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Łojasiewicz inequalities for almost harmonic maps near
simple bubble trees

Melanie Rupflin

Abstract. We prove Łojasiewicz inequalities for the harmonic map energy for maps from surfaces
of positive genus into general analytic target manifolds which are close to simple bubble trees and as
a consequence obtain new results on the convergence of harmonic map flow and on the energy spec-
trum of harmonic maps with small energy. Our results and techniques are not restricted to particular
targets or to integrable settings and we are able to lift general Łojasiewicz–Simon inequalities valid
near harmonic maps y!WS2! N to the singular setting whenever the bubble y! is attached at a point
which is not a branch point.

1. Introduction

Let .†;g/ be a closed orientable surface and let .N;gN / be a closed Riemannian manifold
of any dimension, which by Nash’s embedding theorem can be assumed to be isometric-
ally embedded N ,! Rn in some Euclidean space. We recall that a map uW†! N is
called a harmonic map if it is a critical point of the Dirichlet energy

E.u/ WD
1

2

Z
†

jduj2 dvg :

Harmonic maps are characterised by �g.u/D 0, where the tension of uW†!N ,!Rn can
be described as �g.u/ D Pu.�gu/ D �guC A.u/.ru;ru/, �g the Laplace–Beltrami
operator of maps uW .†;g/!Rn and PpWRn! TpN the orthogonal projection. Here and
in the following, A.p/.v; w/ D �.dPp/.v/.w/, v; w 2 TpN , denotes the second funda-
mental form of N ,! RN and we write for short A.u/.ru;ru/ D gijA.u/.@xiu; @xj u/.

In the study of harmonic maps from closed surfaces of positive genus, one is often
confronted with the situation that the lowest possible energy level E0 of homotopically
non-trivial maps is not attained in the set of maps from the given surface †; instead,
minimising sequences may undergo bubbling and converge to a limiting configuration
which is a simple bubble tree consisting of a trivial base map and a single bubble y!
given by a non-trivial harmonic map y!W S2 ! N . This singular behaviour means that
the powerful techniques of Łojasiewicz inequalities as developed in the seminal work of
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Simon [18] do not apply, even in the simplest such situation of degree one maps from the
torus to S2. As a result, questions such as the discreteness of the energy spectrum near E0
and the asymptotic behaviour of harmonic map flow for maps whose energy tends to E0
are open in the setting of maps from higher genus surfaces.

The purpose of this paper is to address these and related questions, not only in the
special situation of maps to the sphere mentioned above, but more generally for maps into
closed analytic manifolds of arbitrary dimension which are close to simple bubble trees
for which the underlying bubble is attached at a non-branched point.

To this end, we first recall that the results of [4,11,14,19] imply that for any sequence
of maps unW†! N with bounded energy and k�g.un/kL2.†/ ! 0, a subsequence con-
verges strongly in H 2

loc.† n S/ to a harmonic limit u1W†! N away from a finite set of
points S , where a finite number of bubbles form, and that in this convergence to a bubble
tree there is no loss of energy and no formation of necks.

If no bubbles form and if N is analytic then we can apply the work of Simon [18],
which establishes that there exist a neighbourhood of u1, a constant C and an exponent

1 2 .1; 2� so that for maps uW†! N in this neighbourhood the Łojasiewicz estimate

jE.u/ �E.u1/j � Ck�g.u/k

1
L2.†/

(1.1)

holds true. While the method of Simon from [18] applies provided the maps are close to
u1 in H 2, the above inequality is trivially satisfied for maps with bounded energy and
large tension, so (1.1) holds whenever u is H 1-close to u1.

However, this result is not applicable for maps that undergo bubbling and the only
setting in which this problem has been overcome is in the major works [20,21] of Topping
and [23] of Waldron on almost harmonic maps between spheres. These results are based
on a delicate analysis of almost harmonic maps which exploits in particular that for maps
between spheres the Dirichlet energy has a natural splitting into a holomorphic and an
antiholomorphic part. This allowed Topping [21] to derive a Łojasiewicz estimate with
optimal exponent

jE.u/ � 4k�j � Ck�gS2 .u/k
2
L2.S2/

for maps between spheres which are close to a large class of bubble trees and very recently
for Waldron [23] to obtain Łojasiewicz estimates near general bubble trees.

Here we do not restrict our attention to a particular domain surface or a particular
target, but instead restrict the limiting configuration to the simplest situation where strong
convergence fails, i.e. where the maps converge to a simple bubble tree consisting of a
constant base map and a single bubble. In this situation, the results of [4,11,14,19] ensure
that there exist a non-constant harmonic map y!WS2!N , points an! a and bubble scales
�n !1 so that, after passing to a subsequence, un ! y!.p�/ strongly in H 2

loc.† n ¹aº/

while on some fixed-sized ball Br .a/, working in local isothermal coordinates FaW† �
Br .a/! DQr � R2, we have

un ı F
�1
a � y! ı �

Fa.an/

�n
! 0 strongly in H 1.DQr / \ L

1.DQr /: (1.2)
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Here, �b
�
WD �.�.x � b// for � WR2 ! S2 n ¹p�º the inverse of the stereographic projec-

tion from the north pole p� D .0; 0; 1/T.
We note that despite this simple structure of the bubble tree, the result of Simon [18] is

not applicable as we cannot view such maps as beingH 1-close to a critical point u1W†!
N of the energy. The only exception to this is when the domain is a sphere, as in this
case we can modify any such sequence by suitable Möbius transforms to obtain strong
convergence to y! on all of S2. For the rest of the paper we will thus assume that † is a
closed orientable surface of genus 
 � 1. Since the energy is conformally invariant, we
can assume that our domain is either a flat unit area torus or, for higher genus surfaces,
that the metric g is hyperbolic, i.e. has (Gauss)-curvature �1.

While also in the present work one of the key steps will be to relate the rate at which
the tension tends to zero with the rate at which the bubble concentrates, our method of
proof will be very different to the ones in [21, 23]. In particular, we will not require any
information on the behaviour of general almost harmonic maps beyond the well-known
results on the bubble tree convergence recalled above. Instead, our analysis will follow the
approach developed in the joint work [12] with Malchiodi and Sharp and we will derive
our Łojasiewicz-estimate by comparing maps uW†!N which undergo bubbling to maps
in a specific finite-dimensional set Z of what we call adapted bubbles. These adapted
bubbles zW†! N provide models for maps converging to a simple bubble tree and are
constructed so that the energy and its variations have the right properties on Z. The key
point of the method of proof is that a careful analysis of the energy and its variations on
Z allows us to obtain Łojasiewicz estimates for much more general almost critical points,
without ever having to analyse such general almost critical points. We also refer the reader
to [12, Theorem 2.2] which establishes Łojasiewicz estimates near (non-compact) finite-
dimensional manifolds of adapted critical points in the abstract setting of energies on
Hilbert spaces, and to [16, 17] for recent applications of these ideas.

In the analysis of almost critical points of the H -surface energy in [12] the set of
bubbles is explicitly known, indeed consists of rotations of the identity, and the bubbles
are non-degenerate critical points, i.e. so that the second variation of the energy is definite
in directions orthogonal to the action of Möbius transforms.

The present paper demonstrates that the ideas developed in [12] can be applied to far
more general settings, where neither of these simplifications is present. On the one hand,
we will not require any detailed information about the underlying bubbles y!. In particular,
our proof does not rely on the explicit knowledge of the set of bubbles that for harmonic
maps one would only have for special targets such as spheres. All we need to ask of the
bubble is that it is attached to the base at a point that is not a branched point, i.e. that
d y!.p�/ ¤ 0, p� D �.1/ D .0; 0; 1/T.

Just as importantly, we will see that our method does not rely on the non-degeneracy
of the underlying critical point that is present in [12] and we will be able to prove Łoja-
siewicz estimates even if y!WS2 ! N is a harmonic map which has non-integrable Jacobi
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fields. Indeed, we are able to lift the Łojasiewicz–Simon estimates [18]

jE.y!/ �E.!/j � Ck�gS2 .!/k

1
L2.S2/

(1.3)

and
distL2.!; ¹ z!WS

2
! N harmonicº/ � Ck�gS2 .!/k


2
L2.S2/

; (1.4)

from the regular setting of maps !WS2 ! N which are close to y! to obtain Łojasiewicz
estimates with the same exponents 
1 2 .1; 2� and 
2 2 .0; 1� in the singular setting of
maps from † which converge to simple bubble trees. To be more precise, we will prove
the following theorem:

Theorem 1.1. Let .†; g/ be a closed oriented surface of positive genus and let .N; gN /
be a closed analytic manifold of any dimension. Let .un/ be a sequence of maps with
bounded energy which are almost harmonic in the sense that

Tn WD k�g.un/kL2.†;g/ ! 0:

Suppose that un converges as described above to a bubble tree consisting of a constant
base map u1W†! N and a single bubble y!W S2 ! N which is so that d y!.p�/ ¤ 0.
Then, for sufficiently large n, we can bound the bubble scale �n in (1.2) by

��1n � CTnjlog Tnj
1
2 (1.5)

and the difference in energy by

jE.un; †/ �E.!; S
2/j � CT 
1

n jlog Tnj

1
2 (1.6)

for the same exponent 
1 2 .1; 2� for which (1.3) holds near y!WS2 ! N .
Furthermore, we can choose �n ! 1, an ! a and a sequence of harmonic maps

!nWS
2 ! N which converge smoothly to !1 so that

kr.un � !n ı ��n ı Fan/kL2.Br1 .a//
C krunkL2.†nBr1 .a//

� CT 
2
n jlog Tnj


2
2 (1.7)

and
kun � !n.p

�/kL2.†;g/ � CT 
2
n jlog Tnj


2
2 C CTnjlog Tnj (1.8)

and so that for every r > 0 there exists a constant C with

kun ı .��n ı Fan/
�1
� !nkL2.S2nBr .p�// � CT 
2

n jlog Tnj

2
2 : (1.9)

Here, 
2 2 .0; 1� is the same exponent for which (1.4) holds, Fan are local isothermal
coordinates centred at an as introduced in Remark 2.2 and r1 > 0 is a fixed radius.

Remark 1.2. If all Jacobi fields along y! are integrable then we can drop the assump-
tion that N is analytic and obtain the above result for 
1 D 2 and 
2 D 1. However, as
observed by Lemaire–Wood [10], even energy minimisers can have non-integrable Jacobi
fields. Conversely, the works of Gulliver–White [8] and Lemaire–Wood [9] establish that
all Jacobi fields along harmonic spheres are integrable if the target is homotopic to S2

or CP 2.
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Over the past decades, Łojasiewicz estimates have become a well-established tool in
the analysis of variational problems in non-singular settings. However, to date there are
few instances of Łojasiewicz estimates in settings with singularities or with a change of
topology. In addition to [12,21] mentioned above, such results were obtained in the major
papers of Colding–Minicozzi [2] and Chodosh–Schulze [1] on the uniqueness of blow-
ups of mean curvature flow and by Glaudo–Figalli [6] and Deng–Sun–Wei [3] on critical
points of the Sobolev inequality. One of the reasons that Łojasiewicz estimates have attrac-
ted a lot of interest is their versatility in applications both to variational problems and to
the analysis of evolution equations. They can be used in particular to establish conver-
gence of gradient flows, as well as to analyse the energy spectrum of critical points. As
a consequence of Theorem 1.1 we will hence obtain new results both on the asymptotic
behaviour of harmonic map flow

@tu D �r
L2E.u/ D �g.u/; u.t D 0/ D u0 2 H

1.†;N /; (1.10)

and on the energy spectrum of harmonic maps from higher genus surfaces into general
analytic manifolds.

Simon’s results [18] imply that the energy spectrum ¹E.u/ W uWS2 ! N harmonicº of
harmonic maps from S2 into any analytic manifold N is discrete below the level 2ES2 ,

ES2 WD min
®
E.u/ W uWS2 ! .N; gN / harmonic, non-constant

¯
;

since harmonic maps with energy E.un/! E1 < 2ES2 can always be pulled back by
suitable Möbius transforms to ensure that they subconverge strongly.

Conversely, for surfaces of positive genus, [18] only implies that the energy spectrum
¹E.u/ W uW .†; g/! .N; gN / harmonicº is discrete below the energy level ES2 . Theorem
1.1 now allows us to deduce the following result, which is, in particular, of interest for
maps into three-manifolds, where the results [7] of Gulliver–Osserman–Royden ensure
that area-minimising surfaces cannot have true branch points.

Corollary 1.3. Let .N;gN / be a closed analytic manifold of any dimension and let .†;g/
be a closed surface of positive genus. Then the energy spectrum of harmonic maps from
.†; g/ to N below the level

E� WD min.2ES2 ; E.†;g/ CES2 ; E
�

S2
/ (1.11)

is discrete, where

E.†;g/ WD inf¹E.u/ W uW .†; g/! N harmonic, non-constantº;

E�
S2
WD inf¹E.!/ W !WS2 ! N branched, harmonic, non-constantº:

To state our results on harmonic map flow, we first recall that the work of Struwe [19]
establishes the existence of a global weak solution of (1.10) which has non-increasing
energy and which is smooth away from finitely many times at which bubbling occurs.
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While solutions of this flow always subconverge along a sequence of times tj !1 either
to a harmonic map or to a bubble tree of harmonic maps, Topping [22] showed that one
cannot expect that the whole flow converges as t !1 for general smooth target mani-
folds. Conversely, it is conjectured that for analytic targets the flow must indeed converge.
If no bubbling occurs at infinite time this already follows from the work of Simon [18],
while for maps from S2 to S2 the Łojasiewicz inequalities of Topping [21] and Waldron
[23] yield convergence results for the flow.

We can now establish convergence of harmonic map flow into any analytic target man-
ifold .N; gN / provided the initial energy is below the above-mentioned energy threshold.
We stress that this constraint on the energy does allow for bubbling, though it restricts the
potential limiting configurations to the simple bubble trees considered in Theorem 1.1.

