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Finiteness properties of locally defined groups

Daniel S. Farley and Bruce Hughes

Abstract. Let X be a set and let S be an inverse semigroup of partial bijections of X . Thus,
an element of S is a bijection between two subsets of X , and the set S is required to be closed
under the operations of taking inverses and compositions of functions. We define �S to be the
set of self-bijections of X in which each  2 �S is expressible as a union of finitely many
members of S . This set is a group with respect to composition. The groups �S form a class
containing numerous widely studied groups, such as Thompson’s group V , the Nekrashevych–
Röver groups, Houghton’s groups, and the Brin–Thompson groups nV , among many others. We
offer a unified construction of geometric models for �S and a general framework for studying
the finiteness properties of these groups.
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1. Introduction

This paper is about the topological finiteness properties Fn. A group G has type Fn if
it is the fundamental group of an aspherical CW-complex with finite n-skeleton. (We
sometimes also say that G is of type Fn to mean the same thing.) Thus, all groups
are of type F0, finitely generated groups are precisely the groups of type F1, and
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finitely presented groups are precisely the groups of type F2. Type Fn, for n � 3, is
a topologically-defined refinement of the latter properties. A group has type F1 if it
has type Fn for all n � 0. The book [14] by Geoghegan discusses these properties in
greater depth, and also provides a great deal of relevant background.

The “locally defined” groups from the title are groups of bijections of a given
set X , where the bijections in question have a suitable “piecewise” definition. An
illustrative example is Thompson’s group V . There are many others, as we explain
below.

Our basic approach to topological finiteness properties can be traced back to work
of Brown and Geoghegan from the 1980’s [9], who proved that Thompson’s group F
has type F1. In subsequent work [8], Brown showed that Thompson’s groups F , T ,
and V all have type F1. The arguments were essentially Morse-theoretic in nature.
Brown also established the F1 property for several classes of generalized Thomp-
son groups Fn;r , Tn;r , and Vn;r . Similar arguments from [8] showed that Houghton’s
groups Hn are of type Fn�1 but not Fn. We refer the reader to Cannon, Floyd, and
Parry [11] for an introduction to Thompson’s groups F , T , and V , and to some of
their generalizations. See also Examples 3.29 and 3.33 for (somewhat non-standard)
definitions of Thompson’s group V and the Houghton groups Hn.

Later, Melanie Stein [25] associated much more economical simplicial complexes
to the class of Stein–Thompson groups and used the results to determine their finite-
ness properties and to compute homology groups.

In recent years, there have been numerous studies of the finiteness properties of
what might be called “generalized Thompson groups”; see [1,3,5,10,12,13,18,24,26,
28,29], for instance. As a rule, these follow the general strategy pioneered by Brown,
often also using variants of the construction due to Stein.

Our purpose here is to offer a general setting for proving results of the above
kind. We consider groups G of bijections of a set X with the property that the bijec-
tions have a “piecewise” definition; i.e., for each g 2 G, there are finite partitions
¹U1; : : : ; Unº and ¹V1; : : : ; Vnº of X such that the restrictions gjUi WUi ! Vi are each
taken from a fixed set of partial transformations. We assume that the latter set is closed
under compositions and inverses of functions. These closure properties make the set
of partial transformations into an inverse semigroup. (We will make little use of the
formal theory of inverse semigroups, for which [16] is a reference.)

Thus, we are led to start with a semigroup action on a set X , which is simply
a collection S of partial bijections of X that is closed under the operations of tak-
ing compositions and inverses. We let �S be the set of all bijections of X that are
piecewise determined by S (in the sense of the previous paragraph). Straightforward
checking shows that �S is a group.

To associate a natural geometry to the above set-up, we can follow the basic
strategy of [12] and [17]. Hughes [17] defined a certain class of groups that act by
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homeomorphisms on compact ultrametric spaces, which are called finite similarity
structure (FSS) groups in [12]. Given a compact ultrametric space X , a finite similar-
ity structure is a function Sim that assigns to each pair .B1; B2/ of balls in X a finite
similarity set Sim.B1;B2/ of surjective similarities hWB1!B2. The sets Sim.B1;B2/
are required to satisfy various “groupoid-like” properties. A finite similarity structure
Sim determines a group �Sim. Elements of �Sim are bijections  WX ! X that are
locally determined by Sim; i.e., there are partitions ¹B1; : : : ; Bnº and ¹ yB1; : : : ; yBnº
of X such that the restrictions jBi are members of the similarity sets Sim.Bi ; yBi /.

Using the similarity sets, Hughes [17] defined an equivalence relation on pairs
.f; B/, where B is a compact ultrametric ball and f WB ! X is a local similarity
embedding; i.e., there is a partition ¹ yB1; : : : ; yBmº of B into ultrametric balls such
that the restrictions f

j yBi
are similarities from the similarity sets Sim. yBi ; f . yBi //. The

definition of the equivalence relation is in terms of a certain commutative diagram
that involves elements from the similarity sets. (A generalized version of the definition
occurs below, as Definition 4.10.) We let Œf;B� denote the equivalence class of .f;B/.
The main argument of [17] used the set of all such equivalence classes to prove that
FSS groups have the Haagerup property.

In [12], the authors produced a proper action of �Sim on a contractible simplicial
complex. A vertex in the complex is a collection of equivalence classes®

Œf1; B1�; : : : ; Œfn; Bn�
¯
;

where the set ¹fi .Bi / W i D 1; : : : ; nº is a partition of X . The vertices become a
directed set under a natural expansion relation. (A general definition of the expansion
relation appears here as Definition 4.18.) The entire construction can be seen as a
generalization of the ones from Brown [8]. The authors were able to prove that certain
classes of FSS groups have type F1 by following Brown’s method.

The theory of FSS groups, as sketched above, extends naturally to the groups �S ,
where S is an inverse semigroup acting on a set X . The inverse semigroup S spec-
ifies certain subsets D � X as domains, so-called because each D is the domain of
some s 2 S . We let DS denote the set of domains. The domains play the role in
the general theory that metric balls play in the more specific setting of FSS groups.
Thus, we define an equivalence relation on the set of pairs .f; D/, where D is a
domain and f WD ! X is an embedding that is locally determined by S (in a suit-
able sense). Our definition of the equivalence relation (Definition 4.2) uses a structure
function S, which assigns to each pair .D1; D2/ 2 DS �DS a certain structure set
S.D1;D2/ � S . The structure sets S.D1; D2/ are required to have “groupoid-like”
properties that resemble those of the similarity sets from the theory of FSS groups.
We can then use the structure sets S.D1; D2/ to define an equivalence relation on
pairs .f; D/, where D is a domain and f WD ! X is an embedding that is locally



D. S. Farley and B. Hughes 4

determined by the inverse semigroup S . Denoting the equivalence class of .f; D/
by Œf;D�, we can follow the general procedure of [12] to produce a contractible com-
plex upon which �S acts. Here we must also specify a certain pattern function P to
help determine the expansion relation (which is otherwise defined very much as in the
basic theory of FSS groups). The entire construction generalizes the ones from [12]
and (therefore) the ones from [8].

Our finiteness results ultimately use simplified versions of the above complexes,
which can be seen as generalizations of the ones constructed by Stein [25]. Here
we introduce expansion schemes, denoted E , which are a device for simplifying our
first (directed set) construction in a controlled way. More specifically, an expansion
scheme E determines the collection of E-chains, which are the simplices in our com-
plexes. The E-chains are direct descendents of Stein’s “elementary intervals”. The
basic (and probably most important) examples of expansion schemes are very similar
to ones described (not under the same name) in [25], but we also offer a more general
theory, which holds the potential for greater flexibility in applications.

Thus, to summarize, we propose the following sequence of choices in studying
the finiteness properties of generalized Thompson groups:

(1) Choose a generalized Thompson group �S with the associated set S of partial
transformations. The set S specifies a set DS of domains.

(2) Pick a structure function S and a pattern function P . These choices depend
upon (but are not completely determined by) the inverse semigroup S . The
pair .S;P / is called an S -structure (Definition 4.2). The choice of S -structure
completely determines a directed set upon which �S acts by order-preserving
bijections. The simplicial realization � of this directed set is analogous to the
constructions due to Brown [8].

(3) Pick an expansion scheme E , which will depend upon the choice of S -struc-
ture. The expansion scheme will (in general) determine a more economical
simplicial complex�E upon which �S acts. The complex�E is analogous to
the ones introduced by Stein [25].

These choices lead us up to the point where we can determine finiteness properties.
The actual analysis of finiteness properties proceeds along well-established lines: we
use Brown’s finiteness criterion along with an analysis of the descending links in�E .

The details of the analysis are relegated to the main body of the paper; however, we
mention two major ingredients. The first is the idea of a pseudovertex. A pseudovertex
is a collection of pairs ®

Œf1;D1�; : : : ; Œfm;Dm�
¯
;

where the images fi .Di / are pairwise disjoint, but are not required to form a partition
of X ; i.e., it may be that their union is not all of X . All vertices are pseudovertices,



Finiteness properties of locally defined groups 5

but not conversely. The second ingredient is the ubiquity of product decompositions
among subcomplexes of � and �E . Indeed, the product decompositions are most
easily described using the vocabulary of pseudovertices - see, for instance, the crucial
Proposition 7.8. We therefore formulate most of our basic results about the expansion
partial order in the general setting of pseudovertices. This is the case especially in
Section 4, which contains the fundamentals about the partial order induced by expan-
sion.

The main applications to finiteness properties of groups appear in the final sec-
tion. We recover proofs that Vn;r , nV , QV (see [8], [7, 13], and [1, 21], respectively),
Röver’s group [3, 20, 23], and FSS groups [12] are of type F1. We also consider a
class of groups based on products and show that they are of type F1. The above
examples are offered as a “proof of concept”, and are not intended to be exhaustive.

On the other hand, it may be useful to the reader to mention a few groups whose
finiteness properties are not handled in this paper. Some of these groups can almost
certainly be handled using similar techniques to the ones described here; others defi-
nitely require completely different methods. Among the former, we have Thompson’s
groups F and T , which are not considered at all here. The Stein–Thompson groups
(see [25]) are not considered, either, although it also seems likely that these groups are
amenable to our methods. The Houghton groups Hn are used as a running example,
but we do not compute their finiteness properties here (as was done in [8]). Moving
to a more speculative case, one has the groups defined by Bieri and Sach [5]. We
have defined some of these groups here (see Example 3.34), but an analysis of their
finiteness properties is outside the scope of this paper. Another group to mention in
the current context is the Lodha–Moore group [19], which is known to have type F1
(see [18]).

The braided Thompson group BV is known to have type F1 (see [10]). This
group, in contrast to the others mentioned above, is probably impossible to handle
by anything like the methods of this paper. To explain why, it may be helpful to
divide the generalized Thompson groups into (partially overlapping) classes, depend-
ing upon the property of Thompson groups that they generalize. One class generalizes
the “piecewise” nature of Thompson’s groups. This paper sketches a general theory
of the finiteness properties of such groups. The braiding in BV means that it is not
defined piecewise, as our theory requires. Another class generalizes the tree-pair defi-
nition of Thompson’s groups. The group BV clearly lies in the latter class; [29] might
be regarded as a general framework for studying this second, “tree-like” class of gen-
eralized Thompson group. Yet another class of generalized Thompson’s groups was
considered by Thumann [26] who defines his class of groups using operads.

Let us describe the structure of the paper. In Section 2, we collect various results
about simplicial complexes, especially the simplicial realizations of partially ordered
sets. Most of the section consists of rather standard definitions, but we call atten-
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tion to Lemma 2.6, which ultimately allows us to compute the connectivity of �E

(Theorem 6.9). The section concludes with a brief description of simplicial products
and the Nerve theorem. In Section 3, we introduce the basic objects of study, namely
the groups �S , and we establish a few basic properties of the set of domains DS .
This section also introduces the compact ultrametric property and inverse semigroup
actions on product spaces. The section concludes with a number of examples. Sec-
tion 4 contains numerous fundamental ideas. We introduce the all-important idea of
an S -structure and define the equivalence relation on pairs .f; D/. We also describe
the partially ordered sets of pseudovertices, including the fact that suitable collections
of pseudovertices are directed sets. The section ends with a number of examples of
S -structures and an explicit characterization of the expansion relation in certain cases.
In Section 5, we assemble the results of Section 4 into a proof that the groups �S act
on two explicitly-described contractible simplicial complexes � and �.Vord/, both
of which depend on the S -structure. The latter complex is designed to have smaller
vertex stabilizers than the former. We also describe these vertex stabilizers (in both
cases), and offer information about the orbits under the �S -action. Section 6 describes
expansion schemes and the properties of complexes determined by them. The section
concludes with descriptions of several expansion schemes. Section 7 states Brown’s
finiteness criterion, and contains some generalities about the descending link. The sec-
tion concludes with a sufficient condition for the descending link to be n-connected.
The method uses the machinery of nerves of covers. Section 8 establishes the finite-
ness properties of a wide range of generalized Thompson groups.

The main body of the argument begins in Section 4. Section 2 contains a large
amount of standard material, most of which is used much later in the paper. The reader
may therefore want to skim Section 2 on a first reading. Section 3 introduces the basic
objects of study (namely the groups �S ), but it should be possible to continue into
the main body of the paper with just a few basic definitions. The reader can probably
skip the long subsection on the compact ultrametric property (Section 3.4) on a first
reading, referring back to it as necessary.

2. Combinatorial preliminaries

This section collects a number of combinatorial preliminaries. In Section 2.1, we
review the order complex construction, which associates a simplicial complex to a
partially ordered set. Section 2.1 also contains standard definitions of the descending
and ascending links and stars.

Section 2.2 establishes a principle (Lemma 2.6) that will eventually be used to
prove that the complexes�E determined by expansion schemes are highly connected;
see Section 6 and Theorem 6.9.
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Section 2.3 contains a definition of simplicial products, which will be vital in
analyzing the topology of the complexes to be constructed in the rest of the paper.

Finally, Section 2.4 contains a definition of the nerve of a cover, and a suitably
general form of the Nerve theorem.

2.1. Partially ordered sets and simplicial complexes

Definition 2.1 (Order complex of a partially ordered set P ; simplicial complex on P ).
If P is a partially ordered set, then the order complex of P , denoted �.P /, is the
abstract simplicial complex .VP ; �P / such that

VP D P;

�P D ¹S j S is a non-empty finite chain in P º:

A simplicial complex on P is a subcomplex of �.P / having P as its vertex set.

Definition 2.2 (Interval subcomplexes in the simplicial complex on V ). Let K D
.V ; �/ be a simplicial complex on the partially ordered set V . If x 2 V , then we
let KŒx;1/ be the simplicial complex .V�x; ��x/, where

V�x D ¹v 2 V j v � xº;

��x D ¹S 2 � j S � V�xº:

We can similarly defineK.�1;x�, by simply replacing each “�” with “�” in the above
definition.

Finally, for vertices x; y 2 V , we define KŒx;y� D .V�x \ V�y ; ��x \ ��y/.

Remark 2.3. In practice, we will make little distinction between abstract simplicial
complexes on the one hand and (geometric) simplicial complexes on the other. We
will refer to both as simplicial complexes, trusting that the specific meaning will be
clear from the context.

When specifying a subcomplexK 0 of an (abstract) simplicial complexKD.V ;�/,
it suffices to specify a collection of simplices � 0 � � that is closed under taking non-
empty subsets, since the vertex set for K 0 is then determined by the equality

V 0 D
[
S 02� 0

S 0:

It will therefore be convenient to write K 0 D � 0 instead of K 0 D .V 0; � 0/ in what
follows.

Definition 2.4 (Links and stars). Let K D .V ; �/ be a simplicial complex, and let
v 2 V . We recall that the star of the vertex v, denoted st.v;K/, is

st.v;K/ D ¹S 2 � j S � S 0; for some S 0 2 � such that v 2 S 0º:
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The link of v is defined as follows:

lk.v;K/ D
®
S � ¹vº j S 2 st.v;K/ � ¹¹vºº

¯
:

If the vertex set V is also partially ordered, then we can further define

st#.v;K/ D st
�
v;K.�1;v�

�
;

st".v;K/ D st
�
v;KŒv;1/

�
;

lk#.v;K/ D lk
�
v;K.�1;v�

�
;

lk".v;K/ D lk
�
v;KŒv;1/

�
:

These are the descending and ascending stars (respectively) and the descending and
ascending links (respectively) of v in K. All of these are subcomplexes of K.

2.2. Ranked directed sets and n-connected simplicial complexes

Definition 2.5 (Ranked directed set). Let .P;�/ be a partially ordered set. We say
that .P;�/ is a directed set if, whenever a; b 2 P , there is some c 2 P such that
a � c and b � c.

We say that the directed set .P;�/ is a ranked directed set if there is also a ranking
function r WP ! N such that if s1 < s2, then r.s1/ < r.s2/.

Lemma 2.6 (A sufficient condition for n-connectedness). Let .P;�/ be a ranked
directed set, and let K be a simplicial complex on P . If, for every x < y in P ,
lk.x; KŒx;y�/ is .n � 1/-connected, then, for every pair a < b in P , the complexes
K.�1;b�, KŒb;1/, and KŒa;b� are n-connected. In particular, K is n-connected.

Proof. We first assume that lk.x;KŒx;y�/ is non-empty whenever x < y. We will show
thatK.�1;b� is connected. For this, it will suffice to show that every vertex inK.�1;b�
can be connected to b by a path. We let x be a vertex of K.�1;b� and induct on the
difference r.b/ � r.x/. If r.b/ � r.x/ D 0, then we must have b D x (since x � b),
so there is nothing to prove. If r.b/ � r.x/ > 0, then lk.x; KŒx;b�/ is non-empty by
our assumption. If x0 is a vertex in this link, then we must have

r.b/ � r.x0/ < r.b/ � r.x/:

By induction, x0 is connected to b by a path. Since x and x0 are connected by an edge
in KŒx;b� by the definition of the link, x can be connected to b by a path. This shows
that K.�1;b� is path connected, as required. Exactly the same argument shows that
the complexes KŒa;b� are connected under the same hypotheses.

Now suppose that lk.x;KŒx;y�/ is path connected whenever x < y. We will argue
thatK.�1;b� is simply connected. Indeed, by the previous case, we know thatK.�1;b�
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is connected. Let c be a loop based at b. We can assume, by cellular approximation,
that the image of c lies entirely inside the 1-skeleton of K.�1;b�. We can further
assume that c is a combinatorial edge-path. We define

rk.c/ D max
®
r.b/ � r.x/ j x is a vertex in im c

¯
and induct on rk.c/. If rk.c/ D 0, then c is the constant path at b, and there is nothing
to prove. Assume rk.c/ > 0. We let

L D
[
xi

KŒxi ;b�;

where the union ranges over all vertices xi lying in imc. The complexLmay, a priori,
be infinite, but there are at most finitely many vertices x such that r.b/� r.x/D rk.c/,
since all such vertices must lie on the original loop c.

For a given such x we can write

L D st.x; L/ [
�
L � ¹xº

�
:

We note that st.x; L/ is contractible (since the star of any vertex in a simplicial
complex is contractible) and that the intersection st.x; L/ \ .L � ¹xº/ is homotopy
equivalent to lk.x; L/ D lk.x;KŒx;b�/, and thus connected. It follows from van Kam-
pen that �1.L� ¹xº/! �1.L/ is surjective, so �1.L;L� ¹xº/D 0. This means that
the loop c can be altered in order to miss x, while remaining unchanged outside the
star of x. We can argue similarly at each vertex x such that

r.b/ � r.x/ D rk.c/;

eventually finding a new path c0 path homotopic to c and satisfying rk.c0/ < rk.c/.
It follows by induction on rk that c is homotopic to the constant path, so K.�1;b� is
simply connected. The same argument shows that KŒa;b� is simply connected under
the same hypotheses.

Now assume that lk.x;KŒx;y�/ is .n� 1/-connected whenever x < y, where n� 2.
We want to show that K.�1;b� is n-connected; by the induction hypothesis we know
thatK.�1;b� is .n� 1/-connected. Let f WSn!K.�1;b� be a continuous map. Let L
denote the smallest subcomplex of K.�1;b� that contains f .Sn/ (i.e., the carrier
of f .Sn/). Then L is a finite simplicial complex, since f .Sn/ is compact. We set

L0 D
[

x02L.0/

KŒx0;b�:

Note that L0 has at most finitely many vertices of minimal rank m, since all such
vertices must be in L. We define

rk.f / D max
®
r.b/ � r.x/ j x 2 .L0/.0/

¯
:
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Assume that x is such that
r.b/ � r.x/ D rk.f /:

We can expressL0 as the union .L0 � ¹xº/[ st.x;L0/, where the intersection is homo-
topy equivalent to lk.x;L0/D lk.x;KŒx;b�/, which is .n� 1/-connected by hypothesis.
The Mayer–Vietoris sequence combined with the relative Hurewicz theorem now
implies that

�n
�
L0; L0 � ¹xº

�
D 0:

Thus, we may homotope the map f WSn! L0 so that its image lies in the subcomplex
of K spanned by .L0/.0/ � ¹xº. We can do this while keeping f unchanged outside
the star of x. We repeat this procedure until the carrier of the new map f1WSn ! K

contains only vertices of rank strictly greater than m. It follows that

rk.f1/ < rk.f /;

which shows, by induction, that f is null-homotopic in K.�1;b�. It follows that
K.�1;b� is n-connected. An exactly similar argument shows thatKŒa;b� is n-connected
under the same hypotheses.

