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Finite approximation properties of C �-modules II

Massoud Amini

Abstract. We study quasidiagonality and local reflexivity for C�-algebras which are C�-module
over another C�-algebra with compatible actions. We introduce and study a notion of amenability
for vector valued traces.

1. Introduction

Finite approximation properties of C �-algebras are studied in [5]. Some of these, includ-
ing important notions such as nuclearity, exactness and weak expectation property (WEP)
are extended to the context of C �-algebras with compatible module structure in [2]. We
continue this study here by considering other important finite approximation properties
such as quasidiagonality and local reflexivity. We also study vector valued traces and their
amenability.

A “finite dimensional approximation” scheme for C �-morphisms is an approximately
commuting diagram as follows:

A
� //

'n

##

B

Mkn.C/

 n

;;

whereA andB are C �-algebras and 'n and n are contractive completely positive (c.c.p.)
maps. The central idea of the module case, where A and B are also A-modules, for a C �-
algebra A, is to find such an approximate decomposition through the C �-algebra Mkn.A/

(or through the von Neumann algebra Mkn.A
��/). This means that we deal with approxi-

mations through finitely generated modules (over A or A��), shortly referred to as “finite
approximation” here.

The paper is organized as follows: In Section 2 we use the notion of retraction, already
studied in the context of Hilbert C �-modules [14], to introduce the notion of vector valued
amenable traces on C �-modules. In Section 3, we study a notion of quasidiagonality in the
category of C �-modules and extend Voiculescu’s theorem (Theorem 3.6). The last section
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is devoted to the extension of local reflexivity, Arveson’s lemma (Lemma 4.2) and a work
of Kirchberg on min-continuity properties.

The underlying module structure in the theory of C �-bundles anticipates an outlook
toward the possible future utility of the concepts introduced in this paper, at least for
C �-algebras naturally coming from C �-bundles. The celebrated Dauns–Hofmann’s theo-
rem [6] was motivated by the correspondence between bundles over a spaceX andC0.X/-
modules [17, Appendix A.3]. The module tensor products over C0.X/ (used in Section 4)
already appeared in [7] (under the name of C0.X/-balanced tensor products) and for
continuous-trace C �-algebras with spectrum X , the Dixmier–Douady map is a group iso-
morphism from the Brauer group Br.X/ of the corresponding spectrum-preserving Morita
equivalence classes onto H 3.X;Z/, where the group operation in Br.X/ is defined via
module tensor products over C0.X/ (see [17, Chapter 6] for more details).

For the rest of this paper, we fix a C �-algebra A and let A be a C �-algebra and a
right Banach A-module (that is, a module with contractive right action) with compatible
conditions,

.ab/ � ˛ D a.b � ˛/; a � ˛ˇ D .a � ˛/ � ˇ;

for each a; b 2 A and ˛; ˇ 2 A. In this case, we say that A is a (right) A-C �-module,
or simply a C �-module (it is then understood that the algebra and module structures on
A are compatible in the above sense). A C �-subalgebra which is also an A-submodule is
simply called a C �-submodule.

If moreover we have the compatibility condition,

.a� � ˛�/� � ˇ D ..a � ˇ/� � ˛�/�;

for each a 2 A and ˛; ˇ 2 A, and define a left action by

˛ � a WD .a� � ˛�/�;

then A becomes an A-bimodule with compatibility conditions,

˛ � .ab/ D .˛ � a/b; ˛ˇ � a D ˛ � .ˇ � a/; ˛ � .a � ˇ/ D .˛ � a/ � ˇ;

for each a; b 2 A and ˛; ˇ 2 A. In this case, there is a canonical �-homomorphism from
A to the multiplier algebra M.A/ of A, sending ˛ to the pair .L˛; R˛/ of left and right
module multiplication map by ˛. If the action is non-degenerate, in the sense that, given ˛,
a � ˛ D 0, for each a 2 A, implies that ˛ D 0 (and so the same for the left action), then
the above map is injective and so an isometry, and we could (and would) identify A with
a C �-subalgebra of M.A/.

We say that a two sided action of A on A is a biaction if the right and left actions are
compatible, i.e.,

.a � ˛/b D a.˛ � b/ .˛ 2 A; a; b 2 A/:

When the action is non-degenerate and A acts on A as a C �-subalgebra ofM.A/, we have
a biaction.
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In some cases we have to work with operator A-modules with no algebra structure
(and in particular with certain Hilbert A-modules). If E; F are operator A-modules, a
module map � W E ! F is a continuous linear map which preserves the right A-module
action.

Throughout this paper, we use the notation B.X/ to denote the set of bounded adjoint-
able linear operators on an Hilbert C �-module X .

2. Amenable traces

In this section, A is a C �-algebra and A is a right A-C �-module, with the compatibility
conditions which allow one to consider A as an A-bimodule. When the action is non-
degenerate, we identify A with a C �-subalgebra of the multiplier algebra M.A/ (or that
of A, when A is unital).

The representations of A-C �-modules are defined on A-correspondences. An A-cor-
respondence is a right Hilbert A-module X with a left action of A via a representation of
A into B.X/. A representation of a A-bimoduleA inX is a �-homomorphism fromA into
B.X/, which is also a right A-module map with respect to the canonical right A-module
structure of B.X/ coming from the left A-module structure of X .

To define a module version of (vector valued) traces, we adapt (and slightly generalize)
the notion of retraction from [14, Chapter 5].

Definition 2.1. An A-retraction is a positive right A-module map � W A! A such that

(i) Im.�/ is strictly dense in A, that is, for each ˇ 2 A, there is a net .ai / � A such
that

k�.ai � ˛/ � ˇ˛k ! 0 .˛ 2 A/;

(ii) for some bounded approximate identity .ei / of A, �.ei /! p, for some projection
p in A, in the strict topology.

Note that since � is positive, it is also self-adjoint (i.e., it preserves the involution). In
particular, an A-retraction is automatically a bimodule map (with the left action defined as
in the previous section) and the left module version of conditions above are also satisfied.
This observation is used in the proof of part (i) of the next lemma.

WhenA is unital (and pD 1) and A is aC �-subalgebra ofA, an A-retraction is simply
a conditional expectation fromA onto A. Each state of the C �-algebraA is a C-retraction.
As another example, for A D pM.A/p, where p is a projection in M.A/, the cut down
map a 7! pap is an A-retraction.

The first part of following result is proved by a slight modification of the argument
of [14, Lemma 5.9]. Here we sketch the proof, as it also uses the bimodule property.
The second part follows from the observation (in the introduction) about non-degenerate
actions and [14, Proposition 5.10].
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Lemma 2.2. (i) An A-retraction is a c.p. map.

(ii) If the action is non-degenerate, A-retractions are exactly those linear maps � W
A ! A which have an extension to an idempotent c.c.p. map z� W M.A/ ! A,
which is strictly continuous on the unit ball of M.A/.