Theorem 1.4. Let .N; g/ be a closed analytic manifold of any dimension and let u0 2
H 1.†;N / be any map with E.u0/ � E� for E� defined in (1.11). Then the correspond-
ing solution of harmonic map flow (1.10) either converges smoothly to a harmonic map
u1W†! N as t !1 as described in [18] or it converges to a simple bubble tree in the
following sense:

There exist a point a 2 † and a harmonic sphere y!W S2 ! N so that the energy of
u.t/ converges to E1 D E.y!/ at a rate of

jE.u.t// �E1j � Ce
�c1
p
t ; c1 D c1.N; .†; g/; E1/ > 0 (1.12)

if 
1 D 2, respectively if 
1 2 .1; 2/, at a rate of

jE.u.t// �E1j � Ct
�


1
2�
1 .log t /


1
2�
1 ; (1.13)

while for any ˛ < 
1�1

1

the maps converge in L2 at a rate of

ku.t/ � !.p�/kL2.†/ � C jE.u.t// �E1j
˛; (1.14)

as well as in C k on every compact subset K of † n ¹p�º also at a rate of

ku.t/ � !.p�/kC k.K/ � C jE.u.t// �E1j
˛: (1.15)

Here, 
1 2 .1; 2� is so that (1.3) is valid with exponent 
1 for all harmonic spheres with
energy E1 and the constant C is allowed to depend on the setting, the specific solution
and, in the cases of (1.14) and (1.15), additionally on ˛ � 
1�1


1
> 0 and K.

Remark 1.5. As the set of harmonic spheres with energyE1 < 2ES2 is compact modulo
Möbius transforms, there always exists an exponent 
1 2 .1; 2� so that (1.3) holds true for
any harmonic sphere y! with E.y!/ D E1. If all Jacobi fields along harmonic maps of
energy E1 are integrable then we can drop the assumption that N is analytic and choose

1 D 2.

The first setting in which it was known that harmonic map flow must become singular,
be it at finite or infinite time, is for degree˙1maps u0 from the torus to the sphere, where
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the results of Eells–Wood [5] exclude the existence of a harmonic map that is homotopic
to u0. While E� D 8� for N D S2, in this setting we obtain the following improvement
of the above result:

Corollary 1.6. Suppose that u0 2H 1.T 2; S2/ has degree˙1 and energy E.u0/ � 12� .
Then the corresponding solution of harmonic map flow (1.10) either develops a bubble
at a finite time T after which the flow converges exponentially to a constant or the flow
converges to a simple bubble tree at a rate of O.e�c

p
t / as described in Theorem 1.4.

The paper is organised as follows: In Section 2 we explain the construction of the
adapted bubbles zW†! N with which we will later compare more general almost har-
monic maps uW†! N and state a version of our Łojasiewicz estimates for maps in a
uniform H 1 \ L1-neighbourhood of the resulting finite-dimensional manifold Z; com-
pare Theorem 2.5. This theorem will then be proved in the subsequent Sections 3 and 4
and will in turn form the basis of the proof of Theorem 1.1 and of all other main results of
the paper.

2. Definition of the adapted bubbles

Our set of adapted bubbles will be a finite-dimensional manifold of maps

Z WD
®
z
a;!
�
W †! N; � � �1; a 2 †; ! 2 H�1

1 .y!/
¯

obtained by scaling maps !WS2! N , which are elements of a suitable finite-dimensional
manifold H�1

1 .y!/, with a large factor �, and then gluing them in a specific way to a point
a 2 †, as we describe in detail in the second part of this section.

A crucial point in the construction of this manifold Z is to ensure that the second
variation of the energy is uniformly definite orthogonal to Z. Therefore, the choice of the
set of the underlying maps H�1

1 .y!/ from S2 to N , which we use to define the elements
of Z, will crucially depend on the properties of the second variation of the energy at the
limiting harmonic sphere y!WS2 ! N .

We recall that w 2 �.y!�TN/ is called a Jacobi field along y! if d2E.y!/.w; v/ D 0
for all v 2 �.y!�TN/, or equivalently if w is a solution of

Ly!.w/ WD Py!

� d
d"

ˇ̌̌
"D0

�.�N .y! C "w//
�
D 0: (2.1)

As the tension transforms according to �.! ı q/ D 1
2
jrqj2�.!/ ı q under conformal

changes q, we know that any variation M ."/ of IdW S2 ! S2 in the set of Möbius trans-
forms Möb.S2/ induces a Jacobi field w D d

d"
j"D0.y! ıM

."// along y!.
If the second variation of the energy is non-degenerate at y! in the sense that all Jacobi

fields are of this form, as was the case in [12], then we set

H�1
1 .y!/ WD

®
y! ıR W R 2 SO.3/; jp� �Rp�j � �1

¯
for a sufficiently small number �1 > 0.
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If all Jacobi fields along y! are integrable, but not necessarily induced by Möbius
transforms, then we use that the set of harmonic maps near y! is a manifold H .y!/ with
Ty!H .y!/ D ker.Ly!/ on which the energy is constant; compare [18]. In this situation we
can split

ker.Ly!/ D V0.y!/˚ VMöb.y!/; VMöb.y!/ WD Ty!
®
y! ıM WM 2 Möb.S2/

¯
L2-orthogonally, fix a parametrisation ‰1W ker.Ly!/ � U! H .y!/ with ‰1.0/ D y! and
d‰1.0/D Id and consider the submanifold H0.y!/D‰1.U\V0.y!//which, for U small,
is transversal to the action of Möbius transforms. For suitably small �1 > 0 we then let
H�1
0 .y!/ WD ¹‰1.w/ W w 2 V0.y!/ with kwkL2 � �1º and set

H�1
1 .y!/ WD ¹! ıR W R 2 SO.3/; ! 2 H�1

0 .y!/ with jp� �Rp�j � �1º:

If we are instead dealing with a non-integrable setting, then we also need to consider maps
that are obtained by adapting certain non-harmonic maps !WS2 ! S2 in order to obtain
a set of adapted bubbles which is large enough to capture all non-definite directions of
the second variation. In this situation we choose H0.y!/ as a suitable submanifold of the
manifold used by Simon in [18] and define H�1

0 .y!/ and H�1
1 .y!/ as described above. We

discuss the precise definition of H0.y!/ in this case in Appendix A and for now simply
record that it has the following properties:

Lemma 2.1. Let y!W S2 ! N be a harmonic map into an analytic target N , let k 2 N,
ˇ > 0 and let H0.y!/ be the submanifold of C kC2;ˇ .S2; N / defined in Appendix A. Then

ker.Ly!/ D Ty!
®
! ıM W ! 2 H0.y!/; M 2 Möb.S2/

¯
(2.2)

and there exists a constant C so that for any ! 2 H0.y!/,

k�gS2 .!/kC k.S2/ � Ck�gS2 .!/kL2.S2/ (2.3)

and so that we can choose !."/ in H0.y!/ with !."D0/ D !, k@"!."/kC k.S2/ � C and

d

d"
E.!."// � k�gS2 .!/kL2.S2/: (2.4)

Here and in the following, all derivatives with respect to " will be evaluated at " D 0.

Having thus chosen the set H�1
1 .y!/ of maps we want to scale and glue to a point

a 2 †, we now turn to the precise construction of the maps za;!
�

, for a 2 †, ! 2 H�1
1 .y!/

and sufficiently large �. We note that the right definition of these maps za;!
�

is crucial to
ensure that the first and second variations of the energy on Z have the right properties for
our method of proof to work; compare also [12, Theorem 2.2].

Let � WR2 ! S2 n ¹p�º, p� WD .0; 0; 1/T, be the inverse stereographic projection

�.x/ D
� 2x

1C jxj2
;
jxj2 � 1

jxj2 C 1

�T
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and set ��.x/ WD �.�x/, � > 0. We want to define our adapted bubbles

z
a;!
�
W†! N for ! 2 H�1

1 .y!/, � � �1, a 2 †;

�1, �1 chosen later, in a way that za;!
�
.p/ � !.��.x// in the following local isothermal

coordinates x D Fa.p/.

Remark 2.2. Given any a 2 † we let FaWB�.a/ ! Dr0 D ¹x 2 R2 W jxj < r0º; � WD
1
2

inj.†; g/, be as in [12, Remark 3.1]: If .†; g/ is a flat unit area torus we set r0 D �

and use Euclidean translations Fa to the origin on a fundamental domain as coordinates.
Conversely, for higher genus surfaces we set r0 D tanh.�=2/ and choose an orientation-
preserving isometric isomorphism Fa that maps .B�.a/; g/ to the disc Dr0 in the Poincaré
hyperbolic disc .D1; 4

.1�jxj2/2
gE /.

While in the higher genus case this only determines the maps Fa up to a rotation of the
domain, the specific choice of Fa will not affect the definition of the set of adapted bubbles
as rotations of the coordinates correspond to the action of the subgroup of SO.3/ which
fixes p�. In the few places where a consistent choice of Fa for a in a neighbourhood of
some a0 is needed, we can fix a tiling of the Poincaré hyperbolic disc and use hyperbolic
translations to the origin as explained in [12, Remark 3.4].

Since
��.x/ D p

�
C

� 2x

�jxj2
; 0
�T
CO.��2/ for jxj � c > 0;

we can write

z!�.x/ WD !.��.x//

D !.p�/C d!.p�/
� 2x

�jxj2
; 0
�T
CO.��2/ for jxj � c > 0; (2.5)

where we note that this expansion is valid for the function z!�, as well as its derivatives
with respect to x. We will later on consider variations z" of adapted bubbles obtained by
variations of either the bubble parameter �" or of the underlying map !."/ 2 H�1

1 .y!/ and
will always assume that these variations are chosen so that

j@"�"j � C� and k@"!
."/
kC 2.S2/ � C (2.6)

as this corresponds to variations of order 1 after rescaling. We note that for such variations,
the expansion (2.5) also gives an expansion for @" z!

."/

�"
and its spatial derivatives with an

error term of the same order O.��2/.
As in [12] we modify z!� with the help of the Green’s function G, characterised by

��pG.p; a/ D 2�ıa � 2�.Area.†; g//�1 on †:

Letting Ga be the function that represents G in the above coordinates we recall that

Ga.x; y/ WD G.F
�1
a .x/; F �1a .y// D � log jx � yj C Ja.x; y/; x; y 2 Dr0
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for a smooth harmonic function Ja which represents the regular part of Green’s function;
see [12] for more detail. In particular,

ryGa.x; 0/ D
x

jxj2
CryJa.x; 0/;

and we will use this to adapt the maps z!� to give well-defined maps va;!
�
W†!Rn, which

we will later project onto N to obtain our adapted bubbles za;!
�
W†! N ,! Rn. To do

this, we let j a;!
�
WDr0 ! Rn be defined by

j
a;!
�

.x/ WD
2

�
d!.p�/.ryJa.x; 0/ � ryJa.0; 0/; 0/T;

and fix a cut-off function � 2 C1c .Dr0 ; Œ0; 1�/ with � � 1 on D r0
2

, r0 > 0 as in Remark
2.2. The maps va;!

�
W†! Rn are then defined as

v
a;!
�
.p/ D !.p�/C

2

�
d!.p�/.@a1G.p; a/�@y1Ja.0; 0/; @a2G.p; a/�@y2Ja.0; 0/; 0/

T

on† nB�.a/, where @ai D .F �1a /�@yi , while on B�.a/ we set va;!
�
.p/D Qv

a;!
�
.Fa.p// for

Qv
a;!
�
WDr0 ! Rn given by

Qv
a;!
�
WD �Œz!� C j

a;!
�

�C .1 � �/
h
!.p�/C

2

�
d!.p�/.ryGa.�; 0/ � ryJa.0; 0/; 0/T

i
:

We note that forN D S2 ,! R3 and ! D Id this definition of va;!
�

essentially agrees with
the choice of the adapted bubbles in the H -surface case in [12], except that here we need
to ensure that j a;!

�
.0/D 0 as our problem does not have the translation invariance present

in [12].
On B�.a/ we can use that the function va;!

�
is represented in the above coordinates by

Qv
a;!
�
D z!� C j

a;!
�
C e

a;!
�

(2.7)

for an error term e
a;!
�

that is supported on Dr0 nD r0
2

and there of order

ke
a;!
�
kC 2 C k@"e

a;!
�
kC 2 D O.�

�2/: (2.8)

We will in particular use that since j a;!
�

.0/ D 0 we have

j Qv
a;!
�
.x/� z!�.x/j � C�

�1
jxj C C��2 and jr. Qv

a;!
�
� z!�/j � C�

�1 on Dr0 ; (2.9)

and that analogous estimates also hold true for the derivatives of these quantities with
respect to ". Away from BQ�.a/ WD F

�1
a .Dr0=2/, we can instead use that

kv
a;!
�
� !.p�/kC 2.†nBQ�.a// C k@".v

a;!
�
� !."/.p�//kC 2.†nBQ�.a// � C�

�1: (2.10)

We now let ıN > 0 be so that the nearest point projection �N to N is well defined and
smooth in a ıN -tubular neighbourhood of N ,! Rn. Then, for sufficiently large �1 � 2,
the above estimates imply that dist.va;!

�
.�/;N /� C��11 < ıN on†, allowing us to project

these maps to define our adapted bubbles za;!
�
W†! N by

z
a;!
�
.p/ WD �N .v

a;!
�
/; � � �1; a 2 †; ! 2 H�1

1 .y!/:
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Remark 2.3. In the following, all results are to be understood as being true for the set
of adapted bubbles Z D Z�1

�1
for sufficiently large �1 � 2 and sufficiently small �1 > 0,

both allowed to depend only on .†; g/, N and y!. At times we will furthermore need to
consider a smaller subset of this set given by

Z N�N�
WD
®
z
a;!
�
W � � N�; a 2 † and ! 2 H N�

1 .S
2/
¯

for suitable N� � �1 and 0 < N� � �1. Furthermore, we use the convention that C denotes
a constant, allowed to change from line to line, which only depends on y!, .†; g/ and N
unless indicated otherwise, and we will use the shorthand A . B to mean that A � CB
for such a constant C .

In the following it will be important that we do not work with respect to the standard
inner product on H 1.†;Rn/, but instead use an inner product that appropriately weighs
the L2-part of the norm in the bubble region.