This proves the lemma for the complexes K.�1;b� and KŒa;b�. The remaining
cases follow from these cases and from the directed set condition. Indeed, assume
that K.�1;b� is n-connected for every b 2 K.0/. Consider any map f WSn ! K. The
carrierL of f is a finite subcomplex ofK, and therefore there is a vertex b 2K.0/ that
is a common upper bound of all vertices in L. Thus, f is null-homotopic in K.�1;b�
and, thus, in K. This proves the lemma for K; the proof for the complexes KŒb;1/ is
similar.

2.3. Products of simplicial complexes

It is well known that the product of simplicial complexes does not, in general, have a
natural simplicial complex structure. However, given a family P1; : : : ; Pn of partially
ordered sets, one can compare the order complex �.P1 � � � � � Pn/ of the product
with the product �.P1/ � � � � � �.Pn/ of the individual order complexes. A result
that can be found in Walker [27] shows that these spaces are homeomorphic (with
respect to the compactly generated topology), which allows us to put a simplicial
complex structure on the latter space. Indeed, more importantly, this enables us to put
a simplicial complex structure on products K1 � � � � �Kn, where Ki is a subcomplex
of�.Pi /. We summarize this result and a few related consequences in this subsection.

Definition 2.7 (Simplicial product). Let P1; P2; : : : ; Pk be partially ordered sets and,
for i D 1; : : : ; k, let Ki be a simplicial complex on Pi . We endow

Qk
iD1 Pi with the
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natural coordinate-wise partial order; thus, if

v D .v1; : : : ; vk/ 2

kY
iD1

Pi and v0 D .v01; : : : ; v
0
k/ 2

kY
iD1

Pi ;

then v � v0 if and only if vi � v0i for all i 2 ¹1; : : : ; kº. For j D 1; : : : ; k, we have
natural projection maps

�j W

kY
iD1

Pi ! Pj

satisfying �j .v1; : : : ; vj ; : : : ; vk/ D vj .
The simplicial product of K1; : : : ; Kk is the simplicial complex on

Qk
iD1 Pi with

the property that a chain

C �

kY
iD1

Pi

is a simplex if and only if �j .C / is a simplex in Kj , for j D 1; : : : ; k.

Theorem 2.8 (Product theorem). LetK denote the simplicial product ofK1; : : : ;Kk .
Then

(1) the geometric realization ofK is homeomorphic to the productK1 � � � � �Kk
of the realizations of the factors;

(2) the geometric realization of the link lk.v; K/ of a vertex v D .v1; : : : ; vk/ is
homeomorphic to the join of the realizations of the factors; i.e.,

lk.v;K/ Š
k©
iD1

lk.vi ; Ki /:

Proof. For the first statement, see [27, Theorem 3.2]. Note, in particular, that the for-
mula for the homeomorphism in Theorem 3.2 restricts to the desired homeomorphism
in our case. The second statement is [22, Exercise 2.24 (3), p. 24].

2.4. Nerves of covers and the Nerve theorem

Our applications to finiteness properties of groups will involve the Nerve theorem. We
recall a standard definition of the nerve; the form of the Nerve theorem that we will
use can be found in [6].

Definition 2.9 (The nerve of a cover). Let S be any set, and let C be a cover of S . We
let N .C/ denote the nerve of the cover C . The vertices of N .C/ are the non-empty
elements C 2 C . A subset ¹C0; : : : ; Ckº � C is a simplex if and only if C0 \ � � � \
Ck ¤ ;.
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Theorem 2.10 (Nerve theorem [6]). Let K be a simplicial complex and let ¹Kiºi2I
be a family of subcomplexes of K such that K D

S
i2I Ki . If every non-empty finite

intersection Ki1 \ � � � \Kit is .k � t C 1/-connected, then K is k-connected if and
only if N .¹Kiºi2I / is k-connected.

3. The group determined by an inverse semigroup

Our viewpoint throughout the rest of the paper will be that a generalized Thompson
group is determined locally by a fixed set of partial bijections, which naturally has the
structure of an inverse semigroup S . We recall the definition of inverse semigroups in
Section 3.1. We will use very little of the theory of inverse semigroups, all of which
can be found in [16]. In Section 3.2, we collect a few basic properties that the set
of domains DS must have, where a “domain” is simply the domain of some element
of S . Section 3.3 defines the groups �S , which play the role of generalized Thompson
groups.

Section 3.4 describes the compact ultrametric property, which is of great impor-
tance in the examples and applications of the theory to be developed. Section 3.5
describes the actions of inverse semigroups on products.

The section concludes with Section 3.6, which contains several examples.

3.1. Inverse semigroups and monoids

Definition 3.1 (Inverse semigroup; inverse monoid). Let S be a set with an associa-
tive binary operation (i.e., a semigroup). An element e 2 S is an idempotent if e2 D e.

We say that S is regular if for every x 2 S , there is y 2 S such that xyx D x. We
say that a regular semigroup S is an inverse semigroup if any two idempotents of S
commute. If an inverse semigroup S has a two-sided identity element, then S is an
inverse monoid.

If S is an inverse semigroup, then for every x 2 S , there is a unique y 2 S such
that xyx D x and yxy D y (see [16]). This y is called the inverse of x. We will often
denote this inverse by x�1.

Definition 3.2 (Partial bijections). Let X be a set. A partial bijection of X is a bijec-
tion f WA!B between subsetsA andB ofX . If f WA!B and gWC !D are partial
bijections of X , then the composition is the partial bijection

g ı f Wf �1.C /! g.B \ C/

defined by .g ı f /.x/ D g.f .x// for each x 2 f �1.C /.
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Proposition 3.3 (Inverse semigroups as sets of partial bijections). Let X be an arbi-
trary set, and let S be a set of partial bijections ofX that is closed under compositions
and inverses. The set S is an inverse semigroup under the operation of composition.
The inverse of s 2 S is its usual inverse (as a function). Every inverse semigroup arises
in this way.

Proof. Assume that S is a collection of partial bijections with the given properties.
Let s 2 S and assume sWA! B , where A, B � X . We note that s�1s D idA, and
idA 2 S because S is closed under inverses and compositions. We now have

ss�1s D s ı idA D s;

so S is regular.
We claim that idempotents in S all have the form idC WC ! C , for some C � X .

Indeed, let eWA! B be an idempotent. Since e.e.x//D e.x/ for all x in A, e.x/D x
for all x 2 A (because e is injective). Thus, e D idA and A D B .

It is now clear that any two idempotents in S commute, so S is an inverse semi-
group.

The converse, that every inverse semigroup is realizable as a set of partial bijec-
tions, is the content of the Wagner–Preston theorem [16], which is the counterpart for
inverse semigroups of Cayley’s theorem for groups.

Thus, inverse semigroups are the algebraic structure corresponding to partial bi-
jections in the same way that groups are the algebraic structure corresponding (via
Cayley’s theorem) to permutations.

Convention 3.4. For the rest of the paper, we fix a set X . We let PB.X/ denote the
set of partial bijections of X . Note that PB.X/ is (of course) an inverse semigroup
under composition. We fix, for the remainder of the argument, an inverse semigroup
S � PB.X/ such that S contains the empty function, which we denote by 0 when
necessary.

It will occasionally be useful to refer to the above set-up as an action of S on X .
We emphasize, however, that the inverse semigroups under consideration are always
defined as sets of partial bijections.

Note that the empty function is a zero in S ; i.e., if s 2 S , then 0 ı s D 0 D s ı 0.

3.2. The set of domains

Definition 3.5. A domain D is the domain of some s 2 S . We let DS denote the
set of all domains as s ranges over all s 2 S . We typically write D instead if S is
understood.
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We let DCS denote the subcollection of non-empty domains. We will similarly
write DC if S is understood.

Remark 3.6. We note that the range (or image) of any s 2 S is also a domain in the
above sense, due to the fact that S is closed under inverses.

Lemma 3.7 (Closure properties of D). The set D is closed under intersections and
translation by elements of S ; that is,

(1) if D1 and D2 are in D , then D1 \D2 2 D;

(2) if D 2 D and s 2 S , then s.D/ 2 D .

Proof. We prove (1). Let D1;D2 2 D and assume that the domains of s1 and s2 2 S
are D1 and D2, respectively. It follows that s�11 s1 D idD1 and s�12 s2 D idD2 . Thus,

s�11 s1s
�1
2 s2 D idD1 ı idD2 D idD1\D2 :

Since s�11 s1s
�1
2 s2 2 S , D1 \D2 2 D .

Now we prove (2). LetD 2D and let s 2 S . There is some ys 2 S such thatD is the
domain of ys. It follows that ys�1ys D idD , so sys�1ys D s ı idD . The image of the latter
function is s.D/. It follows that the domain of idD ı s�1 is s.D/, so s.D/ 2 D .

Corollary 3.8 (Closure under restriction to subdomains). The inverse semigroup S is
closed under restriction to subdomains. That is, if s 2 S and D is contained in the
domain of s, then sjD 2 S .

Proof. Let s 2 S and let D 2 DS . Since D is a domain, it follows that there is some
t 2 S having the domain D. It now follows directly that sjD D st�1t 2 S .

Convention 3.9. We will assume in all that follows that X can be expressed as a
finite disjoint union of domains. This assumption is satisfied in all interesting cases
that come to mind (and is automatic under certain general hypotheses; see Section 3.4,
for instance).

If X cannot be so expressed, one option is simply to add idX to the set S . This has
the effect of adjoining an identity to S and also forces X to be a member of D . It is
occasionally inconvenient to include X in the set of domains, however, so we will not
do this in general.

3.3. The group determined by S

Definition 3.10 (Locally determined by S ). Let A;B � X . A bijection ysWA! B is
locally determined by S if, for some m � 0,

A D

ma
iD1

Di ; B D

ma
iD1

Ei ;



Finiteness properties of locally defined groups 15

ysjDi is a bijection from Di to Ei for each i , and ysjDi 2 S for each i . Note that the
sets Di are assumed to be pairwise disjoint and the Ei are likewise assumed to be
pairwise disjoint.

We let yS denote the set of partial bijections of X that are locally determined by S .
We let �S denote the subset of yS consisting of bijections of X . We say that �S is the
group locally determined by S .

Proposition 3.11. The set yS is an inverse semigroup and �S is a group with respect
to the natural operations.

Proof. It suffices to show that yS is an inverse semigroup. It will follow that �S is
a group, since �S is non-empty by Convention 3.9 and the property of being a self-
bijection of X is closed under taking compositions and inverses.

Let ys 2 yS . We can write

ys D

ma
iD1

si ;

where si WAi !Bi and si 2 S , for i D 1; : : : ;m, and where each of ¹Ai j i D 1; : : : ;mº
and ¹Bi j i D 1; : : : ;mº is a collection of pairwise disjoint domains. It follows directly
that

ys�1 D

ma
iD1

s�1i :

Thus, ys�1 2 yS because each s�1i 2 S , due to the fact that S is closed under inverses.
It follows that yS is closed under inverses.

Let ys1; ys2 2 yS . We write

ys1 D

ma
iD1

s1i ; ys2 D

na
jD1

s2j :

The composition is
ys1ys2 D

a
.i;j /2	

s1is2j ;

where .i; j / 2 	 if and only if D1i \ E2j ¤ ;, where Dk` and Ek` are the domain
and image (respectively) of sk`. Note that the sets D1i \ E2j are indeed domains
by Lemma 3.7. It follows that yS is closed under compositions as well. Thus, yS is an
inverse semigroup.
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3.4. The compact ultrametric property

Thompson’s groups F , T , and V all admit descriptions as transformations of the
Cantor set

C D

1Y
nD1

¹0; 1º:

A natural metric makes C into a compact ultrametric space (see Example 3.13 for
additional details). In fact, many of the generalizations of Thompson’s groups from
the literature can also be described via actions on a suitable compact ultrametric space.
Inverse semigroup actions on compact ultrametric spaces will be a significant source
of examples in this paper, and carry the benefit of being particularly easy to work
with.

For our purposes, it is usually not important to work directly with the metric.
Indeed, it can be burdensome in practice to produce such a metric in the first place.
Our approach will be to abstract the basic properties of balls in a compact ultramet-
ric space. We will say that the domains in a set X satisfy the “compact ultrametric
property” (Definition 3.12) if the domains have combinatorial properties like the balls
in a compact ultrametric space. The presence (or even existence) of an ultrametric is
unimportant.

Our main goal here is to describe the combinatorics of the domains in question.

Definition 3.12 (The compact ultrametric property). Assume that

(1) (nested domains) if D1; D2 2 DS and D1 \ D2 ¤ ;, then D1 � D2 or
D2 � D1, and

(2) (finite complementation) if D 2 DS , then the complement X � D may be
written as the union of finitely many members of DS .

We say that DS has the compact ultrametric property.

Example 3.13. LetX be the set of all infinite binary strings. We define a metric onX
as follows: if

a D a1a2a3 : : : 2 X and b D b1b2b3 : : : 2 X;

and a ¤ b, we let p.a; b/ denote the length of the greatest prefix common to both.
(Thus, if a1a2 : : : ak D b1b2 : : : bk but akC1 ¤ bkC1, then p.a; b/ D k.) We then
define d.a; b/ D 2�p.a;b/. If a D b, then define d.a; b/ D 0. It can be checked that
the function d WX � X ! R is an ultrametric; i.e., d is a metric that satisfies the
following strong version of the triangle inequality: if x; y; z 2 X , then

d.x; y/ � max¹d.x; z/; d.y; z/º:
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Each finite string ! D !1 : : : !k determines a ball B! , which simply consists of all
infinite strings in X having ! as a prefix. All balls in X can be described in this way.
Additionally, the metric space .X; d/ is compact, although this seems somewhat less
obvious.

In Example 3.29, we will define an inverse semigroup SV acting on X with
the property that the set DCSV of domains consists precisely of the balls B! . The
group �SV is Thompson’s group V . Note that it is entirely straightforward to check
that DCSV satisfies the conditions from Definition 3.12.

Convention 3.14. We will assume that DS has the compact ultrametric property for
the remainder of this subsection.

Remark 3.15. We note that, in Definition 3.12 (2), the difference X � D may be
written as the disjoint union of finitely many members of DS , because of property (1):
if any two domains in the union overlap, one must be contained in the other, so we
throw out the smaller domain and repeat as necessary, until we obtain a partition
of X �D.

We note also that properties (1) and (2) result in a finite difference property: ifD1
and D2 are domains and D1 � D2, then D2 �D1 may be written as a disjoint union
of finitely many domains. (Simply consider a partition P of X �D1 by finitely many
domains. The set P 0 D ¹D2 \ P j P 2 P and D2 \ P ¤ ;º is the desired partition.)

Proposition 3.16 (Bounding ascending chains in DS ). If D 2 DCS , then there is a
constant m 2 N such that every ascending chain

D D D1 ¨ D2 ¨ D3 ¨ � � �

has total length no more than m. In particular, there is no infinite strictly ascending
chain of domains starting at D.

Proof. By Definition 3.12 (2) and Remark 3.15, we can express X � D as a finite
disjoint union of domains yD1; yD2; : : : ; yDn. It follows that

P D ¹D; yD1; : : : ; yDnº

is a partition of X . We write D D yD0.
We claim that every chain

D D D1 ¨ D2 ¨ � � �

has length no more than nC 1 (i.e., we can set m D nC 1). If not, then we can pick
x1 2 D1, x2 2 D2 �D1, x3 2 D3 �D2, . . . such that T D ¹x1; x2; : : :º has at least
nC 2 elements. It follows from the Pigeonhole principle that there are xi ; xj 2 T ,
where i < j , such that both xi and xj are in yDk , for some k 2 ¹0; 1; : : : ; nº. Since
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xi 2 Di \ yDk , we must have Di � yDk or yDk � Di ; the former possibility is ruled
out because it implies

D D Di \D � yDk \ yD0 D ;;

a contradiction. Thus, yDk �Di , which implies xj 2Di �Dj�1, a contradiction.

Definition 3.17. LetD,E be non-empty domains in DS , withD�E. Let depthE .D/
be the length of the largest increasing chain of domains beginning at D and ending
with E. If P is a finite partition of E, then

depthE .P / D max¹depthE .D/ j D 2 P º:

Remark 3.18. In both cases of Definition 3.17, the depth is a positive integer. E.g.,
depthE .E/ D 1.

Lemma 3.19 (Greatest proper subdomains). Let D 2 DC. Either

(1) D has no proper non-empty subdomain, or

(2) for each x 2 D, there is a greatest proper subdomain Dx of D such that
x 2 Dx .

Proof. LetD 2DC, and suppose thatD0 �D is a proper non-empty subdomain. By
Remark 3.15, D �D0 can be partitioned by finitely many domains; thus, we have a
partition of D in the form

P D ¹D0;D1;D2; : : : ;Dmº;

where each member of P is a non-empty domain.
Let x 2 D. The set Dx D ¹ yD 2 DC j x 2 yD ¨ Dº is necessarily a chain, by

the nested domains property from Definition 3.12. The set Dx is clearly non-empty
(since, in particular, some domain from P must be in Dx), and must therefore contain
a maximal element; otherwise, we could select an infinite ascending chain

yD1 ¨ yD2 ¨ yD3 ¨ � � �

from Dx; this would contradict Proposition 3.16. A maximal element Dx of Dx is
the desired greatest proper subdomain containing x.

Corollary 3.20 (The maximal partition ofD). LetD 2DC, and assume thatD prop-
erly contains some non-empty subdomain. For x 2 D, we let Dx denote the maximal
proper subdomain of D that contains x. The collection

PD D ¹Dx j x 2 Dº

is a finite partition of D by proper subdomains, and any other partition P 0 of D by
proper subdomains is a refinement of PD .
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Proof. First, each set Dx is clearly non-empty. Assume that Dx1 \Dx2 ¤ ;. By the
nested domains condition from Definition 3.12, Dx1 � Dx2 or Dx2 � Dx1 . Neither
inclusion can be proper, by the maximality of Dx1 and Dx2 , so Dx1 D Dx2 . Thus,
the elements of PD are pairwise disjoint. It is also clear that

D D
[
x2D

Dx;

so PD is a partition of D by proper subdomains.
We must show that PD is finite. As in the proof of Proposition 3.19, we can pro-

duce a partition P D ¹ yD1; : : : ; yDmº ofD into proper subdomains. Since the elements
of PD are maximal with respect to inclusion, and each yDi intersects some Dx non-
trivially, we must have yDi � Dxi for some xi 2 D. It then follows

¹Dx1 ; : : : ;Dxmº � PD

is a cover of D, and thus ¹Dx1 ; : : : ;Dxmº D PD . Thus, PD is finite.
Now we show that every other partition P 0 ofD by proper subdomains is a refine-

ment of PD . Let D0 2 P 0. Since D0 ¤ ;, there is some x 2 D0 ¨ D. It follows from
the maximality of Dx that D0 � Dx . Thus, P 0 is a refinement of PD .

Definition 3.21 (The maximal partition). LetD be a domain. IfD properly contains a
non-empty subdomain, then we let PD denote the partition ofD from Corollary 3.20;
otherwise, we let PD D ¹Dº. In either case, we call PD the maximal partition of D.

Remark 3.22 (Maximal vs. minimal). The adjective “maximal” is slightly at odds
with later definitions, notably the definition of expansion (Definition 4.18). In the
latter definition, taking refinements will result in larger objects, rather than smaller
ones. The maximal partition will therefore represent a minimal upper bound under the
expansion relation.

Lemma 3.23 (Maximal partitions generate all partitions). Let D be a domain. For
every finite partition P ofD into proper subdomains, there is a sequence of partitions

¹Dº D P0;P1; : : : ;P` D P ;

where, for i D 0; 1; : : : ; ` � 1,

PiC1 D
�
Pi � ¹D

0
º
�
[PD0

for some D0 2 Pi .

Proof. We prove the lemma by induction on depthD.P /, where D is an arbitrary
domain and P is an arbitrary partition of D. If depthD.P / D 1, then P D ¹Dº;
if depthD.P /D 2, then P DPD . We may therefore assume that depthD.P /D n� 3.



D. S. Farley and B. Hughes 20

By Corollary 3.20, P is a refinement of PD . Let

PD D ¹E1; : : : ; Emº:

For i D 1; : : : ; m, let Pi denote the subset of P that partitions Ei . It suffices to
show that depthEi .Pi / � n � 1. This is clear; suppose D0 2 Pi is such that there is a
sequence

D0 D D001 ¨ D002 ¨ � � � ¨ D00k D Ei ;

where k � n. It follows that we can appendD to the end of this sequence, resulting in
a sequence of length at least nC 1. This shows that the depth of P is at least nC 1,
a contradiction.

Finally, we record a straightforward proposition for future reference.

Proposition 3.24 (S -invariance of the maximal partition). If s 2 S andD1;D2 2DC

are the domain and image of s, respectively, then s.PD1/ D PD2 .

3.5. Product actions

In this subsection, we briefly consider inverse semigroup actions on products

X1 � � � � �Xn:

Our main goal here is to set some terminology.
A secondary goal is to present Example 3.28, which will influence our definition

of “S -structures” (Definition 4.2), and, thus, the definition of “expansion” (Defini-
tion 4.18).

Definition 3.25 (Product actions). If X1; : : : ; Xn are sets and S1; : : : ; Sn are inverse
semigroups such that, for i D 1; : : : ; n, Si acts on Xi , then an n-tuple .s1; : : : ; sn/ 2
S1 � � � � � Sn defines a partial bijection of X1 � � � � � Xn as follows. If any of the si
are 0, then .s1; : : : ; sn/ determines the empty function. If none of the si are 0, then
.s1; : : : ; sn/ is defined by the rule

.s1; : : : ; sn/.x1; : : : ; xn/ D .s1.x1/; : : : ; sn.xn//;

where xi is in the domain of si for i D 1; : : : ; n.
It will be convenient to call the above action the product action of S1 � � � � � Sn on

X1 � � � � �Xn, even though the above collection of partial bijections is not isomorphic
to the usual direct product (see Remark 3.26).