Proof. We only prove part (i). Identifying Mn.A/ with K.An/ [14, Lemma 4.1], we only
need to show that

nX
i;jD1

˛�i �.a
�
i aj / j̨ � 0 .˛1; : : : ; ˛n 2 A; a1; : : : ; an 2 A/:

Since � is a bimodule map, the left-hand side is the same as �.b�b/ for b D
P
i ai � ˛i ,

and we are done.

Next, let us assume that the action is non-degenerate and regard A as a C �-subalgebra
ofM.A/. LetX be a right HilbertA-module. ThenX is also a right HilbertM.A/-module:
for x 2 X , c 2M.A/, and bounded approximate identity .ai / � A,

jxaic � xaj cj
2
D c�.ai � ej /jxj

2.ai � aj /c ! 0;

as a net in A. Thus we may define xc as the limit of the net .xaic/ in M.A/. When the
action is non-degenerate, X is also a right A-module.

Assume that the action is non-degenerate. For an A-retraction, define

hx; yi� WD �.hx; yiA/ 2 A .x; y 2 X/:

Consider the closed submodule N� WD ¹x W hx; xi� D 0º of X . The completion of the
quotient X=N� is a Hilbert A-module, denoted by L2.X; �/. There is a module map:
X ! L2.X; �/; x 7! yx WD x CN� , satisfying bx � ˛ D yx � ˛, for ˛ 2 A. When X D A, we
denote this module simply by L2.A; �/.

For t 2 B.X/, since 0 � jtxj2 � ktk2jxj2 [14, Proposition 1.2], the map

�� W X=N� ! X=N� I x CN� ! tx CN� ;

is well defined and bounded, and extends to an �-homomorphism

�� W B.X/! B.L2.X; �//;

which is injective when � is faithful (that is, �.a/ D 0 implies a D 0, for each a 2 AC).
We say that X is � -self dual, if X is a self-dual Hilbert A-module under the above A-
valued inner product. In this case, L2.X; �/ is also a self dual Hilbert A-module (since
X=N� is dense in L2.X; �/ and the inner product is continuous). In particular, if A is a
von Neumann algebra and X is � -self dual, then B.L2.X; �// is a von Neumann algebra,
and so is the double commutant �� .A/00 � B.L2.X; �//.
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When A is faithfully represented in X , say A � B.X/, we may restrict this to A to get
a �-homomorphism

�� W A! B.L2.X; �//;

which is essentially the same as the GNS-construction of � , when X D A. In this case,
for each a 2 A, the operator �� .a/ is defined on the dense subset A=N� � L2.A; �/ by
�� .a/ Ob Dcab, and so it is justified to call �� the left regular representation associated to
the A-retraction � .

If A is unital and .ei / is the bounded approximate identity as in part (ii) of the above
definition, then

kyei � yej k2 D k�.ei � ej /
2
k
1
2 � k�.ei � ej /k

1
2 ! 0;

as i; j !1. Thus, there is O1 2 L2.A; �/ with yei ! O1 in L2.A; �/, and O1 is a cyclic vector
for �� . When A is unital, O1 is simply the canonical image of 1 2 A, but it exists, even if A
is not unital.

Another way to extend the GNS-construction, is adapting the so called Kasparov–
Stinespring–Gelfand–Naimark–Segal (KSGNS) construction [14] for A-retractions. Let
Y be a Hilbert A-module and � W A! B.Y / be a c.p. map. We say that � is strict if the
net .�.ei // is strictly Cauchy in B.Y /, for some bounded approximate identity .ei / � A
(this is automatic when A is unital). Since the unit ball of B.Y / is complete in the strict
topology [14], the above condition implies that �.ei / ! p, in the strict topology, for
some positive element p in B.Y / (the case p D 1 is equivalent to the condition that � is
non-degenerate). Now the KSGNS-construction of a strict c.p. map � W A! B.Y / gives
a Hilbert A-module Y�, an adjointable operator v 2 B.Y; Y�/ and a �-homomorphism
�� WA!B.Y�/with �D v���.�/v, such that ��.A/v.Y / is dense in Y�, which is universal
in the sense that, for each Hilbert A-module Z and �-homomorphism � W A! B.Z/ and
w 2 B.Y; Z/ with � D w��.�/w, such that �.A/w.Y / is dense in Z, there is a unitary
u 2 B.Y�; Z/ with � D u��.�/u� and w D uv [14, Theorem 5.6]. Indeed, Y� D A˝� Y
and ��.a/.vy/D a P̋ y, for a 2A;y 2 Y . When � is a non-degenerate �-homomorphism,
Y� is unitarily equivalent to Y .

Back to the A-retraction � W A! A, since �� W A! B.L2.A; �// is a non-degenerate
�-homomorphism, for the A-module Y D L2.A; �/, the KSGNS-construction Y�� could
be identified (via a unitary equivalence) with Y . Under this identification, the adjointable
operator v above is identified with the identity and we get the above universality property
for free. Another choice for Y is Y D A, which gives Y� D A ˝� A, with the above
universal property. In this case, v 2 B.A; A˝� A/ satisfies �� .a/.v˛/ D a P̋ ˛. Again,
if A is unital, the v.1A/ is a cyclic vector for the representation �� W A! B.A ˝� A/

(indeed, v.1A/ is the limit of the net .ei P̋ 1A/ in A˝� A).

Definition 2.3. An A-trace is an A-retraction � W A! A satisfying

�.ab/ D �.ba/ .a; b 2 A/:
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In this case, one could also define the right regular representation �op
� of � on Aop

by �op
� .a/yb Dcba (extended by continuity). This is well defined, since � is an A-trace.

The proof of the next lemma goes, almost verbatim, as in the classical case [5, Proposi-
tion 6.1.2, Theorem 6.1.4].

Lemma 2.4. Let � W A! A be an A-trace.

(i) �� .A/
0 � �

op
� .A

op/ in B.L2.A; �//,

(ii) there is a conjugate A-morphism J W L2.A; �/! L2.A; �/, with J 2 D id, satis-
fying J yaD ba� and J�� .a/J D �

op
� .a

�/, for each a 2A, and hJ z;z0i D hJ z0; zi
for each z; z0 2 L2.A; �/.

When A is unital, we also have,

(iii) J t O1 D t� O1, for each t 2 �� .A/0,

(iv) �� .A/
00 D �

op
� .A

op/0 and �� .A/0 D �
op
� .A

op/00 in B.L2.A; �//.

In part (ii), the fact that J is a conjugate A-morphism simply means that J.˛ � ya/ D
J.ya/ � ˛�, and the same for the right action.

