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Automorphisms of quantum polynomial rings
and Drinfeld Hecke algebras

Anne V. Shepler and Christine Uhl

Abstract. We consider quantum (skew) polynomial rings and observe that their graded automor-
phisms coincide with those of quantum exterior algebras. This allows us to define a quantum
determinant that gives a homomorphism of groups acting on quantum polynomial rings. We use
quantum subdeterminants to classify the resulting Drinfeld Hecke algebras for the symmetric group,
other infinite families of Coxeter and complex reflection groups, and mystic reflection groups (which
satisfy a version of the Shephard–Todd–Chevalley theorem). This direct combinatorial approach
replaces the technology of Hochschild cohomology used by Naidu and Witherspoon over fields of
characteristic zero and allows us to extend some of their results to fields of arbitrary characteristic
and also locate new deformations of skew group algebras.

1. Introduction

Investigations of noncommutative rings remain hindered by mystery surrounding their
automorphism groups. We consider here quantum polynomial rings, also known as quan-
tum symmetric algebras or skew polynomial rings. For a finite-dimensional vector space
V Š Fn over a field F , the noncommutative algebra SQ.V / is generated by a basis
v1; : : : ; vn of V with multiplication vj vi D qij vivj for some quantum scalars Q D
¹qij º � F with qi i D 1, qij D q�1ji . One may view SQ.V / as the coordinate ring of the
n-dimensional quantum affine space. We take SQ.V / as a graded algebra with deg vi D 1
for all i .

In the nonquantum setting, every graded automorphism of the commutative polyno-
mial ring S.V / Š F Œv1; : : : ; vn� defines a general linear transformation of V and vice
versa. This fails in the noncommutative setting: every graded automorphism of SQ.V /
defines an element of GL.V /, but not every element of GL.V / extends to a graded auto-
morphism. The graded automorphisms of quantum polynomial rings have been classified
in low dimension (see [1,20]). Kirkman, Kuzmanovich, and Zhang [19] investigated finite
groups of these automorphisms satisfying a version of the Shephard–Todd–Chevalley the-
orem. More recently, Bao, He, and Zhang [5] showed a version of the Auslander theorem
for these groups. Related investigations include [3, 4, 8–10, 32].
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For a finite group G of graded automorphisms of a quantum polynomial ring SQ.V /,
deformations of the natural semidirect product algebra SQ.V / ÌG (skew group algebra)
include quantum Drinfeld Hecke algebras. These analogs of graded affine Hecke algebras
and symplectic reflection algebras can be studied using Hochschild cohomology, but pre-
vious results have depended on an extra hypothesis that the given group G act not only on
SQ.V / but also on the associated quantum exterior algebra

V
Q.V / (see [24, 25, 27, 31]).

In addition, many computations in Hochschild cohomology have relied on the character-
istic char.F/ of the underlying field not dividing jGj.

Thus, one asks how the group Autgr.SQ.V // of graded automorphisms of the quantum
polynomial ring compares with that of the associated quantum exterior algebra,^

Q
.V / D F -span

®
vi1 ^Q � � � ^Q vim W 1 � i1; : : : ; im � n

¯
;

with quantum exterior product vj ^Q vi D �qij vi ^Q vj . The classification of groups
acting on quantum polynomial rings in low dimension (see [20, Theorem 11.1]) implies
that Autgr.SQ.V // D Autgr.

V
Q.V // for dimF V � 3. Computer calculations using [15,

34] verify the same when dimF V D 4. We show a more general fact: for any set of
quantum scalars Q and any finite-dimensional F -vector space V ,

Autgr

�^
Q
.V /

�
D Autgr.SQ.V //: (1.1)

We make no assumptions on the characteristic of F except that char.F/ ¤ 2. This result
implies that previous tools in characteristic 0 of [25, 31] using Koszul resolutions to
explore some Hochschild cohomology of skew group algebras apply to all finite groups
of graded automorphisms acting on SQ.V /; extra hypotheses that groups act on both the
symmetric and exterior quantum algebras are not needed.

Observation (1.1) also allows us to define a quantum determinant that behaves in some
ways like the usual determinant for linear groups. For graded transformations acting on
the quantum exterior algebra by graded automorphisms, we verify that this quantum deter-
minant is simply the scalar by which the quantum volume form changes. As a direct
corollary, we see that this notion of quantum determinant defines a homomorphism of
matrix groups acting on quantum polynomial rings. (Note that this formulation of quan-
tum determinant is defined for any matrix with entries in F ; it is not the notion usually
employed for quantum matrices, see Manin [23].)

As an application of these ideas, we explore deformations of SQ.V / Ì G for G a
finite group of graded automorphisms that are modeled on Lusztig’s graded affine Hecke
algebras and symplectic reflection algebras. We classify quantum Drinfeld Hecke alge-
bras (or “quantum graded Hecke algebras”) for the infinite family of monomial reflection
groups (including infinite families of Coxeter groups and complex reflection groups) and
mystic reflection groups using techniques of [33]. We recover some results of Naidu and
Witherspoon [25] over C for dimF V � 4 who used Hochschild cohomology. The advan-
tage of our approach is 4-fold. First, we bypass analysis of various cochain complexes in
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Hochschild cohomology. Second, we show results hold even in the modular setting when
char.F/ divides jGj. (Note that those previous calculations in Hochschild cohomology
relied on char.F/ D 0; the group algebra FG may not be semi-simple in the modular
setting.) Third, we classify algebras in the delicate setting when dimF V D 3 (certain
parameters are forced to vanish in higher dimension). Fourth, we find new families of
algebras when dimF V D 4 for the complex reflection groups G.r; r; 4/.

Notation

We fix a vector space V ŠFn over a field F of characteristic not 2 throughout. All algebras
are associative F -algebras. We identify the identity 1F of the field with the group identity
1G in any group ring FG. We use left superscripts to indicate the action of a group G
on a set S , writing s 7! gs for g in G, s in S , to distinguish from the multiplication in
algebras containing FG. We also fix a set of quantum parameters Q WD ¹qij º1�i;j�n � F
with qi i D 1 and qj i D q�1ij throughout.

Outline

In Section 2, we highlight some conditions for a finite linear group G to act on a quan-
tum polynomial ring SQ.V / and for G to act on the associated quantum exterior algebraV
Q.V /. In Section 3, we show that a linear transformation acts as a graded automor-

phism of SQ.V / if and only if it acts as a graded automorphism of
V
Q.V /. We introduce

the quantum sign and quantum determinant of a matrix in Section 4 and show how to
use inversions to simplify. We also show that this notion of quantum determinant is a
homomorphism of groups of graded automorphisms of quantum polynomial rings. We
consider quantum Drinfeld Hecke algebras in Section 5. In Sections 6 and 7, we classify
these deformations for symmetric groups and the infinite family of complex reflection
groups G.r; p; n/ (the Shephard–Todd family of monomial groups) which include the
Weyl groups of type Bn=Cn andDn. We show how to use cycle type to give quick combi-
natorial proofs for classification results of Naidu and Witherspoon [25] and extend results
to fields of characteristic not 2. We take up the mystic reflection groups of Kirkman, Kuz-
manovich, and Zhang [19] and Bazlov and Berenstein [6] in Section 8. We end in Section 9
with a quick discussion of direct sums of groups.

2. Automorphisms of quantum polynomial rings and determinants

We recall conditions describing the graded automorphisms of a quantum (or skew) poly-
nomial ring. We fix throughout an F -basis v1; : : : ; vn of V Š Fn and assume every matrix
in GLn.F/ acting on V is written with respect to this basis. Consider a quantum system of
parameters (or a set of quantum scalars)

Q WD ¹qij º1�i;j�n � F ;

i.e., a set of nonzero scalars with qi i D 1 and qj i D q�1ij for all i; j .
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Quantum polynomial rings

The quantum polynomial algebra (or skew polynomial ring) SQ.V / is the noncommuta-
tive F -algebra generated by v1; : : : ; vn with relations vj vi D qij vivj for all 1 � i; j � n:

SQ.V / D Fhv1; : : : ; vni=.vj vi � qij vivj W 1 � i; j � n/:

Thus, SQ.V /Š TF .V /=.vj ˝ vi � qij vi ˝ vj W 1� i; j � n/ for TF .V / the tensor algebra
of V over F . (We use the index convention of [19, 20]). Note that the algebra SQ.V /
has the PBW property with respect to this presentation: SQ.V / has F -vector space basis
¹v
m1
1 v

m2
2 � � � v

mn
n W mi 2 Z�0º.

Groups acting as graded automorphisms

We view SQ.V / as a graded algebra with deg v D 1 for all v 2 V . The set of graded
automorphisms of SQ.V / is

Autgr.SQ.V // D
®
h 2 GL.V / W hvj hvi D qij hvi hvj for 1 � i; j � n

¯
:

Diagonal matrix groups on V always extend to an action by automorphisms on SQ.V /,
but many other group actions do not extend. When qij D �1 for all i ¤ j , any subgroup
of monomial matrices in GLn.F/ acts as graded automorphisms on SQ.V /. Recall that a
matrix is monomial if each row and each column has exactly one nonzero entry. Groups
of monomial matrices are sometimes called permutation groups; they often take the form
H Ì Sn for some diagonal groupH and the symmetric group Sn acting by permutation of
basis vectors v1; : : : ; vn of V . In fact, we identify Sn with its permutation representation
as n � n matrices: � in Sn acts via vi 7! v�.i/.

The group Autgr.SQ.V // has been determined for nD 1; 2; 3 (see [1,20]) and in some
other cases (see [2–4]). For example, for n D 2,

Autgr.SQ.F
2// D

8̂̂<̂
:̂

GL2.F/ for q12 D 1;

Diagonal matrices Š .F�/2 for q12 ¤ ˙1;

Monomial matrices � GL2.F/ for q12 D �1:

(2.1)

The next lemma can be checked directly (also see [19]). Recall that Q D ¹qij º is fixed
throughout.

Lemma 2.1. The automorphism group Autgr.SQ.V // can unveil some quantum scalars:

• If some g 2 Autgr.SQ.V // has nonzero entries in the same row in columns i , j , then
qij D 1.

• If Autgr.SQ.V // contains Sn, then either qij D �1 for all i ¤ j or else qij D 1 for
all i , j .

• If Autgr.SQ.V // contains Sn and a nonmonomial matrix, then qij D 1 for all i , j .

We give an example of a monomial and a nonmonomial group action.
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Example 2.2. The group

G D

*
h D

0@0 1 0

1 0 0

0 0 !

1A+ � GL.V /

for V D C3 and ! D e
2�i
3 2 C (see Example 5.4) acts as graded automorphisms, for

Q D ¹qij º with q13 D ! D q23, q12 D �1, on

SQ.V / D C
˝
v1; v2; v3 W v2v1 D �v1v2; v3v1 D ! v1v3; v3v2 D ! v2v3

˛
:

Example 2.3. The group

G D

* 
�
p
1 � �3 �2 0

�
p
1 � �3 0

0 0 1

!+
� GL.V /

for V D C3 and � D e
2�i
5 2 C acts as graded automorphisms on SQ.V / for Q D ¹qij º

with q12 D 1, q13 D �1 D q23. See Example 10.3.

