y) + A(P(x) - y)

=) (@i ®x.y]-bi —[x.y]-ai ®b; —y - [x.ai] ®bi — y -a; ® [x.b;]

+[x,a]®y-bi+a; ®y-[x.bi]—a; ®[x,y-b]+y-a; ®[x,bi]
—[x,ai]l®y-bi+[x,y-ai]®bi +a;  P(x)-y-b; — P(x)-y-a; ® b;)
=Z(Cli Qx.yl-bi+a;®y-[x.bi]—a; ®[x,y -bi]+a; ® P(x)-y-b;)

1

+ ) (e yl-ai @b —y-[x,ai] ®bi + [x,y - ai] ® by

—P(x)-y-a; ® b))

3
Do.

Thus equation (56) holds automatically.
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Summarizing the above study, we have the following conclusion.

Theorem 4.3. Let (A, -, [—, =], P) be a relative Poisson algebra which is dually repre-
sentedby Q. Letr =) ;a; @b; € AQ Aand A, §: A — A ® A be linear maps defined by
(57) and (58) respectively. Then (A,-,[—,—], A, §, P, Q) is a coboundary relative Poisson
bialgebra if and only if equations (59), (60), (62), (63) and (65)—(71) hold.

Let A be a vector space and r = Zi a; ® b; € A ® A; r can be identified with a linear
map from A* to A as follows:

ra*) = Z(a*,bi)ai, Va* € A*. (72)
i
There is an analogue of the Drinfeld classical double ([14]) for a relative Poisson
bialgebra.

Theorem 4.4. Let (A,-4,[—, —]4, A4, 84, P, Q) be a relative Poisson bialgebra. Let (A*,
a*, [—, —]a*, Agx, 84%, O, P*) be the relative Poisson bialgebra given in Remark 3.14.
Then there is a coboundary relative Poisson bialgebra structure on the direct sum A ® A*
of vector spaces which contains these two relative Poisson bialgebra structures on A and
A* respectively as relative Poisson sub-bialgebras.

Proof. Letr € AQ A* C (A ® A*) ® (A ® A*) correspond to the identity map id :
A — A. Let{eq,...,e,} be a basis of A and {e],...,e;} be the dual basis. Then by
equation (72), r = Zi e ® elf“. Since (A4, -4, [—, —]4, A4, b4, P, Q) is a relative Poisson
bialgebra, there is a relative Poisson algebra (4 > A*, P + Q) given by the matched
pair (4, P), (A*, 0*), —&£%, —&£%.. ad}, ad}.), that is,

X Apad* Y = X4 ), X apaar @ = —Ly(x)a* — Ly (a¥)x,
a* gpaar b* =a* 4+ b*, [x, y]apaar =[x, ¥]a,
[x.a*]aar = adj(x)a™ —ad}« (@™)x, [@*, b*| gpanr = [a™, b*]a*,

for all x,y € A, a*, b* € A*. By Lemma 3.4, Q + P* dually represents (A4 <t A*,
P + Q%). Define two linear maps Agpqa*, Sgpad* : A <t A* — (A<t A*) @ (A >t A¥)
respectively by

Agsan (1) = (1d ® Lapaar () — Lapaax (1) ® id)r,
Sapaar () = (adgpaar (u) ® id + id ® adgpaar (u))r,

forall u € A < A*. Then by [7, Theorem 2.3.6], r satisfies the AYBE in the commutative
associative algebra (A ><1 A*, -4pq4+), and the following equation holds:

(id ® Lapaar(U) — Lapas(u) @ id)(r + t(r)) = 0, Yu € Aa A*.

By [14, Propositions 1.4.2 and 2.1.11], r satisfies the CYBE in the Lie algebra (4 < A*,
[—, —]4paa* ), and the following equation holds:

(adgpaq* (1) ® id + id ® adgpaas (W) (r + T(r)) = 0, Yu € A< A%,
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Moreover, we have

(P+0"®id—id® (Q + P*)r

DY UP+ 0" ®id—id® (Q + P*)(e; ® ¢])

i=1

D (Ple) @ el —ei @ P*(ef) =0,

i=1

(Q+PH®id—id® (P + 0*)r

=30+ PH®id—id® (P + 0*)(e: ® ¢})

i=1

n
= (Qe) ®ef —ei ® Q*(ef)) = 0.
i=1
Then by Theorem 4.3, (A b<t A*, - gpqa*, [—» —]avad®» Adpad®, Sapaar, P+ O*, O + P*)
is a coboundary relative Poisson bialgebra. Moreover, again by [7, Theorem 2.3.6] and
[14, Propositions 1.4.2 and 2.1.11], we have

Agpanr(x) = Ag(x), Sapaax(x) = 64(x), Vx € A.

Thus (A > A*, “Apad*, [— —]asad* > Ddsaa*, Oapaa*, P+ Q*, Q + P*) contains (4, -4,
[—, =4, A4, 84, P, Q) as a relative Poisson sub-bialgebra. Similarly, (4 ><t A%, - gpqa*,
[— —lapad*, Adpaar. Sapaas, P+ Q*, Q + P*) contains (A*, -4+, [—, —]ax, Ag=, 84x,
Q*, P*) as arelative Poisson sub-bialgebra. L]

A direct consequence of Theorem 4.3 is given as follows.