In the next definition, we use the left module structure of Y to define the canonical
right module action of A on B.Y / by

.t � ˛/.y/ D t .˛ � y/ .t 2 B.Y /; ˛ 2 A; y 2 Y /:

Definition 2.5. An A-trace � WA!A is called amenable if for any faithful representation
A � B.Y / of A in an A-correspondence Y , � has an extension to a c.c.p. right module
map � W B.Y /! A satisfying �.uxu�/ D �.x/, for each x 2 B.Y / and each unitary u
in ACCI , where I is the identity operator on Y .

Note that if � is only an A-retraction satisfying the above extension property, then it is
automatically an A-trace. When A is a unital C �-algebra, faithfully and non-degenerately
represented in Y , then we only need to check that � is stable under the unitary conjugation
by unitaries in A. Finally, and the most important of all, note that, unlike the classical case
[5, Proposition 3.1.2], here the existence of an invariant extension is not independent of
the choice of the representation, unless A is represented in an A-module with injective
algebra of adjointable operators.

Lemma 2.6. Let A � B.Y / be a faithful representation in an A-correspondence Y such
that B.Y / is an injective A-module. Then if � W A! A is an A-trace which enjoys the
above invariant extension property for this representation, then � ı ��1 has the invari-
ant extension property for any other faithful representation � W A ! B.X/ of A in a
A-correspondence X , that is, � is an amenable A-trace.

Proof. First note that � ı ��1 is clearly an A-retraction. By injectivity, there is a c.c.p.
module map ˆ W B.X/! B.Y / which extends ��1 on �.A/, and �.A/ is in the multi-
plicative domain ofˆ. Consider the c.c.p. map � W B.Y /! A satisfying the conditions of
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Definition 2.5, and put  D � ıˆ. This is a c.c.p. map on B.X/ which extends � ı ��1

on �.A/ and enjoys the invariance property on B.X/.

The above lemma suggests that we look for an appropriate A-correspondence Y such
that there is a faithful representation A � B.Y / and B.Y / is an injective A-module. One
case of special interest is Y D K ˝A, where K is an appropriate Hilbert space. We use a
minimal Stinespring dilation to show thatA could always be faithfully represented in such
a space by a module map. In the following lemma, we assume that we have a biaction (this
is satisfied if the action is non-degenerate and A acts on A as a C �-subalgebra of M.A/
by multiplication). This lemma relaxes the separability condition used in [2, Section 3],
showing that separability is not needed to define the min module tensor product.

Lemma 2.7. Let A be unital. There is a Hilbert space K and a A-correspondence struc-
ture on K ˝A such that A could be faithfully represented in K ˝A.

Proof. Let A � B.H/ be a faithful representation of the C �-algebra A in a Hilbert space
H . Take a faithful c.c.p. map ' W A! A0 � B.H/ (such a c.c.p. map always exists, for
instance, take any faithful state � of A and put '.a/ D �.a/1A). Let .�; K; V / be the
minimal Stinespring dilation of '. Then there is a �-homomorphism

� W '.A/0 ! �.A/0 � B.K/

such that '.a/x D V ��.a/�.x/V , for a 2 A, x 2 '.A/0 [5, Proposition 1.5.6]. Since
' D V ��.�/V is faithful, so is � (just calculate both sides of the last equality at aa�). On
the other hand, K D A˝' H and �.a/.b ˝ h/ D ab ˝ h, thus

�.a � ˛/.b ˝ h/ D .a � ˛/b ˝ h D a.˛ � b/˝ h

D �.a/
�
.˛ � b/˝ h

�
D
�
�.a/ � ˛

�
.b ˝ h/;

for ˛ 2 A; a; b 2 A; h 2 H .
Note that since '.A/ � A0, '.A/0 � A00 � A, so put

� D �jA W A! �.A/0 � B.K/

and define the left action of A on K by

˛ � � WD �.˛/� .˛ 2 A; � 2 K/;

and let A act on the right Hilbert A-module K ˝A with inner product

h� ˝ ˛; �˝ ˇi WD h�; �i˛�ˇ .˛; ˇ 2 A; �; � 2 K/;

via z� W A! B.K ˝A/, defined by

z�.a/.� ˝ ˛/ WD �.a/� ˝ ˛ .˛ 2 A; a 2 A; � 2 K/;
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then z� is faithful, since � is faithful and A is unital. Moreover, since � and � have com-
muting ranges,

z�.a � ˇ/.� ˝ ˛/ D �.a � ˇ/� ˝ ˛ D
�
�.a/ � ˇ

�
.�/˝ ˛

D �.a/.ˇ � �/˝ ˛ D �.a/�.ˇ/� ˝ ˛

D �.ˇ/�.a/� ˝ ˛ D ˇ �
�
�.a/� ˝ ˛

�
D ˇ �

�
z�.a/.� ˝ ˛/

�
D
�
z�.a/ � ˇ

�
.� ˝ ˛/;

for ˛; ˇ 2 A, a 2 A, � 2 K. Therefore z� is the required faithful representation.

In the category of Hilbert A-modules with bounded adjointable maps, it is known
that A is an injective object iff the multiplier algebra M.A/ is monotone complete [8,
Theorem 1.1] (compare to [1, Lemma 3.7]).

Lemma 2.8. Let A be unital. For the A-correspondence K ˝ A of the above lemma, if
B.K ˝ A/ is a von Neumann algebra, then if A is an injective object in the category of
A-modules with c.c.p. module maps as morphisms, then so is B.K ˝A/.

Proof. As in the proof of the module version of the Arveson extension theorem [2, Lem-
ma 3.7], it is enough to note that, for an orthonormal basis ¹�iº ofK, the set ¹�i ˝ 1Aº is a
frame for the Hilbert A-moduleK˝A. This gives a net of finite rank projections .qi / (say
with rank k.i/) in B.K ˝A/, tending to the identity in SOT, such that qiB.K ˝A/qi D

Mk.i/.A/. The rest goes as in the proof of the classical Arveson extension theorem.

Note that,
B.K ˝A/ DM.K.K/˝A/ � B.K/ x̋ A��:

Also, B.K ˝A/ is a von Neumann algebra when A is so and K ˝A is self dual.
Let � be an A-trace, and consider the left and right regular representations �� and �op

�

on L2.A; �/. Since the ranges of these representations commute, we may consider the
representation �� ˝ �

op
� W AˇA

op! B.L2.A; �//. Composing this with the A-retraction

� W x 2 B.L2.A; �// 7! hx O1; O1i 2 A

we get a map �� W Aˇ Aop ! A. Both of these maps are max-continuous (by universal-
ity) on Aˇ Aop. The natural question is that when these are min-continuous. The main
result of this section answers this and gives sufficient conditions for amenability of � .
The proof resembles that of [4, Theorem 3.1.6], but there are lots of technicalities, due to
working with vector valued maps, which should be taken care of. For x 2Mn.A/, we put,

kxk2 WD .trn ˝ id/.x�x/
1
2 2 AC:

Theorem 2.9. Let � be an A-trace on aC �-algebraA. Consider the following assertions:

(i) � is amenable,
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(ii) there exists a sequence of c.c.p. module maps �n W A ! Mk.n/.A/ such that
.trk.n/ ˝ id/ ı �n ! � in point-norm topology on A, as n ! 1, and also
k�n.ab/ � �n.a/�n.b/k2 ! 0 in A, as n!1, for all a; b 2 A,

(iii) the positive linear map �� on Aˇ Aop is min-continuous on Aˇ Aop,

(iv) the representation �� ˝ �
op
� W Aˇ A

op ! B.L2.A; �// is min-continuous,

(v) for any faithful representation A � B.Y /, there exists a c.c.p. module map ˆ W
B.Y /! �� .A/

00 extending �� .

