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On maximally non-factorial nodal Fano threefolds

Ivan Cheltsov, Igor Krylov, Jesus Martinez-Garcia and Evgeny Shinder

Abstract. We classify non-factorial nodal Fano threefolds with 1 node and class
group of rank 2.

1. Introduction

Let X be a Fano threefold that has at worst isolated ordinary double points (nodes).
Then both the Picard group Pic.X/ and the class group Cl.X/ are torsion-free of finite
rank, and rk Cl.X/ � rk Pic.X/ is known as the defect of the threefold X [13, 18, 19, 31].
If the defect is zero, we say that X is factorial [6, 7]. Factoriality imposes significant
constraints on the geometry of the Fano threefold [8, 9, 39, 50].

It is well known that the defect of X does not exceed the number of its singular points
(see, e.g., Corollary 3.8 in [30]). If

rk Cl.X/ � rk Pic.X/ D jSing.X/j;

then we say that X is maximally non-factorial. This property is also called Q-maximal
non-factoriality; see Proposition 6.13 in [36] and Proposition A.14 in [37] for various
ways to define it for a nodal Fano threefold X .

By definition, if X has a single node, then X is maximally non-factorial if and only if
it is non-factorial. Let us give the simplest example of a non-factorial threefold with one
node.

Example 1.1. Let X be the quadric cone in P4 with one node. Then X is a maximally
non-factorial nodal Fano threefold. Let � W zX ! X be the blow up at the singular point of
the threefold X , and let E be the �-exceptional surface. Then

E Š P1 � P1 and EjE Š OE .�1;�1/;
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and there exists the following commutative diagram:

zX

'2

  

'1

~~
�

��

X1
�1

~~

�1

  

X2
�2

~~

�2

  
P1 X P1

;

where '1 and '2 are contractions of the surfaceE to curves such that '2 ı '�11 is an Atiyah
flop, both �1 and �2 are small projective resolutions, and both �1 and �2 are P2-bundles.

While maximally non-factorial nodal Fano threefolds are important in birational geo-
metry because of their rich geometry, they also play a central role in the recent study of
the derived categories of coherent sheaves for singular varieties (this in turn allows the
study of the birational geometry with a very different toolset, such as stability conditions).
Indeed, maximally non-factorial nodal Fano threefolds are very special from the perspect-
ive of derived categories of coherent sheaves; in particular, their derived categories can
often be separated into a smooth proper part and a singular part [30, 36, 37, 43, 54].

Let us explain the connection to derived categories in some more detail. In [30,43,54],
the authors, inspired by the work of Kawamata [33], introduced and studied maximal
non-factoriality of del Pezzo threefolds (a subset consisting of 8 of the 105 families of
Fano threefolds). They proved that a del Pezzo threefold is maximally non-factorial if
and only if its derived category admits a Kawamata semiorthogonal decomposition, that
is an admissible semiorthogonal decomposition into a perfect part and derived categories
of singular finite-dimensional algebras. It is thus natural to ask whether being a maxim-
ally non-factorial Fano threefold is a sufficient condition for the existence of a Kawamata
decomposition. The proof of [43] relied on the classification of del Pezzo threefolds which
are maximally non-factorial. Thus, in order to study Kawamata decompositions, it is nat-
ural to have a classification of maximally non-factorial Fano threefolds.

A slightly weaker notion of categorical absorption of singularities was introduced
in [36, 37]. By Corollary 6.17 in [36], every maximally non-factorial Fano threefold with
one ordinary double point admits a categorical absorption of singularities; the converse is
also true, and holds for any number of nodes (see Proposition 6.12 in [36]). A highlight
of this theory in [37] is the deformation between the main components of the derived cat-
egories of one-nodal prime Fano threefolds of genus 2d C 2 and del Pezzo threefolds of
rank one and degree d , for d 2 ¹1; 2; 3; 4; 5º, which solves the so-called Fano threefold
conjecture of Kuznetsov.

There is also a consequence of maximal non-factoriality to intermediate Jacobians.
Namely, in some sense, a maximally non-factorial nodal Fano threefold X has a smooth
projective intermediate Jacobian, so that the singularities of X can be ignored from the
Hodge theory perspective. The precise statement, see Proposition A.16 in [37], is that
a family of smooth Fano threefolds degenerating to a 1-nodal maximally non-factorial
Fano threefold has a smooth projective family of intermediate Jacobians, i.e., no actual
degeneration takes place in the middle degree cohomology.
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On the other hand, maximally non-factorial Fano threefolds are rather rare among all
nodal Fano threefolds. Motivated by the recent advances in derived categories of singular
Fano threefolds, we pose the following problem.

Problem 1.2. Classify all maximally non-factorial nodal Fano threefolds.

The goal of this article is to partially solve this problem. Namely, we aim to classify
maximally non-factorial nodal Fano threefolds of Picard rank one that have exactly one
singular point (node). This case is particularly well behaved from the viewpoint of bira-
tional geometry, see the chain of equivalences in Proposition 6.13 of [36], that applies
only when one singular point is present.

Now, we are ready to present the main result of this article. To do this, we suppose that
• the nodal Fano threefold X has one node,
• the rank of the Picard group Pic.X/ is one,
• the rank of the class group Cl.X/ is two.

Let � W zX!X be the blow up of the node of the threefoldX , and letE be the �-exceptional
surface. Then zX is smooth, E Š P1 � P1, EjE ' OE .�1;�1/, and it follows from [15]
that X uniquely determines the following Sarkisov link:

(1.1) zX

'2

  

'1

~~
�

��

X1
�1

~~

�1

  

X2
�2

~~

�2

!!
Z1 X Z2;

where '1 and '2 are contractions of the surface E to curves such that '2 ı '�11 is an
Atiyah flop, both �1 and �2 are small projective resolutions, and both �1 and �2 are
extremal contractions [40]. Note that �KX1 � �

�
1 .�KX / and �KX2 � �

�
2 .�KX /, so that

�K3X1 D �K
3
X2
D �K3X :

It follows from [29, 42] that X admits a smoothing X  Xs , where Xs is a smooth
Fano threefold, �K3X D �K

3
Xs

, and the rank of the Picard group Pic.Xs/ is 1. We also
know from [13] that

(1.2) h1;2. zX/ D h1;2.X1/ D h
1;2.X2/ D h

1;2.Xs/;

which imposes a significant constraint on the link (1.1). We set

d D �K3X ; h1;2 D h1;2.Xs/;

and
I D max¹n 2 Z>0 such that �KXs � nH for H 2 Pic.Xs/º:

Then I is the index of the Fano threefold Xs , which is also the index of the Fano three-
fold X , see [29].

In the remaining part of this article, we prove the following theorem.
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Theorem 1.3. There are exactly 17 types of non-factorial Fano threefolds of Picard rank
one with one node. All possibilities for (1.1), up to swapping the left and right sides of the
diagram, are described in Table 1.

Each Sarkisov link in the table exists and can be described explicitly. For the reader’s
convenience, we provide the relevant references in Table 1. For the particular case of
�K3X D 22, the result is proved in [44]. A. Kuznetsov and Y. Prokhorov have independ-
ently obtained the same classification of non-factorial Fano threefolds of Picard rank one,
see [35].

Remark 1.4. It should be pointed out that it follows from our classification that one-nodal
maximally non-factorial degenerations of smooth Fano threefolds of Picard rank one (if
any) have the same rationality as their smoothing (in the cases 2 and 7 in the table, we
need to assume that the smooth Fano threefolds are general). Indeed, this can be verified
case by case, using the rationality results from [3, 14, 22, 45, 48, 53].