Corollary 4.5. Let (A, -, [—, —], P) be a relative Poisson algebra which is dually repre-
sented by Q. Letr € A® Aand A,§ : A — A ® A be linear maps defined by equa-
tions (57) and (58) respectively. If r is antisymmetric in the sense that r + t(r) = 0 and
satisfies the AYBE in the commutative associative algebra (A, -), the CYBE in the Lie
algebra (A, [—, —]), and the following equations:

(P®id—id® Q)r =0, (73)
(O®id—id® P)r =0, (74)
then (A, -, [—, =], A, 8, P, Q) is a coboundary relative Poisson bialgebra.
It motivates us to give the following notion.

Definition 4.6. Let (4, -, [—, —], P) be a relative Poisson algebra, Q : A — A be a linear
map and r € A ® A. r is called a solution of the relative Poisson Yang—Baxter equa-
tion (RPYBE) associated to Q (Q-RPYBE) in (A, P) if r satisfies the AYBE in the
commutative associative algebra (A4, -), the CYBE in the Lie algebra (A4, [—, —]) and equa-
tions (73)—(74).
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Remark 4.7. If r € A ® A is antisymmetric, then equation (73) holds if and only if equa-
tion (74) holds. On the other hand, the notion of the Poisson Yang—Baxter equation (PYBE)
in a Poisson algebra was given in [37] whose solutions are exactly the solutions of both
the AYBE and the CYBE. So from the form, the Q-RPYBE (defined in relative Pois-
son algebras) is exactly the PYBE (defined in Poisson algebras) satisfying the additional
equations (73)—(74).

Theorem 4.8. Let (A, -, [—, —], P) be a relative Poisson algebra andr € A ® A be anti-
symmetric. Let Q : A — A be a linear map. Then r is a solution of the Q-RPYBE in
(A, P) if and only if r satisfies

[r@®),r(d™)] = r(ad*(r(a*))b* — ad*(r(b*))a"), (75)
r@)-rb*) = —r(£*(r@"))b* + L£*(r(*))a"), (76)
Pr=rQ%, (77)

forall a*,b* € A*.

Proof. Letr = Zi a; ® b;. By [28], r is an antisymmetric solution of the CYBE in the
Lie algebra (A, [—, —]) if and only if equation (75) holds. By [7], r is an antisymmetric
solution of the AYBE in the commutative associative algebra (A4, -) if and only if equa-
tion (76) holds. Moreover, for all a* € A*, by equation (72), we have

r(Q*(@*) =Y (Q*(@).bi)ai =) (a*, Qb))ai,  P(r@@*) =) (a*.bi)P(ai).

1 1 1

So equation (73) holds if and only if equation (77) holds. This completes the proof. ]

4.2. O-operators of relative Poisson algebras

Definition 4.9. Let (A, P) be a relative Poisson algebra, (i, p, V) be a compatible struc-
ture on (A, P) and @ : V' — V be a linear map. A linearmap 7 : V — A is called a weak
O-operator of (A, P) associated to (i, p, V') and « if the following equations hold:

T(u)-T(v) =TT w)v + u(T))u), (78)
[T().T )] = T((Tw)v—p(T@)u), (79)
PT =Ta, (80)

for all u, v € V. If, in addition, (u, p, , V') is a representation of (A4, P), then T is called
an O-operator of (A, P) associated to (i, p,a, V).

Remark 4.10. In fact, T is called an O-operator of the commutative associative algebra
(A,-) associated to (i, V') ([7]) if T satisfies equation (78), and T is called an @-operator
of the Lie algebra (A, [—, —]) associated to (p, V') ([28]) if T satisfies equation (79).

Therefore Theorem 4.8 is rewritten in terms of (9-operators as follows.
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Corollary 4.11. Let (A, P) be a relative Poisson algebra andr € A ® A be antisymmet-
ric. Let Q : A — A be a linear map. Then r is a solution of the Q-RPYBE in (A, P)
if and only if r is a weak O-operator of (A, P) associated to (—£*, ad*, A*) and Q*.
If, in addition, (A, P) is dually represented by Q, then r is a solution of the Q-RPYBE
in (A, P) if and only if r is an O-operator of (A, P) associated to the representation
(—&*,ad*, 0*, A*).

We consider the semi-direct product relative Poisson algebras which are dually repre-

sented.

Theorem 4.12. Let (A, P) be a relative Poisson algebra and (i, p, V') be a compatible
structure on (A, P). Let Q : A — Aand o, : V — V be linear maps. Then the following
conditions are equivalent.

(1) There is a relative Poisson algebra (A x,, , V, P + a) which is dually represented
by the linear operator Q + B.

(2) There is a relative Poisson algebra (A X_y» o« V*, P + B*) which is dually rep-
resented by the linear operator Q + a*.