Then (ii)) (iii)) (iv) and (v)) (i). If moreover, B.L2.A; �// is an injective object in
the category of A-modules and c.p. module maps, then (iv)) (v).

Proof. (ii)) (iii). Let .�n/ be as in (ii), consider the c.c.p. module maps �op
n W A

op !

Mk.n/.A/
op, and take the corresponding c.c.p. module map,

�n ˝ �
op
n W A˝ A

op
!Mk.n/.A/˝Mk.n/.A/

op
D B.L2.Mk.n/.A/; trk.n/ ˝ id//;

and compose it with

�n W x 2 B.L2.Mk.n/.A/; trk.n/ ˝ id// 7! hx O1; O1i;

and observe that,

�n ı .�n ˝ �
op
n /.a˝ b/ D h�n.a/J�

op
n .b

�/J O1; O1i D .trk.n/ ˝ id/.�n.a/�n.b//;

for a; b 2 A. Since

0 � j.trk.n/ ˝ id/.x/j � kxk2 .x 2Mk.n/.A//;

as positive elements in A, we have

k�n.�n ˝ �
op
n .a˝ b// � �� .a˝ b/k

D k.trk.n/ ˝ id/.�n.a/�n.b// � h�� .a/�� .b/O1; O1ik

� k.trk.n/ ˝ id/.�n.a/�n.b/ � �n.ab//k

� k.trk.n/ ˝ id/.�n.ab// � �.ab/k ! 0;

as n!1, for all a; b 2 A. Since �� is a point-norm limit of min-continuous maps, it is
min-continuous.

(iii)) (iv). By (iii),�� extends to an A-retraction onA˝Aop, and so it has a KSGNS-
representation,

� W A˝ Aop
! B.L2.A˝ Aop; �� //:

By the universality of the KSGNS-representation [14, Theorem 5.6], there is a unitary
u 2 B.L2.A˝ Aop; �� /; L

2.A; �// such that �� ˝ �
op
� D u�.�/u

� on Aˇ Aop. Thus the
left-hand side is min-continuous on Aˇ Aop.
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(iv) ) (v). Assume that B.L2.A; �// is an injective object in the category of A-
modules and c.p. module maps. By going to unitizations, we may assume that A is unital.
As in the classical case, one could use Lance’s trick:A˝Aop �B.Y /˝Aop and �� ˝�

op
�

extends to a c.p. map‰ WB.Y /˝Aop!B.L2.A;�//, havingA˝Aop in its multiplicative
domain. Put ˆ.x/ D ‰.x ˝ 1/, where 1 is the unit of A. Then

ran.ˆ/ � ‰.C1˝ Aop/ D �op
� .A/

0
D �� .A/

00
� �� .A/

00:

(v)) (i). For any faithful representation A � B.Y /, let ˆ W B.Y /! �� .A/
00 extend

�� and put � D hˆ.�/O1; O1/. Since A is in the multiplicative domain of ˆ, this is a c.c.p.
module map extending � , which is invariant under conjugation by unitaries in AC CI ,
where I is the identity operator on Y .

We do not know if (i)) (ii). The proof in the classical case uses approximation of
state of B.H/ (for a Hilbert space H ) with normal states coming from finite rank positive
elements, which has no counterpart in the vector valued case.

We recall that A has A-WEP if for every faithful representation and module map A �
B.H ˝A/ for a Hilbert space H , there is a u.c.p. admissible map ˆ W B.H ˝A/! A��

extending the identity on A [2]. For definition of admissible maps, see [2, Definition 2.1].

Proposition 2.10. Assume that A is a unital injective C �-algebra such that for a minimal
Stinespring dilation .�;K; V / as in Lemma 2.7, B.K ˝A/ is a von Neumann algebra. If
A has A-WEP, then each A-trace on A is amenable.

Proof. We identify A with its image under a faithful representation in B.K ˝A/. Since A
has A-WEP, there is a u.c.p. admissible mapˆ W B.K ˝A/!A��, extending the identity
map on A. For an A-trace � W A! A, let  be the restriction of

.��� ıˆ/˝ id W B.K ˝A/ x̋ A�� ! A�� x̋ A��

to B.K ˝A/ x̋ C1A�� , canonically identified with B.K ˝A/. Let E W A�� x̋ A�� ! A

be a conditional expectation and put

� WD E ı  W B.K ˝A/! A:

Since A is in the multiplicative domain of ˆ, it is also in the multiplicative domain of  ,
hence � is invariant under conjugation by unitaries of A C CI . Finally, since E is the
identity on its range, � extends � . The result now follows from Lemmas 2.6, 2.8.

3. Quasidiagonality

In this section, we explore the module version of the notion of quasidiagonal (QD) C �-
algebras.
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Definition 3.1. A C �-module A is called A-quasidiagonal (briefly, A-QD) if there exists
a net of admissible c.c.p. maps �n W A!Mk.n/.A/ which are approximately multiplica-
tive and approximately isometric, i.e., k�n.ab/� �n.a/�n.b/k ! 0 and k�n.a/k ! kak,
as n ! 1, for all a; b 2 A; or equivalently, if for each finite set F � A and " > 0,
there is a positive integer k and a c.c.p. admissible map � W A ! Mk.A/ satisfying
k�.ab/ � �.a/�.b/k < " and k�.a/k > kak � ", for all a; b 2 F .

When A is unital and A is a von Neumann algebra, an argument similar to that of
[5, Lemma 7.1.4] shows that we may take the maps �n in the above definition to be u.c.p.
module maps (if they exist).

Clearly, Mn.A/ is A-QD, for each positive integer n. As another immediate example,
if B D C0.X/ is a commutative C �-algebra, then AD B ˝AD C0.X;A/ (with the right
module action by multiplication) is A-QD (just take direct sums of point evaluations).
More generally, we have the following notion.

Definition 3.2. A C �-module A is called A-residually finite dimensional (briefly, A-
RFD) if there is a net of �-homomorphisms and admissible maps �n W A!Mk.n/.A/

such that
L
�n W A!

Q
n Mk.n/.A/ is faithful.

Clearly each A-RFD C �-module is also A-QD. Also, if B is an RFD C �-algebra,
then A D B ˝ A is A-RFD (and in particular, this holds if B is a Type I C �-algebra).
The property of being A-QD passes to direct products and subalgebras (which are also
submodules) and so it also passes to direct sums. When A is injective in the category
of A-modules with c.c.p. module maps, then it also passes to direct limits with injective
connecting maps (just as in [5, Proposition 7.1.9]). Also, it behaves well with respect to
the minimal module tensor products, defined in [2, Section 3]: if A and B are A-QD, so
is A˝min

A B (cf. [5, Proposition 7.1.12]).
We say that A is A-stably finite (briefly, A-SF) if Mn.A/˝

min
A A contains no proper

isometry (i.e., an isometry s with ss� ¤ 1), for each positive integer n. Similar to [5,
Proposition 7.1.15], if A is A-QD, it is also A-SF.

Definition 3.3. For a left Hilbert A-module Y , a subset��B.Y / is called quasidiagonal
if for each finite sets F � � and Y � Y and each " > 0 there is a finite rank projection
P 2 B.Y / such that kPT � TP k < ", for T 2 F, and P D I on Y.

Note that here, a finite rank operator is one whose range is a finitely generated submod-
ule of Y . Also, unlike the classical case, since the submodules of Y are not necessarily
complemented, we may not assume that kPv � vk < " for v 2 Y and prove the above
stronger assumption by modifying P with an orthogonal projection (cf. the proof of [5,
Proposition 7.2.3]). However, as in the above cited result, the stronger assumption gives
the following property.

Lemma 3.4. Let Y be a countably generated Hilbert A-module and � � B.Y / be norm
separable and quasidiagonal. Then there is an increasing sequence .Pn/ of finite rank
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projections, converging strongly to the identity I on Y , such that kŒPn; T �k ! 0, for
T 2 �.

Definition 3.5. A representation � W A! B.Y / in a left Hilbert A-module Y is called
quasidiagonal if there is a sequence .Pn/ � B.Y / of projections such that Pn�.a/ �
�.a/Pn 2 K.Y / and kPn�.a/ � �.a/Pnk ! 0, as n!1, for each a 2 A. It is called
strongly quasidiagonal if � WD �.A/ is a quasidiagonal set of adjointable operators.

It is well known that the two notions are equivalent in the case of (separable) Hilbert
space representations. We have the following weaker version of the classical result of
Voiculescu [5, Theorem 7.2.5].

Theorem 3.6 (Voiculescu). Assume that A is unital and A is unital and separable. The
following are equivalent.

(i) A has a faithful strongly QD representation modulo the compacts in H ˝ A,
where H is a separable Hilbert space,

(ii) A is A-QD with u.c.p. asymptotically multiplicative and isometric module maps.

Proof. (i)) (ii). If � W A! B.H ˝A/ is a faithful strongly QD representation, then by
Lemma 3.4, there is an increasing sequence .Pn/ of finite rank projections, say of rank
k.n/, converging SOT to the identity I , such that kŒPn; �.a/�k ! 0 for a 2 A. Now the
c.c.p. module maps �n W A ! PnB.H ˝ A/Pn Š Mk.n/.A/ are asymptotically multi-
plicative and isometric.

(ii)) (i). Let �n W A!Mk.n/.A/ be a u.c.p. asymptotically multiplicative and iso-
metric module maps. Then

ˆ WD
M

�n W A!

1Y
nD1

Mk.n/.A/ � B

� 1M
nD1

.`2k.n/ ˝A/

�
is a faithful representation modulo the compacts, and for the canonical orthogonal pro-
jections pn W `2 ! `2

k.n/
, ˆ becomes strongly QD with the finite rank projections Pn D

pn ˝ id.

Note that when A is a von Neumann algebra, in (ii) we could guarantee that the
corresponding maps are also u.c.p. (not just c.c.p.). We do not know however if (ii)
implies that every faithful unital essential representation of A in a countably generated
A-correspondence Y is QD. There are partial results in this direction by Kasparov: if A

is � -unital and nuclear and A is unital and separable, faithfully represented in a Hilbert
module of the formH ˝A, for a separable Hilbert spaceH , then for each unital c.p. map
� W A=A\K.H ˝A/! B.H ˝A/, there is a sequence of isometries .vn/� B.H ˝A/

with �.a/ � v�navn 2 K.H ˝A/ such that, k�.a/ � v�navnk ! 0, as n!1, for a 2 A
[13, Theorem 5]. In particular, when A\K.H ˝A/D 0 and � is a unital representation,
then for projections Pn D vnv

�
n , Pna � aPn 2 K.H ˝ A/ and kPna � aPnk ! 0, for
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each a 2 A, that is, the embedding

� W A ,! B.H ˝A/

is A-QD. On the other hand, by [13, Theorem 6], under the above conditions, � is approx-
imately equivalent to

� ˚ � W A! B.H ˝A/

and so this representation is also A-QD.

Proposition 3.7. Assume that A is unital and A is an injective von Neumann algebra.

(i) If A is A-QD, then A has an amenable A-trace.

(ii) If an A-retraction satisfies the condition (ii) of Theorem 2.9 with u.c.p. asymptot-
ically multiplicative and isometric module maps, then it is amenable.

Proof. We only show (i), as part (ii) is immediate from definition. As noted in the para-
graph after Definition 3.1, we may take the u.c.p. asymptotically multiplicative and iso-
metric maps to be not only admissible, but also module maps. If �n W A!Mk.n/.A/ are
u.c.p. asymptotically multiplicative and isometric module maps (in operator or Hilbert–
Schmidt norm), and A � B.Y / is any faithful non-degenerate representation in an A-
correspondence Y (with A containing the identity of B.Y /), then by the fact that A is
also injective in the category of A-modules [9, Theorem 3.2], we get c.c.p. module map
extensions z�n W B.Y /! Mk.n/.A/. The net consisting of the maps .trk.n/ ˝ id/ ı z�n W
B.Y /! A has a cluster point in the point-ultraweak topology by [5, Theorem 1.3.7]. The
restriction of this map is the given (or required) amenable trace.

Lemma 3.8. If A is QD and A is A-QD, then A is QD.

Proof. Given finite F � A and " > 0, choose k � 1 and a c.c.p. admissible map � W
A!Mk.A/, which is almost multiplicative and almost isometric within " on F . Since
Mk.A/ is QD, there is n � 1 and a c.c.p. map  WMk.A/!Mn.C/, which is almost
multiplicative and almost isometric within " on �.F /. Then, the c.c.p. map  ı � W A!
Mn.C/ is almost multiplicative and almost isometric within 2" on F , thus A is QD.