Definition 2.4. Given any z D za;!
�
2 Z we consider the inner product

hv;wiz WD

Z
†

rvrw C �2zvw dvg ; v; w 2 H 1.†;Rn/;

where the weight �z is given by �z � �

1C�2r20
on † n B�.a/, while

�z.p/ D ��.x/ WD
1

2
p
2
jr��.x/j D

�

1C �2jxj2
for p D F �1a .x/ 2 B�.a/:

At times we will also want to use local versions of the above norm, so set

kwk2z;� WD krwk
2
L2.�/

C k�zwk
2
L2.�/

; for � � †:

We note that the weight �z W†! RC is continuous and that we can bound

jrzj � C�z and kr.Pzw/kz � Ckwkz (2.11)

for any w 2 H 1.†;Rn/ and any z 2 Z. A short calculation (see Appendix B) givesˇ̌̌̌−
†

w dvg

ˇ̌̌̌
� C.†;g/.log�/

1
2 kwkz ; (2.12)

and thus allows us to bound

kwkLp.†;g/ � C.log�/
1
2 kwkz ; p 2 Œ1;1/; C D C.p; .†; g//: (2.13)

With these definitions in place we can finally formulate our main result in the form
that we will prove in Sections 3 and 4 and that will subsequently form the basis of the
proofs of all other main results.
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Theorem 2.5. Let .†; g/ be any closed surface of positive genus, let N be any analytic
closed manifold and let y!WS2 ! N be any harmonic map with d y!.p�/ ¤ 0. Then there
exist numbers " > 0, N� � �1, N� 2 .0; �1/ and C <1 so that for every u 2H 1.†;N / for
which there exists Qz 2 Z N�

N�
with

kr.u � Qz/kL2.†;g/ C ku � QzkL1.†;g/ < ";

Z N�
N�

as in Remark 2.3, we can bound

dist.u;Z/ WD inf
z2Z
ku � zkz � Ck�g.u/kL2.†;g/.1C jlogk�g.u/kL2.†;g/j

1
2 /; (2.14)

while the estimate

jE.!/ �E.u/j � Ck�g.u/k

1
L2.†;g/

.1C jlog k�g.u/kL2.†;g/j
1
2 /
1 ; (2.15)

holds true for the exponent 
1 2 .1; 2� for which (1.3) holds.
Furthermore, for each such u there exists z 2 Z with ku � zkz D dist.u;Z/ and the

bubble scale of any such z D za;!
�

satisfies

��1 � Ck�g.u/kL2.†;g/ � .1C jlog k�g.u/kL2.†;g/j
1
2 / (2.16)

while the tension of the underlying map !WS2 ! N is controlled by

k�gS2 .!/kC 2.S2/ � Ck�g.u/kL2.†;g/ � .1C jlog k�g.u/kL2.†;g/j
1
2 /: (2.17)

3. Properties of the energy on the set of adapted bubbles

3.1. Basic properties of the second variation of the Dirichlet energy

We first recall the following standard expression for the second variation of the Dirichlet
energy, for which we include a short proof for the convenience of the reader.

Lemma 3.1. For any u 2 H 1.†; N / and v; w 2 �H
1\L1.u�TN/ we can write the

second variation of the Dirichlet energy d2E.u/.v;w/ WD d
d"
j"D0

d
dı
jıD0E.�N .uC "vC

ıw// as

d2E.u/.v; w/ D

Z
†

rvrw � A.u/.ru;ru/A.u/.v; w/ dvg : (3.1)

Proof. We write u" WD �N .u C "v/ D u C "v C O."2/ and use that the negative L2-
gradient of E is given by �g.u"/ D �gu" CA.u"/.ru";ru"/ D Pu".�gu"/ to compute

d2E.u/.v; w/ D �
d

d"

ˇ̌̌
"D0

Z
�g.u"/w dvg D �

d

d"

ˇ̌̌
"D0

Z
�gu"Pu".w/ dvg

D

Z
��gvw dvg C

Z
�gu.�dPu/.v/.w/ dvg

D

Z
rvrw dvg C

Z
�guA.u/.v; w/ dvg ;

which gives the claim since the normal component of �gu is �A.u/.ru;ru/.
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We note that if u 2 W 1;p.†/ for some p > 2, so in particular if uD z 2 Z, then d2E
has a unique extension to a continuous bilinear form on �H

1
.u�TN/ and we will in the

following consider d2E on this space.
The above expression, combined with (2.11), immediately implies that d2E is

uniformly bounded on the (non-compact) set Z of adapted bubbles equipped with the
weighted norms k � kz in the sense that

jd2E.z/.w; v/j � Ckwkzkvkz for every z 2 Z and all v;w 2 �H
1

.z�TN/: (3.2)

We also note that differences of second variation terms evaluated at different maps
Ou; Qu 2 H 2.†; N / and corresponding tangent vector fields Qv1;2 2 �H

1
. Qu�TN/, Ov1;2 2

�H
1
. Ou�TN/ can be bounded by

jd2E. Qu/. Qv1; Qv2/ � d
2E. Ou/. Ov1; Ov2/j

.
Z
jr. Ov1 � Qv1/j jr Ov2j C jr Qv1j jr. Ov2 � Qv2/j

C

Z
.jr Quj2 C jr Ouj2/Œj Ov1 � Qv1j j Ov2j C j Ov2 � Qv2j j Qv1j�

C

Z
j Ov1j j Ov2j Œj Ou � Quj jr Ouj

2
C jr. Ou � Qu/j jr Ouj C jr. Ou � Qu/j2�;

where all integrals are computed over .†; g/.
We will use this formula mainly for OuD za;!

�
2Z and for maps QuD ut D�N .zC tw/,

t 2 Œ0; 1�, that interpolate between z and a map uD zCw 2H 2.†;N /with kwkL1 < ıN
and for vector fields obtained by projecting suitable v1;2W†! Rn onto the corresponding
tangent spaces. In that situation the above formula, combined with (2.11), gives

jd2E.ut /.Put v1; Put v2/ � d
2E.z/.Pzv1; Pzv2/j

.
Z
jwj jrv1j jrv2j C

Z
.jwj�z C jrwj/.jv1j jrv2j C jv2j jrv1j/

C

Z
jv1j jv2j.jwj�

2
z C jrwj�z C jrwj

2/: (3.3)

3.2. Uniform definiteness of the second variation orthogonal to Z

One of the key features of our set of adapted bubbles is that the second variation of the
energy is uniformly definite in directions orthogonal to Z. Namely we prove the following
lemma:

Lemma 3.2. Let y!WS2!N be any harmonic map and let Z be the set of adapted bubbles
defined above. Then there exists c0 > 0 so that for every z 2Z we can write the orthogonal
complement Vz of TzZ in .�H

1
.z�TN/; h�; �iz/ as an orthogonal sum Vz D VCz ˚V�z of

spaces which are so that for v˙ 2 V˙z ,

d2E.z/.vC; v�/ D 0 and ˙ d2E.z/.v˙; v˙/ � c0kv˙k
2
z :

Here h�; �iz and the associated norm are as in Definition 2.4.
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We remark that an analogous property holds true for the manifold used in [18] in the
proof of the classical Łojasiewicz–Simon inequality, and there directly follows as maps in
this manifold are C k close to y! and as Ty!H D ker.Ly!/.

Here we have to proceed with more care since our set Z is non-compact. As in the
proof of the corresponding statement [12, Lemma 3.6] for theH -surface energy, we prove
this result by establishing a uniform gap around 0 in the spectrum of the projected Jacobi
operator, though here use energy considerations rather than Lorentz-space techniques as
we do not have the explicit divergence structure present in [12].

Proof of Lemma 3.2. We note that for each fixed z 2 Z the space �H
1
.z�TN/ equipped

with h�; �iz is a Hilbert space, so Riesz’s representation theorem allows us to consider the
corresponding Jacobi operator QLz W �H

1
.z�TN/! �H

1
.z�TN/ which is characterised

by
d2E.z/.v; w/ D h QLzv;wiz for every v;w 2 �H

1

.z�TN/:

From the definition of the inner product and Lemma 3.1 it is easy to see that QLz D Id�Kz
for Kz W�H

1
.z�TN/! �H

1
.z�TN/ characterised by

Pz.��gKz.v//C �
2
zKz.v/ D bz.v/

WD �2zv C
X
hA.z/.rz;rz/; �jz iPz.d�

j
z .v//;

¹�
j
p º a local orthonormal frame of T ?p N . We note that the right-hand side is bounded

by jbz.v/j � C�2z jvj, so as �z 2 L1.†/ we have that Kz is a compact and self-adjoint
operator on .�H

1
.z�TN/; h�; �iz/.

In order to construct the desired splitting of Vz we then consider the projected Jacobi
operator OLz WD PVz ı QLzjVz D IdVz �

yKz , PVz the orthogonal projection onto Vz , which
can be equivalently characterised as the unique operator OLz WVz ! Vz which is so that

d2E.z/.v; w/ D h OLzv;wiz for every v;w 2 Vz :

As yKz D PVz ıKzjVz is also self-adjoint and compact, we know that the eigenvalues of
OLz are real and tend to 1 and that there exists an orthonormal eigenbasis of .Vz ; h�; �iz/. It
hence suffices to show that there exists c0 > 0 so that, after increasing �1 and decreasing
�1 if necessary, none of the operators OLz , z 2 Z, has an eigenvalue in Œ�c0; c0�. This
will imply that the lemma holds true for V˙z chosen as the span of the eigenfunctions to
positive, respectively negative, eigenvalues.

To prove this eigenvalue gap we argue by contradiction. Suppose there exist sequences
of adapted bubbles zi D z

ai ;!i
�i

2 Z with �i !1 and !i ! y! and of elements vi 2 Vzi ,
normalised to kvikzi D 1, so that OLzi vi D �ivi for some �i ! 0. We first claim that there
exists a number c1 > 0 so that for all sufficiently large i ,Z

D
�
�1=3
i

�2�i j Qvi j
2 dx � c1; where Qvi WD vi ı F �1ai : (3.4)



Łojasiewicz inequalities for almost harmonic maps near simple bubble trees 15

To see this we use that �zi is of order O.��1i / away from the ball B�.ai /, while ��i D
�i

1C�2i jxj
2 � �

� 13
i on Dr0 nD

�
�1=3
i

. We can thus bound

�i D h OLzi vi ; vi izi D kvik
2
zi
� hKzi .vi /; vi izi D 1 �

Z
†

bzi .vi /vi dvg

� 1 � C

Z
D
�
�1=3
i

�2�i j Qvi j
2 dx � C�

� 23
i kvik

2
L2.†/

� 1 � C�
� 23
i log.�i / � C

Z
D
�
�1=3
i

�2�i j Qvi j
2 dx;

where we use that the Poincaré hyperbolic metric is uniformly equivalent to the Euclidean
metric on Dr0 in the penultimate step and (2.13) in the last step. As �i ! 0 this yields the
claimed lower bound (3.4) for all sufficiently large i .

We now proceed to construct a sequence of maps wi W S2 ! Rn that converges to a
limit w1 which is a non-trivial Jacobi field at y! but also orthogonal to

Xy! WD Ty!
®
! ıM W ! 2 H0.y!/; M 2 Möb.S2/

¯
:

This leads to the desired contradiction since H0.y!/ is chosen in a way that ensures that
Xy! agrees with the space ker.Ly!/ D ker. OLy!/ of Jacobi fields at y!; compare Lemma 2.1.

To construct these maps wi we first define

zwi D �i Qvi .�
�1
i �/C .1 � �i / Nvi WR

2
! Rn;

where we let Nvi D
¬
Ai
Qvi dx be the mean value over the annulus Ai D D

2�
�1=3
i

n D
�
�1=3
i

and we set �i .x/D �.�
� 23
i jxj/ for some fixed � 2 C1c .Œ0; 2/; Œ0; 1�/ with � � 1 on Œ0; 1�.

As zwi is constant near infinity, we have wi WD zwi ı ��1 2 H 1.S2;Rn/ and we can
bound

kwik
2
H1.S2/

D

Z
R2

jr zwi j
2
C j@x1� ^ @x2�j j zwi j

2 dx D
Z

R2

jr zwi j
2
C
1

2
jr�j2j zwi j

2 dx

.
Z

D
2�
�1=3
i

jr Qvi j
2
C jr��i j

2
j Qvi j

2
C

−
Ai

j Qvi � Nvi j
2
C j Nvi j

2
kr�k2

L2.R2nD
�
2=3
i

/

. kvik2zi C C�
�4=3
i j Nvi j

2 . kvik2zi ;

where the last step follows as ��i � c�
� 13
i on Ai and thus �

� 43
i j Nvi j

2 . �
� 23
i

R
Ai
j Qvi j

2 dx .
kvik

2
zi

.
After passing to a subsequence, the maps wi thus converge to a limit w1 weakly in

H 1.S2;Rn/, strongly in L2.S2;Rn/ and almost everywhere. Away from the shrinking
discs �.R2 nD

�
2=3
i

/ � S2, the maps wi D vi ı .��i ı Fai /
�1 are tangential to N along

Ozi WD zi ı .��i ı Fai /
�1
D !i CO.�

�1
i /! y!; (3.5)
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so the limit w1 must be tangential along y!, i.e. an element of �H
1
.y!�TN/. Further-

more, w1 is non-trivial as wi ! w1 strongly in L2.S2;Rn/ and as the L2-norms of the
maps wi are bounded away from zero thanks to (3.4). We now want to prove that w1 is
orthogonal to the space Xy! with respect to the inner product

hv;wi WD

Z
S2
rwrw C c
wv dvgS2 :

Remark 3.3. Here we set c
 D 1
4

if 
 D 1 as this ensures that .�� ı Fa/�gS2 D c
�2za;!
�

g

on B�.a/, while we set c
 D 1 if 
 � 2 and use that in this case ..�� ı Fa/�gS2/.p/ D
c
�

2
z
a;!
�

.1CO.distg.p; a/2//g.p/ for p 2 B�.a/.

We can use the following lemma; see Appendix B for a sketch of the proof.

