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Continuity of the temperature
in a multi-phase transition problem. Part 11

Ugo Gianazza and Naian Liao

Abstract. Local continuity is established for locally bounded, weak solutions to a doubly non-linear
parabolic equation that models the temperature of a material undergoing a multi-phase transition.
The enthalpy, as a maximal monotone graph of the temperature, is allowed to possess several jumps
and/or infinite derivatives at the transition temperatures. The effect of the p-Laplacian-type diffusion
is also considered. As an application, we demonstrate a continuity result for the saturation in the flow
of two immiscible fluids through a porous medium, when irreducible saturation is present.

1. Introduction

Initiated in [11], we keep up the study of the continuity of the temperature of a material
undergoing a multi-phase change. In this manuscript we consider the following non-linear
parabolic partial differential equation:

atﬁ(u) —div(|Du|?"2Du) 50 weakly in E7, for p > 2. (1.1
Here E is an open set of RY with N > 1 and E7 := E x (0, T] for some 7 > 0. The
enthalpy B(-) is a maximal monotone graph in R x R defined by

L
E(u) = B(u) + Zvi]fei (u) forsomef € NU{oo}, ¢; € R, andv; > 0. (1.2)
i=0

We have assumed that 0 = ¢, < e; < --+ < ¢4 and used the notation

1 u>ej,
He,(u) = 110,1] u=e,
0 u<ej,

while B(-) is a continuous and piecewise C! function in R satisfying

"> q, for some constant o, > 0,
{’S - ° (1.3)

B < oo exceptate; fori €{0,1,...,¢}.
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Moreover, we stipulate that 8(-) has the same graph near each e; after translation, that is,

{ﬁ(u +e;) = B(u) + B(e;) foralli € {0,1,....£},if lu| <d 04

forsome 0 < d < %min{eH_l—ei 0<i 56—1}.

Condition (1.4) is not restrictive but for ease of notation only, as we do not impose any
growth condition on B(-) near ¢;. Finally, we assume that for some 0 < d < d,

B is concave in (0, d) and is convex in (—d, 0), (1.5)

Yue(—d,d), Pu)=—PB(u). (1.6)

The behavior of B in a neighborhood of the origin is depicted in Figure 1, whereas an
example of graph of E (+) is given in Figure 2.

The main result is that locally bounded, local weak solutions to (1.1) with p > 2 are
locally continuous. Moreover, our estimates are structural and a modulus of continuity can
be traced like in [11, Theorem 1.1], given explicit B(-). As an application of our argument,
we establish a continuity result for the saturation in the flow of two immiscible fluids
through a porous medium, when irreducible saturation is present (more about this can be
found in Section 1.3).

1.1. Statement of the results

From here on, we will deal with the following more general parabolic partial differential
equation modeled on (1.1):

3:B(u) —divA(x.t,u, Du) >0 weaklyin E7. (1.7

Here B(-) is defined in (1.2). The function A(x, ¢, u, £): Er x RN+1 — RV is assumed
to be measurable with respect to (x,¢) € Er for all (u,£) € R x R¥, and continuous
with respect to (u, §) for almost every (x,¢) € E7. Moreover, we assume the structure
conditions

{A(x,r,u,s)-s > G lElP

AGe.t.u. )| < Cy|E[P~! ae.(x,t) € Er, Vu € R, Vée]R{N, (1.8)
s by Uy = 1

where C, and C; are given positive constants, and we take p > 2.

In the remainder of the paper, the set {«,, 8, J, d,vi,p,N,Co, Cy, ||tt]lco,Er} Will be
referred to as the data. A generic positive constant y depending on the data will be used
in the estimates.

The formal definition of local weak solution to (1.7) will be given in Section 1.4. Now
we present the main theorem.
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Theorem 1.1. Let u be a bounded weak solution to (1.7) in ET, under the structure
condition given by (1.8) for p > 2. The function u is continuous in any compact set
K C Er. More precisely, for every pair of points (x1,11), (x2,12) € K, it holds that

1
[u(xy, 1) —u(xz, )| <@ (|x1 —x2| + |1 — 2] 7).,

where the modulus o (+) is determined by the data and the distance from K to the parabolic
boundary of ET.

Remark 1.1. The assumption about bounded solutions in Theorem 1.1 is quite standard
when dealing with an equation like the one we consider here. For instance, given bounded
boundary data, one should be able to prove a weak maximum principle (cf. [7, Chapter V,
Theorem 3.3]) and apply Theorem 1.1 to construct locally continuous solutions. On the
other hand, we do not know of results where local boundedness of u is proved when one
has a graph E as in (1.2). However, it is conceivable, as seen, for example, in [7, Chapter V,
Section 5] that qualitative information on the boundedness of u can be converted into
quantitative one.

Remark 1.2. The perspective of our work is definitely local and in the interior of the
domain E7. Extending our results up to the boundary, both under Dirichlet and Neumann
conditions, is a very interesting and open problem. Recent results in [17] suggest that a
geometric density condition probably suffices to achieve global continuity for solutions to
the Dirichlet problem, whereas at least a C ! boundary should be required for the Neumann
problem. However, at this stage, these are just speculations: extending our methods up to
the boundary for a general E as in (1.2) poses quite a number of technical difficulties.

Remark 1.3. As we frequently point out in what follows in an explicit way, all the con-
stants, parameters, and so on, depend on p, which is one of the data. We work in such
a way that all estimates are stable as p | 2, that is, given any parameter y, we always
have lim, > y(p) = y(2), where y(2) is a finite quantity. When studying the regularity of
solutions to the parabolic p-laplacian, p = 2 represents a threshold value that separates
the two quite different regimes which correspond to p > 2 and 1 < p < 2, and the sta-
bility of the estimates as p | 2 (as it is the case here), or as p 1 2 (which is beyond the
framework of this manuscript) is a much sought-after condition; under this point of view,
see, for example [7, Chapters III-1V].

Remark 1.4. The main argument can be adapted when lower-order terms are present. In
fact, we will deal with some specific lower-order terms in Section 5, which bear particular
physical meanings. For general lower-order terms, the modifications can be done as in
[15, Chapter III]. We refrain from entering into details in this case.

Remark 1.5. Concerning the characterization of the modulus of continuity, there are
interesting connections between solutions to the problem under consideration here and
solutions to systems arising in the study of congested traffic dynamics (see [4]). Moreover,
another comment is in order. The stability of all the estimates as p | 2 notwithstanding,
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the modulus of continuity does not improve when p tends to the limit value. Under this
point of view, it is the same kind of situation that occurs when one compares the para-
bolic p-Laplacian with bounded and measurable coefficients that depend on (x,z) with
linear parabolic equations with the same kind of coefficients: in both instances solutions
are Holder continuous (see, respectively, [7, Chapters III-IV] and [15, Chapter III]), and
the only relevant fact is that for the Holder continuity exponent  one has lim,_,» a(p)
= «(2). The results of [12, Theorem 1.1] seem to suggest that the modulus of continuity
depends on an interplay between p and N, but we refrain from going any further into
details.

It could be remarked that the type of modulus of continuity one ends up with does
not have a clear meaning in the application; indeed, in [11], for S(u) = u, the modulus
of continuity established involves ln(6), that is, logarithm composed with itself six times,
and here things would not be very different. However, we think that this is not the case: as
observed in [11, Corollary 1.1], once a modulus of continuity is obtained, we can localize
and improve it.

Corollary 1.1 (Localization). Under the hypotheses of Theorem 1.1, the modulus auto-
matically improves to the one for the two-phase problem corresponding to a graph B that
satisfies (1.3)—(1.6).

Moreover, in our opinion there is also a more theoretical aspect that makes The-
orem 1.l interesting: under the purely qualitative assumptions given by (1.2)—(1.6) on
the graph B, it is nevertheless possible to prove the continuity of the solution. Therefore,
however singular, the diffusion process still ensures the regularity of u.

1.2. More general graphs

A priori, the number of jump points can be infinite, but we do not want them to cluster at
any real point: this is the motivation of the assumption d > 0 in (1.4), where min might be
inf if £ = 400, and d>0in (1.5)—(1.6). On the other hand, since we assume to work with
bounded solutions wu, that is, — |4 co,£; < u =< ||t||0o,E;> €ven when an infinite number
of jump points occurs in the graph ,g , only finitely many of them actually have to be dealt
with.

The above-defined ,g (+) carries two types of singularities: vertical jumps brought by the
Heaviside functions and infinite derivatives of B(-). Clearly, after proper rearrangement,
they may or may not happen at a same temperature. Thus, taking into account the previous
remark, E (+) actually concerns a class of piecewise C! functions, where only finitely many
jumps and finitely many infinite derivatives have to be dealt with.

It might seem restrictive to assume, as we do in (1.3)—(1.6), that infinite derivatives
take place only at jump points. However, this is just for the sake of simplicity, and it does
not imply any loss of generality. Indeed, as we discuss at the end of Section 1.3, nothing
would be altered if there were no derivative blow-up at a jump point. Conversely, if we
had such a blow-up at a point where no jump occurs, condition (2.5) in Lemma 2.4, which
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ensures that the effect due to the jump is negligible, would be automatically satisfied, and,
once more, no change would take place. Under this point of view, see also the remarks
before the statement of Lemma 2.4.

Condition (1.6) is not the most general one, and indeed it can be extended. From a
technical point of view, the crucial task is preserving the validity of Lemma 2.4. This can
be done, for instance, by assuming that the graph B is steeper on the left-hand side of the
origin than on the right-hand one. Then, we could have

Vue(0.d), B <—p(-u):

Vue(0.d), B <p(-u):

% B(s)
1B(—s)|

The case where the right-hand side is steeper than the left-hand one can be dealt with in
an analogous way.

Similar considerations hold as far as (1.4) is concerned: it reduces the analysis of
to the study of its behavior in a neighborhood of the origin. However, one can dispense
with such an assumption; if 8 had a different behavior at each discontinuity point e;, then
Lemma 2.4 would yield a different value of j, say j«,;, and consequently of &;, for each
i = 1,...,£. Nevertheless, the arguments of Section 3 would remain the same, provided
we choose

for some suitable 0 < 0, < min{1,d}, / ds = o0
0

S = min{gl?é‘Zv e ’S(};

this is possible, since only a finite number of points e; are considered, due the boundedness
of u, as we have already discussed at the very beginning of this section.

1.3. Novelty and significance

As already mentioned at the beginning, this is the second part of an ongoing study about
the local continuity for locally bounded, weak solutions to a doubly non-linear parabolic
equation that models the temperature of a material undergoing a multi-phase transition,
the so-called Stefan problem. This is a classical topic which has seen a huge amount of
contributions since the pioneering work of Olga Oleinik in 1960 [18]: we refer to [11, Sec-
tion 1.2] for a general introduction to the regularity of solutions to the problem, and the
corresponding state of the art. The interested reader can see [9,20,24], and also [2], where
the physically relevant investigation of the behavior of solutions to the Stefan problem,
when a volumetric heat source is present, is considered. The understanding of the beha-
vior of solutions reached so far notwithstanding, the general mathematical theory of weak
solutions to multi-phase transitions is still fragmented, an overall comprehension is lack-
ing, and there are yet a number of delicate and deep issues which are completely open,
in particular, as far as quantitative moduli of continuity of solutions for general graphs
are concerned. Our study, which started in [11], builds on recent advances by the authors
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on the local regularity of solutions to the parabolic p-Laplacian; these progresses help
in shedding light on some of the issues in the Stefan problem which still await full and
satisfactory answers and foster concrete hopes of gaining a more thorough perspective.

In [11], the enthalpy, as a maximal monotone graph of the temperature, was allowed
to possess several jumps at the transition temperatures, but otherwise was an absolutely
continuous function f in R, such that

0<a, <pB <oy,

for two constants «, and «.

In the present work we dispense with the bound above on f’, and we allow j to
have infinite derivatives at the transition temperatures. Besides the intrinsic mathematical
interest of this kind of graphs, they are also significant from the point of view of applic-
ations; indeed, experimental measurements of enthalpy curves in the so-called phase-
change materials (PCM) show graphs whose derivatives can blow up (see, for example,
[19, Figures 3, 9, and 10]). Without entering into details here, it suffices to say that PCM
are materials which release or absorb sufficient energy at phase transition to provide use-
ful heat or cooling. Moreover, these graphs are usually obtained through measurements;
despite their qualitative nature, we can conclude that u is continuous, as already remarked
above.

There is another important instance of maximal monotone graphs with infinite deriv-
atives, arising from real-world problems: in the so-called Buckley—Leverett model for the
motion of two immiscible fluids in a porous medium (see [14, 16]), B presents two singu-
larities, say at v = 0 and u = 1, where 8 can become vertical with an exponential speed, or
even faster, and might also exhibit a jump in the case of irreducible saturation. The Holder
continuity of the saturation u was studied in [23], where a power-like behavior at u = 0
and ¥ = 1 was considered. This result was extended in [8], where a weaker modulus of
continuity was shown to hold, assuming no a priori knowledge about the singularity of 8
at both critical points; however, the presence of a jump could not be taken into account.
This is the issue we consider in Section 5, where, as a straightforward application of the
techniques developed in Sections 2—4, we prove that the saturation is continuous up to
the irreducible value. Therefore, the continuity issue in this problem can be considered
as definitely settled, and in our opinion this represents an interesting step forward with
respect to the existing literature.

Besides the interest for applications, the continuity result is also very important from a
mathematical perspective, as it shows the strong smoothing effect that the non-linearities,
both of B and of A, have.

Coming to the technical aspects, the main novelty is represented by Lemma 2.4; it is
based on previous work developed in [8, Sections 4.3—4.5], but this is required to be prop-
erly adapted in order to take care of the more general context under consideration here.
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There is another important technical feature that deserves proper comments; this also
helps to understand why the approach we develop here works for p > 2, but breaks down
when 1 < p < 2. For simplicity, assume we have a single jump point at the origin. The
“derivative” of ﬁ is infinite at such a point, and consequently, ,6 is singular at [u = 0]. On
the other hand, since p > 2, the p-laplacian is degenerate at [Du = 0], and singular as
| Du| — oo. Such a range for p is usually referred to as degenerate regime. In the classical
De Giorgi approach to continuity of weak solutions, the essential point lies in showing that
the oscillation of u reduces in a quantified way along a sequence of nested cylinders. Due
to the two singularities of equations (1.7)—(1.8), here one needs to stretch or compress the
cylinders according to the oscillation itself. Such an approach is called “intrinsic scaling”
(see [7, Chapters III-IV]). Suppose 0 < u < 1. If one works in the region of E7T where
u ~ 0, the singularity of ,g prevails, and this calls for a stretching of the cylinder; on the
other hand, in the region where u = 1, the singularity of ,g plays no role, and the dominant
effect is due to the singularity of the p-laplacian. Luckily enough, in such a case p > 2
requires a stretching of the cylinder as well. Hence, in the degenerate regime, although
independent, both singularities concur and a proper balancing is relatively easy. On the
contrary, if we had 1 < p < 2, the singularity coming from the p-laplacian would require
a compression of the cylinder; therefore, balancing these two contrasting requirements is
much more challenging and cannot be achieved with a straightforward adaptation of the
techniques we employ here.

Moreover, an estimate of the modulus of continuity can be achieved once a specific
expression of § is given; it suffices to trace all our computations, step by step, inserting its
functional dependence.

Finally, even though B is assumed to be a continuous and piecewise C! function whose
derivative B’ blows up at ¢;, if we had B(u) = u, 8/ = 1 and no blow-up occurred, the
reasoning in Lemma 2.4 and Section 3 would not change, and the conclusions would
remain the same. Therefore, the continuity result of [11, Theorem 1.1] can be retrieved as
a particular case from the framework considered here.

The structure of the paper is as follows: in Section 2 we collect all the preliminary
tools; most of them are known and, therefore, we refer to elsewhere for their proofs, the
only exception being Lemma 2.4, which is dealt with in Section 4. Section 3 is devoted
to the proof of Theorem 1.1. Finally, Section 5 applies the main result to the flow of two
immiscible fluids with irreducible saturation; the application is far from trivial, because it
requires a careful analysis of particular lower-order terms. As clearly pointed out in [6],
only the particular structure of the right-hand side combined with the incompressibility
condition allows for the wanted regularity.

1.4. Definition of solution

A function

u e L2(0,T; L2 (E) N LE(0, T; WhP (E))

loc
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is a local, weak sub(super)-solution to (1.7) with the structure conditions in (1.8), if for
every compact set K C E and every sub-interval [tq, t,] C (0, T], there is a selection
v C B(u), that is,

{(Z,U(Z)) 1z € ET} - {(Z,B[u(z)]) 1z € ET},

such that
t 2
/vzdx(2+/ /[—vatc+A<x,z,u,Du)-Dzldxdzs(z)o
K n 1 K

for all non-negative test functions

¢ e Wh20,T: L2(K)) N LP (0, T; WP (K)).

loc loc

All the integrals are convergent as v € L (0, T; L2 (E)).

A function that is both a local, weak sub-solution and a local, weak super-solution is
termed a local, weak solution.

The use of test functions that involve u itself is standard in the regularity theory. Nev-
ertheless, the above notion of solution, though standard in the existence theory, does not
grant the admissibility of u a test function due to the lack of information in the time deriv-
ative and the jumps of ,g . A common device to overcome this is to regularize (1.7). More

precisely, for ¢ € (0, d), we let

1 u>e; +e,
He () =1 T(u—e) e <u<e +e,
0 u<e,

and define

{
Be(u) = Bu) + He(u) := BQu) + Y vi HE (u):
i=0
we now deal with

0:[B(u) + He(u)] —divA(x,t,u, Du) <(>)0 weakly in E7. (1.9)

A function u is termed a local weak sub(super)-solution to (1.9) if

[ “1B6) + HI(s)]sds € Coal0, T L1 (E)),
0

ueLP (0.T; WP (E)).

loc

and for every compact subset K of E and every subinterval [z, ;] of (0, T], we have

| 1800 + HoGoz
K

[5]
131

+/t2/ {—[Bu) + He(u)]0:¢ + A(x,t,u, Du) - D{}dxdr <(=)0
t K
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for all non-negative test functions

£ € WA2(0.T: LA(K)) 0 LE(0. T: WAP (K)).

loc

A function u that is both a local weak sub-solution and a local weak super-solution
to (1.9) is termed a local weak solution.

Notice that the above notion of local weak solution to (1.9) still does not involve any
time derivative of u. However, we may now use u as a test function, modulo a standard
time mollification procedure (cf. [7, Chapter II]).

In this manuscript we assume that local solutions to (1.7) can be approximated by a
sequence of solutions to (1.9) locally uniformly. In [10, Section 1] it is briefly explained
why it is not restrictive to make such an assumption. The main goal is to establish a mod-
ulus of continuity for solutions to (1.9) uniform in &, which then is inherited by solutions
to (1.7) in the uniform convergence. Under this point of view, in [9, Section 5.1] there
is an interesting discussion about how this way of proceeding might be used in order to
prove existence of weak solutions to the equation.

2. Preliminary tools

2.1. Energy estimates

We denote by Kg(x,) the cube in RY with center x, and side length 2R, whose faces are
parallel with the coordinate planes. Moreover, for any k € R, we let

(u—k)y = max{u —k,0}, (u—k)_ = max{k —u,0}.
The following energy estimate is standard (see, for example, [10, proof of estimate (2.5)]):

Proposition 2.1. Let u be a local weak sub(super)-solution to (1.9) with (1.8) in ET.
There exists a constant y(C,, C1, p) > 0 such that for all cylinders Qr,s = Kr(x,) X
(to = S,t,) C ET, every k € R, and every non-negative, piecewise smooth cutoff function {
vanishing on 0K g(x,) X (t, — S, 1,), it holds that

(u—k)+
ess sup / (/ B'(k £ 5)s ds){"’ dx
KRr(xo)x{t} *Jo

to—S<t<t,

(u—k)+
+ esssup / (/ H(k £+ 5)s ds)Zp dx
KR(xo)x{t} *J0

to—S<t<t,

+// CPID(u —k)+|? dxdt
ORr.s
< V//Q (u — k)2 |D¢|P dedr + )///Q (/O(uk)i Bk £ 5)s ds ) 13,£7 | dxdr

o,

(u—Fk)+
( / H!(k £ 5)s ds)|a,;1’| dxdr
0

R,S
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(u—k)+
+ / (/ B'(k £ s5)s ds)é‘p dx
KR(xo)x{t,—S} *JO

(u—k)+
+[ (/ H!(k + 5)s ds)gl’ dx. @2.1)
KR(x0)x{to—S} 0

Now we discuss some simplification of the general energy estimate in (2.1). First of
all, we deal with the terms containing H,. Since H > 0, we may discard the second term
on the left-hand side. Meanwhile, since H, is a linear combination of Heaviside functions
modulo ¢, we have

(u—k)+

(u—k)+
/ H(k £ s)sds < (u — k)i/ H.(k % s)ds < (
0 0

Vi)(u —k)x,

L
i=0
provided Zf=0 v; is finite. Instead, if it is infinite, we let

M = |ulloo,E7

and estimate

(u—k)+
/ H(k £ s)sds < sup |Hg(s)|(u —k)+.
0 Is|<M

Hence, in this case the subsequent estimates will depend also on M, but will be independ-
ent of €.
Next we deal with the terms of 8. By using the fact that 8’ > «, in (1.3), we estimate

(u—k)x 1
/ B'(k £ s)sds > an(u - k).
0

On the other hand, we easily obtain
(u—k)+
/ B'(k £s)sds < sup |B(s)|(u—k)+.
0 ls|l<M

Taking into account these remarks, we reduce (2.1) to

1
€ss sup —ao/ ¢P(u—k)%dx + // CP|D(u —k)+|? dxdt
KR(xo)x{t} OR,s

to—S<t<t,

< y// (u — k) | D] dxds +y// (u — k)419,¢7] dxdr
OR,s OR,s

+y/ £P(u — k) dx.
KRr(xo)x{to—S}

where the constant y depends on the data and M.
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If the cutoff function ¢ is chosen to vanish at ¢z, — S, then we obtain

to—S<t<t,

1
€ss sup —ao/ ¢P(u—k)%dx + // CP|D(u —k)+|? dxdt
KR(xo)x{t} OR,s
<y [ L= 0LIDE + - koslan? ] axar 22)
OR,s

which corresponds to [10, (2.5)].
On the other hand, if the cutoff function is chosen independent of the ¢ variable, that
is, £ = ¢(x), then we have

1
€ss sup —ao/ P (u—k)% dx—i—// CP|D(u —k)+|? dxdt
KRr(xo)x{t} OR,s

to—S<t<t,

< y/f (u—k)i|D§'|pdxdl +)// P (u — k)4dx, 2.3)
OR,s

KRr(x0)x{to—S}

which corresponds to [10, (2.6)].

2.2. Logarithmic estimates

Letting k, u, and Q g s be as in Proposition 2.1, we set

£ := sup (u—k)4,
OR,s

take ¢ € (0, £), and introduce the following function in Qg s:

L
U(x, 1) = W(L, (u—k)+,c) :=Iny (éli— (u—k)+ —I—c)'

To simplify the notation, if we let W(s) = W(L, s, ¢), then

1

V()= ——
) L—s+c

His>c1(5).

We may prove the following logarithmic energy estimate just like in [10, (2.7)] or in
[11, Proposition 2.2]:

Proposition 2.2. Let the hypotheses in Proposition 2.1 hold. There exists y > 1 depending
only on the data and on M, such that for any o € (0, 1),

sup / W2 (x,t)dx < Z/ U(x,t, —S)dx
to—S<t<t,  Kor(Xo) ¢ KRr(xo)

Y // /12—
NI S— |27 dxdr.
(1—0)PR? Ors
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For the cylinder @ := K x (T1,T,) C Er, we introduce the numbers ,ui and w sat-
isfying
ut >esssupu, pu < ess@infu, o>pt—pu.
Q
Then, we have the following consequence of the above logarithmic estimate, whose
proof can be retrieved from [1 1, Lemma 2.4]; it indicates how the measure of a set near the

supremum/infimum shrinks at each level of an arbitrarily long time interval, once initial
pointwise information is assigned:

Lemma 2.1. Let u be a local weak sub(super)-solution to (1.9) with (1.8) in Et. For
£€(0,1), set 0 = (Ew)>P. Suppose that

+(uE—u(,n) > o ae in Ky(x,).
Then, for any o € (0,1) and A > 1, there exists £ € (0, %é) such that
[ —u(0) <E0] N K1, (%) <alKy,|  forallt € (11,0 + A60P),

provided the cylinder Ko(xo) X (11,11 + A00P) is included in Q. Moreover, the depend-
ence of € is given by

£ = %Eexp { - y(data)g}.

2.3. De Giorgi-type lemmas

For the cylinder @ C E7, we introduce the numbers u® and  just like in Section 2.2.

Setting (x,, o) + Qo(0) = Kp(x,) % (t, — 007, t,), we now present the first De
Giorgi-type lemma that can be shown by using the energy estimates in (2.2); for the
detailed proof we refer to [17, Lemma 2.1]. If no confusion arises, we omit the ver-
tex (xo, to) for simplicity.

Lemma 2.2. Let u be a local weak sub(super)-solution to (1.9) with (1.8) in ET and let
£€(0,1) and 0 = (Ew)*>~P. There exists a constant ¢, € (0, 1) depending only on the
data such that if

[Ge* = u) < £0] 0 0g(6)] = col6w) 7" |Qa(0)],
then {
+(ut —u) > Eéa) a.e.in Q%Q(G),
provided Q,(0) is included in Q.

The next lemma is a variant of the previous one, involving quantitative initial data. For
this purpose, we will use the forward cylinder at (x,, #;) with length 8 > 0

(X0, 11) + Qg (8) = Ko(xo) x (11,11 + 00?).

The proof is based on (2.3) and can be retrieved from [11, Lemma 2.2].
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Lemma 2.3. Let u be a local weak sub(super)-solution to (1.9) with (1.8) in ET. Assume
that for some & € (0, 1), it holds that

+(uE —uC,n) > o ae in Ky(x,).

There exists a constant y, € (0, 1) depending only on the data such that for any 60 > 0, if

Yow)>™P

@™ =) < £0] N (0. 1) + OF O)]] = ==

105 (0),

then |
+(put—u) > ng ae.in Ky,(x0) x (11,11 + 6”),

provided the cylinder (x,,t1) + Q;(@) is included in Q.

As we have seen, the previous two lemmas use the “simplified" version of energy
estimates (2.2) and (2.3) only. In contrast, the next lemma examines the singularity of E
at[u =e¢;] foranyi =0, 1,..., ¢ more carefully; due to the periodicity assumption, we are
reduced to studying [u = 0]. The lemma quantifies a measure condition to ensure that the
singular effect due to the jump is negligible. As a result, the singularity due to 8'(0) = oo
prevails, which will be reflected by a time scaling different from the previous one. We will
evoke an argument from [8, Sections 4.3—4.5] to deal with the situation.

The vertex (x,,7,) will be omitted from Q,(Aw?~P) for simplicity.

Lemma 2.4. Let u be a local weak super-solution to (1.9) with (1.8) in ET. Assume that
for some a, n € (0,1) and A > 1, it holds that

(1) —u~ > no] N K| > a|K,| forallt € (t, — Aw* PoP,1,]. (2.4)
There exists &€ € (0, n) determined by the data, o, n, M, and B(-) such that if

B(géw) ,_
A>——= p.
= %éa) ;

™ —ei| < %%wforsomei €{0,1,...,¢}, %Ea) € (Od_) and it holds that

.25

k
_ 1
I ([ momanas)asa < peo|[u = n+360] 0 01,0)
0,(0) Ju
wherek = u~ + £w, and 6 = % (Ew)?~P, then
8

_ 1 .
u>pu + Zéw a.e. in Q%Q(Q),
provided the cylinder Q o(Aw*~P) is included in Q.

We will postpone the proof to Section 4.

Remark 2.1. A similar result to Lemma 2.4 also holds for sub-solutions. Since we do not
use it, it is omitted.
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3. Proof of Theorem 1.1

Assume (X,,1,) = (0,0), introduce Q, = Kg, x (—(80)?~1,0], and set

ut =esssupu, p = eszinfu, w>put—u.

o

Letting 6 = (%a))z_l’, for some A(w) > 1 to be determined in terms of the data and w,
we may assume that

Q50(A0) C Q, = Kgp x (—(80)P7*,0] such that ers(gsec):u < w; 3.1
e

the case when the set inclusion does not hold will be incorporated later.
3.1. Reduction of oscillation near the supremum
In this section, we work with u as a sub-solution near its supremum. Suppose for some
1€ (=(A—=1)00”.0]
1 1\
o D
[1t —u = 7] N10.D + 0oO)]] = co(30) 7 10:0) =210, (32

holds, where ¢, € (0, 1) depends only on the data as determined in Lemma 2.2. An applic-
ation of Lemma 2.2 (with £ = %) then yields

ut—u> %a) ae. in (0,7) + Q%Q(O). (3.3)

In particular, estimate (3.3) holds at #; ;= — 9(%@)1’ and serves as the initial datum for
an application of Lemmas 2.1 and 2.3. In fact, Lemma 2.3 determines some y, € (0, 1)
satisfying that if for some 7 € (0, %),

~ _ Yo(gw)*P ~
|[u+—u§nw]ﬂQ|§8A—9|Q| where Q := K1, x (11,0). 3.4
then :
ut —u > E"w a.e.in K%Q X (t1,0). 3.5

In the meantime, thanks to Lemma 2.1, (3.4) is fulfilled with the choice

1 { yA2 }
= —expy— ,
T= 76 P17 202,

and hence, so is (3.5) in view of Lemma 2.3. As a result, we obtain a reduction of oscilla-
tion from estimate (3.5), no matter where the location of 7 is. More precisely,

1
essoscu < (1 - = )a) 3.6)
Q%Q(G) 2'7

Note that A(w) has not been fixed yet. It will be chosen at the final stage of the argument,
and hence, simultaneously it will determine the value of 7.
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3.2. Reduction of oscillation near the infimum: Part I

Starting from this section, let us suppose contrary to (3.2) that, for any 7 € (—(4 —
16e?. 0],

N+p

)[,u+ —u < %a)] N[,1) + QQ(Q)]‘ > a|Qp(0)] fora = c(,(%w) r

Since ut — —a) >u + a) always holds, we may rephrase it as

[e-1 = 0] N 10D + 0,®)] > «lQe®)]. (37

Suppose 7 is fixed for the moment. The measure information in (3.7) together with
energy estimate (2.2) implies a local clustering phenomenon of u. This is the content
of the next lemma, similar to [10, Proposition 5.1i]; the proof can be reproduced as in
[10, Sections 5-8] or [11, Lemma 3.1]. Throughout Sections 3.2-3.6, we will work with u
as a super-solution near its infimum.

Lemma 3.1. For every A € (0,1) and n € (0, 1), there exists a point (xx,1x) € (0, 1)
+ 0,(0), a number k € (0, 1), and a cylinder (xx,tx) + Qio(0) C (0,7) + Qo(0) such
that

[ = 1+ 40] N (0. 12) + Cuo®]] = 11 0sa(6)].

The constant k is determined by the data, M, A, 1, @, and .

Although the location of (x4, tx) + Q,o(0) C (0.7) + Qo(0) is only known qualit-
atively, we may use the quantified measure concentration to extract a pointwise estimate
with the aid of Lemma 2.2, and then use the logarithmic energy estimate to propagate the
measure information up to the level 7.

Indeed, if in Lemma 3.1 we choose A = 5 and n=col 4a)) P’ , where ¢, is determined
in Lemma 2.2, then Lemmas 2.2 and 3.1 would yield that

1 .
u>u + Ea) a.e. in (xu, t4) + Q%KQ(H),
for some (x4, 1%) € (0,7) + Q,(0) and some « € (0, 1) depending on the data, M, and w.
In particular, we have

u(-,t* — 9(%;(@)1,) >+ 11_6w a.e.in K%KQ(X*),

which serves as the initial datum to apply Lemma 2.1. In fact, setting o« =  and £ =

L
2 16

in Lemma 2.1 and choosing A'so large that

1 \2-» 1 \2-p/1 \P ) ~ 24P
(—a)) o? < A( ) (—KQ) , thatis, A > ,
4 16 2 KP
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it yields a number £ € (0, %S ) such that
_ = 1
(D) > 1™+ 0] N Ky ()] > 51Kyl (338)
Asin [11, Section 3.2, (3.17)], the dependence of § is traced by

__1 y
E—ﬁep{ a)P‘?}’

q::(%+1)(3+%)+%+1.

The measure information in (3.8) permits us to claim that

where

(. 0) > u™ 4§l N Kol = |[u(7) > p~ + E0] N Ky ()]
1,1 \N
5(3¢) 1Kol = alK,l.

Thanks to the arbitrariness of 7, we have actually arrived at

1
> §|K%KQ| =

G, t) > u= + 0] N Ky| > @|K,| forallt € (—(A—1)00?,0].  (3.9)
Once more, as in [11, Section 3.2, (3.19)], the dependence of & is traced by
& = y(data) 0V .

The analysis to be unfolded in the following sections relies on the measure information
in (3.9). For simplicity, we will use (3.9) with A — 1 replaced by A; recall that A is a free,
large number to be chosen.