We give some concrete examples to illustrate the difference of being QD and A-QD.
Our first example shows that Rosenberg’s theorem does not hold for semigroups. Hadwin
asked in [11], which locally compact groups have (strongly) quasidiagonal C �-algebras.
In the appendix to [11], Rosenberg showed that any countable discrete group G with qua-
sidiagonal left regular representation is amenable. As noted in [5, Corollary 7.1.17], the
argument does not depend on the specific representation, and (a discrete, not necessarily
countable group) G is amenable provided that its reduced C �-algebra C �r .G/ is QD. The
converse to this statement remained open for a while as the Rosenberg conjecture, and
was affirmatively settled by Tikuisis, White and Winter [20, Corollary C]. Finally, note
that for a discrete group G, C �r .G/ is nuclear iff G is amenable (cf. [5, Theorem 2.6.8]).
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Example 3.9. (i) Let us observe that there are discrete amenable inverse semigroups
with nuclear but non-quasidiagonal reduced C �-algebra. It is well known that the Cuntz–
Renault semigroup Sn has an amenable universal groupoid [18]. Indeed, the universal
groupoid of Sn is a graph groupoid, and these are amenable in general [16, Theorem 4.2].
It follows that Sn is amenable and has a nuclear reduced C �-algebra [15]. On the other
hand, the corresponding reduced algebra C �r .Sn/, is an extension of K.`2/ by the Cuntz
algebra On [15, Page 27]. Since K.`2/ has a quasi-central approximate unit consisting of
projections, this extension is QD (cf. [5, Definition 7.1.19]). Also, since On is nuclear, the
extension is locally split. But On is not QD, and so is C �r .Sn/, by [5, Proposition 10.3.5].

(ii) It is natural to ask if A WD C �r .Sn/ is module QD, as a C �-module over another
C �-algebra A. A natural candidate for A is the reduced C �-algebra of En, consisting of
idempotents of Sn. However, by [15, Proposition 2.1.1], En is abelian, and so C �r .En/ is
commutative, and so QD [5, Proposition 7.1.5]. In particular, if C �r .Sn/ is C �r .En/-QD, it
follows from Lemma 3.8 that C �r .Sn/ is also QD, which is not the case by part (i).

(iii) A natural candidate for a (unital) non-QD but module QD (unital) C �-algebra
is A D C.X;A/, where X is a compact Hausdorff space and A is a (unital) non-QD
C �-algebra (say, A WD On). Since C.X/ is QD (cf. [5, Proposition 7.1.5]), there is an
almost multiplicative, almost isometric sequence of c.c.p. maps �n W C.X/!Mk.n/.C/.
Tensoring these with the identity map on A, and putting the module action on the second
leg, we get a sequence of c.c.p. module maps �n W C.X;A/!Mk.n/.A/.

(iv) Back to the question in (ii), since C �r .F2/ is exact, it embeds in O2. At this point
we do not know if O2 is C �r .F2/-QD, but if this is the case, then so is C �r .S2/.

To prepare for the next example, let us first recall the notion of Rokhlin dimension for
finite group actions on C �-algebras. Let G be a finite group, A a unital C �-algebra, and

 W G! Aut.A/ be an action of G on A. We say that 
 has Rokhlin dimension d , writing
dimRok.
/ WD d , if d is the least integer such that the following holds: for any " > 0 and
every finite subset L � A, there are positive contractions ˛is 2 A, for s 2 G, i D 0; : : : ; d ,
satisfying

(1) k˛is˛
i
tk < ", whenever s ¤ t ,

(2) k1A �
Pd
iD0

P
s2G ˛

i
sk < ",

(3) k
t .˛is/ � ˛
i
tsk < ",

(4) kŒˇ; ˛is�k < ",

for s; t 2 G, i D 0; : : : ; d , and ˇ 2 L.
By approximating the function t 7! t

1
2 by polynomials on Œ0;1�we may always assume

that we further have,

(5) k.˛is/
1
2 .˛it /

1
2 k < ", whenever s ¤ t ,

(6) k
t
�
.˛is/

1
2

�
� .˛its/

1
2 k < ",

(7) kŒˇ; .˛is/
1
2 �k < ",

for s; t 2 G, i D 0; : : : ; d , and ˇ 2 L.
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When d D 0, we say that 
 has the Rokhlin property.

Example 3.10. In this example we give instances of non-QD C �-algebras which are QD
as modules over a subalgebra.

(i) LetG be a finite group, A be a unital non-QD C �-algebra (say ADOn, for 2� n�
1) and 
 W G ! Aut.A/ be an action with (resp., compatible) finite Rokhlin dimension
(for instance, a faithful, quasi-free action of Z2 on O1 in the sense of [10] is known to
have Rokhlin dimension one [3, Corollary 3.2]. Also, by [12, Lemma 4.7] there exists an
action 
 of Z2 on O2 with O2 Ì
 Z2 'Ost

1˝M21 . It follows from [3, Theorem 3.3] that
this action has Rokhlin dimension one). Then the crossed product A WD A Ì
 G is A-QD,
but not QD: set n WD jGj and d WD dimRok.
/, then, sinceA ,!Mn.A/, it follows thatA is
A-QD. To see thatA is not QD, let us consider a finite subset F �A WDA Ì
 G �Mn.A/

consisting of contractions, and 0 < " < 1 be given. We may assume that F consists of
contractions. Every element a 2 F �Mn.A/ could be written as a D

P
s2G asus , for

uniquely determined contractions as 2 A. Put L WD ¹as W a 2 F [ F 2; s 2 Gº. Given
ı > 0 and a finite set L, choose a multiple tower .˛is/

d
iD0 satisfying (1)–(7) above, for ı

and L. Consider the c.p. map,

�.i/ WMn.A/! AI �.i/.es;t ˝ ˛/ WD .˛
i
s/

1
2us˛u

�
t .˛

i
t /
1
2 ;

and put � WD
Pd
iD0 �

.i/, which is again a c.p. map. Next, observe that,

�.i/.˛us/ D
X
t2G

�.i/
�
et;s�1t ˝ 
t�1.˛/

�
D

X
t2G

.˛it /
1
2ut
t�1.˛/ut�1s.˛

i
s�1t

/
1
2

D

X
t2G

.˛it /
1
2˛us.˛

i
s�1t

/
1
2 �nı

X
t2G

.˛it /
1
2˛.˛i

s�1t
/
1
2us �nı

X
t2G

˛it˛us;

thus, for ı WD 2ı..d C 1/nC 1/,

�.i/.˛us/ �ı0 ˛us;

for s 2G, i D 0; : : : ; d , and ˛ 2L, as L consists of contractions. Therefore, �.a/�nı0 a,
for a 2 F [ F 2. Let 1n be the identity of Mn.A/, then since

k�.1n/k D



 dX
iD0

X
s2G

˛is




 < 1C ı;
after normalization, we may assume that � is c.c.p. admissible with �.a/ �2nı0 a, for
a 2 F [ F 2, that is, �.a/ � 1

6 "
a, for a 2 F [ F 2, when ı < .24n..d C 1/nC 1//�1".