Lemma 3.4. Let zi D z
ai ;!i
�i

be a sequence of adapted bubbles for which �i !1 and
!i ! y!. Then there exist bases ¹eij º

K
jD1 of TziZ that are orthonormal with respect to

h�; �izi and that converge to an orthonormal basis ¹e1j º
K
jD1 of .Xy! ; h�; �i/ in the sense that

Oeij WD e
i
j ı .��i ı Fai /

�1 ! e1j smoothly locally on S2 n ¹p�º while

lim
ƒ!1

lim sup
i!1

keij kzi ;†nBƒ��1
i
.ai / D 0 for j D 1; : : : ; K: (3.6)

As wi * w1 in H 1.S2/ we obtain that, for j D 1; : : : ; K,

hw1; e
1
j i D lim

ƒ!1

Z
�.Dƒ/

rw1re
1
j C c
w1e

1
j dvgS2

D lim
ƒ!1

lim
i!1

Z
�.Dƒ/

rwir Oe
i
j C c
wi Oe

i
j dvgS2

D lim
ƒ!1

lim
i!1

Z
F �1ai .Dƒ��1

i
/

rvire
i
j C vie

i
j�
2
zi

dvg

D � lim
ƒ!1

lim
i!1

Z
†nF �1ai .Dƒ��1

i
/

rvire
i
j C vie

i
j�
2
zi

dvg D 0;

where we use Remark 3.3 in the third step, the orthogonality of vi to TziZ in the penul-
timate step and (3.6) as well as that kvikzi D 1 in the last step.

Having thus shown that w1 ? X.y!/ D ker.Ly!/, it now remains to show that

d2E.y!/.w1; �/ D 0 for all � 2 �H
1

.y!�TN/:

We note that this is trivially true if � itself is a Jacobi field and that it hence suffices to
consider � 2 �H

1
.y!�TN/ with � ? ker. OLy!/.

Given such an � we set N�i WD
¬
Ar0

� ı ��i dx, Ar0 WD Dr0 n D r0
2

, and define �i 2

�H
1
.z�i TN/ as �i D Pzi . N�i / on † n B�.ai /, while for p D F �1ai .x/ 2 B�.ai /,

�i .p/ WD Pzi .p/. .x/�.��i .x//C .1 �  .x// N�i /

for a fixed cut-off  2 C1c .Dr0/ with  � 1 on D r0
2

.
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As d2E is conformally invariant and as ��1=3i �
1
2
r0 for sufficiently large i , we get

d2E.zi /.vi ; �i / D

Z
�.D

�
2=3
i

/

r.P Ozi�/rwi C A. Ozi /.r Ozi ;r Ozi /A. Ozi /.P Ozi�;wi /dvgS2

C erri ; (3.7)

for Ozi defined by (3.5) and jerri j � Ckvikzi k�ikzi ;†nF �1ai .D��1=3
i

/. We recall that �zi . ��1i

away from BQ�.a/ and note that a short calculation, similar to the proof of (2.12) carried
out in the appendix, gives j N�i j . .log �i /

1
2 k�kH1.S2/. As kvikzi D 1, this allows us to

conclude that

jerri j . ��1i j N�i j C k� ı ��i � N�ikL2.Ar0 /
C


��i j� ı ��i j C jr.� ı ��i /j

L2.Dr0nD��1=3

i

/

. ��1i .log�i /
1
2 k�kH1.S2/ C k�kH1.�.R2nD

�
2=3
i

// ! 0:

Combined with wi * w1 in H 1.S2/ and kOzi � y!kC 1.�.D�i r0 // ! 0, which follows as
!i ! y! smoothly on S2 and kOzi � !ikC 1.�.D�i r0 // � C�

�1
i ! 0, this shows that the

right-hand side of (3.7) converges to d2E.y!/.w1; �/. We thus conclude that

jd2E.y!/.w1; �/j D lim
i!1
jd2E.zi /.vi ; �i /j � jh OLzi vi ; P

Vi�i ij C Ckvikzi kP
TziZ�ikzi

� j�i jk�ikzi C CkP
TziZ�ikzi :

As k�ikzi � Ck�kH1.S2/ CC�
�1
i j N�i j is uniformly bounded and as we have assumed that

�i ! 0, we know that the first term in this estimate tends to zero as i ! 1. We can
furthermore use Lemma 3.4 to see that for j D 1; : : : ; K,

lim
i!1
he
j
i ; �i izi D lim

ƒ!1
lim
i!1
he
j
i ; �i izi ;†nF �1ai .Dƒ��1

i
/ C lim

ƒ!1
lim
i!1
h Oe
j
i ; P Ozi .�/i�.Dƒ/

D 0C lim
ƒ!1

hej1; �i�.Dƒ/ D he
j
1; �i D 0;

where the last step follows as �? ker.Ly!/DXy! . Hence kP TziZ�ikzi ! 0 and we indeed
obtain d2E.y!/.w1;�/D 0. Thusw1 2 ker.Ly!/, contradicting the previously established
fact that w1 is a non-trivial element of .ker.Ly!//?.

3.3. Expansion of the energy on the set Z of adapted bubbles

The goal of this section is to identify variations in the space of adapted bubbles for which
the leading-order term in the energy expansion appears with a known sign and scaling.

In the integrable case, where all elements of Z are built out of harmonic maps !WS2!
N , we will only need to consider variations .z"/ induced by a change of the bubble para-
meter. In the general case we will additionally need to consider .z"/ induced by variations
of the underlying maps !."/ 2 H�1

1 .y!/. To treat both types of variations at the same time
we first show the following lemma:
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Lemma 3.5. For any variation z" D z
a;!."/

�"
in Z for which (2.6) holds we have

d

d"
E.z"/ D

d�

d"
�

Z
D r0
2

j
a;!
�

�@� z!� dx C
d

d"
E.!."//C err (3.8)

for an error term that is bounded by

jerrj � C��3 C C��2
�
k@"!

."/
kC 2.S2/ C k�gS2 .!/kC 1.S2/

�
:

Proof. Let z D z
a;!
�
2 Z and let z" D z

a;!."/

�"
be a variation for which (2.6) holds. To

lighten the notation we write for short v D va;!
�

, j D j a;!
�

and denote the corresponding
variations by @"v WD d

d"
v
a;!."/

�"
, @"j" WD d

d"
j
a;!."/

�"
and @" z!� D d

d"
.!."/ ı ��"/.

We first remark that away from the ball B�.a/ we have �gv D 0 as the derivatives of
the Green’s function are harmonic functions. Combined with the estimate (2.8) on the error
term in (2.7) and with �g.z/D Pz.�gz/D Pz.d�N .v/.�gv/C d2�N .v/.rv;rv//, we
hence get

j�gvjCj@"�gvjCjrvj
2
Cj@"rvj

2
Cj�g.z/jCj@"�g.z/j . ��2 on † n BQ�.a/: (3.9)

We also note that (2.10) yields a bound of j@"zj . ��1 C �0 on this set, where here
and in the following we write for short �0 WD j@"!."/.p�/j. We thus obtain

d

d"
E.z/ D �

Z
†

@"z � �g.z/ dvg D �
Z
BQ�.a/

@"z ��gz dvg CO.��3 C �0��2/

D �

Z
D r0
2

@" Qz �� Qz dx CO.��3 C �0��2/ (3.10)

for Qz D z ıF �1a . Here and in the following we can carry out all computations on D r0
2

with
respect to the Euclidean metric, as the above integral is conformally invariant. On this set
we can write Qz D �N .z!� C j / as

Qz D z!� C Pz!�.j /CE D z!� C j � P
?
z!�
.j /CE; (3.11)

where the lower-order error term

E D

Z 1

0

d

dt
�N .z!� C tj / dt � Pz!�.j / D

Z 1

0

.d�N .z!� C tj / � d�N .z!�//.j / dt

satisfies the estimates

jEj C j@"Ej . ��2jxj2; jrEj C j@"rEj . ��2jxj; j�Ej C j@"�Ej . ��2: (3.12)

Here and in the following we use that

jj j C j@"j j . ��1jxj; j@"rj j . ��1; j@"r��j . �� and ��jxj � 1; (3.13)
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while

j@" z!�j .
.j@"�j C �/jxj

1C �2jxj2
C �0 . .1C �jxj/�1 C �0 and j@"r z!�j . �z : (3.14)

In the following it will also be useful to note that this implies that

j@" Qzj . .1C �jxj/�1 C �0; (3.15)

that we can trivially bound

j�z!�j C j@"�z!�j . Œk!kC 2.S2/ C k@"!
."/
kC 2.S2/�Œjr��j

2
C j@"�j jr��j j@�r��j�

. �2z ; (3.16)

and that we have estimates of

��jxj C .1C �jxj/�1

L2.D r0
2
/

. ��1.log�/
1
2 ;

��jxj C .1C �jxj/�1

L1.D r0

2
/

. ��1:
(3.17)

From (3.10), (3.11) and �gj D 0 we thus obtain

d

d"
E.z/ D �

Z
D r0
2

@" z!��.z!� � P
?
z!�
j /C @".Pz!�j /�z!�

C err1 CO.��3 C �0��2/ (3.18)

for an error term that is bounded by

jerr1j .
Z

D r0
2

j@".Pz!�j /j j�P
?
z!�
j j C j@"Ej.j�z!�j C j�P

?
z!�
j j/C j�Ej j@"z"j

. ��2
Z

D r0
2

�2�jxj
2
C ��jxj C �

�2�0 C �
�2
k.1C �jxj/�1kL1.D r0

2
/

. ��3 C �0�
�2:

We then note that

�

Z
D r0
2

@" z!��z!� D �

Z
R2

@" z!��.z!�/C err2 D
d

d"

ˇ̌̌
"D0

E.!."//C err2; (3.19)

where err2 D
R

R2nD r0
2

@" z!��.z!�/ is also bounded by

jerr2j . k@" z!�kL1.R2nD r0
2
/k�gS2 .!/kL1.S2/

Z
R2nDr0=2

jr��j
2
D O.��3 C �0�

�2/:
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Here and in the following we use that �� is conformal and hence

�.z!�/ D
1

2
jr��j

2
� �gS2 .!/ ı ��: (3.20)

Rewriting

@".Pz!�j / ��z!� D @".Pz!�j ��z!�/ � Pz!�j � @"�z!� D @".j � �.z!�// � Pz!�j � @"�z!�

and setting err3 WD �
R

D r0
2

@".j�.z!�//, we hence obtain from (3.18) and (3.19) that

d

d"
E.z"/ D

d

d"
E.!."//C

Z
D r0
2

Pz!�j � @"�z!� C�.P
?
z!�
j / � @" z!�

C err3 CO.��3 C �0��2/

D
d

d"
E.!."//C

Z
D r0
2

j � @"�z!� C err3 C err4 CO.��3 C �0��2/;

where we integrate by parts in the second step. We can use (3.14) as well as that j 2
T!.p�/N to estimate the resulting the boundary term by

jerr4j � k@" z!�kC 1.@D r0
2
/k.P

?
z!�
� P?!.p�//.j /kC 1.@D r0

2
/ D O.�

�3
C �0�

�2/;

while combining (3.20) with (3.13) and (3.17) allows us to estimate

jerr3j . ��1
�
k�gS2 .!/kC 1.S2/ C k@"!

."/
kC 2.S2/

�

jxj�2z

L1.D r0
2
/

. ��2.k�gS2 .!/kC 1.S2/ C k@"!
."/
kC 2.S2//:

We finally remark that
R

D r0
2

j @"�z!� D
d�
d"

R
D r0
2

j @��z!� C err5 for

jerr5j �
Z

D r0
2

jj j j�..@"!
."// ı ��/j. ��1k@"!

."/
kC 2



jxj�2z

L1.D r0
2
/
. ��2k@"!

."/
kC 2 :

Altogether this yields the claim of Lemma 3.5.

We now show that the integral
R
j @��!� appearing in (3.8) has a given sign and

scaling in � and indeed essentially only depends on a 2 †, � and jd!.p�/j.
To state this in detail we first note that as d y!.p�/ ¤ 0 we can always assume that

�1 > 0 is chosen small enough to ensure that

jd!.p�/j �
1

2
jd y!.p�/j > 0 for all ! 2 H�1

1 .y!/:

Writing for short ˛! WD 1p
2
jd!.p�/jgS2 , we note that if ! is harmonic then the vectors

¹˛�1! re1!.p
�/;˛�1! re2!.p

�/º are orthonormal since harmonic maps from S2 are weakly
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conformal. While this is not true for general elements ! 2 H�1
1 .y!/ in the non-integrable

case, the above will still hold up to a small error as elements of H�1
1 .y!/ are C k close to

the harmonic map y!.
So given any number �1 > 0 we can assume that �1 > 0 is chosen small enough so

that for any ! 2 H�1
1 .y!/ there exists a matrix S! 2M.n/ with

d!.p�/.ei / D ˛!S!ei 2 Rn; i D 1; 2; and jST!S! � Idj � �1: (3.21)

Here we denote by ¹eiº the standard basis of both R3 and Rn, as appropriate. We note
that as S! will only be applied to elements of R2 � ¹0º � Rn in the construction below
the particular choice of S! in the other directions is irrelevant. We can then prove the
following lemma:

Lemma 3.6. For any ! 2 H�1
1 .y!/, � � �1 and a 2 † we haveZ

D r0
2

j
a;!
�

�g@� z!� dvg D 4�jd!.p�/j2J.a/��3 CO.��4/CO.jST!S! � Idj��3/

for S! as in (3.21) and J.a/ WD limx!0.@y1@x1 C @y2@x2/Ga.x; 0/; where Ga.x; y/ D
G.F �1a .x/;F �1a .y// is the function that represents the Green’s function in the coordinates
Fa introduced in Remark 2.2.

Remark 3.7. We recall from [12] that the function J, which depends only on the domain
surface .†; g/, is strictly negative on any surface of positive genus.

Proof of Lemma 3.6. Extending !WS2 ! N ,! Rn to a neighbourhood of S2 by setting
!.x/ D !.jxj�1x/, we can view d!.p�/ as a map from R3 to Rn with d!.p�/.e3/ D
0. Thus (3.21) allows us to write d!.p�/.@���/ D ˛!S!.@� N��; 0n�2/

T; where N�� D
.�1
�
; �2
�
/WR2 ! R2 is given by the first two components of the rescaled inverse stereo-

graphic projection ��. We can use this to estimate

k@�.z!� � ˛!S!. N��; 0/
T/kC 1.@D r0

2
/ D kŒd!.��/ � d!.p

�/�.@���/kC 1.@D r0
2
/

. k!kC 2.S2/k�� � p�kC 1.@D r0
2
/k@���kC 1.@D r0

2
/

. ��3:

Integration by parts, also using kj a;!
�
kC 1.D r0

2
/ D O.�

�1/ and �gj
a;!
�
D 0, thus givesZ

D r0
2

j
a;!
�

�@� z!� D

Z
D r0
2

j
a;!
�

�.˛!S!@�. N��; 0/
T/CO.��4/

D ˛!