3.3. Reduction of oscillation near the infimum: Part II

Let us first introduce the following intrinsic cylinders

" " - Bktw)
Qo(0) = Ko x (=00%.0), 6 = Tew ——(kw)*77,
8
00(0) = Ko x (=807.0), 8 = (§0)' 7.
for some & (w) and §(w) in (0, 1) to be determined later. We can always assume *;‘ and § to
be sufficiently small, so that on one hand 8 ﬁ( £w) < §'7P, which ensures 6 <6, and on
the other hand, 9 > 6.
In addition, we may suppose that

870 < A8P9 (3.10)

for some A(w) yet to be determined.
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Throughout Sections 3.3-3.5, we always assume that 3 Sa) € (0,d) and

1
I —ei| < ZSEa) forsomei € {0,1,...,4}, (3.11)

for the same &(w) and §(w) in (0, 1) introduced above, to be determined. When restric-
tion (3.11) does not hold, the case will be examined in Section 3.6.

First of all, we turn our attention to Lemmas 2.2 and 2.4. In view of the measure
information in (3.9), Lemma 2.4 is at our disposal, with ¢, 1, and A replaced by &, é s
and A/4%7P, respectively. Suppose £ is determined in Lemma 2.4 in terms of the data
and @, assume £ < }T with no loss of generality, and let 0, := (w)?~P. If

[ 21+ 580] N 04,00 = colé) 710460

holds, then Lemma 2.2 yields that
_ 1 .
u>u + Zéa) a.e. in Q%Q(G*). (3.12)
Analogously, if fork = u~ + o,
k 1 ~
HU(s) gy <n dsdxdr < B(gw)|[u = u™ + 80| N 0,1, 0)|
0,(6) Ju 2 2

holds, then, stipulating

1)
> g2 L BGE ), 3.13)
séw
Lemma 2.4 yields that
_ 1 . A
u>u + Zéw a.e. in Q%Q(H). (3.14)
Consequently, either (3.12) or (3.14) yields a reduction of oscillation
1
essosc U < (1 — Zé)a), (3.15)

Q%Q(G*)

where we have taken into account that

g PGt PGED) e y2r > gy — 6.
lew

Remark 3.1. We may trace the dependence of & by
- 1 .
=2 TMinE = s exp{— L} with m e N, 2p <m <2p + 1.
32 wPq

Here j« = j«(w) will be determined according to (4.6).
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3.4. Reduction of oscillation near the infimum: Part I1I1

This section starts dealing with the situation when the measure conditions in Section 3.3
are violated, that is, when the measure condition in Lemma 2.2 is violated, meaning that

> col6w) 7" IQ o001, (3.16)

o=+

and when the condition in Lemma 2.4 is also violated: for k = u~ + £w, it holds that
k 1 N
// i / H!(5) 115 < dsdxdr > ,B(Sa))‘[u <u + Esw] N Q%Q(G)‘. 3.17)
Qq(0) Ju

Combining (3.16)—(3.17) and recalling ] > 0., we obtain that, for all r € [2p, 8¢],

k k
// / H(5) X [s<k] dsdxdt 2/[ / H(5) X [s<k] dsdxdt
+(@) Ju o(6) Ju

> pieo)|[u < 1+ 350] 0 04,0)|
> ,B(Ea))‘[u <u+ 1sw] N Q1,0
> co(60) " BE0)|0 4,00

1 1+ M2 ﬁ(fw)
> 6o(Ew) il

> 7bh(Ew)| 0, (B), (3.18)

where y = 00%16_1\' P and

b(Ew) = (w)' 7"

Next, assuming § has been chosen, we introduce a free parameter §e (6,28) and set
0 := (86w)'P. Recall also that

0= (L) T 0= ‘3(85‘”)@ 0.

and that we have assumed 5(89)1’ < A6(80)? < (80)?~! in (3.10). Hence, we have
0,6) c 0,6) c 0,6) C 0,(48) C Q, forany r € [20,80.

According to (3.18), it is not hard to find some t. € [—érl’ , 0] satisfying

k
/ { [ e asx = ool | (3.19)
Ky x{t«} Ju
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Observe also that for any ¢ € [-0r?,0] and any § € (§,26),

|Kr| > |[u < p~ +8w] N Ky | > (S6w) ™2 f t}[” —(u” +8Ew)Pdx  (3.20)

o

holds. Denoting k= w4+ Séa) and enforcing that for some i € {0, 1, ..., ¢},
Iw™ —eil < 185 d e< 155
" e;| < 1 w and &< 1 w,

we use (3.19) and (3.20) to estimate

k _
esssup/K/ H/(s)(s — k)— dsdx

—0rr<t<0

i k _
(k —e;j — &) esssup / / Hs’(s))([K,;] dsdx > y(k —e; — e)b(Ew)| K, |
K, Ju

—0rp<t<0

A%

v

1719(50))(350))(350))_2 ess sup / [u—(u + §w))* dx.
2 K, x{t}

—0rr<t<0

Here we require %éw € (0, d) because of Lemma 2.4, and in the first inequality above
we have also assumed %Ew < d by possibly further restricting the choice of &; hence,
(u=, k) C (e — %5540, e + %8&) + 26éw) C (¢; — d, e; + d). The above analysis,
together with (2.1), yields the following energy estimate:

Lemma 3.2. Let u be a weak super-solution to (1.9) with (1.8) in ET, under the measure
information in (3.9). Let (3.16) and (3.17) hold true. Denoting

b(Ew) = (Ew)'t P

and setting k = p~ + 8&w with § € (8,28), there exists a positive constant y depending
only on the data such that for all 0 € (0,1) and all r € [20, 80], we have

8%‘0)(35(1})—2[)(50)) _esssup /;( { }(u — k)% dx + // p |D(u — k)_|? dxdt
er t QU, )

—0(or)P<t<0
< 4// _(u—k)Pdxdr + 4// (u—k)—dxdt,
(1=0)2r? JJ . @) (1=0)0r? Mg, @
provided that for some i € {0,1,...,1},
lu™ —ei| < %8%’(1}, Zéw €(0,d), and €< %850}

The energy estimate in Lemma 3.2 yields the following De Giorgi-type lemma; notice
that the time scaling used here is different from the one in Lemmas 2.2-2.4:
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Lemma 3.3. Suppose the hypotheses in Lemma 3.2 hold. Let § € (0, 1). There exists a
constant ¢, € (0, 1) depending only on the data such that if

I < 1= + 2860] N Qap(B)] < c26(Ew)| Qug(B)].  where § = (85w)' 7,
and %é‘a) € (0,d), then either = —ei| > %SSwfor alli € {0,1,...,¢L} or
u>u +6w aein ng(g),
provided 4P8 < A8PH.
Proof. Forn =0,1,..., we set

85‘0 P kn + kn+1

kn— n 2

Q ~ _ On T 0Ont1
o o=
Ky = Ko,. En = Rgy»

On = 00,0), 0un=05().

We will use the energy estimate in Lemma 3.2 with the pair of cylinders Qn C Q. Note
that the constant § in Lemma 3.2 is replaced by (1 4+ 27")8, as indicated in the definition
of k,. Enforcing |u~ —¢;| < %8&) and ¢ < ‘1—‘8§w, the energy estimate in Lemma 3.2
yields that

(8sw) 1b(Ew) ess sup /g { }(u — k) dx + //~ |D(u — kp)_|? dxdt
x{t n

—05F <t<0

|A}’l|a

where
Ap =[u <kn] N Qy.

Let 0 < ¢ < 1 be a cutoff function that vanishes on the parabolic boundary of Qn and
equals 1 in Q1. An application of the Holder inequality, the Sobolev imbedding [7,
Chapter I, Proposition 3.1], and the above energy estimate gives that

2n+3|A”+1| = f/ U— )_¢ dxdt
N
//~ (4 —Fn) 0" % dxdz] PV 4w
N
<y // (u—k )— ¢]|pd dt]p(N+2>

1
X | esssup /~ (u—lgn)idx]N+2|An|l_p(NNTz)

GQ <t<0 n
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= vl @) v [t 7 [T 14 b
In terms of ¥, = |A,|/|Qn|, the recurrence is rephrased as

c 1+ 15
Yn+1 =< Y Y, +N+2’

T b))

for a constant y depending only on the data and with C = 2 e . Hence, by [7, Chap-
ter I, Lemma 4.1], there exists a positive constant ¢, depending only on the data such that
Y, — 0if we require that Y, < c2b(§w). This concludes the proof. |

The next lemma concerns the smallness of the measure density of the set [u &~ p©™].
Its proof relies on (2.2) and the measure information in (3.9) will be employed.

Lemma 3.4. Let u be a weak super-solution to (1.9) with (1.8) in ET, under the measure
information in (3.9). There exists a positive constant y depending only on the data such
that for any s, € N, we have

o=+ 20000 <27 iou v = (52)"

provided 474 < A870.

Proof. The proof is identical to that of [11, Lemma 3.4]. [

3.5. Reduction of oscillation near the infimum: Part IV

Now we have all the prerequisites to reduce the oscillation under conditions (3.16)
and (3.17). First of all, let £ be determined by Lemma 2.4 in terms of the data and &
as in Section 3.3. Then, we choose the integer s, large enough to satisfy

Y < ebo).
sy’
where the constant ¢, and the quantity b(£w) are defined in Lemma 3.3.

Next, we can fix 26 = 27°* in Lemma 3.3. Consequently, Lemma 3.3 can be applied,
assuming that |[u~ —e;| < }75560 forsomei €{0,1,...,£}and e < i&éa), and we arrive at

u>pu +6w ae.in ng(g).
This would give us a reduction of oscillation

essoscu < (1 —68)w (3.21)
020(0)
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with the above-defined § and &. For the moment, as required in (3.10) and (3.13), the
choice of A can be made from

1
0]
A = max {2P+4w—1(5g)1—1’, 52—1’&} =274y 1 (88)1P, (3.22)
gbo
To summarize the achievements in Sections 3.1-3.5, taking the reverse of (3.1), (3.6),
and (3.15), as well as (3.21) all into account, if |u~™ —¢;| < %8&) forsomei €{0,1,...,¢}

and ¢ < %SEa) hold true, then for 6 = (;{w)z_P, taking into account that 6 < 0,, we have

1 p—2
ith <(1-7 - A)]! <o, 3.23
either %ssgoggu_( n(w))w or ( 4w) [A)]" <o (3.23)

O

where { {
7 =min{-n, £, 8 }
] mm{zn 45 3

Among them 7 is to be fixed, as the final choice of A is yet to be made.

3.6. Reduction of oscillation near the infimum: Part V

Let £(w) and §(w) be determined as in the previous sections. The analysis throughout Sec-
tions 3.3-3.5 has been founded on condition (3.11). We now examine the case when (3.11)
does not hold, namely,

1
™ —ei| > ZSéa) foralli € {0,1,...,¢}. (3.24)

Notice that the analysis in Section 3.2 does not rely on condition (3.11), and thus, the
measure information in (3.9) derived there is still at our disposal. In view of the determ-
ination of £ starting from § , we have that § < § (cf. Remark 3.1), and hence, (3.9) holds
true with £ replaced by §&.

Next, for E € (0, %), we introduce the levels k = u~ + ESSQ). According to (3.24) and
assuming that ¢ < iéfa), energy estimate (2.1)_ written in Q, (%) C Q,(A0) for some
0 < ¥ < A0 yields that

1
€ss sup —otof eP(u—k)% dx —i—// P\ D(u —k)—|? dxdt
Kox{t} 0,(®)

—oP<t<0

< y/fg (ﬂ)[(” —Kk)?|Dg|? + ﬂ/(%sgw)(u — k22,7 ] axa.

Given this energy estimate and the measure information in (3.9), the theory of the para-
bolic p-Laplacian in [7, Chapter III] applies, bearing in mind that at this stage § and £
have been chosen and hence S’ (%85(0) is deemed a fixed quantity, although it could be
quite large.
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Lemma 3.5. Let u be a weak super-solution to (1.9) with (1.8) in ET. Suppose (3.9)
and (3.24) hold true, and & < %8%‘0). There exists a positive constant € depending on the
data, w, and &, such that for % = (E8Ew)?~P, we have

essoscu < (1 _£§ o,
0,0 0%

provided § < A6.

Remark 3.2. The dependence of § can be traced by

N+p+1

E=exp { — yiawa #1[(g60)] 7}

Lemma 3.5 imposes a new condition on A in order to satisfy ¢ < A6, namely,
A > (4£8£)%7P; taking into account the existing condition given by (3.22), the final choice
of A is made by

A = max {(4?8“;‘)2_1’, 2Pt T1(8E) 7P,

This choice of A also determines the value of 7 in (3.6).
Let us summarize what has been achieved in the previous sections. According to (3.23)
and Lemma 3.5, we have

essoscu < (1 —f(w))w, or w??[A(w)]! <47 20, or S(w)é(w)w < 4de,

1o

where § = (3w)*7? and
7 = min {ﬁ, 3;85}
Moreover, the functions
0,1) 3 © = 7o), §(), §(@), [A@)]™
are increasing and satisfy

7.8,6,A7 >0 asw—0.

Remark 3.3. Starting from the previous conclusions, the final proof of continuity of u is
given in a standard way, showing how the oscillation of u decreases in a controlled way
along a sequence of nested cylinders. Moreover, once the functional dependence of § is
given, an argument like the one in [11, Section 3.7] can be set up to quantify the modulus
of continuity.

4. Proof of Lemma 2.4

We assume (x,, f,) = (0, 0) for simplicity and use energy estimate (2.1) with Qg s
= 0,(0) for %Q <r<pg,andwithk = u~ + £w.
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The length 6 of the cylinder will be determined in what follows. For the moment we
assume it as a given quantity.

We discard the second term on the left-hand side since H, > 0, and we choose the test
function such that £ (-, —0oP) = 0. As for the first term on the left-hand side, we have

k k
1
/ B'(s)(k —s)—ds > min ,B’(s)/ (k —s)—ds = =( min B'(s))(u — k)2,
u u<s<k u 2 ‘u<s<k
and also for some i € {0, 1,...,£},
. 1g < —<»_|_lg — -_|_3§ <k<~+5€§
e; 4w_u <ej 4a) e 4a)_ <e; 4a).
Therefore, taking (1.4)—(1.5) into account, we estimate
min B'(s) > min{ﬂ’(ei + §Sw),ﬂ’(e,- - l“g‘a)>} = min {ﬂ’(ééa)),ﬁ’(—léa))}.
u<s<k - 4 4 4 4

If we denote 5 |
Buw) = min{p'(J¢w). B (—5E0)}.

then energy estimate (2.1) becomes

—0rp <t<0

=y //Q,(e)(u —k)?|D¢|? dxdr + y//‘gr(e)<fo(“—k)_ Bk — 5)s ds)|at§p|dth

(u—k)—
+yf/ ([ H;(k—s)sds)|a,;1’|dxdz.
0-(0) Vo

Next we treat the right-hand side of this energy estimate. Let us first estimate the last
integral via the given measure-theoretical information in (2.5):

// ) /uk He(5)(k — 5)+ ds[9,¢| dxdr

k
< (k=) / / H(5) s <t s 10,67 | dxd
0,(0) Ju

k
<to [ [ i sl axa
0,(8)

€ss sup —/3 (Ew)/K {t}(u—k)ifpdx—i-//g o CPID(u —k)—|P dxdt

< €0 5 o501 [ < 1 + 360] 0 01,0)
B, ]
< €02 5210, /) | P s e
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On the other hand, if we consider the second term on the right-hand side of the energy
estimate,

// /) /uk B'()(k —5)+ds0,¢| dxdr

k
< (k- ) / / B'(5) A1s <k ds19,£7| dxd
0,(0) Ju

k
<ol [| [ B mmasara
0,(0) Ju

< 60108 el + £0) — O] [ | f st dnd

Due to (1.4), we have

BT +50) — pu7) < e + 250) — B(es — 1) = p(FEw) — B(~ ;o)
Cea)[P452) , Pkt

=

4 ko —3éw
5 B(3éw) B(—1itw)
< (Zéw) max{ f—;w , —;&“w }

Hence, we arrive at

k
// [ B/()(k — 5)4 ds[3,¢7| dxdi
r(6) Ju
Btw) P(—ttw)
8[ p o0 uU<i™ 10) d dt
e e N1 f/Q,(e)” R

Consequently, under the assumption that |u~ — e;| < %Ea) for some i € {0, 1,...,4¢},
energy estimate (2.1) becomes

< )/(Sa))2 max{

’

ess sup %ﬁ;(éa)) (u—k)2e? dx + /] CP|D(u —k)_|P dxdt
(0)

—0rr<t<0 K, x{t}

< )/// (u —k)?|D¢|? dxdt
0-0)
19622 oo (E0)?6s (Ew) // Hwen 0] dXdL, @.1)
0,(0)

where we have set

B(GEw) B(—zEw)

5 ’ 1
k0 —gbo

O« ((w) = max{ } B.(w) = min{ﬂ’(gga)),ﬁ’(—%&))}.
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In the derivation of (4.1) we have used the periodicity of B expressed in (1.4), but oth-
erwise, we have tried to keep its formulation as general as possible. Based on energy
estimate (4.1), we can establish the following two claims:

Claim 1. Letting 0 = 0(§w) := 9*(%50)) (Ew)?7P, there exists ¢y € (0, 1) depending only
on the data such that if

Bi(w)

e = 1™+ €010 Qo0)] = 1 1
*12

o).
then |

u>pu + Eéw a.e. in Q%Q(Q),
provided |u~ —e;| < %Sa)for somei €{0,1,...,4}, and %ég‘a) € (0,d).

Proof. Recall that the wanted parameter £ has not been determined yet. Assuming it has
been fixed for the moment, for n € N, we introduce

§

on+1’

Q _
o= 3 tgmr kn=a GO, 6=

K, =K,,., 0On=K,x(—007.,0).

(NI

The above energy estimate (see (4.1)) is used in @, instead of Q,(f), with k and &
replaced by k, and &, respectively. Moreover, by the definition of &, B, O, the property
of B in (1.5), and the restriction %Sw € (0,d), we estimate

Bllero) = BL(Ew).  bulro) < 0 (5E0).

To proceed, the quantity 6 is chosen to be 9*(%&0)(&))2_1’ . As a result, energy estim-
ate (4.1) may be written as

ess sup —ﬁ*(éa))/ (u—k )2 ¢eP dx+/ CP|D(u — ky)—|? dxdt

—60F <t<0

<y [ (1 — kn)? | DE|P drdr + yuatzpnoo(swl'e [[ Hu<ty dxdr.
Qn n

Let 0 < ¢ < 1 be a cutoff function that vanishes on the parabolic boundary of Q, and
equals the identity in Q1. Moreover, suppose that its derivatives satisfy |[D{| < 2" /o
and |0,¢| < 2"7 /0pP. Then, the energy estimate becomes

€ss sup —/3 (éa))/ (u—k )zé‘pdx—}—/ CP|\D(u — ky)—|? dxdt

—0@ <t <0 On

< yQ—p(Ew)p|A,,|,

where A, = [u < ky] N Q.
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An application of the Holder inequality, the Sobolev imbedding [7, Chapter I, Propos-
ition 3.1], and the above energy estimate gives that

2n+2 Sagz | Ant1l = // u —ky)_¢dxdt
N
// (4 —a)_E)7 N dxdz] PV
<y // (u—k) §]|pd dl]p(Nu)
1

N+2 N
X [ ess sup / (u —kn)ié’z dx] N+2|An|1_p(N+z)
K, x{t}

—00F <t<0

2 2,,Ljr127
1 P2 1
= YIBLE) VR () R AR

QN+2

In terms of Y, = |A4,|/|Qnl, the recurrence is rephrased as

9*(%Ew)]ﬁyl+ﬁ

o <7 Gty ]

N
where C = 22 s and y is a constant depending only on the data. Hence, by [7,
Chapter I, Lemma 4.1], there exists ¢; € (0, 1) depending only on the data such that
Y, — 0 if we require that Y, < ¢; 8, (Ew)/ 9*( £w). This completes the proof. L]

From the measure-theoretical information in (2.4), we obtain that
G, t) — = > nw] N Kap| > a2 N |Kap|  forallt € (1, — Aw* PP, 1,).  (4.2)
The following claim hinges upon this measure information:

Claim 2. For j €N, let§; := 0*(%2_j nw) (2~ nw)?~P. Assume the measure-theoretical
information in (4.2) holds with Aw*~P > 0,;,. There exists y > 0 depending only on the
data such that for any m, jx € N,

ym4amN+p)
= —},IIQQ(&W*)I

am]*

‘[” =u + 77_] N Qo(Omj)| <

provided |u~ —e;| < %2_'"1'* nw for somei € {0,1,...,4}.
Proof. We employ energy estimate (4.1) in Q24(0j,) with the levels

-, Now . .

ki=pun +ﬁ’ j=0,1,..., j«
According to the restriction |[u~ — e;| < %2‘””* nw, we are allowed to employ energy
estimate (4.1) with the above levels k; . At this stage we are using neither (1.5) nor (1.6). To
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this end, the cutoff function { is chosen to vanish on the parabolic boundary of Q24(0yj,)
and equal the identity in Q4(6m;, ), such that |[D¢| < 1/0 and |0,¢| < 1/(6m;,0%). There-
fore, assuming mm and j, have been chosen and noticing that 8; < 6,,;,, energy estim-
ate (4.1) yields that

/[ngm]*)lD(u_k) P = 5 <ZCJU> <1+99 )'A”Q' (?) 4.2l

mjx

where A;20 1= [ < k;]1 N Q20(Omj)-

Next, we apply [7, Chapter I, Lemma 2.2] slicewise to u(-, t) for t € (—8y,;,07,0] over
the cube K, for levels kj 1 < k;. Taking into account the measure-theoretical informa-
tion in (4.2), this gives

(kj —kj+ D), 1) <kj+1] N K,
yoV+!

<
T 1) > k10 Kol ik 4y <utn<kjink,

1
: @[/ [ Du(-.0)[” dx]p kjs1 <uC.0) <kj]nKo|' "7
[kj+1<u(,t)<k;1NK,

| Du(, 1)] dx

L 106 = k-1 4] 1300 = 14y 10O,
KQ

o

where Aj,(t) := [u(-,t) < k;] N K,. We now integrate the last inequality with respect
to t over (—8,;, 0%, 0] and apply Holder’s inequality in time. This procedure leads to

nw
2J+1

IA

|4j+1.0l

1
Yo » -1
U 1pw=k)-17 dxar] 1400 - 1474100
« omj)

y no 1 -3
57 Aozl P[40l = 14410017

I A

where Aj, = [u < kj] N Qo (Omjy,)-
Now take the power p” on both sides of the above inequality to obtain

P
_p_ 1AV 1
410177 = (£)7 1020l 7T (1470l = 147 41.]1

Add these inequalities from O to j« — 1 to obtain
) Y\ 721 1
JxlAju ol P71 = (a) [4o,201 77" |Ao,ol-
From this, we conclude

y S SRV TR~
| j*,Q| = j| o,2g|p| o,g| 7.
aj’



U. Gianazza and N. Liao 30
Similarly, replacing o by 2p, we have

1 p=1
— 5 40,4017 [ 4020 7.
p

O

| 4,20l <

The constant y(data) appearing in the last two inequalities may be different, but we can
take the larger one.

Suppose j. has been chosen for the moment. We may repeat the above arguments for
the same k; but with j = j.,...,2j« We are allowed to employ energy estimate (4.1)
with such k;, due to |[u™ —¢;| < iZ_zj* nw. Hence, the energy estimate can be written
in the same form with such choices of k;, and the measure-theoretical condition in (4.2)
permits us to apply [7, Chapter I, Lemma 2.2] just as above. Consequently, this will lead
us to

y 1 p=1
|A2j.0l = —5=r14ju20l 7 [Ajuol 7.

;P
o

<

1 =1
|A2j..20l = — 5= |Aji a0l 7 |Aji 20l 7
aj’
Here the constant y is the same as above.
Combining the above estimates would yield that

y242(N+p)
|A2j..0l = T|Qg(em Al
aZj, ’?

The procedure can be iterated m times to yield that

ym4m(N+p)
[Amj. ol = T|QQ(9m i)l
amj, ?
provided |~ — ¢;| < 127w, n

Up to now, we have not used (1.6) yet; we rely on it on the final part. Combining
Claims 1 and 2, we can finish the proof of Lemma 2.4, provided we let

=27,

and we choose m and j such that
0< gz—m-i*nw <d, (4.3)
yramNED) g )

c - .
amj:inTl = 9*(%2_"”* na))

4.4)
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As for (4.3), it is certainly satisfied if we let
SR (SM) 4.5)
—lo — ), .
J* m g2 4d
assuming for the moment that m € N has already been chosen. Coming to (4.4), we have
1 5ny—mjx 1y—mjx
ym4m(N+p) - min {ﬂ/(zz mixnw), /3/(_22 mj 7760)}

B2~ o) B(=§27"*nw)
327w 0 — 327w

r—1  — ‘1

; p
om Jx max{

Due to (4.4), we can employ (1.5)—(1.6) to obtain

B(E2"nw) P(—g2 ™" '760)} _ B2 o)
22 7misnw T —E27Menw

5 : 1 . 1 .
p(Grmene) = (o) = (4 w0)

Therefore, (4.4) becomes

max{ [p—
27w

y'"4'"<N+f’> < e Lomiep, ﬁ’(%f’”f“nw)’
am " 8 B(§27nw)

and if we take into account the monotonicity of 8, we conclude it suffices to choose j«
such that

y2p+14(2p+1)(N+p) 1 <§2—2pj* )ﬁ/(%z—ij*nw)

< _c —.7
aijf(P_l) =10 "\4 ,8(%2_21’/*71(0)

where we let m € N with 2p < m < 2p + 1. We claim that there exists j. such that (4.6)
holds true. Indeed, if we let s := %2_41* nw, then (4.6) can be rewritten as
C/ S C”Sﬁ/(S),
In®P=2 B(s)
with s in a neighborhood of the origin, and C’, C” constants that depend on the data, «, 7,
and w. If there did not exist a j satisfying (4.6), we would have
B'e) C’ 1
< — , Yoe(0,0,)),
Bo) = T m@r 7o (©-00)

for some suitable 0 < 0, < min{1, d }; integrating both sides with respect to o over (0, 0,),

(4.6)

we would have a contradiction, since the integral on the right-hand side is finite, whereas
the one on the left-hand side diverges. Hence, the required j, does exist; if we denote it
by j«, and take into account (4.5) and the choice of m, we conclude that

. {,_v 11 (5M>}
& 1= max ,—1lo — ),
J J* 4 g2 ad

whence £ is determined.
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5. Two immiscible fluids in porous media with irreducible saturation

5.1. Origin of the model

In nature, subsurface rocks were initially wet and the pores among them were saturated
with water. It is important to understand how the oil in a reservoir eventually filled up these
pores that were once occupied by the water. The displacement of the water by the oil is
driven by the so-called capillary pressure that exists on the interface of the two immiscible
fluids. The capillary pressure increases as the oil saturation increases, and meanwhile the
water saturation is forced to decrease. Such a process continues until all water at the center
of the pores is displaced, and the only water left is the layer adherent to the rock grains.
In such a case, the remaining water becomes immobile, no matter how high the capillary
pressure is exerted. This limiting saturation of water is called the irreducible saturation or
connate water saturation (cf. [3, Section 9.24], [5, Section 2.24], [21, Section 3.4.2]).

5.2. Mathematical aspects

Let v and v, stand for the saturations of the two fluids in a porous medium, say, water
and oil in rock grains. Assuming Darcy’s law and mass conservation, we could set up the
system ([16], [3, Chapter 2], [5, Chapter 6], [21, Chapter 10])

{3zvi = div(k; (vi)[Dpi + e;(vi)]),

inEr = E x(0,T). (5.1)
v+ =1,

Here k;(v;) for i = 1,2 are the permeabilities and p; are the hydrostatic pressures,
whereas e; (v;) represents the gravity forces.

If we set v := vy, then the functions k; and e; can be recast into functions of v because
of (5.1),. The difference p, — p; is the capillary pressure, which is a function of the
saturation v and we denote by p(v). The qualitative behaviors of k; and p are shown in
Figure 3. The irreducible saturation value of the first fluid (water) is denoted by d,. The
existence of solutions to proper initial-boundary value problems for (5.1) is established,
for example, in the theorem of [1, Section 2.6] and in [13, Theorem 3].

Following the KruZkov—Sukorjanskif transformation (cf. [14, Section 1] and [22, Ap-
pendix A]), we can transform system (5.1) into the following one:

0<v<l,
;v —div(A(w)Dv + B(v)) =V-D€(v), inkEr. 5.2)
divvV =0,

Here we have denoted
V=X ()(Du + e(v))

and the functions

[0,1] 5 v = K(v), A(v), B(v), €(v), e(v)
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p() = pa(v) — pl(v):

ka(v)

Figure 3. Permeabilities and Capillary Pressure

are continuous, and moreover, for some positive constants C, and Cy,

(5.3)

{ca < X() < Cy,
A@) + [B)| + [€ ()| + le(v)| < Ci.

For an explicit relation between functions u, X, 4, B, € and quantities k1, k», e1, ez,
and p, we refer to [8, Section 1.1]. Here we only show the expression of 4 by

) = 10w

ki) + kz(v)p ®).

As pointed out in [1, Section 1], the variable u can be considered as a sort of mean pres-
sure, and (5.2) can then be seen as an equation of continuity with pressure u and velocity v
for an idealized incompressible fluid, which replaces the mixture of the two fluids.
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According to Figure 3, it exhibits degeneracy near 0 and 1. In general, quantitative
information on such degeneracy is unavailable, as the model is derived from hydrostatic
experiments, dimensional analysis, and empirical arguments.

Therefore, on the degeneracy of v — 4 (v), we only assume qualitatively that

A() =0 forv e [0,d,] U {1},
A() >0 forv e (d,, 1), 5.4
A (v) is increasing/decreasing in [d,, d, + §]/[1 — 6, 1],

where d, and § are certain small positive constants.

The notion of a weak solution will be introduced in the next section. In what follows,
the set {d,, §, A, N, C,, C1} will be referred to as the data. We now state the main result
of this section.

Theorem 5.1. Let (u, v) be a local weak solution to (5.2) under conditions (5.3)—(5.4).
Then, fov A(s) ds is locally continuous in ET. Moreover, the modulus of continuity over a
compact set in ET is determined by its distance to the parabolic boundary of E, A(-),
the local bound of u, and the data.

Remark 5.1. Continuity cannot be claimed for v in general, as the ellipticity +(v) van-
ishes in the vicinity of 0. On the other hand, Theorem 5.1 implies that the composite
function F(v) is locally continuous in E7 for any continuous map [0, 1] 5 s + F(s) that
vanishes in [0, d,]. In particular, (v — d, )+ is locally continuous in E7, and when d, = 0,
Theorem 5.1 recovers the continuity result in [8, Theorem 1.1].

5.3. Notion of solution

A local weak solution to (5.2) is a pair (u, v) in the functional spaces

V€ Cioe(0.T; LY (E)), u€lL}

loc loc

(0, T; W22 (E)),

loc
loc

v
w :=/ A(s)ds € L2 (0, T; W22 (E)),
0

satisfying for any (¢1,%,) C (0, T],

/Evidx

2

+ /tz / [—v9;{ + (Dw + B(v) + €(v)V) - D¢]dxds = 0,
151 E

15
15}
173
/ / K)(Du + e(v)) - Dpdxdt =0,
t E
for all test functions
£ e Wl (0. T LE(E)) N L2 0. T: W (E)), ¢ € L2.(0.T: W2 (E)).

Letting ,
d(v) = w E/ A(s)ds, B:=d7",
0
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Figure 4. E and ,gg

according to (5.2), formally we obtain
3 B(w) — Aw > div(B(v) + €(v)V). (5.5)
Due to the conditions of #4 in (5.4), the graph of ,g verifies the properties
B =P+ dodo: [0.a] - [0.1],
peCioa. fzg. FO=F@=cx.

B0) =0, pla) =1-d,,

B is concave in [0, d], while convex in [a — d, al,

where @ = ®(1) and d > 0 depends only on + and §. The qualitative behavior of ,g () is
depicted in Figure 4.

As in Section 1.4, we regularize equation (5.5). For ¢ € (0, %a), we let J; be the
mollification of #, as in Section 1.4. Next we define a mollification of E by

Be =B+ He =B +d, H?,

and accordingly, introduce
O, =B, A= DL

e

As such, A; — A uniformly in [0, 1]. See Figure 5.
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Figure 5. &, and A, = ),

Let us still denote by (u, v) a local solution to (5.2) with 4 replaced by #,. Then,
w = P (v) will satisfy

3:Be(w) — Aw = div(B(v) + €(v)V) weakly in E7. (5.6)

The last equation of (5.2), that is, divV = 0, is used, whose dependence on ¢ is suppressed
for simplicity. It plays the role of an incompressibility condition.

Our main assumption is that a local weak solution to (5.2) can be identified in a uni-
form convergence of solutions to the above regularized problem in (5.6). As such the proof
of Theorem 5.1 consists in establishing a uniform estimate on the modulus of continuity
for weak solutions to the regularized problem in (5.6).

In [1, Section 3] it was shown that the solutions constructed in E7 are local solutions
to (5.2), so that local solutions to (5.2) do exist. On the other hand, we are not aware of an
existence theory established under the stipulated approximation; this merits an independ-
ent study.

5.4. An auxiliary result

The last equation of (5.2) can be viewed as a family of elliptic equations parametrized
by ¢t € (0, T'). Sufficient conditions can be given to ensure the local boundedness of u; a
detailed discussion is given in the lemma in [1, Section 3.9]. Then, the conditions in (5.3)
allow us to apply the standard elliptic theory and obtain the following (cf. [8, Proposi-
tion 2.1]):

Proposition 5.1. Suppose u € L{° (ET). Then, u(-,t) € C¢_(E), uniformly in t, on every

interval [t1, 2] C (0, T'). More precisely, for every compact set K C E, there exist y > 1
and € € (0, 1), depending only on {N, Cy, C1}, ||[ullco,kx[r1,5:]> and the distance from
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K x [t1, 12] to the parabolic boundary of Er, such that for all x1,x, € K,

[u(xy,1) —u(x2,t)| < ylxy —x2|¢  forallt € [11, 12].

Moreover, there exists y > 1 with the same dependence such that for every cylinder
Or.s = Kr(xo) X (to — S.1,) C K x [11. 7] and every f € L2 (0, T: W (E)),

loc
// |Dul? £262 dxdr < sze([/
OR.,s OR,s

+ / f2C% dxde,
ORr,s

IDf2¢2 dxdr +/ f2|D§|2dxdt)
OR,s

where ¢ is a non-negative cutoff function in Kg(x,) vanishing on oK g(x,).

5.5. Energy estimates

Let ¢ be a non-negative, piecewise smooth cutoft function in Q g s vanishing on the set
0K R(x0) X (to — S, 1,). Using (w — k)42 for k € (0, 1) as a test function in the weak
formulation of (5.6) in Q g,s, standard calculations permit us to produce energy estimates
like in Section 2.1. As usual, we will denote by y a generic positive constant depending
on the data.

First of all, we obtain an energy estimate similar to the one in Proposition 2.1:

(w—k)x
€ss sup / (/ B'(k £ 5)s ds)Z2 dx
KRr(xo)x{t} *JO

to—S<t<t,

(w—k)+
+ esssup / (/ H/(k :I:s)sds)é‘2 dx
to—S<t<t, JKp(xo)x{t} *JO
+ // &2 D(w — k)+|? dxdt
ORr.s
5)/// (w —k)%|D¢|* dxdt
ORr.s
(w—k)+
+ y// (/ B (k :i:s)sds)|8,§2|dxdl
Qrs V0
(w—k)+
+ y// (/ H!(k j:s)sds)|8t§2|dxdt
Ogrs V0
(w—k)+
—+—/ (/ B'(k :I:s)sds)é‘zdx
KR(xo)x{t,—S} *JO

(w—k)+
+/ (f H;(k:l:s)sds>§2dx
KRr(xo)x{to—S} *JO

¥ // B(v) +€W)V) - D[(w — k)+¢?] dxdr. (5.7)
OR.s
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Apart from the last term, which is due to the right-hand side of (5.6) and we denote as 1,
all other terms can be estimated just like in Section 2.1. For simplicity of presentation, we
will estimate / with (w — k)4 only, as the other case is similar. We writeitas [ = I; + I,
and first estimate /; by the boundedness of B:

I .= —//QR’S B(v)D[(w — k)4 %] dxdt

e //Q 21D (w — k)4 ] + 20 (w — k)4 | DE]] dxdr

1
<[ e —iraas [[ w-oink e
4 ORr,s Os.R

+2C} // &% A w=k) dxdt.
ORr,s

For I,, we write it as

I, =— t2€)V- D(w — k)4 dxdr —2 () (w—k)+ D¢ -Vdxde
=, s 2 ] e o,
)

To proceed, we rewrite [ 2(1) by using the fact that div V = 0 to obtain

o]
OR.s

= 2/[QRS g(/kw €(Be(s)) gs=41ds) V - D¢ dxdt.

Consequently, we may estimate I, by using the conditions in (5.3) and Proposition 5.1 as

V. D( /k et Aok] ds)g2 dxdr

I < 4G, f/ IVI(w — k)4 DE| dxdr
OR,s
< 4C? /f [[Dul(w — k) Z| DE| + Cr(w — k)¢ DE[] ddr
OR,s

<2C?R°C // ¢ Dul*(w — k)3 dxdr + 2C} // (w — k)3 |D¢|? dxdt
OR.s ORr,s
+2C} f/ (CEE* + RE|IDEI?) X w=k) dxdt
ORr,s
< ychf(// &2 D(w — k)4 |* dxdr + // (w — k)1|D§|2dxdt)
OR.,s OR,s

+202 [ -k R +1DeP) avar
OR,s
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+20? [ (€3 + RDEP oy avar
ORr,s

1
< - // C2|D(w — k)4 |* dxdt + 3C} // (w — k)3 (R¢* + | DE|?) dxdt
4 OR,s OR,s

+2C7 /[ (CPE? + REIDE) >k dxdr.
ORr.s

In the last inequality we have imposed the condition that y CZR¢ < min{i, CE).

Collecting the above estimates about /, performing similar estimates about other terms
of (5.7) as in Section 2.1, and choosing the cutoff function ¢ to vanish at ¢, — S, we obtain
an analogue of (2.2):

1 1
esssup — (w— k)3 dx—i——// e2|D(w — k)4 |? dxdt
KRr(xo)x{t} 2 M ops

to—S<t<t, “1

_ )2 —€52 2 B )
§V//QR}S(w k)L (R™°C + | D] )dxdt+y//QR’S(w k)+|8,22| dxdr

+y // (&% + RE|DL) X ((w—k) s >0) dxdr. (5.8
OR,s

Taking ¢ independent of ¢, an analogue of (2.3) is also in order:

1 1
esssup — 2w — k)3 dx + —// e2|D(w — k)+|? dxdt
to—S<t<t, “1 JKp(xo)x{t} 2 OR,s
< y// (w —k)%L(R™€C* + |DEJ?) dxde +y/ &2 (w — k)dx
OR,s KR(xo)x{to,—S}

+y [/ (&% + RE|DLI?) K w—k)s >0y dxdr. (5.9)
OR,s

Remark 5.2. The main difference of energy estimates (5.8)—(5.9) from (2.2)—(2.3) lies in
the last integral. However, if (w — k)+ < éw in Qg s for some positive £ and w, then the
last integral can be combined with the first integral on the right-hand side after enforcing
R¢ < (Ew)?.

5.6. Logarithmic estimates

Letting k, w, and Q g, s be as in Section 5.5, we set

£ := sup (w — k)4,

OR.s

take ¢ € (0, £), and introduce the following function in Qg s:

L
V(x, 1) = W(L, (w—k)x,c) = Iny (i —(w—k)+ +C)'
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As in Section 2.2, we let W(s) = W(L, s, ¢), so that

1
V0 = g a0 V6 = () Kl = VO

—-s+c
We aim to derive an analogous logarithmic energy estimate for w just like in Proposi-
tion 2.2. For simplicity we will only work with (w — k)4. As in the proof of [10, (2.7)]
(see also [11, Proposition 2.2]), we use (\112)’ e 2 as a test function in the weak formulation
of (5.6) in QRr,s, where { = {(x) is a non-negative cutoff function in Kz (x,) that equals
the identity in Ky (x,) and satisfies | D¢| < 1/[(1 — o) R]. The only care is needed for a
term resulting from the right-hand side of (5.6), which we write as

= —//QRS(B(U) +€W)V) - DV =1, + L.
For I}, we estimate by using ,|B| < Cy1, (¥2)” = 2(1 + W)(¥)2 and Young’s inequality,
—//QRS e2(W2)' D(w — k)4 - B(v) dxds

— 2//QR’S ¢(¥2) B(v) - D¢ dxde

<2C, //QR’S 22 + W) (V)2 D(w — k)4 | dxds
+4C, f/QR’S ¢| DWW dxdt

= //Q PO DD =k dra
+2C} //Q B e2(1 + W)(V)? dxdt

+ 4C, // §|D§'|‘11\11/dxdt.
OR.s

As far as the last term in the previous estimate is concerned, we have

4Cy // ¢|DC|WY dxdr <y sup (qnp)2 // §2dxdt+// |D¢|* dxde
OR,s Os.R Os,

<y sup (WV')?|Qp,s| + |QRS|

OR.s ’ (1- )2R2

As for I, we write it as
— f/ € )V - D(W?) 2 dxdt —2 / / F€(v) (W2 De - Vdxdt
OR.,s OR,s

=1V + 157,
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We then use the fact that divV = 0 to estimate

M=_ /fQ £2€ (v)(V2) D(w — k)4 - Vdxde
- _ /[Q N §2D( /k w(\I/2(s))”‘€(,§8(s))ds) -V dxdt
—2 [/Q g( fk w(\p2(s))”€(,§8(s))ds)v-ngxdz

y /fQ fkw(‘l’z“))” ds|V||DE|¢ dxdr

2 /
y //Q VD dxar

IA

As a result, we may estimate /, by using the definition of V, the conditions in (5.3), and
Proposition 5.1 as well as Young’s inequality as

L<y f/ (W2(w))Y| V|| DE|¢ dxdr
OR,s

<y sup (W¥')?2 // [V|?¢? dxdt +/f |D¢|? dxdt
ORr,s Os.r Os.r
RZe

<y sup (VW) ————|0Op,s| +

OR,s (1-0)*R? Qr.sl

_r
(1-0)?R?

Upon using
£ , 1
sup V(w) <In—, sup ¥'(w) < —,
ORr.s ¢ ORr,s ¢
we arrive at the following logarithmic estimate:
Proposition 5.2. There exists y > 1 depending only on the data such that for any
o €(0,1),

sup / W (x,1)dx
to—S<t<t, J Ksr(xo)

< Z/ \If(x,to—S)dx+%//‘ W dxdr
¢ Jrrxo) (1=0)?R* J]gp s
2¢€

+ 012(1 +ln§)2(l + J}W

14

)lQR,Sl"‘m

|OR,s|-

Letting the quantities 4% and @ be defined by the supremum/infimum and the oscilla-
tion of w over the cylinder @ = K x (71, T3) as in Section 2.2, employing Proposition 5.2,
we have the following result parallel to Lemma 2.1; The change brought by the extra terms
is an either-or statement:
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Lemma 5.1. Let w be a local weak sub(super)-solution to (5.6) in Er. For § € (0, 1),
suppose that
+(uF —u(,1)) > Ew  aein Ko(x0).

Then, for any o € (0,1) and A > 1, there exists E_ € (0, %%) such that either

€

w§(1+m§)%

or
[ —uC0) <E0] N K1, (xo) < alKy,|  forallt € (11,1 + Ad%),

provided the cylinder K (x0) X (t1,t1 + A0?) is included in Q. Moreover, the dependence
of € is given by
-1 A
£ = =fexp { — y(data)—}.
2 o

5.7. De Giorgi-type lemmas

Let the quantities 1 and w be defined over @ as before. We now present some De Giorgi-
type lemmas parallel to Lemmas 2.2-2.4. The first one hinges on the energy estimates
in (5.8); the proof can be adapted from that of Lemma 2.2, recalling Remark 5.2.

Lemma 5.2. Let u be a local weak sub(super)-solution to (5.6) in ET and let £ € (0, 1).
There exists a constant ¢, € (0, 1) depending only on the data such that if

[ (™ —u) < E0] N Oy < colEw) 27| Q,l, (5.10)

then either

[SILY

fw=o
or
(ut —u) > %“;‘w a.e. in Q%Q,
provided Q, = Ky(xo) X (to — 0%,1,) is included in Q.

A variant version involving quantitative initial data is formulated as Lemma 2.3. The
proof is based on (5.9) and can be adapted from that of Lemma 2.3, recalling Remark 5.2.

Lemma 5.3. Let w be a local weak sub(super)-solution to (5.6) in ET. Assume that for
some & € (0, 1), it holds that

+(uF —w(.1)) > Ew ae in Ko(x0).

There exists a constant y, € (0, 1) depending only on the data such that for any 6 > 0, if

(1 = w) < €] N [(0.1) + OF O] = 2108 6)],
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then either

[SIL

fw=o
or .
+(ut —w) > Eéa) a.e. in K%Q(xo) X (t1.1 + 00%),
provided the cylinder (x,,t1) + Q;(G) = K,(xo) x (t1,11 + 00?) is included in Q.

The next lemma parallels Lemma 2.4. We only present a sketch of the proof, while
keeping reference to the proof of Lemma 2.4 in Section 4 for more details. We omit (x,,?,)
for simplicity.

Lemma 5.4. Let w be a local weak super-solution to (5.6) in E1. Assume that for some
o, n€(0,1)and A > 1, it holds that

(. 1) =™ = nw] N K,| > a|K,|  forallt € (1, — Ad®.1,).
There exists &, € (0, n) determined by the data, o, n, and B(-) such that if

1
g, o BGEO)

w<d
%sgw ’ Eo -

R

éoa),
and it holds that

//Qg(eo) (/wk H{ () Xis<k] ds)dxdt < ,B(sow)H:w <u + %gow] N0, G.11)

where k = 1~ + &, then either
Eow = Q%
or

1
w>u + Eéaa) a.e. in Q%Q(Oo),

provided the cylinder Q,(A) is included in Q.
Likewise, there exists €, € (0, n) determined by the data, o, 1, and B(-) such that if

_ B@ - Bla - ko)

%5160

1 5 -
A > 6 , a—M_SZEIW, Zélwfd,

then either
€
§10 < 07
or

_ 1 .
w> o+ zf;‘la) a.e. in Q%Q(Gl),
provided the cylinder Q ,(A) is included in Q.
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Proof. We first point out that the proof of Lemma 2.4 hinges upon energy estimate (4.1).
Starting from (5.7) and employing (5.11) and u~ < %éo(o, a straightforward adaption of
the calculations in Section 4 will yield the following energy estimate analogous to (4.1)
forégfr <0, &>¢&,andk = u” +Ew:

1
ess sup Eﬁ’(%éa))/ (w—k)2¢%dx + // E2|D(w — k)_|* dxdt
Ky x{t} 0,(6)

—0r2<t<0

< N2 (—es2 2
< )/// ,(9)(w k)-(r~¢¢ 4+ |D¢|”) dxdt
1 oo G0 )2’8 a 5 ) /[ ——"

+y [f &+ VE|D§|2)X[w<pT+$w] dxdz. (5.12)
r(0)

Now using (5.12), a version of Claims 1 and 2 can be reproduced. The last integral
of (5.12) is absorbed by the first term on the right-hand side once imposing £, > Q%.
This procedure determines &, just like in the proof of Lemma 2.4, which finishes the
proof of the first part.

As for the second part, we let ,B_(S) := B(a) — B(a — s). Then, starting from (5.7)
and using a — u~ < %510), similar calculations will yield for %Q <r<p, &>§&,and
k =pu" + £o that

1-,/1
ess sup Eﬁ’(zéa))/ (w— k)2 dx + // E2|D(w — k)_|* dxdt
Ky x{t} 0:(0)

—0r2<t<0

< AV I 2
_)///r(e)(w k)-(r¢¢* 4+ |D¢|%) dxdt

B(sEw)
P10l T [ e v
38@ +(0)

+vy // (&% + réIDEP) fw<p+8w) dxdr. (5.13)
+(6)

Based on (5.13), the same procedure as before will determine &; and thus finish the proof
of the second part. ]

5.8. Proof of Theorem 5.1

The set-up is similar to that of Section 3. More specifically, we let (x,,?,) = (0, 0), intro-
duce Q, = Kz, x (—80,0) for ¢ € (0, 1), and define w* and w to be the supremum/infim-
um and the oscillation of w over Q,, respectively. Moreover, we let A(w) > 1 be determ-
ined by the data and w verify the intrinsic relation given by (3.1). We will follow the
reasoning in Section 3 while keeping p = 2 and highlighting the main differences.
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The argument starts with (3.2) for some 7 € (—(A4 — 1)02,0). Using Lemmas 5.1-5.3 in
the place of Lemmas 2.1-2.3, we may reach a reduction of oscillation like in Section 3.1.
More precisely, either

Qg 1 2
w<({1+|Iny))— fornp= %exp{—yA }
n

or
€SS OSC w ( r’ w ( )

4

B

The argument continues with (3.7) for any 7 € (—(A4 — 1)@?, 0). Fixing 7, we can
perform analysis on the local clustering of u near its infimum just like Lemma 3.1, once
we enforce proper alternative conditions whenever energy estimate (5.8) is employed in
its proof (cf. Remark 5.2).

Lemma 5.5. Forevery A € (0,1) and n € (0, 1), there exists a point (x«,tx) € (0,1) + Q,,
a number k € (0, 1), and a cylinder (xx, 1) + Qxo C (0,1) + Q, such that either

NI

w < 4p

or
_ 1
[0 = 1™+ 320] 11010 + Q)| = 11 Q-
The constant k is determined by the data, M, A, 1, &, and .

Using this Lemma 5.5, together with Lemmas 5.1-5.2, one can reason like in Sec-
tion 3.2 and obtain an analogue of (3.9). More specifically, letting ¥ be determined as in
Lemma 5.5 by A = % andn=«a = ca(%w)¥, there exist

- I v g_1 4
=Nk §=33 exp{— Kz}
such that either

€

o< (+|nEh%
3

or _
w(-,t) > u™ +Eo] N Kp| > @|K,| forallt € (—Ao?,0]. (5.15)

Let £(w), §(w) € (0, 1) to be determined and introduce the cylinder
Qo) = Ko x (=00%.0). 8 = (650)”"

such that 826 < A, where A(w) is the number appearing in (5.15) and yet to be chosen.

Given the measure-theoretical information in (5.15), we first use Lemma 5.4 to determ-
ine £, and &;. Now one could reproduce the arguments in Sections 3.3-3.5, assuming
either

1 1
TS Z&an) or a—pu < nglw. (5.16)
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Indeed, let us suppose the second of (5.16) holds true. One can use the second part of
Lemma 5.4 to obtain the reduction of oscillation

1
essoscw < (1 — Z&)a),

e

after enforcing the conditions

1
€ a) — a— s&1w ~
1w > 02, Azmax{'B( ) é( 851 ),820}.
8 E10
Alternately, let us suppose the first of (5.16) holds true. One can use the first part of
Lemma 5.4 to obtain the reduction of oscillation

1
essoscw < (1 — —Eo)a),
Q%g 4

after enforcing the conditions

1 ~
ﬁ(lgéow) ’ 829},

éoa)zgg, Azmax{

g5o®

and in addition (5.11).

Fixing such &,, if the measure condition in (5.10) with & replaced by &, is satisfied,
then Lemma 5.2 yields the same reduction of oscillation as above, once enforcing the
inequality &, > 05.

Still assuming (5.16); holds true, the case when both (5.10)g—¢, and (5.11) are violated
can be treated like in Section 3.4. Consequently, the following energy estimate can be
deduced from (5.7) (cf. Lemma 3.2):

Lemma 5.6. Denoting b(£,0) = (sga))”r%, and setting 0 = (§&,w)~" and k = pu~
+ 8&, with § € (8,20), there exists a positive constant y depending only on the data such
that for all 0 € (0,1) and all r € 20, 80], we have

8E,w(8E,0) 2b(E,w)  esssup / (w — k)% dx + // |D(w — k)_|? dxdt
Korx{t} Q5 (9)

—6(or)2<t<0

_r AV 4 B
= (- 0)27'2 // r(g_)(w k)_dXd[ * (1 - o)érz // r(g_)(w k)_ duedr

P // dxdt
—  Xw<k] dxdt,
(1—-0)?r? JJy, @

provided that
1 5 - 1
uwo < 28500), Zéoa) <d, and €< ZSE(,a).

The energy estimate in Lemma 5.6 allows us to show the following De Giorgi-type
lemma, whose proof is similar to that of Lemma 3.3:
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Lemma 5.7. Let § € (0, 1). There exists a constant ¢; € (0, 1) depending only on the data
such that if

[ < 1™ + 26£,0] N Qag(B)| < c1b(Ew)| Qag(B)].  where 6 = (85,0) ™"
then, enforcing u= < i(géow, %Soa) <d,ands < %SEOa), we have either
8,0 < 0%

or
w>u + 8w  aein ng(g),
provided 429 < A.

We still need a version of Lemma 3.4, which is stated as follows; the proof hinges
solely on energy estimate (5.8) and is analogous to that of Lemma 3.4:

Lemma 5.8. Assume the measure information in (5.15) holds. There exists a positive
constant y depending only on the data such that for any j. € N, we have either

S < Q%

or

Sow
27

Eow)*l’

[ =w+ 570 0@ = L7 1010@ - where T = (3

provided 420 < A6.

Like in Section 3.5, we combine Lemmas 5.7 and 5.8 to determine j, by

Y < c1b(E0),

ajz

and determine § by 2§ = 27+, and thus, 6 by 8 = (§¢,w)"!. Enforcing 8&,0 > 0%,
Lemma 5.7 yields a reduction of oscillation

essoscw < (1 —68&,)w.
Q2g

This completes the argument when the first of (5.16) holds true.
The choice of A can be made out of

B(zEow) Bla) — Bla— %510))’825} _ 27

lé— 1 9.
gSoW gglw

A(w) := max {

’

taking into account the value of 6 determined above. This also determines nin (5.14) by
such A.
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The remaining case is when (5.16) does not hold. This is done as in Lemma 3.5.
Here the quantities {&,, £1, 3} being fixed and setting & := min{&,, & }, Lemma 3.5 can be
reproduced after additionally enforcing §§w > 0%.

Overall, we have achieved the following:

essoscw < (1-f)o, o [A@] "' <o o Ew<o? o fw<e

4

B

where

1658}

g?:: min{ — ,85}, ni= min{%n, 1

Moreover, the functions
0.1) 5 0 = ). (). [4@)]™
are increasing, determined only by the data, and satisfy
§, n, A5 0 asw—0.

As a result, we can now set up an iteration scheme as discussed in Remark 3.3 and finish
the proof.
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