2. Proofs and classification

Observation 2.1. IfX is a del Pezzo threefold (I D 2) of Picard rank one with�K3X 6 32,
then the nodal Fano threefold X is never maximally non-factorial. This follows from the
defect computation [18, 19], see Corollary 2.5 in [43]. Therefore, the only options for X
when I > 1 are these two Fano threefolds:
• the nodal quadric threefold in P4 (I D 3, �K3X D 54, the Sarkisov link 17);
• a quintic del Pezzo threefold (I D 2, �K3X D 40, the Sarkisov link 16).

We prove Theorem 1.3 by analyzing the possible links (1.1) in the following order:
(1) �1 is a del Pezzo fibration, and �2 is arbitrary;
(2) both �1 and �2 are birational;
(3) �1 is a conic bundle and �2 is arbitrary.

These cover all possible Mori fiber spaces arising in (1.1), up to swapping �1 and �2.
Note that all possibilities for the smooth Fano variety Xs are known, and can be found

in [24]. Using this classification, we list the possible values of h1;2 as follows.

.d; I / .2; 1/ .4; 1/ .6; 1/ .8; 1/ .10; 1/ .12; 1/ .14; 1/

h1;2 52 30 20 14 10 7 5

.d; I / .16; 1/ .18; 1/ .22; 1/

h1;2 3 2 0

.d; I / .8; 2/ .16; 2/ .24; 2/ .32; 2/ .40; 2/ .54; 3/ .64; 4/

h1;2 21 10 5 2 0 0 0

Possibilities for (1.1) are studied in [1,4,16,17,20,21,25–29,32,44,46,47,51,52,55].
Using some of these results, we immediately obtain the following corollary.
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Corollary 2.2. Suppose that �1 is a fibration into del Pezzo surfaces. Then (1.1) is one of
the links

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 17

in Table 1.

Proof. If �1 is a fibration into del Pezzo surfaces of degree 6, the assertion follows from
[20, 21], in which case we get the link 15. In the remaining cases, the required assertion
follows from [52].

Therefore, we may assume that neither �1 nor �2 is a fibration into del Pezzo surfaces.

Proposition 2.3. Suppose that �1 and �2 are birational. Then (1.1) is the link 13 in
Table 1.

Proof. BothZ1 andZ2 are (possibly singular) Fano threefolds, and we have rk Pic.Z1/D
rk Pic.Z2/ D 1.

Suppose Z1 is smooth, so that �1 is a contraction of type E1 or E2 in Theorem 1.32
of [34] and �2 is a contraction of type E1–E5. Then possibilities for h1;2.Z1/ are listed
in the two tables presented above. Using [17], we obtain all possible values of h1;2.X1/.
Now, using (1.2), in combination with the list of Sarkisov links in Tables 1–7 of [17], we
see, carrying out a case-by-case analysis, thatZ1 ŠZ2 Š P3, and �1 and �2 are the blow
ups along smooth rational curves of degree 5. Alternatively, one can run a short computer
program exhausting all the possibilities for Z1 and Z2 and reach the same conclusion.

Therefore, to show that (1.1) is the link 13 in the table, it suffices to explain why
the rational quintic curves are not contained in a quadric. Indeed, none of these curves
are contained in a smooth quadric surface, because in that case one of the rulings of this
quadric will be contracted in the anticanonical model, but birational morphisms �1 and �2
are small by construction. Furthermore, a degree 5 smooth rational curve in P3 is never
contained in a singular quadric.

Thus, we may assume that bothZ1 andZ2 are singular. Now, using Tables 8–9 in [17],
we get �K3X 2 ¹2; 4º. Hence, if j � KX j does not have base points, then X is one of
the following threefolds:

(1) a sextic hypersurface in P .1; 1; 1; 1; 3/,
(2) a quartic hypersurface in P4,
(3) a complete intersection of a quadric cone and a quartic hypersurface in the weighted

projective space P .1; 1; 1; 1; 1; 2/.
Indeed, by the Riemann–Roch theorem, see Corollary 2.1.14 in [24], j �KX j defines

a finite map �WX ! PN with N D 3 (respectively N D 4) when �K3X D 2 (respectively
�K3X D 4). We have deg.�.X// � deg.�/ D �K3X . If �K3X D 2, then � is a double cover
of P3 ramified at a sextic hypersurface by Hurwitz’s formula, thus giving the first case.
If �K3X D 4, we either get that deg.�/ D 1 and �.X/ is a quartic threefold, or deg.�/ D
deg.�.X// D 2 and we get the last case.

By studying the defect, in each of these cases, the threefold X is factorial as it follows
from [5–8, 50], contradicting our assumption.

Therefore, j �KX j has base points. Hence, using Theorem 1.1 (i) in [28], we see that
�K3X D 2, and X is the complete intersection of a quadric cone and a sextic hypersurface
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in P .1; 1; 1; 1; 2; 3/ on variables x0; : : : ; x5. We can assume that the quadric cone is
given by x0x1 � x2x3 D 0. Then the projection on x0; x2 coordinates gives (after a small
resolution of the singularity) a fibration by del Pezzo surfaces of degree 1. Similarly,
the projection on x0; x3 coordinates gives another such fibration. This implies that (1.1)
is the Sarkisov link 1 in Table 1, so that �2 is not birational, which contradicts our
assumption.

Thus, we may assume that �1 is a conic bundle, and either �2 is birational, or �2 is
a conic bundle. Then the surface Z1 is smooth (see (3.5.1) in [40]), which implies that
Z1 D P2, since X1 has Picard rank two. Let d1 be the degree of the discriminant curve of
the conic bundle �1. Then the Main Theorem in Section 1.6 of [49] implies 0 6 d1 6 11;
d1 D 0 if �1 is a P1-bundle. By [3], we get

(2.1) h1;2.X1/ D
d1.d1 � 3/

2
;

so d1 62 ¹1; 2º. Using (1.2) and the list of possible values of h1;2 presented in tables above,
we get

d1 2 ¹0; 3; 4; 5; 7; 8º:

Using Observation 2.1 above, for the rest of the proof we will assume that I D 1. Therefore
we have

(2.2) .d; h1;2; d1/ 2
®
.6; 20; 8/; .8; 14; 7/; .14; 5; 5/; .18; 2; 4/; .22; 0; 0/; .22; 0; 3/

¯
:

Let D2 be a Cartier divisor on X2, let D1 be its strict transform on X1, and let H1 be
a sufficiently general surface in j��1 .OP2.1//j. Then D1 �Q a.�KX1/ � bH1 for some
rational numbers a and b. Moreover, if d1 ¤ 0, then a and b are integers, because the
conic bundle has no sections and the Picard group of the generic fiber is generated by its
canonical class. If d1 D 0, then 2a and 2b are integers, because the Picard group of the
generic fiber is generated by the class of a section. On the other hand we have (e.g., see
Lemma A.3 in [12])

�KX1 �D
2
1 D �KX2 �D

2
2 ;

.�KX1/
2
�D1 D .�KX2/

2
�D2:

Moreover, we have (see Proposition 6 in [11])

(2.3) �K3X1 D d; .�KX1/
2
�H1 D 12 � d1; �KX1 �H

2
1 D 2 and H 3

1 D 0:

This gives

(2.4)

´
da2 � 2.12 � d1/ab C 2b

2
D �KX2 �D

2
2 ;

da � .12 � d1/b D .�KX2/
2
�D2:

Lemma 2.4. Suppose that �2 is birational. Then (1.1) is either the link 11 or the link 14
in Table 1.