Z
D r0
2

.ST!j
a;!
�

/ � .�@� N��; 0/
T
CO.��4/:
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Writing for short Oja WD 2ryJa.�; 0/ � 2ryJa.0; 0/WDr ! R2, we now recall that j a;!
�

is given by j a;!
�
D ��1d!.p�/. Oja; 0/

T D ��1˛!S!. Oja; 0/
T. As ��1

R
j Ojaj j�@���j .

��2
R
jxj�2

�
. ��3 we thus obtainZ

D r0
2

j
a;!
�

�@� z!� dx D ˛2!�
�1

Z
D r0
2

Oja�@� N�� dxCO.��4C jST!S! � Idj��3/: (3.22)

Up to the factor ˛2! and the constant shift in Oja, the leading-order term in (3.22) is exactly
the same as the leading-order term obtained in the proof of [12, Lemma 3.7]. Following
the argument there we can thus combine the Taylor expansion of Oja with the symmetries
of � N�� D �jr��j2 N�� D �16�x

.1C�2jxj2/3
to compute

˛2!�
�1

Z
D r0
2

Oja�@� N��

D �˛2!�
�1

X
iD1;2

2@xi @yiJa.0/

Z
D r0
2

xi@�

� 16�xi

.1C �2jxj2/3

�
CO.��4/

D ˛2!
8�

�3
.@x1@y1Ja.0/C @x2@y2Ja.0//CO.�

�4/

D ˛2!
8�

�3
J.a/CO.��4/:

Inserting this into (3.22) and using that ˛2! D
1
2
jd!.p�/j2 gives the claim of the lemma.

We first use the above lemmas to control the variation of the energy induced by a
change of the bubble parameter. To this end we note that given any �2 > 0 we can choose
�1 > 0 sufficiently small to ensure that

k�gS2 .!/kC 1.S2/ � �2 for all ! 2 H�1
1 .y!/

since y! is harmonic. For suitable choices of �1 and �1 we can thus combine Lemmas 3.5
and 3.6 with Remark 3.7 to obtain the following corollary:

Corollary 3.8. There exist constants c1 > 0 and C <1 so that for any z D za;!
�
2 Z,

C��2 � ��
d

d�
E.z

a;!
�
/ � c1�

�2:

Remark 3.9. As an immediate consequence we obtain

jE.z;†/ �E.!; S2/j � C�.z/�2 for any z 2 Z:

In the non-integrable case we furthermore need to control the tension of the underlying
map ! if ! 2H�1

1 .y!/ is not harmonic. To this end we let !0 2H�1
0 .y!/ andR 2 SO.3/ be
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so that ! D !0 ıR and set !."/ D !."/0 ıR for !."/0 as in Lemma 2.1. As such a variation
satisfies (2.6) and as (2.4) ensures that

d

d"
E.!."// D

d

d"
E.!

."/
0 / � k�gS2 .!0/kL2.S2/ D k�gS2 .!/kL2.S2/;

Lemma 3.5 immediately yields the following corollary:

Corollary 3.10. There exists a constant C <1 so that for any z D za;!
�
2Z for which !

is in the interior of H�1
1 .y!/, there exists a variation !."/ of ! in H�1

1 .y!/ satisfying (2.6)
so that

d

d"
E.z

a;!."/

�
/ � k�gS2 .!/kL2.S2/ � C�

�2

for the corresponding variation of adapted bubbles (with fixed � and a).

3.4. Estimates on the tension and the second variation on Z

To prove our main result we furthermore need the following estimates on the scaling of
the first and second variations of the energy at points of our adapted bubble set.

Lemma 3.11. For any z D za;!
�
2Z andw 2 �H

1
.z�TN/ with kwkz D 1, we can bound

jdE.z/.w/j � C��2.log�/
1
2 C Ck�gS2 .!/kC 1.S2/;

while for all variations z" D z
a;!."/

�"
satisfying (2.6) we have

jd2E.z/.@"z; w/j � C�
�2.log�/

1
2 C Ck�gS2 .!/kC 1.S2/ C C�

�1
k@"!

."/
kC 2.S2/

C CkP!.@"�gS2 .!
."///kL2.S2/: (3.23)

Remark 3.12. For the variations z.1/" D z
a;!
�.1�"/

considered in Corollary 3.8, this lemma
yields a bound of

kd2E.z/.@"z
.1/
" ; �/k � C��2.log�/

1
2 C Ck�gS2 .!/kC 1.S2/;

where we compute the operator norm with respect to k � kz . For more general variations,
the term kP!.@"�gS2 .!

."///kL2.S2/ D kL!.@!
."//kL2.S2/ can be of order one, but will be

small since Ty!H�1
1 .y!/ D ker.Ly!/. For variations z.2/" as in Corollary 3.10 we will hence

simply use that, after increasing �1 and decreasing �1 > 0 if necessary,

kd2E.z/.@"z
.2/; �/k � �3

for a small constant �3 > 0 that is chosen later on.

Proof of Lemma 3.11. The main step in the proof of the lemma is to derive suitable bounds
on the tension �g.z/ and its variation Pz.@"�g.z// on BQ�.a/. To do this we can work in
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the usual isothermal coordinates in which z is represented by Qz and estimate the tension
of Qz with respect to the Euclidean metric on D r0

2
. Writing Qz as in (3.11) gives

�. Qz/ D PQz.� Qz/ D T1 C T2 C err1 on D r0
2

for terms
T1 WD PQz.�z!�/ and T2 WD PQz.�.Pz!�j //

that we analyse in detail below and an error term err1 D PQz.�E/ for which (3.12) gives

jerr1j C j@"err1j D O.��2/:

As we can write T1 D .Pz!� � PQz/.A.z!�/.r z!�;r z!�//C PQz.�.z!�// we can estimate

jT1j . j Qz � z!�j�2� C j�.z!�/j . ��1jxj�2� C k�gS2 .!/kC 0.S2/�
2
�I

compare (3.20). Furthermore, we can use (3.12)–(3.15) to bound

jPQz@"T1j . j@". Qz � z!�/j�2� C jQz � z!�j.j@" z!�j�
2
� C j@"r z!�j��/

C j@" Qzj j�.z!�/j C jPQz.@"�.z!�//j

. ��1jxj�2� C k�gS2 .!/kC 0.S2/�
2
� C jPQz.@"�.z!�//j:

To bound the last term we use that (3.20) and (3.13) giveˇ̌̌
@"�.z!�/ �

1

2
jr��j

2.@"�gS2 .!// ı ��

ˇ̌̌
. k�gS2 .!/kC 1.S2/�

2
�;

thus allowing us to bound

jPQz.@"�.z!�//j � C�
�1
jxj j@"�.z!�/j C jPz!�.@"�.z!�//j

. ��1jxj�2� C k�gS2 .!/kC 1.S2/�
2
�

C j.P!@"�gS2 .!// ı ��j � jr��j��:

All in all we thus have an estimate of

jPQz.@"T1/j . ��1jxj�2� C k�gS2 .!/kC 1.S2/�
2
� C j.P!@"�gS2 .!// ı ��j � jr��j��:

Since j is harmonic we have T2 D �PQz.�.P?z!�j //, so working with respect to a local
orthonormal frame ¹�kº of T ?N and summing over k we get

T2 D �h�
k
z!�
; j iPQz.��

k
z!�
/ ��.h�k

z!�
; j i/.PQz � Pz!�/.�

k
z!�
/

� 2r.h�k
z!�
; j i/PQz.r�

k
z!�
/; (3.24)

allowing us to bound

jT2j . jj j�2� C jrj j jj j�� C ��jh�
k
z!�
;rj ij . ��1jxj�2� C �

�1��.1C �jxj/
�1

since j maps into T!.p�/N and j z!� � !.p�/j . .1C �jxj/�1.
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Furthermore, differentiating (3.24) with respect to " and using (3.13) gives

j@"T2j . Œjj j C j@"j j��
2
� C C Œjrj j C j@"rj j���jj j

C jh�k
z!�
;rj ij�� C jh�

k
z!�
; @"rj ij�� C j@" z!�j jrj j��

. ��1jxj�2� C �
�1��j!� � !.p

�/j C ��1.k@"!
."/
kC 1 C .1C j�xj/

�1/��

. ��1jxj�2� C �
�1.k@"!

."/
kC 1 C .1C j�xj/

�1/��;

where the penultimate step uses (3.14), as well as that @�rj D ��1rj 2 T!.p�/N and
thus jP!.p�/.@"rj /j . ��1k@"!

."/kC 1 .
All in all we thus find that on D r0

2
,

j�. Qz/j . Œ��1jxj�� C �
�1.1C j�xj/�1 C k�gS2 .!/kC 0.S2/����� C �

�2; (3.25)

while

jPQz.@"�. Qz//j . ��1Œjxj�� C k@"!
."/
kC 1.S2/ C .1C j�xj/

�1��� C �
�2

C k�gS2 .!/kC 1.S2/�
2
� C j.P!@"�gS2 .!// ı ��j jr��j��; (3.26)

where we note that

k.P!@"�gS2 .!// ı ��jr��jkL2.D r0
2
/ D
p
2kP!.@"�gS2 .!//kL2.��.D r0

2
//:

As the energy is conformally invariant, kwkz D 1 and as �g.z/ and @"�g.z/ are of
order O.��2/ on † n BQ�.a/ (compare (3.9)), we hence get from (3.25), (2.13) and (3.17)
that

jdE.z/.w/j D

ˇ̌̌̌Z
†

�g.z/w dvg

ˇ̌̌̌
� C��2kwkL1.†/ C

Z
D r0
2

j�. Qz/j jw ı F �1a j dx

. ��2.log�/
1
2 C ��1kjxj��kL2.D r0

2
/ C �

�1
k.1C j�xj/�1kL2.D r0

2
/

C k�gS2 .!/kC 0.S2/

. ��2.log�/
1
2 C k�gS2 .!/kC 0.S2/;

as claimed in the lemma. Finally, as w is tangential to N along z we have

d2E.z/.@"z; w/ D �

Z
†

@"�g.z/ � w dvg D �
Z
†

Pz.@"�g.z// � w dvg

D �

Z
D r0
2

PQz.@"�. Qz// � w ı F
�1
a dx CO.��2kwkL1.†//

and inserting (3.26) and (3.17) immediately gives the second claim (3.23) of the lemma.
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4. Proof of Theorem 2.5

We now turn to the proof of our first main result. To this end we first observe that two
adapted bubbles with quite different scales �1, �2 respectively with quite different under-
lying maps !1 and !2 cannot be close. Namely, we have the following lemma for which
we provide a short proof in the appendix.

Lemma 4.1. Let y! be any harmonic sphere and let �1 � 2, �1 > 0 be any given numbers
for which ZDZ�1

�1
is well defined. Then there exist numbers "3>0 and �2��1 depending

only on �1, y!, .†; g/ and N so that

kz
a;!
�
� z
Qa;z!
Q�
kza;!

�
� "3 (4.1)

for all elements za;!
�
; z
Qa;z!
Q�
2 Z with � � �2 for which either � Q��1 … Œ1

2
; 2� or for which

! 2 H
1
3�1
1 .y!/ while z! 2 H�1

1 .y!/ nH
2
3�1
1 .y!/.

Furthermore, for any " > 0 there exist ı > 0 and �3 � �2 so that for any za;!
�
; z
Qa;z!
Q�
2Z

with � � �3 we have

kz
a;!
�
� z
Qa;z!
Q�
kL1.†/ <

1

2
" whenever kza;!

�
� z
Qa;z!
Q�
kza;!

�
< ı: (4.2)

This lemma now allows us to prove that in the setting of Theorem 2.5 we have the
following lemma:

Lemma 4.2. Let y! be any harmonic sphere and let �1 � 2, �1 > 0 be any given numbers
for which Z D Z�1

�1
is well defined. Then for every " > 0 there exist "1 > 0 and N� � �1 so

that for any u 2 H 1.†;N / for which

ku � z0kL1.†/ C kr.u � z0/kL2.†/ < "1 for some z0 2 Z
1
3�1
N�
;

we have that the infimum dist.u;Z/ WD infz2Z ku � zkz is attained on Z and for every
minimiser z of this distance we have that z 2 Z n @Z and

ku � zkL1.†/ < ":

Proof. Let " > 0 and let u 2 H 1.†; N / and z0 D z
a0;!0
�0

2 Z
1
3�1
N�

be so that the above

assumptions are satisfied for numbers "1 2 .0; 12"/ and N� > max.�3; 2�1/ that are chosen
below, �3 the constant from Lemma 4.1.

Since
R
�2z dvg is bounded uniformly on Z, we have that ku � z0kz � C"1 for every

z 2Z. We can thus choose "1 > 0 small enough so that any z D za;!
�
2Z with kz � ukz �

kz0 � ukz0 must be so that

kz0 � zkz � kz � ukz C kz0 � ukz � kz0 � ukz0 C kz0 � ukz � 2C"1 < min.ı; "3/;

for ı; "3 > 0 as in Lemma 4.1. As �.z0/ � �3 � �2 we can apply this lemma to con-
clude that any such z is contained in the compact subset of adapted bubbles for which the



Łojasiewicz inequalities for almost harmonic maps near simple bubble trees 27

parameters are constrained by � 2 Œ1
2
�.z0/; 2�.z0/� and ! 2H

2
3�1
1 . Hence z 7! ku� zkz

achieves its minimum over Z on this compact subset and any minimiser in Z is contained
in this subset of Z n @Z. Furthermore, the last part of Lemma 4.1 yields that any minimiser
satisfies ku � zkL1 � kz � z0kL1 C ku � z0kL1 < "

2
C "1 � ".

As the norm k � kz depends on z, we cannot expect that the difference w D u � z

between u and a minimiser z of Qz 7! ku� QzkQz is orthogonal to TzZ. However, as we will
see in Lemma B.2 in the appendix, we can bound the variation of the weight �z along any
variation z" 2 Z by

k@"�zkL2.†/ � Ck@"zkz : (4.3)

This allows us to obtain that w D u� z is almost orthogonal to TzZ in the sense given in
the following lemma:

Lemma 4.3. Let u 2 H 1.†;N / and suppose that z 2 Z n @Z minimises Qz 7! ku � QzkQz
on Z. Then w WD u � z satisfies

kP TzZ.Pzw/kz � CkwkL1.†/kwkz ; (4.4)

where Pz denotes the (pointwise) orthogonal projection from Rn to Tz.p/N , while
P TzZW�H

1
.z�TN/! TzZ is the h�; �iz-orthogonal projection.