Quantum minor determinant

We define the quantum minor determinant of a matrix h D ¹hki º1�k;i�n in GLn.F/ with
h.vk/ D

P
i h
k
i vi (i.e., subscript denotes row) by

detijkl;Q.h/ D hikh
j

l
� qijh

i
lh
j

k
:

We drop the subscript Q, writing detijkl for detijkl;Q, when no confusion should arise.
Straightforward computation verifies the next lemma; the one after is from [20].

Lemma 2.4. For any matrix h 2 GLn.F/,

detijkl .h/ � qlkdetijlk.h/ D detlkj i .ht / � qij detlkij .ht /:

Lemma 2.5. A matrix h 2 GLn.F/ acts on SQ.V / if and only if

detijkl .h/ D �qlkdetijlk.h/ for all h 2 G and 1 � i; j; k; l � n:

Quantum exterior algebra

The quantum exterior algebra determined by Q is^
Q
.V / D F -span

®
vi1 ^Q � � � ^Q vim W 1 � i1; : : : ; im � n

¯
with multiplication determined by vj ^Q vi D �qij vi ^Q vj for all i; j . Formally,^

Q
.V / Š TF .V /=.vj ˝ vi C qij vi ˝ vj W 1 � i; j � n/;
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and we view
V
Q.V / as a graded algebra with degvi D 1 for each i . Note that vi ^Q vi D 0

as char.F/ ¤ 2. The set of graded automorphisms of
V
Q.V / is

Autgr

�^
Q
.V /

�
D
®
h 2 GL.V / W hvj ^Q hvi D �qij

hvi ^Q
hvj for 1 � i; j � n

¯
:

A quantum 2-form is an element of
V2
Q V

� Š .
V2
Q�1 V /

� for Q�1 D ¹q�1ij º, i.e., a
function � W V ˝ V ! F which is anti-quantum-linear:

�.vj ˝ vi / D �qj i �.vi ˝ vj / for all i; j: (2.2)

Remark 2.6. One might ask if opposite quantum scalars are helpful in comparing auto-
morphisms of quantum polynomial versus exterior rings. Generally, they are not, as often

Autgr.SQ0.V // 6� Autgr

�^
Q
.V /

�
or Autgr

�^
Q
.V /

�
6� Autgr.SQ0.V //

for Q0 D ¹q0ij º with q0ij D �qij for i ¤ j and q0i i D 1. For example, take n D 2. If
q12 D �1, every subgroup of GL.V / acts on SQ0.V /, but only monomial groups act onV
Q.V / as graded automorphisms; if q12 D 1, then any group of linear transformations

acts on both SQ.V / and
V
Q.V / as graded automorphisms, but only monomial groups act

on SQ0.V /.

3. Actions on the quantum polynomial ring versus exterior algebra

Connections between quantum Drinfeld Hecke algebras and Hochschild cohomology have
thus far required a hypothesis that the finite subgroupG of GL.V / act on both the quantum
polynomial ring SQ.V / and the quantum exterior algebra

V
Q.V / as graded automor-

phisms. (This assumption is sometimes implicit.) We develop some conditions for a group
to act on both SQ.V / and

V
Q.V / as graded automorphisms in this section. By the

classification [20, Theorem 11.1] and these conditions, we observe that any element of
GL3.F/ acting as a graded automorphism on SQ.V / also acts as a graded automorphism
on
V
Q.V / and vice versa. We show in this section that this observation holds in arbitrary

dimension.
We rephrase and coalesce some conditions from [20] (as a subscript Q0 was omitted

in Corollaries 3.3 and 9.1 and Corollary 9.2 (i) contained a typo).

Lemma 3.1. A matrix in GLn.F/ acts as an automorphism on SQ.V / if and only if its
transpose acts as an automorphism on

V
Q.V /.

Proof. By Lemma 2.5 (with indices exchanged), we need only show that h in GL.V / acts
on
V
Q.V / exactly when

detklj i;Q.ht / D �qij detklij;Q.ht / for all 1 � i; j; k; l � n: (3.1)
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For fixed i ¤ j , we expand hvj ^Q hvi C qij
hvi ^Q

hvj asX
k;l

h
j

k
hil vk ^Q vl C qij

X
k;l

hik h
j

l
vk ^Q vl D

X
k;l

.h
j

k
hil C qijh

i
kh
j

l
/ vk ^Q vl :

Since
P
k>l .h

j

k
hi
l
C qijh

i
k
h
j

l
/ vk ^Q vl D

P
k<l �qkl .h

j

l
hi
k
C qijh

i
l
h
j

k
/ vk ^Q vl , this

is justX
k<l

�
detklj i;Q.ht /C qij detklij;Q.ht /

�
vk ^Q vl C

X
k

.h
j

k
hik C qij h

i
kh
j

k
/ vk ^Q vk :

As the second sum lies in the ideal of relations defining
V
Q.V /, the element h acts onV

Q.V / if and only if the first sum vanishes, giving equation (3.1) for k < l . The result
follows, as equation (3.1) holds for k D l as well.

The next lemma gives a necessary and sufficient condition for a transformation in
GLn.F/ to act as a graded automorphism on both the quantum polynomial ring SQ.V /
and the exterior algebra

V
Q.V /. For any pair of nonzero entries in the matrix, the quantum

scalar tracking the rows must coincide with the quantum scalar tracking the columns (see
part (c)). Note that we require this stronger version of [25, Lemma 4.3] for Theorem 3.5
and the next section.

Lemma 3.2. The following are equivalent for any h 2 GLn.F/.

(a) h acts as a graded automorphisms on both SQ.V / and on
V
Q.V /.

(b) For all 1 � i; j; k; l � n, detijkl .h/ D detlkj i .ht /.

(c) For all 1 � i; j; k; l � n, either qij D qlk or hi
l
h
j

k
D 0.

Proof. We use Lemmas 2.4, 2.5 and 3.1. Condition (a) implies that for all i; j; k; l

detijkl;Q.h/ D �qlkdetijlk;Q.h/ and detijkl;Q.ht / D �qlkdetijlk.ht /:

We rewrite the second equation after exchanging i and l and exchanging j and k:

.ht /lj .h
t /ki � qlk.h

t /li .h
t /kj D �qij

�
.ht /li .h

t /kj � qlk.h
t /lj .h

t /ki
�
:

Condition (a) thus implies that for all i; j; k; l

hikh
j

l
� qijh

i
lh
j

k
C qlkh

i
lh
j

k
� qlkqijh

i
kh
j

l

D 0 D h
j

l
hik � qlkh

i
lh
j

k
C qijh

i
lh
j

k
� qij qlkh

j

l
hik ;

and condition (c) follows from adding the expression on the left to that on the right (as
char.F/ ¤ 2). Notice that conditions (c) and (b) are equivalent since the vanishing of
.1 � qlkqij /h

i
k
h
j

l
is equivalent (again, as char.F/ ¤ 2) to

hikh
j

l
C .�qijh

i
lh
j

k
C qijh

i
lh
j

k
/ � qlkqijh

i
kh
j

l
D detijkl;Q.h/C qij detlkij .ht /

D detijkl;Q.h/C qij .�qj i /detlkj i .ht / D detijkl;Q.h/ � detlkj i .ht /:



A. V. Shepler and C. Uhl 810

Finally, condition (c) implies that h acts on SQ.V / as it compels the vanishing of

detijkl .h/C qlkdetijlk.h/ D hikh
j

l
� qijh

i
lh
j

k
C qlkh

i
lh
j

k
� qlkqijh

i
kh
j

l

D hikh
j

l
.1 � qij qlk/C .qlk � qij /h

i
lh
j

k

and also that h acts on
V
Q.V / as it compels the vanishing of

detijkl .ht /C qlkdetijlk.ht /

D .ht /ik.h
t /
j

l
� qij .h

t /il .h
t /
j

k
C qlk.h

t /il .h
t /
j

k
� qlkqij .h

t /ik.h
t /
j

l

D hki h
l
j � qijh

l
ih
k
j C qlkh

l
ih
k
j � qlkqijh

k
i h
l
j

D .1 � qlkqij /h
k
i h
l
j C .qlk � qij /h

l
ih
k
j :

Remark 3.3. For any group G of monomial matrices, G � Autgr.SQ.V // implies that

G � Autgr

�^
Q
.V /

�
by Lemma 3.2. Indeed, if hD ¹hij º in GLn.F/ is monomial with hi

l
h
j

k
¤ 0, then qij D qlk

since

qij h
i
lh
j

k
vlvk D qij

h.vivj / D
h.vj vi / D h

i
lh
j

k
vkvl D qlk h

i
lh
j

k
vlvk :

We generalize this fact to arbitrary groups in Corollary 3.6.

Lemmas 2.5 and 3.1 with k D ` imply the next observation (as char.F/ ¤ 2).

Lemma 3.4. If h 2 Autgr.
V
Q.V // is nonmonomial, then qij D 1 for any pair of rows i ,

j of h with nonzero entries in the same column.

We have been unable to find an easy argument for showing the next theorem. The
proof relies on a series of careful reductions.

Theorem 3.5. Any element of GL.V / that acts on
V
Q.V / as a graded automorphism

also acts on SQ.V / as a graded automorphism:

Autgr

�^
Q
.V /

�
� Autgr.SQ.V //:

Proof. Say h in GLn.F/ is a graded automorphism of
V
Q.V /. For any pair of nonzero

entries in the matrix h, we use Lemma 3.2 and verify that the quantum scalar tracking
the rows coincides with quantum scalar tracking the columns. We fix a pair of columns
`; k and pair of rows i; j of h such that h`i h

k
j ¤ 0 and show that qij D q`k by chasing

nonmonomial submatrices in h and their corresponding quantum scalars.
First, notice that if k D `, then h contains a column with nonzero entries in rows

i and j implying that qij D 1 D qkk D q`k by Lemma 3.4 for i ¤ j . (If i D j , then
qij D 1 D q`k .) Thus, we may assume k ¤ `.
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Now, let M be the submatrix of h with columns ` and k and rows i and j (not nec-
essarily distinct). We argue that we may assume the entries of M are all nonzero and that
qij D 1. If i D j , then h`i and hki D h

k
j are both nonzero (as h`i h

k
j ¤ 0) and qij D qi i D 1.

If i ¤ j and an entry of M is zero, then by Lemmas 2.5 and 3.1,

h`i h
k
j D h

`
i h
k
j � qijh

k
i h
`
j D detij`k.ht / D �qk` detijk`.ht /

D �qk` .h
k
i h
`
j � qijh

`
i h
k
j / D qk`qij h

`
i h
k
j ;

implying that qij D q`k . So, for i ¤ j , we may assume the entries of M are all nonzero,
and Lemma 3.4 implies that qij D 1 in this case as well.

The submatrix M may not be invertible, but we may replace M by an invertible 2 � 2
submatrixM 0 of h by replacing the row j by some row j 0 of h since h is invertible. (Note
that if j D i , then j 0 ¤ i .) Then, qij 0 D 1 by Lemma 3.4 as the two entries in row j 0 of
M 0 cannot both vanish. As qij 0 D 1, Lemmas 2.5 and 3.1 (with j 0 instead of j ) then imply
that

detM 0 D detij 0`k.ht / D .�qk`/detij 0k`.ht / D .�qk`/.� detM 0/ D qk` detM 0;

and qk` D 1 D qj i since detM 0 ¤ 0, concluding the proof.