Proof. Let D2 be the �2-exceptional surface. Then a D D1 �H 2
1 > 0.

If �2.D2/ is a point, then it follows from Theorem (3.3) in [40] that one of the follow-
ing cases holds:
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.A/ D2 D P2 with normal bundle O.�1/,

.B/ D2 D P2 with normal bundle O.�2/,

.C/ D2 is an irreducible quadric surface in P3 with normal bundle O.�1/.

A simple computation using the adjunction formula implies that �KX2 �D
2
2 D �2 and

.�KX2/
2
�D2 D

8̂<̂
:
4 in the case .A/;
1 in the case .B/;
2 in the case .C/:

Now, solving (2.4) for each triple .d; h1;2; d1/ listed in (2.2), we see that 2a is never a
non-negative integer. This shows that �2.D2/ is not a point.

We see that Z2 is a smooth Fano threefold of Picard rank 1, and �2.D2/ is a smooth
curve in Z2. Then it follows from Theorem 7.14 in [27] and from (1.2) that (1.1) is one of
the Sarkisov links 11 and 14, which would complete the proof of the lemma.

Note, however, that the paper [27] has gaps, see Remark 1.18 in [10]. For instance,
the link in Construction 2.5 below contradicts Theorem 7.4 in [27], and a few examples
constructed in [55] contradict Proposition 7.2 in [27]. Keeping this in mind, let us com-
plete the proof of the lemma without using Theorem 7.14 in [27].

Set C2 D �2.D2/. Let d2 D �KZ2 �C2, and let g2 be the genus of the curve C2. Then
as �2 is the blow up along a curve on a threefold, we have that

h1;2.Z2/C g2 D h
1;2
2 ¹0; 2; 5; 14; 20º;

where the inclusion follows from (2.2). As a result, using the classification of smooth Fano
threefolds (see Section 12.2 of [24]), we get h1;2.Z2/ 2 ¹0; 2; 3; 5; 7; 10; 14; 20º. In fact,
we can say a bit more. Let e D �K3Z2 and let i be the index of the Fano threefold Z2.
Then

• .e; i/ D .64; 4/ ” Z2 D P3,
• .e; i/ D .54; 3/ ” Z2 is a smooth quadric threefold in P4.

Moreover, the possible values h1;2.Z2/ 6 20 can be listed as follows.

.e; i/ .6; 1/ .8; 1/ .10; 1/ .12; 1/ .14; 1/, .16; 1/ .18; 1/ .22; 1/

h1;2.Z2/ 20 14 10 7 5 3 2 0

.e; i/ .16; 2/ .24; 2/ .32; 2/ .40; 2/ .54; 3/ .64; 4/

h1;2.Z2/ 10 5 2 0 0 0

This leaves not so many possibilities for the genus g2 D h1;2 � h1;2.Z2/.
One the other hand, it follows from Lemma 4.1.2 in [24] that

�KX2 �D
2
2 D 2g2 � 2;

.�KX2/
2
�D2 D d2 C 2 � 2g2;

�K3X2 D e � 2C 2g2 � 2d2;
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so that (2.4) gives 8̂<̂
:
da2 � 2.12 � d1/ab C 2b

2
D 2g2 � 2;

da � .12 � d1/b D d2 C 2 � 2g2;

d D e � 2C 2g2 � 2d2:

Now, solving this system of equations for each triple .d; I; h1;2; d1/ listed in (2.2), and
each possible triple .e; i; g2/D .e; i; h1;2 � h1;2.Z2//, we obtain the following two cases:
.I/ d D 18, I D 1, h1;2 D 2, d1 D 4, Z2 D P3, d2 D 24, g2 D 2, a D 3, b D 4;
.II/ d D 22, I D 1, h1;2 D 0, d1 D 3, Z2 is a smooth quadric in P4, d2 D 15, g2 D 0,

a D 3, b D 4;
In the case .I/, (1.1) is the link 11 in the table. In the case .II/, (1.1) is the link 14 in
the table.

Therefore, we may assume that �2 is also a conic bundle and Z2 D P2. Let d2 be
the discriminant curve of the conic bundle �2. Using (2.1) and h1;2.X1/ D h1;2.X2/, we
obtain that either d1 D d2 or d1; d2 2 ¹0; 3º. Now, we let D2 be a general surface in
j��2 .OP2.1//j. Then (2.4) simplifies as´

da2 � 2.12 � d1/ab C 2b
2
D 2;

da � .12 � d1/b D 12 � d2:

Solving these equations for each quadruple .d; h1;2; d1/ listed in (2.2), we get the follow-
ing cases:

(1) a D 0, b D �1;
(2) d D 14, I D 1, h1;2 D 5, d1 D d2 D 5, a D 1, b D 1.

In the case (1), the composition '2 ı '�11 is biregular. This contradicts our initial assump-
tion. So, the case (2) holds. Then (1.1) is the link 7 in the table, which proves Theorem 1.3.

Let us conclude this article by showing that the Sarkisov link 7 in Table 1 is always
obtained using the following.

Construction 2.5 (Case 4ı in Section 3.4 of [47]). Let E D ¹z1 D z2 D 0º � P2x1;y1;z1 �

P2x2;y2;z2 , and let

X D
®
z1f .x1; y1; z1I x2; y2; z2/ D z2g.x1; y1; z1I x2; y2; z2/

¯
;

where f and g are sufficiently general polynomials of bi-degrees .1;2/ and .2;1/, respect-
ively. Then X is a singular Verra threefold (a bidegree .2; 2/ threefold in P2 � P2) with 5
nodes. Note that E Š P1 � P1, E � X and

Sing.X/ D
®
z1 D z2 D f D g D 0

¯
� E:

Let � WP2x1;y1;z1 � P2x2;y2;z2Ü P4x;y;z;t;w be the rational map given by�
Œx1 W y1 W z1�; Œx2 W y2 W z2�

�
7! Œx1z2 W y1z2 W x2z1 W y2z1 W z1z2�:
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Then � is birational, and the inverse map ��1 is given by Œx W y W z W t W w� 7! .Œx W y W

w�; Œz W t W w�/. Let �WW ! P2x1;y1;z1 � P2x2;y2;z2 be the blow up along the surface E and
let E be its exceptional divisor. LetG1 D ¹z1 D 0º andG2 D ¹z2 D 0º, and letG1 andG2
be the proper transforms on W of G1 and G2. Then we have the following commutative
diagram:

W

�

ww

�

**
P2x1;y1;z1 � P2x2;y2;z2 �

// P4x;y;z;t;w ;

where � blows down G1 and G2 to the lines `1 D ¹z D t D w D 0º and `2 D ¹x D y D
w D 0º. Note that �.E / is the hyperplane ¹w D 0º – the unique hyperplane containing
the lines `1 and `2. Set V D �.X/. Then V is a smooth cubic threefold in P4x;y;z;t;w .
Moreover, we have

V D
®
f .x; y;wI z; t; w/ D g.x; y;wI z; t; w/

¯
� P4x;y;z;t;w :

Now, let yX be the strict transform of the threefoldX onW , let & W yX!X be the morphism
induced by �, and let �W yX ! V be the morphism induced by � . Then yX is smooth, & is a
small projective resolution, and we have the following commutative diagram:

yX

&

��

�

��
X

�jX

// V:

Note that � is the blow up of the cubic threefold V along the lines `1 and `2. Let yE D E j yX .
Then

• the induced map & j yE W yE ! E is the blow up at the points in Sing.X/,

• yE is isomorphic to a smooth cubic surface,
• �. yE/ is the hyperplane section ¹w D 0º \ V .