Proof. Given any variation z" of a minimiser z 2Z n @Z of Qz 7! ku� QzkQz we can combine
the resulting constraint that d

d"
j"D0ku � z"k

2
z"
D 0 with (4.3) to conclude that at " D 0,

hw; @"ziz D

Z
†

�z@"�z" jwj
2 dvg

� CkwkzkwkL1.†/k@"�z"kL2.†/

� CkwkzkwkL1.†/k@"z"kz :

As kPzw � wkz � CkwkL1kwkz (compare (4.8) below), we thus obtain the bound

jhPzw; vizj � CkwkL1kwkzkvkz for every v 2 TzZ;

which is equivalent to claim (4.4) of the lemma.

This almost orthogonality of w to TzZ is sufficient to exploit the uniform definiteness
of the second variation orthogonal to Z. This is crucial to obtain the following initial
estimate on w, which will play the role of [12, Lemma 2.7] in this new setting where we
work with a family of distances induced by the norms k � kz on the infinite-dimensional
set of maps H 1.†;N / rather than in a fixed Hilbert space.

Lemma 4.4. There exists "2 > 0 so that for any u 2 H 1.†;N / for which

ku � zkz D inf
Z
ku � QzkQz < "2 and kz � ukL1.†/ < "2 (4.5)
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for some z D za;!
�
2 Z n @Z, we can bound w WD u � z by

kwk2z � C.dE.u/ � dE.z//. zwz/C C log�k�g.u/kL2.†;g/kwk
2
z (4.6)

and therefore have

kwkz . k�g.u/kL2.†;g/.log�/
1
2 C ��2.log�/

1
2 C k�gS2 .!/kL2.S2/

C .log�/2k�g.u/k2L2.†;g/:

Here, zwz D .PVCz � PV�z /.Pzw/ is defined using the h�; �iz-orthogonal projections from
�H

1
.z�TN/ to the subspaces V˙z obtained in Lemma 3.1.

Both for this proof, and in later parts of the proof of Theorem 2.5, we consider the
maps

ut D �N .z C tw/ for w D u � z and t 2 Œ0; 1�:

We note that these maps are well defined if "2 < ıN and will be in H 2.†;N / since any
map u 2 H 1.†;N / with �g.u/ 2 L2.†/ is automatically in H 2.†;N /; see e.g. [13,15].
We will also use that jrut j � jrzj C jrwj and thus that for v 2 H 1.†;Rn/,

kvjrut jk
2
L2.†/

C kPut .v/k
2
z � Ckvk

2
z C C

Z
jrwj2jvj2 dvg :

We also remark that for any s 2 Œ0;1�we can write d
ds
us D d�N .zC sw/.w/DPus .w/C

errs for an error term errs 2 �H
1
.u�s TN/ that is bounded by

jerrsj � C jwj2 with jrerrsj � C�zjwj2 C C jwj jrwj: (4.7)

Integrating over s 2 Œ0; 1� and using that also j.Put � Pus /.w/j � C jwj
2 we thus get

jw � Putwj � C jwj
2 while jr.w � Putw/j � C jwj jrwj C C jwj

2�z

for any t 2 Œ0; 1� and we will in particular use that

kw � Putwkz � CkwkL1kwkz : (4.8)

Proof of Lemma 4.4. Let u and z be so that (4.5) is satisfied for a number "2 2 .0; ıN / that
is chosen below. We set wz WD Pz.w/, let zwz D .PVCz � PV�z /.wz/ be as in the lemma
and note that (4.8) implies that

kw � wzkz � C"2kwkz while k zwzkz � kwzkz � Ckwkz :

We can hence combine Lemmas 3.2 and 4.3 with (3.2) to obtain

d2E.z/.wz ; zwz/ D d
2E.z/.PVCz wz C P

V�z wz ; P
VCz wz � P

V�z wz/

C d2E.z/.P TzZwz ; zwz/

� c0.kP
VCz wzk

2
z C kP

V�z wzk
2
z/ � CkP

TzZwzkzk zwzkz

� c0.kwzk
2
z � kP

TzZwzk
2
z/ � CkwkL1kwk

2
z

� .c0.1 � C"
2
2/ � C"2/kwk

2
z �

c0

2
kwk2z ;
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where c0 > 0 is the constant obtained in Lemma 3.2 and where the last inequality holds
after reducing "2 > 0 if necessary. As

.dE.u/ � dE.z//. zwz/ D

Z 1

0

d

dt
.dE.ut /. zwz// dt D

Z 1

0

d

dt
.dE.ut /.Put zwz// dt

D

Z 1

0

d2E.ut /
� d
dt
ut ; Put zwz

�
C dE.ut /

� d
dt
Put zwz

�
dt

D

Z 1

0

d2E.ut /.Putw C errt ; Put zwz/

C

Z
†

rutr
�
Put

� d
dt
Put zwz

��
dvg dt ;

we thus conclude that
c0

2
kwk2z � d

2E.z/.wz ; zwz/ � .dE.u/ � dE.z//. zwz/C sup
Œ0;1�

T1 C T2 C T3 (4.9)

for

T1 WD jd
2E.ut /.Putw;Put zwz/ � d

2E.z/.wz ; zwz/j;

T2 WD

Z
jrut j

ˇ̌̌
r

�
Put

� d
dt
Put zwz

��ˇ̌̌
;

T3 WD jd
2E.ut /.errt ; Put zwz/j:

To bound the first term we apply (3.3) for v1 D w and v2 D zwz giving

T1 � C

Z
jwj jrwj jr zwzj C C

Z
.jwj�z C jrwj/.jwj jr zwzj C jrwj j zwzj/

C C

Z
j zwzj jwj.jwj�

2
z C jrwj�z C jrwj

2/

� CkwkL1kwk
2
z C C

Z
j zwzj jrwj

2

�

�
C"2 C

c0

8

�
kwk2z C C

Z
j zwzj

2
jrwj2: (4.10)

As zwz is obtained using the non-local projections PV˙z we do not have a pointwise bound
on zwz . Instead we use that j�gwj � j�guj C j�gzj . j�g.u/j C �2z C jrwj2 (compare
also (3.16)) to bound

I1 WD

Z
j zwzj

2
jrwj2 D �

Z
wj zwzj

2�gw � 2

Z
.wrw/ � . zwzr zwz/

� CkwkL1 Œk�g.u/kL2k zwzk
2
L4
C kwk2z C I1�:

After possibly reducing "2 > 0 and applying (2.13) we thus get

I1 � C"2Œlog�k�g.u/kL2 C 1�kwk
2
z
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and so obtain from (4.10) that

T1 �
�
C"2 C

c0

8

�
kwk2z C C"2 log�k�g.u/kL2kwk

2
z :

To bound T2 we write, summing over repeated indices j ,

Put

� d
dt
Put zwz

�
D Put

�
�
d

dt
.h�jut ; zwzi�

j
ut
/
�
D �h�jut ; zwziPut

� d
dt
�jut

�
D �h�jut � �

j
z ; zwziPut .d�

j
ut
.Putw C errt //;

where we used that zwz 2 TzN in the last step. We can thus estimate

T2 .
Z
jrut j.�zjwj C jrwj/jwj j zwzj C jrut j jwj.jrwj j zwzj C jr zwzj jwj/ dvg

. kwkL1kwk2z :

Finally, we can use (3.1) and (4.7) to also bound

T3 . krerrtkL2kr zwzkL2 C
Z
jrut j

2
jerrt j j zwzj . kwkL1kwk2z :

All in all, we thus get

T1 C T2 C T3 �
�
C"2 C

c0

8

�
kwk2z C C"2 log�k�g.u/kL2kwk

2
z :

Combined with (4.9) this gives the first claim (4.6) of the lemma provided "2 > 0 is chosen
sufficiently small.

We can then combine (4.6) with the bound on dE.z/ obtained in Lemma 3.11 and
with (2.13) to deduce that

kwk2z � C Œk�g.u/kL2.log�/
1
2 C ��2.log�/

1
2 C k�gS2 .!/kL2.S2/�k zwzkz

C Ck�g.u/k
2
L2
.log�/2kwkz C kwk3z :

As we can assume that "2 < 1
2

, we can absorb the last term into the right-hand side and
use for a final time that k zwzkz � Ckwkz to obtain the second claim of the lemma.

We now want to derive suitable bounds on ��1 and on k�gS2 .!/kL2.S2/ in terms of
the tension of u. To this end we will exploit the lower bounds on the variations of the
energy in the specific directions of TzZ obtained in Corollaries 3.8 and 3.10, as well as
the bounds on the second variation from Lemma 3.11; see also Remark 3.12 .

These results tell us that for z.1/" WD z
a;!
.1�"/�

,

dE.z/.@"z
.1// � c1�

�2;

kd2E.z/.@"z; �/k � C�
�2.log�/

1
2 C Ck�gS2 .!/kL2.S2/;

(4.11)
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while for the variations z.2/" WD z
a;!."/

�
as considered in Corollary 3.10,

dE.z/.@"z
.2// � k�gS2 .!/kL2.S2/ � C�

�2 and kd2E.z/.@"z; �/k � �3 (4.12)

for a number �3 > 0 that we can still choose and for constants c1 > 0 and C <1 that
only depend on N , y! and .†; g/.

Again writing ut D �N .zC tw/ and wz D Pz.w/ for short, we have that for i D 1; 2,

dE.z/.@"z
.i// D dE.u/.@"z

.i//C d2E.z/.@"z
.i/; wz/ �

Z 1

0

T4.t/ dt (4.13)

for

T4 WD
d

dt
ŒdE.ut /.@"z

.i//� � d2E.z/.wz ; @"z
.i//

D dE.ut /
� d
dt
.Put @"z

.i//
�
C d2E.ut /

� d
dt
ut ; Put @"z

.i/
�
� d2E.z/.Pzw; @"z

.i//

D

Z
rutr

�
Put

� d
dt
.Put @"z

.i//
��
C d2E.ut /.Putw C errt ; Put @"z

.i//

� d2E.z/.Pzw; @"z
.i//:

As j@"z.i/j . 1 and j@"rz.i/j . �z , we can use (3.3) to bound

jd2E.ut /.Putw;Put .@"z
.i/// � d2E.z/.Pzw; @"z

.i//j . kwk2z ;

while (3.1) and (4.7) ensure that jd2E.ut /.errt ; Put .@"z
.i///j . kwk2z also.

As Put .
d
dt
.Put .@"z

.i//// D �
P
j h�

j
ut � �z ; @"z

.i/iPut .d�ut .Putw C errt //, we can
also boundˇ̌̌̌Z

rutr
�
Put

� d
dt
Put @"z

.i/
��ˇ̌̌̌

.
Z
Œ�z C jrwj�Œjwj j@"z

.i/
j.jrwj C �zjwj/C jwj

2
j@"rz

.i/
j�

. kwk2z

and thus get jT4j . kwk2z .
For the variation z.1/" which satisfies (4.11), we hence obtain from (4.13) that

c1�
�2
� dE.u/.@"z

.1//C d2E.z/.@"z
.1/; wz/C Ckwk

2
z

� k�g.u/kL2k@"z
.1/
kL2 C C.�

�2.log�/
1
2 C k�gS2 .!/kL2.S2//kwkz C Ckwk

2
z

. ��1.log�/
1
2 k�g.u/kL2 C �

�4.log�/C k�gS2 .!/k
2
L2.S2/

C kwk2z ;

where norms are computed over † unless stated otherwise and where we use that

k@"z
.1/
kL2 . ��1 C k.1C �jxj/�1kL2.D r0

2
/ . ��1.log�/

1
2 :
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Combined with Lemma 4.4, and after increasing �1 if necessary, we hence obtain

��2 . ��1.log�/
1
2 k�g.u/kL2 C log�k�g.u/k2L2 C .log�/4k�g.u/k4L2

C k�gS2 .!/k
2
L2.S2/

:

Thus, either ��1.log�/�
1
2 �k�g.u/kL2 and so ��1 �Ck�g.u/kL2.1C jlogk�g.u/kL2 j

1
2 /

or ��1 � Ck�gS2 .!/kL2.S2/, so in any case

��1 . k�gS2 .!/kL2.S2/ C k�g.u/kL2.1C jlogk�g.u/kL2 j
1
2 /: (4.14)

On the other hand, applying (4.13) for the variation z.2/" which satisfies (4.12) as well as
k@"z

.2/kL2 � C and using Lemma 4.4 gives

k�gS2 .!/kL2.S2/ . ��2 C jdE.u/.@"z
.2//j C jd2E.z/.@"z

.2/; wz/j C kwk
2
z

. ��2 C k�g.u/kL2k@"z
.2/
kL2 C �3kwkz C "3kwkz

� ��2.log�/
1
2 C k�g.u/kL2.log�/

1
2 C .log�/2k�g.u/k2L2

C .�3 C "3/k�gS2 .!/kL2.S2/:

As we can assume that "3 and �3 are chosen small enough we thus conclude that

k�gS2 .!/kL2.S2/ . ��2.log�/
1
2 C k�g.u/kL2.log�/

1
2 C k�g.u/k

2
L2
.log�/2: (4.15)

We can thus eliminate k�gS2 .!/kL2.S2/ from (4.14) and get

��1 . ��2 log�C k�g.u/kL2 Œ1C jlogk�g.u/kL2 j
1
2 C .log�/

1
2 �C k�g.u/k

2
L2
.log�/2:

For sufficiently large �1 we hence obtain our claimed bound (2.16) of

��1 � Ck�g.u/kL2.†/Œ1C jlogk�g.u/kL2.†/j
1
2 �: (4.16)

Inserting this back into (4.15) and using (2.3) implies that also

k�gS2 .!/kC k.S2/ � Ck�gS2 .!/kL2.S2/

� Ck�g.u/kL2.†/Œ1C jlogk�g.u/kL2.†/j
1
2 � (4.17)

as asserted in (2.17). From Lemma 4.4 we then obtain the claimed bound (2.15), i.e.

dist.u;Z/ D kwkz � Ck�g.u/kL2.†/Œ1C jlogk�g.u/kL2.†/j
1
2 �: (4.18)

We now recall that E.za;!
�
/ � E.!/ D O.��2/ (compare Remark 3.9) and that jE.!/ �

E.y!/j is controlled by the classical Łojasiewicz–Simon inequality (1.3). Combined with
the bound on dE.z/ from Lemma 3.11 this gives

jE.u/ �E.y!/j

� jE.u/ �E.z/j C jE.!/ �E.y!/j C C��2
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. jdE.z/.w/jC
Z 1

0

jdE.z/.w/� dE.ut /.wC errt /j dt Ck�gS2 .!/k

1
L2.S2/

C��2

. ��2.log�/
1
2 kwkz C k�gS2 .!/kC 1.S2/kwkz C kwk

2
z C k�gS2 .!/k


1
L2.S2/

C ��2

since jdE.z/.w/ � dE.ut /.w/j D j
R
rzr.Pzw/ � rutr.Putw/ dvg j � Ckwk2z .