Finally, for a; b 2 F ,

k�.a/�.b/ � �.ab/k � kab � �.ab/k C k.�.a/ � a/�.b/k C ka�.b/ � abk

< "=6C .1C "=6/"=6C "=6 < ":

This, in particular, implies that if A is QD, so is Mn.A/, which is not possible, as A is
assumed to be non-QD.



M. Amini 1096

(ii) It follows from [19, Proposition 4.2.3 (i)] that O2 embeds in (a corner of) O1, and
in particular, O1 has a structure of an O2-module. Consider the following sequence of
embeddings:

O1 ,! O1 ˝M21
'
�! O2 Ì
 Z2 ,!M2.O2/;

which shows that O1 is O2-QD.

4. Local reflexivity

Local reflexivity in the classical setting is closely related to exactness and several min-
continuity properties studied by Kirchberg. In this section, we develop the module ver-
sions of this notion and relate it to the result in [2].

Definition 4.1. The C �-moduleA is called A-locally reflexive (briefly, A-LR) if for every
operator subsystem and finitely generated submodule E � A��, there exists a net of c.c.p.
maps �i W E ! A converging to idE in the point-ultraweak topology.

Note that we do not assume that the maps �i W E ! A are module maps, but they
would be approximately so, in the point-ultraweak topology.

Recall that an exact sequence

0! I ! A
�
�! B ! 0

of C �-modules, with arrows both �-homomorphisms and module maps, is locally A-
split if for each finitely generated operator subspace and submodule E � B there is a
c.p. module map � W E ! A with � ı � DidE [2]. More generally, a c.c.p. module map
� W E ! A=J is called A-liftable if, for the quotient map � W A! A=J , there is a c.c.p.
module map � W E ! A with � ı � D �.

Let us first show that A-locally reflexivity passes to (and from) ideals and quotients
(cf. [5, Proposition 9.1.4]). But first we need the following module version of Arveson’s
Lemma [5, Appendix C].

Lemma 4.2 (Arveson). Let A be separable, A be unital and I be a closed ideal and
submodule. Then for each operator system and countably generated module E, the set of
A-liftable module maps from E to A=J is closed in point-norm topology.

Proof. Let � W E ! A=J be a c.c.p. module map and let  0n W E ! A be c.c.p. module
maps with � ı 0n! �, in the point-norm topology. Fix a countable dense subset . j̨ /�A

and a countable generating set .xk/ � E. As in the proof of [5, Lemma C2], we may
assume that,

k� ı  0n.xk � j̨ / � �.xk � j̨ /k < 1=2
n .k; j < n/

and inductively find c.c.p. maps  n W E ! A such that,

k� ı  n.xk � j̨ / � �.xk � j̨ /k < 1=2
n;

k nC1.xk � j̨ / �  n.xk � j̨ /k < 1=2
n�1;

.k; j < n/:
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Moreover, in the inductive step from n to nC 1, since the c.c.p. map  nC1 W E ! A is
defined via

 nC1 D .1 � e�/
1
2 0nC1.1 � e�/

1
2 C e

1
2

�
 ne

1
2

�
;

for large enough index �, for a quasi-central bounded approximate identity .e�/ of J
inside A, and since e� approximately commutes with the ranges of  n and  0nC1, and
each  0n is a module map, we may inductively guarantee that,

k n.xk � j̨ / �  n.xk/ � j̨ k < 1=2
n�1 .k; j < n/:

Now the sequence . n/ of c.c.p. maps converges in point-norm topology on a dense subset
of E (consisting of finite combinations of elements xk � j̨ with coefficients in QC iQ),
and so everywhere, to a c.c.p. module map  W E ! A which lifts �.

We omit the proof of the next lemma which adapts that of [5, Proposition 9.1.4], using
the above lemma.

Lemma 4.3. Let A be separable and A be unital and

0! I ! A
�
�! B ! 0

be an exact sequence of C �-modules, with arrows both �-homomorphisms and module
maps. Then A is A-LR iff both I and B are A-LR and the extension is locally A-split.

It follows from [2, Proposition 3.14] that if A is unital and A-LR and

0! J ! A! A=J ! 0

is an exact sequence with arrows both �-homomorphisms and module maps, then for each
C �-module B , the sequence

0! J ˝min
A Bop

! A˝min
A Bop

! .A=J /˝min
A Bop

! 0

is exact.

Lemma 4.4. Let A be separable locally reflexive C �-algebra, then A is A-locally reflex-
ive.

Proof. Let . j̨ / be a countable dense subset of A. Given an operator subsystem and a
finitely generated submodule E � A�� with generators x1; : : : ; xk , for each n � 1, let
Ek;n be the finite dimensional operator system generated by 1 2 A�� and elements xi � j̨
and their adjoints, for 1 � i � k, 1 � j � n. Then there is a net  m;k;n W Ek;n ! A

converging ultraweak to the identity on Ek;n, asm!1. We may regards this as a multi-
index net, converging ultraweak to the identity on the dense subset

S
k;nEk;n of E.

Corollary 4.5. Let A be a separable unital locally reflexive C �-algebra, the (non unital)
C �-module A is A-LR iff the unital C �-module A˚A is A-LR.
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If A;B , and C are C �-modules and � W A˝min
A Bop! C is a representation, then � is

induced by a �-homomorphism (still denoted by) � W A˝min B
op ! C vanishing on the

min-closure of the ideal and the submodule IA generated by elements of the form a � ˛ ˝

b � a˝ b � ˛, for a 2 A; b 2 B and ˛ 2 A. Hence � D �A ˝ �B for representations �A W
A! C and �B W B ! C with commuting ranges, satisfying the compatibility condition,

�A.a � ˛/�B.b/ D �A.a/�B.b � ˛/ .a 2 A; b 2 B; ˛ 2 A/:

For the canonical inclusion � into C WD .A˝min
A Bop/��, this gives a binormal map:

A�� ˇ .B��/op ! .A ˝min
A Bop/��, vanishing on the ideal and the submodule JA gen-

erated by elements of the form x � ˛ ˝ y � x ˝ y � ˛, for x 2 A��; y 2 B�� and ˛ 2 A,
which in turn induces a binormal module map: A�� ˝min

A .B��/op ! .A˝min
A Bop/��. To

observe that the latter map is also injective, take x which is not in the min-closure of JA

and use the fact that A� ˇ B� separates points and closed sets in A�� ˝min .B
��/op (cf.

[5, Exercise 3.1.5]) to find  2 A� ˇ B� which vanishes on JA and  .x/ D 1. Since
IA � JA, it follows that x … I??A , thus we have the binormal module map inclusion

A�� ˇA .B
��/op ,! .A˝min

A Bop/��:

Definition 4.6. The C �-module A is said to have property CA, or C 0A, or C 00A if, respec-
tively, the inclusion,

A�� ˇA .B
��/op ,! .A˝min

A Bop/��;

or,
AˇA .B

��/op ,! .A˝min
A Bop/��;

or,
A�� ˇA B

op ,! .A˝min
A Bop/��;

is min-continuous for any C �-module B .

It follows from [2, Proposition 3.6] that any of the above properties passes to C �-
subalgebras which are also a submodule. Also, similar to [5, Proposition 9.2.4], the first
and third properties pass to quotients by closed ideals which are also a submodule.

Let E and F be Banach spaces and, respectively, Banach right and left A-modules
with compatible actions, and for A-correspondences X and Y and isometric inclusions
E � B.X/ and F � B.Y /op, give operator norms on Mn.E/ � B.Xn/ and Mn.F / �

B.Y n/op. For a linear module map T W E ! F and an amplification Tn W Mn.E/ !

Mn.F /, put kT kcb D supn kTnk. Also denote the completion of E ˇA F in B.X/˝min
A

B.Y /op by E ˝min
A F . Both this construction and the cb-norm are independent of the

choice of embeddings.
For E and F as above, let BA.E;A/ be the Banach space of all bounded linear

right module maps from E to A. Similar to [5, Theorem B.13], we want to identify
BA.E;A/ ˝

min
A F with CBA.E; F /. In the next lemma we work with the case where

the above isometric inclusions exists with countably generated X and Y .
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Lemma 4.7. For E and F as above and

z D

nX
kD1

�k ˝ yk 2 BA.E;A/ˇA F;

consider the module map Tz W E ! F defined by

Tz.x/ D

nX
kD1

yk � �k.x/:

Then kzkmin D kTzkcb and the resulting isometric inclusion

BA.E;A/˝
min
A F � CBA.E; F /

is surjective when E or F is a finitely generated A-module.

Proof. Let F � B.Y /op, where Y D H ˝A, with H a separable Hilbert space. Then by
[2, Lemma 2.4], there are finite rank projections qn 2 B.Y /, say of rank k.n/, such that
qn " 1 (SOT) in B.Y /. Let �n W B.Y /! B.qnY /DMk.n/.A/ be the compression by qn,
and note that for wn D .id˝ �n/.z/, Twn D �n ı Tz in CBA.E;Mk.n/.A//. Thus

kzkmin D sup
n
k.id˝ �n/.z/kBA.E;A/ˇAMk.n/.A/

D sup
n
kTwnkcb

D sup
n
k�n ı Tzkcb

D kTzkcb:

The surjectivity in the finitely generated case is straightforward.

Proposition 4.8. Assume that A is unital and separable, and for the C �-module A, A��

has a faithful representation in a countably generated A-correspondence. Then A is A-LR
iff it has property C 00A.

Proof. LetA be A-LR andB be any C �-module. Let zD
Pn
kD1 xk ˝ bk be an element in

A��ˇBop and y D
Pm
jD1 yj � j̨ ˝ ck � yj ˝ ck � j̨ be a typical element in the ideal JA

of A�� ˇ Bop. Let E be the operator system and the finitely generated submodule of A��

generated by the first legs of all the elementary tensors appeared in the decompositions of
z and y above. By assumption, there is a net of c.c.p. maps �i W E ! A, converging to the
identity of E in point-ultraweak topology. We then have .�i ˝ idB/.z C y/! z C y in
the ultraweak topology of .A˝min B

op/��. Thus,

kz C yk.A˝minBop/�� � lim inf
i
k.�i ˝ idB/.z C y/kA˝minBop � kz C ykA��˝minBop :

Let IA be the corresponding ideal of A ˇ Bop, then since A is weak� dense in A��,
y 2 I??A , that is, xy D 0 in .A˝min

A Bop/��. Therefore, taking the infimum over all y’s, we
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get kxzk.A˝min
A
Bop/�� � kxzkA��˝min

A
Bop , where xz in the left- and right-hand sides are cosets

of z in the corresponding space. Therefore, A has property C 00A.
Conversely, if A has property C 00A, let E be the operator system and finitely gen-

erated submodule of A�� with generators x1; : : : ; xk and . j̨ / be a countable dense
subset of A. Similar to the proof of Lemma 4.4, we could construct an increasing double-
indexed sequence of finitely generated operator systems Ej;n � A��, whose union is
dense in E. By the above lemma, the inclusion E ,! A�� corresponds to an element
z 2 BA.E;A/ ˝

min
A A�� with kzkmin D 1. Let BA.E;A/ � B.X/ isometrically, for a

A-correspondence X . Then by property C 00A, we have the isometric inclusion

B.X/˝min
A A�� ,! .B.X/˝min

A A/��:

Next, as in the proof of [2, Proposition 3.6], we get isometric inclusions,

BA.E;A/˝
min
A A�� ,! B.X/˝min

A A��;

and,
.BA.E;A/˝

min
A A/�� ,! .B.X/˝min

A A/��:

Therefore, the map,

BA.E;A/˝
min
A A�� ! .BA.E;A/˝

min
A A/��;

is isometric. Thus, kzk.BA.E;A/˝
min
A
A/�� D 1. Choose a net .zi / in BA.E;A/˝

min
A A con-

verging weak� to z such that kzik � 1, for each i , and apply the lemma again to get a net
of c.c.p. module maps �i WE! A converging to idE in the point-ultraweak topology. The
restriction �i;j;n of �i to Ej;n is a c.c.p. map, and as in the proof of [5, Proposition 9.2.5],
could be replaced by a net of c.c.p. maps (not module maps anymore) converging (as a
multi-index net) to the identity on the dense subset

S
j;nEj;n, in point-ultraweak topology.

Therefore, A is A-LR.

The next proposition is proved as in [5, Proposition 9.2.7], in which instead of [5,
Proposition 3.7.6], we use [2, Proposition 3.14 (ii)].

Proposition 4.9. A C �-module A with property C 0A is A-exact.

We do not know if the converse is also true. Also not having the analog of Dadarlat’s
embedding theorem [5, Theorem 8.2.4], we do not know if every A-exact C �-module is a
subquotient of an A-nuclear C �-module.

The next result is proved as in [5, Proposition 9.3.2], in which instead of [5, Theo-
rem 3.8.5], we use [2, Theorem 3.17].

Proposition 4.10. A C �-module A has property CA if A�� is A-semidiscrete.

Again, we do not know if an A-injective C �-module is A-semidiscrete (or A��-semi-
discrete), so we could not check if for an A-nuclear C �-module A, A�� is A-semidiscrete
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(or A��-semidiscrete). In particular, we do not know if A-exact (or even A-nuclear) C �-
modules have property CA. This also blocks the (most obvious) path to show that A-exact
C �-modules are A-locally reflexive; or that the quotients of A-exact (resp., A-nuclear)
C �-modules by closed ideals, which are also submodules, are again A-exact (resp., A-
nuclear).
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