Now, we extend the last commutative diagram to the following commutative diagram:

V

V1

�1

��

 1

77

yX

&

��

�

OO

�2
oo

�1
// V2

�2

��

 2

hh

P2x1;y1;z1 X pr2
//

pr1
oo P2x2;y2;z2 :

Here  1 and  2 are the blow ups along the lines `1 and `2, respectively, �1 and �2 are the
blow ups along the strict transforms of the lines `1 and `2, respectively, both �1 and �2 are
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standard conic bundles [45], and pr1 and pr2 are the natural projections. Let �1 and �2
be the discriminant curves of the conic bundles �1 and �2, respectively. Then �1 and �2
are quintic curves with at most nodal singularities. Since & is a flopping contraction,
there exists a composition of flops �W yXÜ zX of the 5 curves contracted by & (this
is the only projective flop which exists because the relative Picard number of & equals 1).
Then zX is smooth and projective, and we have another commutative diagram:

zX

�
��

yX
�oo

&

��

�

��
X

�jX

// V;

where � is a small resolution. Let E D �. yE/. Then � induces a morphism yE ! E that
blows down all five curves contracted by & , which implies that � induces an isomorphism
E Š E Š P1 � P1. Note that EjE � OE .�1; �1/, and that there exists a birational
morphism � W zX ! X that blows down the surface E to an ordinary double point of
the threefold X . We have �K3X D �K

3

X
� 2 D 14 and

1 D rk Pic.X/ < rk Cl.X/ D 1C jSing.X/j D 2:

Therefore, the threefold X is a non-factorial nodal Fano threefold that has one node. We
complete the picture with the following commutative diagram:

X

X1

�1

��

�1

77

zX
'2 //'1oo

�

OO

�

��

X2

�2

gg

�2

��
P2x1;y1;z1 X pr2

//
pr1

oo P2x2;y2;z2

V1

�1

OO

 1
''

yX

&

OO

�

��

�2
oo

�1
// V2

�2

OO

 2
ww

V;

where �1 and �2 are two small resolutions such that the composition ��11 ı �2 is an Atiyah
flop, both '1 and '2 are contractions of the surface E to curves, �1 and �2 are standard
conic bundles whose discriminant curves are �1 and �2, respectively. Note that X is
irrational as it is birational to a smooth cubic threefold [14], and

h1;2.X1/ D h
1;2.X2/ D h

1;2. zX/ D h1;2. yX/ D h1;2.V / D 5:

Instead of using the Verra threefold X containing E, we can construct the nodal three-
fold X using the birational map ��1, and the smooth cubic threefold V containing the
lines `1 and `2.
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We now explain that link 7 in Table 1 is obtained by Construction 2.5. We have Z1 D
Z2 D P2, and both �1 and �2 are conic bundles with discriminant curves of degree 5.
Let C1 and C2 be the curves contracted by �1 and �2, respectively.

Recall that we denote by H1 (respectively, D2) the pullback of the ample generator
by �1 from Z1 (respectively, by �2 from Z2), and D1 is the divisor corresponding to D2
on X1 under flop. Then it follows from the calculations above (see case (2) before Con-
struction 2.5) that D1 � �KX1 �H1. We have

�1 D .�KX1 �H1/
3
D D3

1 D D
3
2 � .D2 � C2/

3
D �.D2 � C2/

3;

where we used (2.3) in the first equality, and Lemma A.3 in [12] in the third one. It follows
that D2 � C2 D 1. Similarly, we get H1 � C1 D 1.

Let h1 D '�1 .H1/ and h2 D '�2 .D2/. A simple computation usingD2 �C2 D 1 implies
that

'�1 .D1/ � h2 CE:

Thus we can express the canonical class �K zX in terms of h1 and h2 as follows:

�K zX � �'
�
1 .KX1/ �E � '

�
1 .H1 CD1/ �E � h1 C h2:

Note that �K3
zX
D 12, h1;2. zX/ D 5 and rk Pic. zX/ D 3, which implies that �K zX is not

ample, because smooth Fano threefolds with these invariants do not exist, see Table 3
in [41].

Combining �1 ı '1 and �2 ı '2, we obtain a morphism zX ! P2 � P2. Let X be its
image, and let � W zX ! X be the induced morphism.

Claim 2.6. The threefold X � P2 � P2 is a divisor of bidegree .2; 2/ with terminal sin-
gularities, containing a linearly embedded surface P1 � P1, and � is a small resolution.

Therefore,X is obtained by taking a small resolution of the singular Verra threefoldX
containing a divisor P1 � P1 as in Construction 2.5 above.

Proof. The threefold X is a divisor of bidegree .e1; e2/ in P2 � P2, with e1; e2 > 0,
because X dominates both factors. We have

12 D .h1 C h2/
3
D deg.�/ deg.X/ D 3 deg.�/.e1 C e2/:

This implies that either deg.�/D 1 and e1C e2D 4, in which case e1D e2D 2 because the
two projections give rise to conic bundle structures on zX , or deg.�/D 2 and e1 C e2 D 2,
so that e1 D e2 D 1 because e1; e2 > 0. In other words,

• either X is a divisor of degree .2; 2/, and � is birational,
• or X is a divisor of degree .1; 1/, and � is generically two-to-one.

In the former case, � is crepant, and it follows from the subadjunction formula that
the threefold X is normal. In the latter case, the threefold X is also normal, because there
are only two isomorphism classes of irreducible .1; 1/ divisors in P2 � P2: one is smooth
and the other has one node.

Set E D �.E/. Let pr1WX ! P2 and pr2WX ! P2 be the projections to the first and
the second factors of the fourfold P2 �P2, respectively. Then pr1.E/ and pr2.E/ are lines
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Table 1. Description of all possibilities for the Sarkisov link (1.1).

� d I h1;2 �1WX1 ! Z1 �2WX2 ! Z2 References

1 2 1 52

Z1 D P1,
�1 is a fibration into

del Pezzo surfaces of degree 1.

Z2 D P1,
�2 is a fibration into

del Pezzo surfaces of degree 1.

[22, 23, 28],
[52, (2.5.2)].

2 6 1 20

Z1 D P1,
�1 is a fibration into

del Pezzo surfaces of degree 2.

Z2 is a del Pezzo threefold of degree 1
that has one singular double point,

�2 is the blow up at the singular point.

[48, Proposition 5.6],
[22, 23],

[46, Example 4.3],
[52, (2.7.3)].

3 8 1 14 Z1 D P1,
�1 is a fibration into cubic surfaces.

Z2 Š P2,
�2 is a conic bundle

with septic discriminant curve.

[48, Proposition 5.9],
[46, Example 4.6],

[52, (2.9.4)].

4 10 1 10
Z1 D P1,

�1 is a fibration into cubic surfaces.

Z2 is a smooth del Pezzo threefold of degree 2,
�2 is the blow up along a smooth rational curve

that has anticanonical degree 2.

[48, Example 1.11],
[47, § 3.12 Case 11ı],

[52, (2.9.3)].