Theorem 3.5 together with Lemma 3.1 implies the following equality (not just isomor-
phism) of automorphism groups (compare with [17]).

Corollary 3.6. An element of GL.V / acts on SQ.V / as a graded automorphism if and
only if it acts on

V
Q.V / as a graded automorphism:

Autgr

�^
Q
.V /

�
D Autgr.SQ.V //:

Corollary 3.6 and Lemmas 3.1 and 3.4 imply the following corollary (see also [19]).

Corollary 3.7. Suppose a nonmonomial matrix in GLn.F/ acts on
V
Q.V / or SQ.V / as

a graded automorphism. Then, qij D 1 for any pair of columns i , j with nonzero entries
in the same row and for any pair of rows i , j with nonzero entries in the same column.

Remark 3.8. Theorem 4.2 of [31] assumes that the finite group G acts on both SQ.V /
and on

V
Q.V / as graded automorphisms (this assumption is implicit in Section 4). Corol-

lary 3.6 implies that Theorem 4.2 of [31] holds for all groups acting on SQ.V /.

Recall that the Hochschild cohomology of an algebra A is its cohomology as a bimod-
ule over itself, HH

r
.A/DHH

r
A˝Aop .A;A/. Corollary 3.6 and [25, Theorem 4.4] imply the

following corollary.

Corollary 3.9. Suppose char.F/ D 0 and that G � GLn.F/ is a finite group acting by
automorphisms on SQ.V /. Then, each constant Hochschild 2-cocycle on SQ.V / Ì G
gives rise to a quantum Drinfeld Hecke algebra.
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4. A quantum determinant

We define a quantum determinant in this section and show it defines a homomorphism
of groups acting by graded automorphisms on quantum polynomial rings. This notion of
quantum determinant differs from that for quantum matrices (see [11, 16, 23]).

Quantum sign and determinant

We use the action of the symmetric group Sn on the basis v1; : : : ; vn of V by permutation
of indices to define the quantum sign, even when Sn 6� Autgr.

V
Q.V // under this action.

Recall the inversion set of a permutation, Inv.�/ D ¹.i; j / W i < j but �.i/ > �.j /º.

Definition 4.1. Define the quantum sign or Q-sign of a permutation � in Sn as

sgnQ.�/ D sgn.�/
Y

.i;j /2Inv.�/

q�.j /�.i/ D sgn.�/
Y

.i;j /2Inv.��1/

qij :

Define the quantum determinant for any h 2 GLn.F/ as the scalar

detQ.h/ D
X
�2Sn

sgnQ.�/h
1
�.1/h

2
�.2/ � � � h

n
�.n/ 2 F :

For example, sgnQ..1 2 3/.4 5// D �q12 q13 q45. For n D 3 and h D ¹hij º in GL3.F/,
the quantum determinant detQ.h/ is

h11h
2
2h
3
3 C q13q12 h

1
2h
2
3h
3
1 C q13q23 h

1
3h
2
1h
3
2 � q23 h

1
1h
2
3h
3
2

� q12 h
1
2h
2
1h
3
3 � q12q23q13 h

1
3h
2
2h
3
1:

Recall that sgn.�/D .�1/jInv.�/j and that � can be factored into the product over all .i; j /
in Inv.�/ of transpositions .i j /.

Quantum determinant as a homomorphism

One may check directly that the quantum determinant detQ gives the scalar by which an
automorphism of

V
Q.V / acts on the quantum volume form.

Lemma 4.2. For any permutation � in Sn,

v�.1/ ^Q � � � ^Q v�.n/ D sgnQ.�/ v1 ^Q � � � ^Q vn and sgnQ.�/ D detQ.�/:

Furthermore, for all h in Autgr.
V
Q V /,

h.v1 ^Q � � � ^Q vn/ D detQ.h/ v1 ^Q � � � ^Q vn:

Corollary 4.3. The quantum determinant detQ is group homomorphism on Autgr.SQ.V // W

detQ.gh/ D detQ.g/ detQ.h/ for all g; h in Autgr.SQ.V //:
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Proof. By Corollary 3.6 and Lemma 4.2,

detQ.gh/.v1 ^Q � � � ^Q vn/ D gh.v1 ^Q � � � ^Q vn/ D
g
�
h.v1 ^Q � � � ^Q vn/

�
D

g
�
detQ.h/.v1 ^Q � � � ^Q vn/

�
D detQ.h/ g.v1 ^Q � � � ^Q vn/

D detQ.h/ detQ.g/ v1 ^Q � � � ^Q vn:

Note that the quantum determinant detQ is not a group homomorphism on other
groups. For example, when G D S3 and q13 ¤ q23, G 6� Autgr.SQ.V //, and

detQ..1 2/.2 3// D q12 q13 ¤ q12 q23 D detQ..1 2// detQ..2 3//:

Remark 4.4. Graded automorphisms of SQ.V / have nonzero quantum determinants. If
h 2 Autgr.SQ.V //, then Corollary 4.3 implies that

1 D detQ.1V / D detQ.hh�1/ D detQ.h/ detQ.h�1/:

The converse is false of course. Indeed, the matrix h D
�
1 1
�1 1

�
does not act on SQ.V / as

a graded automorphism when q12 ¤ 1 although detQ.h/ ¤ 0.

Remark 4.5. One asks how Autgr.SQ.V // overlaps with the quantum-special linear group

SLn;Q.F/ D
®
g 2 GLn.F/ W detQ.g/ D 1

¯
:

For n D 2 with q12 D q,

SLn;Q.F/ \ Autgr.SQ.V //

D

8̂̂<̂
:̂

SL2.F/ for q D 1;

¹Diag.a; b/ W ab D 1º [ ¹AntiDiag.a; b/ W ab D 1º for q D �1;

¹Diag.a; b/ W ab D 1º for q ¤ ˙1:

Remark 4.6. When the classical Shephard-Todd complex reflection group G.r; r; n/ acts
as graded automorphisms on a nontrivial SQ.V /, then necessarily every qij D �1 for
i ¤ j by Lemma 2.1 and all group elements have quantum determinant 1 (one may
use Corollary 4.3):

G.r; r; n/ � SLn;Q.F/:

Note that for any g in the mystic reflection group M.n; 1; ˇ/ (see Definition 9.1), one has
detQ.g/ D ˙1.

A simplification of the quantum determinant

We give a simplification of the quantum determinant for matrices that act as graded auto-
morphisms on a quantum polynomial ring. This simplification implies a version of the
familiar down-up rule for determinants of 3 � 3 matrices.
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For an odd cycle � in the symmetric group Sn of order j�j, we define a set of quantum
parameters that records certain elements of the cycle paired together with their “halfway
partners”:

Q� D
®
qab W .a; b/ 2 Inv.�/ and .a b/ appears in the disjoint cycle decomposition of � j�j=2

¯
:

E.g., if � D .1 11 9 2 5 7 4 8/, then j�j D 8, �4 D .1 5/.11 7/.9 4/.2 8/, and Q� D
¹q15; q49; q28º as .7; 11/ 62 Inv.�/. (Note that j�j is always even since � is an odd cycle.)

In the next proposition, we take a product over the odd cycles � of a permutation � ,
i.e., all the odd cycles � appearing in a decomposition of � into the product of disjoint
cycles. For example, if � D .1 11 9 2 5 7 4 8/.3 6/.10 12 13/, then in the statement, we
may choose c� D q15q36 or c� D q49q36 or c� D q28q36.

Proposition 4.7. The quantum determinant simplifies as

detQ.h/ D
X
�2Sn

sgn.�/c� h1�.1/ � � � h
n
�.n/ for all h 2 Autgr.SQ.V //;

where
c� D

Y
odd cycles � of �

q� 2 F

for any choice of element q� in Q� .

Proof. Fix a permutation � ¤ 1 in Sn. Lemma 3.2 (c) implies that

qij h
1
�.1/ � � � h

n
�.n/ D q�.i/�.j / h

1
�.1/ � � � h

n
�.n/ for i ¤ j: (4.1)

We use this key observation to cancel factors of qij appearing in the quantum determinant.
Indeed, in the coefficient of the � -summand of detQ.h/ (see Definition 4.1),

sgnQ.�/ D sgn.�/
Y

.i;j /2Inv.�/

q�.j /�.i/;

a factor qij cancels with q�.j /�.i/ D q�1�.i/�.j / provided both .i; j / and .�.j /; �.i// lie in
Inv.�/. In order to pair and cancel factors appropriately, we consider the orbits O of �
acting diagonally on the set of ordered pairs P D ¹.i; j / W i ¤ j º and the swap bijection
� W P ! P , .i; j / 7! .j; i/, noting that Inv.�/ is the disjoint union over orbits O of the
sets O \ Inv.�/.

Fix an orbit O � P with O \ Inv.�/ ¤ ¿. Say .i; j / lies in O \ Inv.�/ and consider
any .a; b/ in �.O/ \ Inv.�/. Then, .b; a/ lies in O , and hence, .b; a/ D .�k.i/; �k.j //
for some k. Thus,

qabh
1
�.1/ � � � h

n
�.n/ D q

�1
ba h

1
�.1/ � � � h

n
�.n/ D q

�1
�k.i/�k.j /

h1�.1/ � � � h
n
�.n/ D q

�1
ij h

1
�.1/ � � � h

n
�.n/

by equation (4.1), and hence,

qij qab h
1
�.1/ � � � h

n
�.n/ D h

1
�.1/ � � � h

n
�.n/: (4.2)
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Hence, we investigate how the elements of O \ Inv.�/ may be paired with the elements
of �.O/ \ Inv.�/ in order to simplify the formula for detQ.h/. Note that the set �.O/ is
again an orbit, and hence, either O D �.O/ or O \ �.O/ D ¿.

First, suppose O \ �.O/ D ¿. It is not difficult to see that the sets O \ Inv.�/ and
�.O/ \ Inv.�/ are in bijection, so each element of O \ Inv.�/ may be paired with a
unique element of �.O/\ Inv.�/ in the factorization of sgnQ.�/. This implies thatO and
�.O/ taken together contribute no quantum scalars to � -summand sgnQ.�/h

1
�.1/
� � �hn

�.n/

of detQ.h/ after simplifying by equation (4.2). Indeed, one may define a bijection

O \ Inv.�/! �.O/ \ Inv.�/;

for example, by .i; j / 7! .�m.j /; �m.i// where 0 < m < j� j is the minimal integer such
that .�m.j /; �m.i// lies in Inv.�/.

Now, supposeO D �.O/. Then, there is a unique cycle � in a decomposition of � into
the product of disjoint cycles that does not fix any entry of any element in O . We claim
that � has even length ` and that

O D
®
.i; j / W i; j are not fixed by � and j D �`=2.i/

¯
:

Consider some .i; j / in O D �.O/. Then, i and j both appear in the cycle � , i.e., are not
fixed by � , and .i; j /D .�k.j /; �k.i// for some k > 0, say, minimal. Then, � must have
even length 2k (since � D .i a1 � � � ak�1 j akC1 � � � a2k�1/ for some am). Conversely, if
.i; j / lies in the given set, then .i; j / lies in O and O has the description claimed.

We argue that the set O \ Inv.�/ D O \ Inv.�/ has odd size. By equation (4.2), this
implies (as O D �.O/) that all but one of the elements of O \ Inv.�/ may be paired so
as to avoid contributing any quantum scalars to sgnQ.�/ in the formula for detQ.h/. Fur-
thermore, by equation (4.1), it does not matter which lone element of this set contributes
a quantum scalar to sgnQ.�/ in the formula, and we obtain the advertised description of
the quantum determinant.

To see that O \ Inv.�/ has odd size, first, note that jInv.�/j is odd because � is an
odd permutation. The set Inv.�/ is the disjoint union of the sets O 0 \ Inv.�/ over all the
orbits O 0 of the group h�i acting on the set P . Replacing � by � throughout the above
arguments, we see that if O 0 is an orbit with O 0 \ �.O 0/ D ¿, then there is a bijection
between .O 0 \ Inv.�// and .�.O 0/ \ Inv.�// and hence the two orbits O 0 and �.O 0/
together contribute an even number of elements to Inv.�/. In addition, the arguments
above for � in place of � show there is exactly one orbit O 0 under the action of � with
O 0 D �.O 0/ (since � itself is a single cycle of even length) andO 0 DO . Hence, the parity
of j Inv.�/j is that of jO \ Inv.�/j, and thus, jO \ Inv.�/j must also be odd.

Proposition 4.7 implies a simplification of the rule of Sarrus (down-up diagonal-
antidiagonal pattern) for computing determinants of 3 � 3 matrices (see Figure 1). Recall
that a matrix lies in Autgr.SQ.V // if and only if it lies in Autgr.

V
Q.V // (Corollary 3.6).
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a b c a b

1 1 1 �q13 �q23 �q12

d e f d e

g h i g h

Figure 1. Quantum determinant of a graded automorphism in dimension 3.

Corollary 4.8. For n D 3, if h D ¹hij º 2 GL3.F/ lies in Autgr.SQ.V //, then

detQ.h/ D h11h
2
2h
3
3 C h

1
2h
2
3h
3
1 C h

1
3h
2
1h
3
2 � q23h

1
1h
2
3h
3
2 � q12h

1
2h
2
1h
3
3 � q13h

1
3h
2
2h
3
1:

5. Quantum Drinfeld Hecke algebras

We now turn to quantum Drinfeld Hecke algebras and fix a finite group G � GLn.F/
acting on V ŠFn. Recall that ifG acts on an F -algebraA by automorphisms (for example,
the quantum symmetric algebraAD SQ.V / or the tensor algebraAD TF .V /), the natural
semidirect product algebra A ÌG is the F -vector space A˝F FG with multiplication

.a˝ g/.b ˝ h/ D a gb ˝ gh for a; b 2 A and g; h 2 G:

This algebra is alternatively often called the skew group algebra or smash product alge-
bra (written A#G). We identify A Ì G with the F -algebra generated by A and FG with
relations g a D ga g for all a 2 A and g 2 G by suppressing tensor signs, a˝ g D ag.

Parameter functions

We view TF .V / Ì G as a graded algebra after assigning group elements in G degree 0
and vectors in V degree 1. We consider a quotient by relations that lower the degree of
q-commutators vj vi � qij vivj recorded by a parameter function � W V ˝ V ! FG. We
abbreviate �.v; w/ D �.v ˝ w/ for ease with notation throughout.

Quantum Drinfeld Hecke algebras

Given the quantum system of parametersQ and a linear parameter function � W V ˝ V !
FG, we define the F -algebra:

HQ;� WD .T .V / ÌG/
ı�
vj vi � qij vivj � �.vi ; vj / W 1 � i; j � n

�
:

We say HQ;� is a quantum Drinfeld Hecke algebra if it satisfies the PBW property, i.e., if®
v
m1
1 v

m2
2 � � � v

mn
n g W mi 2 Z�0; g 2 G

¯
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is a basis for HQ;� as an F -vector space. In this case, HQ;� serves as a graded deformation
of SQ.V / Ì G. For related work, see Jing and Zhang [18], Shakalli [27], Levandovskyy
and Shepler [20], Shroff and Witherspoon [31], and Naidu and Witherspoon [25].

Remark 5.1. The PBW algebras HQ;� include the braided Cherednik algebras of Bazlov
and Berenstein [6]. In the special case that qij D 1 for all i; j , they also include Lusztig’s
graded Hecke algebras [21,22], the symplectic reflection algebras explored by Etingof and
Ginzburg [14], the Drinfeld Hecke algebras of [13], and the noncommutative deformations
of Kleinian singularities studied by Crawley-Boevey and Holland [12].

Support of parameter

For any parameter � W V ˝ V ! FG, we fix linear functions �g W V ˝ V ! F for g in G
decomposing � as

�.vi ; vj / D
X
g2G

�g.vi ; vj /g for 1 � i; j � n: (5.1)

We say � is supported on a subset of group elements S � G if �g � 0 for all g … S .

Group action on parameters

A group G acts on any parameter function � W V ˝ V ! FG in the standard way, where
G acts on FG by conjugation:

.g�/.u; v/ D g
�
�.g

�1

u; g
�1

v/
�

for g in G:

PBW conditions

We recall necessary and sufficient conditions for HQ;� to satisfy the PBW property. The
following strengthens a theorem of Levandovskyy and Shepler [20]. A version appears
in [30,31] with the extra (implicit) hypothesis thatG acts on both SQ.V / and on

V
Q.V /;

we give a quick proof showing how Corollary 3.6 is used. Recall that � is a quantum
2-form when �.vj ; vi / D �qj i �.vi ; vj / for all i; j (see Equation (2.2)).

Theorem 5.2. LetG be a finite subgroup of GLn.F/. The algebra HQ;� satisfies the PBW
property if and only if

(1) G acts by graded automorphisms on SQ.V /,

(2) � W V ˝ V ! FG is a quantum 2-form,

(3) the quantum Jacobi identity holds for all 1 � i < j < k � n and g in G,

0 D
X
�2Alt3

�g.v�.i/; v�.j //
�
q
g

�.j /�.k/
v�.k/ � q�.k/�.i/v�.k/

�
;

(4) � is G-invariant.
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Proof. By [20, Theorem 7.6], we need only check that condition (4) is equivalent to

�h�1gh.vi ; vj / D
X

1�k<l�n

detijkl .h/ �g.vk ; vl / for all g; h 2 G and 1 � i < j � n;

(5.2)
assuming conditions (1), (2), (3) already hold. As � is bilinear, straightforward calculation
(as in the proof of [20, Lemma 3.2]) using equation (2.2) confirms that � is invariant
exactly when

�h�1gh.vi ; vj / D �g.
hvi ;

hvj / D
X
k<l

detlkj i .ht / �g.vk ; vl / for all g; h 2 G and i ¤ j :

But this is just equation (5.2) since detlkj i .ht / D detijkl .h/ by Lemma 3.2 and Corol-
lary 3.6.

Parameter space

A parameter � is admissible if it defines a quantum Drinfeld Hecke algebra HQ;� , i.e.,
defines a PBW algebra (see [13]). Note that any linear combination of admissible param-
eters is again admissible (see Theorem 5.2). We call the F -vector space

P D PG D
®
� 2 HomF .V ˝ V;FG/ W � is admissible

¯
of all admissible parameters the parameter space of quantum Drinfeld Hecke algebras.
We denote its dimension by dimF P D dimF .PG/ for a specific finite groupG (with fixed
Q).

By Theorem 5.2 (see equation (5.2)), we can write any parameter � in the space
HomF .V ˝ V; FG/ as the sum over the conjugacy classes C of G of parameter func-
tions �C , each supported only on C :

� D
X

conj. classes C

�C with �C .v; w/ D
X
g2C

�g.v; w/g for v;w 2 V:

By Theorem 5.2, � is admissible exactly when each �C is admissible. Thus, to find the
dimension of PG , we need only find the dimension of admissible parameters � supported
on a fixed conjugacy class C and then add over all conjugacy classes C of G:

dimF P D
X

conj. classes C

dimF

®
� 2 HomF .V ˝ V;FG/ W �g � 0 for g … C; � admissible

¯
:

(5.3)

Basis matters

Bilinearity of the parameter � plays no role here; we only ever evaluate � on the given
basis, as another choice of basis for V may define a non-isomorphic algebra. Consider a
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linear action of the Klein 4-group on C3 with two parameters worth of nontrivial quantum
Drinfeld Hecke algebras using one basis of C3 but none using another. Set

G D

*0@�1 �1

�1

1A ;0@�1 1

1

1A+;
G0 D

*0@�1 �1

1

1A ;0@�1 1

�1

1A+:
Here, G and G0 give equivalent representations but dimF .PG/ D 2 when q23 D �1 and
q12q13 D ˙1, whereas dimF .PG0/ D 0 for all choices of Q.

Examples

We end this section with a few examples.

Example 5.3. Consider the symmetric group G D S2 acting on V D F2 by permuting
basis elements x; y. Then, G acts on SQ.V / D FQŒx; y�=.xy C yx/ for q12 D �1. For
any a; b in F , the F -algebra HQ;� generated by symbols g; x; y (for g the transposition)
with relations

g2 D 1; gx D yg; gy D xg; xy D �yx C aC bg

exhibits the PBW property and is a quantum Drinfeld Hecke algebra. Notice that the
parameter function � W V ˝ V ! FG is defined by �.x; y/ D aC bg.

Example 5.4. Recall the monomial group G and quantum scalars Q from Example 2.2.
Every quantum Drinfeld Hecke algebra HQ;� is generated by v1; v2; v3 and h with rela-
tions

h6 D 1; hv1 D v2h; hv2 D v1h; hv3 D !v3h;

v2v1 D �v1v2 Cm1hCm2h
4; v3v1 D !v1v3; v3v2 D ! v2v3;

for some parameters m1; m2 2 C. Hence, dimC.PG/ D 2.

Example 5.5. Consider the monomial group G � GL.V / generated by g D
�
0 1
2 0

0 0 1
2

4 0 0

�
for V D C3. When qij D �1 for i ¤ j , dimF .PG/ D 3. Each quantum Drinfeld Hecke
algebra HQ;� is generated by v1; v2; v3, and CG with relations gvi D gvig for all i and
the following relations given by parameters m1; m2; m3 2 C:

v3v2 D �v2v3 Cm1 Cm2g Cm3g
2;

v2v1 D �v1v2 C 4m1 C 4m2g C 4m3g
2;

v3v1 D �v1v3 C 2m1 C 2m2g C 2m3g
2:
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6. Some combinatorial lemmas

Before any classification results, we first collect some preliminary observations giving
combinatorial ways to investigate quantum Drinfeld Hecke algebras. We will use these
results to classify algebras for the symmetric group acting by permutation matrices, the
infinite family of complex reflection groups G.r; p; n/, and the mystic reflection groups
in later sections. Every monomial matrix g can be written as the product d� of a diagonal
matrix d and a permutation matrix � in the symmetric group Sn. If � is a k-cycle in Sn,
we say that g has k-cycle type. When � is the product of two disjoint transpositions, we
say g is the product of two disjoint 2-cycle type elements. The next lemma explains why
we are primarily interested in 2-cycle and 3-cycle types. We use some ideas from [33].

Lemma 6.1. Say n � 3 and G � GLn.F/ is a monomial matrix group. If HQ;� is a
quantum Drinfeld Hecke algebra, then for any g in G, �g 6� 0 implies

• g is diagonal,

• g has 2-cycle or 3-cycle type, or

• g is the product of two disjoint 2-cycle type elements.

Proof. Say g is not diagonal and write g D d� as above with d diagonal and � ¤ 1 a
permutation. For i ¤ j , we may judiciously choose k … ¹i; j º with �.k/ not in ¹i; j; kº
in Theorem 5.2 (3) to force �g.vi ; vj /� 0 except when � is a 2-cycle, 3-cycle, or product
of two disjoint 2-cycles.

Notice that when qij D �1 for all i ¤ j , detijkl .g/ D detijlk.g/ D detj ikl .g/ D
detj ilk.g/ for any matrix g. In fact, one may verify the next two lemmas directly.

Lemma 6.2. Let G � GLn.F/ be a monomial group and qij D �1 for all i ¤ j . Then,
for all g; h in G, if detijkl .g � h/ ¤ 0, there exists a unique pair 1 � a < b � n with

detijkl .gh/ D detijab.h/ � detabkl .g/:

And for any pair a < b, the product detijab.h/ � detabkl .g/ either is zero or is detijkl .gh/.

Lemma 6.3. LetG �GLn.F/ be a monomial matrix group and qij D�1 for all i ¤ j . To
check Equation (5.2), it suffices to consider g in a set of conjugacy class representatives.

Proof. Assume equation (5.2) holds for a fixed g. Say g0 D z�1gz for some z in G and
fix h inG and i ¤ j . AsG is monomial, there is a unique pair a < b with detijab.zh/¤ 0
and

�h�1g 0h.vi ; vj / D �.zh/�1g.zh/.vi ; vj / D detijab.zh/ �g.va; vb/:

There is also a unique pair c < d so that 0 ¤ detijab.zh/ D detijcd .h/detcdab.z/ (by
Lemma 6.2). Then, a < b is the unique pair for c < d with detcdab.z/ ¤ 0, and hence,
the last display gives

detijcd .h/detcdab.z/ �g.va; vb/ D detijcd .h/ �z�1gz.vc ; vd / D detijcd .h/ �g 0.vc ; vd /:
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Also, c < d is the unique pair for i ¤ j with detijcd .h/ ¤ 0, so equation (5.2) holds with
g0 in place of g, i.e., �h�1g 0h.vi ; vj / D

P
k<l detijkl .h/ �g 0.vk ; vl /.

We will use the next technical lemma for the infinite family of Shephard–Todd groups
G.r; p; n/ in Section 8 and the mystic reflection groups in Section 9. We denote the cen-
tralizer of each g in G by CG.g/.

Lemma 6.4. LetG �GLn.F/, n� 3, be a finite monomial group with qij D�1 for i ¤ j
containing the 3-cycle g D .1 2 3/. Suppose that the centralizer CG.g/ is a subgroup of
hg; g � .�I /i upon restriction of each group to V 0 D Fv1 C Fv2 C Fv3. Then, there is a
nontrivial quantum Drinfeld Hecke algebra HQ;� with � W V ˝ V ! FG supported on
the conjugacy class of g. In fact, for any quantum Drinfeld Hecke algebra and any i ¤ j ,
�g.vi ; vj / D �g.v1; v2/ for i; j distinct in ¹1; 2; 3º and �g.vi ; vj / D 0 otherwise.

Proof. For 0 ¤ m 2 F , define a quantum 2-form � supported on the conjugacy class of g
by setting �g.vi ; vj /D 0 for i or j 62 ¹1; 2; 3º, �g.v1; v2/D �g.v2; v3/D �g.v3; v1/Dm,
and

�h�1gh.vi ; vj / D
X
k<l

detijkl .h/ �g.vk ; vl / for 1 � i < j � n; h 2 G:

We argue that �h�1gh is well defined. Say h�1gh D z�1gz and i < j . On the one hand,
there is a unique pair a < b (since G is monomial) with detijab.h/ ¤ 0, and

�h�1gh.vi ; vj / WD
X
k<l

detijkl .h/ �g.vk ; vl / D detijab.h/ �g.va; vb/:

On the other hand, there is a unique pair c < d with detijcd .z/ ¤ 0, and

�z�1gz.vi ; vj / WD
X
k<l

detijkl .z/ �g.vk ; vl / D detijcd .z/ �g.vc ; vd /:

We show that
detijab.h/ �g.va; vb/ D detijcd .z/ �g.vc ; vd /: (6.1)

Since G is monomial, Lemma 6.2 implies that

detabcd .zh�1/ D detabij .h�1/detijcd .z/ D .detijab.h//�1detijcd .z/ ¤ 0 (6.2)

and ¹a; bº � ¹1; 2; 3º exactly when ¹c; dº � ¹1; 2; 3º since zh�1 2 CG.g/. If ¹a; bº 6�
¹1;2;3º, then �g.va; vb/D �g.vc ; vd /D 0 by construction of �. So, we assume a;b;c;d 2
¹1; 2; 3º and �g.va; vb/ D �g.vc ; vd /. But zh�1jV 0 2 h˙giV 0 , hence 1 D detabcd .zh�1/
and detijab.h/D detijcd .z/ by equation (6.2) implying equation (6.1). One can then verify
that � is admissible using equation (5.2).

Now, suppose that HQ;� is a quantum Drinfeld Hecke algebra. For i ¤ j with i or j
not in ¹1; 2; 3º, we may find an index k so that Theorem 5.2 (3) forces �g.vi ; vj /D 0. For
i ¤ j with i; j 2 ¹1; 2; 3º, Theorem 5.2 (4) implies that �.1 2 3/.vi ; vj / D �g.v1; v2/.
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The next lemma is used for the Coxeter groups Sn DG.1; 1; n/, W.Bn/DG.2; 1; n/,
and W.Dn/ D G.2; 2; n/ in Sections 7 and 8.

Lemma 6.5. Suppose G � GLn.F/, n � 3, is a finite monomial group with qij D �1 for
i ¤ j . Say G contains the transposition .1 2/ with det1212.c/ D 1 for all c in CG..1 2//.
Then, for any parameterm in F , there is a quantum Drinfeld Hecke algebra HQ;� with � W
V ˝ V ! FG supported on transpositions with �.1 2/.v1; v2/Dm and �.1 2/.v1; v3/D 0.

Proof. Define a quantum 2-form � supported on the conjugacy class of .1 2/ by setting
�h�1.1 2/h.vi ; vj /D detij12.h/ �.1 2/.v1; v2/ for i < j . We argue that this does not depend
on the choice of h. Indeed, if h�1.1 2/hD z�1.1 2/z for h; z inG, then zh�1 2 CG..1 2//
and det1212.zh�1/ D 1. Since this is nonzero, Lemma 6.2 gives a unique pair i < j with

1 D det1212.zh�1/ D det12ij .h�1/detij12.z/ D .detij12.h//�1detij12.z/

and detij12.h/ D detij12.z/, so � is well defined. One may then check the conditions of
Theorem 5.2 directly. Note that Theorem 5.2 (4) holds by equation (5.2) using Lemma 6.3
since detij12.h/ is nonzero for only one fixed pair i < j , and so detijkl .h/ is nonzero with
k < l only for k D 1, l D 2:

�h�1.1 2/h.vi ; vj / D detij12.h/�.1 2/.v1; v2/ D
X
k<l

detijkl .h/�.1 2/.vk ; vl /:

Remark 6.6. For the Coxeter groups SnDG.1;1;n/, W.Bn/DG.2;1;n/, and W.Dn/D

G.2; 2; n/ for n � 2, the proof of Lemma 6.5 gives an admissible parameter � for any
m 2 F defined by

�g.vi ; vj / D

8̂̂<̂
:̂
m for g D .i j /;

�m for g D ti tj .i j /;

0 otherwise;

where ti is the identity matrix except �1 in the i th slot. Note here that all conjugates of
.1 2/ take the form .i j / or ti tj .i j / for some i ¤ j .

In the next two lemmas, we again consider the symmetric group Sn acting by permut-
ing basis elements of V , i.e., we identify Sn with the group of permutation matrices in
GLn.F/.

Lemma 6.7. Say G D Sn for n � 3 and qij D �1 for i ¤ j . Then, for any parameter m
in F , there is a quantum Drinfeld Hecke algebra HQ;� for � W V ˝ V ! FG supported
on transpositions with �.1 2/.v1; v2/ D 0 and �.1 2/.v1; v3/ D m.

Proof. Notice that detijkl .g/ 2 ¹0; 1º for all g 2 G. Say m ¤ 0 and define a quantum
2-form � supported on the conjugacy class of .1 2/ by

�.a b/.vi ; vj / D

´
m for i or j in ¹a; bº but not both;

0 otherwise:
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We argue that � satisfies Theorem 5.2 (4) by verifying equation (5.2) using Lemma 6.3:

�h�1.1 2/h.vi ; vj / D
X
k<l

detijkl .h/ �.1 2/.vk ; vl / for all h 2 G; 1 � i < j � n:

For fixed i < j and h in G, set a D h�1.1/ and b D h�1.2/ so h�1.1 2/h D .a b/. There
is a unique pair i 0 < j 0 with 0 ¤ detij i 0j 0.h/ D deti 0j 0ij .h�1/, so .h.i/ h.j // D .i 0 j 0/,
and we only need to verify that

�.a b/.vi ; vj / D detij i 0j 0.h/ �.1 2/.vi 0 ; vj 0/ D �.1 2/.vi 0 ; vj 0/:

Each side is either m or zero. The scalar �.a b/.vi ; vj / is nonzero exactly when the set
¹i; j º \ ¹a; bº has size 1, i.e., exactly when ¹i 0; j 0º \ ¹1; 2º D ¹h.i/; h.j /º \ ¹h.a/; h.b/º
has size 1. But this is exactly the condition that �.1 2/.vi 0 ; vj 0/ is nonzero and Theo-
rem 5.2 (4) holds. The other conditions of Theorem 5.2 may be checked directly. Note
that for the quantum Jacobi identity, we verify that

.hvk � vk/ �h.vi ; vj /C .
hvj � vj / �h.vi ; vk/C .

hvi � vi / �h.vj ; vk/ D 0

by taking h D .a b/ and considering various overlaps of ¹i; j; kº with ¹a; bº.

Lemma 6.8. SayGDSn for n> 3 and qij D�1 for i ¤ j . There is a nontrivial quantum
Drinfeld Hecke algebra HQ;� for � W V ˝ V ! FG supported on products of two disjoint
transpositions.

Proof. Suppose 0 ¤ m 2 F and define a quantum 2-form � supported on the conjugacy
class of .1 2/.3 4/ by setting, for disjoint 2-cycles .a b/ and .c d/ and i < j ,

�.a b/.c d/.vi ; vj / D

´
m for .a b/ ¤ .i j / ¤ .c d/ and i; j 2 ¹a; b; c; dº,

0 otherwise.

We argue that � satisfies Theorem 5.2 (4) by verifying equation (5.2) using Lemma 6.3:

�h�1.1 2/.3 4/h.vi ; vj / D
X
k<l

detijkl .h/ �.1 2/.3 4/.vk ; vl / for all 1 � i < j � n; h 2 G:

Fix i < j and h in G and set .a b/.c d/ D h�1.1 2/.3 4/h. There is a unique pair i 0 < j 0

with 0¤ detij i 0j 0.h/D deti 0j 0ij .h�1/, so .h.i/ h.j //D .i 0 j 0/ and we only need to check
that

�.a b/.c d/.vi ; vj / D detij i 0j 0.h/ �.1 2/.3 4/.vi 0 ; vj 0/ D �.1 2/.3 4/.vi 0 ; vj 0/:

We verify as in the proof of Lemma 6.7, noting that .a b/ ¤ .i j / ¤ .c d/ with i; j 2
¹a; b; c; dº exactly when .1 2/ ¤ .i 0 j 0/ ¤ .3 4/ with i 0; j 0 2 ¹1; 2; 3; 4º (just apply h to
each index).
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7. Symmetric group acting by permutation of basis vectors

We consider quantum Drinfeld Hecke algebras for the action of the symmetric group Sn

by permutations in this section. We assume at least one quantum parameter qij is not 1,
else we are in the non-quantum setting and may use the classification of algebras from
[29]. This forces qij D �1 for all i ¤ j by Lemma 2.1. Thus, we assume throughout this
section that

Q D
®
qij D �1; qi i D 1 W 1 � i ¤ j � n

¯
:

The dimension of the parameter space of quantum Drinfeld Hecke algebras depends on
whether n > 3, so we give the cases n D 3 and n D 4 explicitly before generalizing to
arbitrary n. Here, as before, Sn acts on V Š Fn by permutation of basis vectors v1; : : : ;vn,
i.e., �vi D v�.i/. We recover results of Naidu and Witherspoon [25] who worked over
the complex numbers C and used Hochschild cohomology; our combinatorial approach
(following ideas of [33]) allows us to extend results to arbitrary fields F with char.F/¤ 2.

3-dimensional space

A careful analysis using Theorem 5.2 gives a 4-parameter family when n D 3. The quan-
tum Drinfeld Hecke algebras are F -algebras generated by v1; v2; v3 and FS3 with rela-
tions �vkDv�.k/� for all k and � 2S3 and, for some fixed scalars m1; : : : ; m4 in F ,

v2v1 D �v1v2 Cm1 Cm2.1 2/Cm3
�
.1 3/C .2 3//Cm4..1 2 3/C .1 3 2/

�
;

v3v2 D �v2v3 Cm1 Cm2.2 3/Cm3
�
.2 1/C .3 1//Cm4..2 3 1/C .2 1 3/

�
;

v1v3 D �v3v1 Cm1 Cm2.3 1/Cm3
�
.3 2/C .1 2//Cm4..3 1 2/C .3 2 1/

�
:

4-dimensional space

Theorem 7.1 below gives a 5-parameter family when nD 4. The quantum Drinfeld Hecke
algebras are precisely the F -algebras generated by v1; v2; v3; v4 and FS4 with relations
�vk D v�.k/� for all k and all � 2 S4 and, for some fixed scalars m1; : : : ; m5 in F ,

v2v1 D �v1v2 Cm1 Cm2.1 2/Cm3
�
.1 3/C .1 4/C .2 3/C .2 4/

�
Cm4

�
.1 2 3/C .2 1 3/C .1 2 4/C .2 1 4/

�
Cm5

�
.1 3/.2 4/C .1 4/.2 3/

�
;

v3v1 D �v1v3 Cm1 Cm2.1 3/Cm3
�
.1 2/C .1 4/C .2 3/C .3 4/

�
Cm4

�
.1 3 2/C .3 1 2/C .1 3 4/C .3 1 4/

�
Cm5

�
.1 2/.3 4/C .1 4/.2 3/

�
;

v4v1 D �v1v4 Cm1 Cm2.1 4/Cm3
�
.1 2/C .1 3/C .2 4/C .3 4/

�
Cm4

�
.1 4 2/C .4 1 2/C .1 4 3/C .4 1 3/

�
Cm5

�
.1 2/.3 4/C .1 3/.2 4/

�
;

v3v2 D �v2v3 Cm1 Cm2.2 3/Cm3
�
.1 2/C .1 3/C .2 4/C .3 4/

�
Cm4

�
.2 3 1/C .3 2 1/C .2 3 4/C .3 2 4/

�
Cm5

�
.1 2/.3 4/C .1 3/.2 4/

�
;

v4v2 D �v2v4 Cm1 Cm2.2 4/Cm3
�
.1 2/C .1 4/C .2 3/C .3 4/

�
Cm4

�
.2 4 1/C .4 2 1/C .2 4 3/C .4 2 3/

�
Cm5

�
.1 2/.3 4/C .1 4/.2 3/

�
;

v4v3 D �v3v4 Cm1 Cm2.3 4/Cm3
�
.1 4/C .2 3/C .2 4/C .1 3/

�
Cm4

�
.3 4 1/C .4 3 1/C .3 4 2/C .4 3 2/

�
Cm5

�
.1 3/.2 4/C .1 4/.2 3/

�
:
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Arbitrary dimension

The quantum Drinfeld Hecke algebras constitute a 5-parameter family for the symmetric
group Sn with n � 4.

Theorem 7.1. LetG DSn act on V Š Fn by permutation of basis vectors for n � 4. The
quantum Drinfeld Hecke algebras are precisely the F -algebras generated by v1; : : : ; vn
and FSn with relations �vk D v�.k/� for all k and

v�.2/v�.1/

D �v�.1/v�.2/ Cm1 Cm2.�.1/�.2/
�
Cm3

X
i¤�.1/;�.2/

�
.�.1/i

�
C
�
�.2/i/

�
Cm4

X
i¤�.1/;�.2/

�
.�.1/�.2/i/C .�.2/�.1/i

��
Cm5

X
i;j…¹�.1/;�.2/ºIi¤j

.�.1/i/.�.2/j /;

for all � 2 G for some fixed scalars m1; : : : ; m5 in F .

Note that the right-hand side indeed only depends on �.1/ and �.2/ (as an unordered
pair).

Proof. Suppose � is admissible. Theorem 5.2 (4) implies that � is invariant, i.e., for any �
in Sn,

�.v�.1/; v�.2// D
X
g2G

�g.v1; v2/ �g�
�1;

and � is determined by �.v1; v2/. As cycle type determines the conjugacy classes in Sn,
Lemma 6.1 implies that if �g 6� 0, then g is conjugate to I (the identity), .1 2/, .1 2 3/, or
.1 3/.2 4/.

By Theorem 5.2 (3) and (4),

0 D �.k l/.v1; v2/ D �.1 2/.i j /.v1; v2/ D �.i j /.k l/.v1; v2/

when k; l … ¹1; 2º and .i j / ¤ .1 2/. In addition (by equation (5.2)), �.1 l/.2 k/.v1; v2/ D
�.1 3/.2 4/.v1; v2/ for all l ¤ k with l; k 62 ¹1; 2º. In fact, one may show (using Lemma 6.4
and equation (5.3)) that � is determined by

m1 D �I .v1; v2/; m2 D �.1 2/.v1; v2/;

m3 D �.1 3/.v1; v2/; m4 D �.1 2 3/.v1; v2/; m5 D �.1 3/.2 4/.v1; v2/:

Conversely, using equation (5.3), the identity I in G contributes one parameter worth of
quantum Drinfeld Hecke algebras, the conjugacy class of .1 2/ contributes two parameters
worth by Lemmas 6.5 and 6.7, and the conjugacy classes of .1 2 3/ and .1 2/.3 4/ each
contribute another parameter of freedom by Lemmas 6.4 and 6.8. The proofs of these
lemmas give the algebras in the statement of the theorem explicitly.
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8. Infinite families of reflection groups G.r; p; n/

We consider the infinite familyG.r;p;n/ of reflection groups (see Shephard and Todd [28]
when F D C), which includes

• the symmetric group acting as permutations, Sn D G.1; 1; n/,

• the Weyl groups W.Bn/ D G.2; 1; n/ acting on Rn or Cn,

• the Weyl groups W.Dn/ D G.2; 2; n/ acting on Rn or Cn,

• the symmetry group G.r; 1; n/ of the regular r-cube polytope in Cn.

We describe the quantum Drinfeld Hecke algebras, recovering results of Naidu and With-
erspoon [25] in the case F D C and n � 4. The combinatorial approach chosen here over
a cohomological approach has certain advantages. This combinatorial avenue

• allows us to extend results to fields F with char.F/ ¤ 2,

• helps us classify algebras in the delicate case when n D 3,

• reveals an extra parameter of algebras for G.r; r; 4/ when r is odd,

• extends to other groups, like mystic reflection groups (examined in the next section).

We fix r; p; n 2 Z with p dividing r , and assume F contains a primitive r th root of
unity! in this section. The finite groupG.r;p;n/�GL.F/ consists of the n�nmonomial
matrices whose nonzero entries are r th roots of unity in F and whose product of nonzero
entries is 1 when raised to the power r=p. The group G.r; p; n/ has order nŠ rn=p and is
the semidirect product D.r; p; n/ Ì Sn for D.r; p; n/ the subgroup of diagonal matrices
in G.r; p; n/. Note that G.r; p; n/ contains the symmetric group Sn D G.1; 1; n/ as a
subgroup.

By Lemma 2.1, the groupG DG.r;p;n/ acts on the quantum polynomial ring SQ.V /
by automorphisms if and only if either qij D 1 for all i; j or else qij D �1 for all i ¤ j .
In the trivial case, when all qij D 1, [26] gives a classification of quantum Drinfeld Hecke
algebras. Thus, we assume throughout this section that the set of quantum parameters is

Q D
®
qij D �1; qi i D 1 W 1 � i ¤ j � n

¯
:

Define a diagonal matrix ƒi which is !I except with !1�n as i th entry:

ƒi D diag.!; : : : ; !; !1�n; !; : : : ; !/: (8.1)

Lemma 8.1. Say G D G.r; r; 4/ for r � 1 with r odd. There is a nontrivial quantum
Drinfeld Hecke algebra HQ;� for � W V ˝ V ! FG supported on the conjugacy class of
.1 2/.3 4/.

Proof. Let g D .1 2/.3 4/ and 0 ¤ m 2 F . Define a quantum 2-form � supported on the
conjugacy class of g by setting �g.vi ; vj /D 0 for ¹i; j º D ¹1; 2º or ¹3; 4º, �g.vi ; vj /Dm
otherwise, and extending via

�h�1gh.vi ; vj / D
X
k<l

detijkl .h/ �g.vk ; vl / for 1 � i; j � 4; h 2 G: (8.2)
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We argue that �h�1gh is well defined. Say h�1ghD z�1gz. As in the proof of Lemma 6.4,
we show that �h�1gh.vi ; vj / D �z�1gz.vi ; vj / using the fact that

�h�1gh.vi ; vj / D detijab.h/ �g.va; vb/ whereas �z�1gz.vi ; vj / D detijcd .z/ �g.vc ; vd /
(8.3)

for some pairs a < b and c < d with detijab.h/ ¤ 0 ¤ detijcd .z/ and

detabcd .zh�1/ D detabij .h�1/detijcd .z/ D .detijab.h//�1detijcd .z/ ¤ 0: (8.4)

If a matrix lies in the centralizer CG.g/, then the entries in its first two columns coincide
and also the entries in its last two columns coincide and the matrix is the product of a
diagonal matrix with .1/, .1 2/, .3 4/, .1 2/.3 4/, .1 3/.2 4/, .1 4/.2 3/, .1 4 2 3/, or
.1 3 2 4/. In addition, the entry in the first column is inverse to that in the last column
because r D p is odd, and thus, there are exactly r elements in CG.g/ corresponding
to each permutation listed. Then, as zh�1 lies in CG.g/ with detabcd .zh�1/ ¤ 0, we
conclude after careful examination of the centralizer that either ¹.1 2/; .3 4/º contains
both .a b/ and .c d/ and hence �g.va; vb/D �g.vc ; vd /D 0 or else ¹.1 2/; .3 4/º contains
neither .a b/ nor .c d/ and hence �g.va; vb/ D �g.vc ; vd / ¤ 0 with detabcd .zh�1/ D 1.
Equations (8.3) and (8.4) then imply that �h�1gh.vi ; vj / D �z�1gz.vi ; vj /.

One may then use Theorem 5.2 to verify that � is admissible with some straightforward
computations. For Theorem 5.2(3), note that any conjugate h�1gh of g is the product of a
diagonal matrix with .1 2/.3 4/ or .1 3/.2 4/ or .1 4/.2 3/. For example, if h�1gh enacts
v1 7! �v2, v2 7! ��1v1, v3 7! �v4, and v4 7! ��1v3 for �; � in F , we may take h to be
the diagonal matrix .�1=2; ��1=2; �1=2; ��1=2/ and check Theorem 5.2 (3) directly using
equation (8.2). Here, we use the fact that the squaring map on the multiplicative group of
r th roots-of-unity is onto since r is odd.

Naidu and Witherspoon [25, Theorem 6.9] proved the following when F D C and
n � 4 by computing Hochschild cohomology. The homological techniques used do not
extend directly to arbitrary fields. We give a direct combinatorial proof that holds for all
fields F with char.F/ ¤ 2, including the case when char.F/ divides jGj, and all n � 3.

Proposition 8.2. Let G D G.r; p; n/ for n � 3. Then, the dimension of the parameter
space of quantum Drinfeld Hecke algebras is

dimF .PG/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

5 if r D 1; n � 4; i.e., G D G.1; 1; n/ D Sn�4;

4 if r D 1; n D 3; i.e., G D G.1; 1; 3/ D S3;

2 if rD2; i.e., GDW.Bn/ D G.2; 1; n/ or GDW.Dn/ D G.2; 2; n/;

1 if r > 2; 3 − r; and G D G.r; r=2; 3/ with r even;

1 if r > 2; 3 − r; and G D G.r; r; 3/;

1 if r > 2; r odd, and G D G.r; r; 4/;

0 otherwise.
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Proof. In the case r D p D 1, G D G.1; 1; n/ is the symmetric group Sn and we appeal
to Section 7. So, we assume r > 1.

We use Theorem 5.2 with equation (5.3). Assume that � is admissible and that g in
G.r; p; n/ has one of the cycle types given in Lemma 6.1.

First, consider the case when r D 2 so thatG is the Weyl groupG.2;2;n/ orG.2;1;n/.
Theorem 5.2 (3) and (4) imply that �g � 0 unless g lies in the conjugacy classes of .1 2/ or
.1 2 3/ (one must check the quantum minor determinants of elements in the centralizer of
g). In fact, �.1 2/.vi ;vj /D 0 unless .i;j /D .1;2/. (For example, hD .�1˚�1˚ I / com-
mutes with .1 2/ forcing �.1 2/.v1; v3/ D 0). The conjugacy class of .1 2/ contributes one
parameter of freedom to the family of quantum Drinfeld Hecke algebras by Lemma 6.5
and the conjugacy class of .1 2 3/ contributes another parameter by Lemma 6.4, hence
dimF .PG/ D 2. Hence, we assume r > 2.

The groupG.r;p;n/ contains the set of diagonal matrices ¹ƒ1; : : : ;ƒnº from equation
8.1. Equation (5.2) forces �g � 0 for any g a diagonal matrix and for any g with 2-cycle
type since certain ƒi lie in the centralizer of g. For example, if g has cycle-type .1 2/,
thenƒk lies in the centralizer of g for k … ¹1; 2º with �g.vi ; vj / D detij ij .ƒk/ �g.vi ; vj /
by Theorem 5.2 (4); this forces �g.vi ; vj /D 0 for i; j ¤ k (since detij ij .ƒk/D !2 ¤ 1).
If n� 5 this forces �g.vi ; vj /D 0 for all i; j as k can vary over 3� k � n. When nD 3;4,
one can verify that detij ij .ƒ3/ ¤ 1 for all i ¤ j forcing �g.vi ; vj / D 0. Hence, we may
assume g has 3-cycle type or is the product of two disjoint 2-cycle type elements.

Now, assume nD 3. If 3 j r , then the center ofG contains the scalar matrix hD !r=3I ,
which forces � � 0 by Theorem 5.2 (4) (see equation (5.2)) since detij ij .h/ D !r2=3 ¤ 1
for all i ¤ j and dimF .PG/ D 0. If r=p > 2, then the scalar matrix h D !pI lies in the
center and likewise forces � � 0 since detij ij .h/ D !2p ¤ 1 for all i ¤ j as r − 2p and
dimF .PG/ D 0.

For n D 3, that leaves the cases r=p � 2 and 3 − r . Theorem 5.2 (3) forces �g � 0
for g of 3-cycle type unless the product of nonzero entries in g is 1. Such elements all
lie in the conjugacy class of .1 2 3/ which generates its own centralizer in G, and hence
dimF .PG/ D 1 in this case by Lemma 6.4.

Now, assume n � 4. Suppose g has 3-cycle type .a b c/. Then, g commutes with any
ƒd for d 2 ¹1; : : : ; nº=¹a; b; cº and �g � 0 by Theorem 5.2 (4) (see equation (5.2)) since

detabab.ƒd / D detbcbc.ƒd / D detacac.ƒd / D !2 ¤ 1

(as r > 2). This forces

�g.va; vb/ D �g.vb; vc/ D �g.vc ; va/ D 0:

Theorem 5.2 (3) forces �g.vi ; vj /D 0 for i or j not in ¹a; b; cº (just choose k 2 ¹a; b; cº).
Thus, we may assume n� 4 and g is the product of two disjoint 2-cycle type elements,

say g is the product of a diagonal matrix and .1 2/.3 4/. If r is even, then G contains
the diagonal matrix h D diag.�1;�1; 1; : : : ; 1/ which commutes with g and arguments
similar to above show that �g � 0. If r is odd but n > 4, then G contains the diagonal
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matrix h D diag.!; !; !; !; !�4; 1; : : : ; 1/ which commutes with g and we may show
�g � 0. This leaves the case that nD 4 and r is odd: again, Theorem 5.2 (3) forces �g � 0
unless g is conjugate to .1 2/.3 4/ and by Lemma 8.1, dimF .PG/ D 1.

Example 8.3. Let G D G.2; 1; 3/ over F D R, the Weyl group W.B3/. Every quantum
Drinfeld Hecke algebra HQ;� is generated by v1; v2; v3 and RG with relations gvk D
gvkg for all k and g 2 G and

v2v1 D �v1v2 Cm.s1 � t1t2s1/

Cm0.s1s2 � t2t3s1s2 � t1t2s1s2 C t1t3s1s2 C s2s1 � t1t3s2s1 C t2t3s2s1 � t1t2s2s1/;

v3v2 D �v2v3 Cm.s2 � t2t3s2/

Cm0.s1s2 � t2t3s1s2 C t1t2s1s2 � t1t3s1s2 C s2s1 C t1t3s2s1 � t2t3s2s1 � t1t2s2s1/;

v3v1 D �v1v3 Cm.s1s2s1 � t1t3s1s2s1/

Cm0.s1s2 C t2t3s1s2 � t1t2s1s2 � t1t3s1s2 C s2s1 � t1t3s2s1 � t2t3s2s1 C t1t2s2s1/

for some m;m0 2 R. Thus, dimR.PG/ D 2. Here, si is the transposition .i i C 1/ and ti
is the identity matrix except with �1 in the i -th entry.

Example 8.4. The groupG.2;2; 3/ over F DR is the Weyl group W.D3/. One compares
the conjugacy classes inG.2;2;3/ to those inG.2;1;3/ to see that every quantum Drinfeld
Hecke algebra for G.2; 1; 3/ is a quantum Drinfeld Hecke algebra for G.2; 2; 3/ and vice
versa. So, the dimension of the parameter space is also 2 for G.2; 2; 3/.

Here are two examples over a field of characteristic 5, the first in the nonmodular
setting and the second in the modular setting.

Example 8.5. In the group G D G.4; 2; 3/ over F D F25, the product of nonzero entries
in each matrix is ˙1 (here, 2 is a primitive 4th root of unity). The dimension of the
parameter space PG of quantum Drinfeld Hecke algebras is 1. Indeed, every PBW algebra
is supported on the 32-element conjugacy class of .1 2 3/: we just fix �.1 2 3/.v1;v2/2F25,
use Equation (5.2) to determine �g for g conjugate to .1 2 3/, and set �g � 0 for all other
g in G.

Example 8.6. In the group G D G.2; 2; 5/ over F D F25, the product of nonzero entries
in each matrix is 1. Here, dimF .PG/ D 2. Indeed, every PBW algebra is supported on the
conjugacy class of .1 2 3/ or the conjugacy class of .1 2/: we fix �.1 2 3/.v1; v2/ 2 F25
and �.1 2/.v1; v2/ 2 F25, use equation (5.2) to determine �g for g conjugate to .1 2 3/ or
.1 2/, and set �g � 0 for all other g in G.

9. Mystic reflection groups

Another natural family to consider is the infinite family of mystic reflection groups de-
scribed by Kirkman, Kuzmanovich, and Zhang [19] and also Bazlov and Berenstein [7].
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Following their constructions, we assume throughout this section that F D C, ˛;ˇ 2 Z>0
with ˛ j ˇ and 2 j ˇ, and

Q D
®
qij D �1; qi i D 1 W 1 � i ¤ j � n

¯
:

Definition 9.1 ([19]). For 1 � i; j � n, i ¤ j , � ¤ 1, define �i;�, �i;j;� in Autgr.SQ.V //

by

�i;�.vl / D

´
vl ; l ¤ i

�vl ; l D i
and �i;j;�.vl / D

8̂̂<̂
:̂
vl ; l ¤ i; j;

�vj ; l D i;

���1vi ; l D j:

The �i;� are called standard reflections and the �i;j;� standard mystic reflections. Then,
the mystic reflection group M.n; ˛; ˇ/ is the following subgroup of Autgr.SQ.V //:

M.n; ˛; ˇ/ D
˝®
�i;� j �

˛
D 1; 1 � i � n

¯
[
®
�i;j;� j �

ˇ
D 1; 1 � i ¤ j � n

¯˛
:

This provides infinite families of groups with nontrivial quantum Drinfeld Hecke alge-
bras.

Theorem 9.2. The dimension of the parameter space PG of quantum Drinfeld Hecke
algebras for G DM.n; ˛; ˇ/ for n � 3 is

dimF .PG/ D

8̂̂̂̂
<̂
ˆ̂̂:
2 if G DM.n; 2; 2/;

1 if G DM.n; 1; 2/;

1 if n D 3 with ˛ � 2; 3 − ˇ and G ¤M.3; 2; 2/;

0 otherwise:

Proof. For G D M.n; 2; 2/ D G.2; 1; n/, we appeal to Proposition 8.2. For the other
cases, we use equation (5.2) with equation (5.3). Assume that � is admissible and that g
in M.n; ˛; ˇ/ has one of the cycle types given in Lemma 6.1.

First, suppose that G D M.n; 1; 2/ � G.2; 1; n/ \ SLn.C/. Theorem 5.2 (3) and (4)
imply that �g � 0 unless g lies in the conjugacy class of .1 2 3/. (We check the quantum
minor determinants of elements in the centralizer of g in addition to judiciously choosing
indices in Theorem 5.2 (3). For example, for g D �i;j;�1 with i ¤ j and k; l … ¹i; j º,
the elements g and h D g2 commute with g with detij ij .g/ ¤ 1 ¤ detikik.h/; this forces
�g.vi ; vj / D �g.vi ; vk/ D 0, whereas Theorem 5.2 (3) forces �g.vk ; vl / D 0.) One may
check that the hypotheses of Lemma 6.4 hold (see [33]) and thus the conjugacy class of
.1 2 3/ contributes one parameter of freedom to PG .

Thus, we assume ˇ > 2. We also assume ˛ is 1 or 2, else the center of G contains cI
for c ¤ ˙1, forcing � � 0 and dimF .PG/ D 0.

Equation (5.2) forces �g � 0when g is a diagonal matrix or has 2-cycle type since cer-
tain diagonal matricesƒi (see equation (8.1)) lie in the centralizer of g with detjkjk.ƒi /D

e
4�i
ˇ ¤ 1 for distinct j; k ¤ i as 2 j ˇ > 2. For example, the group contains

�2;1;! � �2;1;�1 � �3;2;!2 � �3;2;�1 � � � � � �n;n�1;!n�1 � �n;n�1;�1 D ƒn for ! D e
2�i
ˇ :
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So, we assume g has 3-cycle type or else is the product of two disjoint 2-cycle type
elements.

Consider the case n D 3. If 3 j ˇ, then the center of G contains the scalar matrix
�2;1; � �2;1;�1 � �3;2;2 � �3;2;�1 D �

ˇ=3I ¤ ˙I for � D e2�i=ˇ which forces � � 0. So,
we assume 3 − ˇ. In fact, �g � 0 unless g is conjugate to .1 2 3/ and there is one parameter
worth of algebras by Lemma 6.4 (see [33]). Note that G ¤M.3; 2; 2/ here as ˇ > 2.

Lastly, we consider the case n � 4. Suppose g has 3-cycle type .a b c/. Then, g
commutes withƒd for d 2 ¹1; : : : ;nº=¹a;b;cº and !D e2�i=ˇ , which forces �g.vi ; vj /D
0 for i; j 2 ¹a; b; cº by Theorem 5.2 (4) (see equation (5.2)) since

detabab.ƒd / D detbcbc.ƒd / D detacac.ƒd / D !2 ¤ 1

(as ˇ > 2). Theorem 5.2 (3) forces �g.vi ; vj / D 0 for i or j not in ¹a; b; cº (just choose
k 2 ¹a; b; cº). Hence, �g � 0 in this case. Suppose instead that g is the product of two
disjoint 2-cycle type elements, say g is the product of a diagonal matrix and .1 2/.3 4/.
Then, �g � 0 as well since Theorem 5.2 (3) forces �g.v1; v2/D �g.v3; v4/D �g.vi ; vj /D
0 for i or j … ¹1; 2; 3; 4º and Theorem 5.2 (4) forces �g.vi ; vj / D 0 for i; j 2 ¹1; 2; 3; 4º
but .1 2/ ¤ .i j / ¤ .3 4/ since the centralizer of g in G contains the diagonal matrix
diag.�1;�1; 1; : : : ; 1/.

Example 9.3. The group M.n; 1; 2/ for n � 3 is generated by mystic reflections �i;j;�1
and contains the 3-cycle .1 2 3/. The quantum Drinfeld Hecke algebras constitute a 1-
parameter family with each algebra HQ;� supported on the conjugacy class of .1 2 3/. Fix
�.1 2 3/.v1; v2/ D m 2 C, use equation (5.2) to determine �g on the conjugacy class of
.1 2 3/, and set �g � 0 otherwise.

10. Direct sums

We end by observing that there is no way a priori to predict how the dimension of the
parameter space of quantum Drinfeld Hecke algebras will change when taking direct sums
of acting groups. We demonstrate by simply adding on a 1-dimensional group action.

In the proposition below, we take a fixed basis v1; v2; v3 of V D V2 ˚ V1 Š F3 for
V2 D F2 and V1 D F1 with v1; v2 spanning V2 and v3 spanning V1. We write q31q32 2G1
to mean multiplication by q31q32 lies in G1, i.e., G1 contains the 1 � 1 matrix Œq31q32�.

Proposition 10.1. Let Gk be a group of graded automorphisms acting on SQk .Vk/ for
Vk D Fk andQk D ¹q

.k/
ij º for k D 1; 2. Suppose G D G2 ˚G1 acts by graded automor-

phisms on SQ.V / for V D V2 ˚ V1 and Q D ¹qij º with q12 D q
.2/
12 . Then,

(a) if jG1j > 1 and q31q32 2 G1, then dimF .PG/ D dimF .PG2/,

(b) if jG1j D 1 and q31q32 2 G1, then dimF .PG/ � dimF .PG2/,

(c) if jG1j > 1 and q31q32 … G1, then dimF .PG/ D 0,
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(d) if jG1j D 1 and q31q32 … G1, then dimF .PG/ is not bound above or below by
dimF .PG2/.

Proof. First, note that in parts (a) and (c), the center Z.G/ contains a nonidentity matrix

z D

0@1 0 0

0 1 0

0 0 �

1A
with det1313;Q.z/ ¤ 1 ¤ det2323;Q.z/, and thus,

�h.v1; v3/ � 0 � �h.v2; v3/

for all h 2 G by Theorem 5.2 (4) for any admissible parameter � for G. In fact, for part
(c), Theorem 5.2 (3) forces �.v1; v2/ D 0 as well.

Now, suppose that we are in case (a) or (b). For each g 2 G2, define

h.g/ D g ˚ Œq31q32� 2 G:

If �0 is an admissible parameter for G2, then we may define an admissible parameter � for
G with �h.g/.v1; v2/ D �0g.v1; v2/ for g in G2 and � zero otherwise. (One can check that
� satisfies Theorem 5.2 (3) and (4)). Thus,

dimF .PG/ � dimF .PG2/:

In case (a), if � is an admissible parameter for G, we may define an admissible parameter
�0 forG2 with �0g.v1; v2/D �h.g/.v1; v2/, and hence, dimF .PG/ � dimF .PG2/. Note that
in part (b), we may have a strict inequality (see Example 10.3) or equality (Example 10.4).
The claim in part (d) is verified with Example 10.2.

Example 10.2. To justify Proposition 10.1(d), we fixG1D¹1º�GL1.F/ with q31q32¤1
and give three groupsGi �GL2.F/with which to compare dimF .PGi˚G1/ to dimF .PGi /.
Set

G2 D
®�
�1 0
0 �1

�
;
�
1 0
0 1

�¯
; G3 D

®�
�1 0
0 1

�
;
�
1 0
0 1

�¯
;

G4 D
®�
�1 0
0 1

�
;
�
1 0
0 �1

�
;
�
�1 0
0 �1

�
;
�
1 0
0 1

�¯
:

Then

dimF .PG2/ D 2 > 0 D dimF .PG2˚G1/ if q13 D �1; q23 D 1 and q12 D 1;

dimF .PG3/ D 0 < 1 D dimF .PG3˚G1/ if q13 D �1; q23 D 1 and q12 D �1;

dimF .PG4/ D 0 D dimF .PG4˚G1/ if q13 D �1; q23 D 1 and q12 D 1:

Note that the inequality in Proposition 10.1 (b) is often strict, as we see next.
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Example 10.3. Consider G D G2 ˚G1 � GL3.C/ for G1 D 1 the trivial group and

G2 D

²�
�
p
1��3 �2

�
p
1��3

�
;
�
1 0
0 1

�³
for � D e

2�i
5 ; q12 D 1; q23 D �1 D q13:

Then,
dimC.PG2/ D 0

by Theorem 5.2 (4) as G2 is abelian containing g with

detQ.g/ D �1:

However, dimC.PG/ D 1 as the set of quantum Drinfeld Hecke algebras for G comprises
the algebras HQ;�;G generated by v1; v2; v3 and CG with relations gvi D gvig for all
g 2 G and

v2v1 D v1v2; v3v2 D �v2v3 Cmg; v3v1 D �v1v3 Cm�
3.1 �

p
1 � �3/g;

with parameter m 2 C. Thus, dimC.PG/ > dimC.PG2/.

We end with a classical complex reflection group, namely, the 2-dimensional tetrahe-
dral group G4 of order 24 as classified by Shephard and Todd [28]. We consider the direct
sum of G4 with a trivial group to demonstrate the equality in Proposition 10.1 (b).

Example 10.4. Set q12 D�1D q13, q23 D 1, and ! D e2�i=3 in C. ConsiderG D ¹1º ˚
G4 (using a reflection representation of G4 perhaps equivalent to your favorite) generated
by

A D

0@1 0 0

0 1 0

0 0 !

1A and B D
1
p
3

0@p3 0 0

0 i
p
2i!2

0
p
2i!2 �i!

1A
with

g D B2A2B2; g2 D B
2A; g3 D AB

2:

Then, for any m in C, the C-algebra HQ;� generated by v1; v2; v3 and CG with relations
gvi D

gvig for all g 2 G and

v3v2 D v2v3 Cm.g C g
�1
C !2g2 C !

2g�12 C !g3 C !g
�1
3 /;

v3v1 D �v1v3; v2v1 D �v1v2

is a quantum Drinfeld Hecke algebra. By Theorem 5.2, these are all the quantum Drinfeld
Hecke algebras. Thus, dimC.PG/ D 1. Note dimC.PG4/ D 1 as well.
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