If X1 D X2 D � � � D Xn and S1 D S2 D � � � D Sn, we will denote the product
semigroup by nS . More generally, we may sometimes use the notation S.1;:::;n/ to
refer to the product action of S1 � � � � � Sn.
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Remark 3.26. The above assignment of a partial bijection to an n-tuple .s1; : : : ; sn/
descends to an action of the inverse semigroup

.S1 � � � � � Sn/=I;

on X1 � � � � �Xn, where I is the two-sided ideal

I D ¹.s1; : : : ; sn/ j si D 0 for some iº;

and the above quotient is the usual Rees quotient [16] of the product semigroup
S1 � � � � � Sn by the ideal I .

Remark 3.27 (The set of domains for the product action). When S.1;:::;n/ is the prod-
uct semigroup, the corresponding set of domains is

DCS.1;:::;n/ D ¹D1 � � � � �Dn j Di 2 DCSi º:

(Recall that, if S is any inverse semigroup, then DCS denotes the set of all non-empty
domains of elements of S (see Definition 3.5).)

Example 3.28 (Partitions with no non-trivial proper coarsenings). Partitions of a
given domain into smaller domains will become increasingly important in later sec-
tions. It will be especially important to have a degree of control over the form that
such partitions can take.

A case in point occurs when the set of domains DCS has the compact ultramet-
ric property (Definition 3.12). In such a case, as we have seen, any given non-empty
domain D admits a maximal partition PD , of which any other non-trivial partition P

of D is a refinement (see Corollary 3.20). Thus, every non-trivial partition of D “fac-
tors through” a unique partition PD . Our example exhibits a strong contrast to this
property.

Let X be the set of all infinite binary strings (as in Example 3.13). If ! is any
finite binary string, then we define B! to be the set of infinite binary strings having !
as a prefix. We let " denote the empty binary string; thus, B" D X . There is an inverse
semigroup SV such that

DCSV D ¹B! j ! is a finite binary stringº

(see Example 3.29). The set DCSV satisfies the compact ultrametric property. Consider
the product semigroup 3SV , which acts on triples of infinite strings. A domain for an
element of 3SV is a dyadic brick B!1 � B!2 � B!3 , and all such bricks are domains.

We denote the length of a finite binary string ! by j!j. Consider the following
partition of X3:

Pn D ¹B0 � B0 � B"º [ ¹B1 � B" � B!0 j j!j D nº [ ¹B0 � B1 � B!0 j j!j D nº

[ ¹B" � B1 � B!1 j j!j D nº [ ¹B1 � B0 � B!1 j j!j D nº:
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Let P be any partition of X3 into dyadic bricks, and suppose that Pn properly
refines P . It follows that there is some dyadic brick B D B!1 �B!2 �B!3 2 P such
that B contains two or more bricks from Pn. Note also that B is partitioned by bricks
from Pn, by the definition of refinement. We can use these two properties to prove
that P D ¹X3º. Thus, the only proper coarsening of Pn via dyadic bricks is the trivial
partition ¹X3º.

The proof involves analyzing several cases. Let us consider just part of the proof
in case n D 1; the rest can be argued similarly. Assume that P1 refines P ; let B D
B!1 � B!2 � B!3 2 P be a dyadic brick that contains two or more bricks from P1.
Assume (for instance) that

B1 � B" � B00; B1 � B" � B10 � B!1 � B!2 � B!3 :

It follows that B1 � B!1 , B" � B!2 , and B10; B00 � B!3 . We easily conclude that
B!1 D B1 or B", while B!2 D B!3 D B". Now note that B must have a non-empty
intersection with the brick B" � B1 � B01 2 P1. It follows that B contains the lat-
ter brick, which also forces B!1 D B". Thus, B D B3" D X3, which implies that
P D ¹X3º, as claimed.

It follows that if T is a family of partitions of X3 into dyadic bricks, and T has
the property that every proper partition of X3 into dyadic bricks factors through (i.e.,
refines) one of the partitions in T , then T is infinite.

The above property of X3 is highly undesirable in the applications (to finite-
ness properties, for instance). We will therefore need to put careful restrictions on
the allowable partitions in order to proceed successfully.

3.6. Examples of the groups �S

Example 3.29 (Thompson’s group V [8, 11]). Let X be the set of all infinite binary
strings. We again (as in Example 3.28) let " denote the empty string, and carry over
the definition of B! , where ! is a finite binary string.

For each pair of finite binary strings .!1; !2/, we define a transformation

�!1;!2 WB!1 ! B!2

by the rule
�!1;!2.!1a1a2 : : : an : : :/ D !2a1a2 : : : an : : :

Here the ai denote binary digits. Thus, �!1;!2 removes the prefix !1 and replaces it
with !2. It is clear that each �!1;!2 is a partial bijection ofX , and that ��1!1;!2D�!2;!1 .

We let
SV D ¹�!1;!2 j !1; !2 are finite binary stringsº [ ¹0º;
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where 0 denotes the empty function. It is straightforward to check that SV is an inverse
semigroup. The associated set of domains is

DCSV D ¹B! j ! is a finite binary stringº:

Note that DCSV satisfies the compact ultrametric property. The group �SV is Thomp-
son’s group V .

Example 3.30 (The group QV [1, 21]). Let T be the rooted infinite binary tree. Let
X D T 0, the set of vertices of T . Thus, X is the set of all finite binary strings, includ-
ing the empty string ", which is the root of T . For any finite binary string !, we let T!

be the infinite binary subtree having ! as its root. The set T 0
! therefore consists of all

finite binary strings having ! as a (not necessarily proper) prefix.
We define two types of transformations. If !1; !2 are finite binary strings, then

define �!1;!2 to be the unique bijection from ¹!1º to ¹!2º. We define �!1;!2 W T
0
!1
!

T 0
!2

by the rule
�!1;!2.!1a1 : : : an/ D !2a1 : : : an:

Thus, �!1;!2 removes the prefix !1 and attaches the prefix !2 as in Example 3.29,
although this time �!1;!2 determines a transformation of finite binary strings.

We let

SQV D ¹�!1;!2 j !1; !2 2 Xº [ ¹�!1;!2 j !1; !2 2 Xº [ ¹0º;

where 0 is the empty function. It is straightforward to check that SQV is an inverse
semigroup under composition. The associated set of domains is

DCSQV D ¹¹!º j ! 2 Xº [ ¹T
0
! j ! 2 Xº:

We note that DCSQV satisfies the compact ultrametric property. The group �SQV is
isomorphic to QV .

Example 3.31 (The Brin–Thompson groups nV [7, 13]). Let X denote the set of all
infinite binary strings (as in Example 3.29). Consider the product action of nSV onXn

(see Definition 3.25).
The corresponding set of domains is

DCnSV D ¹Bu1 � � � � � Bun j ui is a finite binary string for each iº:

Here DCnSV does not satisfy the compact ultrametric property. (For instance, if nD 2,
the sets B" � B0 and B1 � B" intersect, but neither is contained in the other.) The
group �nSV is isomorphic to nV .
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Example 3.32 (The Röver group [3, 20, 23]). If x 2 ¹0; 1º, then let xx denote the
opposite binary digit; i.e., x0D 1 and x1D 0. We will let X denote the set of all infinite
binary strings (as in Example 3.29).

We define four transformations of a;b; c; d WX !X by the following rules, where
each xi represents an individual binary digit:

a.x1x2 : : :/ D xx1x2x3 : : : ;

b.0x2x3 : : :/ D 0a.x2 : : :/;

b.1x2x3 : : :/ D 1c.x2 : : :/;

c.0x2x3 : : :/ D 0a.x2 : : :/;

c.1x2x3 : : :/ D 1d.x2 : : :/;

d.0x2x3 : : :/ D 0x2x3 : : : ;

d.1x2x3 : : :/ D 1b.x2x3 : : :/:

The transformations a,b,c,d are the generators of Grigorchuk’s first group G; each
determines a homeomorphism of the Cantor set X (see [2]). We define the transfor-
mations �!1;!2 as from Example 3.29. We further define, for each g 2 G,

g!1;!2 D �";!2g�!1;":

Let
SR D ¹g!1;!2 j !1; !2 are finite binary stringsº [ ¹0º:

The set SR is an inverse semigroup. The proof uses the self-similarity property of G
in an essential way. (A reference for the self-similarity property is [2].) The set of
domains is

DCR D ¹B! j ! is a finite binary stringº:

The set DCR satisfies the compact ultrametric property. The group �SR is the Röver
group [23].

Nekrashevych [20] subsequently studied a more general class of groups, which are
now often called the Nekrashevych–Röver groups. In this paper, we will concentrate
on the group originally considered by Röver, although the range of the applicability
of our methods to more general Nekrashevych–Röver groups remains an interesting
question.

Example 3.33 (Houghton’s groups [8,15]). Let Xn D ¹1; : : : ; nº �N. We define two
types of basic transformations.

(1) If .j1; k1/; .j2; k2/ 2 Xn, then let ˛.j2;k2/
.j1;k1/

be the unique function with domain
¹.j1; k1/º and codomain ¹.j2; k2/º.
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(2) If .j; k/ 2 Xn and ` 2 Z is such that k C ` > 0, then define

ˇ`.j;k/W ¹j º � ¹k; k C 1; : : :º ! ¹j º � ¹k C `; k C `C 1; : : :º

by the rule ˇ`
.j;k/

.j; x/ D .j; x C `/.

The set SHn of all the ˛.j2;k2/
.j1;k1/

, all of the ˇ`
.j;k/

, and the empty function 0 is an
inverse semigroup.

The corresponding set of domains is

DCSHn
D ¹¹.j; k/º j .j; k/ 2 Xnº [ ¹¹j º � ¹k; k C 1; : : :º j .j; k/ 2 Xnº;

which satisfies the compact ultrametric property. The group �SHn is Houghton’s
group Hn.

Example 3.34 (Bieri–Sach examples [5]). Consider the inverse semigroup SH2 from
Example 3.33 and the associated set X2 D ¹1; 2º �N. We identify X2 with the set of
integers, matching .1; k/ with k � 1 and .2; k/ with �k. This makes SH2 an inverse
semigroup of partial bijections of Z.

It will be convenient to introduce notation for the domains of SH2 . Define

RC
k
D ¹k; k C 1; : : :º for k � 0;

R�k D ¹: : : ; k � 1; kº for k < 0;

Pk D ¹kº for k 2 Z:

There are three types of transformations in SH2 :

(1) bijections between singleton sets �k;`WPk ! P`;

(2) shifts SC
k!`
WRC

k
! RC

`
, where k; ` � 0;

(3) shifts S�
k!`
WR�

k
! R�

`
, where k; ` < 0.

All of these are restrictions of suitable translations, and are bijections between the
given domains and codomains.

We consider the product action of nSH2 on Zn. A domain from a transformation
s 2 nSH2 is a polyhedral subset of Zn. For instance, letting nD 2, we find nine domain
types in DC2SH2

:

(1) quadrants: RC
k
�RC

`
, RC

k
�R�

`
, R�

k
�R�

`
, R�

k
�RC

`
;

(2) singletons: Pk � P`;

(3) strips: RC
k
� P`, R�k � P`, Pk �R

C

`
, Pk �R�` .

The set DCnSH2
does not satisfy the compact ultrametric property when n � 2. The

associated groups �nSH2 are examples from the class of groups considered in [5].
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4. S -structures and pseudovertices

In this section, we will produce a partially ordered set upon which the group �S
acts. The set and partial order depend on the choice of S -structure (Definition 4.2).
Section 4.1 defines S -structures. Section 4.2 contains basic information about the
expansion relation, which determines the partial order on pseudovertices. Section 4.3
defines the action of �S on various sets of pseudovertices. Section 4.4 shows that the
pseudovertices form a directed set (under relevant hypotheses). The section concludes
with Section 4.5, which describes the expansion relation in a number of examples.

4.1. S -structures

In this subsection, we define S -structures, which will be used to generate a partially
ordered set upon which the group �S acts. The S -structures are therefore essential in
everything that follows.

Definition 4.1 (Meet and restriction of partitions). Let P1 and P2 be partitions of a
set Z. The meet of P1 and P2, denoted P1 ^P2, is defined by the equation

P1 ^P2 D ¹P1 \ P2 j P1 2 P1; P2 2 P2; P1 \ P2 ¤ ;º:

In words, the meet is the coarsest common refinement of P1 and P2. It is a partition
of Z.

If P is a partition of Z and Y � Z, then

PjY D ¹P \ Y j P 2 P IP \ Y ¤ ;º

is the restriction of P to Y ; it is a partition of Y .

Definition 4.2 (S -structure). Let 2S denote the power set of S . An S -structure is
a pair .S; P /, where SWDCS � DCS ! 2S and P assigns to each domain D a col-
lection P .D/ of partitions of D. The functions S and P must satisfy the following
properties:

(P1) ¹Dº 2 P .D/ for each D 2 DCS ;

(P2) each P 2 P .D/ is a finite partition of D into domains;

(P3) (restriction) if P 2 P .D/ and E is a non-empty domain contained in D,
then PjE 2 P .E/;

(P4) (patchwork) if PD¹D1; : : : ;Dmº2P .D/ and, for iD1; : : : ;m, Pi 2P .Di /,
then P1 [ � � � [Pm 2 P .D/;

(P5) (cofinality) for eachD 2DC and each finite partition ofD into domains P 0,
there is some P 2 P .D/ properly refining P 0;
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(S1) if s 2 S.D1;D2/, then the domain of s is D1 and the image of s is D2;

(S2) (identities) for each D 2 DC, idD 2 S.D;D/;

(S3) (inverses) if s 2 S.D1;D2/, then s�1 2 S.D2;D1/;

(S4) (compositions) if s12S.D1;D2/ and s22S.D2;D3/, then s2s12S.D1;D3/;

(S5) (generation) if D 2 DC and f WD ! X is in yS (see Definition 3.10), then
there is P 2P .D/ such that, for eachE 2P , there is s 2 S such that fjE D s
and s 2 S.E; s.E//;

(S6) (S-invariance of P ) if P1 2P .D1/ and s 2S.D1;D2/, then s.P1/2P .D2/.

The function S is the structure function and P is the pattern function. The sets denoted
by S.D1;D2/ are structure sets. A member of P .D/ is called a pattern of D.

Remark 4.3. Thus, each pattern in P .D/must be a finite partition ofD into domains,
and the patterns in question must contain the trivial partition and be closed under
restriction to subdomains. Additionally, every finite partition of D into domains must
have a refinement in P .D/ (cofinality). The patchwork condition ensures that if each
piece of a pattern is itself replaced by a pattern, then the result is a pattern.

The structure set S.D1;D2/ consists of transformations from S having domainD1
and image D2; the structure sets collectively satisfy “groupoid-like” properties (S1)–
(S4). In particular, S.D;D/ is a group, for each D 2 DCS . There is a straightforward
compatibility requirement (S6).

The generation property (S5) helps ensure that both S and P are “sufficiently
rich”, in an appropriate sense. For each embedding f WD ! X that is locally deter-
mined by S , P .D/ is large enough that we can find a pattern of D, such that the
restriction of f to each member of the pattern is an element of S ; moreover, S is
sufficiently rich in the sense that each such restriction is a member of the appropriate
structure set.

Example 4.4 (The maximal S -structure). Let S be an inverse semigroup acting onX .
For all D1;D2 2 DCS , we let

S.D1;D2/ D ¹s 2 S j dom.s/ D D1I im.s/ D D2º;

P .D1/ D ¹P j P is a finite partition of D1 into domainsº:

If S and P are as above, then we refer to .S; P / as the maximal S -structure. It is
easy to check both that .S; P / is an S -structure and that it is the largest possible
S -structure.

The maximal S -structure will be used in many of our applications. It has many
advantages: it is simple and, very often, it is the only natural S -structure. We call
attention to two potential disadvantages:
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(1) The groups S.D;D/ will contribute to the size of cell stabilizers (see Propo-
sition 5.3). In certain cases (see, for instance, Example 4.35), the maximal structure
function will yield infinite groups S.D;D/, and, therefore, infinite stabilizer groups.
Even worse, these infinite groups may have bad finiteness properties, which will make
it impossible to deduce useful finiteness properties for the larger group �S .

(2) When we consider product actions, the maximal pattern function would allow
partitions like those from Example 3.28. Such examples make it difficult or impossible
to establish finiteness properties of the groups �S . It will therefore be desirable to
restrict the possible allowed partitions by specifying smaller pattern sets P .D/.

Example 4.5 (Brin’s patterns). Let X denote the set of infinite binary strings, and
carry over all other notation from Examples 3.13, 3.29 and 3.31. Brin [7] specified a
certain family of partitions of X2, which he called “patterns”. The patterns in X2 are
defined inductively as follows. The trivial partition ¹X2º is a pattern. If P is a pattern
and B˛ � Bˇ 2 P , then�

P � ¹B˛ � Bˇ º
�
[ ¹B˛0 � Bˇ ; B˛1 � Bˇ º�

P � ¹B˛ � Bˇ º
�
[ ¹B˛ � Bˇ0; B˛ � Bˇ1º

are also patterns.
Thus, in words, every pattern is a partition ofX2 into dyadic rectangles. The trivial

partition is a pattern, and a new pattern can be obtained from another by dividing a
given rectangle in half, either in the first or second coordinate.

Brin similarly defines patterns in Xn, for all n � 2. It appears to the authors that
patterns in X2 are simply the partitions of X2 into finitely many dyadic rectangles
(or into finitely many domains, where the implied semigroup is 2SV ). The patterns
are, however, a special type of partition into finitely many domains when n � 3. For
instance, the partitions Pn from Example 3.28 are clearly not patterns.

The definition of pattern extends easily to general products (see Definition 4.32).
The resulting definition rules out pathologies like the one from Example 3.28 and
proves to be useful in applications to finiteness properties.

Remark 4.6 (Patterns in practice). We are aware of two natural choices for the pattern
function P :

(1) the unrestricted pattern function, which simply says that every partition of a
domain D into finitely many domains is a pattern (as in Example 4.4);

(2) the pattern function that mimics the patterns from Example 4.5 (see Defini-
tion 4.32).

We will use no other examples in this paper.
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Definition 4.7 (Domain types). Let D1, D2 2 DC. We say that D1 and D2 have the
same domain type relative to S if S.D1; D2/ ¤ ;. We will frequently omit mention
of the structure function S, and say that D1 and D2 have the same domain type, if S

is understood.
We note that having the same domain type is an equivalence relation on DC. We

let ŒD� denote the equivalence class of D under this relation.
We say that S has finitely many domain types if the number of equivalence classes

of domains is finite.

Definition 4.8 (A partial order on partitions). Let Y � X be a finite non-empty union
of disjoint domains. Let P1 D ¹D1; : : : ; Dmº and P2 be finite partitions of Y into
domains. We write P1 4 P2 if

P2 D

m[
iD1

yPi

for some yPi 2 P .Di / (i D 1; : : : ; m).
It is straightforward to check that 4 is a partial order on the set of partitions of Y

into finitely many domains. We note that the property of transitivity relies on the
patchwork property (P4) from Definition 4.2

Proposition 4.9 (A directed set property). Let Y � X be a finite non-empty union of
disjoint domains. Let P1 and P2 be finite partitions of Y into domains. There is P3

such that P1 4 P3 and P2 4 P3.

Proof. First, we will show that there is a partition P 0 of Y into finitely many domains
such that P1 4 P 0 and P1 ^P2 4 P 0.

The meet P1 ^P2 (see Definition 4.1) is a common refinement of both P1 and P2,
and each member of the meet is a domain by Lemma 3.7 (1). Assume that P1 D

¹D1; : : : ;Dmº. For eachDi 2 P1, there is a subset of P1 ^P2 that partitionsDi . By
the cofinality property (P5) from Definition 4.2, we can find a partition yPi 2 P .Di /

that refines the latter partition. Letting

P 0 D

m[
iD1

yPi ;

we find that P1 4 P 0.
We claim that, moreover, P1 ^ P2 4 P 0. Indeed, let P1 ^ P2 D ¹E1; : : : ; Enº.

For i D 1; : : : ; n, there is some unique �.i/ 2 ¹1; : : : ; mº such that Ei � D�.i/. We
have the equality

P 0
jEi
D
�
P 0
jD�.i/

�
jEi
;
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by definition of the restriction (see Definition 4.1). Since

P 0
jD�.i/

D yP�.i/;

and the latter is in P .D�.i//, property (P3) implies that P 0
jEi
2 P .Ei /. The equality

P 0 D

n[
iD1

P 0
jEi

now implies that P1 ^P2 4 P 0, as desired.
Next, we simply apply the preceding argument with P2 playing the role of P1,

and P 0 playing the role of P2. We conclude that there is P 00 such that P2 4 P 00 and

P2 ^P 0 D P 0 4 P 00:

Set P3 D P 00.

4.2. The partially ordered set of pseudovertices

For the rest of this section, we fix an S -structure .S;P /.

Definition 4.10 (The fundamental equivalence relation). Let

A D ¹.f;D/ j D is a non-empty domainIf WD ! X is locally determined by Sº:

We write
.f1;D1/ � .f2;D2/

if there is some h 2 S.D1; D2/ such that f1 D f2 ı h. We note for future reference
that .f1;D1/ � .f2;D2/ implies f1.D1/ D f2.D2/.

The relation � is an equivalence relation on A. We denote the equivalence class
of .f;D/ by Œf;D�, and the set of all such equivalence classes by B.

Remark 4.11. It will frequently be convenient to write Œf; D� instead of ŒfjD; D�
when the domain of f is larger than D. We will freely do so in what follows, for the
sake of simplicity in notation.