5 12 1 7

Z1 D P1,
�1 is a fibration into

quartic del Pezzo surfaces.

Z2 Š P3,
�2 is the blow up along a smooth

curve of degree 8 and genus 7.

[27, Proposition 6.5],
[52, (2.11.5)].

6 14 1 5

Z1 D P1,
�1 is a fibration into

quartic del Pezzo surfaces.

Z2 is a smooth cubic threefold,
�2 is the blow up at a smooth conic.

[27, Proposition 6.5],
[47, § 3.13 Case 12ı],

[52, (2.11.4)].

7 14 1 5

Z1 D P2,
�1 is a conic bundle

with quintic discriminant curve.

Z2 D P2,
�1 is a conic bundle

with quintic discriminant curve.

[47, § 3.4 Case 4ı],
Construction 2.5 and

Claim 2.6.

8 16 1 3

Z1 D P1,
�1 is a fibration into

quintic del Pezzo surfaces.

Z2 is a smooth quadric in P4,
�2 is the blow up along a smooth

curve of degree 7 and genus 3.

[27, Proposition 6.5],
[52, (2.13.4)].
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9 16 1 3
Z1 D P1,

�1 is a quadric bundle
Z2 D P1,

�2 is a fibration into
quartic del Pezzo surfaces.

[2, Example 4.9],
[52, (2.3.8)],
[52, (2.11.2)].

10 18 1 2

Z1 D P1,
�1 is a fibration into

quintic del Pezzo surfaces.

Z2 is a smooth complete
intersection of two quadrics in P5,

�2 is the blow up along a twisted cubic.

[27, Proposition 6.5],
[52, (2.13.3)].

11 18 1 2
Z1 Š P2,

�1 is a conic bundle
with quartic discriminant curve.

Z2 D P3,
�2 is the blow up along a smooth

curve of degree 6 and genus 2.

[4, Example 4.8],
[27, Theorem 7.14],

Lemma 2.4.

12 22 1 0

Z1 D P1,
�1 is a fibration into

quintic del Pezzo surfaces.

Z2 Š P2,
�2 is a P1-bundle.

[44, (IV)],
[52, (2.13.1)].

13 22 1 0

Z1 D P3,
�1 is the blow up along a smooth

rational curve of degree 5
that is not contained in a quadric.

Z2 D P3,
�1 is the blow up along a smooth

rational curve of degree 5
that is not contained in a quadric.

[17, Proposition 2.11],
[44, (I)].

14 22 1 0

Z1 Š P2,
�1 is a conic bundle

with cubic discriminant curve.

Z2 is a smooth quadric threefold,
�2 is the blow up along a smooth

rational quintic curve.

[27, Theorem 7.14],
[44, (II)],

Lemma 2.4.

15 22 1 0

Z1 Š P1,
�1 is a fibration into

sextic del Pezzo surfaces.

Z2 Š V5,
�2 is the blow up along
a rational quartic curve.

[27, Proposition 6.5],
[44, (III)].

16 40 2 0
Z1 D P1,

�1 is a quadric bundle.
Z2 D P2,

�2 is a P1-bundle.
[25, Theorem 3.5],

[52, (2.3.2)].

17 54 3 0
Z1 D P1,

�1 is a P2-bundle.
Z2 D P1,

�2 is a P2-bundle. Example 1.1.
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byH1 � C1 DD2 � C2 D 1, so we can choose coordinates .Œx1 W y1 W z1�; Œx2 W y2 W z2�/ on
P2 � P2 such that

E D ¹z1 D z2 D 0º:

Since E � X , we see that X is singular. Note also that � induces an isomorphism E Š

E D P1 � P1.
Divisor classes h1, h2 and E generate the group Pic. zX/. We have

h21 � h2 D h1 � h
2
2 D 2; h1 � h2 �E D 1 and h21 �E D h

2
2 �E D 0:

Assume that � contracts a divisor F � a1h1 C a2h2 C a3E. Then we have

2a2 D F � h
2
1 D 0;

2a1 D F � h
2
2 D 0;

2a1 C 2a2 C a3 D F � h1 � h2 D 0;

which gives a1 D 0, a2 D 0, a3 D 0. This shows that � does not contract any divisors.
The Stein factorization of � is the following commutative diagram:

zX

� ��

˛ // yX

ˇ��
X;

where ˛ is a birational morphism, and ˇ is either an isomorphism or a (ramified) double
cover. Since � does not contract divisors and �K zX is not ample, we see that ˛ is a flop-
ping contraction, and yX has terminal Gorenstein singularities. We must show that ˇ is
an isomorphism.

Suppose ˇ is a double cover. Its Galois involution induces a birational involution � 2
Bir. zX/. Then � induces an action �� on Pic. zX/D Cl. yX/ such that ��h1 � h1, ��h2 � h2,
and

��.E/ � b1h1 C b2h2 C b3E

for some integers b1, b2 and b3. Then

2b2 D ��.E/ � h
2
1 D E � h

2
1 D 0;

2b1 D ��.E/ � h
2
2 D E � h

2
2 D 0;

2b1 C 2b2 C b3 D ��.E/ � h1 � h2 D E � h1 � h2 D 1;

which gives b1 D 0, b2 D 0, b3 D 1, so ��.E/ � E, which gives �.E/ D E, since E is
�-exceptional.

Since �.E/ D E and � induces an isomorphism E Š E, we see that the surface E
is contained in the branch divisor of the double cover ˇ. On the other hand, E cannot be
equal to this branch divisor by degree reasons, thus the branch divisor is reducible. This
implies that yX has non-isolated singularities, which is impossible, since yX has terminal
singularities. Thus, we see that ˇ is an isomorphism.

We see that X is a singular divisor in P2 � P2 of degree .2; 2/, containing E and � is
a small resolution.



On maximally non-factorial nodal Fano threefolds 15

Acknowledgements. This manuscript was written during our research visit to the Gökova
Geometry Topology Institute in April 2023. We are very grateful to the institute for its
warm hospitality and to Tiago Duarte Guerreiro and Kento Fujita, who joined us in the
visit on a separate project.

Funding. Ivan Cheltsov was supported by EPSRC grant EP/V054597/1. Igor Krylov was
supported by IBS-R003-D1 grant. Jesus Martinez-Garcia was supported by EPSRC grant
EP/V055399/1. Evgeny Shinder was supported by EPSRC grant EP/T019379/1 and ERC
Synergy grant 854361.

References

[1] Arap, M., Cutrone, J. and Marshburn, N.: On the existence of certain weak Fano threefolds of
Picard number two. Math. Scand. 120 (2017), no. 1, 68–86. Zbl 1429.14025 MR 3624007

[2] Araujo, C., Castravet, A.-M., Cheltsov, I., Fujita, K., Kaloghiros, A.-S., Martinez-Garcia, J.,
Shramov, C., Süß, H. and Viswanathan, N.: The Calabi problem for Fano threefolds. London
Math. Soc. Lecture Note Ser. 485, Cambridge University Press, Cambridge, 2023.
Zbl 07671763 MR 4590444

[3] Beauville, A.: Variétés de Prym et jacobiennes intermédiaires. Ann. Sci. École Norm. Sup. (4)
10 (1977), no. 3, 309–391. Zbl 0368.14018 MR 0472843

[4] Blanc, J. and Lamy, S.: Weak Fano threefolds obtained by blowing-up a space curve and
construction of Sarkisov links. Proc. Lond. Math. Soc. (3) 105 (2012), no. 5, 1047–1075.
Zbl 1258.14015 MR 2997046

[5] Cheltsov, I.: Nonrational nodal quartic threefolds. Pacific J. Math. 226 (2006), no. 1, 65–81.
Zbl 1123.14010 MR 2247856

[6] Cheltsov, I.: Points in projective spaces and applications. J. Differential Geom. 81 (2009),
no. 3, 575–599. Zbl 1230.14061 MR 2487601

[7] Cheltsov, I.: Factorial threefold hypersurfaces. J. Algebraic Geom. 19 (2010), no. 4, 781–791.
Zbl 1209.14034 MR 2669729

[8] Cheltsov, I. and Park, J.: Sextic double solids. In Cohomological and geometric approaches to
rationality problems, pp. 75–132. Progr. Math. 282, Birkhäuser Boston, Boston, MA, 2010.
Zbl 1200.14031 MR 2605166

[9] Cheltsov, I., Przyjalkowski, V. and Shramov, C.: Which quartic double solids are rational?
J. Algebraic Geom. 28 (2019), no. 2, 201–243. Zbl 1430.14032 MR 3912057

[10] Cheltsov, I. and Shramov, C.: Weakly-exceptional singularities in higher dimensions. J. Reine
Angew. Math. 689 (2014), 201–241. Zbl 1305.14018 MR 3187932

[11] Chel’tsov, I. A.: Conic bundles with a large discriminant. Izv. Math. 68 (2004), no. 2, 429–434.
Zbl 1078.14014 MR 2058006

[12] Cheltsov, I. A. and Rubinstein, Y. A.: On flops and canonical metrics. Ann. Sc. Norm. Super.
Pisa Cl. Sci. (5) 18 (2018), no. 1, 283–311. Zbl 1393.14041 MR 3783790

[13] Clemens, C. H.: Double solids. Adv. in Math. 47 (1983), no. 2, 107–230. Zbl 0509.14045
MR 0690465

[14] Clemens, C. H. and Griffiths, P. A.: The intermediate Jacobian of the cubic threefold. Ann. of
Math. (2) 95 (1972), no. 2, 281–356. Zbl 0214.48302 MR 0302652

https://doi.org/10.7146/math.scand.a-25505
https://doi.org/10.7146/math.scand.a-25505
https://zbmath.org/?q=an:1429.14025
https://mathscinet.ams.org/mathscinet-getitem?mr=3624007
https://doi.org/10.1017/9781009193382
https://zbmath.org/?q=an:07671763
https://mathscinet.ams.org/mathscinet-getitem?mr=4590444
https://doi.org/10.24033/asens.1329
https://zbmath.org/?q=an:0368.14018
https://mathscinet.ams.org/mathscinet-getitem?mr=0472843
https://doi.org/10.1112/plms/pds023
https://doi.org/10.1112/plms/pds023
https://zbmath.org/?q=an:1258.14015
https://mathscinet.ams.org/mathscinet-getitem?mr=2997046
https://doi.org/10.2140/pjm.2006.226.65
https://zbmath.org/?q=an:1123.14010
https://mathscinet.ams.org/mathscinet-getitem?mr=2247856
https://doi.org/10.4310/jdg/1236604344
https://zbmath.org/?q=an:1230.14061
https://mathscinet.ams.org/mathscinet-getitem?mr=2487601
https://doi.org/10.1090/S1056-3911-09-00522-0
https://zbmath.org/?q=an:1209.14034
https://mathscinet.ams.org/mathscinet-getitem?mr=2669729
https://doi.org/10.1007/978-0-8176-4934-0_4
https://zbmath.org/?q=an:1200.14031
https://mathscinet.ams.org/mathscinet-getitem?mr=2605166
https://doi.org/10.1090/jag/730
https://zbmath.org/?q=an:1430.14032
https://mathscinet.ams.org/mathscinet-getitem?mr=3912057
https://doi.org/10.1515/crelle-2012-0063
https://zbmath.org/?q=an:1305.14018
https://mathscinet.ams.org/mathscinet-getitem?mr=3187932
https://doi.org/10.1070/IM2004v068n02ABEH000481
https://zbmath.org/?q=an:1078.14014
https://mathscinet.ams.org/mathscinet-getitem?mr=2058006
https://doi.org/10.2422/2036-2145.201510_001
https://zbmath.org/?q=an:1393.14041
https://mathscinet.ams.org/mathscinet-getitem?mr=3783790
https://doi.org/10.1016/0001-8708(83)90025-7
https://zbmath.org/?q=an:0509.14045
https://mathscinet.ams.org/mathscinet-getitem?mr=0690465
https://doi.org/10.2307/1970801
https://zbmath.org/?q=an:0214.48302
https://mathscinet.ams.org/mathscinet-getitem?mr=0302652


I. Cheltsov, I. Krylov, J. Martinez-Garcia and E. Shinder 16

[15] Corti, A.: Factoring birational maps of threefolds after Sarkisov. J. Algebraic Geom. 4 (1995),
no. 2, 223–254. Zbl 0866.14007 MR 1311348

[16] Cutrone, J. W., Limarzi, M. A. and Marshburn, N. A.: A weak Fano threefold arising as a
blowup of a curve of genus 5 and degree 8 on P3. Eur. J. Math. 5 (2019), no. 3, 763–770.
Zbl 1423.14246 MR 3993262

[17] Cutrone, J. W. and Marshburn, N. A.: Towards the classification of weak Fano threefolds with
� D 2. Cent. Eur. J. Math. 11 (2013), no. 9, 1552–1576. Zbl 1308.14013 MR 3071923

[18] Cynk, S.: Defect of a nodal hypersurface. Manuscripta Math. 104 (2001), no. 3, 325–331.
Zbl 0983.14017 MR 1828878

[19] Cynk, S. and Rams, S.: Non-factorial nodal complete intersection threefolds. Commun. Con-
temp. Math. 15 (2013), no. 5, article no. 1250064, 14 pp. Zbl 1276.32021 MR 3117350

[20] Fukuoka, T.: On the existence of almost Fano threefolds with del Pezzo fibrations. Math.
Nachr. 290 (2017), no. 8-9, 1281–1302. Zbl 1370.14034 MR 3666997

[21] Fukuoka, T.: Refinement of the classification of weak Fano threefolds with sextic del Pezzo
fibrations. Preprint 2019, arXiv:1903.06872v1.

[22] Grinenko, M. M.: Birational properties of pencils of del Pezzo surfaces of degrees 1 and 2. Sb.
Math. 191 (2000), no. 5-6, 633–653. Zbl 1009.14002 MR 1773767

[23] Grinenko, M. M.: Fibrations into del Pezzo surfaces. Russian Math. Surveys 61 (2006), no. 2,
255–300. Zbl 1124.14020 MR 2261543

[24] Iskovskikh, V. A. and Prokhorov, Y. G.: Algebraic geometry, V. Fano varieties. Encyclopaedia
Math. Sci. 47, Springer, Berlin, 1999. Zbl 0912.14013 MR 1668579

[25] Jahnke, P. and Peternell, T.: Almost del Pezzo manifolds. Adv. Geom. 8 (2008), no. 3, 387–411.
Zbl 1149.14035 MR 2427467

[26] Jahnke, P., Peternell, T. and Radloff, I.: Threefolds with big and nef anticanonical bundles. I.
Math. Ann. 333 (2005), no. 3, 569–631. Zbl 1081.14054 MR 2198800

[27] Jahnke, P., Peternell, T. and Radloff, I.: Threefolds with big and nef anticanonical bundles II.
Cent. Eur. J. Math. 9 (2011), no. 3, 449–488. Zbl 1250.14030 MR 2784025

[28] Jahnke, P. and Radloff, I.: Gorenstein Fano threefolds with base points in the anticanonical
system. Compos. Math. 142 (2006), no. 2, 422–432. Zbl 1096.14036 MR 2218903

[29] Jahnke, P. and Radloff, I.: Terminal Fano threefolds and their smoothings. Math. Z. 269 (2011),
no. 3-4, 1129–1136. Zbl 1248.14016 MR 2860279

[30] Kalck, M., Pavic, N. and Shinder, E.: Obstructions to semiorthogonal decompositions for sin-
gular threefolds I: K-theory. Mosc. Math. J. 21 (2021), no. 3, 567–592. Zbl 1484.14034
MR 4277855

[31] Kaloghiros, A.-S.: The defect of Fano 3-folds. J. Algebraic Geom. 20 (2011), no. 1, 127–149.
Zbl 1215.14041 MR 2729277

[32] Kaloghiros, A.-S.: A classification of terminal quartic 3-folds and applications to rationality
questions. Math. Ann. 354 (2012), no. 1, 263–296. Zbl 1264.14054 MR 2957627

[33] Kawamata, Y.: Semi-orthogonal decomposition of a derived category of a 3-fold with an ordin-
ary double point. In Recent developments in algebraic geometry – to Miles Reid for his 70th
birthday, pp. 183–215. London Math. Soc. Lecture Note Ser. 478, Cambridge Univ. Press,
Cambridge, 2022. Zbl 1524.14040 MR 4480569

[34] Kollár, J. and Mori, S.: Birational geometry of algebraic varieties. Cambridge Tracts in Math.
134, Cambridge University Press, Cambridge, 1998. Zbl 0926.14003 MR 1658959

https://zbmath.org/?q=an:0866.14007
https://mathscinet.ams.org/mathscinet-getitem?mr=1311348
https://doi.org/10.1007/s40879-019-00315-w
https://doi.org/10.1007/s40879-019-00315-w
https://zbmath.org/?q=an:1423.14246
https://mathscinet.ams.org/mathscinet-getitem?mr=3993262
https://doi.org/10.2478/s11533-013-0261-5
https://doi.org/10.2478/s11533-013-0261-5
https://zbmath.org/?q=an:1308.14013
https://mathscinet.ams.org/mathscinet-getitem?mr=3071923
https://doi.org/10.1007/s002290170030
https://zbmath.org/?q=an:0983.14017
https://mathscinet.ams.org/mathscinet-getitem?mr=1828878
https://doi.org/10.1142/S0219199712500642
https://zbmath.org/?q=an:1276.32021
https://mathscinet.ams.org/mathscinet-getitem?mr=3117350
https://doi.org/10.1002/mana.201600207
https://zbmath.org/?q=an:1370.14034
https://mathscinet.ams.org/mathscinet-getitem?mr=3666997
https://arxiv.org/abs/1903.06872
https://doi.org/10.1070/SM2000v191n05ABEH000475
https://zbmath.org/?q=an:1009.14002
https://mathscinet.ams.org/mathscinet-getitem?mr=1773767
https://doi.org/10.1070/RM2006v061n02ABEH004312
https://zbmath.org/?q=an:1124.14020
https://mathscinet.ams.org/mathscinet-getitem?mr=2261543
https://zbmath.org/?q=an:0912.14013
https://mathscinet.ams.org/mathscinet-getitem?mr=1668579
https://doi.org/10.1515/ADVGEOM.2008.026
https://zbmath.org/?q=an:1149.14035
https://mathscinet.ams.org/mathscinet-getitem?mr=2427467
https://doi.org/10.1007/s00208-005-0682-y
https://zbmath.org/?q=an:1081.14054
https://mathscinet.ams.org/mathscinet-getitem?mr=2198800
https://doi.org/10.2478/s11533-011-0023-1
https://zbmath.org/?q=an:1250.14030
https://mathscinet.ams.org/mathscinet-getitem?mr=2784025
https://doi.org/10.1112/S0010437X05001673
https://doi.org/10.1112/S0010437X05001673
https://zbmath.org/?q=an:1096.14036
https://mathscinet.ams.org/mathscinet-getitem?mr=2218903
https://doi.org/10.1007/s00209-010-0780-8
https://zbmath.org/?q=an:1248.14016
https://mathscinet.ams.org/mathscinet-getitem?mr=2860279
https://doi.org/10.17323/1609-4514-2021-21-3-567-592
https://doi.org/10.17323/1609-4514-2021-21-3-567-592
https://zbmath.org/?q=an:1484.14034
https://mathscinet.ams.org/mathscinet-getitem?mr=4277855
https://doi.org/10.1090/S1056-3911-09-00531-1
https://zbmath.org/?q=an:1215.14041
https://mathscinet.ams.org/mathscinet-getitem?mr=2729277
https://doi.org/10.1007/s00208-011-0658-z
https://doi.org/10.1007/s00208-011-0658-z
https://zbmath.org/?q=an:1264.14054
https://mathscinet.ams.org/mathscinet-getitem?mr=2957627
https://doi.org/10.1017/9781009180849.007
https://doi.org/10.1017/9781009180849.007
https://zbmath.org/?q=an:1524.14040
https://mathscinet.ams.org/mathscinet-getitem?mr=4480569
https://doi.org/10.1017/CBO9780511662560
https://zbmath.org/?q=an:0926.14003
https://mathscinet.ams.org/mathscinet-getitem?mr=1658959


On maximally non-factorial nodal Fano threefolds 17

[35] Kuznetsov, A. and Prokhorov, Y.: One-nodal Fano threefolds with Picard number one. Preprint
2023, arXiv:2312.13782v1.

[36] Kuznetsov, A. and Shinder, E.: Categorical absorptions of singularities and degenerations.
Épijournal Géom. Algébrique (2023), article no. 12, 42 pp. Zbl 07852555 MR 4698898

[37] Kuznetsov, A. and Shinder, E.: Derived categories of Fano threefolds and degenerations. Pre-
print 2023, arXiv:2305.17213v2.

[38] Kuznetsov, A. G. and Prokhorov, Y. G.: On higher-dimensional del Pezzo varieties. Izv. Ross.
Akad. Nauk Ser. Mat. 87 (2023), no. 3, 75–148. MR 4640916

[39] Mella, M.: Birational geometry of quartic 3-folds. II. The importance of being Q-factorial.
Math. Ann. 330 (2004), no. 1, 107–126. Zbl 1058.14022 MR 2091681

[40] Mori, S.: Threefolds whose canonical bundles are not numerically effective. Ann. of Math. (2)
116 (1982), no. 1, 133–176. Zbl 0557.14021 MR 0662120

[41] Mori, S. and Mukai, S.: Classification of Fano 3-folds with B2 � 2. Manuscripta Math. 36
(1981/82), no. 2, 147–162. Zbl 0478.14033 MR 0641971

[42] Namikawa, Y.: Smoothing Fano 3-folds. J. Algebraic Geom. 6 (1997), no. 2, 307–324.
Zbl 0906.14019 MR 1489117

[43] Pavic, N. and Shinder, E.: Derived categories of nodal del Pezzo threefolds. Preprint 2021,
arXiv:2108.04499v1.

[44] Prokhorov, Y. G.: Singular Fano manifolds of genus 12. Sb. Math. 207 (2016), no. 7-8, 983–
1009. Zbl 1372.14032 MR 3535377

[45] Prokhorov, Y. G.: The rationality problem for conic bundles. Russian Math. Surveys 73 (2018),
no. 3, 375–456. Zbl 1400.14040 MR 3807895

[46] Prokhorov, Y. G.: Rationality of Fano threefolds with terminal Gorenstein singularities. I. Proc.
Steklov Inst. Math. 307 (2019), no. 1, 210–231. Zbl 1471.14032 MR 4070068

[47] Prokhorov, Y. G.: Rationality of Fano threefolds with terminal Gorenstein singularities, II.
Rend. Circ. Mat. Palermo (2) 72 (2023), no. 3, 1797–1821. Zbl 1512.14023 MR 4576732

[48] Przhiyalkovskiı̆, V. V., Chel’tsov, I. A. and Shramov, K. A.: Hyperelliptic and trigonal Fano
threefolds. Izv. Math. 69 (2005), no. 2, 365–421. Zbl 1081.14059 MR 2136260

[49] Sarkisov, V. G.: Birational automorphisms of conic bundles. Math. USSR, Izv. 17 (1981),
177-202. Zbl 0466.14012 MR 0587343

[50] Shramov, K. A.: On the birational rigidity and Q-factoriality of a singular double covering of
a quadric with branching over a divisor of degree 4. Math. Notes 84 (2008), no. 1-2, 280–289.
Zbl 1219.14014 MR 2475055

[51] Takeuchi, K.: Some birational maps of Fano 3-folds. Compositio Math. 71 (1989), no. 3,
265–283. Zbl 0712.14025 MR 1022045

[52] Takeuchi, K.: Weak Fano threefolds with del Pezzo fibration. Eur. J. Math. 8 (2022), no. 3,
1225–1290. Zbl 1505.14032 MR 4498835

[53] Voisin, C.: Sur la jacobienne intermédiaire du double solide d’indice deux. Duke Math. J. 57
(1988), no. 2, 629–646. Zbl 0698.14049 MR 0962523

[54] Xie, F.: Derived categories of quintic del Pezzo fibrations. Selecta Math. (N.S.) 27 (2021),
no. 1, article no. 4, 32 pp. Zbl 1467.14054 MR 4198529

[55] Yasutake, K.: On the classification of rank 2 almost Fano bundles on projective space. Adv.
Geom. 12 (2012), no. 2, 353–363. Zbl 1248.14047 MR 2911154

https://arxiv.org/abs/2312.13782
https://doi.org/10.46298/epiga.2024.10836
https://zbmath.org/?q=an:07852555
https://mathscinet.ams.org/mathscinet-getitem?mr=4698898
https://arxiv.org/abs/2305.17213
https://doi.org/10.4213/im9385
https://mathscinet.ams.org/mathscinet-getitem?mr=4640916
https://doi.org/10.1007/s00208-004-0542-1
https://zbmath.org/?q=an:1058.14022
https://mathscinet.ams.org/mathscinet-getitem?mr=2091681
https://doi.org/10.2307/2007050
https://zbmath.org/?q=an:0557.14021
https://mathscinet.ams.org/mathscinet-getitem?mr=0662120
https://doi.org/10.1007/BF01170131
https://zbmath.org/?q=an:0478.14033
https://mathscinet.ams.org/mathscinet-getitem?mr=0641971
https://zbmath.org/?q=an:0906.14019
https://mathscinet.ams.org/mathscinet-getitem?mr=1489117
https://arxiv.org/abs/2108.04499
https://doi.org/10.4213/sm8585
https://zbmath.org/?q=an:1372.14032
https://mathscinet.ams.org/mathscinet-getitem?mr=3535377
https://doi.org/10.4213/rm9811
https://zbmath.org/?q=an:1400.14040
https://mathscinet.ams.org/mathscinet-getitem?mr=3807895
https://doi.org/10.4213/tm4041
https://zbmath.org/?q=an:1471.14032
https://mathscinet.ams.org/mathscinet-getitem?mr=4070068
https://doi.org/10.1007/s12215-022-00773-4
https://zbmath.org/?q=an:1512.14023
https://mathscinet.ams.org/mathscinet-getitem?mr=4576732
https://doi.org/10.1070/IM2005v069n02ABEH000533
https://doi.org/10.1070/IM2005v069n02ABEH000533
https://zbmath.org/?q=an:1081.14059
https://mathscinet.ams.org/mathscinet-getitem?mr=2136260
https://doi.org/10.1070/im1981v017n01abeh001326
https://zbmath.org/?q=an:0466.14012
https://mathscinet.ams.org/mathscinet-getitem?mr=0587343
https://doi.org/10.1134/S0001434608070274
https://doi.org/10.1134/S0001434608070274
https://zbmath.org/?q=an:1219.14014
https://mathscinet.ams.org/mathscinet-getitem?mr=2475055
https://zbmath.org/?q=an:0712.14025
https://mathscinet.ams.org/mathscinet-getitem?mr=1022045
https://doi.org/10.1007/s40879-022-00571-3
https://zbmath.org/?q=an:1505.14032
https://mathscinet.ams.org/mathscinet-getitem?mr=4498835
https://doi.org/10.1215/S0012-7094-88-05728-6
https://zbmath.org/?q=an:0698.14049
https://mathscinet.ams.org/mathscinet-getitem?mr=0962523
https://doi.org/10.1007/s00029-020-00615-0
https://zbmath.org/?q=an:1467.14054
https://mathscinet.ams.org/mathscinet-getitem?mr=4198529
https://doi.org/10.1515/advgeom-2012-0001
https://zbmath.org/?q=an:1248.14047
https://mathscinet.ams.org/mathscinet-getitem?mr=2911154


I. Cheltsov, I. Krylov, J. Martinez-Garcia and E. Shinder 18

Received June 2, 2023; revised February 24, 2024.

Ivan Cheltsov
School of Mathematics, University of Edinburgh
James Clerk Maxwell Building, Peter Guthrie Tait Rd, EH9 3FD Edinburgh, United Kingdom;
i.cheltsov@ed.ac.uk

Igor Krylov
Center for Geometry and Physics, Institute for Basic Science
79 Jigok-ro 127beon-gil, Nam-gu, 37673 Pohang, Korea;
ikrylov@ibs.re.kr, igor@krylov.su

Jesus Martinez-Garcia
School of Mathematics, Statistics and Actuarial Science, University of Essex
Colchester Campus, Wivenhoe Park, CO4 3SQ Colchester, United Kingdom;
jesus.martinez-garcia@essex.ac.uk, jesus@jesusmartinezgarcia.net

Evgeny Shinder
School of Mathematics and Statistics, University of Sheffield
Hicks Building, Hounsfield Rd, S3 7RH Sheffield, United Kingdom;
e.shinder@shef.ac.uk, eugene.shinder@gmail.com

mailto:i.cheltsov@ed.ac.uk
mailto:ikrylov@ibs.re.kr
mailto:igor@krylov.su
mailto:jesus.martinez-garcia@essex.ac.uk
mailto:jesus@jesusmartinezgarcia.net
mailto:e.shinder@shef.ac.uk
mailto:eugene.shinder@gmail.com

	1. Introduction
	2. Proofs and classification
	References