(3) The following conditions are satisfied:
(@) (u,p,a, V) isarepresentation of (A, P);
(b) B dually represents (A, P) on (u,p,V);
(¢) QO dually represents (A, P);
(d) forallx € A, v €V, we have

pn(Q(x)v — p(x)a(v) — f(u(x)v) =0, (81)

p(Q(x)v — p(x)a(v) — B(p(x)v) = 0. (82)

Proof. (1) < (3). By Proposition 2.2, (4 x,,, V, P 4+ «) is a relative Poisson algebra
if and only if (u, p, @, V') is a representation of the relative Poisson algebra (A, P). Let

x,y,z€ A,u,v,w € V. By Corollary 2.10, O + B dually represents (A x,, , V, P + )
if and only if the following equations are satisfied:

0=x+u) - (Q+B+v)—(P+a)x+u) - (y+v)
—(Q+PH((x+u)-(y+v)
=x-00)—P(x)-y—0(x-y)+ ux)B@) — n(P(x))v — B(u(x))v
+ n(Q()u — p(y)o () — B(u(y)u);
O=[x+u(@+B+v]-[(P+a)x+u)y+v]-(Q+p)(x+uy+v])
=[x, O] = [P(x). y] = O([x. y]) + p(x)B(v) — p(P(x))v — B(p(x))v
+ p(Q()u — p(y)ee(u) — B(p(y)u);
0=P+a+Q0+B8)((x+u)-(y+v) (z+w))
=P+ 0)x-y-2)+(@+B)px-y)w+pnx-2)v+ puly-2)u).
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If the above equations hold, then
(i) equations (15), (16) and (23) (where y is replaced by z) hold by letting y =u =0;
(i) equations (18), (19) and (25) hold by lettingu = v = w = 0;
(iii) equations (81) and (82) (where x is replaced by y, and v by u) hold by letting
x=v=0.
Conversely, obviously, if equations (15), (16), (23), (18), (19), (25), (81) and (82) hold,
then the above equations hold. Hence condition (1) holds if and only if condition (3) holds.
(2) < (3). From the above equivalence between condition (1) and condition (3), we

have that condition (2) holds if and only if the items (a)—(c) in condition (3) as well as the
following two equations hold (for all x € A, u* € V*):

—u QU™ + p ()W) + o (uF (u*) = 0, (83)
P (@)U — p* (x)B* (™) — a™(p™ (x)u™) = 0. (84)

Forall x € A,u™ € V*,v € V, we have

(—u* QO™ + p*()B* (™) + o™ (" (x)u™), v)
= (", = (Q()v + p(x)a(v) + B(x)v)).

Hence equation (83) holds if and only if equation (81) holds. Similarly, equation (84)
holds if and only if equation (82) holds. Hence condition (2) holds if and only if condition
(3) holds. ]

Next we show that (-operators give antisymmetric solutions of the RPYBE in semi-
direct product relative Poisson algebras and hence give rise to relative Poisson bialgebras.

Theorem 4.13. Let (A, P) be a relative Poisson algebra and (1, p, V') be a compatible
structure on (A, P). Let B dually represent (A, P) on (i, p, V) and let (—u*, p*, B*, V™)
be the representation of (A, P) defined in Proposition2.5. Let Q : A - Aando : V —V
be linear maps. Let T : V — A be a linear map which is identified as an element in
(AX_pyr pr V) @ (A X_pyr px V).
(1) r =T —1©(T) is an antisymmetric solution of the (Q + «*)-RPYBE in the relative
Poisson algebra (A X_y» o« V*, P + B*) if and only if T is a weak O-operator
of (A, P) associated to (i, p, V') and a, and satisfies T = QT.

(2) Assume that (A, P) is dually represented by Q and (i, p,a, V') is a representation
of (A, P). If T is an O-operator of (A, P) associated to (i, p,a, V') satisfying
TB = QT, then r = T — ©(T) is an antisymmetric solution of the (Q + o*)-
RPYBE in the relative Poisson algebra (A X_,» o~ V*, P + B*). If, in addition,
equations (81) and (82) hold, then Q + «* dually represents the relative Poisson
algebra (A X_y» p» V*, P + B*). In this case, there is a relative Poisson bialge-
bra (Ax_yx g« V¥, o [, =], A8, P + B*, O + o), where the linear maps A
and § are defined respectively by equations (57) and (58) withr = T — t(T).
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Proof. (1) By [6], r = T — ©(T) satisfies the CYBE in the Lie algebra A x,« V* if and
only if equation (78) holds and by [7], r satisfies the AYBE in the commutative associative
algebra A x_,« V* if and only if equation (79) holds.

Let {vi,...,Vn} be a basis of V and {v],..., v} be the dual basis. Then T =
Yt T(vi) @vf € (AX_yx pr V*) ® (A X_yx o= V*). Hence

r=T-1(T)=)_ T)® v —v] &T(v;).

i=1

Note that
(P + B @idr = 3 (P(T () ® v} — B(0]) @ Tw)).
=
(d® (Q +a*)r = i(mn ® a* (v]) — v} ® Q(T(w)).
Further _
3Bt 0) ® T(wr) = _m S B W) v} @ T(on)

i=1

~
I

-
~
Il

-

o ® (v BT (vr)

I
M=

N
I
-
-
Il
-

i ® T((B(i), v})vj) = Y vf @ T(B(w)),

i=1

Il
NE

Il
—
-
Il
_

and similarly,

m m
Y T)@a*(vf) =) Tw) ® v},
i=1 i=1
Therefore (P + 8*) @ id)r =(d ® (Q + a*))rifand only if PT =Ta and T8=QT.
Thus the conclusion holds.
(2) It follows from item (1) and Theorem 4.12. ]

