J. Noncommut. Geom. 18 (2024), 1041-1079 © 2024 European Mathematical Society
DOI 10.4171/INCG/547 Published by EMS Press
This work is licensed under a CC BY 4.0 license

The 3-cyclic quantum Weyl algebras, their prime spectra
and a classification of simple modules (¢ is not a root
of unity)

Volodymyr V. Bavula

Abstract. The 3-cyclic quantum Weyl algebra A = A(x, B, y:¢?), where a, B, v, ¢% € K (a ground
field), is a quadratic Noetherian domain of Gelfand—Kirillov dimension 3 that is generated by three
subalgebras each of them is either a quantum plane or the quantum Weyl algebra. For the algebras A,
their prime, completely prime, primitive and maximal spectra are described together with contain-
ments of prime ideals (the Zariski—Jacobson topology on the spectrum) and simple A-modules are
classified when g2 is not a root of unity. For each prime ideal, an explicit set of ideal generators is
given. The centre Z(A) of A is K[Q2] where €2 is a cubic element. A semisimplicity criterion for
the category of finite dimensional A-modules is given. Criteria are presented for all ideals of the
algebra A to commute and for each ideal of A to be a unique product of primes (up to order).

1. Introduction

In the paper, K is a field, K* = K \ {0}, N ={0,1,2,...}, Ny = {1,2,...} and module
means a left module.

The 3-cyclic quantum Weyl algebra A(«, 8, ).

Definition. For «, 8,y € K, we define the 3-cyclic quantum Weyl algebra A = A(a, B, y)
as an algebra generated by x, y and z subject to the defining relations

xy =q’yx +a, )
Xz = q_zzx + B, )
yz =q*zy +y. 3)

The family of cyclic quantum Weyl algebras appeared naturally when we tried to clas-
sify Harish-Chandra modules over the quantized Lorentz algebra [11]. The constant g2
rather than ¢ is used in the defining relations of the algebra A in order that the results of
this paper can be applied without change in [11]. The algebras A belong to the class of
bi-quadratic algebras on 3 generators.
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The bi-quadratic algebras on 3 generators, [10]. Let K be a field and A = K[x1, X2, X3;
0. A, B] be a bi-quadratic algebra where Q = (g1, ¢2.93) € K>3,

a b ¢
A=la B vy
A uov

and B = (b1, b,, b3) € K. So, the algebra A is an algebra that is generated over the field
K by the elements x1, x» and x3 subject to the defining relations

X2X1 — ¢1X1X2 = axy + bxy + cx3 + by,
X3X1 —¢2X1X3 = ax1 + pxz2 + yx3 + by,
X3X2 — q3X2X3 = AXy + uxz + vx3 + b3.
An explicit description of all the bi-quadratic algebras on 3 generators is obtained
in [10]. There are several dozens of classes.
Examples of bi-quadratic algebras on 3 generators.
(1) The universal enveloping algebra of any 3-dimensional Lie algebra.
(2) The 3-dimensional quantum space Agl,qz,qs = K[x1,x2,x3:0,A =0,B =0].

(3) The algebra Ué (so3) is generated over the field K by elements Iy, I and I3
subject to the defining relations

qélllz—q_%lzll = I, 6]%1213—61_%13]2=11, (]%1311 —(1_%]113 =1,

where ¢ € K \ {0, £1}, [18,20].

(4) The Askey—Wilson algebras AW (3) introduced by A. Zhedanov, [21]. The algebra
AW (3) is generated by three elements Ky, K; and K, subject to the defining
relations

(Ko, K1]w = K>,
(K2, Kolw = BKo + C1K1 + Dy,
[K1, K2]w = BK1 + CoKo + Dy,

where B, Cy, Cy, Do, Dy € K, [L,M]y := wLM —w "ML and w € K*.

For a particular choice of the parameters «, 8 and y, Ito, Terwilliger and Weng [19]
showed that the algebra U, (sl,) is the localization of the 3-cyclic quantum Weyl algebra
at the powers of x.

The algebra A = K[x][y; 01, 81][z; 02, 82] is an iterated Ore extension. Therefore, the
algebra A is a Noetherian domain of Gelfand—Kirillov dimension 3. The associated graded
algebra gr A with respect to the standard filtration associated with the canonical generators
of the algebra A is the 3-dimensional quantum affine space, i.e.,

grA(a, B,y) ~ A(0,0,0).
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Cyclic permutation symmetry and the rank of A(«, 8, y). Notice that cyclicly permut-
ing the canonical generators x, y and z of the algebra 4 (i.e., x = y — z — x) we obtain
the 3-cyclic quantum Weyl algebra but for a different choice of the defining parameters.
In more detail, let A(x, y,z;a, B,y) = A(a, B,y); then

Ay, zia, B y) = A(z,x,y:¢*B.q 2y, @).

So, we say that the class of 3-cyclic quantum Weyl algebras admits the cyclic permutation
symmetry. The rank rk(A) of the algebra A(w, B, y) is the number of nonzero parameters
in the set {«, B, y}. The rank of the algebra is invariant under the cyclic permutation
symmetry. The cyclic permutation symmetry does not change the algebra but the way it
is parametrized. So, in order to study the algebras A(«, 8, y) it suffices to consider four
cases where rk(A4) = 0, 1,2 and 3. Namely, A(0,0,0), A(«,0,0), A(«, 8,0) and A(x, B, y)
where «, 8,y € K*.

Isomorphism criterion for the algebras A(«, B, ). Theorem 1.1 is a criterion for two
algebras A(w, B,y) and A(a’, B/, y’) to be isomorphic.

Theorem 1.1. Suppose the field K is not necessarily algebraically closed but is closed
under taking square roots ( VK C K) and q? is not a root of unity. Then two 3-cyclic
quantum Weyl algebras are isomorphic iff they have the same rank.

The aim of the paper. The aim of the paper is to give explicit descriptions of prime,
completely prime, primitive and maximal ideals, to classify simple modules and ideals of
the algebra A = A(«, B,y) when g2 is not a root of unity, and to obtain corollaries of the
classification results. In [12], the root of unity case is considered.

The class of algebras A(«, B, y) comprises different types of algebras. Properties of
the algebras depend on the rank rk(A) and on the characteristic of K. Each type of algebras
requires somewhat different approaches to achieve the aim of the paper. Because of that
and for simplicity reason we assume that the field K is an algebraically closed field. Using
the same approach the interested reader may repeat arguments of this paper and obtain
similar results with obvious modifications for an arbitrary field (but the paper will be
more technical).

Since the opposite algebra A°P of the algebra A(w, B, ) is an algebra of the type
A(a’, B’,y") and 1k(A°P) = 1k(A), a classification of simple right A-modules is automat-
ically obtained from a classification of simple left A(a’, B, y’)-modules, and vice versa.
In this paper, we deal with left modules.

In this paper, g2 is not a root of unity (unless it is stated otherwise). The root of unity
case is considered in [12].

The centre of the algebra A. The centre Z(A) of the algebra A is a polynomial algebra
K[€2] where
-2 2
9y q°p @
Q:yxz+q2—1x_q2—1y+

see Theorem 2.3.
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Theorem 1.2. Every nonzero ideal of the algebra A(a, B, y) meets the centre.

Classifications of prime ideals and simple 4 («, 8, y)-modules. For a noncommutative
infinite dimensional algebra A, classifications of its simple modules (up to isomorphism)
A and prime ideals Spec(+A) are very difficult problems (considered by many as intract-
able). Another difficult problem is to describe the Zariski—Jacobson topology on Spec(+4),
i.e., the complete containment information between prime ideals. The first two problems
are linked via the map

A — Spec(A),  [M] > anng(M).

The image Prim(+) of this map, the set of primitive ideals, is far from being Spec(+4).
Typically, the set A is much more massive than Prim(#4), e.g., if 4 is a simple algebra
(e.g., A= A; =K(x,d|0x —xd = 1) is the first Weyl algebra over a field of characteristic
zero), then Prim(A) = Spec(+4) = {0} but the set A is huge. A typical situation is that
for arbitrary large number of independent parameters one can construct a family of simple
infinite dimensional modules that depends on this parameters and different choices of
values of the parameters give non-isomorphic modules. In the introduction to his book
“Enveloping Algebra” [17], Dixmier writes: “But a deeper study reveals the existence of
an enormous number of irreducible representations of [Heisenberg Lie algebra]. It seems
that these representations defy classification. A similar phenomenon exist for g = s[(2),
and most certainly for all non-commutative Lie algebras.”

In 1981, Block classified simple modules over the first Weyl algebra A, and sl, over
the field of complex numbers C [16]. In his book “Enveloping Algebra”, Dixmier writes:
“Even if + is very large, Prim(sA) can be of reasonable size. N. Jacobson has equipped it
with a topology and termed it the structural space of +4.”

Let D be a (commutative) Dedekind domain, ¢ be its automorphism and § be a o-
derivation of D (that is, (dy1d>) = 6(d1)d> + 0(d1)8(d>) for all elements dy, d> € D).
Let D[x;0,8] be a skew polynomial ring, it is a ring which is generated by the ring D and
x subject to the defining relations xd = o(d)x + §(d) for all d € D. In [4], the simple
modules of the ring D[x; o, §] are classified. In [2, 7], simple modules over generalized
Weyl algebras D[X, Y; 0, a] are classified, see also [3, 6, 15]. In [14], simple modules of
generalized cross products with coefficients from D are classified.

One of the key points in obtaining a classification of simple A-modules is to use (not
in a straightforward way) a classification of simple modules of some explicit generalized
Weyl algebras A = DJ[x, y; 0, a] and skew polynomial ring 8 = D][x; o, §] where D is a
Dedekind domain (in this paper, D = K[z] or D = K[z, z~!]), o is an automorphism of
D and § is a o-derivation of D.

The paper has the following structure. In Sections 2 and 3, general properties of the
algebras A(w, B, y) are considered and results are given that are used in classifications
of prime ideals and simple A-modules. In Section 5, we first classify the sets of prime,
completely prime, primitive and maximal ideals of the algebra A(c, 0, 0) (Theorem 5.2
and Corollary 5.3) where @ # 0. Then using an explicit description of primitive ideals of
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the algebra A(e, 0, 0), for each primitive ideal p of A, simple A/p-modules are classified
(Theorem 5.4).

For the algebra A = A(w, B, y) where @ # 0 and B # 0, the opposite approach is
used. First, we classify simple modules and then prime, completely prime, primitive and
maximal ideals are classified.

Let us explain our approach in classification of simple A-modules. The set A of iso-
morphism classes of simple A-modules is a disjoint union

A= |_| A{(aT) where A(w) = A/(Q — ),

weK
—

see (17), where K is an algebraically closed field. For each w € K, the set A(w) is a
disjoint union of the three sets (see, (21))

— —

A(w) = A(w) (z-torsion) L A(w) (z-torsionfree, K[z]-torsion)

u A{(aT) (K][z]-torsionfree).

In Section 6, each of the three subsets above are described. The descriptions are too tech-
nical to present in the introduction.

An ideal p of an algebra R is called a completely prime ideal of R if the factor algebra
R/p is a domain. Each completely prime ideal is a prime ideal but not vice versa, in
general. The set of completely prime ideals of R is denoted by Spec,.(R). An ideal of an
algebra R is called a primitive ideal of R if it is the annihilator ideal of a simple R-module.
Each primitive ideal is a prime ideal but not vice versa, in general. The set of primitive
ideals of R is denoted by Prim(R).

In Section 7, prime, completely prime, primitive and maximal ideals are described for
the algebra A(w, B, y) in the cases where @« # 0, 8 # 0,y =0 and o # 0, 8 # 0 and
y # 0, respectively. When y # 0, there are two cases: char(K) # 2 and char(K) = 2.

For example, the prime spectrum of the algebra A = A(«, 8, y) (where «, 8,y € K*
and char(K) # 2) is described by the diagram below (Theorem 7.4),

Spec(4) = {0, (R —w) |w e K} U {aF | i =1},

- - + +
4 o a a

e (Q=0]) - (Q—0]) {(R-0)|weK\L) (Q-0f) - (Q—0) -

0

1+ 2i ﬂ 1
wherei = 1, L := {w¥ |i > 1} and 0 := & q2€1 (#)2 (all numbers in I are
distinct, Lemma 6.7 (3)), and



V. V. Bavula 1046

means a & b, if two ideals are not connected by a path of lines then they are incomparable
(aZbandb & a).

If y # 0 and char(K) = 2, the prime spectrum of the algebra A (where o, 8,y € K*)
is described by the diagram below (Theorem 7.6),

Spec(A) ={0,(R—w) |w e K} U{a; |i = 1},

ay a;
{(Q-—w)|oeK\L}  (Q-w) - (Q—|wi)
| /
0
wherei > 1, L := {w; |i = 1} and w; := lq"{zzli (%)% where the numbers w; are

all distinct (Lemma 6.7 (3)).

Commutativity of ideals and every ideal is a unique product of prime ideals. For
an algebra A, we say that ideals commute if IJ = JI for all ideals I and J of A. In [9,
Section 4], it was shown that ideals of U(sl,) commute and every ideal is a unique product
of prime ideals (with multiplicity and up to permutation). For the algebras A = A(«, B, y),
Theorem 1.3 is a criterion of ideals to commute and for each ideal of A to be a unique
product of prime ideals.

Theorem 1.3. Suppose that K is an algebraically closed field and g* is not a root of
unity. Then ideals of the algebra A = A(w, B, y) commute iff tk(A) = 2, 3. Furthermore,
if tk(A) = 2,3 then each ideal of A is a unique product of prime ideals (see Theorem 7.1
and Theorem 1.4, for details).

Theorem 1.4 shows that every ideal of the algebra fT(ot, B,y) where o, B € K*, is a
unique product of primes.

Theorem 1.4. Suppose that K is an algebraically closed field and g is not a root of unity.
Let A = A(a, B, y) where o = 0 and B # 0. Then:

(1) the ideals of the algebra A commute and each ideal of A is a unique product (up
to order) of prime ideals (see statements (2) and (3)).

(2) If y # 0 and char(K) # 2 then every nonzero ideal I of A is a unique product (up
to order) of prime ideals,

I=][@=o)@ T]@H" - ]]@)m™.
weK i=1 j=1

where n(w) € N, n;,m; € {0, 1} and all but finitely many numbers n(w), n; and
mj are equal to zero.
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(3) Ify # 0 and char(K) = 2 then every nonzero ideal I of A is a unique product (up
to order) of prime ideals

I=]]@-0)® J]a

wekK i=1

where n(w) € N, n; € {0, 1} and all but finitely many numbers n(w) and n; are
equal to zero.

As an application of Theorem 1.4, we show that ideals of U, (sl>) commute and each
ideal is a unique product of primes, Theorem 8.1.

Semisimplicity of the category of finite dimensional modules. We say that a category
of finite dimensional A-modules is semisimple if every nonzero finite dimensional A-
module is a direct sum of simple finite dimensional A-modules. For example, the category
of finite dimensional U(s[,)-modules and Uy (s!,)-modules are semisimple. Theorem 1.5
is a semisimplicity criterion of the category of finite dimensional A(w, 8, y)-modules.

Theorem 1.5. Suppose that K is an algebraically closed field, q* is not a root of unity
and A = A(a, B, ). Then the category of finite dimensional A-modules is semisimple iff
rk(A4) = 3.

Theorem 1.6 is a criterion for the algebra A(«, B, y) to have only infinite dimensional
modules apart from the zero module.

Theorem 1.6. Suppose that K is an algebraically closed field, q* is not a root of unity
and A = A(a, B, y). Then all nonzero A-modules are infinite dimensional iff tk(A) = 2.

Classification of simple finite dimensional A(«, 8, y)-modules. In each of the four
cases, rk(A) = 0, 1,2 and 3, simple finite dimensional A-modules are classified (Corol-
lary 4.4, Corollary 5.5, Corollary 6.6, Corollary 6.9 and Corollary 6.11).

In particular, suppose that A = A(«, 8, y) where «, B,y € K*. If char(K) # 2 then for
each natural number i = 1, 2, ... there are only two (non-isomorphic) simple A-modules
of dimension i (namely, L(a)i+ ) and L(w;" ), Theorem 6.8 (2)). If char(K) = 2, then for
each natural number i = 1, 2, ... there is only one simple A-module of dimension i
(namely, L(w;), Theorem 6.10 (2)).

Criterion for all prime ideals of the algebra A(«, 8, y) to be completely prime ideals.
Theorem 1.7 is such a criterion.

Theorem 1.7. Suppose that K is an algebraically closed field and q* is not a root of unity.
Then all prime ideals of the algebra A = A(w, B, y) are completely prime iff tk(A) = 0, 1
or2.

Theorem 1.8 shows that all prime ideals that are induced from the centre of the algebra
A(w, B, y) are completely prime.
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Theorem 1.8. Suppose that K is an algebraically closed field and q? is not a root of unity.
Then for all a, B, y,w € K, the ideal (2 — w) of the algebra A(a, B, y) is a completely
prime ideal.

In Section 8, applications of the classificational results obtained in the previous sec-
tions are given. In particular, the above theorems are proved.

2. The 3-cyclic quantum Weyl algebra and its centre

The aim of the section is to prove Theorem 2.3 about the centre of the algebra A. Some
algebras that are related to A are introduced and studied. They are examples of generalized
Weyl algebras. These algebras are used in finding the prime spectrum of the algebra A and
classifying simple A-modules.

The algebra A; = K(x,d | dx — xd = 1) is called the Weyl algebra. The algebra
Ay = A‘IX’" is called the n-th Weyl algebra. If char(K) = O then the Weyl algebra is the
ring of polynomial differential operators. 4, = K(x1,...,X,,d1,...,0,) where 0; := aixi.

The central element 2 of A. It is easy to check that the element
a’y 4P bt
-1 ¢-1" q¢*-1
belongs to the centre of the algebra A. In fact, if g2 is not a root of unity then Z(4) = K[Q]
(Theorem 2.3). The element 2 can be written in the form

Q=yxz+ (4)

Q=dz+1 where d = yx + qza——l and [ := qqz iylx — qzz_'Bl y. (9
The element d satisfies the following relations
xd = ¢%dx, yd = ¢ 2dy, dz =zd + ¢ 2yx + By. 6)
Foralln > 1,
Q" =&, y"x"z" + .- where &, = (qz)n(n;n @)

and the three dots mean smaller terms (with respect to the standard filtration on A) of total
degree < 3 where deg(x) = deg(y) = deg(z) = 1. Indeed,

Q"=dz)"+---=d"z" +--- (since dz =zd +---)
— (q2)1+2+"'+n—1ynxnzn 4. (by (l))
= Snynxnzn + .

Proposition 2.1. (1) The multiplicative set S = {x'd’¢?** |i,j € N,k € Z} is an Ore
setof Aand Ay 4 = S™'A = K[Q] ® B is a tensor product of algebras where
B = K[d*'][x*!; 0] is a Noetherian domain of Gelfand—Kirillov dimension 2
ando(d) = g?d.

(2) The algebra B is a central simple algebra.
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Proof. (1) By (5), the multiplicative set S is an Ore set of A. Using (5), the elements y
and z can be “replaced” by the elements d and €2, respectively, and the equality A, 4 =
K[R2] ® B follows from the presentation of the algebra A as an iterated Ore extension. It
is obvious that B is a Noetherian domain of Gelfand—Kirillov dimension 2.

(2) Since g2 is not a root of 1, the algebra B is central and simple. |

Definition (Generalized Weyl algebra, [5-7]). Let D be aring, o be an automorphism of
D and a is an element of the centre of D. The generalized Weyl algebra A := D(0,a) :=
DI[X,Y;0,a] is aring generated by D, X and Y subject to the defining relations

Xo =o(@)X and Yo =0 Y)Y foralloa € D, YX =aand XY = o(a).

The algebra A = €D, ¢ An is Z-graded where A, = Dvy, v, = X" forn >0,v, =Y ™"
for n < 0 and vy = 1. It follows from the above relations that v,v, = (n, M)vy4m =
Un4m(n,m) for some (n,m) € D.If n > 0 and m > 0 then

n>m: (n,—m) — 0"(a)---0”_m+l(a), (—n,m) — o_”+1(a)---0_”+m(a),
n<m: (n,—m)=o0"@) --o(a), (-n,m) =0"t(a)---a,
in other cases (n,m) = 1. Clearly, (n,m) = 7" ((n,m)).

The generalized Weyl algebra A and its centre. Let A be the subalgebra of A generated
by the elements e, f, z and 2 where

9B
q>—1

%
> =1

and fi=yz+

®

e =XZ—

Let o be the automorphism of the polynomial algebra D = K[z, 2] given by the rule
0(z) = ¢~ %z and 6(Q) = Q. The elements e, f, z and Q satisfy the following relations:

eu =ao(ue, fu=o0"tu)f forallu eD,

fe=a, and ef =o(a), )
where a = —qqzz_‘)‘lz2 +q*Qz — (qqzzfﬁly)z. In more detail,
2
Y q°p
fe= (yz+ qz—l)(xz_ qz—l)
_ q*y q°B 9By
=qzyxz + Xz — yz —

q> —1 q> —1 (¢> = 1)?

-2 2
_ 2 q "y q-p o
—1 Z(Q_q2—1x+q2—1y_q2—1z)

I G A . e 4’y
q>—1 q>—1 (> — 1)
2 2

__ 9> > 2 q°By

_—qz_lz +q QZ_—(qZ_l)Z_a’
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°f = (xz_qzz—ﬁl)(ypr qzy—l)

2
=zyxz +q 2az? - Y a_Py

I L e Ry

-2 2 o
:z(Q—q2 yx—i— Zﬂy— 5 z)
q-—1 qg>—1 q-—1
y q*By

q>—1

-2 2 _
L Ea e f N PRI E

-2 2

9"a 5 q°By
_ Q7 — = .
g1 T Ty T

Let R be aring and s € R. Suppose that the set S = {s* | i > 0} is a left denominator
setin R. Then Ry := S™'R = {s7'r | r € R,i = 0} is the localization of R at S, i.e., the
localization of R at the powers of the element s.

The next proposition shows that the algebra A isa GWA suchthat A C A C A, = A4,,
it also shows that the centres of the algebras A, A and A, are a polynomial algebra K[$2].

Proposition 2.2. (1) The algebra A = Dle, f;0,a] is the GWA where D = K|z, Q]
is a polynomial algebra, 6(z) = ¢~ %z,0(Q) = Q and a = —qqzzf‘l 22+ ¢?Qz —
a’By
(¢>-1)*"
2) ACACA, = A, where A, = Dqle, f;0,a] is a GWA and the subscript “z”
means the localization of an algebra at the Ore set {z' | i € N}.

() Z(A) = Z(A;) = Z(4;) = K[Q].

Proof. (1)Let A’ = Dle, f;0,a] be the GWA in statement (1). By (9), the algebra A is a
factor algebra of the GWA A’. In fact, the canonical epimorphism A’ — A, e+>e, f — f,
Z > z, Q >  is an isomorphism since the K-basis of the GWA A’, {z'Q/, zQ/ ek,
2'QJ f* i, j € N,k = 1}, is mapped by the canonical epimorphism to a set of K-linearly
independent elements. This follows from the fact that {x?y/z¥ | i, j, k € N} is a K-basis
of A and explicit expressions for the leading terms of the images of the elements of the
basis of the GWA A’.

(2) Statement (2) follows from statement (1) and (8).

(3) Since g2 is not a root of 1, then K[Q] € Z(A) C Z(A,) = K[R] (the last equality
is due to the fact that g2 is not a root of unity). ]

Suppose that o # 0. Then the algebra A = K(x,y | xy = ¢?yx + «) is isomorphic
to the quantum Weyl algebra (by replacing x by «~!x). By (6),

A =K[d][x,y;0,a :=d — ay] (10)

is a GWA where o(d) = ¢*>d and o = qz"‘—_l (see the definition of d in (5)).
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Recall that a = a»z? + a;z + ag € K[z] (Proposition 2.2) where
4By

(¢ — 1?2
Theorem 2.3 describes the centre Z(A) of the algebra A(«, 8, 7).

q*a

ar = ———,
2 21

a; = ¢*Q, and apg =

(In

Theorem 2.3. Let A = A(a, B,y). Then Z(A) = K[Q].

Proof. We use notation and results of Proposition 2.1. Since ¢? is not a root of 1, K[Q] €
Z(A) € Z(Axq) = K[Q] ® Z(B) = K[Q] ® K = K[R], and so Z(A4) = K[Q]. (]
Lemma 2.4. The algebra A is a free K[Q]-module and the set of elements {x*y7 z¥ |
(i, j. k) e N3\ Ni} is a free basis for the K[Q2]-module A.

Proof. The statement follows from the fact that xyz is the leading term of the element
Q (see (4)) with respect to the standard filtration associated with the canonical generators
x,y and z of the algebra A. [

3. Prime ideals of the algebra A

In this section, we explain key ideas and an approach to classification of prime ideals and
simple modules for the algebra A. Briefly, using various localizations of the algebra A
we split the sets of prime ideals and simple modules into natural subclasses and then we
describe elements in each class (using different techniques).

The prime ideals of A and their partition. For an algebra R, let Spec(R) be the set
of its prime ideals. The set (Spec(R), C) is a partially ordered set (poset) with respect
to inclusion of prime ideals. Each element r € R determines two maps from R to R,
r-:x+rxand -r:x— xr where x € R.

A non-empty subset S of R is called a multiplicative set if SS € S and 0 ¢ S. A
multiplicative set S is called a left Ore set if Sr N Rs # @ forallr € R and s € S (the left
Ore condition). A left Ore set S is called a left denominator set if rs = 0 for some r € R
and s € S then s'r = 0 for some s € S.If S is a left denominator set of R then the ring
of the left fraction ST'R = {s~1r | s € S,r € R} is called the left localization of R at S.
An element r € R is called a normal element of R if Rr = rR.

Proposition 3.1 ([13]). Let R be a Noetherian ring and s be an element of R such that
Sy :=1{s' | i € N} is a left denominator set of the ring R and (s*) = (s)! forall i > 1
(e.g., s is a normal element such that ker(-sg) C ker(sg-)). Then Spec(R) = Spec(R,s) U
Spec, (R) where Spec(R, s) := {p € Spec(R) | s € p}, Specy(R) = {q € Spec(R) | s ¢ q}
and
(a) the map Spec(R,s) — Spec(R/(s)), p > p/(s), is a bijection with the inverse
g+ Y q)wheremwr : R — R/(s), r — 1 + (5),
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(b) the map Specy(R) — Spec(R;), p > S; 'p, is a bijection with the inverse g
o~ (q) whereo : R — Ry :=S;'R, r — .

(c) Forallp e Spec(R,s) and g € Specy(R),p £ q.

In this paper, we identify the sets in the statements (a) and (b) via the bijections given
there.

Lemma3.2. Lett € {x,y,z}. Then (t') = (t)! in Aforalli > 1. Furthermore, if (a, B) #
(0,0) then (x*) = A for all i = 1; if (a0, y) # (0,0) then (y') = A for all i > 1; if
(B.y) # (0,0) then (z') = A foralli > 1.

Proof. In view of the cyclic permutation symmetry, we may assume thatt = z. If (8,y) =
(0,0) then the element z is a normal element of A, and so (z') = (z) for all i > 1. If
(B,y) # (0,0), say B # 0, then it follows from the equalities

1— q—2i

xzt =q7 P x + T2 Bzt i =1, (12)
—q

and the induction on i that (z') = A foralli > 1. Then clearly (z) = Aforalli > 1. m

Lemma 3.3. Let A = A(a, B, y) where o # 0 and S = K[Q2] \ {0}. Then the algebra
ST1A, =K(Q)[zF][e, f:0,a] is a simple GWA where o and a are as in Proposition 2.2.

Proof. By Proposition 2.2, the algebra S™1 A, is the GWA as in the lemma. To prove
simplicity of the algebra S™! A, we check that the conditions for simplicity of a GWA
given in [1, Theorem 4.2] are satisfied: the element @ and o(a) are regular (since o #
0), the algebra D = K(£2)[z*!] has no proper o-invariant ideals (since ¢2 is not a root
of unity), the automorphisms {0’ | i > 1} are not inner automorphisms (since D is a
commutative algebra), finally we have to verify that Da + Do’ (a) = D foralli > 1.
Since o # 0, the ideals Da and Do’ (a) are distinct for each i > 1. To prove the
statement it suffices to show that Da is a maximal ideal, i.e., the Laurent polynomial
a € K(Q)[z*!]is irreducible. If By = 0 thena = z(— qqzz_“l z 4+ ¢%Q) is irreducible (since
z is aunit of D). If 8 # 0 and y # 0 the polynomial (in z) a is irreducible since otherwise
it would have a nonzero root g € K(2) (since By # 0) where p and ¢ are co-prime
polynomials in K[$2]. The fact that £ is a root of a can be written as 2(£ +vQ) = u
where v, u € K*. Then p € K* since otherwise taking the value of the equality above at
aroot of p we would have 0 = u # 0, a contradiction. The equality above can be written
as p(p +vQq) = ng?. Then degg(q) = 1 and taking the equality modulo ¢ we get
p? =0 (mod gq), a contradiction. The proof of the lemma is complete. ]

By Lemma 3.2, (z') = (z)’ forall i > 1. Then, by Proposition 3.1,
Spec(A) = Spec(A/(z)) U Spec(A;) (13)

and p £ q for all prime ideals p € Spec(A4/(z)) and g € Spec(A4;).
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Since the algebra S~ A4, is simple (Lemma 3.3) and the field K is an algebraically
closed field, every nonzero prime ideal of the algebra A, contains an element 2 — w for
aunique o € K (since if ® # o’ then (2 — w) + (2 — w’) = (1)). Therefore,

Spec(Az) = {0} U || Spec(4:/(2 — ) (14)

wekK

and prime ideals from distinct components in (14) are not comparable (neither p € g nor
p=29)

The factor algebras A (a, B, y; ®). Given w € K, consider the factor algebra 4 =
Alw) = A, B, y;0) = A/(Q — o).

Lemma 3.4. The set {x'y/zF | (i, j, k) € N3\ Ni} is a K-basis for the algebra
A(a, B, y; ) where Ny :={1,2,...}.

Proof. The statement follows from the fact that xyz is the leading term of €2 with respect
to the standard filtration associated with the canonical generators x, y and z of the alge-
bra A. |

By Proposition 2.2, the factor algebra

Ay = A (0) = Az (@, B, y;0) i= A /(Q —w) = K[zF[e, fi0,a,]  (15)
is a GWA where 0(z) = ¢ 2z and a, = —q%z_alzz + q%wz — (qq;fly)z. Since @ # 0, the
algebra A, is a Noetherian domain of Gelfand—Kirillov dimension 2.

Consider the algebra A(A, n) := K(X,Y | XY = AYX + u) where A, u € K and
A # 0. Then foralli > 1,

XY =AY X+ 4+A+-+ A Huy = 4. (16)

where the three dots mean a polynomial in K[y] of degree < i — 1 (use the induction on 7).
An element r of a ring R is called a regular element if the element r is neither left nor
right zero divisor. The set of all regular elements of the ring R is denoted by €g.

Proposition 3.5. Let A = A(w, B, y) where a # 0 and  # 0. Then:
(1) forall w € K, the element z is a regular non-unitin A/ (2 — w);

(2) for all w € K, the A-module V(w) := AJ/A(Q —w,z) =~ P>, Kx'1 is simple
and z-torsion where 1 = 1 + A(Q — w, 2).

Proof. (1) Let A = A/(Q — ).
() The map -z : A — A, u > uz is an injection but not a bijection. Let 4 = K(x, y |
xy = ¢*yx + a), the quantum Weyl algebra (since g2 is not a root of unity and a # 0).
Then, by Lemma 3.4,
A=K[z] DV, ® Vs: ® Ad
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where Vy; = @, j50 Ky T2/ and Vi, = @; ;50 Kx'T'z/. Clearly, the maps - z : Vy,
= Vyz, v vz oz Vi, = Vg, v vzand -z Ad - A, ud = udz =u(w —1)
(since dz = Q — 1 = w — [ (mod (2 — w))) are injections (the last one is an injection
since 8 # 0). Since

Az =K[z]z @ V322 ® Vizz @ Ao — 1),
the map -z : A — A, u — uz is an injection. The map - z is not a bijection since

Viw) = A/ Az ~ A A0 — 1) ~ KT g K[x]
i=0
since [ = Z;i‘ix - qq_z_’slyjé 0(as B # 0) where I = 1 + Az.

(ii) The map z-: A — A, u > zu is an injection but not a bijection: Since the opposite
algebra A = A(a’, B’,y")4—2 to A is the 3-cyclic quantum Weyl algebra with o’ # 0 and
B’ # 0 (since @ # 0 and B # 0), the map z - is an injection, by the statement (i).

(2) The set S, = {z' | i = 0} is an Ore set of the algebra A(w) that consists of regular
elements of A(w), by statement (1). Therefore, the set S, is a denominator set of A(w)
and the A(w)-module V(w) is a z-torsion one, i.e., S,-torsion. In particular, the A-module
V(w) is a z-torsion one. To finish the proof of statement (2), it suffices to show that the A-
module V' = V(w) is simple. Notice that [x]V >~ K[x]. Let U be a nonzero submodule of
V such that U # V, we seek a contradiction. Then U = pK|[x]1 for a unique polynomial

p=x"+ ux""! 4 ... € K[x] of degree n > 1. Recall that zx = ¢%>xz — ¢*B. By (16),

Uszpl =z(x" + pux"1 4.1

— (qannZ—(l +q2+_“+q2(n—l))q2ﬁxn—l —i—y,qz("_l)x”_lz—i—---)l

2n
g -1 - T
:(— q2_1q213xn 1+)1

This contradicts to the choice of p as the degree of the nonzero polynomial in the bracket
above isn — 1 < n = deg(p), since ¢2 is not a root of unity. |

Lemma 3.6. Let A = A(a, B,y) where o # 0 and B # 0. Then, for each w € K, the ideal
of A, (Q —w) = AN (R —w)A;,, is a completely prime ideal.

Proof. Since a # 0, the algebra A, ~ A,/A,( — ) is a Noetherian domain, see (15).
Hence, the ideal A N (2 — w) A of A is a completely prime ideal. By Proposition 3.5 (1),
Q-w)=AN(Q —w)A;. [

Simple A-modules and their partition. If K is an algebraically closed field then

A= ] Aw. a7
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For each w € K,

—

A{(c7) = A(w) (z-torsion) LI A{(aT) (z-torsionfree) (18)

where a simple A-module M belongs to the first (resp., second) set if S IM =0 (resp.,
S71M # 0) and the module M is called z-torsion (resp., z-torsionfree).

The set S = K[z] \ {0} is a (left and right) Ore set of the algebra A(w) and A(w),
which are domains. The localization

B = B(w) := S A(0) ~ ST A(0); =K(2)[e.e”"10] = PK(2)e’ (19)
i€Z
is a skew Laurent polynomial algebra and A(w) C B. The algebra B is a (left and right)

principle ideal domain. The set A(w) of isomorphism classes of simple A(w)-modules is
a disjoint union

m = Z(-a)\) (K[z]-torsion) U m (K][z]-torsionfree) (20)

where A(w) (K|[z]-torsion) := {[M] € A(w) | S™'M = 0} and A(w) (K|[z]-torsionfree) :=
{M] e A/(aT) | S™'M # 0}. A simple module from the first (resp., second) set is called
K[z]-torsion or S-torsion (resp., K[z]-torsionfree or S-torsionfree).

It follows from (18) and (20) that

m = A{(Z)(z—torsion) u m(z—torsionfree, K{z]-torsion) LI A{(;)(]K [z]-torsionfree).
1)

4. Classification of prime ideals and simple modules for the algebra
A(0,0,0)

In this section, K is an algebraically closed field and A = A(0, 0, 0). For the algebra A,
the prime, completely prime, primitive and maximal ideals are classified (Theorem 4.1
and Corollary 4.2). Furthermore, the simple A-modules are classified (Theorem 4.3).

Suppose for a moment that the elements «, B and y are arbitrary. Then by (1), (2) and
(3), the factor algebra A := A(w, B,y) := A/(z) is equal to

K(x,y | xy = ¢*yx +a), if(B.y) =(0,0),
0, otherwise.

A, B.y) = {

If « = B = y = 0 then the algebra A(0,0,0) = K{x,y | xy = g2yx) is the, so-called,
quantum plane and its prime spectrum is well known.
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Spec A(0,0,0):

{.y =D 2ekK}  (xy)  A.x—2A) |1 K"}

\/\)/
\/

(22)

If o # 0 then the algebra A(«,0,0) =K(x,y | xy = qzyx + ), is the, so-called, quantum
Weyl algebra. Its prime spectrum is also well known.
Spec A(«, 0,0):

{(d,x =) | A e K¥)

(d)

0 (23)

where d = yx — 1_‘"7.
The set Spec A(0,0,0). The next theorem is a description of prime ideals for the algebra

A(0,0,0).

Theorem 4.1. Suppose that the field K is an algebraically closed field. Then the spectrum
of the algebra A(0, 0, 0) is given below together with all possible containments of prime
ideals where Q2 = yxz,

G,y 2= A eK*} (x,y,2) {(x,y—A,2)|AeK*} {(x=A,y,2) | X € K¥}
N SN
(x,y) (x,2) (¥,2)
| X X|

x) O @ {(Q—-w)|weK*}
NP

(24)

Proof. Let A= A(0,0,0). Recall that Z(A) = K[2] where Q = yxz (Proposition 2.2 (3),
since ¢? is not a root of unity). The elements x, y,z € A are normal and d = yx. Let
S = {Q | i = 0}. By Proposition 2.1 (1), the algebra S~™'4 ~ S714, ; = K[Q*'|® B
where the algebra B is a central simple Noetherian algebra, and so every nonzero prime
ideal of A that does not contain 2 contains an element 2 — w for a unique w € K* (since
K is an algebraically closed field). Since w # 0, yxz = w in A(w), and so the normal
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elements x, y and z are units in A(w). So, the algebra

sS4 _ K@*!]
STTA(Q —a)) T (Q-w)
~ K{x® y® [ xy = ¢?yx) = Ky*xFha) (25)

® B~ B

A(w) ~

is a simple algebra since 7(y) = g2y and ¢ is not a root of unity. This means that the
ideals {(2 — w) | v € K*} are maximal ideals of A.

The ideal (2) = (yxz) = (x)(y)(z) is a product of three completely prime ideals
(x), (¥), (2). In particular, the ideal (£2) is not a prime ideal and every prime ideal of
the algebra A that contains the element 2 necessarily contains one of the prime ideals
(x), (¥) or (z). Using the fact that each of the factor algebras A/(x), A/(y) and A/(z)
is a quantum plane, and (22), we see that the set of prime ideals of A containing one of
the prime ideals (x), (y) or (z) is as in the diagram (24). The proof of the theorem is
complete. ]

The next corollary describes the sets of maximal, primitive and completely prime
ideals of the algebra A(0, 0, 0).

Corollary 4.2. Suppose that the field K is an algebraically closed field and A = A(0,0,0).
Then:

(1) Max(A) ={(2 —w) |w e K*} U M where M := {(x,y,z),(x —A,y,2),(x,y —
A,2),(x,y,z—A) | A € K*}. For every w € K*, the factor algebra A/ (2 — w) >~
K[y [x*; 7] is a simple Noetherian domain of Gelfand—Kirillov dimension 2
where T(y) = g2y and, for all maximal ideals m € M, A/m ~ K.

(2) Prim(A) = Max(A4) U{(x), (). (2)}.
(3) Spec(A) = Spec,(A), all prime ideals of A are completely prime ideals.

(4) Every nonzero prime ideal of A meets the centre.
Proof. The statements follow from (24) and the proof of Theorem 4.1. ]

Let + be an algebra. For each primitive ideal p € Prim(+4), let A (p) :={[M] € A |
ann4 (M) = p}. Then

A= || AW.
PEPrim(A)

Recall that Prim(A4) = Max(4) U {(x), (¥), (z)} and Max(4) = {(Q —w) |w e K*} U M
(Proposition 4.2) provided g2 is not a root of unity.

Classification of simple A (0, 0, 0)-modules. A classification of simple modules over the
quantum plane is given in [3]. The next theorem is a classification of simple A-modules
where g? is not a root of unity.
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Theorem 4.3. Suppose that the field K is an algebraically closed field. Then:

(1) for every w € K*, /Y((Q —w)) = A(w) and the classification of simple A(w)-
modules of the algebra A(w) = A/(Q — w) ~ K[y*!][xE!; 0] (where o(y) =
q*y, see (25)) is given in [6,7].

(2) For each maximal ideal m € M = {(x, y,z), (x — A, y,2), (x,y — A, z2),
(x,y,z—=2) | A e K*}, A(m) = {A/m} and A/m ~ K.

(3) For each p € {(x), (¥), (2)}, the factor algebra A/p is a quantum plane (e.g.,
A/(X) =K(y.z | yz = q*zy)) and

/’1\(13) = A//\p(weight, linear) U A//\p(K[H]—torsionfree)

where the sets A//\p(weight, linear) and A//\p(K[H |-torsionfree) are described
in [3].

The next corollary is a classification of simple finite dimensional A-modules where g2
is not a root of unity.

Corollary 4.4. Suppose that K is an algebraically closed field. Then
A(fin. dim.) = {A/m | m € M}

is the set of isomorphism classes of simple finite dimensional A-modules. Furthermore,
dim(A/m) = 1 for all m € M.

Proof. The corollary follows from Theorem 4.3. ]

It remains to consider the remaining cases where rk(4) = 1,2,3,i.e., («,0,0), («, 8,0)
and (a, B, y), respectively, where «, B,y € K*.

*  So, we assume till the end of the paper that a # 0.

5. Classification of prime ideals and simple modules for the algebra
A(o, 0,0) where o # 0

In this section, K is an algebraically closed field and A = A(«, 0, 0) where @ # 0. For
the algebra A, its prime, completely prime, primitive and maximal ideals and the simple
A-modules are classified (Theorem 5.2, Corollary 5.3 and Theorem 5.4).

The prime spectrum of the algebra A («, 0, 0).

Lemma 5.1. Suppose that A = A(«, 0, 0) where o # 0. Then:
(1) the algebra A = K|z,d][x,y;0,d — qz“—_l] is a GWA where 6(z) = q~ %z and
o(d) = q?d. In particular, the elements z and d of A are normal regular elements.
(2) Forallw e K*, (2 —w) = AN A, (L — w) is a completely prime ideal of A, and
the algebra A/ (2 — w) is a simple Noetherian domain.
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Proof. (1) Statement (1) follows at once from (1), (2) and (3).
(2) By statement (1) and the equality Q = dz, the factor algebra

/(@ ~ ) = Kd*1[x, yi0.d - qza—_l]

is a GWA which is a simple, Noetherian domain, by [1, Theorem 4.2]. In particular, the
ideal (2 — w) of A is a completely prime ideal. Similarly,

A, /A5 (Q — o) :K[dil][x,y;o,d— ]zA/(Q—a)).

o
q>—1
Therefore, (2 —w) = AN A,(Q2 — w). ]

The next theorem is a description of prime ideals of the algebra A(«, 0, 0) where o # 0.

Theorem 5.2. Suppose that K is an algebraically closed field. Let A = A(«, 0, 0) where
o # 0. Then the spectrum of the algebra A is given by the diagram below where Q = dz
andd = yx + qz"‘—_l.'

{(z.d,x — ) | A e K*)

(z.d)

/|

() @) {(Q-o0)|weK"}

N

(1) Foreachw € K*, A/(Q — ) ~ K[d*][x, y;0,d — 71) is a GWA which is a
simple Noetherian domain of Gelfand—Kirillov dimension 2.

(26)

(2) A/(z) ~K(x,y | xy = ¢>yx + a) is a quantum Weyl algebra.

(3) A/(d) ~ K|[z][x*"; 0] is a skew Laurent polynomial ring where o(z) = q~2z.
4) A/(z.d) ~ K[x*'] is a Laurent polynomial ring.

(5) A/(z,d,x — L) ~ K forall A € K*.

Proof. By Lemma 5.1, statements (1)—(5) hold. So, all the ideals in the diagram (26)
are completely prime ideals since the algebras in statements (1)—(5) are domains. The
inclusions in the diagram (26) are obvious. Since 2 = dz, we have that (2) C (d) and
(2) € (2). So, there are no other inclusions in the diagram (26) (since () + (2 —w) =
(1) for all w € K*). In view of (13), (14), and the fact that the algebras A, /A4, (Q — w) =~
A/(Q — w) are simple (Lemma 5.1 (2)) there are no new prime ideals in Spec(A) apart
from the ones given in the diagram (26). ]

The next corollary describes the sets of maximal, prime and completely prime ideals
of A.
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Corollary 5.3. Suppose that K is an algebraically closed field. Let A = A(«a,0,0) where
o # 0. Then

(1) Max(A) ={(z,d,x — L) | A e K*} U{(Q —w) | w € K*}.
(2) Prim(A) = Max(A4) U {(2), (d)}.
(3) Spec.(A) = Spec(A).

(4) Every nonzero prime ideal of A meets the centre of A.

Proof. The theorem follows from the explicit description of prime factor algebras given
in Theorem 5.2. u

Classification of simple A(c, 0, 0)-modules.

Theorem 5.4. Suppose that K is an algebraically closed field. Let A = A(a, 0, 0) where
o # 0. Then
A=A uAd)u || A
meMax(A4)
where
() Ifm =my := (z,d, x — A) where A € K* then A(m,) = {A/m, ~K}.
2) If m = (2 — w) where w € K* then /T(Q —w) = m) and the simple
A/(Q — w)-modules for the GWA A/(Q —w) =K[dF][x, y;0.d — qza—l] (where
o(d) = q?d) are classified in [7] (see also [4,14]).
3) /T(d) = W) \ {A/wm, | A € K*} and the simple modules of the algebra A/ (d)
~ K[z][x*!; 0] (where 0 (z) = q~2z) are classified in [7] (see also [4,14]).
“) /’l\(z) = A//(\Z) \{A/m; | A € K*} and the simple modules of the algebra A/(z)
~ K(x,y | xy = g?yx + a) are classified in [3].

The set A (fin. dim.). Corollary 5.5 is a classification of simple finite dimensional A-
modules where ¢? is not a root of unity.

Corollary 5.5. Suppose that K is an algebraically closed field. Let A = A(w, 0, 0) where
o # 0. Then
A(fin. dim) = {A/my | A € K*}

where m), = (z,d, x — ) is a maximal ideal of A and dimg (A/m)) = 1.

Proof. The corollary follows from Theorem 5.4 since for the algebras in statements (2)—
(4) simple modules are infinite dimensional. ]

6. Classification of simple A («, 8, y)-modules where & # 0 and  # 0

In this section, K is an algebraically closed field and A = A(w, B, y) where « # 0 and
B # 0. A classification of simple A-modules is given.
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Classification of simple A («, B, y)-modules. In view of (17) and (21), in order to clas-
sify simple A(«, B, y)-modules we have to classify simple modules in each of the three
subsets in (21). This is done below. In each of the three cases a different approach is used.

The set A/(aT)(z-torsion). Theorem 6.1 describes the set X(Z)(z-torsion).

Theorem 6.1. Suppose that K is an algebraically closed field. Let A = A(w, B, y) where
o # 0and B # 0. Then A(w)(z-torsion) = {V(w)} where V(w) = A(w)/A(w)z.

Proof. Recall that each z-torsion simple A(w)-module is an epimorphic image of the
A(w)-module V(w). The A(w)-module V(w) is simple (Proposition 3.5 (2)), and the the-
orem follows. u

In the A(w)-module V(w) = Dixo Kx'1 (see Proposition 3.5), for all i = 0,

N PGS B
ex’lz(l_qzﬂxl—i—n-)l. 27)

In more detail, recall that e = xz — B¢ where B¢ = qqzz_ﬁl . Then

ex'1 = (xzx' — Box)1

16 (x(qzixiz_(l+q2+._.+q2(i—l))q2ﬁxi—l)_ﬂoxi_}_.__)1

2i_1 1 =

-1 q?
206+1)
= 1_q2 ﬁxll + ..
* So, &g := {qlzf;) B | i = 0} is the set of eigenvalues of the linear map e - : V(w) —

V(w), v+ ev.

Lemma 6.2. Given a nonzero element b = b(z, e) € K[z][e; 0] where o(z) = ¢~ 2z. If
the map b - : V(w) — V(w), v + bv has nonzero é«;rllael then the polynomial b(0, e) €
Kle] ~ K{z][e; 0]/(z) has a root in the set &g = {£ ad ),3 |i =0}

Proof. Recall that V(w) ~ K[x]1 ~kx] K[x]. So, the A(w)-module V(w) admits a filtra-
tion by the degree of x, V(w) = ;5o Vi where V; = {pl | deg(p) <i}.Foralli >0,
zV; C V;—1, by (16). The element b = b(z,e) = b(0,e) + b’z is a unique sum where
b' € K[z][e; o). The field K is an algebraically closed field. So, b(0,e) = u[]i_, (e — i)
where u € K* and A1, ..., A are the roots of the polynomial (0, ¢) € K[e]. By (27), for
alli = 0,eV; C V; and

1—q2

qz(i+1)/3 B

s

bx'1l =b(0,e)xii+--- =M1_[ (1—2
: -4
j=1

Aj)xii+--- .

So, if an element v ;ﬁlc)"i + - -- belongs to the kernel of the map b - : V(w) — V(w) then
q 1

necessarily A; = T B € &g for some j, as required. |
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The set A (w)(K[z]-torsionfree). Theorem 6.3 is an explicit description of the set A(w)
(K[z]-torsionfree). Recall that A(w) C A(w); C B = B(w), see (19). The GWA A(w), =
K[zE!][e, f:0,a] is also the GWA A(w), = K[zF!][f. e;07), 0(aw)].

For nonzero elements p, g € K[z*!], we write p <,-1 ¢ if there is no maximal ideal
m of K[z*!] such that ¢ € m and p € (0~ 1)! (m) for some i > 0.

Definition. Anelementh =) v e'b; € K[z][e;0] € A(w); (where b; € K[z], by # 0,
bm # 0and m = 1) is called r-normal if it is [-normal as an element of the GWA A(w), =
K[z f. e;07 Y, 0(ae)], i.e., bo <g-1 by and by <g-1 0(dg).

Theorem 6.3. Let K be an algebraically closed field. Let A = A(w, B, y) where a # 0,
B # 0and w € K. Then

() (K[z]-torsionfree) = {[M,, = A(w)/A(w) N Bb] | b = b(z, e) € K[z][e: 0] is an
r-normal, irreducible element of B such that the polynomial

b(0, e) € K[e] has no root in the set Sﬂ}

qz(i+1)

where &g = { = B |i = 0} and the algebra B = B(w) is defined in (19); and M ~
My, iff the elements b and b’ are similar (i.e., B/Bb ~ B/Bb’ as B-modules). All modules
My, are infinite dimensional.

Proof. Let L and R be the left-hand side and right-hand side of the equality in the theorem
and A = A(w). We have to show that R = L.

(i) L C R: Let M be a K[z]-torsionfree, simple A-module, i.e., M € L. Since M, is a
simple A;-module, M, ~ A,/A, N Bb for some element b = b(z, ¢) € K[z][e; 0] which
is an r-normal, irreducible element of B (by [7, Theorem 5]). Now, for all n = 0,

M _(/Tz”—i—fTﬂBb) N( Az" ) _( Az" )
= AN Bb , \Az»nAnBb), \Az"nBb)/,

_( A )_ A
“\Tnpe). = (/Tn szn(m)z

where wzn (b) = z"bz™". The element b = b(z, e) is a unique sum b = by + b’z where
by = b(0,e) € K[e] and b’ € K|z][e; 0]. Notice that w,n (b) = wzn (bg) + wn (b’)z and so
wzn (b)|z=0 = wzn(by) € K[e]. The field K is an algebraically closed field. In particular,
all the elements w;» (b') € K][z][e; o] are r-normal, irreducible elements of B. Let by =
wlli=;(e — Ai) where Aq, ..., Ay are roots of the polynomial by € K[e] and 1 € K*.
Since w,n (e) = g*"e,

S
won(e) = p l_[(e —q7N) for some ' € K*.
i=1

So, for all sufficiently large n, the polynomial w,»(bg) has no roots in the set &g (since

g? is not a root of unity). Fix one such n and let M’ = A/A N Bw,n(b). Then M =

soc 7(M;) = M’, by simplicity of M and M’. Therefore, M € R.
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(ii) L © R: We have to show that each A-module M’ = A/A N Bb in R is simple,
i.e., the left ideal / = A N Bb is a maximal left ideal of A. Let J be a left ideal of A
such that I ¢ J € A, we seek a contradiction. By the very definition, the A-module M’
is K[z]-torsionfree.

Localizing the short exact sequence of the A-modules

0—>J/I >M =A/ > M:=A/] -0
at the powers of the element z we obtain a short exact sequence of A-modules
0— (J/1); = M, — M, — 0.

The A,-module M is simple and K[z]-torsionfree (since b is r-normal) and the A,-
module (J /1), is a nonzero A,-module (since the A-module M’ is z-torsionfree). There-
fore, (J/I); = M, and so M, =0.So, J DI + Az' for some i > 1. The A-module
N := A/J is z-torsion. By Theorem 6.1, the unique z-torsion simple A-module V is an
epimorphic image of the A-module N . In particular, there is a nonzero vector 0 # v € V
such that Jv = 0. In particular, bv = 0. By Lemma 6.2, the polynomial 5(0, ¢) € K[e]
has root in the set g, a contradiction. n

The set A(w) (z-torsionfree, K[z]-torsion). The classification of simple z-torsionfree,
K [z]-torsion A(w)-modules is done in two steps. First, we show that this class coincides
with the set of simple, K[z]-torsion A(w),-modules (Theorem 6.4). Second, since the
algebra A(w) is a GWA with Dedekind base ring that belongs to the class of GWAs
considered in [7], we apply the classification results of [7] to our algebra (Theorem 6.5,
Theorem 6.8 and Theorem 6.10).

Theorem 6.4. Suppose that K is an algebraically closed field. Let A = A(a, B, y) where
o #0,8#0and w € K. Then

—

A(w)(z-torsionfree, K[z]-torsion) = A(w),(K[z]-torsion),

i.e., every simple, K[z]-torsion A(w),-module is a simple, z-torsionfree, K|[z]-torsion
A(w)-module (by restriction to the algebra A(w)), and vice versa.

Proof. Let L and R be the left-hand side and right-hand side of the equality. Then the
map L — R, [M] — [M,] is an injection. Since every element N of R is a semisimple
K[z*!]-module (by [7, Theorem 1]) and K is an algebraically closed field, it is also a
simple A(w)-module since z - : N — N, n > zn is a bijection. Therefore, the map L — R
is a bijection. ]

The case y = 0. In Theorem 6.5, we consider the case when y = 0. We denote by
K*/(g?) the factor group of the multiplicative group K* by the subgroup (¢?) = {¢?' |i €
7.} generated by the element {¢?). Elements of the group K*/(g?) are cosets O = A{g?)
where A € K*. For each coset 9, we fix an element, say Ag. So, 9 = Ag (q?).
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Theorem 6.5. Suppose that K is an algebraically closed field. Let A = A(w, 8,0) where
o #0, 8 #0and w € K. Then:

(1) /T/(B)(z-torsionfree, K [z]-torsion)={Mg=A(0),/A(0),(z —ro) | O € K*/(¢?)}
where A is an arbitrary but fixed element of the coset O = Lo {q?).
(2) Forw # 0,

—

A(w)(z-torsionfree, K|z]-torsion)
={L = A(0):/A(0):(z = (¢* = Da " w, e),
L' = A(®):/A(0):(z = ¢*(¢* = D", f),
Mo = A(w):/A(®):(z = Ao)
|0 €K*/(¢%).0 # (¢ — D" 'w(¢?)}

where Lo is an arbitrary but fixed element of the coset O = Ag{q?).

All modules in statements (1) and (2) are infinite dimensional.

Proof. Since y =0, a, = —¢*(q> — 1) laz(z — (¢ — 1)a"'w). Now, the theorem fol-
lows from Theorem 6.4 and [7, Theorem 1]. [

Corollary 6.6. Suppose that K is an algebraically closed field. Let A = A(a, B,0) where
o # 0and B # 0. Then the zero module is the only finite dimensional A-module.

Proof. The corollary follows from Theorem 6.1, Theorem 6.3 and Theorem 6.5. ]
The case y # 0. It remains to consider the case when y # 0.

Lemma 6.7. Suppose that K is an algebraically closed field, o, B,y € K* and v € K.
1
Let A'O = ((11213+)11)2 Then: .
(1) both (necessarily nonzero) roots of the polynomial a, = —qqz—_"‘lz2 + q*wz —

(qq;fﬂly)z belong to a single coset in K* /(q?) iff either

(@)  # 0, and in this case either » = o = + 1+q1 ((qzaﬂl)),qﬁ)%’ i=1, ({AF,
2 1)t
qZZ)&ii} are two distinct roots of the polynomial Ay where /\l-i = %

ori =0, char(K) # 2, v = a)gE = :I:qz_1

is a double root of the polynomial aai)o ), or

1 2_
G2 (A5 =15

(b) w =0, and in this case char(K) = 2 and Ag is a double root of the polynomial
Ay-

(2) The polynomial a, has a double root iff either w = wgt =

W E
char(K) # 2 and in this case A\ = % = tA¢ is the double r00t of the

polynomial dypx Or © = 0, char(K) = 2 and Ag is the double root of ay.

(3) If char(K) # 2 then the elements {a)i+, w; | i = 0} are distinct. If char(K) = 2

then the elements {w; | i = 1} are distinct and nonzero where w; = wl-+ = w;.

2 aﬂy )—
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Proof. (1) The polynomial a,, = —qqzz_al (2= (> - Dalwz + (qzﬂfyl)a) has two neces-
sarily nonzero roots (since B, y € K*) that may coincide. Both roots belong to the same
coset in K*/(g?) iff they belong to the set {1, g% A} for some A € K* and i > 0 iff
1+ q2i))t =(¢> - Da"'wand ¢* 12 = (qzﬂyl)a iff either @ # 0 and in this case either
A= (({1 +_;,))"; and w = + Hz'ql (((12"“%)2 for some natural number i > 1 ori = 0 and
char(K) # 2 (since otherwme 0=21= (q — Da~!w # 0, a contradiction); or @ = 0
and in this case char(K) =2 and A = ((q2 1)‘x)l = Ag is a double root of ay.

(2) Statement (2) follows from statement (1).

(3) Statement (3) follows from the following fact: a)ii = a)j’-k where x € {4, —} for
some i # jiff ¢! +q7F = (¢’ +q7/) where x = +iff (¢! F¢/)1 Fq D) =0
iff q2 is a root of unity, a contradiction. [

By Lemma 6.7, we have two cases: char(K) # 2 and char(K) = 2. In each case, let
us summarize some facts that will be used in Theorem 6.8 and Theorem 6.10 and their
proofs, respectively. We keep the notation of Lemma 6.7.

Suppose that char(K) # 2. Then the following holds.

* The polynomial a, has double root iff w € {a)0 , g }. In this case, a)aL # w, and for
o = wj ,A(“,—L = £ is the double root of a, & and )L+( 2) # A5 (q?)-

* The polynomial a,, has two distinct roots that belong to the same coset in K*/(g?) iff
w € {a)Jr o |i= 1} In this case, the elements of the set {a);r,wl._ | i = 1} are distinct
and for each o= a) {)t , QZiAii} are the two distinct roots of the polynomial a =

e The polynomial a, has two (necessarily distinct) roots that belong to distinct cosets
in K*/(q?) iff o € K* \ {a)l‘", w; | i = 0}. In this case, for each w let A, ; and A >
be the two (distinct) roots of the polynomial a,.

e The elements {a)l.+ ,w; | i = 0} are distinct.
Suppose that char(K) = 2. Then the following holds.

* The polynomial a,, has double root iff @ = 0. In this case, A¢ is a double root of the
polynomial ag.

+ The polynomial a,, has two distinct roots that belong to the same coset in K*/(g?)
iff w € {w; | i = 1}. In this case, the elements of the set {w; | i = 1} are distinct
nonzero elements and for each @ = w;, {A;, g% A;} are the two distinct roots of the
polynomial a,,, .

e The polynomial a, has two (necessarily distinct) roots that belong to distinct cosets
in K*/(q?) iff o € K* \ {0, ; | i = 1}. In this case, for each w let A, 1 and A, » be
the two (distinct) roots of the polynomial a,.

e The elements {0, w; | i = 1} are distinct.

For each coset @ € K*/(g?), we fixed a representative Lo € O. So, @ = Ag{(q?).
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The set A/(w\) (z-torsionfree, K[z]-torsion) where o, 8, y € K* and char(K) # 2. The-
orem 6.8 gives an explicit description of the set A(w)(z-torsionfree, K[z]-torsion) in the
case where «, 8, y € K* and char(K) # 2.

Theorem 6.8. We keep the notation of Lemma 6.7. Suppose that K is an algebraically
closed field with char(K) # 2. Let A = A(a, B, y) where o, B,y € K*, and

M(w)

Then:

—

= A{(aT) (z-torsionfree, K[z]-torsion) = A(w), (K[z]-torsion) (Theorem 6.4).

(1) suppose that w € {a)(')" , g }, i.e., the polynomial a o has the double root )Lf)t =

@

3

£ where Aoy = ((qzﬂfyl)a)%. Then
Mo = {L1 (@), L-(0§). Mo(@y) | 0 € K*/{g?). O # Ay {q®)}
where

L_(0f) = A(wf)z/ A(wi)z(e,z — AT),
Li(0f) = A(wf):/A(wi): (f.z — ¢*AF),
Mo (0f) = A(0y):/ A(wi):(z — Lo).

All modules in M+ are infinite dimensional.

Suppose that v € {a)l+, w; | i = 1}, i.e., the polynomial Ay has two distinct roots
{)tii, qzikii} that belong to the same coset in K* / (q?). Then for v = a)ii,
Mz = { L4 (@), L-(0f), L(@]), Mo(@") |0 €K*/(q?) and O # A (q?)}

where

L_(0]) = A(@]):/ A(@])z(e. 2 = A]),

Li(oF) = A(07),] A(0F),(f.z — g?TTVAE),
L(of) = A0)z/ A@):(e.2 — ¥ AF, ),

Mo(0F) = A(0F),/ A(0F).(z — Lo).

Foralli = 1, dimg (L (a)li)) =i and the module L(a)ii) is the only finite dimen-
sional module in the set M x.

Suppose that w € K* \ {a)ijE | i = 0}, i.e., the polynomial a, has two (distinct)
roots, say Ay1 and Ay 2, that belong to distinct cosets (Ay 1(q?) # rw2(q?)).

Then

Mo = {L_(0,20,i), Li(®,1e,i), Mo(®)
li =1,2and O € K*/{g*) \ {ho1(0%): ho2 (@)}
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where

L_(0,Aei) = A(0):/A(®)z(e,2 — i),
Li(w, ;) = A®):/A®):(f.z = ¢*hei),
Mo (w) = /T(a))z//T(a))z(Z — o).

All modules in M, are infinite dimensional.

The set A (fin. dim.) where o, 8, y € K* and char(K) # 2. We denote by A (fin. dim.)
the set of isomorphism classes of simple finite dimensional A-modules. Corollary 6.9
classifies all simple finite dimensional A(e, B, y)-modules where «, 8,y € K* and char(K)
# 2. It shows that for each natural number i > 1 there are only 2 simple non-isomorphic
A-modules of dimension i.

Corollary 6.9. We keep the notation of Theorem 6.8. Suppose that K is an algebraically
closed field with char(K) # 2. Let A = A(w, B, y) where a, B,y € K*. Then

A(fin. dim.) = {L(w), L(w;) | i =1,2,...}
and dimg (L(w)) =i foralli = 1.
Proof. The corollary follows from Theorem 6.8 and [7, Theorem 1]. [

The set A (w) (z-torsionfree, K[z]-torsion) where o, 8, y € K* and char(K) = 2. The-
orem 6.10 gives an explicit description of the set A(w) (z-torsionfree, K[z]-torsion) in the
case where «, 8,y € K* and char(K) = 2.

Theorem 6.10. We keep the notation of Lemma 6.7. Suppose that K is an algebraically
closed field of char(K) = 2. Let A = A(w, B, y) where a, B,y € K* and

Mg, 1= A(w)(z-torsionfree, K[z]-torsion) = mz (K[z]-torsion) (Theorem 6.4).

Then:
(1) suppose that w = 0, i.e., the polynomial ay has double root Ay = ((qzﬂfyl)a)%.
Then
Mo = {L+(0), L_(0), Mo (0) | O € K*/(q?), O # Ao(q*)}
where

L_(0) = A(0):/A(0)z (e, z — Ao),
L4(0) = A(0):/A(0):(f.z — ¢*o),
Mo(0) = A(0):/A(0):(z — Ao).

All modules in My are infinite dimensional.



V. V. Bavula 1068

(2) Suppose that w € {w; | i = 1}, i.e., the polynomial a,, has two distinct roots
{Ai, g% A;} that belong to the same coset in K* /(q?). Then, for o = w;,

Mo, = {Ly (i), L_(w;), L(w;), Mo(w;) | O € K*/(q*) and O # Ai{q”)}
where

L_(0;) = A(wi)z/ A(wi)z (e, 2 = Ai),
Ly (@) = A@1)z/ Az (f.z = 4> D2y),
L(wi) = A(@i)z/ A@i)z (e, 2 — g% A, f7),
Mo (wi) = A(i)z/ A(@i)z(z = Ao).
Foralli = 1, dimg L(w;) =i and the module L(w;) is the only finite dimensional
module in the set M.

(3) Suppose that w € K* \ {w; | i = 1}, i.e., the polynomial a, has two (distinct)
roots, say Ay.1 and Ay 2, that belong to distinct cosets in K*/{(q?), (Aw.1(q?) #
Aw.2(q?)). Then

Ma) = {L*(a)vkw,i)v LJ,»((D,A,w’i), M@(C{))
li=1,2and O € K*/{g*) \ {20,1{d?), 2o2(q?)}}

where

L_(w, Aw,i) = /T(a))z/g(w)z(ev Z— Aco,i)»
Li(@,hpi) = A(@)z/A(@):(f,2 = ¢*Rwi),
Mo () = A(w);/A(w);(z — Lo).
All modules in M, are infinite dimensional.

Proof. The theorem follows from [7, Theorem 1] and Lemma 6.7. [

The set A (fin. dim.) where o, 8, y € K* and char(K) = 2. Corollary 6.11 classifies
all simple finite dimensional A(«, 8, y)-modules where «, 8,y € K* and char(K) = 2. It
shows that for each natural number i > 1 there is only one simple A-module of dimension i
(up to isomorphism).

Corollary 6.11. We keep the notation of Theorem 6.10. Suppose that K is an algebraically
closed field with char(K) = 2. Let A = A(w, B, y) where a, B,y € K*. Then

A(fin. dim.) = {L(w;) | i = 1,2,...}
and dimg (L(w;)) =i foralli = 1.

Proof. The corollary follows from Theorem 6.10 and [7, Theorem 1]. [
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7. Classification of prime ideals for the algebra A(«, 8, y) where
a#0and g #0

In this section, K is an algebraically closed field and A = A(w, B, y) where @ # 0 and
B # 0. For the algebra A, the prime, completely prime, primitive and maximal ideals
are classified. The results and their proofs are different in the following cases: y = 0;
y # 0 and char(K) # 2; and y # 0 and char(K) = 2, (see Theorem 7.1, Theorem 7.4 and
Theorem 7.6).

Since B8 # 0, (Zi) = Aforalli = 1, by Lemma 3.2. Now, by (13) and (14),

Spec(4) = {0} | | Spec(A(w).). (28)
weK

Since B # 0, (z') = A for all i > 1, by Lemma 3.2. Then (z) = (1) for all i > 1 in
A(w) = A/(Q — w). Now, by Proposition 3.1, the map

Spec(A(w)) — Spec(A(@)z).  p+> p: (29)

is a bijection with the inverse q — A(w) N g where p, is the localization of the prime
ideal p at the powers of z. By Proposition 3.5 (1), the element z is a regular non-unit of
the algebra A(w), and so A(w) € A(w);. By (15), A(w); = A, (0) =K[zF][e, 0, a0]
and a,, # 0 for all w (since a # 0). Therefore, the algebra A(w); is a domain, hence so
is the algebra A(w) since A(w) € A(w). So, the ideal (Q — w) of the algebra A is a
completely prime ideal, and so,

{0.(2 —w) | w € K} C Spec, (A). (30)

The set T := K[2] \ {0} is a denominator set in A, that consists of central regular
elements. Then

ACA, =A, cT'4, =T7'A, = K(Q)[zF][e. f:0.4d] (31)

where K(Q2) = T7'K[Q] is the field of rational functions in the variable  over K and
the algebra T='4, = T~'A, is the GWA K(Q)[z*"][e, f; 0, a] with coefficients in the
Laurent polynomial ring K(2)[z, z71] over the field K ().

The set Spec(A(a, 8,0)). The next theorem is a description of prime, maximal, primitive
and completely prime ideals of the algebra A(«, 8, 0). For an algebra R, we denote by
I(R) the set of ideals of R.

Theorem 7.1. Suppose that K is an algebraically closed field. Let A = A(a, B, 0) where
o # 0and B # 0. Then:

(1) Spec(A) = {0, (L — w) | w € K}. In particular, every nonzero prime ideal meets
the centre.

(2) Max(4) = Prim(4) = {(Q — ) | w € K}.
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(3) Spec.(A) = Spec(A).
(4) The algebra A/(2 — w) is a simple Noetherian domain for all w € K.

(5) The map I(A) — I(K[]), I — I NK[Q] is a bijection with the inverse map
a > Aa. In particular, all ideals of the algebra A commute (1J = JI) and every
ideal I is a unique product of maximal ideals (I = [];_;( — ;)™ where u; €
Kandn; = 1).

Proof. (4) Recall that, A(w); = A (w) = K[zF][e, f:0.a,] is a GWA (by (15)) where
qqz_“l z + q?w). Using the sirEplicity criterion for generalized Weyl algebras [1,
Theorem 4.2], we see that the algebra A(w), is simple for all ® € K. Then, statement (4)
follows from (29) and Lemma 3.6.

(1) Recall that A, € T~'4,. By the simplicity criterion for GWAs [1, Theorem 4.2],
the GWA T~!A4; is a simple algebra. Hence, any nonzero prime ideal p of the algebra
A contains a non-scalar polynomial in the variable Q, say ¢ = [];_; (€2 — w;)" where
w1, - .., wy, are distinct roots of 7. Hence, (2 — w;) C p for some 7, by statement (4). The
ideal (€2 — w;) is a maximal ideal, by statement (4). Therefore, p = (2 — w;), as required.

(2) Statement (2) follows from statement (1).

(3) Statement (3) follows from statement (4).

(5) Statement (5) follows from statement (1). ]

ay = z(—

The set Spec(A («, B, y)) where y # 0. Recall that, for eachw € K, A(w) =A/(Q — w).
The algebra A (w) = K|[z][e, f;0,a,] is a GWA where o (z) = ¢2z. Further, by Propos-
ition 2.2 (1), (2), A(w) € A(w); ~ A,/( — w),. We have seen already that A(w) C
A(w);. By Proposition 2.2 (2), A, = A, hence A(w), = A(w), and so

A(w) € A(w) € A(w); = A(0),. (32)

Lemma 7.2. (1) Suppose that char(K) # 2. We keep the notation of Theorem 6.8.
Then
Ext}&(L(a)ii), L(a)l-i)) =0 foralli = 1.

(2) Suppose that char(K) = 2. We keep the notation of Theorem 6.10. Then
Extl (L(w). L(w;)) =0  foralli > 1.

Proof. We give a proof of both statements simultaneously. Let L = L(a)ii) if char(K) # 2,
(respectively, L = L(w;) if char(K) = 2). Suppose that Ext}% (L, L) # 0, i.e., there exists
a non-split sequence of A-modules

O—-L—>M—L—0,

we seek a contradiction. Notice that the A-module M is an epimorphic image of the A-
module M":=A/A(e, (z — g* AF)2, f1), (respectively, M":=A/A(e, (z — ¥ 1)?, f1)).
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Since in both cases dimg (M’) = 2i, we must have M = M’, as dimg (M) = 2dimg (L) =
2i. Notice that
i—1
M =@ fIK[E)/ (2 —q¥AF)PT where T =14 Ae, (z — ¢*' A7), f7).
j=0
respectively,

i-1
M =P f/K[z]/(z - q*A)* T where T =1+ A(e. (z — > 4%, f1)).

j=0
In both cases, 0 = el and s0 0 = fel = a(z, Q)] = a(q2i)kii, Q)1, (respectively, 0 =
fel = a(z, Q)1 = a(g*1;, Q)1). Hence, Q@ = a)ijE (respectively, 2 = w;). Therefore,
Q- a)i)M " = 0 (respectively, (2 — w; )M’ = 0). This means that the A-module M ! is
also an A((ui) module (respectlvely, A (w;)-module). By Proposition 7.3 (1), (bﬂ:)2
where b = anng, :t)(L((,() )) (respectively, by Proposition 7.5 (1), (b;)2 = b; Where
b, = = anng,, )(L (a),))) So, in both cases M ~ L & L, a contradiction. [

For a natural number n = 1, we denote by M, (K) the algebra of n x n matrices over
the field K. There are two cases to consider: char(K) # 2 and char(K) = 2.

The case char(K) # 2.
Proposition 7.3. We keep the notation of Theorem 6.8. Suppose that K is an algebraically
closed field, char(K) # 2 andi € Ny ={1,2,...}. Then:
(1) the simple i-dimensional E(a)ii)—module L(a)ii) is also a simple A(a)ii)—module
(via the restriction of scalars (32)),

(6;)> =0  and  A(w)/bi ~ M;(K)

where Bi = ann&(wi)(L(a)i))
(2) Let I:)jE be the pre-image of the ideal I:)jE under the epimorphism A — A(a) ),
o > a+ (2 — o). Then (bF)? = bf and A/bF ~ A(wF)/bF ~ M;(K).

Proof. (1) The algebra A (w) = K|[z][e, f;0.a,] isa GWA. By [7, Theorem 1], the simple
i -dimensional A(a)ii)-module L(a)ii) is also a simple A(a)ii)-module (by restriction since
A(w;) € A(w;)). Then A(wi)/gjE ~ M;(K). By [8, Corollary 4], (Bi ) = Bi (since
the polynomial a + € K[z] has degree 2), where B -, 18 the localization of the 1deal bi of
the algebra A(a)li) at the powers of z. So,

0= Db;%/(6;,)% = (b]/(6;7)?),.

We must have (bF)2 = bi. Suppose that this is not the case, i.e., N := bi/(bi)2 # 0,
we seek a contradiction. Then the A(a)ii)-module N is annihilated by the ideal bii. Since,
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A(a)i) / Bi ~ M;(K), the A(wii)—module N is isomorphic to L(wii)", a direct sum of

n copies of the A(a) )-module L(a)l.i) for some n = 1. Since the map z - : L(a)ii) —

L(a)li), v > zv is a bijection, soisthemapz - : N — N, u > zu. Therefore, 0 £ N =

N, =0, a contradiction. Ideals of the GWAs like the GWA &(wii) , were classified in [8].
(2) By the very definition of the ideal bii,

A/bE ~ A(wF) /b ~ M;(K).
By Lemma 7.2 (1), (B?E)2 = bii. ]

The next theorem is a description of prime, maximal, primitive and completely prime
ideals of the algebra A(c, B, y).

Theorem 7.4. Suppose that K is an algebraically closed field and char(K) # 2. Let A =
A(a, B, y) where o # 0, B # 0and y # 0. Then:
(1) Spec(4) = {0,(Q —w) | @ e K} U {aF |i = 1}, where af = anng(L (o)), see
Theorem 6.8, (aij[)2 = aii and A/al.jE ~ M;(K), the algebra of i x i matrices over
K. The containments of prime ideals of the algebra A are given by the diagram
below:
a; ay + +

i ay a;

| | | |
(=) (Q—0]) {(Q-0) |0 e K\L} (Q—0]) - (2 — o)

0

wherei > 1,1L = {a)jE i = l}anda)i :I:H'q1 (%)% (all numbers inIL
are distinct, Lemma 6.7 (3)).

(2) Max(4) = Prim(4) = {(2 — o) | e K\ L} U {ai |i > 1}.

(3) Spec.(4) ={(Q—w) |weK} U {a1+,a1_}.

(4) The algebra A(w) is a Noetherian domain for all w € K.

(5) The algebra A(w) is simple iff o ¢ L = {0 | i = 1}.

(6) Foreachw = a)ijE wherei = 1, the ideal @ ai = al?t/(Q - a)ii) = anng(wii)(L(a)ii))
is a unique proper ideal of the algebra /T(a)i) (Ei)2 = Ei /T(w,.i)/aii ~ M; (K),

= (b}) = A(0?)bF A(0F) and bF = A(wF) Nait
(7 For alli =1, (aF)? = af and A/ ~ M;(K).

(8) Every nonzero prime ideal meets the centre of A.

Proof. (4) Statement (4) is obvious.

(5) Since B #0, (z') = (1) foralli > 1in A(w) (Lemma 3.2). By (29), Spec(4(w)) =
Spec(A(w)). Now, statement (5) follows from the simplicity criterion [1, Theorem 4.2]
for the GWA A(w); = A(w);.
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(6) Let A = K(wii) and 4 = /T(a)ii). The inclusion of algebras A C A yields the
inclusions
b cAna c(bf) caf
and the algebra homomorphisms (Lemma 7.3)

M;(K) ~ A/bE — A/ANnaE — A/(6F) - A/(@F) ~ M;(K).

Clearly, all homomorphisms are isomorphisms, and so the inclusions above are equalities.
By Proposition 7.3 (1), (bF)2 = b. Now,

@ = (67)" 2 () = &) =7
and so (ai)2 i
(7) By Prop0s1t10n 7.3 (2), (bii)2 = bii. By statement (6), Eii = (bii), and so aii =
(bli) Now,
(@52 = ((67))” 2 (%) = (b)) = off,
and so (ai)2 i
(1) Statement (l) follows from statements (5)—(7) and Lemma 3.6.
(2) Statement (2) follows from statement (1).
(3) Statement (3) follows from statement (1), (30) and statement (7).
(8) Statement (8) follows from statement (1). ]

The case char(K) = 2.

Proposition 7.5. We keep the notation of Theorem 6.10. Suppose that K is an algebraic-
ally closed field, char(K) = 2andi € Ny = {1,2,...}. Then:
(1) the simple i -dimensional A(w;)-module L(w;) is also a simple A (w;)-module (via
the restriction of scalars (32)),

(b))% = b; and  A(w;)/b;i = M;(K)

where b; 1= anng . (L(®;)).
(2) Let b; be the pre-image of the ideal b; under the epimorphism A — A(w;i), o
o + (2 — ;). Then b7 = b; and A/b; ~ A(w;)/b; ~ M;(K).

Proof. (1) The algebra A(w) = K|[z][e, f;0.a,] isa GWA. By [7, Theorem 1], the simple
i-dimensional A(w;)-module L(a),) is also a simple A (w;)-module. Then A (w;)/b; ~
M; (K) By [8, Corollary 4], (b, 2)? = b, - (since the polynomial a,,, € K[z] has degree 2),
where B, - is the localization of the ideal b; of the algebra A (w;) at the powers of z. So,

0 =b;/(biz)* = (b:/(6;)?),.

We must have (b;)2 = b;. Suppose that this is not the case, i.e., N := Bi/(B_i)z #0,
we seek a contradiction. Then the A (w;)-module N is annihilated by the ideal b;. Since
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A(wi)/b; ~ M;(K), the A(w;)-module N is isomorphic to L(w;)", a direct sum of n
copies of the A (w;)-module L (w;) for some n = 1. Since the map z - : L(w;) — L(w;),
v > zv is a bijection, soisthemapz- : N — N, u — zu. Therefore,0 2 N = N, =0,
a contradiction. Ideals of the GWAs like the GWA A(wi) , were classified in [8].