Inserting the bounds (4.16), (4.17) and (4.18) on �, �gS2 .!/ and kwkz into this estim-
ate yields finally the remaining claim (2.15) of Theorem 2.5.

5. Proofs of Theorem 1.1 and Corollary 1.3

Proof of Theorem 1.1. Let .un/ be a sequence of almost harmonic maps which converges
to a simple bubble tree as described in the introduction. We let �n, an be parameters so
that (1.2) holds. From the definition of the adapted bubbles we hence obtain

kun � z
an;y!
�n
kL1.†;g/ C kr.un � z

an;y!
�n

/kL2.†;g/ ! 0 as n!1;

where we work on a fixed fundamental domain of † and use Euclidean, respectively
hyperbolic, translations to the origin to get a consistent choice of coordinates Fan in the
definition of the adapted bubbles. For sufficiently large n we can thus apply Theorem
2.5. This immediately yields the claim (1.6) on the energy E.un/. It also implies that the
bubble scale Q�n of elements znD z

Qan;z!n
Q�n

2Z which minimise Qz 7! kun � Qzkz is controlled
by (2.16). As Lemma 4.1 implies that the originally chosen �n are so that �n 2 Œ12

Q�n; 2 Q�n�

we also get the same bound on �n and for the rest of the proof we can assume that �nD Q�n
and an D Qan.

If z!n is harmonic, which will always be the case in the integrable setting, we can
simply set !n D z!n. Otherwise we use that the classical Łojasiewicz–Simon inequality
(1.4) implies that there exists a harmonic map !nW S2 ! S2 which is C k close to y! so
that

k!n � z!nkL2.S2/ � Ck�.z!n/k

2
L2.S2/

� CT 
2
n jlog Tnj


2
2 : (5.1)

We note that the same type of estimate also holds for k!n � z!nkC 1.S2/ since both !n and
z!n are elements of H�1

1 .y!/. We can also use that

kz!n ı ��n ı Fan � znkC 1.B�.an// C kzn � z!n.p
�/kC 1.†nB�.an// . ��1n I

compare (2.9) and (2.10). Combining this with (2.14) and the already-established bound
(1.5) on the bubble scale, we get that, for r1 < � and sufficiently large n,

kr.un � !n ı ��n ı Fan/kL2.Br1 .a//
C krunkL2.†nBr1 .a//

� Ck!n � z!nkC 1.S2/ C C�
�1
n C kun � znkzn � CT 
2

n jlog Tnj

2
2

for the same exponent 
2 2 .0; 1� for which (1.4) holds, as claimed in (1.7).



M. Rupflin 34

To establish the L2-estimate (1.8) we note that

kzn � z!n.p
�/kL2.†/ . ��1n C k.1C �njxj/

�1
kL2.Dr0 /

. ��1n .log�n/
1
2 . Tn.log Tn/I

compare (3.17) and (1.5). Combined with (5.1) this gives

kzn � !n.p
�/kL2.†/ . Tnjlog Tnj C k!n � z!nkC 0 . Tnjlog Tnj C T 
2

n jlog Tnj

2
2 :

Finally, (1.9) follows from (2.15) and (5.1) since we have a lower bound of ��n � cƒ�n,
cƒ > 0, on discs D

ƒQ��1n
.

Proof of Corollary 1.3. Let N be an analytic manifold of any dimension, let .†; g/ be a
closed surface of genus at least 1 and suppose that there exists an accumulation point xE <
E� D min.E�

S2
; 2ES2 ; E.†;g/ C ES2/ of the energy spectrum. Thus there are harmonic

maps ui W†! N with E.ui / ¤ E.uj / for i ¤ j and E.ui /! xE. We note that the maps
ui cannot subconverge smoothly to a harmonic map u1W†! N as Simon’s Łojasiewicz
estimate ensures that all harmonic maps in a neighbourhood of u1 have the same energy.
Thus the sequence must undergo bubbling: As each bubble requires energy of at least
ES2 and as xE < 2ES2 the corresponding bubble tree cannot contain multiple bubbles. As
xE is also less than ES2 C E.†;g/, the base map must furthermore be trivial. Finally, the

assumption that xE < E�
S2

ensures that the bubble y! is not branched. We are hence in the
setting of Theorem 1.1 and the resulting estimate (1.6) implies that E.ui / D E.!/ for
sufficiently large i leading to a contradiction.

6. Convergence of harmonic map flow

Proof of Theorem 1.4. Let u be a solution of the harmonic map flow (1.10) as considered
in Theorem 1.4. If there is any sequence tn!1 along which the flow converges strongly
inH 1 to a (potentially trivial) harmonic map u1W†! N , then Simon’s results from [18]
imply that the flow converges indeed along all t !1 to u1.

We can thus assume that for every sequence tn ! 1 with k�g.u.tn//kL2 ! 0, a
subsequence of .u.tn// converges to a non-trivial bubble tree. As the flow is not constant,
and thus E.u.t// < E.u.0// � E�, we can argue as in the proof of Corollary 1.3 to
conclude that these bubble trees, which might depend on the chosen subsequence, are
all simple and that the obtained bubbles ! are all unbranched and have energy E.!/ D
E1 WD limt!1E.t/.

It is convenient to choose the rescalings in this convergence to a bubble tree to be
around centres a.t/ and at scales �.t/ which are chosen so that

E.u.t/; F �1a.t/.D�.t/�1// D sup
a2†

E
�
u.t/; F �1a .D�.t/�1/

�
D
1

2
ES2 ;

as this ensures that the obtained bubbles are contained in a compact subsetK �H 2.†;N /

of harmonic spheres: indeed, the upper bound of 1
2
ES2 on the energy of the maps
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u.tn/ ı .��.tn/ ı Fa.tn//
�1WS2 ! N on balls with fixed radius gives such an upper bound

for the bubbles also, which in turn makes it impossible for a sequence of such bubbles !n
to undergo bubbling itself.

As Theorem 2.5 is applicable on a suitable H 1 \L1-neighbourhood of each y! 2 K,
we can consider a finite cover of K by such neighbourhoods to deduce that there exist
"; N�;C > 0 and 
1 > 1 so that the Łojasiewicz estimate

jE.u/ �E1j � Ck�g.u/k

1
L2.†;g/

.1C jlogk�g.u/kL2.†;g/j/

1
2 (6.1)

holds true for every u 2 H 1.†;N / for which there exist y! 2 K, a 2 † and � � N� with

ku � z
a;y!
�
kH1.†;g/ C ku � z

a;y!
�
kL1.†;g/ < ": (6.2)

We note that there exist ı0 > 0 and T � 0 so that (6.2), and hence (6.1), hold true for all
u.t/ with t � T and k�g.u.t//kL2 < ı0; indeed, otherwise there would be tn !1 with
k�.u.tn//kL2 ! 0 for which .u.tn// does not have a subsequence converging to a simple
bubble tree.

As (6.1) is trivially true if k�g.u.t//kL2 � ı0 (after increasing C if necessary) and
as we can assume that E.T / � E1 � 1

2
, we thus conclude that Ed .t/ WD E.u.t// � E1

satisfies
0 � Ed .t/

2

1 jlogEd .t/j�1 � C0k�g.u.t//k2L2.†/ (6.3)

for t � T and some C0 > 0, and thus

�
d

dt
Ed .t/ D k�g.u.t//k

2
L2.†/

� C�10 Ed .t/
2

1 jlogEd .t/j�1: (6.4)

We can now proceed as in [18] and [21] to establish the claimed convergence of the flow.
If 
1 D 2 then (6.4) implies that

.logEd .t//2 � 2C�10 .t � T /C .logEd .T //2 for t � T ;

which allows us to conclude that E.t/ �E1 � Ce�c1
p
t , as claimed in (1.12).

If 
1 2 .1; 2/ then the above estimate implies that  WD Ed
�
2�
1

1 satisfies

d

dt
 D

2 � 
1


1
Ed
� 2

1 k�g.u.t//k

2
L2.†/

�
2 � 
1

C0
1
jlogEd j�1 � c.log /�1;

so we conclude that  .t/.log .t/� 1/ � c.t � T /� .T /.log .T /� 1/: The resulting
bound of  .t/ � Qct.log t /�1 for some Qc > 0 then gives the claimed bound (1.13) on the
decay of the energy.

Given any 0 < ˛ < 
1�1

1

we now fix ˇ 2 .˛; 
1�1

1
/ and note that (6.3) gives

Ed .t/
ˇ�1
k�g.u/kL2 � Ed .t/

�.

1�1

1
�ˇ/
jlogEd .t/j�

1
2 � 1
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for sufficiently large t . We hence obtain

�
d

dt
Ed .t/

ˇ
D ˇEd

ˇ�1
k�g.u/k

2
L2.†/

� ˇk�g.u/kL2.†/;

allowing us to conclude that for sufficiently large t < Qt ,

ku.t/ � u.Qt /kL2 �

Z Qt
t

k�g.u.s//kL2 ds � CEd .t/ˇ : (6.5)

We now fix a sequence tn !1 for which u.tn/ converges to a simple bubble tree and
denote by a 2 † the point at which the corresponding bubble ! forms.

Applying the above estimate for Qt D tn and using that ku.tn/� !.p�/kL2 ! 0 we get

ku.t/ � !.p�/kL2 � CEd .t/
ˇ (6.6)

for all sufficiently large t , which in particular implies (1.14).
To show that the point a where the bubble forms is independent of the chosen sequence

and that the maps converge in C k away from a, we can now follow the argument of [21]
and combine (6.4) with estimates on the evolution of the energy on fixed-size balls as
proven in [21, Lemma 3.3] and the C k control on regions with low energy obtained in
[19].

To be more precise, [19, Lemma 3.100] (see also [21, Lemma 3.2]) ensures that there
exists "1 D "1.N / > 0 so that for any � � †, r 2 .0; inj.†; g// and k 2 N there exists a
constant C so that following holds true: for any solution u of (1.10) which satisfies

sup
.x;t/2��Œt0;1/

E.u.t/; Br .x// < "1

we can bound ku.t/kC k.� r
2
/ � C for t � t0 C 1 and � r

2
WD ¹x 2 † W dist.x;�/ � r

2
º.

Now let � be a fixed compact subset of † n ¹aº. As u.tn/ ! !.p�/ strongly in
H 1

loc.† n ¹aº/ along the particular sequence of times tn!1 chosen above, we can choose
r > 0 so that supx2� E.u.tn/; B2r .x// �

1
2
"1 for all n. Then [21, Lemma 3.3] and (6.5)

allow us to bound

E.u.t/;Br .x//�E.u.tn/;B2r .x//CCr
�1

Z t

tn

k�.u.s//kL2 ds �
1

2
"1CCEd .t/

ˇ
� "1

for all x 2 � and t � tn for sufficiently large n.
Similarly to the argument in [21] we then combine the resulting uniform bounds on

ku.t/kC l .� r
2
/, l 2 N, from [19] mentioned above, with the L2-convergence of the flow

using an interpolation argument: to this end we recall the standard interpolation inequality

kf kH s.�/ � Ckf k

m2
m1Cm2

H s�m1 .� r
2
/
kf k

m1
m1Cm2

H sCm2 .� r
2
/
; C D C.�; r;m1;2; s/;
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which holds for all m1;2 2 N with m1 � s and follows inductively from integration by
parts. Given any k 2 N and any ı > 0 we can apply this inequality for m1 D s D k C 2
and m2 D m2.k; ı/ sufficiently large to conclude that, for l D k C 2Cm2,

kf kHkC2.�/ � Ckf k
1�ı
L2.� r

2
/
kf kı

H l .� r
2
/
� Ckf k1�ı

L2.†/
kf kı

C l .� r
2
/
:

Choosing ı > 0 so that .1 � ı/ˇ � ˛ and combining this with (6.6) and the uniform C l

bounds on u.t/ on � r
2

hence gives the final claim of the theorem that

ku.t/ � !.p�/kC k.�/ � Cku.t/ � !.p
�/kHkC2.�/ � Cku.t/ � !.p

�/k1�ı
L2.†/

� CEd .t/
.1�ı/ˇ

� CEd .t/
˛:

Proof of Corollary 1.6. As [5] excludes the existence of a harmonic map of degree ˙1
from a torus .T 2; g/ to S2, any solution u.t/ of harmonic map flow as considered in the
corollary will be non-constant, and so have E.u.t// < 12� for t > 0, and will need to
become singular. Indeed, we claim that the constraint on the energy means that a single
bubble must form, be it at finite or infinite time, and that this bubble must have the same
degree as the original map. Indeed, the formation of either two bubbles with degree ˙1
or of a bubble of higher degree would only leave energy less than 4� , but at the same
time would leave us with a limiting body map of a non-zero degree which is impossible.
Similarly, the formation of more than two bubbles or of two bubbles which do not both
have degree ˙1 would require initial energy greater than 12� and so is also excluded.
Finally, if the degree of the bubble and the degree of the map did not agree then we would
end up with a body map of degree k with jkj � 2, which would need energy at least 8� ,
leading again to a contradiction.

If the bubble forms at finite time then Simon’s result [18] yields exponential conver-
gence to a constant. Conversely, if the singularity forms at infinite time then the proof of
Theorem 1.4 applies and yields convergence at a rate of O.e�c

p
t / since all Jacobi fields

along harmonic maps from S2 to S2 are integrable; see [8].

A. Definition of H0.y!/ based on Simon’s construction from [18]

Here we recall the key elements of Simon’s argument that we need to define the manifold
H0.y!/ and to check that it has the properties stated in Lemma 2.1.

Let y!WS2! S2 be any harmonic sphere and let L WD Ly! be the Jacobi operator along
y! defined in (2.1), where here and in the following we work with the L2 inner product
and consider L as an operator on maps wWS2 ! RN which are tangential to N along y!.

The starting point of Simon’s argument is that sinceL WDLy! is a self-adjoint Fredholm
operator, the linear equation Lu D f has a unique solution u 2 ker.L/? if and only if
f 2 ker.L/? and this solution furthermore satisfies kukC kC2;ˇ � Ck;ˇkf kC k;ˇ for any
k 2 N, ˇ > 0.
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As explained in [18], these properties of L ensure that N WC kC2;ˇ ! C k;ˇ defined by

N .w/ WD P kerL.w/C Py!
�
�gS2 .�N .y! C w//

�
is so that the inverse function theorem yields a map ‰WU1 � C

k;ˇ ! U2 � C
kC2;ˇ

between suitable neighbourhoods U1;2 of 0 in �C
k;ˇ
.y!�TN/ and �C

kC2;ˇ
.y!�TN/ so

that k‰.f / �‰.g/kC kC2;ˇ . kf � gkC k;ˇ and

N ı‰ D IdU1
and ‰ ıN D IdU2

:

As P ker.L/?.N .v// D P ker.L/?.Py!.�gS2 .�N .y! C v//// we have

P ker.L/?
�
Py!
�
�gS2

�
�N .y! C‰.w//

���
D P ker.L/?.N ı‰.w// D P ker.L/?w:

This not only implies that the finite-dimensional manifold

H .y!/ WD
®
�N .y! C‰.w// W w 2 kerL \U1

¯
contains all harmonic maps which are sufficiently close to y!, but also that

Py!.�gS2 .!// 2 ker.L/ for every ! 2 H .y!/:

From the equivalence of norms on the finite-dimensional space ker.L/ and the fact that
k! � y!kC kC2;ˇ will be small if we work on suitably small neighbourhoods U1;2, we hence
get that, for ! 2 H .y!/,

k�gS2 .!/kC k � CkPy!�gS2 .!/kC k � CkPy!�gS2 .!/kL2 � Ck�gS2 .!/kL2 : (A.1)

Now let V0.y!/ � ker.L/ be so that

ker.L/ D V0.y!/˚ VMöb.y!/ for VMöb.y!/ WD Ty!
®
y! ıM WM 2 Möb.S2/

¯
splits L2-orthogonally and set

H0.y!/ WD
®
�N .y! C‰.w// W w 2 V0.y!/ \U1

¯
:

This codimension 6 submanifold of H .y!/ � C kC2;ˇ clearly satisfies (2.2), while (2.3)
follows from (A.1).

Furthermore, for any ! D �N .y! C‰.w!// 2 H0.y!/ with �gS2 .!/ ¤ 0, we can split

Py!.�gS2 .!// D P
V0.y!/.Py!�gS2 .!//C P

VMöb.y!/.Py!�gS2 .!// 2 ker.L/;

set T WD k�gS2 .!/kL2 and consider (for " near 0)

!."/ WD �N

�
y! C‰

�
w! �

2"

T
PV0.y!/.Py!�gS2 .!//

��
2 H0.y!/:
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The equivalence of norms on ker.L/ implies that at " D 0,

k@"!
."/
kC kC2;ˇ � CT �1kPV0.y!/.Py!�gS2 .!//kC k;ˇ

� CT �1kPV0.y!/.Py!�gS2 .!//kL2 � C

for a constant C that only depends on y! and k.
The conformal invariance of the energy ensures that �gS2 .!/ is L2-orthogonal to

VMöb.!/ D T!¹! ıM; M 2 Möb.S2/º. As d‰.0/jker.L/ D Id we can thus bound


 2
T
�gS2 .!/C @"!

."/




L2

D
2

T



PV0.!/�gS2 .!/ � d�N .!/
�
d‰.w!/

�
PV0.y!/.Py!�gS2 .!//

��


L2

� C.ky! � !kC 1 C kw!kC k;ˇ / � 1;

provided the neighbourhoods U1;2 are chosen sufficiently small.
As a consequence we obtain

d

d"
E.!."// D �h�gS2 .!/; @"!

."/
iL2 �

2

T
k�gS2 .!/k

2
L2
� k�gS2 .!/kL2 D k�gS2 .!/kL2 ;

which establishes the final property of the manifold H0.y!/ claimed in Lemma 2.1.

B. Proofs of technical lemmas

In this appendix we give the proofs of the auxiliary Lemma 3.4 used in the proof of Lemma
3.2, of the auxiliary Lemma 4.1 and of the estimate (4.3) used in the proof of Theorem 2.5
and the estimate (2.12) that we used throughout the paper.

To prove Lemma 4.1 we first show the analogous statement for the maps Ozb;!
�
WD

! ıM b
�
WS2 ! N , where M b

�
.x/ D ��.�

�1.�/ � b/.

Lemma B.1. Given any harmonic sphere y! and any �1 > 0, there exists "3 > 0 so that

kOz
b;!
�
� Oz
Qb;z!
Q�
k�;b � 2"3 (B.1)

whenever !; z! 2 H�1
1 .y!/ and �; Q� > 0 are either so that ��1 Q� … Œ1

2
; 2� or so that ! 2

H
1
3�1
1 .y!/ while z! 2 H�1

1 .y!/ nH
2
3�1
1 .y!/.

Furthermore, given any " > 0 there exists ı > 0 so that

kOz
b;!
�
� Oz
Qb;z!
Q�
kL1.S2/ <

1

4
" whenever kOzb;!

�
� Oz
Qb;z!
Q�
k�;b < 2ı: (B.2)

Here we consider the norms on H 1.S2;Rn/ defined by

kvk�;b WD

Z
S2
jrvj2 C

1

2
c†jrM

b
� j
2
jvj2 dvg2S
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for c
 as in Remark 3.3 and use that these norms satisfy

hv ıM b
� ; Qv ıM

b
� i�;b D hv; Qvi1;0 v; Qv 2 H 1.S2;Rn/: (B.3)

Proof of Lemma B.1. Thanks to (B.3) it is enough to consider the case where � D 1 and
b D 0, so Ozb;!

�
D ! 2 H�1

1 .y!/. We can then use that the closure of

F1 WD
®
Oz
Qb;z!
Q�
W z! … H

2
3�1
1

¯
; respectively F2 WD

®
Oz
Qb;z!
Q�
W Q� … Œ1

2
; 2�
¯

in H 1 is disjoint from the compact sets H
1
3�1
1 respectively H�1

1 . Thus the H 1-distance

between F1 and H
1
3�1
1 and between F2 and H�1

1 is positive and this yields the first claim
of the lemma.

As we can assume that ı < "3 it then suffices to prove the second claim for maps z Qa;
Q�
Q�

with Q� 2 Œ1
2
; 2�. As such maps satisfy uniform C 2 bounds, we obtain (B.2) from Ehrling’s

lemma applied to C 2.S2; gS2/ �� L1.S2; gS2/ ,! L2.S2; gS2/.

Proof of Lemma 4.1. As we may assume that "3 < min
!2H

�1
1 .y!/
kr!kL2.S2/, as well as

that �2 is sufficiently large, we have that (4.1) is trivially true if either Q� … ŒC�1�;C�� or
d.a; Qa/ � C��1 for a suitably large constant C .

In particular, we can assume that d†.a; Qa/ � C��1 < 1
8
�, which ensures that the

derivatives of the adapted bubbles za;!
�

, z Qa;z!
Q�

respectively of the corresponding harmonic

spheres Oz0;!
�

and OzFa.Qa/;!
Q�

are of orderO.��1/ outsideBQ�.a/, respectively �.Dr0=2/� S
2.

As the functions representing za;!
�

, z Qa;z!
Q�

in the isothermal coordinates on BQ�.a/ agree up
toH 1-errors of order O.��1/ with the functions representing Oz0;!

�
and OzFa.Qa/;!

Q�
in stereo-

graphic coordinates, we thus have

krz
a;!
�
� rz

Qa;z!
Q�
kL2.†/ D kr Oz

0;!
�
� r Oz

Fa.Qa/;z!

Q�
kL2.S2/ CO.�

�1/:

For the torus, we immediately get the same type of relationship for the weighted L2-
norms as well, while for higher genus surfaces we need to take into account an addi-
tional error term that results from the difference of the weights, which will be of order
O.��1 log.�/1=2/ since

R
�2
�
jxj2 dxDO.��2 log.�//; compare Remark 3.3. In both cases

we hence get

kz
a;!
�
� z
Qa;z!
Q�
kza;!

�
D kOz

0;!
�
� Oz

Fa.Qa/;z!

Q�
k�;0 CO.�

�1 log.�/
1
2 /

and the first claim (4.1) of Lemma 4.1 follows from the corresponding estimates (B.1) of
Lemma B.1.

Similarly, given " > 0 and choosing ı > 0 small enough so that (B.2) holds, it suffices
to ensure that �3.log �3/�1=2 � C.min."; ı//�1 for a sufficiently large C to derive the
required L1-bound (4.2) on the difference of the adapted bubbles from the corresponding
property (B.2) of the bubbles stated in Lemma B.1.
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To prove Lemma 3.4 as well as (4.3) we furthermore show the following lemma:

Lemma B.2. There exists C > 1 so that for all smooth 1-parameter families .b"/ � R2,
.a"/ � †, .�"/ � Œ�1;1/ and .!."// � H�1

1 .S
2/ we have that Oz" WD Oz

b";!
."/

�"
satisfies

C�1k@" Oz"k�";b" � �
�1
" j@"�"j C k@"!

."/
kC 2 C �"j@"a"j � Ck@" Oz"k�";b" ; (B.4)

while the adapted bubbles z" D z
a";!

."/

�"
2 Z satisfy

C�1k@"z"kz" � �
�1
" j@"�"j C k@"!

."/
kC 2 C �"j@"a"j � Ck@"z"kz" (B.5)

and
k@"�z"kL2.†/ � C�

�1
" j@"�"j C C�"j@"a"j � Ck@"z"kz" : (B.6)

Proof. For variations of ! D Oz0;!1 2H�1
1 .y!/, the estimate (B.4) easily follows as H�1

1 .y!/

is a compact subset of a finite-dimensional submanifold ofC k.S2;N /which is transversal
to the action of the Möbius transforms. We can then consider Oz�0.b�b0/;!

."/

��10 �"
and use (B.3)

to reduce the proof of (B.4) to this special case.
To derive (B.5) from (B.4) it then suffices to check that we only obtain error terms of

lower order when we use the approximations za";!
."/

�"
� 0 on † n BQ�.a"/ and

z
a";!

."/

�"
.F �1a0 .x//D �N Œz!

."/

�"
.Fa";a0.x//C j

a";!
."/

�"
.Fa";a0.x//�� z!

."/

�"
.x � b"/ on D r0

2
;

where Fa";a0 WD Fa" ı F
�1
a0

and b" WD �Fa";a0.0/ D �Fa".a0/.
A short calculation shows that at " D 0 we indeed have

k@" Oz
b";!

."/

�"
k�0;0;S2n�.D r0

2
/ C k@"Œz

a";!
."/

�"
ı F �1a0 � z!

."/

�"
.� � b"/�k�0;Dr0

C k@"z
a";!

."/

�"
kz;†nF �1a0 .Dr0 /

� C��1.��1j@"�"j C �j@"a"j C k@"!"kC 2.S2//;

so (B.5) follows from (B.4) after replacing C by 2C and after possibly increasing �1.
We finally recall that the weight does not depend on the underlying map!."/2H�1

1 .y!/

and is given by �za;!
�
.p/ D �

1C�2jFa.p/j2
on B�.a/, while �za;!

�
�

�

1C�2r20
elsewhere. The

final claim (B.6) of the lemma thus follows from (B.5), as well as

k@��za;!
�
k
2
L2.†/

D

Z
Dr0

ˇ̌̌
@�

� �

1C �2jxj2

�ˇ̌̌2
dx CO.��4/ � C��2

and

k@"�za";!
�
k
2
L2.†/

D

Z
B�.a/

ˇ̌̌
@"

� �

1C �2jFa".p/j
2

�ˇ̌̌2
dvg

� C�6k@"Fa"k
2
L1.B�/

Z
B�.a/

jFa.p/j
2

.1C �2jFa.p/j2/4
dvg � C�2j@"a"j2:



M. Rupflin 42

To obtain Lemma 3.4 we first note that a short calculation shows that for variations
with ��1j@"�j C k@"!."/kC 2 C �j@"aj D O.1/ and for �" D ��10 �", b" D �Fa".a0/ we
have

@"z
a";!

."/

�"
ı F �1a0 ı �

�1
�0
D @" Oz

�0b";!
."/

�"
CO.��1/

on the subsets ��.D r0
2
/ which exhaust S2 as �!1, while @".z

a";!
."/

�"
� !."/.p�// is of

order O.ƒ�1/ in H 1 \ L1.† n Bƒ��1.a0//.
Now let ¹e1j º

K
jD1 be an orthonormal basis of Xy! . For any fixed j we consider a

variation .b"; �"; !."// of .0; 1; y!/ so that e1j D @" