
J. Noncommut. Geom. 18 (2024), 1129–1163
DOI 10.4171/JNCG/550

© 2023 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

On amenable and coamenable coideals

Benjamin Anderson-Sackaney

Abstract. We study relative amenability and amenability of a right coideal zNP � `1.G/ of a dis-
crete quantum group in terms of its group-like projection P . We establish a notion of a P -left invari-
ant state and use it to characterize relative amenability. We also develop a notion of coamenability of
a compact quasi-subgroupN! � L1. yG/ that generalizes coamenability of a quotient as defined by
Kalantar, Kasprzak, Skalski, and Vergnioux (2022), where yG is the compact dual of G. In particular,
we establish that the coamenable compact quasi-subgroups of yG are in one-to-one correspondence
with the idempotent states on the reduced C�-algebra Cr . yG/. We use this work to obtain results for
the duality between relative amenability and amenability of coideals in `1.G/ and coamenability
of their codual coideals in L1. yG/, making progress towards a question of Kalantar et al.

1. Introduction

Understanding the tracial states of C �-algebras and simplicity of C �-algebras are prob-
lems of interest to operator algebraists (for example, in classification theory). For a dis-
crete group G, whenever Cr . yG/ has the unique trace property (which would be the Haar
state), then the traces are well understood: they are comprised of the Haar state alone.
When studying these properties of the reduced C �-algebras of groups, an important class
of traces to consider are the indicator functions (which are idempotent states)

1N 2 Cr . yG/
�
� `1.G/;

whereN is a normal and amenable subgroup ofG. Besides the Haar state, a distinguished
example is 1Ra.G/, where Ra.G/ is the amenable radical of G, the largest amenable
normal subgroup. More precisely, it was achieved in [6,23] that Cr . yG/ has a unique trace
if and only if Ra.G/ D ¹eº and if Cr . yG/ is simple; then it has a unique trace.

More generally, the idempotent states on the universal C �-algebra Cu. yG/ are exactly
those of the form 1H where H is a subgroup of G. The traces are those idempotent
states 1H where H is normal. The universal idempotent states of a locally compact quan-
tum group (LCQG) G (the idempotent states on the universal C �-algebra Cu. yG/) have
received a lot of attention in the literature lately (see [17,24,25,27,35,36]). More specifi-
cally, their connection to certain group-like projections and compact quasi-subgroups has
been established. In particular, the compact quasi-subgroups of an LCQG G are in one-
to-one correspondence with the universal idempotent states (see Section 4.1 for more on
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compact quasi-subgroups of compact quantum groups (CQGs)). As far as we can tell,
aside from the results in [27] concerning normal idempotent states (normal idempotent
states on L1.G/), the reduced idempotent states (idempotent states on the reduced C �-
algebra Cr .G/) have been left untouched.

Kalantar, Kasprzak, Skalski, and Vergnioux [22] coined the notion of a coamenable
right coideal of quotient type for a CQG. This notion generalizes to compact quasi-
subgroups, which we prove has the following characterization.

Theorem 4.10. Let G be a discrete quantum group and N! a compact quasi-subgroup
of yG. We have that N! is coamenable if and only if ! 2M r . yG/ D Cr . yG/�.

See Sections 4.1 and 4.2 for more.

Remark 1.1. One advantage of the characterization of coamenability in Theorem 4.10 is
that it immediately generalizes to LCQGs.

In this work, we establish some basic theory on the reduced idempotent states of
CQGs. In particular, as a simple consequence of Theorem 4.10, we obtain the following
(which is probably known to experts).

Corollary 4.13. Let G be a discrete quantum group. There is a one-to-one correspon-
dence between the amenable quantum subgroups of G and the central idempotent states
on Cr . yG/. The tracial central idempotent states on Cr . yG/ are in one-to-one correspon-
dence with the amenable normal quantum subgroups of G for which their quotients are
unimodular.

In light of the exposition in the first paragraph of this section, this work represents a
step towards understanding the reduced idempotent states of a CQG, which is a gap for
understanding the unique trace property.

Kalantar et al. also coined the notion of a relatively amenable coideal of a discrete
quantum group (DQG), and proved that relative amenability of a coideal of quotient type
`1.G=H/ is equivalent to amenability of H [22, Theorem 3.7]. So, in this case, we have
a connection between relative amenability and coamenability of coideals. In this work, we
coin the notion of an amenable coideal of a DQG. These notions of relative amenabil-
ity and amenability (see Section 2.2) are motivated by their equivalence with relative
amenability and amenability of a closed subgroup of a locally compact group, respec-
tively [7]. In the case of a discrete group G, amenability and relative amenability are
equivalent and have the following characterization.

Theorem 1.2 ([1,7,11,32]). Let G be a discrete group and H a subgroup. The following
are equivalent:

(1) H is amenable;

(2) `1.G=H/ is amenable;

(3) `1.G=H/ is relatively amenable;

(4) J 1.G;H/ D `1.G=H/? has a bounded right approximate identity (BRAI);
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(5) J 1.G;H/ has a BRAI in `10.G/ D ¹f 2 `
1.G/ W

R
G
f D 0º;

(6) J 1.G;H/ has a BRAI in `10.H/.

WhenG is a locally compact group, conditions (1), (2), (4), and (6) are equivalent, and
(2) and (5) are equivalent (cf. [7]). It is unknown if relative amenability and amenability
coincide for locally compact groups in general. We note, however, that the techniques are
trivialized in the discrete setting. In the DQG setting, where we replace subgroups with
right coideals, we have to work significantly harder to reach similar results. Both the fact
that quantum groups exist only as virtual objects and that coideals have no underlying
closed quantum subgroup (cf. [10]) each introduce barriers of their own. For the coideals
that are of quotient type, with Corollary 4.25 we have an analogue of Theorem 1.2 for
DQGs.

Essential to Caprace and Monod’s work on (relative) amenability [7] is the notion of
anH -invariant state on `1.G/. While an H-invariant state on `1.G/ is a coherent notion
(see Section 4.4), coideals in general are not necessarily quotients by quantum subgroups.
Every coideal N of a DQG, however, can be assigned to a group-like projection P such
that

N D zNP WD
®
x 2 `1.G/ W .1˝ P /�G.x/ D x ˝ P

¯
(see the exposition following Definition 2.2). Then, to get around this obstruction, we
develop a notion of a P -invariant state, where we say thatm 2 `1.G/� is P -left invariant
if either .fP / �m D f .P /m or .Pf / �m D f .P /m holds for every f 2 `1.G/.

Above, we are using the predual action of `1.G/ on `1.G/:

.xf /.y/ D f .yx/ and .f x/.y/ D f .xy/:

Then we prove the following.

Theorem 3.4. Let G be a DQG and zNP a right coideal with group-like projection P .
We have that zNP is relatively amenable if and only if there exists a P -left invariant state
`1.G/! C.

Given a group-like projection P , we demonstrate that the weak� closed right invariant
subspaces ®

x 2 `1.G/ W .1˝ P /�G.x/.1˝ P / D x ˝ P
¯
DWMP � zNP

are essential to amenability (see Section 3). The link to relative amenability of zNP is
observed with the following result.

Theorem 3.9. Let P be a group-like projection. We have thatMP is amenable if and only
if there exists a state m W `1.G/! C such that m.P / ¤ 0 and .PfP / � m D f .P /m
for all f 2 `1.G/.

With this analogue of an H -invariant state for coideals of DQGs, we obtain an ana-
logue of Theorem 1.2 for the subspaces MP and their associated closed left ideals

J 1.MP / WD .MP /? WD
®
f 2 `1.G/ W f jMP

D 0
¯
:
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Theorem 3.10. Assume that G is discrete and P is a group-like projection. The following
are equivalent:

(1) MP is amenable;

(2) J 1.MP / admits a BRAI;

(3) J 1.MP / admits a BRAI in ¹P º?.

Quantum group duality gives us a one-to-one correspondence between right coideals
of L1.G/ and right coideals of L1. yG/ via their codual coideals (see Section 4.2). In
particular, given an idempotent state ! and its compact quasi-subgroup N! � L1.G/,
we identify its codual coideal fN! � L1. yG/. For a locally compact group G, this duality
is the identification of the coideals L1.G=H/ and VN.H/ D L1. yH/.

In general, it is not that hard to show that coamenability of an LCQG G implies
amenability of its dual yG. It is a highly non-trivial result of Tomatsu [40] that a CQG
yG is coamenable only if the DQG G is amenable, generalizing the case of compact and
discrete Kac algebras due to Ruan [33], which generalizes Leptin’s theorem from the clas-
sical discrete setting. In the context of compact quasi-subgroups of quotient type and their
codual coideals, Kalantar et al. posed the following question.

Question 1.3 ([22]). Let G be a DQG. Let yH be a closed quantum subgroup of yG. Is it
true that L1. yG= yH/ is coamenable if and only if `1.H/ is relatively amenable?

This question extends to compact quasi-subgroups of CQGs in the following manner:
is it true thatN! �L1. yG/ is coamenable if and only if its codual coideal eNP! is relatively
amenable?

We make progress for the compact quasi-subgroup version of Question 1.3. More
specifically, we have the converse when we use amenability of the subspace MP instead
of relative amenability of zNP .

Theorem 4.16. Let G be a DQG and N! � L1. yG/ a compact quasi-subgroup with
P D � yG.!/. If N! is coamenable, then MP is amenable.

Our progress for the forwards direction is with Lemma 4.17, which is specialized to
the case where P is central. A consequence of the above theorem is a full generaliza-
tion of Caprace and Monod’s characterization of amenability and relative amenability for
quantum subgroups of DQGs (see Corollary 4.25). Recall that Kalantar et al. have proved
that amenability of a quantum subgroup H � G of a DQG G is equivalent to relative
amenability of `1.G=H/. In particular, we have established the following.

Corollary 4.18. Let G be a DQG and H � G a quantum subgroup. Then `1.G=H/ is
relatively amenable if and only if it is amenable.

The remainder of the paper is organized as follows: in Section 3, for a group-like
projection P we develop a notion of a P -invariant state and relate it to relative amenability
of zNP (Theorem 3.7). We achieve similar characterizations of both relative amenability
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and amenability of the subspaces of the form MP . With these characterizations in hand,
we are able to establish a version of Theorem 1.2 ((2),(4),(6)) (Theorem 3.10).