Definition 4.12 (Pseudovertex). A non-empty subset

v D ¹Œf1;D1�; : : : ; Œfm;Dm�º

of B is called a pseudovertex if the images f1.D1/, : : :, fm.Dm/ are pairwise disjoint.
The image of v, denoted im.v/, is the set

f1.D1/ [ � � � [ fm.Dm/:
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We let P VS denote the set of all pseudovertices. If Y � X is expressible as a finite
disjoint union of domains, then we let P VS;Y denote the set of pseudovertices v
satisfying im.v/ D Y .

If Y D X , we may write VS instead of P VS;X .

Remark 4.13. The set VS will ultimately be the vertices of the complexes of interest
to us.

Remark 4.14. We note that the definition of P VS;Y depends upon the structure sets
S.D1; D2/, not the pattern function P , which justifies omitting P from the notation.
However, P will affect the partial order (Definition 4.18).

Definition 4.15 (Rank of a pseudovertex). Let v be a pseudovertex. Since v � B,
jvj has its usual definition (as the cardinality of a set). We call jvj the rank of the
pseudovertex v.

Definition 4.16 (The type of a pseudovertex). We say that two pseudovertices

v1 D ¹Œf1;D1�; : : : ; Œfm;Dm�º and v2 D ¹Œg1; E1�; : : : ; Œgn; En�º

have the same type if they have the same rank and ŒDi � D ŒEi � for i D 1; : : : ;m (pos-
sibly after reordering). Recall that ŒD� denotes the domain type ofD (Definition 4.7).

Remark 4.17. It is straightforward to check that the type of a pseudovertex is well
defined; i.e., if

¹Œf1;D1�; : : : ; Œfm;Dm�º D v D ¹Œg1; E1�; : : : ; Œgn; En�º;

then m D n and ŒDi � D ŒEi � for all i , possibly after rearrangement.

Definition 4.18 (Expansion). Let

v D ¹Œf1;D1�; : : : ; Œfm;Dm�º

be a pseudovertex. Let Œfi ; Di � 2 v. Let yD 2 DC have the same domain type as Di ,
let h 2 S. yD;Di /, and let P 2 P . yD/ be non-trivial (i.e., jP j � 2). We say that

v0 D
�
v � ¹Œfi ;Di �º

�
[ ¹Œfih;D� j D 2 P º

is an expansion from v at Œfi ;Di � (or simply an expansion). We write v % v0.
If there is a (possibly empty) sequence of expansions

v D v0 % v1 % v2 � � � % vn D v
0;

then we write v � v0.
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Remark 4.19. We note that expansion necessarily increases the rank of a pseudo-
vertex.

Proposition 4.20. (The partial order induced by expansion) If v is a pseudovertex
and v % v0, then v0 is a pseudovertex having the same image. Moreover,

(1) the expansion relation v % v0 is well defined; that is, if v is a pseudovertex,
v D yv, and v % v0, then yv % v0;

(2) the relation � is a partial order on P VS.

Proof. If v % v0 and v is a pseudovertex, then it is clear from the definition of the
expansion relation (Definition 4.18) that v0 is also a pseudovertex, and that

im.v/ D im.v0/:

We prove (1). Suppose that v D yv, where v is a pseudovertex. Let

v D ¹Œf1;D1�; : : : ; Œfn;Dn�º and yv D ¹Œg1; E1�; : : : ; Œgn; En�º;

where
Œfi ;Di � D Œgi ; Ei �

for i D 1; : : : ; n. We assume that v % v0 by an expansion at Œf1; D1�. Thus, there is
a domain yD, an h 2 S. yD;D1/ and a non-trivial P 2 P . yD/ such that

v0 D
�
v � ¹Œf1;D1�º

�
[ ¹Œf1h;D� j D 2 P º:

Since Œf1; D1� D Œg1; E1�, there is h0 2 S.D1; E1/ such that g1h0 D f1. It follows
directly that g1h0hD f1h. Note that h0h 2 S. yD;E1/ by the compositions property of
S -structures (property (S4) from Definition 4.2). It follows that yv % yv0, where

yv0 D
�
yv � ¹Œg1; E1�º

�
[ ¹Œg1h

0h;D� j D 2 P º:

The equality yv0 D v0 now follows from the assumption that Œfi ; Di � D Œgi ; Ei � for
i D 1; : : : ; n, and from the fact that g1h0h D f1h. It follows that yv % v0, as desired.

To prove (2) we first note that Definition 4.18 implies that � is both reflexive
and transitive. The fact that � is also antisymmetric follows easily from the fact that
expansion increases the cardinality of a pseudovertex.

Remark 4.21. Given a pseudovertex v D ¹Œf1;D1�; : : : ; Œfm;Dm�º, the set

Pv D ¹fi .Di / j i 2 ¹1; : : : ; mºº

is a partition of im.v/. We note for future reference that, when v1 < v2, Pv2 is a
proper refinement of Pv1 .
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Proposition 4.22 (The partial order is locally determined). Let v1 and v2 be pseudo-
vertices and assume that v1 � v2.

(1) For every pseudovertex v01 � v1, there is a unique pseudovertex v02 � v2 such
that im.v01/ D im.v02/;

(2) If v01 and v02 satisfy v0i � vi (i D 1; 2) and im.v01/ D im.v02/, then v01 � v
0
2.

Proof. Let v1 and v2 be pseudovertices such that v1 � v2.
We prove (1). Let v01 � v1. We will first prove the existence of a suitable v02 and

later consider uniqueness. By an easy induction, it suffices to consider the case in
which v1% v2. If the expansion in question occurs at a pair Œf;D� … v01, then v01 � v2
and we can set v02 D v

0
1. If the expansion occurs at some Œf;D� 2 v01, then, by Defini-

tion 4.12,
v2 D

�
v1 � ¹Œf;D�º

�
[ ¹Œf h;E� j E 2 P º;

where yD 2 DC, h 2 S. yD; D/, and P 2 P . yD/ is non-trivial. Since ¹Œf; D�º and
¹Œf h;E� j E 2 P º are pseudovertices with the same image, we can let

v02 D
�
v01 � ¹Œf;D�º

�
[ ¹Œf h;E� j E 2 P º;

and im.v01/D im.v02/. This demonstrates the existence of a pseudovertex v02 � v2 such
that im.v02/ D im.v01/.

The uniqueness of v02 is straightforward: in any pseudovertex

v D ¹Œf1;D1�; : : : ; Œfm;Dm�º

the images fi .Di / are non-empty and pairwise disjoint (see Definition 4.12), so there
is at most one subset of v having any given image. Uniqueness follows directly; this
proves (1).

We now prove (2). Assume that v01 � v1, v02 � v2, and im.v01/ D im.v02/. We will
assume further that v1 % v2, since the general case follows from this one by an easy
induction. Assume that the expansion in question occurs at Œf;D� 2 v1.

The proof of (1) shows that either v02 D v
0
1 or

v02 D
�
v01 � ¹Œf;D�º

�
[ ¹Œf h;E� j E 2 P º;

where P and h are as described above. In either case v01 � v
0
2. This proves (2).

4.3. The action on pseudovertices

Recall that yS denotes the collection of all partial bijections ofX that are locally deter-
mined by S (see Definition 3.10).
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Definition 4.23 (The partial action of yS on pseudovertices). Let ys2 yS and Œf;D�2B.
If f .D/ is contained in the domain of ys, then we define

ys � Œf;D� D Œysf;D�:

More generally, if
v D ¹Œf1;D1�; : : : ; Œfm;Dm�º

is a pseudovertex such that im.v/ is contained in the domain of ys, then we define

ys � v D ¹Œysf1;D1�; : : : ; Œysfm;Dm�º:

Proposition 4.24 (The partial action on P VS). Let v1; v2 2 P VS and suppose that
v1 � v2. Assume that ys 2 yS and that the domain of ys contains im.v1/D im.v2/. Then

(1) the action of ys is well defined on B and on P V ; i.e., if v1 D zv1 2 P V , then
ys � v1 D ys � zv1;

(2) the action of ys is order-preserving: ys � v1 � ys � v2.

(3) im.ys � v1/ D ys.im.v1//.

Proof. We prove (1); the statement about B will be proved in the course of establish-
ing the well-definedness of the action on P V . Let

v1 D ¹Œf1;D1�; : : : ; Œfm;Dm�º and zv1 D ¹Œg1; E1�; : : : ; Œgm; Em�º;

where Œfi ;Di � D Œgi ; Ei � for i D 1; : : : ; m.
We choose a subscript i . Since Œfi ; Di � D Œgi ; Ei �, there is h 2 S.Di ; Ei / such

that gihD fi . Thus, ysgihD ysfi , which proves that Œysfi ;Di �D Œysgi ;Ei �. Since i was
arbitrary, we find that ys � v1 D ys � zv1, as required.

We next prove (2). Assume that v1 � v2. It suffices to show that ys � v1 � ys � v2 in
the special case where v1 % v2.

Let
v1 D ¹Œf1;D1�; : : : ; Œfm;Dm�º

and suppose that v2 is an expansion from v1 at Œf1; D1�. Thus, there is yD 2 D ,
h 2 S. yD;D1/, and a non-trivial P 2 P . yD/ such that

v2 D ¹Œf2;D2�; : : : ; Œfm;Dm�º [ ¹Œf1h;E� j E 2 P º:

We note that
ys � v1 D ¹Œysf1;D1�; : : : ; Œysfm;Dm�º

and
ys � v2 D ¹Œysf2;D2�; : : : ; Œysfm;Dm�º [ ¹Œysf1h;E� j E 2 P º:
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It follows that ys � v2 is an expansion from ys � v1 at Œysf1;D1� via the same yD, h, and P ,
as above. Thus, ys � v1 % ys � v2.

The final statement follows directly from the definition of the action (Defini-
tion 4.23).

4.4. Directed sets of pseudovertices

Lemma 4.25 (Directed set property). The following statements hold:

(1) Let
v D ¹Œf1;D1�; : : : ; Œfm;Dm�º

be a pseudovertex. There exists a pseudovertex v0 such that v � v0 and

v0 D ¹ŒidE1 ; E1�; : : : ; ŒidEn ; En�º;

where ¹E1; : : : ; Enº is a finite partition of im.v/ into domains.

(2) The pseudovertices

v D ¹Œf1;D1�; : : : ; Œfm;Dm�º and v0 D ¹Œf 01 ;D
0
1�; : : : ; Œf

0
n;D

0
n�º

have a common upper bound if and only if im.v/ D im.v0/.

Proof. We first prove (1). The function f1WD1 ! X is locally determined by S . It
follows from the generation property (Definition 4.2 (S5)) that there is a non-trivial
P 2 P .D1/ such that, for E 2 P , there is sE 2 S such that f1jE D sE and sE 2
S.E; sE .E//. It follows that v % v1, where

v1 D ¹Œf2;D2�; : : : ; Œfm;Dm�º [ ¹Œf1; E� j E 2 P º;

where we let yD D D1 and h 2 S. yD; D1/ be idD1 in the definition of expansion
(Definition 4.18). We note that Œf1; E� D ŒsE ; E� for each E 2 P , since f1jE D sE .
Since sE 2 S.E; sE .E//, we have the equality ŒsE ; E� D Œid; sE .E/�. Recall from
Lemma 3.7 (2) that the set of domains is closed under translation by elements of S . It
follows that sE .E/ D E 0, for some domain E 0 2 DC. We rewrite v1 using this fact,
and find that

v1 D ¹Œf2;D2�; : : : ; Œfm;Dm�º [ ¹Œid; E 0� j E 0 2 P 0º;

where P 0 is a finite partition of f1.D1/ into domains.
Replacing the pairs Œf2; D2�; : : : ; Œfm; Dm� in the same manner, we produce a

finite sequence of pseudovertices

v D v0 % v1 % v2 % � � � % vm;
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and
vm D ¹Œid yE ; yE� j yE 2 yP º;

where yP is a finite partition of im.v/ into domains. This proves (1).
Now we prove (2). Let v and v0 be pseudovertices such that im.v/ D im.v0/. We

can assume, after applying (1), that

v D ¹Œid;D� j D 2 P1º and v0 D ¹Œid; E� j E 2 P2º

for some partitions P1;P2 � DCS . By Proposition 4.9, there is a partition P3 such
that P1 4 P3 and P2 4 P3. Setting

v00 D ¹Œid; F � j F 2 P3º;

we find that v � v00 and v0 � v00, where the expansions leading from v to v00 consist
of replacing each singleton ¹Œid;D�º (D 2 P1) with

¹Œid; F � j F 2 .P1/jDº;

and the expansions leading from v0 to v00 are defined analogously.
The proof of the remaining direction is trivial.

Corollary 4.26 (A family of ranked directed sets). If v1; v2 2 P VS have identical
images (i.e., im.v1/D im.v2/), then there is v0 2P VS such that v1 � v0 and v2 � v0.

In particular, P VS;Y is a ranked directed set whenever Y is a non-empty finite
disjoint union of domains.

Proof. This is now immediate from Lemma 4.25, from Definitions 2.5 and 4.15, and
from Remark 4.19.

4.5. Examples: S -structures and the expansion relation

We will now offer some examples of S -structures and their associated expansion rela-
tions. We will concentrate on the case of maximal S -structures, although we will also
consider a non-maximal structure for Röver’s group (see Example 4.35).

4.5.1. The expansion relation in the maximal S -structure. The expansion relation
(Definition 4.18) takes an especially simple form in the maximal S -structure (S,P )
(see Example 4.4). Namely, if Œf; D� 2 B, any expansion at Œf; D� simply consists
of replacing Œf; D� with various pairs Œf; E�, where the domains E range over an
arbitrary finite partition of D into domains. This is Proposition 4.27.

We recall that, if .S; P / is the maximal S -structure and D is a domain, then
P 2 P .D/ exactly when P is a finite partition of D into domains.
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Proposition 4.27 (The expansion relation in the maximal S -structure). Assume that
the inverse semigroup S acts on X , and let .S; P / be the maximal S -structure. If
v1 D ¹Œf1; D1�; : : : ; Œfm; Dm�º and v1 % v2, then there is some j 2 ¹1; : : : ; mº and
a finite partition P of Dj into domains such that

v2 D
�
¹Œf1;D1�; : : : ; Œfm;Dm�º � ¹Œfj ;Dj �º

�
[ ¹Œfj ; E� j E 2 P º:

Proof. Since v1% v2, there is some pair Œfj ;Dj �, a domain yD, an h 2 S. yD;Dj / and
a partition yP of yD into finitely many domains such that

v2 D
�
¹Œf1;D1�; : : : ; Œfm;Dm�º � ¹Œfj ;Dj �º

�
[ ¹Œfjh;E� j E 2 yP º:

It therefore suffices to show that

¹Œfjh;E� j E 2 yP º D ¹Œfj ; E
0� j E 0 2 P º

for some partition P of Dj into finitely many domains.
Note that by Corollary 3.8, hjE 2 S for eachE 2 yP . Since the domain of hjE isE

and the codomain of hjE is h.E/, we must have hjE 2 S.E; h.E// by the definition
of .S;P /. Consider the partition P D ¹h.E/ j E 2 yP º of Dj . We find that

Œfjh;E� D Œfj ; h.E/�

for each E 2 yP , by the definition of the equivalence relation on B (Definition 4.10).
It follows directly that

¹Œfjh;E� j E 2 yP º D ¹Œfj ; E
0� j E 0 2 P º

for P as defined above, completing the proof.

Remark 4.28. We say that the structure sets are closed under restrictions if, whenever
h 2 S.D1;D2/ andD is a domain contained inD1, h 2 S.D;h.D//. The above argu-
ment generalizes naturally to S -structures .S; P / when the structure sets are closed
under restrictions. Note that the finite partition P must still come from P .Dj / in this
more general setting.

Remark 4.29. If we simply replace a pair Œf;D� with a list of pairs

Œf; E1�; : : : ; Œf; Ek�;

where ¹E1; : : : ;Ekº 2 P .D/, then the result is always an expansion, no matter which
S -structure .S;P / we are working with. Proposition 4.27 asserts that this is the only
kind of expansion when we are using the maximal S -structure.

There are other kinds of expansions in more general (i.e., more restricted) S -
structures. One example of the latter appears as Example 4.35.
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4.5.2. Expansions for domains satisfying the compact ultrametric property.

Definition 4.30. Let S be such that DCS satisfies the compact ultrametric property.
Assume that v1 and v2 are pseudovertices, v1D¹Œf1;D1�; : : : ; Œfm;Dm�º, and v1%v2.

We say that v1% v2 is a simple expansion if there is a j 2 ¹1; : : : ;mº, a domain yD,
and a transformation h 2 S. yD;Dj / such that

v2 D
�
¹Œf1;D1�; : : : ; Œfm;Dm�º � ¹Œfj ;Dj �º

�
[ ¹Œfjh;E� j E 2 P yDº:

Recall that P yD is the maximal partition of yD (Definition 3.21).

Proposition 4.31 (Factorization into simple expansions). Suppose that DCS satisfies
the compact ultrametric property. Let v1; v2 be pseudovertices such that v1% v2. We
can find a sequence

v1 D w0 % w1 % � � � % wn D v2;

where each expansion wi % wiC1 is simple.

Proof. It suffices to show that, whenever v1% v2, there is some pseudovertex yv such
that v1 % yv is a simple expansion and yv � v2.

Let v1 D ¹Œf1;D1�; : : : ; Œfm;Dm�º. Since v1% v2, there is some j 2 ¹1; : : : ;mº,
a domain yD 2 DCS , a partition P of yD, and an h 2 S. yD;Dj / such that

v2 D
�
¹Œf1;D1�; : : : ; Œfm;Dm�º � ¹Œfj ;Dj �º

�
[ ¹Œfjh;E� j E 2 P º:

Let P yD denote the maximal partition of yD (Definition 3.21). Define yv as follows:

yv D
�
¹Œf1;D1�; : : : ; Œfm;Dm�º � ¹Œfj ;Dj �º

�
[ ¹Œfjh;E� j E 2 P yDº:

Since P is necessarily a refinement of P yD (by Lemma 3.23), it follows that yv � v2,
by Remark 4.29. Finally, v1 % yv is a simple expansion, completing the proof.

4.5.3. Product S -structures.

Definition 4.32 (S -structures for products). For i D 1; : : : ; n, let Xi be a set, and
let Si be an inverse semigroup acting on Xi . Assume that DCSi satisfies the com-
pact ultrametric property for i D 1; : : : ; n. We consider the product action of S.1;:::;n/
on X1 � � � � �Xn (Definition 3.25).

We define an S.1;:::;n/-structure .S;P / as follows. The structure function S is the
maximal one; i.e.,

S.D1 � � � � �Dn;D
0
1 � � � � �D

0
n/

D ¹.s1; : : : ; sn/ j dom.si / D Di and im.si / D D0i for i D 1; : : : ; nº;

for all pairs .D1 � � � � �Dn;D01 � � � � �D
0
n/.
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The pattern function P is defined inductively, following the example set by Brin
(see Example 4.5). The set P .D1 � � � � �Dn/ contains the partition ¹D1 � � � � �Dnº.
If P 2 P .D1 � � � � �Dn/, E1 � � � � �En 2 P , and j 2 ¹1; : : : ; nº, then�

P � ¹E1 � � � � �Enº
�
[ ¹E1 � � � � �Ej�1 � yE �EjC1 � � � � �En j yE 2 PEj º

is also in P .D1 � � � � �Dn/. This completes the inductive definition.

Remark 4.33. It is straightforward to check that the above .S; P / is an S.1;:::;n/-
structure. We omit the proof.

4.5.4. The expansion relation in some examples from Section 3.6.

Example 4.34 (The expansion relation when DC satisfies the compact ultrametric
property and the S -structure is maximal). Propositions 4.27 and 4.31 offer an easy
description of the expansion relation when the S -structure is maximal and the set of
domains DC satisfies the compact ultrametric property. Namely, a simple expansion
simply consists of replacing a pair Œf;D� with the list

Œf; E1�; : : : ; Œf; Ek�;

where ¹E1; : : : ; Ekº D PD is the maximal partition of D (Definition 3.21). Any
expansion is obtainable by repeating simple expansions.

Consider Thompson’s group V (see Example 3.29). We use the maximal SV -
structure. This means that

S.B!1 ; B!2/ D ¹�!1;!2º

for each pair of finite binary strings !1;!2, and P .B!/ is the set of all partitions ofB!
into domains. A typical simple expansion consists of replacing Œf; B! � 2 B with the
elements Œf; B!0� and Œf; B!1�. (We note that ¹B!0; B!1º is the maximal partition
of B! .) The above completely describes simple expansions and, by extension, the
entire partial order on pseudovertices.

In the case of Houghton’s group Hn (Example 3.33), it is also natural to use the
maximal SHn-structure. The domains of SHn are as follows:

(1) singleton sets ¹.j;k/º, where j 2 ¹1; : : : ;nº and k 2N, which we denotePj;k;

(2) rays ¹¹j º � ¹k; k C 1; : : :º j .j; k/ 2 ¹1; : : : ; nº �Nº, which we denote Rj;k .

The maximal structure function S is determined by the following assignments:

(1) S.Pj1;k1 ; Pj2;k2/ D ¹˛
.j2;k2/

.j1;k1/
º for all pairs .j1; k1/; .j2; k2/;

(2) S.Rj;k; Rj;k0/ D ¹ˇk
0�k
.j;k/
º for all j 2 ¹1; : : : ; nº and k; k0 2 N.

The structure sets S.D1;D2/ are empty in all remaining cases.
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Two rays Rj1;k1 and Rj2;k2 thus have the same domain type (in the sense of Defi-
nition 4.7) if and only if j1 D j2, while any two singleton sets have the same domain
type. This makes nC 1 domain types in all.

We note that the maximal partition of Rj;k is ¹Pj;k; Rj;kC1º, while the maximal
partition ofPj;k is ¹Pj;kº. Simple expansions take a unique form; namely, one replaces
Œf;Rj;k� 2B with Œf;Pj;k� and Œf;Rj;kC1�. Such simple expansions totally determine
the partial order on pseudovertices.

Example 4.35 (The expansion relation in Röver’s group). In the case of Röver’s
group, the maximal SR-structure leads to infinite structure sets S.B!1 ;B!2/. It will be
advantageous to work with a smaller SR-structure, especially when we later consider
finiteness properties.

We instead define a structure function S by the rule

S.B!1 ; B!2/ D ¹�!1;!2 ; b!1;!2 ; c!1;!2 ; d!1;!2º;

where !1 and !2 are arbitrary finite binary strings. We let P be the maximal pattern
function; i.e., P 2 P .B!/ if and only if P is a finite partition ofB! into domains. The
verification that .S;P / is indeed an SR-structure uses the self-similarity and contract-
ing properties of Grigorchuk’s group G (see [2]), as well as the fact that the elements
¹1; b; c; dº are a subgroup of G.

We note that the structure sets are not closed under restrictions, since, for instance,
b";" 2 S.B"; B"/, but b";"jB0 D a0;0 62 S.B0; B0/.

Next, we turn to a description of simple expansions. Let Œf; B! � 2 B. A simple
expansion at Œf; B! � is determined by a choice of domain B!0 and an element h 2
S.B!0 ; B!/; the simple expansion is then performed by replacing Œf; B! � with

Œf h; B!00� and Œf h; B!01�:

We must now consider various cases, which are determined by the element h. By the
above description of the set S.B!0 ; B!/, we have h 2 ¹�!0;! ; b!0;! ; c!0;! ; d!0;!º.

(1) If h D �!0;! , then the corresponding expansion is the standard one, as from
Thompson’s group V . Thus, the expansion produces the elements

Œf; B!0� and Œf; B!1�:

(2) If h D b!0;! , then we have Œf b!0;! ; B!00� and Œf b!0;! ; B!01�. A straightfor-
ward calculation shows that the restrictions of b!0;! to B!00 and B!01 are a!00;!0 and
c!01;!1, respectively. Thus, the simple expansion outputs the pairs Œfa!00;!0; B!00�

and Œfc!01;!1; B!01�. We can factor the elements a!00;!0 and c!01;!1 as

a!0;!0�!00;!0 and c!1;!1�!01;!1;
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respectively. The equivalence relation on B now implies that the simple expansion
produces the pairs

Œfa!0;!0; B!0� and Œfc!1;!1; B!1� D Œf; B!1�:

(3) If h D c!0;! , then a near-identical analysis shows that the simple expansion
outputs the pairs

Œfa!0;!0; B!0� and Œfd!1;!1; B!1 � D Œf; B!1�:

Thus, the resulting simple expansion is identical to the one from the previous case.

(4) If h D d!0;! , then a straightforward calculation shows that the restrictions of
d!0;! to B!00 and B!01 are �!00;!0 and b!01;!1 D b!1;!1�!01;!1, respectively. The
resulting simple expansion therefore outputs

Œf �!00;!0; B!00� D Œf; B!0� and Œf b!1;!1�!01;!1; B!01� D Œf; B!1�:

Thus, the result is the standard simple expansion Œf; B!0� and Œf; B!1�, exactly as
from (1).

We therefore conclude that there are two simple expansions from Œf; B! �:

(1) the “standard” one, which outputs Œf; B!0� and Œf; B!1�, and

(2) a “non-standard” one, which outputs Œfa!0;!0; B!0� and Œf; B!1�.

These two simple expansions completely determine the partial order on pseudover-
tices.

5. Two basic constructions of �S -complexes

In this section, we will consider two constructions of contractible �S -complexes. Both
arise as the order complexes associated to directed sets.

The first complex,�.VS/, to be considered in Section 5.1, will be improved upon
in Section 6, and the results will ultimately be used when we consider finiteness prop-
erties of groups.

The second complex,�.Vord
S /, will be considered in Section 5.2. It holds promise

as a �S -complex with smaller stabilizers, but we will not make direct use of it in what
follows.

5.1. Complexes defined by the directed sets VS

Corollary 4.26 shows that there is a certain natural directed set upon which �S acts,
namely the set VS (recall Definition 4.12). The order complex of a directed set is well
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known to be contractible, so this leads directly to the definition of a contractible �S -
simplicial complex. In this subsection, we will describe this complex, and also give
some information about the orbits and stabilizers of the associated group action.

In a similar way, we associate contractible simplicial complexes to the directed
sets P VS;Y , where Y is an arbitrary finite disjoint union of non-empty domains.
These complexes will be vital to establishing finiteness properties in subsequent sec-
tions.

Theorem 5.1 (Directed sets). The set VS is a directed �S -set. If ; ¤ Y � X is a
finite disjoint union of domains, then P VS;Y is a directed set.

Proof. Corollary 4.26 says that VS and P VS;Y are directed sets. The fact that VS is
a �S -set follows by applying Proposition 4.24 to �S � yS .

Theorem 5.2 (Directed set constructions of contractible complexes). The order com-
plex �.VS/ is a contractible �S -complex. Each complex �.P VS;Y / is contractible.

Proof. The order complex of a directed set is well known to be contractible. (See [14,
Proposition 9.3.14], for instance.) Otherwise, this is an entirely straightforward con-
sequence of Theorem 5.1.

We next consider basic properties of the group action.

Proposition 5.3 (A virtual description of vertex stabilizers). Let

v D ¹Œf1;D1�; : : : ; Œfm;Dm�º

be a vertex of the order complex �.VS/. We write H in place of �S . The stabilizer
group Hv has a finite index subgroup H 0v that is isomorphic to the group

mY
iD1

S.Di ;Di /:

In particular, if jS.D;D/j <1 for all domains D, then Hv is always finite.

Proof. Let v D ¹Œf1; D1�; : : : ; Œfm; Dm�º. Since the stabilizer group Hv fixes v, we
have, for a given  2 Hv , the equality

¹Œf1;D1�; : : : ; Œfm;Dm�º D ¹Œf1;D1�; : : : ; Œfm;Dm�º;

from which it follows that Œfi ; Di � D Œf� .i/; D� .i/� for i D 1; : : : ; m, where � is
an element of the symmetric group Sm. The assignment  WHv! Sm sending  to �
is a homomorphism. Denote the kernel of  byH 0v . It follows thatH 0v has finite index
in Hv , and, for all  2 H 0v ,

Œfi ;Di � D Œfi ;Di �
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for i D 1; : : : ; m. Fix  2 H 0v for what follows. For i D 1; : : : ; m, there is an hi 2
S.Di ;Di / such that fi D fihi , by the definition of � (see Definition 4.10). Solving
for  , we find that

 D fihif
�1
i

on the subset fi .Di / of X . Since the fi .Di / partition X , the elements hi completely
determine  . The desired embedding sends  to .h1; : : : ; hm/, where the hi are as
defined above (and, of course, depend on  ); this assignment is also a homomorphism.

One easily observes that the above embedding is, in fact, also a surjection.

Proposition 5.4 (Description of orbits in�.VS/ and�.P VS/). Two vertices v1; v2 2
�.VS/ are in the same �S -orbit if and only if they have the same type. Two vertices
v1; v2 2 �.P VS/ are in the same yS -orbit if and only if they have the same type.

Proof. The type of a vertex is invariant under the action of �S , by Definition 4.23.
Thus, it suffices to show that if two vertices have the same type, then they are in the
same orbit.

Assume that v1 D ¹Œf1; D1�; : : : ; Œfm; Dm�º and v2 D ¹Œg1; E1�; : : : ; Œgm; Em�º,
where ŒDi � D ŒEi � for i D 1; : : : ; m. Since Di and Ei have the same domain type,
S.Di ; Ei / ¤ ; for i D 1; : : : ; m; for each i , we choose hi 2 S.Di ; Ei /.

Define  WX ! X by letting

jfi .Di / D gihif
�1
i

The fact that ¹fi .Di / j i D 1; : : : ;mº is a partition ofX shows that  2 �S . For each i ,
we then have

 � Œfi ;Di � D Œgihi ;Di � D Œgi ; hi .Di /� D Œgi ; Ei �:

(The second-to-last equality appeals to the definition of the equivalence relation on A;
see Definition 4.10.) It follows that  � v1 D v2.

Given two pseudovertices v1 and v2 of the same type, essentially the same method
produces an element ys 2 yS such that ys � v1 D v2.

Proposition 5.5 (Isomorphisms between�.P VS;Y1/ and�.P VS;Y2/). If Y1 and Y2
are non-empty finite disjoint unions of domains, and ys 2 yS is such that ys.Y1/ D Y2,
then ys induces a simplicial isomorphism between the complexes �.P VS;Y1/ and
�.P VS;Y2/.

Proof. The fact that ys determines an isomorphism between the directed sets P VS;Y1

and P VS;Y2 is a simple consequence of Proposition 4.24. It then follows immediately
that ys induces the required simplicial isomorphism.
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5.2. Complexes defined by ordered vertices

Write V in place of VS. Our goal in this subsection will be to build a class of con-
tractible �S -complexes that will have smaller vertex stabilizers than the complexes
from Theorem 5.2. In some cases, we will obtain free actions of �S .

In what follows, we will need to fix a linear ordering� on the set ¹ŒD� jD 2DCº

of domain types (see Definition 4.7).

Definition 5.6 (The ordered vertices Vord). Let Vord be the set of all m-tuples�
Œf1;D1�; : : : ; Œfm;Dm�

�
;

where m 2 N, ¹Œf1;D1�; : : : ; Œfm;Dm�º 2 V , and ŒDi � � ŒDj � if i < j .

Remark 5.7. An element of Vord is simply the result of ordering the members of a
vertex

¹Œf1;D1�; : : : ; Œfm;Dm�º 2 V

into anm-tuple. The additional constraint imposed by� is unnecessary for the theory,
but including it helps to minimize the number of orbits of vertices under the action
of �S (respectively, H ).

Definition 5.8 (Order-forgetting function). Define F WVord ! V by the rule

F
�
Œf1;D1�; : : : ; Œfm;Dm�

�
D ¹Œf1;D1�; : : : ; Œfm;Dm�º:

The function F is the order-forgetting function.

Definition 5.9 (The partial order on Vord). Let v1; v2 2 Vord. We write v1 < v2

if F.v1/ < F.v2/. (That is, v1 � v2 if v1D v2 or if F.v2/ is obtainable from F.v1/ by
a finite, non-empty sequence of expansions.) It is routine to check that � is a partial
order on Vord.

Definition 5.10 (The action on Vord). If V D VS, then Vord is a �S -set. The action of
a given  2 �S is as follows:

 �
�
Œf1;D1�; : : : ; Œfm;Dm�

�
D
�
 � Œf1;D1�; : : : ;  � Œfm;Dm�

�
:

The proof that the above assignment determines an action �W �S � Vord ! Vord is a
minor modification of the proof of Proposition 4.24 and will be omitted.

Theorem 5.11 (The complex �.Vord/). Assume that each vertex v 2 V admits at
least one expansion. The �S -complex �.Vord/ is contractible.

Proof. We first show that .Vord;�/ is a directed set. Let v1; v2 2 Vord. Since .V ;�/ is
a directed set by Theorem 5.1, there is some yv 2V such thatF.v1/� yv andF.v2/� yv.
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After expansion from yv if necessary (here we use the assumption that yv admits at
least one expansion), we can assume without loss of generality that F.v1/ < yv and
F.v2/ < yv. Since the order-forgetting map is clearly surjective, we have yv D F.v/,
for some v 2 Vord. It follows that v1; v2 < v, so .Vord;�/ is a directed set. It follows
that �.Vord/ is contractible.

We now show that �S acts in an order-preserving way. Let v1<v2, where vi 2Vord

for i D 1;2. It follows that F.v1/ <F.v2/. For  2�S , we have  �F.v1/ <  �F.v2/,
since the action of �S on V is order-preserving (Proposition 4.24 and Theorem 5.2).
It is clear from the definition of F that

 � F.v/ D F. � v/

for all  2�S and v 2Vord, soF. � v1/<F. � v2/. It then follows that  � v1< � v2.
Thus, �S preserves the order on Vord.

Proposition 5.12 (A virtual description of vertex stabilizers in �.Vord/). Write H in
place of �S . Let

v D
�
Œf1;D1�; : : : ; Œfm;Dm�

�
2 Vord

be a vertex in Vord. The stabilizer group Hv is isomorphic to

mY
iD1

S.Di ;Di /:

In particular, if jS.D; D/j < 1 for all domains D, then Hv is always finite. If
S.D; D/ is the trivial group for all domains D, then the action of H on K.Vord/

is free.

Proof. This is just like the proof of Proposition 5.3, except that a given  2 Hv fixes
each individual coordinate of v. Thus,

 � Œfi ;Di � D Œfi ;Di �;

for each i . The proof of Proposition 5.3 therefore embedsHv itself into
Q

S.Di ;Di /,
rather than a finite index subgroup H 0v of Hv .

6. Complexes defined by expansion schemes

In this section, we introduce expansion schemes, a device for simplifying the directed
set construction from Section 5.1. We denote an arbitrary expansion scheme by the
letter E; the “E” could just as easily stand for “elementary interval”, since the expan-
sion scheme idea generalizes the latter idea from [25]. Roughly speaking, the com-
plexes �.VS/ of Section 5.1 mirror those of [8], while the complexes �E.VS/ are
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analogous to those from [25]. Thus, the complexes defined in this section are often
locally finite, for instance. In subsequent sections, we will establish finiteness proper-
ties of the groups �S using these simplified complexes.

The section is structured as follows. Section 6.1 defines expansion schemes and
the simplicial complexes �E.VS/ associated to them. The next several subsections
help to set up the application of Brown’s Finiteness Criterion (Theorem 7.3). Sec-
tion 6.2 offers a sufficient condition for a given complex �E.VS/ to be n-connected.
Section 6.3 defines a natural filtration, and summarizes its properties. Section 6.4
states a sufficient condition for simplex stabilizer groups to have type Fn. The section
concludes with a subsection about the generation of expansion schemes (Section 6.5)
and a subsection containing some general classes of expansion schemes (Section 6.6).

6.1. Expansion schemes

We write V in place of VS. If Y � X is a non-empty finite disjoint union of domains,
then we write P VY in place of P VS;Y . We let P V denote the union of all P VY ,
as Y ranges over all non-empty finite disjoint unions of domains.

In what follows, 2X denotes the power set of X .

Definition 6.1 (E-expansion; expansion scheme). Assume that EWB! 2P V satisfies
(1)–(3) for each Œf;D� 2 B:

(1) each w 2 E.Œf; D�/ is the result of a sequence of expansions from ¹Œf; D�º;
i.e., for each w 2 E.Œf;D�/, ¹Œf;D�º � w;

(2) ¹Œf;D�º 2 E.Œf;D�/;

(3) ( yS -invariance) for each ys 2 yS , and each b 2 B for which ys � b is defined (see
Proposition 4.23), ys � E.b/ D E.ys � b/.

Let v 2 P V ; we write v D ¹b1; : : : ; bmº, where b1, : : :, bm 2 B. We say that v0 is a
result of E-expansion from v if there are v0i 2 E.bi / for i D 1; : : : ; m, such that

v0 D

m[
iD1

v0i :

We say that E is an expansion scheme if

(4) for every Œf;D� 2 B and every w1; w2 2 E.Œf;D�/ such that w1 � w2, w2 is
the result of E-expansion from w1.

Definition 6.2 (E-chains;�E ). Let E be an expansion scheme. A sequence of pseudo-
vertices

v1 Œ v2 Œ v3 Œ � � � Œ vm

is called an E-chain if each vi is the result of an E-expansion from v1.
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Let �E D .VE ; �E/, where VE D V and �E is the set of all finite non-empty
E-chains in V .

In an analogous way, we can define the complexes �E.P V/ and �E.P VY /.

Lemma 6.3 (Subset of an E-chain is an E-chain). Let E be an expansion scheme. If

v1 Œ v2 Œ � � � Œ vm

is an E-chain and m � 2, then so is

v1 Œ v2 Œ � � � Œ yvi Œ � � � Œ vm;

for i 2 ¹1; : : : ; mº, where yvi indicates that vi is to be omitted.

Proof. This is immediate from the definition if i > 1. It therefore suffices to consider
the sequence

v2 Œ v3 Œ � � � Œ vm;

where m � 2. To prove that the above is an E-chain, it suffices to show that each vk
(2 � k � m) is obtained by E-expansion from v2.

Let v1 D ¹b1; : : : ; bnº, where the bi are from B. Since v2 is the result of E-
expansion from v1, we can write

v2 D

n[
iD1

v0i ;

where v0i 2 E.bi / for each i . Similarly, we can write

vk D

n[
iD1

v00i ;

where v00i 2 E.bi / for each i . Since the pseudovertices v0i and v00i are obtained by
(possibly repeated) expansion from ¹biº (see Definition 6.1 (1)), im.v0i /D im.¹biº/D
im.v00i / for each i , by Proposition 4.20. Proposition 4.22 (2) now implies that v0i � v

00
i

for each i , since v2 � vk . Definition 6.1 (4) implies that v00i is the result of E-expansion
from v0i , for i D 1; : : : ; n. It follows that vk is itself the result of E-expansion from v2,
completing the proof.

Theorem 6.4 (The simplicial complexes�E ). The pair�E D .VE ;�E/ is an abstract
�S -simplicial complex if E is an expansion scheme.

If Y1; Y2 � X can be expressed as non-empty finite disjoint unions of domains,
and there is some ys 2 yS such that Y1 is contained in the domain of ys and ys.Y1/ D Y2,
then ys induces an isomorphism between the complexes �E.P VY1/ and �E.P VY2/.
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Proof. Lemma 6.3 easily shows that the set �E is closed under taking non-empty
subsets. This implies that �E is an abstract simplicial complex.

It is now clear that �E is a subcomplex of �.V/. Thus, �E is contained in a
complex with a �S -action. The �S -invariance of �E follows directly from Defini-
tion 6.1 (3). This completes the proofs of the statements about �E .

We obtain an isomorphism between the complexes �E.P VY1/ and �E.P VY2/

by combining Proposition 4.24 with yS -invariance of E (Definition 6.1 (3)).

Example 6.5 (The trivial and maximal expansion schemes). We can define EWB !

2P V by the rule:
E.Œf;D�/ D ¹¹Œf;D�ºº:

This assignment necessarily satisfies (1)–(4) from Definition 6.1. The resulting sim-
plicial complex �E is simply the discrete set of vertices V .

At the opposite extreme, we can let

E
�
Œf;D�

�
D ¹w 2 P V j ¹Œf;D�º � wº:

The resulting simplicial complex �E is isomorphic to �.V/.
Thus, we will need to choose the expansion scheme E carefully in order to guar-

antee that �E has useful topological properties, and also that �E is more economical
than the construction from Section 5.1.

6.2. n-connected expansion schemes

Definition 6.6. Let E be an expansion scheme. We say that E is n-connected if, for
each b 2 B and each pseudovertex v satisfying ¹bº Œ v,

lk
�
¹bº; �.E.b//Œ¹bº;v�

�
is .n � 1/-connected.

Remark 6.7. It may be useful to unpack the above definition somewhat. For each
b 2 B, the set E.b/ is partially ordered by �. We can therefore consider the order
complex�.E.b//. If v is an arbitrary pseudovertex obtained by a non-empty sequence
of expansions from ¹bº, then we consider the subcomplex of�.E.b// spanned by the
interval Œ¹bº; v�; i.e.,

�.E.b//Œ¹bº;v�;

as from Definition 2.2. (Here, by “the subcomplex of �.E.b// spanned by the inter-
val Œ¹bº; v�”, we mean the subcomplex of �.E.b// spanned by all pseudovertices w
of E.b/ satisfying ¹bº � w � v. We emphasize that v need not be a member of E.b/;
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i.e., v is really arbitrary, subject only to the restriction that ¹bº Œ v.) We then con-
sider the link of ¹bº in the above complex. The expansion scheme E is said to be
n-connected if the resulting link is .n � 1/-connected, for every possible choice of b
and v.

Remark 6.8. The property of E being n-connected is dependent upon the S -structure
.S;P /, even though we have suppressed any explicit mention of the S -structure in the
definition.

Theorem 6.9 (n-connectedness of �E ). If E is an n-connected expansion scheme,
then the complexes �E and �E.P VY / are n-connected.

Proof. We will prove the theorem only in the case of �E , the case of �E.P VY /

being similar.
Recall that V is a ranked directed set by Corollary 4.26, where r WV ! N defined

by r.v/ D jvj is a ranking function. We note, furthermore, that �E is a simplicial
complex on V .

We now try to follow the approach of Lemma 2.6. Let v1 and v2 be arbitrary
vertices of V , where v1 < v2. It suffices, by Lemma 2.6, to prove that lk.v1;�E

Œv1;v2�
/

is .n � 1/-connected.
We write v1 D ¹b1; : : : ; bmº, where the bi are elements of B. By item (1) of

Proposition 4.22, there are pseudovertices w1; : : : ; wm such that

• v2 D
Sm
kD1wk;

• for each k, ¹bkº � wk .

There is a natural isomorphism of simplicial complexes

lk
��
¹b1º; : : : ; ¹bmº

�
;

mY
kD1

�.E.bk//Œ¹bkº;wk �

�
Š lk

�
v1; �

E
Œv1;v2�

�
:

(Note that the product in the above formula is the simplicial product; see Defini-
tion 2.7.) By Theorem 2.8,

lk
��
¹b1º; : : : ; ¹bmº

�
;

mY
kD1

�.E.bk//Œ¹bkº;wk �

�
Š

m©
kD1

lk
�
¹bkº; �.E.bk//Œ¹bkº;wk �

�
:

At least one of the links in the latter join is non-empty, since v1 Œ v2. Since the
join operation is associative up to isomorphism of simplicial complexes, the join
of an n1-connected simplicial complex with an n2-connected simplicial complex is
.n1 C n2 C 2/-connected, and each non-empty factor in the join is .n� 1/-connected
by hypothesis, we conclude that the latter join is at least .n � 1/-connected. It now
follows from Lemma 2.6 that �E is n-connected.
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6.3. A filtration of �E.V / by �S -finite subcomplexes

We continue to write V in place of VS. We will define a natural filtration

¹�E.V/n j n 2 Nº

of any�E.V/ by �S -invariant subcomplexes. We will also give a sufficient condition
for the action of �S to be cocompact on each subcomplex in the filtration.

Definition 6.10 (A filtration of �E.V/). We let �E.V/n denote the subcomplex of
�E.V/ spanned by vertices of rank less than or equal to n.

Proposition 6.11. Each �E.V/n is a finite-dimensional, �S -invariant subcomplex
of �E.V/, and

�E.V/ D

1[
nD1

�E.V/n:

Proof. It is clear that �E.V/n is a subcomplex of �E.V/ for each n. A j -simplex in
�E.V/n is an E-chain v0 Œ v1 Œ � � � Œ vj . Since the ranks of the vertices are positive
integers satisfying

jv0j < jv1j < jv2j < � � � < jvj j;

where jvj j is at least j C 1. Thus, j C 1 � n. It follows easily that each �E.V/n is
at most .n � 1/-dimensional.

To show that �E.V/n is �S -invariant, it suffices to show that the action of �S on
the vertices is rank-preserving. But this is an immediate consequence of the definition
of the action (see Definition 4.23).

Finally, we establish the inclusion

�E.V/ �

1[
nD1

�E.V/n;

the reverse inclusion being trivial. Each point x of �E.V/ is contained in some sim-
plex

� D v0 < v1 < � � � < vj :

We have the corresponding inequalities jv0j < � � � < jvj j, so x 2 � � �E.V/jvj j.

Definition 6.12 (S-finite expansion scheme). Let E be an expansion scheme. Let
Œf;D� 2 B. The group S.D;D/ acts on E.Œf;D�/ by the rule

h ? v D .f hf �1/ � v;

where h 2 S.D;D/. This action extends to a natural action of S.D;D/ on the sim-
plicial complex �.E.Œf;D�//.

We say that E is S-finite if the above action is cocompact for each Œf;D� 2 B.
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Proposition 6.13 (Sufficient condition for cocompactness). If the expansion scheme E

is S-finite and S has finitely many domain types, then the action of �S on each sub-
complex �E.V/n is cocompact.

Proof. Since S has finitely many domain types, there can be only finitely many types
of vertices of a fixed height. It therefore follows from Proposition 5.4 that there are
only finitely many �S -orbits of vertices in �E.V/n, for any given n.

To prove that the action of �S on each �E.V/n is cocompact, it will suffice to
show that �E.V/n has only finitely many �S -orbits of simplices in each dimen-
sion, since �E.V/n is finite-dimensional by Proposition 6.11. We suppose, for a
contradiction, that there is a dimension j and an infinite collection † of j -simplices
in �E.V/n, no two of which are in the same �S -orbit. Each simplex in †, as a finite
chain, must contain a least vertex. Since there are only finitely many �S -orbits of
vertices in �E.V/n, there must be an infinite collection †0 of simplices in † whose
least vertices all lie in a single �S -orbit. After passing to †0, and then replacing the
simplices in †0 with suitable �S -translates, we get a new infinite collection of j -
simplices, all in different �S -orbits and having a common least vertex; we will again
denote this collection by †. Let

v D ¹Œf1;D1�; : : : ; Œfm;Dm�º

be the common least vertex of the simplices in†. We will write bi in place of Œfi ;Di �,
for brevity’s sake.

For i D 1; : : : ; m, let Xi denote the set of all sequences

bi � b1i � � � � � bj i ;

where b`i 2 E.bi /, for ` D 1; : : : ; j . (We note that the sequences in Xi are not nec-
essarily strictly increasing.) Since the action of S.Di ;Di / on �.E.bi // is cocompact
and j is fixed, the natural action of S.Di ; Di / on Xi has finitely many orbits. We
let Oi denote the (finite) set of orbits under this action.

A given simplex � 2 † determines an element of
Qm
iD1 Xi as follows. Suppose

that � is the chain
v D v0 Œ v1 Œ v2 Œ � � � Œ vj :

For i D 1; : : : ; m, we can uniquely determine an element

b0i � b1i � � � � � bj i

of Xi by letting b`i (` D 0; : : : ; j ) denote the subset of v` having the same image
as bi ; such a b`i exists and is unique by Proposition 4.22 (1). The fact that b`i 2 E.bi /

is a consequence of the definition of �E.V/.
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We directly get a function f W†!
Qm
iD1Oi . Since the domain of f is infinite and

the codomain is finite, f cannot be injective, so we must have two simplices �;� 0 2†
such that f .�/ D f .� 0/. Thus the associated sequences

b0i � b1i � � � � � bj i and b00i � b
0
1i � � � � � b

0
j i

are in the same S.Di ; Di /-orbit, for i D 1; : : : ; m. Thus, we can find, for each i ,
an element hi 2 S.Di ; Di / such that fihif �1i sends the first sequence to the sec-
ond. If we define  2 �S by setting jfi .Di / D fihif

�1
i for each i , then we have

 � � D � 0, a contradiction to the definition of †. The action of �S on �E.V/n is
therefore cocompact.

6.4. Finiteness properties of stabilizer subgroups

Here we will show that, under appropriate hypotheses, the stabilizer group of a sim-
plex in �E.V/ has finite index in a vertex stabilizer group (Proposition 6.14). Thus,
simplex stabilizer groups have good finiteness properties exactly when vertex stabi-
lizer groups have these properties (Corollary 6.15).

Proposition 6.14. Let E be an expansion scheme. Assume that the action of S.D;D/

on E.Œf;D�/ has finite orbits, for each Œf;D� 2 B. If � is a simplex of �E.V/, and v
is the least vertex of � in the partial order, then the stabilizer .�S /� has finite index
in .�S /v .

Proof. Let v D ¹Œf1;D1�; : : : ; Œfm;Dm�º, and let � be the j -simplex

v D v0 Œ v1 Œ � � � Œ vj :

We define Xi (for i D 1; : : : ; m) exactly as in the proof of Proposition 6.13. We
let � 0v denote the finite index subgroup of .�S /v that fixes v pointwise; i.e., for each
 2 � 0v and for each Œfi ;Di � 2 v,

 � Œfi ;Di � D Œfi ;Di �:

It follows that Œfi ;Di �D Œfi ;Di �, so there is h2S.Di ;Di / such that fi D fih. (See
the definition of the equivalence relation on B (Definition 4.10) and the definition of
the action (Definition 4.23).) It follows that

jfi .Di / D .fihf
�1
i /jfi .Di /:

We use this equality coordinate-by-coordinate, for i D 1; : : : ; m, to determine an
action of  on

Qm
iD1 Xi , and, thus, an action of � 0v on

Qm
iD1 Xi . Since the action

of each S.Di ; Di / on Xi has finite orbits, and the action of � 0v factors through the
action of

Qm
iD1 S.Di ;Di / on

Qm
iD1Xi , the action of � 0v on

Qm
iD1Xi has finite orbits.
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We let .x1; x2; : : : ; xm/ 2
Qm
iD1Xi be the m-tuple that corresponds to � . (I.e., xi

is the weakly increasing sequence

b0i � b1i � b2i � � � � � bj i ;

where b`i is the subset of v` such that im.b`i / D fi .Di /, exactly as in the proof of
Proposition 6.13.) Since the action of � 0v on

Qm
iD1Xi has finite orbits, there is a finite

index subgroup � 00v of � 0v that fixes .x1; : : : ; xm/, and, thus, � . It now follows that

� 00v � .�S /� � .�S /v;

where Œ.�S /v W � 00v � <1. This proves the proposition.

Corollary 6.15. Let E be an expansion scheme. Assume that

(1) the action of S.D;D/ on E.Œf;D�/ has finite orbits, for each Œf;D� 2B, and

(2) each group S.D;D/ has type Fn.

For every cell � � �E.V/, .�S /� is of type Fn.

Proof. We first consider vertex stabilizers. Let v D ¹Œf1; D1�; : : : ; Œfm; Dm�º be a
vertex. We define a map

�W

mY
iD1

S.Di ;Di /! .�S /v

by sending .h1; : : : ; hm/ to the bijection of X determined by the rule jfi .Di / D
.fihif

�1
i /jfi .Di /. This assignment is an injective homomorphism. We let .�S /0v den-

ote the image of this homomorphism. We note that .�S /0v has type Fn, since each
S.Di ;Di / has type Fn.

By Proposition 5.3, the index of .�S /0v in .�S /v is finite. Thus, the vertex stabilizer
.�S /v has type Fn, for all v. By Proposition 6.14, every cell stabilizer .�S /� has finite
index in some vertex stabilizer, and therefore must have type Fn as well.

6.5. Generation of expansion schemes

In applications, we would like to have a rapid way of producing expansion schemes.
Our approach in this subsection will be to consider generating sets for expansion
schemes, which we call “expansion preschemes”. These are analogous to generating
sets for groups, or bases for vector spaces. The idea will be to define the expansion
scheme on a few pairs of the form ŒidD;D�, and then extend uniquely to all pairs in B,
but the “expansion prescheme” idea will also help to handle all related questions of
well-definedness.
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Definition 6.16 (Transversal of B). Let ¹ŒDi � j i 2 	º be the set of all domain types
relative to S (Definition 4.7). Assume that yT D ¹Di j i 2 	º consists of a selection of
exactly one domainDi from each equivalence class ŒDi �. Let T D¹ŒidD;D� jD 2 yT º.
We say that T is a transversal of B.

Definition 6.17 (Expansion preschemes). Let T be a transversal of B. We say that
E 0W T ! 2P V is an expansion prescheme if it satisfies (1)–(4) for each ŒidD;D� 2 T :

(1) eachw2E 0.ŒidD;D�/ is the result of a sequence of expansions from ¹ŒidD;D�º;
i.e., for each w 2 E 0.ŒidD;D�/, ¹ŒidD;D�º � w;

(2) ¹ŒidD;D�º 2 E 0.ŒidD;D�/;

(3) (S-invariance) for each h 2 S.D;D/, h � E 0.ŒidD;D�/ D E 0.ŒidD;D�/.

(4) let w1; w2 2 E 0.ŒidD; D�/ be arbitrary pseudovertices such that w1 < w2.
Write w1 D ¹b1; : : : ; bmº � B and

w2 D

m[
iD1

w2i ;

where w2i is a pseudovertex with the same image as ¹biº for i D 1; : : : ; m.
There exist gi 2 yS such that gi � bi 2 T and gi � w2i 2 E 0.gi � bi / for i D
1; : : : ; m.

Remark 6.18. We note that, for each b 2 B, there is a unique yb 2 T such that
ys � b D yb for some ys 2 yS . (The element ys is not unique, however.)

Proposition 6.19 (Expansion preschemes generate expansion schemes). Let E 0 be an
expansion prescheme. For each Œg;E� 2B, choose some ˛ 2 yS such that ˛ � Œg;E�D
ŒidD;D� 2 T . Define EWB ! 2P V by the rule

E
�
Œg; E�

�
D ˛�1 � E 0

�
ŒidD;D�

�
:

The assignment E is an expansion scheme and does not depend upon the choices of ˛.

Proof. We first check that the assignment E is well defined. Thus, assume that

Œg1; E1� D Œg2; E2�;

and choose elements ˛; ˇ 2 yS such that

˛ � Œg1; E1� D ŒidD;D� D ˇ � Œg2; E2�;

where ŒidD; D� 2 T . (We note that E1 and E2 have the same domain type, so if
˛ � Œg1;E1�2 T and ˇ � Œg2;E2�2 T , then the latter two must be equal.) It follows from
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the definition of the equivalence relation and the action (Definitions 4.10 and 4.23,
respectively) that

˛g1 D h; ˇg2 D j; g1 D g2k

for some h 2 S.E1;D/, j 2 S.E2;D/, and k 2 S.E1; E2/.
We must show that ˛�1 � E 0.ŒidD;D�/ D ˇ�1 � E 0.ŒidD;D�/, or, equivalently, that

.ˇ˛�1/ � E 0
�
ŒidD;D�

�
D E 0

�
ŒidD;D�

�
:

This follows from a direct calculation:

ˇ˛�1 D jg�12 g1h
�1
D jg�12 g2kh

�1
D jkh�1:

By the definition of j , k, and h, and since the structure sets are closed under com-
positions and inverses (properties (S4) and (S3) from Definition 4.2, respectively),
jkh�1 2 S.D; D/. The required equality .ˇ˛�1/ � E 0.ŒidD; D�/ D E 0.ŒidD; D�/ is
now a consequence of property (3) from Definition 6.17. This proves that E is well
defined and does not depend upon the specific choice of ˛.

Properties (1) and (2) from Definition 6.1 hold trivially. We check property (3).
Thus, suppose that Œg;E� 2B and that the domain of ys 2 yS contains g.E/. Let ˛ 2 yS
be such that ˛ � Œg; E� D ŒidD;D�, where ŒidD;D� 2 T . We have the equalities

E
�
ys � Œg; E�

�
D E

�
Œysg;E�

�
D .ys˛�1/ � E 0

�
ŒidD;D�

�
D ys � E

�
Œg; E�

�
;

where the second equality follows by letting ˛ys�1 play the role of ˛ in the definition
of E.Œysg;E�/. Property (3) follows.

We next check property (4) from Definition 6.1. Thus, suppose that w1 � w2,
where w1; w2 2 E.Œg; E�/. Clearly, we can assume that w1 < w2. We must show
that w2 is the result of E-expansion from w1. We write w1 D ¹b1; : : : ; bmº � B. By
Proposition 4.22 (1), we can write

w2 D ¹w21; : : : ; w2mº;

where each w2i is a pseudovertex with the same image as ¹biº. For i D 1; : : : ; m,
there exist gi 2 yS such that gi � bi 2 T and gi � w2i 2 E 0.gi � bi /. It follows directly
that

w2i 2 g
�1
i � E

0.gi � bi / D E.bi /;

for i D 1; : : : ; m, establishing property (4).

Remark 6.20. We note that the property of n-connectedness (Definition 6.6) can be
established by checking the relevant property on the sets E 0.ŒidD;D�/. The details are
straightforward and will be omitted.
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6.6. Examples of expansion schemes

In this subsection, we offer some general classes of expansion schemes. In Sec-
tion 6.6.1, we consider expansion schemes in the case when DS satisfies the compact
ultrametric condition (Definition 3.12), provided also that the S -structure in question
is the maximal one (Example 4.4). In Section 6.6.2, we consider expansion schemes
on compact ultrametric products. Finally, in Section 6.6.3, we give an expansion
scheme for Röver’s group.

6.6.1. The case in which X is a compact ultrametric space and .S;P / is maximal.

Proposition 6.21. Let S be an inverse semigroup acting on X such that the set DCS
satisfies the compact ultrametric property. Let .S;P / be the maximal S -structure. The
assignment

E
�
Œf;D�

�
D
®
¹Œf;D�º; ¹Œf; E� j E 2 PDº

¯
is an n-connected expansion scheme, for all n. Note that PD is the maximal partition
of D (Definition 3.21).

Proof. Choose a transversal T � B. For each Œid;D� 2 T , define

E 0
�
Œid;D�

�
D
®
¹Œid;D�º; ¹Œid; E� j E 2 PDº

¯
:

We check that the assignment E 0 is an expansion prescheme. Properties (1) and (2)
from Definition 6.17 are clear. If h 2 S.D;D/, then

h � ¹Œid; E� j E 2 PDº D ¹Œh; E� j E 2 PDº

D ¹Œid; h.E/� j E 2 PDº

D ¹Œid; E� j E 2 PDº:

Here the second-to-last equality is due to the fact that hjE 2 S.E; h.E// (by maxi-
mality of the S -structure), and the final equality is due to Proposition 3.24. Clearly,

h � ¹Œid;D�º D ¹Œid;D�º 2 E 0
�
Œid;D�

�
I

this proves (3).
Next we prove (4) from Definition 6.17. Letw1 <w2, wherew1;w2 2 E 0.Œid;D�/

and Œid; D� 2 T . Thus, w1 D ¹Œid; D�º and w2 D ¹Œid; E� j E 2 PDº. We must find
an f 2 yS such that f � Œid;D� 2 T and

f � ¹Œid; E� j E 2 PDº 2 E 0
�
f � Œid;D�

�
:

We can let f D idD . This proves (4).
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Next, we extend equivariantly to obtain an expansion scheme, as in Proposi-
tion 6.19. Thus, for a given Œ yf ; yD� 2 B, we define

E
�
Œ yf ; yD�

�
D ˛�1 � E 0

�
Œid; zD�

�
;

where Œid; zD� 2 T and ˛ 2 yS is such that ˛ � Œ yf ; yD�D Œid; zD�. We must next show that
this expansion scheme is the same as the one defined in the statement of the current
proposition. Note that, by the definition of the equivalence relation on B, there is
some h 2 S. zD; yD/ such that yf h D ˛�1. We compute:

E
�
Œ yf ; yD�

�
D ˛�1 � E 0

�
Œid; zD�

�
D
®
¹Œ˛�1; zD�º; ¹Œ˛�1;eE� j eE 2 P zDº

¯
D
®
¹Œ yf h; zD�º; ¹Œ yf h;eE� j eE 2 P zDº

¯
D
®
¹Œ yf ; yD�º; ¹Œ yf ; yE� j yE 2 P yDº

¯
:

The final equality uses Proposition 3.24. This proves that the assignment from the
statement of the proposition is an expansion scheme.

It remains to show that the expansion scheme is n-connected, for each n � 0
(Definition 6.6). Thus, we let w2 > ¹Œf;D�º D w1, and consider the link of w1 in the
simplicial complex

�
�
E
�
Œf;D�

��
Œw1;w2�

:

The simplicial complex �.E.Œf;D�// consists of two vertices connected by an edge.
Since every expansion from ¹Œf;D�º factors through ¹Œf;E�jE2PDº (Example 4.34),
we have that ¹Œf; E� j E 2 PDº � w2, so

�
�
E
�
Œf;D�

��
Œw1;w2�

D �
�
E
�
Œf;D�

��
:

It follows that the link in question is always a point, which is .n � 1/-connected for
all n.

6.6.2. Expansion schemes on compact ultrametric products.

Definition 6.22 (Some special partitions). For i D 1; : : : ; n, let Si be an inverse semi-
group acting on Xi . Assume that each DCSi satisfies the compact ultrametric property.

Fix a domainD DD1 � � � � �Dn 2DCS.1;:::;n/ . For a subset U � ¹1; : : : ; nº, define

PDU D
®
E1 � � � � �En j Ei D Di if i … U IEi 2 PDi if i 2 U

¯
:

Proposition 6.23 (An expansion scheme for compact ultrametric products). Let Xi
be a set, and let Si be an inverse semigroup acting onXi for i D 1; : : : ; n. We consider
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the action of S.1;:::;n/ on the product X1 � � � � � Xn. Let the S.1;:::;n/-structure .S;P /
be as given in Definition 4.32. We define EWB ! 2P V as follows:

E
�
Œf;D�

�
D
®
¹Œf; E� j E 2 PDU º j U � ¹1; : : : ; nº

¯
:

The map E is an m-connected expansion scheme for all m.

Proof. The proof is similar to that of Proposition 6.21, which is a special case of the
current proposition. We will therefore omit most details, considering only the question
of m-connectivity for m � 0.

The complexes �.E.Œf;D�// are subdivided cubes of dimension at most n. (The
dimension is exactly n unless there is a factor Di such that Di has no proper non-
empty subdomains; such a factor does not contribute to the dimension. We will assume
that the dimension is exactly n for the sake of this discussion.) The pseudovertices in
E.Œf;D�/ label the corners of an n-cube by the following rule: a pseudovertex

vU D ¹Œf; E� j E 2 PDU º

corresponds to the n-tuple .a1; : : : ; an/, where ai D 1 if i 2 U and ai D 0 if not.
If v; D ¹Œf;D�º � v2, then

v2 D ¹Œf; E� j E 2 P º;

for some P 2 P .D/. It is straightforward to check that if vU1 � v2 and vU2 � v2, then
vU1[U2 � v2. Moreover, there is at least one U ¤ ; such that vU � v2, by the choice
of P . (Here the careful choice of P avoids the pathologies indicated in Example 3.28.)
It follows directly that the link of v; in

K D �
�
E
�
Œf;D�

��
Œv;;v2�

is a directed set. (In fact, we can say more:K is a subdivided face of the n-dimensional
cube, and the link in question is the link of v; in that face.)

Thus, the link in question is always contractible, completing the proof that E is
m-connected for all m.

6.6.3. An expansion scheme for Röver’s group.

Proposition 6.24. (an expansion scheme for Röver’s group) Let X be the set of infi-
nite binary strings and let SR be the semigroup defined in Example 3.32. We let S be
the SR-structure defined in Example 4.35. The assignment

E
�
Œf; B! �

�
D
®
¹Œf; B! �º; ¹Œf; B!0�; Œf; B!1�º;

¹Œfa!0;!0; B!0�; Œf; B!1�º; ¹Œf; B!00�; Œf; B!01�; Œf; B!1�º
¯

is an n-connected expansion scheme for all n.
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Proof. The singleton set ¹ŒidX ;X�º is a transversal. We will first show that the assign-
ment

E 0
�
ŒidX ; X�

�
D
®
¹Œid; X�º; ¹Œid; B0�; Œid; B1�º;

¹Œa0;0; B0�; Œid; B1�º; ¹Œid; B00�; Œid; B01�; Œid; B1�º
¯

is an expansion prescheme.
Indeed, properties (1) and (2) from Definition 6.17 are clear. (Refer to the discus-

sion of the expansion relation in Example 4.35.) Property (3) follows from an easy
calculation: we must verify that the group

S.X;X/ D ¹1; b; c; dº

leaves the set E 0.Œid;X�/ invariant. We omit the details of the calculation, but summa-
rize the results:

• the pseudovertex ¹Œid; X�º is stabilized by ¹1; b; c; dº;

• the pseudovertices ¹Œid;B0�; Œid;B1�º and ¹Œa0;0;B0�; Œid;B1�º are interchanged by
the elements b, and c, but are each stabilized by 1 and d ;

• the pseudovertex ¹Œid;B00�; Œid;B01�; Œid;B1�º is also stabilized by ¹1; b; c; dº, but
b and c non-trivially permute the individual elements.

This establishes property (3).
Property (4) is also easy to check. Given w1 < w2, where w1; w2 2 E 0.Œid; X�/,

we must produce the relevant gi 2 yS from Definition 6.17 (4). This is trivial if w1 D
¹Œid; X�º (we can simply let g1 D id), which leaves only two cases to consider:

(1) w1 D ¹Œid; B0�; Œid; B1�º and w2 D ¹Œid; B00�; Œid; B01�; Œid; B1�º;

(2) w1 D ¹Œa0;0; B0�; Œid; B1�º and w2 D ¹Œid; B00�; Œid; B01�; Œid; B1�º.

If we assign the labels b1 and b2 to the elements of w1 (respectively, in the order that
they are listed), then we can let g1 D �0;" and g2 D �1;" in (1), and let g1 D a0;" and
g2 D �1;" in (2). An easy check then establishes (4) from Definition 6.17. It follows
that the function E 0 is an expansion prescheme.

We conclude that the assignment

E
�
Œf; B! �

�
D f�";! � E

0
�
Œid; X�

�
is an expansion scheme, by Proposition 6.19. The latter assignment is easily seen to
be equivalent to the one in the statement of the proposition.

Next we turn to a proof that the expansion scheme is n-connected for all n. Note
that the simplicial complex �.E 0.Œid; X�// is a subdivided square Œ0; 1�2 � R2, in
which we may take ¹Œid;X�º to label .0;0/, the two pseudovertices of rank two to label
.1; 0/ and .0; 1/, and the remaining pseudovertex vT to label .1; 1/. If ¹Œid; X�º < v2,
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then v2 is the result of performing a sequence of simple expansions from ¹Œid; X�º.
The first of these expansions must result in either

vL D ¹Œid; B0�; Œid; B1�º or vR D ¹Œa0;0; B0�; Œid; B1�º;

by Example 4.35. It follows that the link of v1 D ¹Œid; X�º in

�
�
E
�
Œid; X�

��
Œv1;v2�

is non-empty.
To prove that E is n-connected for all n, it is now sufficient to show that if vL � v2

and vR � v2, then vT � v2. This is a consequence of the following claim.

Claim 6.25. For every Œf;B! �2B and for every common upper bound v1 of ¹Œf;B! �º
and ¹Œfa!;! ; B! �º, there is another common upper bound yv such that yv � v1 and yv
may be obtained from ¹Œf; B! �º using only standard simple expansions, as defined in
Example 4.35.

Proof of claim. We prove the claim by induction on the rank of the common upper
bound v1. The case r.v1/ D 1 is vacuous; the case r.v1/ D 2 is trivial, since the only
common upper bound of that rank is the standard simple expansion from ¹Œf; B! �º.

Assume the inductive hypothesis. We can write v1D vL[ vR, where vL is the sub-
set of v1 whose image is f .B!0/ and vR is the subset of v1 whose image is f .B!1/.
Clearly, we can find simple expansions from ¹Œf;B! �º and ¹Œfa!;! ;B! �º that are less
than v1; one or the other of these simple expansions must be non-standard. This leads
to three separate cases; we will consider the case in which both simple expansions are
non-standard, the other two cases being similar.

Thus, we have
¹Œfa!0;!0; B!0�; Œf; B!1�º � v1

and
¹Œfa!;!a!0;!0; B!0�; Œfa!;! ; B!1�º � v1:

We note that a!;! restricted to B!1 is �!1;!0 and a!;!a!0;!0 restricted to B!0 is
a!0;!1 D a!1;!1�!0;!1, so, using the definition of the equivalence relation we can
rewrite the latter as

¹Œfa!1;!1; B!1�; Œf; B!0�º � v1:

The inductive hypothesis now implies that there is a common upper bound v0L � vL
of ¹Œf; B!0�º and ¹Œfa!0;!0; B!0�º that is obtained by standard simple expansions
from ¹Œf; B!0�º and (likewise) a common upper bound v0R � vR of ¹Œf; B!1�º and
¹Œfa!1;!1; B!1� that is obtained by simple expansions from ¹Œf; B!1�º. Let

v0 D v0L [ v
0
RI
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clearly v0 is obtained from ¹Œf; B! �º via standard simple expansions and v0 � v1,
proving the claim.

This complete the proof of Proposition 6.24.

7. Preliminaries for finiteness properties

In this section, we will prepare for the finiteness results of the paper, the proofs of
which are completed in Section 8. In Section 7.1, we recall Brown’s Finiteness Crite-
rion, which is the foundation of all of our finiteness results. Section 7.2 recalls some
very standard results about the descending link; in particular, we relate the increasing
connectivity of the descending links with the increasing connectivity of the complexes
in the natural filtration. Subsections 7.3 and 7.4 develop the necessary definitions
that are to be used in studying the descending links in the complexes �E.VS/. The
section ends with a combinatorial sufficient condition for the descending links to be
n-connected (Proposition 7.17).

7.1. Brown’s Finiteness Criterion

We will now briefly review Brown’s Finiteness Criterion. First, we give a basic defi-
nition.

Definition 7.1 (Properties Fn and F1). Let G be a group. By a K.G; 1/-complex we
mean a CW-complex X with fundamental group G and contractible universal cover.
We say that G has type Fn if G admits a K.G; 1/-complex with finite n-skeleton.
We say that G has type F1 if G admits a K.G; 1/-complex with finite n-skeleton for
each n.

Remark 7.2. The above definition appears to suggest that the F1 property is strictly
stronger than the property of being Fn for all n, since the former condition requires a
single complex with a finite n-skeleton for each n, while the latter condition allows a
different complex for each n. The two properties are nevertheless equivalent; a proof
may be found, for instance, in [14].

Additionally, we note that F0 is a property of every group,F1 is equivalent to finite
generation, and F2 is equivalent to finite presentability. These facts are also standard,
and may be found in [14].

Theorem 7.3 (Brown’s Finiteness Criterion). Let X be a CW-complex. Let G be a
group acting on X . If

(1) X is .n � 1/-connected;
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(2) G acts cellularly on X ; and

(3) there is a filtration X1 � X2 � � � � � Xk � � � � � X such that

(a) X D
S1
kD1Xk;

(b) G leaves each X .n/
k

invariant and acts cocompactly on each X .n/
k

;

(c) each p-cell stabilizer has type Fn�p; and

(d) for sufficiently large k, Xk is .n � 1/-connected,

then G is of type Fn.

Remark 7.4. Our goal will be to apply Brown’s criterion to the action of �S on
its complex�E.V/. The required connectivity of the complexes�E.V/ can be estab-
lished using the results of Section 6.2. The finiteness properties of cell stabilizers were
considered in Section 6.4, while the cocompactness of the action of �S on �E.V/n

was handled in Section 6.3.
Thus, it remains only to consider the connectivity properties of the subcomplexes

�E.V/n, which is the subject of the rest of this section.

7.2. Generalities about the descending link

We next consider the general problem of establishing the n-connectivity of the sub-
complexes�E.VS/k , for suitable n and k. Here we will follow a well-known strategy,
essentially due to [4], which involves reducing the entire question to an analysis of the
descending links in the complex �E.VS/. We offer a complete treatment in order to
make our account self-contained. Note that the actual analysis of specific descending
links will be pursued later, under additional hypotheses.

We will write � and �k in place of �E.VS/ and �E.VS/k , respectively. See
Definition 2.4 for the definition of descending link.

Lemma 7.5. If lk#.v; �/ is n-connected for all vertices v of rank k, then the map
between homology groups

�j WHj .�k�1/! Hj .�k/

is an isomorphism, for j D 0; : : : ; n.

Proof. Consider the long exact sequence in homology of the pair .�k; �k�1/. If the
relative groups Hi .�k; �k�1/ are all 0 for i D 0; : : : ; nC 1, then, by exactness, the
map �j is an isomorphism, for j D 0; : : : ; n, as desired. It therefore suffices to show
that the relative groups are all 0 through the given range.

Around each vertex v of rank k, choose an open "-ball B".v/ � �k that contains
no other vertices. The boundary of this ball, which we denote PB".v/, is homeomorphic
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to lk#.v;�/, so the closed ball xB".v/ is homeomorphic to the cone on lk#.v;�/. LetL
denote the complement of the union of the open balls. The inclusion

.�k; �k�1/! .�k; L/

is a homotopy equivalence of pairs, since L strong deformation retracts on �k�1 by
radial projection from the vertices of rank k. The inclusion of pairs�a

xB".v/;
a
PB".v/

�
! .�k; L/;

obtained by removing the interior of L, is an excision, so we get isomorphismsM
v

H�
�
xB".v/; PB".v/

�
Š H�.�k; �k�1/

in all dimensions. (Here the direct sum is over all vertices of rank k.) Next consider
the long exact sequence in reduced homology for the pair . xB".v/; PB".v//. Since xB".v/
is contractible, we get isomorphisms

Hj
�
xB".v/; PB".v/

�
Š zHj�1

�
PB".v/

�
Š zHj�1

�
lk#.v;�/

�
for all j � 1. Since lk#.v; �/ is n-connected, it follows that Hj . xB".v/; PB".v// D 0
for j D 0; : : : ; nC 1. It now follows that Hj .�k; �k�1/ D 0 for j D 0; : : : ; nC 1
by the above direct sum decomposition, completing the proof.

Proposition 7.6. (connectivity of the filtration) Assume that � is n-connected. If the
descending links lk#.v;�/ of all vertices of rank at least k are n-connected, then the
maps on homotopy groups

�j .�`�1/! �j .�`/

are isomorphisms for j D 0; : : : ; n and ` � k. In particular, �`�1 is n-connected
for ` � k.

Proof. We prove both statements by induction on n. If nD 0, then Lemma 7.5 implies
that each inclusion �`�1 ! �` is bijective at the level of path components, provided
` � k. This establishes the first conclusion. It follows that

�0.�k�1/! �0.�k/! � � � ! �0.�/

is a sequence of bijections. Thus, the inclusion�`!� determines a bijection of path
components for ` � k, so �` is path connected. This completes the base case of the
induction.

If nD 1, then, by induction,�`�1 is path-connected, for all `� k. We recall from
the proof of Lemma 7.5 that the complex �` is obtained by attaching cones to �`�1
along their bases, where each such base is the descending link of a vertex of rank `.
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By hypothesis, all such bases are 1-connected for ` � k, so van Kampen’s theorem
and a direct limit argument yield an isomorphism

�1.�`�1/! �1.�`/

for each ` � k. The fact that � itself is 1-connected now implies that �`�1 is 1-
connected, for ` � k, as desired.

The general case n > 1 follows easily by induction, Lemma 7.5, and the Hurewicz
theorem.

7.3. The descending link: The partitioned downward star and link

For the remainder of the section, we will let� denote any of the complexes�E.VS/ or
�E.P VS;Y /, for Y an arbitrary finite disjoint union of domains. The precise identity
of � can be readily determined from the context. In a few cases (e.g., Proposition 7.8
and Corollary 7.9), we suppress any mention of �, in order to avoid using � to mean
two different things within the same formula.

Here we introduce the partitioned downward stars and links, which are fundamen-
tal to our analysis of the downward links. The partitioned downward stars have natural
product decompositions (Proposition 7.8) and, therefore, the partitioned downward
links have natural join structures (Corollary 7.9).

Definition 7.7 (The downward star and downward link of a partitioned pseudovertex).
Let

v D ¹Œf1;D1�; : : : ; Œfm;Dm�º

be a pseudovertex. Let P D ¹p1; : : : ; p`º be a partition of v, where each pi is a
pseudovertex. We denote such a choice of v and partition P by vP , and call vP a
partitioned pseudovertex.

We let st#.vP ;�/ denote the full subcomplex of st#.v;�/ spanned by pseudover-
tices

v0 D ¹Œg1; E1�; : : : ; Œgt ; Et �º;

such that, for j D 1; : : : ; t , gj .Ej / � im.pi / for some i 2 ¹1; : : : ; `º. The subcom-
plex st#.vP ; �/ is the downward star of the partitioned pseudovertex vP in �. The
downward link of vP in �, denoted lk#.vP ; �/, is the link of v in st#.vP ; �/.

Proposition 7.8. (product decomposition of the partitioned downward link) Let v 2�
and let P D ¹p1; : : : ; p`º be a partition of v, where the pi are pseudovertices for
i D 1; : : : ; `. We have

st#.vP / Š
Ỳ
iD1

st#.pi /;
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where the equivalence is a simplicial isomorphism when the right side is given the
simplicial product structure (Definition 2.7).

Proof. We will show that the two sides of the equivalence are abstractly isomorphic.
Let � denote an arbitrary simplex in st#.vP /. Thus, � is an E-chain

v0 < v1 < v2 < � � � < vj D v

for some j � 0, and each vk (k D 0; : : : ; j ) is such that, for each Œf;D� 2 vk , there
is some i 2 ¹1; : : : ; `º with the property that f .D/ � im.pi /.

For each pair .k; i/ 2 ¹0; : : : ; j º � ¹1; : : : ; `º, we let

vki D ¹Œf;D� j Œf;D� 2 vk and f .D/ � im.pi /º:

It follows easily that vki is the (unique) subcollection of vk whose image is precisely
im.pi /. Proposition 4.22 (2) now implies that, for i D 1; : : : ; `, we have a weakly
increasing sequence of pseudovertices

v0i � v1i � � � � � vj i D pi :

We note that the latter sequence is an E-chain (and thus a simplex) in st#.pi /, after
removing any repetitions.

We define a map

.v0 < � � � < vj D v/ 7! ..v01; : : : ; v0`/ < .v11; : : : ; v1`/ < � � � < .p1; : : : ; p`//:

The right side of the above formula is a simplex in the product
Qm
iD1 st#.pi / by

Definitions 2.4 and 2.7. The proof is completed by noticing that a given vk uniquely
determines, and, conversely, is determined by, its `-tuple .vk1; : : : ; vk`/.

Corollary 7.9 (Join structure of the partitioned descending link). Let v 2 � and P

be as in Proposition 7.8. We have a homeomorphism

lk#.vP / Š
©̀
jD1

lk#.pj /:

Proof. This follows directly from Proposition 7.8 and Theorem 2.8 (2).

Proposition 7.10 (Intersections of partitioned descending links and stars). Let v be a
pseudovertex and let P1; : : : ;Pk be partitions of v. We have the equalities

(1)
Tk
jD1 st#.vPj ; �/ D st#.v^k

jD1
Pj
; �/;

(2)
Tk
jD1 lk#.vPj ; �/ D lk#.v^k

jD1
Pj
; �/.

Proof. This is a simple consequence of Definition 7.7 and the definition of meet (Def-
inition 4.1).
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7.4. The descending link: The standard cover

We are now almost ready to state a useful inductive principle for proving that the
descending link is highly connected. The main result here is Proposition 7.17, stating
easy sufficient conditions for the downward link to be highly connected, in terms of
“contracting pseudovertices”.

Recall that � denotes any of the complexes �E.VS/ or �E.P VS;Y /, for Y an
arbitrary finite disjoint union of domains.

Definition 7.11 (Contracting pseudovertex). A pseudovertex p is called contracting
if there is some b 2 B and some pseudovertex p0 2 E.b/ � ¹bº such that p and p0

have the same type.

Lemma 7.12 (Contracting pseudovertices admit contractions). If p is a contracting
pseudovertex, then there is some Œf;D� 2 B such that p 2 E.Œf;D�/.

Proof. Since p is a contracting pseudovertex, we can find some Œg;E� 2 B and some
pseudovertex p0 2 E.Œg; E�/ such that p and p0 have the same type. By Proposi-
tion 5.4, there exists some ys 2 yS such that ys � p0 D p. It follows from yS -invariance
of E (Definition 6.1) that p 2 E.Œysg;E�/.

Definition 7.13 (Standard cover). If v is a pseudovertex in� and p � v is a contract-
ing pseudovertex, then we let Pp D ¹p; v � pº. We let

Cv D
®
lk#.vPp ; �/ j p � v is a contracting pseudovertex

¯
:

We call Cv the standard cover of lk#.v;�/.

Proposition 7.14. Let v 2 � be a pseudovertex. The collection Cv is a cover of the
link lk#.v;�/.

Proof. Let
v0 < v1 < v2 < � � � < vn�1

be a simplex in the downward link lk#.v; �/, where n � 1. We must show that this
simplex lies in lk#.vPp ; �/, for some contracting pseudovertex p � v.

Note that
c WD .v0 < v1 < v2 < � � � < vn�1 < vn D v/

is a simplex in the downward star st#.v; �/. Let us write v0 D ¹b1; : : : ; bmº, where
each bi 2 B. Since c is an E-chain, each vi is the result of E-expansion from v0 (see
Definition 6.1). It follows that

vk D

m[
jD1

vk;j
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for k D 0; : : : ; n, where vk;j 2 E.bj /. Proposition 4.22 implies that, for all j ,

vk1;j � vk2;j

when k1 � k2.
There is some j such that vn;j � v0;j , since vn � v0. We assume, without loss of

generality, that j D 1, and set p D vn;1. (We note that p 2 E.b1/ � ¹b1º, so p is a
contracting pseudovertex.) It follows directly that, for k < n, vk 2 lk#.vPp ;�/ (since
vk;1 � p and

Sm
jD2 vk;j � v � p). Thus,

v0 < v1 < � � � < vn�1

is a simplex in lk#.vPp ; �/, completing the proof.

Remark 7.15. In the proofs of Propositions 7.16 and 7.17, we will consider collec-
tions of contracting pseudovertices ¹pj j j 2 Jº, for certain indexing sets J, where
each pj is a subset of some fixed pseudovertex v. Definition 7.13 defines the associ-
ated partitions Ppj , for j 2 J. We will sometimes simply denote the latter partitions
by Pj instead; i.e., Pj D ¹v � pj ; pj º in what follows.

Proposition 7.16 (Connectedness of the nerve of the standard cover). Let v 2 � be
a pseudovertex and let Cv be the standard cover of lk#.v; �/. If for every choice of
contracting pseudovertices p0; : : : ; pk � v, there is some contracting pseudovertex
p0 � v � .p0 [ � � � [ pk/, then the nerve N .Cv/ is .k � 1/-connected.

Proof. The relevant facts about nerves of covers, including the definition and the
Nerve theorem (Theorem 2.10) are summarized in Section 2.4.

We claim that every .k C 1/-element subcollection of Cv spans a simplex in
N .Cv/; i.e., that every such subcollection has non-empty intersection.

Let p0; : : : ;pk � v be an arbitrary choice of contracting pseudovertices. By Propo-
sition 7.10

k\
jD0

lk#.vPj ; �/ D lk#
�
v
^k
jD0

Pj
; �
�
:

We note that
v � .p0 [ � � � [ pk/ 2 ^

k
jD0Pj :

Since there is a contracting pseudovertex p0 � v � .p0 [ � � � [ pk/, we have

lk#
�
v
^k
jD0

Pj
; �
�
¤ ;:

This proves the claim.
It now follows that N .Cv/ consists of the entire k-skeleton of a high-dimensional

(or infinite-dimensional) simplex. (If N .Cv/ has k C 1 or fewer vertices, then it is a
simplex.) It follows that N .Cv/ is .k � 1/-connected.
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Proposition 7.17 (n-connectivity of the descending link: a sufficient condition). Let
v 2 � be a pseudovertex and let n 2 ¹0º [N. Assume that the descending link of v
is non-empty. If

(1) for every contracting pseudovertex p contained in v,

lk#.v � p;�/

is .n � 1/-connected, and

(2) for every j 2 ¹2; : : : ; nC 2º and for every choice p1; : : : ; pj of contracting
pseudovertices contained in v,

lk#
�
v � .p1 [ � � � [ pj /;�

�
is .nC 1 � j /-connected,

then lk#.v;�/ is n-connected.

Proof. We will apply the Nerve theorem (Theorem 2.10) to the nerve N .Cv/.
We will first show that N .Cv/ is n-connected using Proposition 7.16. Let j D

nC 2. For every choice p1; : : : ; pnC2 � v of contracting pseudovertices, we have

lk#
�
v � .p1 [ � � � [ pnC2/;�

�
¤ ;

by hypothesis. Thus, a contraction can be performed on v � .p1 [ � � � [ pnC2/; i.e.,
there is some contracting pseudovertex p0 � v � .p1 [ � � � [ pnC2/. It now follows
from Proposition 7.16 that N .Cv/ is n-connected.

Note also that, since v � .p1 [ � � � [ pnC2/ 2 ^nC2`D1
P`,

lk#
�
v
^
nC2
`D1

P`
; �
�
D

nC2\
`D1

lk#.vP` ; �/;

is non-empty. This shows that every .n C 2/-fold intersection of members of Cv is
.�1/-connected (i.e., non-empty), as required by Theorem 2.10.

Next, consider any j 2 ¹2; : : : ; nC 1º; let p1; : : : ; pj � v be contracting pseudo-
vertices. We have that

lk#
�
v � .p1 [ � � � [ pj /

�
is .nC 1 � j /-connected by hypothesis. It follows that

j\
`D1

lk#.vP` ; �/

is .nC 1 � j /-connected, by essentially the same reasoning as above.
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Now consider the case j D 1. Let p1 � v be a contracting pseudovertex. We have

lk#.vPp1
/ Š lk#.p1/ � lk#.v � p1/:

Note that lk#.p1/ is non-empty since p1 is a contracting pseudovertex, and lk#.v�p1/
is .n � 1/-connected by hypothesis. It follows that lk#.vPp1

/ is n-connected.
It follows from Theorem 2.10 that lk#.v;�/ is n-connected.

8. Finiteness properties of groups

In this section, we will establish finiteness properties for a number of the groups.
In Section 8.1, we prove Theorem 8.2, which states that the group �S has type F1
when the associated expansion scheme E is “rich in contractions” (Definition 8.1).
This result greatly generalizes the main theorem of [12]. In Section 8.2, we establish
an inductive procedure that enables one to prove that a given group has type Fn.
The latter procedure can be applied in various cases where the “rich in contractions”
property fails.

8.1. A basic sufficient condition for type F1

We can now offer a simple sufficient condition for the group �S to have typeF1 (The-
orem 8.2). The most important new ingredient is the “rich in contractions” property
(Definition 8.1), a generalization of the “rich in simple contractions” property [12,
Definition 5.11].

Definition 8.1 (Rich in contractions). Let E be an expansion scheme. We say that E

is rich in contractions if there is some constant C1 such that, if v 2 P VS is any
pseudovertex of rank at least C1, then there is some contracting pseudovertex v0 � v.

Theorem 8.2 (Groups of type F1). Let S be an S -structure with finitely many domain
types, such that the group S.D; D/ has type F1 for each D 2 DC. Let E be an
expansion scheme such that

(1) E is n-connected for all n;

(2) E is rich in contractions;

(3) each set E.b/ (b 2 B) is finite.

The group �S has type F1.

Proof. We will show that the hypotheses of Theorem 7.3 are satisfied for all n.
We first note that, since E is n-connected for all n, �E is n-connected for all n by

Theorem 6.9, and thus contractible by Whitehead’s Theorem. The action of �S on�E

is clearly cellular.
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By Proposition 6.11, we have the equality

�E
D

1[
kD1

�E
n ;

where each subcomplex �E
k

is �S -invariant. Moreover, the finiteness of the sets E.b/

easily implies that E is S-finite. Since S also has finitely many domain types, Propo-
sition 6.13 implies that the action of �S on each �E

k
is cocompact.

Since each set E.b/ is finite and each group S.D;D/ has type F1, both hypothe-
ses of Corollary 6.15 are satisfied for each n. Thus, each cell stabilizer in �E is of
type F1.

It is now enough to show that, for each n, �E
k

is n-connected for sufficiently
large k. By Proposition 7.6, it suffices to show that the descending links lk#.v; �E/

are always n-connected, provided that the rank of the vertex v is sufficiently large. We
will in fact show this for all pseudovertices v of sufficiently large rank.

Let C1 be the constant from Definition 8.1. Any pseudovertex v of rank at least C1
thus contains a contracting pseudovertex. It follows from Lemma 7.12 that lk#.v;�E/

is non-empty if r.v/ � C1. We note also that the standard cover Cv is a cover of
lk#.v;�E/ if r.v/ � C1, by Proposition 7.14.

Since there are only finitely many domain types and each set E.b/ is finite (for
b 2 B), there is a constant C0 such that the rank of each contracting pseudovertex is
less than or equal to C0.

Let n � 0 and let v be a pseudovertex. We claim that if r.v/ � .2nC 2/C0 C C1,
then lk#.v; �E/ is n-connected. The proof is by induction on n, beginning with the
case n D 0. We will use the sufficient condition for n-connectivity given in Proposi-
tion 7.17. Thus, assume that r.v/� 2C0CC1. If p � v is any contracting pseudover-
tex, we have

r.v � p/ � C0 C C1;

and therefore lk#.v�p;�E/ is non-empty. This establishes condition (1) from Propo-
sition 7.17. Now let p1; p2 � v be contracting pseudovertices. Clearly,

r
�
v � .p1 [ p2/

�
� C1;

so lk#.v � .p1 [ p2// is non-empty, establishing (2). This proves the claim when
n D 0.

Now let n be arbitrary, and assume that the claim holds for smaller n. Let v be a
pseudovertex of rank at least .2nC 2/C0 C C1. We check condition (1) from Propo-
sition 7.17; thus, let p � v be a contracting pseudovertex. Clearly,

r.v � p/ � .2nC 1/C0 C C1 � .2n/C0 C C1;

so lk#.v � p;�E/ is .n � 1/-connected, as required.
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Now we check (2); let p1; : : : ; pj � v be contracting pseudovertices, for some
j 2 ¹2; : : : ; nC 2º. Clearly,

r
�
v � .p1 [ � � � [ pj /

�
� .2nC 2 � j /C0 C C1

� Œ2.nC 1 � j /C 2�C0 C C1;

which shows that
lk#
�
v � .p1 [ � � � [ pj /;�

E
�

is .nC 1 � j /-connected, as required.
This proves the claim and completes the proof of the theorem.

Example 8.3 (The F1 property for the generalized Thompson groups Vn;r ). We first
consider Thompson’s group V . Recall that the associated set DCSV of domains satisfies
the compact ultrametric property E (Example 3.29). We use the maximal SV -structure
(Example 4.4). The resulting structure function S assigns a singleton to each pair of
domains:

S.B!1 ; B!2/ D ¹�!1;!2º:

(In particular, we note that there is only one domain type.) It follows directly that
every simplex in�.VS/ has a finite stabilizer (Proposition 5.3). We use the expansion
scheme E from Proposition 6.21; the associated complex�E ism-connected for allm.
For any domain B! 2 DCSV , the maximal partition of B! is as follows:

PB! D ¹B!0; B!1º:

It follows easily from the description of E that any pseudovertex of rank two is a
contracting pseudovertex. Thus, the expansion scheme E is rich in contractions with
constant C1 D 2. Clearly, the sets E.b/ are also finite, so Theorem 8.2 implies that V
has type F1.

More generally, we can consider the group Vn that acts on the n-ary Cantor set

Cn D

1Y
kD1

¹0; 1; : : : ; n � 1º:

We analogously define transformations �!1;!2 , where !1 and !2 are finite strings over
the alphabet ¹0; : : : ; n� 1º. As in the case of V , a transformation �!1;!2 removes the
prefix !1 from an infinite n-ary string, and attaches the prefix !2 to the resulting
string. (If the string a1a2 : : : does not begin with the prefix !1, then �!1;!2.a1a2 : : :/
is undefined.) Letting

SVn D ¹�!1;!2 j !1; !2 are finite n-ary stringsº [ ¹0º;
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we find that
DCSVn

D ¹B! j ! is a finite n-ary stringº;

where B! is the collection of all infinite n-ary strings that begin with the prefix !. For
any !,

PB! D ¹B!0; : : : ; B!n�1º:

If we use the expansion scheme E from Proposition 6.21, then every pseudovertex
of rank n is a contracting pseudovertex. Thus, the expansion scheme E is rich in
contractions with constant C1 D n. The remaining conditions from Theorem 8.2 are
easily checked, so we conclude that Vn has type F1 for all n � 2.

The group Vn;r (n � 2; r � 1) acts on the set

X D Cn
a

Cn
a
� � �

a
Cn;

where there are r terms in the disjoint union. Elements of Vn;r are locally determined
by transformations between sets of the form B! . (The domains and images of these
transformations can be inside different copies of Cn.) Essentially the same line of
argument as those given above shows that Vn;r has type F1.

Example 8.4 (The F1 property for the Brin–Thompson groups nV and Röver’s
group). Next we will show that the groups nV and Röver’s group all have type F1.
We will use the expansion schemes described in Propositions 6.23 and 6.24, respec-
tively, as well as all previously-established conventions related to these groups. Recall
that all of these expansion schemes are m-connected, for all m.

Note that all of the S -structures in question have only a single domain type. The
expansion schemes are alike in that any two-element subset ¹Œf1;D1�; Œf2;D2�º of any
pseudovertex is a contracting pseudovertex. It follows that the expansion schemes in
question are rich in contractions with constant C1 D 2 (see Definition 8.1). It is clear
from the descriptions of E that each set E.b/ is finite. Finally, we note that the group
S.D;D/ is either trivial (in the case of nV ) or of order four (in the case of Röver’s
group). It follows from Theorem 8.2 that nV and the Röver group have type F1. Note
that this proof also covers Thompson’s group V D 1V .

Example 8.5 (More examples based on products). For n� 1, let xTn denote the rooted
ordered infinite n-ary tree. Thus, xT1 is a cellulated ray, xT2 is the rooted ordered infinite
binary tree, and so forth. We let Sxn denote the inverse semigroup generated by two
types of partial transformations of xTn:

(1) singleton transformations, whose domains and images are both singleton sets,
and

(2) transformations between subtrees, which move one rooted subtree to another,
without otherwise permuting leaves or branches.
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Thus, Sx1 is the same as the inverse semigroup SH1 (Example 3.33), and Sx2 D SQV
(Example 3.30). If n � 3, then Sxn is the straightforward n-ary generalization of SQV .
We note, in particular, that the associated collections DCSxn

have the compact ultramet-
ric property (Definition 3.12) for all n � 1.

For n � 2, we will let Sn denote the inverse semigroup associated to the general-
ized Thompson groups Vn. Thus, S2 D SV and Sn D SVn for n � 3. The associated
collections DCSn (n � 2) also have the compact ultrametric property.

We will consider product actions of the above semigroups. Let

† D .xa1; xa2; : : : ; xaj ; ajC1; : : : ; ak/;

where the xa` and a` are all positive integers, xa` � 1 for 1 � ` � j , and a` � 2 for
j C 1 � ` � k. We assume, furthermore, that xa1 � � � � � xaj and ajC1 � � � � � ak . We
define

S† WD Sxa1 � Sxa2 � � � � � Sxaj � SajC1
� � � � � Sak :

We claim that the group �S† has type F1 if j < k (i.e., if there is at least one
integer without a bar). The proof is very similar to the proof that nV has type F1,
and we in fact choose the S†-structure and expansion scheme E exactly as in that
case. We mention the main difference: the structure function S associated to �S† has
2j distinct domain types. (This is because each of the factors has either two or one
domain types, according to whether the subscript has a bar or not (respectively).) If a
pseudovertex v has rank at least .ajC1 � 1/2j C 1, then there will necessarily be at
least ajC1 pairs Œf;D� in v having second coordinates (D) with the same domain type.
We claim that it will then be possible to perform a contraction on v. Indeed, suppose
that ¹b1; : : : ; bajC1

º � v is a pseudovertex in which all of the second coordinates have
the same domain type. We suppose that

D D D1 � � � � �DjC1 � � � � �Dk;

where Di 2 DCSxai

if i � j and Di 2 DCSai
if i � j C 1, is a representative of that

domain type. Expanding the pair ŒidD; D� in the .j C 1/st coordinate, we get the
pseudovertex

yv D
®
Œid;D1 � � � � � .DjC1/m � � � � �Dk� j m 2 ¹1; : : : ; ajC1º

¯
2 E

�
ŒidD;D�

�
;

where .DjC1/m represents themth branch of the ajC1-ary Cantor set. We note, in par-
ticular, that yv has the same type as ¹b1; : : : ; bajC1

º, and so the latter is a contracting
pseudovertex by Definition 7.11. Thus, the expansion scheme E is rich in contrac-
tions with constant .ajC1 � 1/2j C 1. The remaining hypotheses of Theorem 8.2 are
straightforward to check, completing the proof.
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Example 8.6 (FSS groups). LetX be a compact ultrametric space with ultrametric d .
A finite similarity structure [12] associates to each pair of balls .B1; B2/ a finite set
SimX .B1; B2/ of surjective similarities; i.e., bijections hWB1 ! B2 that stretch dis-
tances by a constant factor � that depends only upon h. The sets SimX .B1; B2/ are
required to satisfy properties (S2)–(S4) from Definition 4.2 and to be closed under
restrictions (in the sense of Remark 4.28). Let �SimX denote the set of bijections of X
that are locally determined by the sets SimX .B1; B2/. The authors showed that if
SimX is rich in simple contractions and has finitely many ball types, then �SimX has
type F1 [12].

If we let
S D

[
.B1;B2/

SimX .B1; B2/

then S is an inverse semigroup acting on X . The set of domains DCS is precisely
the set of all metric balls in X . If we use the maximal S -structure, then we have the
identity

S.B1; B2/ D SimX .B1; B2/;

for all pairs of metric balls .B1; B2/. We let the expansion scheme E be defined as in
Proposition 6.21. If we assume that E is rich in contractions and S has finitely many
domain types, then Theorem 8.2 shows that �S has type F1. This recovers the main
result from [12] (as described above).

8.2. An inductively-defined sufficient condition for type Fn

In some cases, the “rich in contractions” condition (Definition 8.1) is too restrictive. In
this subsection, we will compute the connectivity of the descending link by inductive
means. The induction will be done over the collection of “type vectors”.

Definition 8.7 (Type vectors; contracting vectors). Assume that there are only finitely
many domain types relative to S (Definition 4.7). If there are t different domain types
in all, then choose a numbering 1; : : : ; t of these domain types.

Let pD¹Œf1;D1�; : : : ; Œfm;Dm�º be a pseudovertex. The type vector of p, denoted
by Ewp , is the vector

.a1; : : : ; at / 2
�
N [ ¹0º

�t
;

where ai is the number of subscripts j 2 ¹1; : : : ;mº such thatDj has type i . (That is,
Ewp counts the number of domainsDj having each of the t domain types.) Conversely,
we say that v is of type Ewv .

A vector Ew 2 .N [ ¹0º/t is called a contracting vector if it is the type vector of
some contracting pseudovertex. If p 2 E.b/ � ¹bº is a contracting pseudovertex and
Ew D Ewp , then we write Ew ! Ew¹bº.
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Definition 8.8 (Connectivity length; stable connectivity length). Let Ew be a type vec-
tor. The connectivity length of Ew, denoted `c. Ew/, is the largest n such that lk#.p/ is
n-connected, for some (equivalently, any) pseudovertex p having type vector Ew.

If Ew1 D .a1; : : : ; at / and Ew2 D .b1; : : : ; bt / are type vectors, then we write
Ew1 4 Ew2 if ai � bi for all i 2 ¹1; : : : ; tº.

A type vector Ew has stable connectivity length at least n if, for every type vector
Ew1 < Ew, `c. Ew1/ � n. In this case, we write `sc. Ew/ � n. We say that Ew has stable
connectivity length n if

n D max¹j j `sc. Ew/ � j º:

Remark 8.9. Clearly, `sc. Ew1/� `sc. Ew2/when Ew1 < Ew2. We will use this fact without
further comment in what follows.

Proposition 8.10 (A sufficient condition for type Fn). Let S be an S -structure with
finitely many domain types, such that the group S.D;D/ has typeFn for eachD2DC.
Let E be an .n � 1/-connected expansion scheme such that

(1) each set E.b/ (b 2 B) is finite, and

(2) there is a constant C such that, whenever v is a vertex satisfying r.v/ � C ,
`sc. Ew.v// � n � 1.

The group �S has type Fn.

Proof. We note first that �E is .n � 1/-connected by Theorem 6.9. The action of �S
on �E is cellular by Theorem 6.4. The complex �E is filtered by the �S -complexes
�E
k

(see Definition 6.10 and Proposition 6.11). The action of �S on each�E
k

is cocom-
pact by Proposition 6.13. Each cell stabilizer has type Fn, by Corollary 6.15.

It therefore suffices to show that each subcomplex�E
k

is .n� 1/-connected, for k
sufficiently large. For this, it is sufficient, by Proposition 7.6, to prove, for some k, that
the descending links lk#.v;�E/ of all vertices of rank at least k are .n� 1/-connected.
The latter follows immediately from (2) by letting k D C .

Proposition 8.11 (Inductively computing `sc. Ew/). Let Ew 2 .N [ ¹0º/t be a type vec-
tor and let n 2 N [ ¹0º. If

(1) for each contracting vector Ec1 such that Ec1 4 Ew, `sc. Ew � Ec1/ � n � 1, and

(2) for each j 2 ¹2; : : : ; nC 2º and for every choice of (not necessarily distinct)
contracting vectors Ec1; : : : ; Ecj 4 Ew,

`sc

�
Ew �

jX
kD1

Eck

�
� n � j C 1;

where any negative entries in the above vector are to be interpreted as 0s,

then `sc. Ew/ � n.
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Proof. Let Ew satisfy the given conditions; we let v be a pseudovertex such that Ewv< Ew.
We apply Proposition 7.17.

If p � v is a contracting pseudovertex, then the type vector of v �p is Ew � Ep. Our
hypothesis says that `sc. Ew � Ep/ � n� 1, which implies that lk#.v � p;�/ is .n� 1/-
connected. This establishes the first part of the hypothesis from Proposition 7.17.

Now suppose that p1; : : : ; pj are contracting pseudovertices, each contained in v.
It follows that

Ewv �

� jX
iD1

Ewpi

�
4 Ewv�.p1[���[pj /;

where any negative entries in the vector on the left may be interpreted as zeroes.
Since the stable connectivity length of the vector on the left is at least n � j C 1 by
hypothesis, it follows that Ewv�.p1[���[pj / has connectivity length at least n � j C 1.
Thus, lk#.v � .p1 [ � � � [ pj // is at least .n � j C 1/- connected.

It now follows from Proposition 7.17 that lk#.v/ is n-connected. Thus, `c. Ewv/� n
if Ewv < Ew, so `sc. Ew/ � n.

Example 8.12 (The groupQV is of type F1). Consider the groupQV and the asso-
ciated semigroup SQV from Example 3.30. The set DCSQV satisfies the compact ultra-
metric property. We use the maximal SQV -structure and the expansion scheme E from
Proposition 6.21. There are two domain types: singleton sets ¹!º and the sets T 0

! ,
where ! is an arbitrary finite binary string. The expansion scheme E is not rich in
contractions, since pseudovertices of the form®

Œf1; ¹!1º�; : : : ; Œfm; ¹!mº�
¯

contain no contracting pseudovertices, and we can clearly let the rank of such pseudo-
vertices become arbitrarily large.

We claim that QV is of type F1. Since Theorem 8.2 does not apply, we pro-
ceed inductively and try to apply Proposition 8.10. As noted above, there are just
two domain types. Each structure set of the form S.D; D/ contains only the iden-
tity transformation, and therefore has type Fn for all n. The expansion scheme E is
.n� 1/-connected for all n (Proposition 6.21). Each set E.b/ is clearly finite. Thus, it
remains only to check condition (2) from Proposition 8.10.

We order the domain types, letting the singleton sets be first. Thus, a type vector
.a; b/ describes a pseudovertex

¹Œf1;D1�; : : : ; Œfm;Dm�º;

where a C b D m and precisely a of the domains D1; : : : ; Dm are singletons. With
this convention, there is only one contracting vector, namely .1; 2/. (This is because
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the maximal partition of T 0
! is ®

¹!º; T 0
!0; T

0
!1

¯
;

while the maximal partition of ¹!º is ¹¹!ºº.)
It follows directly that `sc. Ew/ � �1 when Ew < .1; 2/. We claim that, in general,

`sc. Ew/ � n whenever Ew < .2n C 3; 4n C 6/. Assume the claim is true for n; we
try to prove that `sc..2n C 5; 4n C 10// � n C 1 by checking the conditions from
Proposition 8.11. Note that

`sc
�
.2nC 5; 4nC 10/ � .1; 2/

�
D `sc

�
.2nC 4; 4nC 9/

�
� n

and that, for j 2 ¹2; : : : ; nC 3º,

`sc
�
.2nC 5; 4nC 10/ � .j; 2j /

�
D `sc.2n � j C 5; 4n � 2j C 10/

� n � j C 2

since 2n� j C 5 � 2n� 2j C 7 and 4n� 2j C 10 � 4n� 4j C 14. This proves the
claim by induction.

A general vertex in the associated complex has the type vector .n; n C 1/, for
some non-negative integer n. It follows easily from the above computation and Propo-
sition 8.10 that QV has type F1, recovering a result from [1].

Remark 8.13 (Other possible examples). Another example that could be considered
under this heading is “2QV ”; i.e., the group locally determined by SQV �SQV , which
would be denoted �S.x2;x2/ under the conventions of Example 8.5. Note that the proof of
the F1 property for �S† assumes that at least one entry in † occurs without a bar, so
the finiteness properties of 2QV are unresolved by Example 8.5. The combinatorial
analysis required for this example seems substantially more difficult than that required
for Example 8.12, so we will not undertake it here.

The Houghton group Hn (Example 3.33) was proved by Brown [8] to be of type
Fn�1, but not of type Fn. The inductive principle outlined in Proposition 8.11 does not
quite prove Fn�1, although it is reasonable to guess that a slight modification would
be sufficient. Of course, we have not considered any methods that would allow us to
prove that a group �S does not have type Fn.

Finally, we note that the groups described by Bieri and Sach (Example 3.34)
appear to pose a much more substantial challenge. Some of their finiteness proper-
ties are known; we refer the reader to [5] for the current state of knowledge about
these groups.

Acknowledgments. The authors thank the referees for suggesting numerous revi-
sions.
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