(2) By the very definition of the ideal b;,

A/b; ~ A(w;)/b; ~ M;(K).
By Lemma 7.2 (1), bi2 = b;. ]

The next theorem is a description of prime, maximal, primitive and completely prime
ideals of the algebra A(c, 8, y) in the case where «, 8, y € K* and char(K) = 2.

Theorem 7.6. Suppose that K is an algebraically closed field and char(K) = 2. Let A =
A(a, B,y) whereao #£ 0, B # 0 and y # 0. Then:

(1) Spec(A) ={0,(QR —w) |w € K} U {a; | i = 1}, where a; = anng(L(w;)), see

Theorem 6.10, ai2 = a; and A/a; ~ M;(K), the algebra of i x i matrices over

K. The containments of prime ideals of the algebra A are given by the diagram

below:
aj a;
{(Q@-—w)|weK\L}  (Q-w1) - (Q—|wi)
| ——
wherei > 1, L ={w; |i =1} and w; = lq"z'zzli ((qzoiﬁ))'qu)% (all numbers in 1L are

distinct, Lemma 6.7 (3)).

(2) Max(A) =Prim(4) ={(Q —w) |w e K\ L} U{a; | i = 1}.

(3) Spec,(4) = {(R —w) | © € K} L fay).

(4) The algebra A(w) is a Noetherian domain for all w € K.

(5) The algebra A(w) is simple iff o ¢ L = {w; | i = 1}.

(6) For each w = w; where i = 1, the ideal_a,- =a; /(2 — a),-)_: ann g, (L(®;))
is a unique proper ideal of the algebra A(w;), (@;)? = a;, A(w;)/a; ~ M;(K),
a; = (b;) = A(wi)b; A(w;) and b; = A(w;) N a;.

(7) Foralli = 1, ai2 =qa; and A/a; ~ M;(K).

(8) Every nonzero prime ideal meets the centre of A.

Proof. (4) Statement (4) is obvious.

(5) Since B #0, (z') = (1) foralli > 1in A(w) (Lemma 3.2). By (29), Spec(4(w)) =
Spec(A(w)). Now, statement (5) follows from the simplicity criterion [1, Theorem 4.2]
for the GWA A(w); = A(w);.
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(6)Let A = A(w;) and A = g(w,-). The inclusion of algebras AcA yields the inclu-
sions
b, CANa; C(b) Ca
and the algebra homomorphisms (Lemma 7.3)

M;(K)~A/b; > A/ANa — A/(6;) - A/@;) ~ M;(K).

Clearly, all homomorphisms are isomorphisms, and so the inclusions above are equalities.
By Proposition 7.3 (1), bl.z = b;. Now,

@ = ((6)* 2 ((6?) = (b)) = @,

and so a7 = @;.

(7) By Proposition 7.3 (2), 51-2 = b;. By statement (6), a; = (B,-), and so a; = (b;).
Now,

o? = ((6:))” 2 ((5:)%) = (b;) = o,

and so a? = qj.
(1) Statement (1) follows from statements (5)—(7) and Lemma 3.6.
(2) Statement (2) follows from statement (1).
(3) Statement (3) follows from statement (1), (30) and statement (7).
(8) Statement (8) follows from statement (1). ]

8. Applications and corollaries

In this section, applications and corollaries of the classifications are given. In particular,
proofs of Theorems 1.1, 1.2, 1.6, 1.5 and 1.3 are given.

Proof of Theorem 1.2. (1) If I is a prime ideal then I N Z(A) # 0: By Theorem 1.1,
there are only 4 cases to consider. Now, statement (i) follows from Corollary 4.2 (4),
Corollary 5.3 (4), Theorem 7.1 (1), Theorem 7.4 (8) and Theorem 7.6 (8).

(i) If I is a nonzero ideal then I N Z(A) # 0: Let n = u(/) be the prime radical of 7,
e, n=) pemin(z) P 18 the intersection of minimal prime ideals over /. The algebra A
is Noetherian, hence there is a natural number s > 1 such that

IDn'D ]_[ PS = P,
Pemin(l)

the order of multiples in the product is arbitrary. The algebra A is a prime algebra, hence
P # 0. Then
P2@:= [] (PNZM) #o.
Pemin(l)
since the centre Z(A) = K[2] is a domain and all P N Z(A) # 0. Then I N Z(A) # 0,
since I N Z(A) 2 Q # 0. |
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Proof of Theorem 1.1. By the cyclic permutation symmetry, we have 4 cases to consider
for («, B, y): (0,0,0), (2, 0,0), («, B,0) and («, B, y) where «, 8, y € K*. Using the
change of generators of the algebra A = A(«, B, y) from (x, y, z) to (Ax, wy, vz) where
A, u, v € K* and the fact that VK C K we may assume that each of the nonzero scalars
o, B and y is 1. So, we may assume that (&, B, y) is one of the four options (according
to rk(4) = 0, 1,2 and 3): (0,0, 0), (1,0,0), (1,1,0) and (1, 1, 1). Suppose that K is an
algebraically closed field. In these cases, the posets (Spec(A4), C) are not isomorphic (use
the description of (Spec(A4), €)). Therefore, the algebras are not isomorphic.

Suppose that K is not necessarily an algebraically closed field and K be its algebraic
closure. If two algebras in the list of four above are isomorphic over K then they are
automatically isomorphic over K and so they must coincide. ]

Proof of Theorem 1.6. The theorem follows from the classification of simple A-modules
(by Theorem 7.1 (4), if rk(A) = 2 then all nonzero A-modules are infinite dimensional).
[ ]

Proof of Theorem 1.8. The statement of Theorem 1.8 holds for all ranks rk(4) = 0, 1,2
and 3, see the classifications of prime ideals for each rank above. ]

Proof of Theorem 1.7. Let A = A(«a, B, y). If tk(A) = 0, 1 or 2 then every prime ideal of
A is completely prime (Corollary 4.2 (3), Corollary 5.3 and Theorem 7.1 (3)). If rk(A) =3
then the result follows from Theorem 7.4 (3) and Theorem 7.6 (3). [

Proof of Theorem 1.5. Let A = A(w, B, y). If tk(A) = 0, 1, then the category of finite
dimensional A-modules is not semisimple (use the fact that the category of finite dimen-
sional K[¢]-modules is not semisimple). If rk(A4) = 2, the category of finite dimensional
A-modules contains only zero module (Theorem 1.6). Hence, it is not semisimple. Sup-
pose that rk(A4) = 3. To finish the proof of the theorem it suffices to show that, for each
o € K, the category ¥, of finite dimensional A-modules is semisimple provided ¥, # 0
where M € %, iff dimg (M) < oo and (2 —w)"M =0forsomen =n(M)=1.If ¥, A0
then the category ¥, contains a unique simple module, say U = U,, (Theorem 6.8 (2) and
Theorem 6.10 (2)). Since its annihilator a = anny(U,) is an idempotent ideal (a? = a)
(Theorem 7.4 (1) and Theorem 7.6 (1)) such that A/a ~ M, (K) is the n x n matrix
algebra over K where n = dimg (U), the category %, is a semisimple category. |

The algebra U = U, (sl2). If g> # 1 then the algebra

K—-K!
q9-q7" >
is isomorphic to the algebra A = A(a, B.y:¢?); wherea = 1 — g%, B =1—¢ 2 and
y = 1 — ¢? via the isomorphism

U,(sly) = K(Kil, E.F | KE =q¢’EK, KF =q %FK, [E.F] =

1—zx y—z1
; F
1—g72 q—q7!

and x> K '+ (1—-¢>)K'E,y—> K ' 4+ (q— ¢ ")F and z+ K is its inverse, [19].

Uy(sly) — A, K+ z, E —
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The algebra U, (sl,) is a localization A, of the algebra A = A(a, B, y; ¢*) at the
powers of the element z with rk(A) = 3. It follows from Theorem 1.5 that the category of
finite dimensional Uy (s[,)-modules are semisimple (this result is known). It follows from
Theorem 1.3, that the ideals of the algebra U, (sl,) commute and each ideal of U, (s]>) is
a unique product of primes (Theorem 8.1).

Theorem 8.1. Suppose that K is an algebraically closed field, q* is not a root of unity
and U = Uy(sl,). We keep the notation of Theorem 6.8 and Theorem 6.10. Then.:
(1) the algebra U is isomorphic to the localization A, of the algebra A = A(1,1,1)
at the powers of the element z.
{(0,(QR—-w), |weK}Uu {(al?t)z |i =1}, ifchar(K) # 2,
{0, Q@ -w): |o eK}u{(ai); [{ =1}, ifchar(K) = 2.
(3) Suppose that char(K) # 2. Then the ideals of U commute and every nonzero ideal
I of U is a unique product (up to permutation) of prime ideals,

I=J]@-o)@ Tl [,

wekK i=1 j=1

(2) Spec(A;) = {

where n(w) € N, n;,m; € {0, 1} and all but finitely many numbers n(w), n; and
mj are equal to zero.

(4) Suppose that char(K) = 2. Then the ideals of U commute and every nonzero ideal
I of U is a unique product (up to permutation) of prime ideals,

I=]]@=o)y@- @)%

wekK i=1

Proof. The algebra U is a particular case of GWAs that are considered in [9] and the
theorem is a particular case of [9, Theorem 1]. [

For an algebra R, we denote by I (R) the set of its ideals.

Proof of Theorem 1.4. (1) Statement (1) follows from Theorem 7.1 (5) (when y = 0),
statement (2) (when y # 0, char(KK) # 2) and statement (3) (when y # 0, char(K) = 2).

(2) and (3) We prove statements (2) and (3) simultaneously. Recall that A, = U =
U, (sl,) for which analogues of statements (2) and (3) hold (Theorem 8.1). Let I be a
nonzero ideal of the algebra A. By Theorem 8.1 (3), (4),

Iz =g [T TT@)?  if char(K) # 2
iz1 izl
(respectively, I, = g - ]_[121((1,-)2" if char(K) = 2) for some monomial polynomial g €

K[2]. Since A C Az and I C I, N A, we see that g € 1. Notice that

A= P KlQlx'y/Fca. = P Ky
i,j,k=0, i,j=0,keZ,
ijk=0 ijk=0
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Hence, /g~ ! is an ideal of A4 such that (Ig~!) = I,g'. So, replacing the ideal I by the
ideal /g~! we may assume that g = 1, in both cases.

Let min(/) and min(/;) be the sets of minimal primes of the ideals / < Aand I, < A,
over the ring A and A, respectively. By (29), the map

min(/) — min(/;), PPz

is a bijection with the inverse g — A N q. Clearly, min(/;) = {(ai+)z, (aj_)z | ni #0,
mj # 0} (respectively, min(/;) = {(a;); | n; # 0}). Hence, min(/) = {ai+, a; |ni #0,
m; # 0} (respectively, min(/) = {a;, | n; # 0}) since (ai+)z NA= ai+ and (a;); N
A = aj, by the maximality of the ideals ai+ and a (respectively, since (aj)); N A =aqaj,
by the maximality of the ideal a;). The algebra A is a Noetherian algebra. Hence, the
ideal I contains a product of powers of its minimal primes. The minimal primes of / are
idempotent ideals and they commute. Hence,

I=T]eH" TTe)™

i=1 j=1
(respectively, I = [];5 a;"), as required. [

Proof of Theorem 1.3. 1f the rank r of the algebra A(w, 8, y) is 0 or 1, then it follows at
once from the descriptions of prime ideals that not all of them commute. If r = 2, 3 then
the ideals commute and each ideal is a unique product of prime ideals, by Theorem 1.4. m
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