In Section 4, we shift gears towards CQGs and their right coideals, with special atten-
tion to their compact quasi-subgroups. We prove that a compact quasi-subgroup N! is
coamenable if and only if the associated idempotent state ! factors through the reduced
C �-algebra (Theorem 4.10). We then classify the central idempotent states on Cr . yG/
(Theorem 4.13). Finally, we prove an analogue of Theorem 1.2 for DQGs and their quan-
tum subgroups.

Remark 1.4. Kalantar et al. achieved an analogue of (some of) Theorem 1.2 ((1),(3))
DQGs in [22, Theorem 4.7]. In Section 4, among other things, we present an alternative
proof of this same result.

2. Preliminaries on coideals of DQGs

2.1. DQGs

The notion of a quantum group we will be using is the von Neumann algebraic one devel-
oped by Kustermans and Vaes [29]. An LCQG G is a quadruple .L1.G/; �G; hL; hR/

where L1.G/ is a von Neumann algebra;�G W L
1.G/! L1.G/ x̋L1.G/ is a normal

unital �-homomorphism satisfying .�G ˝ id/ ı�G D .id˝�G/ ı�G (coassociativity);
hL and hR are normal semifinite faithful weights on L1.G/ satisfying

hL.f ˝ id/
�
�G.x/

�
D f .1/hL.x/; f 2 L1.G/; x 2MhL .left invariance/;

hR.id˝ f /
�
�G.x/

�
D f .1/hR.x/; f 2 L1.G/; x 2MhR .right invariance/;

where MhL and MhR are the set of integrable elements of L1.G/ with respect to hL and
hR, respectively. We call�G the coproduct and hL and hR the left and right Haar weights,
respectively, of G. The predual L1.G/ WD L1.G/� is a Banach algebra with respect to
the product f � g WD .f ˝ g/ ı �G known as convolution. This naturally provides us
with left and right module actions on L1.G/, realized by the equations

f � x D .id˝ f /
�
�G.x/

�
and x � f D .f ˝ id/

�
�G.x/

�
:

Using hL, we can build a GNS Hilbert space L2.G/ in which L1.G/ is standardly
represented. There is a unitary WG 2 L

1.G/ x̋B.L2.G// such that

�G.x/ D W
�

G.1˝ x/WG:

The unitary WG is known as the left fundamental unitary of G, respectively. The left
regular representation is the representation

�G W L
1.G/! B

�
L2.G/

�
; f 7! .f ˝ id/WG:
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There is a dense involutive subalgebraL1#.G/�L
1.G/ that makes �GjL#.G/ a �-represen-

tation. We denote the von Neumann algebra L1. yG/ D �G.L
1.G//00. There exists an

LCQG yG D .L1. yG/;� yG;
chL;chR/, where� yG is implemented byW yG D†.WG/

�, where
† W a˝ b 7! b ˝ a is the flip map. Pontryagin duality holds that yyG D G.

A DQG is an LCQG G, where L1.G/ .D `1.G// is unital (cf. [34, 43]). We denote
the unit by "G , and it satisfies the counit property

."G ˝ id/ ı�G D id D .id˝ "G/ ı�G:

Equivalently, yG is a CQG, which is an LCQG, where chL DchR 2 L1. yG/ is a state, known
as the Haar state of yG. When G is discrete, the irreducible �-representations of L1. yG/,
are finite dimensional, where a �-representation on locally compact G is a representation
that restricts to a �-representation on L1#.G/. We denote a family of representatives of
irreducibles on L1. yG/ by Irr. yG/, and for each � 2 Irr. yG/ we let H� denote the corre-
sponding n� -dimensional Hilbert space (cf. Section 4.1). Then

L1.G/ D `1.G/ D `1 �
M

�2Irr. yG/

Mn�

as von Neumann algebras, and so we obtain the spatial decomposition

`1.G/ D `1 �
M

�2Irr. yG/

.Mn� /�:

Remark 2.1. The examples of DQGs where `1.G/ is commutative are the discrete
groups (cf. [37]), where if G is a discrete group, then G D .`1.G/;�G ; mL; mR/ where
mL D mR D hL D hR are the left and right Haar measures and �G.f /.s; t/ D f .st/.

The DQGs where `1.G/ is commutative are the duals of compact groups, where if
G is a compact group, then yG D .VN.G/; � yG ;

Oh/ where Oh is the Plancherel weight and
� yG.�G.s// D �G.s/˝ �G.s/.

2.2. Invariant subspaces, ideals, and quotients

For an LCQG G, we say that a subspace X � L1.G/ is right invariant if X � f �
L1.G/ for every f 2 `1.G/; i.e., it is a right L1.G/-submodule of L1.G/. We define
left invariance analogously on the left, and we say that X is two-sided if it is both left and
right L1.G/-invariant. From the bipolar theorem, we obtain a one-to-one correspondence
between weak� closed right L1.G/-modules of L1.G/ and norm closed left L1.G/-
modules of L1.G/ (i.e., closed left ideals): X � L1.G/ is right invariant if and only if

X? WD
®
f 2 L1.G/ W f .X/ D 0

¯
� L1.G/

is a left ideal. We obtain similar remarks if we replace left with right and vice versa, and
if we use two-sided instead. We will use the notation J 1.X/ D X?.
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Of special interest are the invariant subalgebras. IfN is a right invariant von Neumann
subalgebra of L1.G/, then we call N a right coideal. It is not hard to see that a von
Neumann subalgebraN �L1.G/ is right invariant if and only if�G.N /�L

1.G/ x̋N .
This makes �GjN a coaction of G on N so that right coideals are G-spaces that are
embedded in L1.G/ (see [26]).

In the discrete setting, the right coideals have a certain form.

Definition 2.2. A right group-like projection of G is a self-adjoint projectionP 2L1.G/
satisfying

.1˝ P /�G.P / D P ˝ P

and a left group-like projection is a self-adjoint projection satisfying

.P ˝ 1/�G.P / D P ˝ P:

It follows from [24, Proposition 1.5] and [24, Corollary 1.6] that every right coideal
of a DQG is of the form

zNP WD
®
x 2 `1.G/ W .1˝ P /�G.x/ D x ˝ P

¯
for some group-like projection P . Indeed, given a right coideal N � `1.G/, since yG is
compact, the Haar state is finite and [24, Proposition 1.5] and [24, Corollary 1.6] automat-
ically apply to the codual of N (generally, one must be careful with the details of these
claims as [24] is using the right regular representation whereas we are using the left reg-
ular representation. The distinctions that arise will be relevant in Section 4). It turns out
that RG.P /, where RG is the unitary antipode of G (see Section 4.1), is the orthogonal
projection onto

L2.
ezNP / � L2. yG/ Š `2.G/;

which is the Hilbert space generated by

ezNP D
®
x 2 L1. yG/ W Px D xP

¯
D L1. yG/ \ ¹P º0:

ThenRG.P / generates the left version of zNP from which we recover zNP using the unitary
antipode (see Remark 4.2). We say that the coideals ezNP and zNP are codual to one another
and ezNP is often referred to as the codual of zNP and vice versa.

We note that if zNP is a two-sided coideal, by which we mean is both left and right
`1.G/-invariant, then P is both a left and right invariant group-like projection, and more-
over, we have zNP D `1.H/, where yH is a (Woronowicz) closed quantum subgroup of yG
(cf. [30] for the claim and Section 4.2 for the definition of a (Woronowicz) closed quantum
subgroup).

We will be studying relative amenability and amenability of coideals of DQGs. The
notion of a relatively amenable coideal was first coined in [22].

Definition 2.3. Let G be an LCQG. A right coideal N � L1.G/ is relatively amenable
if there exists a unital completely positive (UCP) right L1.G/-module map L1.G/!N .
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Inspired by the above, we make the following definition.

Definition 2.4. Let G be an LCQG. A right coideal N � L1.G/ is amenable if there
exists a surjective UCP right L1.G/-module projection L1.G/! N .

We will also make use of the terms amenability and relative amenability in reference
to weak� closed right invariant subspaces of `1.G/ as well.

A notion related to relative amenability and amenability is the following, which we
will develop in Section 3.

Definition 2.5. Let P be a group-like projection. We say that m 2 `1.G/� is P -left
invariant if either .fP /�mD f .P /m or .Pf /�mD f .P /m holds for every f 2 `1.G/.

A certain subclass of right coideals are manufactured from closed quantum subgroups.
We outline their formulation here for DQGs.

Definition 2.6. Given DQGs G and H, we say that H is a open quantum subgroup of G
if there exists a normal unital surjective �-homomorphism

�H W `
1.G/! `1.H/

such that
.�H ˝ �H/ ı�G D �H ı �H:

Remark 2.7. There is much subtlety to the notion of a closed quantum subgroup in gen-
eral (cf. [10]). Open quantum subgroups are always closed, and the converse follows in the
discrete case (cf. [21]). In light of this, we will always refer to open quantum subgroups
of DQGs as simply quantum subgroups.

The quotient space G=H is defined as follows: we denote

lH D .id˝ �H/ ı�G

and set
`1.G=H/ D

®
x 2 `1.G/ W lH.x/ D x ˝ 1

¯
:

The space `1.G=H/ is a right coideal. Any right coideal of the form `1.G=H/ is called
a right coideal of quotient type. In this special case, we use the notation

J 1.G;H/ D J 1
�
`1.G=H/

�
:

If we let 1H be the central support of �H, then we obtain an injective �-homomorphism:

�H W `
1.H/! `1.G/; �H.x/ 7! 1Hx:

It turns out that 1H is the group-like projection that generates `1.G=H/; i.e., N1H D

`1.G=H/. Conversely, every central group-like projection in `1.G/ generates the quo-
tient of a quantum subgroup (cf. [21]).



On amenable and coamenable coideals 1137

2.3. Amenability of LCQGs

An LCQG G is said to be amenable if there exists a right invariant mean, i.e., a state
m 2 L1.G/� such that m.x � f / D f .1/m.x/ for all f 2 L1.G/ and x 2 L1.G/.
Amenability is equivalent to the existence of a left invariant mean and also the existence
of a mean that is both left and right invariant (cf. [12]).

An LCQG is said to be coamenable if L1.G/ admits a bounded approximate identity
(BAI). It was shown in [40] that a DQG G is amenable if and only if yG is coamenable.
For a locally compact G, it is known that coamenability of yG implies amenability of G in
general, however, the converse remains open.

2.4. Annihilator ideals

We introduce certain ideals and subspaces of the L1-algebra of a DQG which turn out to
be fundamental to amenability and relative amenability of the right coideals (and left and
two-sided coideals).

Remark 2.8. Before proceeding, we make a technical remark. We obtain an action of
L1.G/ on L1.G/� by taking the adjoint of the action of L1.G/ on L1.G/: we set

! � f .x/ WD !.f � x/

D !.id˝ f /
�
�G.x/

�
; f 2 L1.G/; ! 2 L1.G/�; x 2 L1.G/:

Given von Neumann algebras N and M , it is clear that the slice maps ' ˝ id W N x̋M !
M are defined for normal functionals ' 2 N�. While less clear, it is the case that slice
maps are still defined if we drop normality and additionally satisfy .' ˝ id/.id˝ ˆ/ D
ˆ.' ˝ id/ for any normal UCP map ˆ W M ! K to another von Neumann algebra K
(consult [12] or [31]). Thus we are justified in writing

! � f .x/ D .! ˝ f /
�
�G.x/

�
D f .x � !/

and similarly for actions on the left.

From now on, we will assume that G is discrete.
For a functional m 2 `1.G/� and x 2 `1.G/, we will use the notation

InvL.m/ D
®
f 2 `1.G/ W f �m D f .1/m

¯
and likewise for InvR.m/ but for normal functionals acting on the right of m. Then we set
Inv.m/ D InvL.m; x/ \ InvR.m; x/. We will denote

AnnL.m/ WD
®
f 2 `1.G/ W f �m D 0

¯
and by AnnR.m/ and Ann.m/ we mean the analogous thing.

Using our above notation, amenability is this: there exists a state m 2 `1.G/� such
that `1.G/ D InvL.m/. It is easily seen that amenability is equivalent to the existence of a
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state m 2 `1.G/� such that

`10.G/ WD
®
f 2 `1.G/ W f .1/ D 0

¯
D AnnL.m/:

We have that `10.G/ is an ideal of codimension one in `1.G/, which means, if there is an
invariant state m 2 `1.G/�, then

InvL.m/ D `1.G/ D `10.G/CC"G:

The generalization of this relationship is as follows.

Proposition 2.9. Assume that G is discrete. Let m 2 `1.G/� such that m.1/ ¤ 0. Then
AnnL.m/CC"G D InvL.m/.

Proof. First note that ker.f 7! f .1// \ AnnL.m/ D AnnL.m/. To see this, notice that
f �m D 0 implies

0 D f �m.1/ D f .1/m.1/

so f .1/ D 0 becausem.1/ ¤ 0. So, if f 2 AnnL.m/ and c 2 C, then .f C c"G/.1/ D c.
Then

.f C c"G/ �m D cm D
�
.f C c"G/.1/

�
m:

On the other hand, given f 2 InvL.m/, if f .1/ D 0, then f 2 AnnL.m/ is automatic,
and otherwise, .f � f .1/"G/ �m D 0. So f D .f � f .1/"G/C f .1/"G is the desired
decomposition.

There is a well-known correspondence between bounded linear right `1.G/-module
maps E! W `1.G/! `1.G/ and functionals ! 2 `1.G/� via the assignment ! D "G ı

E! , where
E!.x/ WD ! � x:

We will call ! right idempotent if !.! � x/ D !.x/ for all x 2 `1.G/. To put it another
way, ! is right idempotent if it is idempotent with respect to the left Arens product on
`1.G/� (see, for example, [19] for more on the left and right Arens products). There is
a right Arens product too, which is not generally equal to the left Arens product because
�.id ˝ �/ D �.� ˝ id/ does not necessarily hold for every �; � 2 `1.G/�. Note that
the left and right Arens products on Cu. yG/� coincide and are equal to the convolution
product, hence there is no need to distinguish between right and left idempotency in that
context.

Remark 2.10. (1) It is the case that ! is right idempotent exactly when E! is idem-
potent, and likewise for (complete) positivity and unitality. In particular, E! is a UCP
projection exactly when ! is a right idempotent state (see [19, 20] for an account of right
L1.G/-module maps in the setting of LCQGs). Clearly, ! � `1.G/ is a norm closed
right invariant subspace of `1.G/. Whenever ! is right idempotent state, E! is a UCP
projection.
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(2) We also point out that the easy general fact

.B CC"G/
?
D ker."G/ \ B

?;

where B � `1.G/ is a subset, combined with Proposition 2.9 tells us that

! � `1.G/
wk�
\ ker."G/ D InvL.!/? D ker."G/ \ AnnL.!/?

whenever !.1/ ¤ 0.

Of course, we can use approximation arguments to study the spaces InvL.m/ and
AnnL.m/.

Lemma 2.11. Letm 2L1.G/� be a state. There exists a net of states .!i /�L1.G/ such
that

f � !i � f .1/!i ! 0

for all f 2 InvL.m/ [ AnnL.m/.

Proof. The argument follows from the proof of the corresponding statement for left invari-
ant means with minor adjustments (see [13]). To elaborate, we obtain a net .!i / such that

f � !i � f .1/!i
wk
��! 0

from weak density of B1.L1.G//C in B1.L1.G/�/C, and we achieve norm convergence
from a convexity argument on the space

Q
f 2InvR.m/[AnnR.m/L

1.G/.

3. Amenability and relative amenability of coideals

We continue to assume that G is a DQG. Recall that the right coideals of `1.G/ are of
the form zNP for a group-like projection P . We will establish that the role P plays in
amenability and relative amenability of zNP as a right coideal.

The following useful lemma is probably well known to experts, but we provide a proof
for convenience.

Lemma 3.1. Assume that G is discrete and P is a group-like projection. Let m be a
functional such that m � `1.G/ � zNP . Then P.m � x/ D m.x/P for all x 2 `1.G/.

Proof. First, notice for x 2 zNP that

P
�
"G.x/

�
D "G.x/˝ P D ."G ˝ id/.1˝ P /

�
�G.x/

�
D 1˝ Px D Px:

We point out that the above fact appears explicitly in the literature (see the proof of [14,
Theorem 3.1], however, we should emphasize that the claim there does not involve the
counit in the general case). Now, for x 2 `1.G/, by assumption m � x 2 zNP , so

P.m � x/ D P"G.m � x/ D m.x/P:
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As mentioned in the introduction, in classical setting of a discrete group G, amenabil-
ity of a subgroupH �G is equivalent to relative amenability of `1.G=H/, which, in turn,
is equivalent to the existence of an H -invariant state on `1.G/. The following theorem
establishes an analogue of an H -invariant state for coideals of DQGs.

Remark 3.2. We denote the canonical predual action of `1.G/ on `1.G/ as follows:

xf .y/ D f .yx/; f x.y/ D f .xy/; x; y 2 `1.G/; f 2 `1.G/:

Recall the definition of a P -left invariant state in Definition 2.5.

Theorem 3.3. Let P be a group-like projection and ! 2 `1.G/�. Then ! � `1.G/� zNP
if and only if ! is P -left invariant.

Proof. Notice that, given x 2 `1.G/ and f 2 `1.G/,

.fP / � !.x/ D f
�
P.! � x/

�
so .fP / � ! D f .P /! for all f 2 `1.G/ if and only if

.id˝ !/.P ˝ 1/
�
�G.x/

�
D P.! � x/ D P!.x/: (1)

So, if we assume that `1.G/P � InvL.!/, then

.1˝ P /�G.! � x/ D .id˝ id˝ !/.1˝ P ˝ 1/.�G ˝ id/ ı�G.x/

D .id˝ id˝ !/.1˝ P ˝ 1/.id˝�G/ ı�G.x/

D .1˝ P /.id˝ !/
�
�G.x/

�
.using (3)/

D .x � !/˝ P:

Conversely,

! � `1.G/
wk�
\
®
x 2 `1.G/ W Px D 0

¯
D ! � `1.G/

wk�
\ ker "G D InvL.!/?;

where the first equality clearly follows from the more general fact that Px D "G.x/P , for
x 2 zNP , as pointed out in Lemma 3.1, and the second was pointed out in Remark 2.10.
We have that x 2 `1.G/ satisfies 0 D .fP /.x/ D f .Px/ for all f 2 `1.G/ if and only
if Px D 0. So �

`1.G/P
�?
D
®
x 2 `1.G/ W Px D 0

¯
:

Hence InvL.!/? � .`1.G/P /?, which implies that `1.G/P � InvL.!/.

Notice that the above claims follow through if we replace `1.G/P with P`1.G/.
That is .fP / � ! D f .P /! for all f 2 `1.G/ if and only if .Pf / � ! D f .P /! for all
f 2 `1.G/.

In particular, we have proved the following, where a P -left invariant state was defined
in Section 2.2.
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Theorem 3.4. Let G be a DQG and zNP a right coideal with group-like projection P .
We have that zNP is relatively amenable if and only if there exists a P -left invariant state
`1.G/! C.

Remark 3.5. (1) Take f; g 2 `1.G/. An easy calculation shows that

.fP / � .gP / D
�
.fP / � g

�
P;

which means that `1.G/P is a closed subalgebra of `1.G/.
(2) The algebra `1.G/P was studied in [15] for the dual of a compact group yG. In that

setting, `1. yG/P D A.G=K/, which is the Fourier algebra of the coset space G=K for a
closed subgroup K.

Given a group-like projection P , we will denote the weak� closed right invariant sub-
spaces

MP WD
®
x 2 `1.G/ W .1˝ P /�G.x/.1˝ P / D x ˝ P

¯
� zNP :

We will also use the notation
J 1.MP / WD .MP /?:

These subspaces allow us to establish a relationship between amenability and P -invariant
states on `1.G/. The key property is that x 7!PxP is a positive map so that states that are
conjugated by P remain positive. This will be indispensable when we relate amenability
of MP with BRAIs on J 1.MP /.

Remark 3.6. We have been unable to determine whether or not we generally have

MP D zNP :

If H is a quantum subgroup of G, since 1H is central, we have

`1.G=H/ D zN1H DM1H :

Theorem 3.7. Assume that G is discrete and 0 ¤ P is a group-like projection. Then MP

is amenable in G if and only if MP is relatively amenable via a state m 2 `1.G/� such
that m.P / ¤ 0 (and m � `1.G/ �MP ).