Therefore starting from an (@-operator T of a relative Poisson algebra (A, P) associ-
ated to a representation (i, p, o, V'), one gets an antisymmetric solution of the (Q + o*)-
RPYBE in the relative Poisson algebra (A x_,+ o« V*, P + B*) for suitable linear maps
B and Q and hence gives rise to a relative Poisson bialgebra on the latter. There are some
natural choices of Q and B. For example, assume that 8 = +a, Q = =P or B = fa ™!,
0 =0P ! for0+# 6 € K when « and P are invertible. Note that in these cases T8 = QT
automatically and then one can get the other corresponding constraint conditions due to
Theorem 4.13. In particular, when § = —« and Q = — P, there is not any constraint
condition.



G. Liu and C. Bai 1028

Corollary 4.14. Let (i, p, o, V') be a representation of a relative Poisson algebra (A, P)
and T 1V — A be an O-operator of (A, P) associated to (i, p,o, V). Thenr =T — t(T)
is an antisymmetric solution of the (—P + a™)-RPYBE in the relative Poisson algebra
(Ax_y» p» V*, P —a™). Further the relative Poisson algebra (A x_x o« V*, P —a*) is
dually represented by —P + a* and there is a relative Poisson bialgebra (A X_» px V'*,
“[—= =], A8, P —a*,—P + a*), where the linear maps A and § are defined respectively
by equations (57) and (58) throughr = T — ©(T).

Proof. By Corollary 2.9, (—u™, p*, —a™*, V*) is arepresentation of (4, P) and — P dually
represents (A4, P). Moreover, equations (81) and (82) hold when 8 = —a, Q = —P. Hence
the conclusion follows from Theorem 4.13 when 8 = —«, Q = —P. |
4.3. Relative pre-Poisson algebras

Recall the notions of Zinbiel algebras ([32]) and pre-Lie algebras ([11]).

Definition 4.15. A Zinbiel algebra is a vector space A equipped with a bilinear operation
*: A® A — A such that

XxX*x(yxz) = x)*xz+ (x xy) %z, Vx,y,z € A. (85)
Let (A, x) be a Zinbiel algebra. Define a new bilinear operation - on A by
X-y=x*xy+y*x, Vx,y € A. (86)

Then (4, -) is a commutative associative algebra. Moreover, (£, 4) is a representation of
the commutative associative algebra (4, -), where £,(x)y = x x y forall x, y € A.

Definition 4.16. A pre-Lie algebra is a vector space A equipped with a bilinear operation
0:A® A — A such that

(xoy)oz—xo(yoz)=(yox)oz—yo(xoz), Vx,y,z € A. (87)
Let (A, o) be a pre-Lie algebra. Define a new bilinear operation [—, —] on A4 by
[x,y]:xoy—yox, Vx,y € A. (88)

Then (A, [—, —]) is a Lie algebra. Moreover, (£,, A) is a representation of the Lie algebra
(A, [—,—]), where £o(x)y = xoyforall x,y € A.

Definition 4.17. A relative pre-Poisson algebra is a quadruple (A, x, 0, P), where (A4, x)
is a Zinbiel algebra, (A4, o) is a pre-Lie algebra, P : A — A is a derivation of both (4, )
and (4, o), thatis, forall x, y € A4,

P(xxy)=Px)*xy+x*P(y), (89)
P(xoy)= P(x)oy+xoP(y), (90)
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and the following compatible conditions are satisfied:
(xxy+y*xx)oz—xx(yoz)—yx(xoz)+(xxy+y*x)xP(z) =0,
€2y
yo(xxz)—xx(yoz)+(xoy—yox)*xz—(x*xP(y)+ P(y)*x)xz =0,
92)
forall x,y,z € A.
Remark 4.18. Recall a pre-Poisson algebra ([3]) is a triple (A4, %, o), where (4, x) is a
Zinbiel algebra and (A4, o) is a pre-Lie algebra such that the following conditions hold:
(xoy—yox)sz=xx(yoz)—yo(x2).
(x*y+y*x)oz=xx(yoz)+yx(xo2),
for all x, y,z € A. Thus any pre-Poisson algebra is a relative pre-Poisson algebra with the

derivation P = 0.

There is the following construction of relative pre-Poisson algebras from Zinbiel alge-
bras with their derivations, which is an analogue of Example 1.2.

Proposition 4.19. Let (A, x) be a Zinbiel algebra and P be a derivation of (A, x). Define
a new bilinear operationo : A Q@ A — A by
xoy=xx*P(y)— P(x)*y, Vx,y € A.
Then (A, o) is a pre-Lie algebra and (A, *, o, P) is a relative pre-Poisson algebra.
Proof. Letx,y,z € A. Then we have
(xoy)oz—xo(yoz)=(x*P(y))* P(z) = (P(x) x y) » P(z) — (x x P*(y)) * z
+ (P2(x) % y) xz—x % (y » P2(2)) + x » (P%(y) * 2)
+ P(x) * (y x P(2)) — P(x) x (P(y) * 2),
(yox)oz—yo(xoz)=(y* P(x))* P(z) — (P(y) *x) * P(z) — (y » P2(x)) * z
+ (P2(y)*x)xz—y * (x * P2(2)) + y * (P%(x) % 2)
+ P(y) » (x x P(2)) — P(y) * (P(x) * 2).
Note that by equation (85), we have
—x % (y *» P2(2)) = —y » (x » P%(2)),
—P(x) * (P(y) xz) = —P(y) » (P(x) » 2),
—(P(x) x y) * P(z) + P(x) x (y x P(2))
=y * P(x)) » P(2),
(x x P(y)) x P(z) = —(P(y) »x) x P(z) + P(y) * (x » P(2)),
—(x* P2(y)) x z 4+ x * (P2(y) x 2) = (P%(y) * x) » z,
(P2(x) *y) %z = —(y » P2(x)) x 2+ y * (P%(x) * 2).
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Thus equation (87) holds, that is, (A4, o) is a pre-Lie algebra. Similarly, we show that P
is a derivation of (A4, o) and equations (91) and (92) hold. Hence (4, , o, P) is a relative
pre-Poisson algebra. ]

Example 4.20. Let (A, ) be a 3-dimensional Zinbiel algebra with a basis {e;, 2, e3}
whose non-zero products ([24]) are given as follows:

€] x e = és3, €1 X €y = é3.
Define a linear map P : A — A as
P(ey) = e1 + e, P(ez) = 2es, P(e3) = 3es.

Then P is a derivation of (A, ). Hence there is a relative pre-Poisson algebra (A4, , o, P)
with the following non-zero products of the pre-Lie algebra (4, o):

€1 0e1 = e3, €1 0ey = é3.

Proposition 4.21. Let (A, x,0, P) be a relative pre-Poisson algebra. Then (A, -,[—,—], P)
is a relative Poisson algebra, where -,[—,—] : A ® A — A are defined by equations (86)
and (88) respectively. Moreover, (£, £o, P, A) is a representation of the relative Poisson
algebra (A, -, [—, =], P) and hence the identity map id is an O-operator of (A,-,[—,—], P)
associated to (£, Lo, P, A).

Proof. Let x,y,z € A. By equations (89) and (90), P is a derivation of both (4, -) and
(A,[—,—]). Moreover, by equations (85), (91) and (92), we have

[z.x-yl=x-[z.y] =y [z.x] =x-y- P(z)
=@Co(xxy)+zo(yxx)—(x*xy)oz—(yxx)oz)
—(xx(zoy)—xx(yoz)+(zoy)*xx—(yoz)*xx)
—(xGox)—yx(xoz)+(zox)xy—(x02) )
—((x*xy+y*xx)*x P(z2)+ P(2)x (x xy + y *x X))
=@*xPE)+P@)xx)*xy+(y*xP(z)+ P(2)xy)xx
—PZ)x(x*xy+y*xx)=0.
Thus (4, -, [—, —], P) is a relative Poisson algebra. Moreover, by equations (89)—(92), we
have

P(E.(x)y) = La(P(x))y + Lu(x) P(y),
P(£o(x)y) = Lo(P(x))y + Lo(X)P(y),
Lo(x+y)z = Lu(X)Lo(y)z2 — Lu(¥)Lo(x)z + Lu(x - y)P(z) =0,
Lo(P)Lr(¥)2 — Lo (X)Lo(Y)z + Lu([x, ¥])z — Lu(x - P(y))z = 0.

Thus (£., Lo, P, A) is a representation of the relative Poisson algebra (4, -, [—, —], P).
The rest of the conclusion is obvious. [
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Definition 4.22. Let (A4, x, 0, P) be a relative pre-Poisson algebra. Define two bilinear
operations -,[—,—] : A ® A — A by equations (86) and (88) respectively. Then (4, -,[—,—],
P) is called the sub-adjacent relative Poisson algebra of (A, x, o0, P), and (A4, x,0, P) is
called a compatible relative pre-Poisson algebra structure on the relative Poisson algebra
(A, [ -] P).

By Corollary 4.14 and Proposition 4.21, we obtain the following construction of anti-
symmetric solutions of the RPYBE and hence relative Poisson bialgebras from relative
pre-Poisson algebras.

Proposition 4.23. Let (A, x, 0, P) be a relative pre-Poisson algebra and (A, -, [—, —], P)
be the sub-adjacent relative Poisson algebra. Let {ey, . .., e, } be a basis of A and {e], ...,
er} be the dual basis. Then

n
r=Y (e ®ef —ef ®e)
i=1
is an antisymmetric solution of the (—P + P™*)-RPYBE in the relative Poisson algebra
(A X_gx gx A*, P—P¥). Further the relative Poisson algebra (A x_gx ¢x A*, P—P¥)
is dually represented by (—P + P*) and hence there is a relative Poisson bialgebra
(Ax_gr gx A*, - [-,—],A,8, P — P*,—P + P¥), where the linear maps A and § are
defined respectively by equations (57) and (58) through r.

5. Relative Poisson bialgebras and Frobenius Jacobi algebras

We use relative Poisson bialgebras to construct Frobenius Jacobi algebras. In particular,
there is a construction of Frobenius Jacobi algebras from relative pre-Poisson algebras.
We give an example to illustrate this construction explicitly.

By Remark 2.19, the approach for the bialgebra theory of relative Poisson algebras
in terms of matched pairs is not available for Jacobi algebras any more. That is, for a
relative Poisson bialgebra (4, -4, [—, —]4, A, §, P, Q), it is impossible for the commutative
associative algebra structure on A @ A* to be unital such that both (A4, -4) and (A*, -4+)
are unital, where -4+ is given by the dual of A. However, it might be possible for the
commutative associative algebra structure on A @ A* to be unital such that one of (4, -4)
and (A*, -4+) is unital. Note that in this case, the induced relative Poisson algebra A ><t A*
is a Jacobi algebra and hence with the bilinear form B, defined by equation (46), it is a
Frobenius Jacobi algebra. Explicitly, we have the following proposition.

Proposition 5.1. Let (A, -4) be a unital commutative associative algebra with the unit 14
and A : A — A ® A be a linear map such that (A, -4, A) is a commutative and cocom-
mutative infinitesimal bialgebra. If the induced commutative associative algebra structure
on A ® A* is unital, then the unit is 14. Moreover, 14 is the unit of the commutative asso-
ciative algebra structure on A ® A* if and only if A(14) = 0. In particular, if (A, -, A) is
coboundary, then A(14) = 0 automatically.
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Proof. By Remark 2.19, if the induced commutative associative algebra structure on
A @ A* is unital, then the unit is 14. Note that the commutative associative algebra struc-
ture on A @ A* is given by

(x+a") - +b)=xuy—Lh@)y — L340 )x +a” 4= b*
—£3(x)b* — £33 (y)a™, Vx,y € A, a*,b* € A*, (93)

where -4+ is given by the dual of A. Then 14 is the unit of the commutative associative
algebra structure on A @ A* if and only if

lg-a* =—-£5(14)a* — L4 (a")1g = a”, Ya* € A*,
& —Li(@)1a =0, Va* € A*,
< (A(ly).a" ®b*) =0, Va*, b* € A%,
< A(ly) =0.

In particular, if (4, -, A) is coboundary, that is, there exists r = ) ; a; ® b; € A ® A such
that equation (57) holds, then we have

A(lg) = ({d® £(14) — £(10) ®id)r =Y "(a; ® bi —a; ® b;) = 0.

14

Hence the conclusion holds. ]

Let (A,-,[—,—]) be aJacobi algebra and (4, -, [—, —],ad(14)) be the corresponding uni-
tal relative Poisson algebra. By Corollary 2.10, Q dually represents (4, -, [—, —], ad(14))
if and only if Q = —ad(14). Then we have the following conclusion at the level of Jacobi
algebras.

Corollary 5.2. Let (A, -, [—, —]) be a Jacobi algebra and (A, -, [—, —], ad(14)) be the
corresponding unital relative Poisson algebra. Suppose that (A, -, [—, —], A, §, ad(14),
—ad(14)) is a relative Poisson bialgebra. Then the induced relative Poisson algebra (A <
A* ad(l4) — (ad(14))™) is unital, that is, it is a Jacobi algebra, if and only if A(l4) =
0. In this case, with the bilinear form By defined by equation (46), it is a Frobenius
Jacobi algebra. In particular, if (A, -, [—, =], A, 8, ad(14), —ad(14)) is coboundary, then
A(14) = 0 automatically.

Combining Corollaries 4.5 and 5.2 together, we have the following construction of
Frobenius Jacobi algebras from antisymmetric solutions of the RPYBE in Jacobi algebras.

Corollary 5.3. Let (A,-,[—, —]) be a Jacobi algebra and (A, -,[—, —],ad(14)) be the cor-
responding unital relative Poisson algebra. Let r € A @ A and A,§ : A —> AQ A be
linear maps defined by equations (57) and (58) respectively. If r is an antisymmetric solu-
tion of the (—ad(14))-RPYBE in the relative Poisson algebra (A, -, [—, —],ad(14)), then
(A,-,[—,—],A,8, ad(14),—ad(14)) is a coboundary relative Poisson bialgebra and hence
the induced relative Poisson algebra (A <1 A*,ad(14) — (ad(14))*) with the bilinear form
B, defined by equation (46) is a Frobenius Jacobi algebra.
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Remark 5.4. Unfortunately, the construction of antisymmetric solutions of the RPYBE
in relative Poisson algebras from relative pre-Poisson algebras given in Proposition 4.23
cannot be applied directly to the above conclusion since the sub-adjacent relative Poisson
algebra (4, -, [—, —], P) of a relative pre-Poisson algebra (A4, , o, P) is not a Jacobi alge-
bra (hence the semi-direct product relative Poisson algebra (4 x_gx ¢x A*, P — P*) is
not a Jacobi algebra, either). In fact, let (A4, x) be a Zinbiel algebra. Suppose that the
commutative associative algebra (4, -) defined by equation (86) has the unit 14. Then we
have
Xx=x*x14+ 14 *x, Vx e A.

Thus 14 = 2(14 * 14). On the other hand, we have
Xx(lgxlyg)=(x-1g9)*x1g =x* 1y, Vx € A.

Hence x » 14 = 0 and thus 14 x x = x for all x € A. Taking x = 14, we have x = 0,
which is a contradiction.

Next we give an approach in which the construction given by Corollary 5.3 can be
applied.

Lemma 5.5. Let (A, -, [—, =], P) be a relative Poisson algebra. Extend the vector space
Atobea(dimA + 1) dimensional vector space A= A®Ke. Define two bilinear oper-
ations - z,[—, —| 7 A® A— Aandalinearmap P : A — A as

x.gy:x.y, e'A‘XZX'A‘(?:x, 3';1‘828,
[x,y]gz[x,y], [e’x]g=—[X,€]g=P(x), [e,e]A“:O,
Px)=Px).  Pl)=0

for all x,y € A. Then (A, o=l P) is a unital relative Poisson algebra. Conse-
quently, there is a corresponding Jacobi algebra (A, -z, [—, —]7), which is called the
extended Jacobi algebra of the relative Poisson algebra (A, -, [—, —], P).

Proof. 1tis obvious that (zzf ,+7) s a commutative associative algebra and e is the unit. Let
Xx,y,z € A. Then we have

le.[x. ¥Izlz + [x. [y.elzlg + . le. x] 71 7 = P([x. yD) — [x. P(W] + [y, P(¥)] =
Hence (A4, [—.—17) is a Lie algebra and P=ad (e). Moreover, we have
le.x]g-7y+x gleylz+x-zy-7Pe)=P)-y+x-P(y)
=Px-y)=le.x -7y
[z.x]7-7e +x-g[z,e]g+x-ge-gﬁ(z) =z, x]—x-P()+x-P(2)
=[z,x-zelz.

Therefore (/T el e 2 P ) is a unital relative Poisson algebra. [
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Proposition 5.6. Let (i, p, a, V) be a representation of a relative Poisson algebra (A, -,
[—. =], P). Then (ji, p, V) is a representation of the extended Jacobi algebra (A, -7,
[—. —17) with the linear maps [i, p : A — End(V') defined as

f(x) = p(x),  ji(e) =idy, p(x) = p(x), ple) = a, VxeA. (94

Moreover, (i, p,a, V) is a representation of the unital relative Poisson algebra (/T, e
[ =1z P).

Proof. The first part of the conclusion can be proved by checking equations (27) and (28)
directly or as follows. Since (i, p, , V') is a representation of (4, -, [—, =], P), (A Xy, V,
P + a) is arelative Poisson algebra. Hence there is an extended Jacobi algebra A x,, , V'

in which the bilinear operations - —— and [—, —] e on A @ V are the same as the
m

AxV %
ones of (Ax, , V,P +a)andforallx € A,uecV,
e-Amszx, e-AmVuzu,

[e,x]AmV = (P 4+ a)x = P(x), [e,u]AmV = (P + o)u = a(u).

On the other hand, the above Jacobi algebra is exactly the Jacobi algebra structure on the
direct sum A@® V = A @ V & Ke given by the Jacobi algebra (A, -7» [=.—17) and the
linear maps i, p : A — End(V') defined by equation (94) through equations (8) and (9).
Thus ([, 5, V) is a representation of (A, - 7 [=—17). The second part of the conclusion
follows from Proposition 2.13. ]

Corollary 5.7. Let T : V — A be an Q-operator of a relative Poisson algebra (A, -, [—,—],
P) associated to a representation (i, p,o, V). Then T : V — A C Aisalso an O-operator
of the unital relative Poisson algebra (/T, = -l 13‘) (that is, the extended Jacobi
algebra (A, 7,[—. —] 7)) associated to the representation (i, p,c, V).

Proof. Tt follows from Lemma 5.5 and Proposition 5.6. ]

Thus there is the following construction of Frobenius Jacobi algebras from relative
pre-Poisson algebras.

Theorem 5.8. Let (A, x, 0, P) be a relative pre-Poisson algebra and (A, -, [—, —], P) be
the sub-adjacent relative Poisson algebra. Let {ey, . .., e, } be a basis of A and {e7, . ...e;}
be the dual basis. Then

n

= Z(ei ® e;k — e;k ® ei) (95)
i=1

is an antisymmetric solution of the (—ﬁ + P*)-RPYBE in the unital relative Poisson alge-
bra(Ax A*:=A X_gox g A*, P — P*). Moreover, there is a relative Poisson bialgebra

(Ax A*, 5 ges [= ) fuges A8 P — P*—P + P,
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where the linear maps A, § : A x A* — (A x A*) ® (A x A*) are defined respectively by
equations (57) and (58) through r such that the induced relative Poisson algebra (A x A*)
> (A X A*)* with the bilinear form 8, defined by equation (46) is a Frobenius Jacobi
algebra.

Proof. By Proposition 4.21, the identity map id4 is an @-operator of the relative Poisson
algebra (4, -, [—, —], P) associated to (£, £, P, A) By Corollary 5.7, idy4 is also an
-operator of the un1ta1 relative Poisson algebra (A, = -l P) associated to the
representatlon (:C,,, :60, P, A). Then by Corollary 4.14, r is an antisymmetric solution of
the (—P + P*)-RPYBE in the relative Poisson algebra (Ax A*, P — P*). Further, the
relative Poisson algebra (4 x A*, P — P*) is dually represented by —P + P*. The rest
follows from Corollary 5.3. |

Example 5.9. Let (A, x, o, P) be the 3-dimensional relative pre-Poisson algebra given by
Example 4.20. Then the sub-adjacent relative Poisson algebra (4, -, [—, —], P) is given by
the following non-zero products:

e -e1 = 2es, ey - ey = e3, le1,e2] = es.

By Lemma 5.5, we have the extended Jacobi algebra (A, - 1 [=»—17) whose non-zero
products are given by the above products and the following products:

8'161281, 6";1‘6‘2:62, 8'1:1'83:6’3, e-geze,
le.e1]; = P(e1) = e1 +ea, le.e2] 7 = P(ez) = 2e3, [e,e3] 7 = P(e3) = 3es.

Let {e], e3, e} be the basis of A* which is dual to {eq, e, e3}. By Proposition 5.6, there
is a Jacobi algebra (A X A* := A x i A%, g ans L—, —] 7 4+)> Where the non-zero
products are given by the above non-zero products of (4, - 7, [~, —] 7) and the following

products:

¢ done = —E @t =i,
e g€ =—£. (e)er = e3,
€ Joar €3 = %, (e)er = el
€1 fuar €3 = —LF(e1)es = ef +e3,

le.el] fuar = EE;*(e)eik —P*(e}) = —ej,

le.e3] fuar = EE;*(e)e; = —P*(e5) = —e] —2¢3,
=%

le,e3] suqr = Lo (e)e = —P™(e3) = —3e3,

le1, €3] fuqx = Lo(e1)es = —ef —e5.

In order to simplify the notations, we replace Ax A* by J, g4+ BY = [ =] 14+ BY
[—, —], and {e, e€1,€3,¢e3, ef, e;‘, e;} by {E, El, E2, E3, E4, E5, E6} Then (J, N [—, —]) is
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a Jacobi algebra with a basis {E, Ey, E», E3, E4, Es5, Eg}, in which E is the unit and the
other non-zero products are given by

Ey1-E1 = 2E;3, Ei-E> = Ej, Ei-E¢ = E4 + Es,
[E, E1] = E1 + Ea, [E, E,] = 2E>, [E, E3] = 3Es3,

[E, E4] = —E4, [E,Es] = —E4 —2Es, [E, E¢] = —3Es,
[E1, E2] = E3, [E1, E¢] = —E4 — Es.

Obviously it is isomorphic to the Jacobi algebra (IZf X A*, - 7 gx0 [= =] 1 4+)- By equa-
tion (95), we set

r=Ei1QFE4—E4sQEI +E;Q®FEs—EsQE, + E3Q E¢ — E¢ ® E3.
Let A,6:J — J ® J be linear maps given by equations (57) and (58) respectively. Then
A(E1) = A(Ex) = —E3Q E4 — E4 ® Es,
A(E¢) = —2E4 ® E4 — E4 ® Es — Es ® Ey,
8(E1) = 8(E2) = —E3 ® E4 + E4 ® E3,
8(E¢) = —E4 ® Es + Es ® Eq,

Hence (J,-,[—,—], A, §,ady (E),—ady(E)) is a relative Poisson bialgebra. Moreover, the
non-zero products on the relative Poisson algebra J* are given by

E}-E; =—E] - EJ. E;-E; = —2E¢, E} -EI = —E¢,
[E;,Ej]=—E] — EJ, [E},EZ] = —E¢.
With the above relative Poisson algebra structures on J and J* together, J > J* is a

relative Poisson algebra with the unit E, in which the other non-zero products are given
by equations (30) and (31) with respect to the matched pair

((J,ady(E)), (J*,—ads(E)*), =L}, —&£F+,ad}, ad}.)

as follows:
E\-Ef =E*, E\-E; =—E4+2E{+E;, E\-Ej=—-E;+E;,
E,-EZ = E{, E,-E; = E*, E,-E} =—Es+ EY,
E,-E; = —F3, E3-E} = E™, Es-E] =E™,
Es-EZ = E™, E¢-E;y = —2E4— Es + ET, E¢-EX =—E4s+ EY,
E¢-E{ = E*, [E,E]] = —ET, [E,E5] = —E} —2E;,

[E,E}]=—-3E;, |[E,E}]=E;+E:Z, [E,EZ] = 2EZ,
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[E,Ez]=3E;, [Ey, ET] = E¥, [Ey, E;] = E¥,
[E1.E}]=—Es+—E}, [Ei,E}]=Esz+ E¢, [Eq, EZ] = E¢,

[Es, E;] =2E™, [Ex, E}] = —Es+ Ey, [E2 E}]l=Ej3,
[E35E;] :3E*’ [E45E:] :_E*’ [E57E:] =_E*7
[Es, EZ] = —2E™, [E¢, Ey] = —Es — E7, [Ee, EZ] = E4 — ET,
[Ee. Eg] = —3E™.

Therefore, by Theorem 5.8, (J <t J*, By) is a 14-dimensional Frobenius Jacobi algebra,
where B is given by equation (46).
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