Proof. First assume that MP is amenable with right idempotent state m 2 `1.G/� such
thatMP Dm � `

1.G/. Assume for a contradiction thatm.P /D 0. Since P is group-like
and generates MP , P 2MP , and so m � P D P by assumption. But then

P D P.m � P / D m.P /P D 0 .Lemma 3.1/;

which contradicts our assumption.
Now we will prove the converse. We will first see that 1

m.P/
.PmP / is a right idempo-

tent state. Since x 7!PxP is positive,PmP is a positive functional and since 1
m.P/

.PmP/



B. Anderson-Sackaney 1142

is unital, it is a state. For right idempotency, take x 2 `1.G/. Then�
1

m.P /
.PmP /

���
1

m.P /
.PmP /

�
� x

�
D

1

m.P /
m

��
id˝

1

m.P /
m

�
.P ˝ P /�G.x/.P ˝ P /

�
D

1

m.P /2
m
�
.P ˝ 1/.id˝m/�G.PxP /.P ˝ 1/

�
D

1

m.P /2

Dm.Pm.PxP/P/ (Lemma 3.1)‚ …„ ƒ
m
�
P
�
m � .PxP /

�
P
�

D
1

m.P /
m.PxP /:

For the remainder of the proof, we will show that PmP satisfies .PmP / � `1.G/DMP ,
where we replace m with 1

m.P/
m, (so PmP.1/ D 1). Note that Lemma 3.1 still applies to

m after scaling. First, take x 2MP . Then

PmP � x D .id˝m/.1˝ P /�G.x/.1˝ P / D x

shows that MP � .PmP / � `
1.G/. On the other hand, for x 2 `1.G/,

.1˝ P /�G

�
.PmP / � x

�
.1˝ P /

D .id˝ id˝ PmP/.1˝ P ˝ 1/.�G ˝ id/ ı�G.x/.1˝ P ˝ 1/

D .id˝ id˝m/.1˝ P ˝ P /
�
.id˝�G/ ı�G.x/

�
.1˝ P ˝ P /

D .id˝ id˝m/.1˝ P ˝ 1/
�
.id˝�G/

�
.1˝ P /�G.x/.1˝ P /

��
.1˝ P ˝ 1/

D .1˝ P ˝ 1/.id˝ id˝m/.id˝�G/
�
.1˝ P /�G.x/.1˝ P /

�
.1˝ P ˝ 1/

D .id˝m˝ id/.1˝ P ˝ 1/
�
�G.x/˝ P

�
.Lemma 3.1/

D .PmP / � x ˝ P;

where we used group-likeness in the third equality. We conclude that

.PmP / � x 2MP :

Proposition 3.8. Let P be a group-like projection and ! 2 `1.G/�. Then ! � `1.G/ �
MP if and only if P`1.G/P � InvL.!/.

Proof. The proof is completely analogous to the proof of Theorem 3.3. Indeed, we have
P`1.G/P � InvL.!/ if and only if P.! � x/P D P!.x/. Then, if P`1.G/P � InvL.!/,
it is readily checked that .1˝ P /�G.! � x/.1˝ P /D ! � x ˝P for every x 2 `1.G/.
Conversely, one may check that

InvL.!/? D ! � `1.G/
wk�
\
®
x 2 `1.G/ W PxP D 0

¯
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as in the proof of Theorem 3.3 (indeed, it can be checked that PxP D P"G.x/ for every
x 2MP ). Then f .PxP / D 0 for every f 2 `1.G/ if and only if PxP D 0, so�

P`1.G/P
�?
D
®
x 2 `1.G/ W PxP D 0

¯
:

Hence InvL.!/? � ¹x 2 `1.G/ W PxP D 0º.

As a consequence, we obtain the following characterization of amenability of MP .

Theorem 3.9. Let G be a DQG and P a group-like projection. We have that MP is
amenable if and only if there exists a state m W `1.G/ ! C such that m.P / ¤ 0 and
.PfP / �m D f .P /m for all f 2 `1.G/.

Proof. This is a straightforward application of Proposition 3.8 and Theorem 3.7.

Now we characterize amenability of MP in terms of the existence of BRAIs for
J 1.MP / D .MP /?.

Theorem 3.10. Assume that G is discrete and P is a group-like projection. The following
are equivalent:

(1) MP is amenable;

(2) J 1.MP / admits a BRAI;

(3) J 1.MP / admits a BRAI in ¹P º?, by which we mean, there exists a bounded net
.ej / � ¹P º? such that f � ej � f ! 0 for all f 2 J 1.MP /.

Proof. (1))(2) It is a standard argument for a Banach algebra A that admits a BAI (in
particular, if it is unital) that a closed left ideal I admits a BRAI if and only if there exists a
right A-module projection A! I? (see [8] and [7, Theorem 7]). We apply this argument
to the left ideal J 1.MP / � `

1.G/.
(2))(3) follows because J 1.MP /�¹P º?. What remains is showing (3))(1). To this

end, let .ei / � ¹P º? be a BRAI in J 1.MP / and e a weak� cluster point. Set ! D "G � e.
Notice that for all f 2 J 1.MP /, f �! D f � "G � f � e D f � f D 0; i.e., AnnL.!/�
J 1.MP /, which implies that MP � ! � `

1.G/. Notice also that !.P / D 1 ¤ 0.
Using Theorem 3.9, we have

P`1.G/P � InvL.!/:

From here, we point out that P`1.G/P is spanned by states since the map f 7! PfP

preserves positive elements. So, take a state f 2 P`1.G/P . We can assume that ! is
Hermitian since the decomposition ! D <.!/ C i=.!/ is unique and we must have
<.!/.P / ¤ 0 or =.!/.P / ¤ 0. Now let ! D !C � !� be the Jordan decomposition,
uniquely determined so that k!Ck C k!�k D k!k (cf. [38, Theorem 4.2]). Then, since
f � !C is positive,

kf � !Ck D .f ˝ !C/
�
�G.1/

�
D !C.1/ D k!Ck
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and similarly kf � !�k D k!�k. So, by uniqueness, we must have f � !C D !C and
f � !� D !�. Without loss of generality, suppose that !C.P / ¤ 0, so we denote m D
!C, and what we have shown is P`1.G/P � InvL.m/. From here, Proposition 3.8 and
Theorem 3.9 give us amenability of MP .

4. Amenability and coamenability of coideals

4.1. Preliminaries on coideals of CQGs

For the moment, let us focus on a CQG yG, the dual of a DQG G. For this discussion, we
are required to discuss the C �-algebraic formulation of quantum groups in the universal
setting (cf. [28]). For simplicity, we denote the Haar state on yG by h. Given a representa-
tion � W L1. yG/! B.H�/ ŠMn� , there exists an operator U � 2 L1. yG/ x̋B.H�/ such
that

�.f / D .f ˝ id/U � ; f 2 L1. yG/:

A representation L1. yG/! B.H�/ is called a �-representation if U � is unitary. Repre-
sentations � and � are unitarily equivalent if there exists a unitary U 2 Mn� such that
.1˝ U �/U �.1˝ U/ D U �. We let Œ�� denote the equivalence class of representations
unitarily equivalent to � and we let Irr. yG/ be a family of representations with exactly one
representative chosen from each equivalence class of irreducible representations. Note
that every time we have a representation � , we are choosing a representative from the
equivalence class Œ��. In the instance where � 2 Irr. yG/, we write U � D Œu�i;j �i;j , so

�.f / D
�
f .u�i;j /

�
i;j

for f 2 L1. yG/

and some orthonormal basis (ONB) ¹e�i º of H� . We let x� W L1. yG/! B.Hx�/ denote the
representation where U x� D Œ.u�i;j /

�� D U � .
It turns out that every �-representation decomposes into a direct sum of irreducibles

and the left regular representation decomposes into a direct sum of elements from Irr. yG/,
each with multiplicity n� . Consequently, we have W yG D

L
�2Irr. yG/ U

� ˝ Inx� using the
identification L2. yG/ D

L
�2Irr. yG/ H� ˝Hx� .

For each � 2 Irr. yG/, there exists a unique positive, invertible matrix F� , satisfying
tr.F�/ D tr.F �1� / > 0 such that�

.U �/t
��1
D .1˝ F�/U �.1˝ F

�1
� /:

We will say that F� is the F -matrix associated with � . It was shown in [9] that a represen-
tative � and ONB may be chosen so that F� is diagonal. We will not make such a choice
here, however, because we will be choosing representatives and ONBs for other reasons.

The left and right Haar weights on `1.G/ satisfy the decompositions

hL D
M

�2Irr. yG/

tr.F�/ tr.F� �/ and khR D
M

�2Irr. yG/

tr.F�/ tr.F �1� �/ .see [39]/:
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Note that our convention for choice of F� follows [9]. Here tr.In� / D n� is the normal-
ization of tr. We denote the �-algebra

Pol. yG/ D span
®
u�i;j W 1 � i; j � n� ; � 2 Irr. yG/

¯
� L1. yG/:

It follows that L1. yG/ D Pol. yG/
wk�

from Pontryagin duality.
There exists a universalC�-norm k � ku on Pol.yG/. Let k � kr be the norm on B.L2.yG//.

We define the unital C �-algebras

Cu. yG/ D Pol. yG/
k�ku

and Cr . yG/ D Pol. yG/
k�kr

� L1. yG/:

The universal property gives us a C �-algebraic coproduct on Cu. yG/: a unital �-homomor-
phism

�uG W Cu.
yG/! Cu. yG/˝min Cu. yG/

satisfying coassociativity. Likewise,

�r
yG
D � yGjCr . yG/

gives us aC �-algebraic coproduct onCr . yG/. We denoteCu. yG/�DM u. yG/ andCr . yG/�D
M r . yG/, and are known as the universal and reduced measure algebras of yG, respectively.
Similar to the von Neumann algebraic case, the coproduct on Cu. yG/ induces a product on
M u. yG/:

� � �.a/ D .�˝ �/
�
�.a/

�
; a 2 Cu. yG/; �; � 2M

u. yG/;

making M u. yG/ a Banach algebra, where, above, Cu. yG/ and M u. yG/ can be either the
universal or reduced versions.

The universal property gives us a unital surjective �-homomorphism

� yG W Cu.
yG/! Cr . yG/

which intertwines the coproducts

�r
yG
ı � yG D .� yG ˝ � yG/ ı�

u
yG
:

The adjoint of this map induces a completely isometric �-homomorphism M r . yG/ !
M u. yG/ such thatM r . yG/ is realized as a weak� closed ideal inM u. yG/. A Hahn–Banach
argument shows that

L1. yG/
wk�

DM r . yG/;

so L1. yG/ is a closed ideal in M u. yG/ as well.
If we let

`1F .G/ D
M

�2Irr. yG/

.Mn� /�;
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then �G.`
1
F .G//D Pol. yG/. Indeed, let ı�i;j 2 .Mn� /� � `

1.G/ be the dual basis element,
i.e., the functional which satisfies ı�i;j .E

�
k;l
/D ıi;kıj;lı�;� , whereE�

k;l
2Mn� is the matrix

unit with respect to the ONB ¹e�i;j º of H� (has 1 in entry of the k-th row and l-column
and 0 in every other entry), with which we have the decomposition

Œu�i;j � D

n�X
i;jD1

u�i;j ˝E
�
i;j :

Then
�G.ı

�
i;j / D .ı

�
i;j ˝ id/WG D .ıi;j ˝ id/

M
�2Irr. yG/

†.U �/� D .u�j;i /
�:

The restriction of the coproduct is a unital �-homomorphism

� yG W Pol. yG/! Pol. yG/˝ Pol. yG/

that satisfies

� yG.u
�
i;j / D

n�X
tD1

u�i;t ˝ u
�
t;j :

The unital �-homomorphism

" yG W Pol. yG/! C; u�i;j 7! ıi;j

extends to a unital �-homomorphism "u
yG
W Cu. yG/! C which is the identity element in

M u. yG/. We have that yG is coamenable if and only if "u
yG
2 M r . yG/ if and only if G is

amenable (cf. [33]).
If for a 2 Pol. yG/ we let Oa 2 L1. yG/ denote the functional satisfying Oa.x/ D h.a�x/

for x 2 L1. yG/, then

� yG

�2Pol. yG/
�
D

M
�2Irr. yG/

Mn� DW c00.G/:

In fact, we have

E�i;j D

n�X
kD1

1

tr.F�/
.F�/i;k� yG.

bu�k;j /:

LetX �L1. yG/ be a weak� closed rightL1. yG/-module. It was established in [2] that
there exists a hull E D .E�/�2Irr. yG/, where each E� � H� is a subspace, such that

j.E/ � J 1.X/ � I.E/;

where
I.E/ D

®
f 2 L1. yG/ W �.f /.E�/ D 0; � 2 Irr. yG/

¯
and

j.E/ D I.E/ \
2Pol. yG/;
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where Oa.b/ D h.a�b/ for a; b 2 Pol. yG/. Then

L1. yE/ � X � j.E/?;

where L1. yE/ D Pol. yE/
wk�

, and

Pol. yE/ D ¹u��;� W � 2 E� ; � 2 H�º;

where
u��;� D .id˝ w�;�/U

� :

We will call a sequence of the form E a closed quantum subset of yG. It was shown in [2]
that j.E/ D I.E/ for every closed quantum subset E if and only if

f 2 L1. yG/ � u for every f 2 L1. yG/:

This property is known as property leftD1 of G. There are no known examples of DQGs
that do not satisfy property leftD1, even for discrete groups. It is not even known if there
are discrete groups without the approximation property but with property left D1 (for
example, it is unknown if SL3.Z/ has property left D1 (cf. [3])).

For an LCQG G, recall that the unitary antipode is the �-antiautomorphism RG W

L1.G/!L1.G/ defined by settingRG.x/D Jx
�J , where J WL2.G/!L2.G/ is the

modular conjugation for hL. For a CQG yG and � 2 Irr. yG/, the unitary antipode satisfies

.R yG ˝ id/U � D .1˝ F 1=2� /.U �/�.1˝ F �1=2� /: (2)

In general, for locally compact G, the unitary antipode satisfies

.RG ˝RG/ ı�G D †�G ıRG

and so it is straightforward to see that if N is a right coideal, then RG.N / is a left coideal.
For a DQG G, if E is a closed quantum subset, then

R yG

�
Pol. yE/

�
D span

®
u��;� W � 2 E� ; � 2 H� ; � 2 Irr. yG/

¯
is left L1. yG/-invariant.

For each � 2 Irr. yG/, let P� 2Mn� be the orthogonal projection onto E� � H� . We
will denote PE D

L
�2Irr. yG/ P� 2 `

1.G/. Now, `1.G/PE is a weak� closed right ideal
in `1.G/. Conversely, for any weak� closed right ideal I in `1.G/, there is an orthogonal
projection P D

L
�2Irr. yG/ P� 2 `

1.G/ such that I D `1.G/P . Then

E D .PH�/�2Irr. yG/ D .P�H�/�2Irr. yG/

is a closed quantum subset of yG. So, we have a one-to-one correspondence between closed
quantum subsets of yG, orthogonal projections in `1.G/, and weak� closed left ideals in
`1.G/. They may also be detected as follows (see the analogous result for coideals of
LCQGs [24, Proposition 1.5]).
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Proposition 4.1. The following hold:

(1) PE is the orthogonal projection onto L2.R yG.L
1. yE///;

(2) `1.G/.1 � PE / D � yG.j.E//
wk�

;

(3) �G.`1.G/PE /
wk�
D X�.E/ where X�.E/ D ¹R yG.x/

� W x 2 L1. yE/º;

(4) �G.PE`1.G//
wk�
D R yG.L

1. yE//.

Proof. (1) We refer the reader to [42, Section 2.1]. For each � 2 Irr. yG/ fix an ONB
¹e�i º so that F� is diagonal. It was established by [42, Proposition 2.1.2] that the Fourier
transform

F W L2. yG/! `2.G/; � yG.x/ 7! �G

�
� yG. Ox/

�
;

where yx.y/ D h.x�y/, is a unitary operator, and furthermore, the elements E�i;j are iden-
tified with the elements tr.F�/.F�/�1i;i u

�
i;j . With [42, Proposition 2.1.2], one obtains the

decomposition `2.G/ Š `2 �
L
�2Irr. yG/L

2.Mn� /.
Recall that

Mn� Š Cn� ˝min Rn� ; E�i;j 7! e�i ˝ e
�
j ;

where Cn� and Rn� are the column and row Hilbert spaces on H� , and each Rn� is
invariant with respect to the left regular representation of yG. The latter implies that

PE`
2.G/ D

M
�2Irr. yG/

PEH� :

So, if we let x� D
Pn�
i;j c

�
i;jE

�
i;j 2Mn� , then �G.x�/ 2 PE`

2.G/ if and only if

� D

n�X
jD1

c�i;j e
�
j 2 PEH� ;

which equivalently says that �2PE`2.G/ if and only if u�
�;�
2Pol. yE/ for arbitrary �2H� .

We deduce that PE`2.G/D L2.L1. yE// using the above identification between E�i;j and
tr.F�/.F�/�1i;i u

�
i;j .

(2) We established in [2] that for any � 2 Irr. yG/

�
�
j.E/

�
D
®
A 2Mn� W A.PEH�/ D 0

¯
DMn� .1 � PE /:

Then
� yG

�
j.E/

�
D c00.G/.1 � PE /

and the rest follows from weak� density of c00.G/ in `1.G/.
(3) For each � 2 Irr. yG/ choose an ONB so that PE is diagonal. So,

ı�i;jPE D

´
ı�i;j if Ei;j 2 PE`1.G/

0 otherwise
D

´
ı�i;j if e�i 2 PEH�

0 otherwise

and �G.ı
�
i;j / D .u

�
j;i /
�. So, �G.`

1
F .G/PE / D Pol. yE/� and the rest is clear.
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(4) This follows from a similar argument to Proposition 4.1 (3) and by using (4.1) (cf.
Section 4.1).

Remark 4.2. First note that if N is a right coideal, then N D L1. yE/. Indeed, it follows
from the work in [24] that the orthogonal projection P onto L2.R yG.N // is the associated
group-like projection for R yG.N /. Since P 2 `1.G/, it must be the case that P D PE ,
and then from Proposition 4.1 (3) and [24, Proposition 1.5] we deduce that R yG.N / D
R yG.L

1. yE// (note that in [24] the right regular representation is used but we are using
the left regular representation, and hence the corresponding results in [24] are on right
coideals whereas ours are on left coideals).

If L1. yE/ is a right coideal and zNP � `1.G/ is the codual, Proposition 4.1(1) tells us
that PE D RG.P /. Indeed, the orthogonal projection onto L2.R yG.L

1. yE/// is a group-
like projection that generates the left coideal RG. zNP / (see [24]).

This means that we should be able to glean information from L1. yE/ using the pro-
jection PE . For instance, the right coideals are in one-to-one correspondence with the
group-like projections.

Proposition 4.3 ([24, Proposition 1.5]). We have that L1. yE/ is a right coideal if and
only if PE is group-like.

Our next result is concerned about two-sidedness of invariant subspaces. It is some-
thing that is well known for coideals.

Definition 4.4. Let G and H be DQGs. We say that yH is a closed quantum subgroup of
yG if there exists a surjective unital �-homomorphism �H W Pol. yG/! Pol. yH/ satisfying

.�H ˝ �H/ ı�G D �H ı �H:

Equivalently, there is an analogous �-homomorphism �uH W Cu.
yG/! Cu. yH/.

Given DQGs G and H, where yH is a closed quantum subgroup of yG, we define the
quotient space

Pol. yG= yH/ D
®
a 2 Pol. yG/ W .id˝ �H/ ı�G.a/ D a˝ 1

¯
:

Then we set L1. yG= yH/ D Pol. yG= yH/
wk�

etc. The von Neumann algebra L1. yG= yH/
is a right coideal of L1. yG/. Similarly to the discrete case, we will use the notation
J 1. yG; yH/ D L1. yG= yH/?.

We point out a quantum analogue of the Herz restriction theorem (cf. [10]). Let G and
H be LCQGs. We say that H is a (Vaes) closed quantum subgroup of G if there exists a
normal unital injective �-homomorphism 
H W L

1. yH/! L1. yG/ such that

.
H ˝ 
H/ ı� yH D � yG ı 
H:

It turns out that the closed quantum subgroups of DQGs and CQGs are (Vaes) closed
quantum subgroups. It is clear from the definition that if H is a (Vaes) closed quantum
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subgroup of the LCQG G, then L1. yH/ is both a two-sided coideal of L1. yG/. In fact,
L1. yH/ is the codual of L1.G=H/.

Using the duality between L1.G/-submodules of L1.G/ and L1.G/, we see that
X is two-sided if and only if J 1.X/ is a two-sided ideal. If G is discrete and E is a
closed quantum subset and L1. yE/ is a right coideal, it is clear that L1. yE/ is two-sided
if and only if � yG.L

1. yE// � L1. yE/ x̋L1. yE/. The following is probably well known
for coideals.

Proposition 4.5. Let G be a DQG and E a closed quantum subset. We have that L1. yE/
is two-sided if and only if PE is central.

Proof. If PE is central, then we have PEH� D H� or ¹0º. Consequently, it follows by
definition of Pol. yE/ that if u�i;j 2 Pol. yE/ for any i; j , then u�i;j 2 Pol. yE/ for every i; j . It
is then clear that � yG.u

�
i;j / 2 Pol. yE/˝ Pol. yE/. So � yG.a/ 2 Pol. yE/˝ Pol. yE/ for every

a 2 Pol. yE/. By weak� density, we conclude that � yG.L
1. yE// � L1. yE/ x̋L1. yE/.

Conversely, if L1. yE/ is two-sided, using linear independence of the sets

¹u�i;j0 W 1 � i � n�º and ¹u�i0;j W 1 � j � n�º

for fixed i0 and j0, and the fact

� yG.u
�
i;j / D

n�X
tD1

u�i;t ˝ u
�
t;j 2 Pol. yE/˝ Pol. yE/;

it follows that if u�i;j2Pol. yE/, then u�i;j2Pol. yE/ for every i; j . ConsiderPD
L
�2Irr. yG/P�

where P� D In� if u�i;j 2 Pol. yE/ and 0 otherwise. Then

Pol. yE/ D
®
u��;� W �; � 2 PH� ; � 2 Irr. yG/

¯
:

4.2. Coamenable compact quasi-subgroups

From now on, we will focus our attention on the compact quasi-subgroups of L1. yG/ for
a DQG G. Our goal is to establish some basic properties of coamenable coideals. Given a
functional � 2M u. yG/, we let R� and L� be the adjoints of the maps

� 7! � � �; � 7! � � �; � 2 L1. yG/;

respectively.

Definition 4.6. A compact quasi-subgroup of a CQG yG is a right coideal of the form
R!.L

1. yG// for an idempotent state ! 2M u. yG/. We denote N! D R!.L1. yG//.

Recall that the fundamental unitary WG 2 L
1.G/ x̋L1. yG/ of an LCQG G admits

a “half-lifted” version W u
G 2 M.Cu.G/ ˝min Cr . yG// such that .�G ˝ id/.W u

G/ D WG

(see [28]). Then �G extends to a representation

�uG WM
u. yG/! L1. yG/;
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where �uG.�/D .�˝ id/W u
G and �uGjL1.G/D�G . We will abuse notation and write �G for

the extended version. Note that when G is discrete, every � 2 Irr. yG/ extends to M u. yG/
and satisfies �.�/ D Œ�.u�i;j /�i;j and � yG.�/ D

L
�2Irr. yG/ �.�/.

Let G be a DQG. The projection P D � yG.!/ is group-like, and we say that the right
coideals N! and zNP are codual coideals. We sometimes use the notation fN! D zNP and
ezNP D N! . In the particular case where yH is a closed quantum subgroup of yG, `1. yH/ D
DL1.G=H/.
Remark 4.7. Our terminology is not faithful to the literature. The codual of a right coideal
N of an LCQG G is typically defined to be the left coideal N 0 \ L1. yG/. For a discrete
G, it turns out that

zNP D RG

�
N 0! \ `

1.G/
�
.see [41, Lemma 2.6]/:

Using the formulas for ! on the matrix coefficients [2, Lemma 4.7] and the decom-
position of the left regular representation into irreducibles, it is straightforward checking
that we have

.R! ˝ id/W yG D W yG.1˝ P /:

See [27] for an account of compact quasi-subgroups at the level of LCQGs.
Given an idempotent state ! 2M u. yG/, we let

Ru! D .id˝ !/ ı�
u
yG
W Cu. yG/! Cu. yG/

denote the universal version and

Rr! D R! jCr . yG/
W Cr . yG/! Cr . yG/

denote the reduced version. It is likewise with Lu! and Lr! . It turns out that � yG ı R
u
! D

Rr! ı � yG .
We first recount what was established in [2] (see also [16, Section 2]). Let N! be a

compact quasi-subgroup of L1. yG/, so N! D R!.L1. yG// D L1.cE!/ for some idem-
potent state ! 2M u. yG/ and hull E! . We have that PE! D � yG.!/. Then

Pol. yE!/ D R!
�

Pol. yG/
�
:

Now, let

Cu. yE!/ D Pol. yE!/
k�ku

� Cu. yG/

and
Cr . yE!/ D � yG

�
Cu. yE!/

�
:

Note, then, that it follows that

Cr . yE!/ D R
r
!

�
Cr . yG/

�
and Cu. yE!/ D R

u
!

�
Cu. yG/

�
:

We will also set M r . yE!/ D Cr . yE!/
� and M u. yE!/ D Cu. yE!/

�.
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Definition 4.8. Let G be a DQG and N! a compact quasi-subgroup of yG. We say that
N! is coamenable if there exists a state "N 2M r . yE!/ such that

"N ı � yGjCu. yE!/ D "
u
yG
j
Cr . yE!/

:

Note that Cr .cE!/ ��� Cr .cE!/ for all � 2M r . yG/. Suppose thatN! is coamenable,
with associated state "N . A consequence of coamenability of N! is that

.�˝ "N /
�
� yG.a/

�
D �.a/

for all a 2 Cr .cE!/ and � 2M r . yG/, or

� � ."N ıR
r
!/ D .� � "N / ıR

r
! D u ıR

r
!

for all � 2M r . yG/.

Proposition 4.9. N! is coamenable if and only if there exists a state "rN 2 M
r . yG/ such

that "rN ı � yGjCu. yE!/ D "
u
yG
j
Cu. yE!/

.

Proof. Suppose thatN! is coamenable with state "N 2M r . yE!/ as in the definition. Then
"N ıR

r
! 2M

r . yG/ is a state, and we have

"N ıR
r
! ı � yGjCu. yE!/ D "N ı � yG ıR

u
! jCu. yE!/

D "u
yG
j
Cu. yE!/

:

Conversely, if "rN 2M
r . yG/ is a state such as in the hypothesis, then it is straightforward

to show that "rN jCr . yE!/ 2M
r . yE!/ is a state that makes N! coamenable.

As we are about to see, the counit associated with N! is actually !. Thus N! is
coamenable if and only if ! 2M r . yG/.

Theorem 4.10. Let G be a DQG and N! a compact quasi-subgroup of yG. We have that
N! is coamenable if and only if ! 2M r . yG/ D Cr . yG/�.

Proof. Suppose that ! 2M r . yG/. Using [2, Lemma 4.7], for each � 2 Irr. yG/, choose an
ONB ¹e�j º that diagonalizes �.!/. Then

Pol. yE!/ D span
®
u�i;j W 1 � i � n� ; �.!/e

�
j D e

�
j

¯
:

For u�i;j 2 Pol. yE!/, !.u�i;j / D ıi;j D "
u
yG
.u�i;j /. By density ! ı � yGjCu. yE!/ D "

u
yG
j
Cu. yE!/

.

Conversely, from Proposition 4.9, there exists a state "rN 2M
r . yG/ such that

"rN ı � yGjCu. yE!/ D "
u
yG
j
Cu. yE!/

:

In the proof of Proposition 4.9, we see that it can be arranged that there exists "N 2
M r. yE!/ such that "N ıRr!D"

r
N . In particular, we may arrange the property "rN ıR

r
!D"

r
N .

Thence

Rr! D .id˝ "
r
N / ı�

r
yG
ıRr! D

�
id˝ ."rN ıR

r
!/
�
ı�r

yG
D Rr"rN

:

By injectivity of the map � 7! Rr�, we deduce that ! D "rN 2M
r . yG/.
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Recall that a CQG is of Kac type if its Haar state is tracial. It is well known that a
tracial idempotent state on Cu. yG/ is automatically the Haar state on some Kac closed
quantum subgroup yH of yG. Indeed, if ! is tracial, then®

a 2 Cu. yG/ W !.a
�a/ D 0

¯
is two-sided, and hence ! D h yH ı �

u
yH

, where �u
yH
W Cu. yG/! Cu. yH/ is the morphism

implementing yH as a closed quantum subgroup of yG (see [36, Theorem 5]). Moreover,
h yH is tracial if and only if ! is. This, combined with Theorem 4.10, gives us the following.

Corollary 4.11. Let G be a DQG. The tracial idempotent states in M r . yG/ are in one-to-
one correspondence with the closed quantum subgroups of yG of Kac type with coamenable
quotient.

Recall that P D � yG.!/ D .! ˝ id/W u
yG

is the group-like projection generating the
codual of N! . Coamenability of N! means that we may weak� approximate ! 2M r . yG/
with states .ej / � L1. yG/. These states satisfy the property

f .ej ˝ id/W yG ! f .! ˝ id/W u
yG
D f .P /; f 2 `1.G/:

With these observations, we can establish coamenability of a compact quasi-subgroup in
terms of almost invariant vectors in `2.G/.

Corollary 4.12. IfN! is coamenable, then there exists a net of unit vectors .�j /�P`2.G/
such that for � 2 `2.G/,

kW yG.�j ˝ P�/ � �j ˝ P�k2 ! 0:

Proof. From Theorem 4.10, we have that ! 2 M r . yG/. Let .wj / � L1. yG/ be a net of
states weak� approximating !. For this proof, we will be forced to consider the left coideal
L!.L

1. yG//DR yG.N!/. By idempotency of !, .wj ıL!/�L1. yG/ is still a net of states
that weak� approximates !. Since L! ı L! D L! , we may assume that wj ı L! D wj .

The restriction wj jR yG.N!/ 2 .R yG.N!//� is a state, so, we can find a unit vector �j 2
L2.R yG.N!// such thatwj jR yG.N!/Dw�j jR yG.N!/. We want to show thatwj Dw�j jL1. yG/.

For x 2 L1. yG/,
wj .x/ D w�j

�
L!.x/

�
D
˝
L!.x/�j ; �j

˛
;

where � yG is the GNS map of the left Haar weight, using the equation

P� yG.x/ D � yG

�
L!.x/

�
(cf. left version of work in [27])I

for y 2 N! and � 2 L2.R yG.N!// we get

w� yG.y/;�
�
L!.x/

�
D
˝
L!.x/� yG.y/; �

˛
D
˝
� yG

�
L!.x/y

�
; �
˛

D
˝
� yG

�
L!.xy/

�
; �
˛
D
˝
Px� yG.y/; �

˛
D
˝
x� yG.y/; �

˛
;
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where we used the fact that L! is an R yG.N!/-bimodule map and that L2.R yG.N!// D
P`2.G/. Using density of � yG.R yG.N!// in L2.R yG.N!//, we get

wj .x/ D w�j .x/:

The rest of the proof is an adaptation of the case where ! D "u
yG

(cf. [5, Theorem 3.12]).
For � 2 `2.G/,

W yG.�j ˝ P�/ � �j ˝ P�

2 D 2kP�k2 � 2Re

˝
W yG.�j ˝ P�/; �j ˝ P�

˛
D 2kP�k2 � 2Re.w�j ˝ wP�/.W yG/

! 2kP�k2 � 2wP�.P / D 0:

As an application of our work on coamenable compact quasi-subgroups, we find a
characterization of the central idempotent states on Cr . yG/.

We say that a quantum subgroup H of G is normal if `1.G=H/ is a two-sided coideal.

Corollary 4.13. Let G be a DQG. There is a one-to-one correspondence between the
amenable quantum subgroups of G and the central idempotent states on Cr . yG/. The
tracial central idempotent states on Cr . yG/ are in one-to-one correspondence with the
amenable normal quantum subgroups of G for which their quotients are unimodular.

Proof. It was shown by [21, Theorem 4.3] that there is a one-to-one correspondence
between central group-like projections in `1.G/ and quantum subgroups of G. Then
the extension of � yG to M u. yG/ gives us a one-to-one correspondence between central
group-like projections in `1.G/ and idempotent states on Cu. yG/ [14, Theorem 4.3]. Let
H be a quantum subgroup of G and 1H the central group-like projection that generates
`1.G=H/. Let 1H D � yG.!/ for some central idempotent state ! W Cu. yG/! C.

It is readily seen that the definition of coamenability of N! D L1. yH/ is equivalent
to coamenability of yH. Indeed, let EH be the quantum subset for the coideal L1. yH/ D
L1.bEH/. Then

Cr .bEH/ D R
r
!

�
Cr . yG/

�
D Cr . yH/

and similarly Pol. yH/ D Pol.bEH/. Also,

"u
yG
jPol. yH/ D " yH

and so L1. yH/ is coamenable if and only if " yH extends continuously to Cr . yH/. Then,
using Theorem 4.10, we find that yH is coamenable if and only if ! 2M r . yG/.

Recall that a DQG G is unimodular if and only if the Haar state of yG is tracial. The
second claim follows from the duality between normal quantum subgroups of G and nor-
mal quantum subgroups of yG (see [10]). Indeed, H is normal if and only if 1G=H is a
closed quantum subgroup of yG.

Suppose that 1H D � yG.!bG=H/, where !bG=H D hbG=H ı �bG=H is the Haar state on
1G=H. It is easy to see that !bG=H is tracial whenever hbG=H is tracial.
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Conversely, if 1H D � yG.!/ and ! is tracial, then ! must be of Haar type because then®
a 2 Cu. yG/ W !.a

�a/ D 0
¯

is a two-sided ideal (see [36, Theorem 5]). It follows that yH is a quotient of yG, and hence
! D !bG=H is the tracial Haar state on 1G=H (see [10] for more).

Remark 4.14. It is clear that if ! 2 M r . yG/, then "u
yH
jPol. yH/ extends to Cr . yH/ since

!jPol. yH/ D "u
yH
jPol. yH/. The converse, however, is unclear without Theorem 4.10. If yH is

coamenable, then " yH 2M
r . yH/ and !jPol. yH/D " yHjPol. yH/, but we do not immediately have

that !jPol. yG/ extends to M r . yG/.

4.3. Duality of amenability and coamenability

We will fix an idempotent state ! 2M u. yG/ (and hence a compact quasi-subgroup N! �
L1. yG/ and its hullE!). We set P D � yG.!/. We require a certain lemma before proceed-
ing.

Set B! D R! ı L! , which, from coassociativity, is a UCP projection (but possibly
without L1. yG/-module properties). We will denote the subspace

Pol. yE!/ \R yG
�

Pol. yE!/
�
D PolB. yE!/ D

®
u��;� W �; � 2 PH� ; � 2 Irr. yG/

¯
D B!

�
Pol. yG/

�
:

So,

PolB. yE!/
wk�

D N! \R yG.N!/ D B!
�
L1. yG/

�
:

Set C uB . yE!/ D PolB. yE!/
k�ku

, C rB. yE!/ D � yG.C
u
B .
yE!//, and M r

B.
cE!/ D C rB.

yE!/
�. A

similar proof to Proposition 4.1 will show that �G.P `1.G/P /
wk�
D B!.L

1. yG//.

Lemma 4.15. If there exists a net of unit vectors .�j / � `2.G/ such that

k�G.PfP /�j � f .P /�j k2 ! 0; f 2 `1.G/; (3)

then N! is coamenable.

Proof. The proof follows from a similar statement in the proof that amenability of G
implies coamenability of yG (cf. [5, Theorem 3.15]). Consider

"P W P`
1.G/P ! C; f 7! f .1/:

Then (4.15) tells us that jf .P /j � k�G.PfP /k for every f 2 `1.G/, so " zNP extends to a
functional f"P 2M r

B.
yE!/. For each � 2 Irr. yG/, using [2, Lemma 4.7], we can choose an

ONB ¹e�j º of H� that diagonalizes �.!/. Then

Pol. yE!/ D span
®
u�i;j W 1 � i � n� ; �.!/e

�
j D e

�
j

¯
:
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Then, since ! ı R yG D ! [36, Proposition 4], we have ! ı R yG.u
�
i;j / D ıi;j if u�i;j 2

R yG.Pol. yE!// and zero otherwise. So, for u�i;j 2 Pol. yG/,

f"P ı B!.u�i;j / D .! ˝f"P ˝ !/� n�X
t;sD1

u�i;t ˝ u
�
t;s ˝ u

�
s;j

�
D !.u�i;i /!.u

�
j;j /f"P .u�i;j /

D !.u�i;i /!.u
�
j;j /ı

�
i;j .P /

D !.u�i;j /:

By density of Pol. yG/ in Cr . yG/, we deduce that ! D f"P ı B! 2 M r . yG/ and we apply
Theorem 4.10.

The following results illustrate how we can connect relative amenability and coa-
menability of coideals via Pontryagin duality. In both proofs, we use an adaptation of the
proof that G is amenable if and only if yG is coamenable (due to [40] but we follow [5]).

Theorem 4.16. Let G be a DQG and N! � L1. yG/ a compact quasi-subgroup with
P D � yG.!/. If N! is coamenable, then MP is amenable.

Proof. Assume that N! is coamenable. Using Lemma 4.12, obtain a net of unit vectors
.�j / � P`

2.G/ such that 

W yG.�j ˝ P�/ � �j ˝ P�

2 ! 0:

Since W yG D †W
�

G†, we have

WG.P �˝ �j / � .P �˝ �j /



2
! 0:

So, for w�;� D f 2 `1.G/ and x 2 `1.G/,ˇ̌
Pw�;�P � w�j .x/ � w�;� .P /w�j .x/

ˇ̌
�
ˇ̌˝
.1˝ x/

�
WG.P �˝ �j / � .P �˝ �j /

�
; WG.P � ˝ �j /

˛ˇ̌
C
ˇ̌˝
.1˝ x/P�˝ �j ; WG.P � ˝ �j / � P� ˝ �j

˛ˇ̌
D
ˇ̌˝
.1˝ x/

�
WG.P �˝ �j / � .P �˝ �j /

�
; WG.P � ˝ �j /

˛ˇ̌
C
ˇ̌˝
.1˝ x/P�˝ �j ; WG.P � ˝ �j / � P� ˝ �j

˛ˇ̌
� kxkkP�k



WG.P �˝ �j / � P�˝ �j



2
C kxkkP�k



WG.P � ˝ �j / � P� ˝ �j



2

! 0:

If we let m be a weak� cluster point of the net .w�j j`1.G//, then it is straightforward
to show that m is a state satisfying .PfP / � m D f .P /m for all f 2 `1.G/. Finally,
since .�j / � P`2.G/, w�j .P / D 1 for all j , so m.P / D 1. Using Proposition 3.8 and
Theorem 3.9, we deduce that MP is amenable.
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It follows from the work of [21] that the central group-like projections in `1.G/ are
in one-to-one correspondence with the quantum subgroups of G, which are in one-to-one
correspondence with the central idempotent states in Cu. yG/�. Here, we then have that
zNP D `

1.G=H/, where H is a quantum subgroup of G andN! D L1. yH/ (see the proof
of Corollary 4.13 for a full justification).

Lemma 4.17. Let G be a DQG and N! � L1. yG/ a compact quasi-subgroup such that
! is central. Denote P D � yG.!/. If zNP is relatively amenable, then N! is coamenable.

Proof. The proof follows with very few changes to the proof in [4]. We give a sketch
for the benefit of the reader nonetheless. Let m W `1.G/! C be a P -left invariant state.
Using Lemma 2.11 and that `1.G/ is in standard form, we can find a net of unit vectors
.�˛/ � `

2.G/ such that .w�˛ j`1.G// weak� approximates m, so that we have

Pf � w�˛ � f .P /w�˛

1 ! 0; f 2 `1.G/:

Note that since P is central, we either have P� D In� or P� D 0. When P� D 0,

�G.P�f�P�/�˛ � f�.P�/�˛



2
D 0

for every f� 2 .Mn� /�.
Assume that P� D 1n� . Here the proof follows exactly as in [4], so we only give a

sketch. Define the functionals �˛; �˛ 2 .Mn� .`
1.G///� by setting

�˛.x/ D .tr˝w�˛ /.x/ D .tr˝w�˛ /.x/; x D Œxm;n� 2Mn�

�
`1.G/

�
and

�˛.x/ D

n�X
n;m

ı�m;n � w�˛ .xm;n/; x D Œxm;n� 2Mn�

�
`1.G/

�
:

As in [4], we find that �˛ and �˛ are positive functionals, and after some straightforward
(but tedious) computations,

.F 1=2� ˝ 1/�˛.F

1=2
� ˝ 1/ � .F 1=2� ˝ 1/�˛.F

1=2
� ˝ 1/




.Mn� .`

1.G///�
! 0;

where F� is the F -matrix associated with � . It was shown in [4] that

F 1=2� ˝ �˛ 2 L
2.Mn� /˝2 `

2.G/

and
.F 1=2� ˝ 1/

�
�G.ı

�
k;l /�˛

�
l;k
2 L2.Mn� /˝2 `

2.G/

lie in the positive cone of L2.MMn�
/˝2 `

2.G/ and that

w
F
1=2
� ˝�˛

D .F 1=2� ˝ 1/�˛.F
1=2
� ˝ 1/

and
w
.F

1=2
� ˝1/Œ�G.ı

�
k;l
/�˛ �l;k

D .F 1=2� ˝ 1/�˛.F
1=2
� ˝ 1/:
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Using the Powers–Størmer inequality (cf. [18]), we have

.F 1=2� ˝ 1/
�
�.ı�k;l /�˛

�
l;k
� F 1=2� ˝ �˛




L2.Mn� /˝2`

2.G/
! 0:

Thus we deduce the limit

��.ı�k;l /�˛�l;k � 1n� ˝ �˛

L2.Mn� /˝2`
2.G/
! 0:

Then, for
P
˛i;j ı

�
i;j D f� 2 .Mn� /� � `

1.G/,

�G.1n�f�1n� /�˛ � f�.1n� /�˛



2
D


.f t� ˝ id/

��
�G.ı

�
k;l /�˛

�
l;k
� 1n� ˝ �˛

�


2
! 0;

where f t� D
P
˛l;kı

�
k;l

.
Density of

L
�2Irr. yG/Mn� in `1.G/ tells us that k�G.PfP /�˛ � f .P /�˛k2! 0 for

all f 2 `1.G/. Then Lemma 4.15 tells us that N! is coamenable.

We showed in the proof of Lemma 4.17 that, if zNP D MP , then coamenability of
N! implies amenability of zNP . This occurs in the particular case where P is central, so
that `1.G=H/ D zNP for some quantum subgroup H � G. Therefore, Lemma 4.17 and
Theorem 4.16 give us the following.

Corollary 4.18. Let G be a DQG and H � G a quantum subgroup. Then `1.G=H/ is
relatively amenable if and only if it is amenable.

Remark 4.19. (1) Let G be a DQG and H a quantum subgroup. While Kalantar, Kasprzak,
Skalski, and Vergnioux [22] first achieved a characterization of amenability of H with rel-
ative amenability of `1.G=H/, they did not provide any results on the amenability of
coideals. In particular, Corollary 4.18 is new.

(2) Let us maintain the same notation as in Lemma 4.17 and the paragraph above it.
Since P is central, MP D zNP D `1.G=H/. Using the definition of coamenability of
N! D L

1. yH/, it is not too difficult to prove that coamenability of L1. yH/ as a coideal
is equivalent to coamenability of yH as a CQG (see the proof of Corollary 4.13). Thus we
have given a proof that `1.G=H/ is relatively amenable if and only if yH is coamenable
using the techniques of Blanchard and Vaes [4] for Tomatsu’s theorem [40], and our work
on coamenable compact quasi-subgroups in Section 4.2. Another application of Tomatsu’s
theorem gives us that `1.G=H/ is relatively amenable if and only if H is amenable.
Thus, we have found a different way to obtain [22, Theorem 3.7]. In their work, they use
the natural action of H on `1.G/ and achieve their result by working with amenability
of H. In our work, we use the “dual side” of amenability, and work with coamenability
of yH instead. In Section 4.4, we expand on this equivalence of relative amenability of
`1.G=H/ with amenability of H (see also Remark 4.26).

4.4. Amenability of quantum subgroups

Given a DQG G and quantum subgroup H, we will show that amenability and rela-
tive amenability of `1.G=H/ characterizes amenability of H. Since the group-like pro-
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jection 1H 2 `
1.G/ associated with `1.G=H/ is central (cf. [21]), we point out that

`1.G=H/ D N1H DM1H .
We denote the natural bimodule action of `1.H/ on `1.G/ as follows:

' �H f D .'˝ f /lHD .' ı �H/� f; f �H 'D f � .' ı �H/; '2`1.H/; f 2`1.G/;

where �H and lH are defined in Section 2.

Definition 4.20. We will say that m 2 `1.G/� is H-invariant if

'.�H ˝m/ ı�G D ' �H m D '.1/m; ' 2 `1.H/:

We can immediately characterize the H-invariant functionals as those that the annihi-
late the left ideals J 1.G;H/ using our preceding work.

Lemma 4.21. A non-zero functional � 2 `1.G/� is H-invariant if and only if f ��D 0
for all f 2 J 1.G;H/.

Proof. We first claim that
�H

�
`1.G=H/

�
D C: (4)

Indeed, if x 2 `1.G=H/, then

�H

�
�H.x/

�
D .�H ˝ �H/

�
�G.x/

�
D �H.x/˝ 1;

which means that �H.x/ 2 `
1.H=H/ D C.

Now, to proceed with the proof, take f 2 J 1.G;H/. Then

f � �.x/ D f ˝ �
�
�G.x/

�
D f

�
E�.x/

�
D 0

since E�.x/ 2 `1.G=H/ D J 1.G;H/?.
Conversely, because

f
�
E�.x/

�
D f � �.x/ D 0

for all f 2 J 1.G;H/, it follows that

E�.x/ 2 `
1.G=H/ D J 1.G;H/?:

So, if we take ' 2 `1.H/ and x 2 `1.G/, then

' �H �.x/ D .' ı �H/
�
E�.x/

�
D '.1/

2C‚ …„ ƒ
�H

�
E�.x/

�
.using (4.4)/

D '.1/�H

�
E�.x/

�
D '.1/"G

�
E�.x/

�
D '.1/�

�
�H.x/

�
:

Recall that 1H is the group-like projection that generates `1.G=H/. An immediate
consequence of Theorem 3.3 and Lemma 4.21 is the following.

Corollary 4.22. A functional m 2 `1.G/� is H-invariant if and only if it is left 1H-
invariant.
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Remark 4.23. Kalantar, Kasprzak, Skalski, and Vergnioux [22] defined relative amenabil-
ity of a quantum subgroup H of a DQG G. They said that H is relatively amenable if there
exists an H-invariant state on `1.G/. They showed that relative amenability of H is equiv-
alent to amenability of H in [22, Theorem 3.7]. Corollary 4.22 establishes the connection
between relative amenability of H and the existence of 1H-left invariant states on `1.G/.

As discussed in Remark 4.19, with Theorems 4.17 and 4.16, we have a proof of the
following:

`1.G=H/ is relatively amenable ” `1.G=H/ is amenable

” yH is coamenable

” H is amenable .Tomatsu’s theorem/:

With Corollary 4.22 and Theorem 3.4, we deduce the following, which we note was
proved in [22].

Corollary 4.24. Let G be a DQG and H a quantum subgroup. Then H is amenable if and
only if there exists an H-invariant state on `1.G/.

Combining the work of Sections 4 and 3, we are able to achieve the following.

Corollary 4.25. Let G be a DQG and H a quantum subgroup. The following are equiva-
lent:

(1) H is amenable;

(2) `1.G=H/ is amenable;

(3) `1.G=H/ is relatively amenable;

(4) J 1.G;H/ has a BRAI;

(5) J 1.G;H/ has a BRAI in `10.G/ WD ¹f 2 `
1.G/ W f .1/ D 0º;

(6) J 1.G;H/ has a BRAI in `10.H/.

Proof. ((1),(2),(3)) This is due to Lemma 4.17, Theorem 4.16, and Corollary 4.18
(see the paragraph above the statement of this corollary).

((1))(4)) This follows from Theorem 3.10 after noting that `1.G=H/ D M1H and
J 1.G;H/ D J 1.M1H/ because 1H is central.

((4))(6)) is clear.
((6))(5)) Since �H is unital, we deduce that `10.H/ ı �H � `

1
0.G/. Then, if .ej / �

`10.H/ is a BRAI for J 1.G;H/, it is clear that .ej ı �H/� `
1
0.G/ is a BRAI for J 1.G;H/.

((5))(3)) Let .ej / � `10.G/ be a BRAI for J 1.G;H/, with weak� cluster point � 2
`1.G/�. Then f � ."G � �/ D 0 for every f 2 J 1.G;H/, and so an application of
Proposition 4.21 tells us that ! D "G �� is a non-zero H-invariant functional on `1.G/.
We will manufacture an H-invariant state from !. Since the decomposition ! D <.!/C
i=.!/ is unique, we can assume that ! is Hermitian. Also, since !.1/ D 1, <.!/.1/ D 1.
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Now, let ! D !C �!1 be the Jordan decomposition, uniquely determined so that k!CkC
k!�k D k!k (cf. [38, Theorem 4.2]). Let ' 2 `1.H/ be a state. Since ' �H !C is positive,

k' �H !Ck D .' ı �H/ � !C.1/ D !C.1/ D 1

and similarly k' �H !�k D k!�k. So, by uniqueness, we must have ' �H !C D !C.
Therefore, !C is an H-invariant state. From Corollary 4.24 and Theorem 3.4, we deduce
that `1.G=H/ is relatively amenable.

Remark 4.26. We must point out that Kalantar, Kasprzak, Skalski, and Vergnioux [22]
achieved Corollary 4.25 (1),(3). To obtain their result, they build an injective right `1.G/-
module map `1.H/ ! `1.G/, generalizing how one builds such a map `1.H/ !
`1.G/ for a discrete groupG and subgroupH , using a set of representatives for the coset
space G=H . They then used this map to establish a one-to-one correspondence between
H-invariant states on `1.G/ and right `1.G/-module maps `1.G/! `1.G=H/.

In our proof, we use the correspondence between 1H-invariant states on `1.G/ and
right `1.G/-module maps `1.G/ ! `1.G=H/ established in Section 3 for coideals.
Then we work on the “dual side” of G. We use Blanchard and Vaes’ techniques in [4] to
prove that relative amenability of `1.G=H/ is equivalent to coamenability of yH as well
as amenability of `1.G=H/.
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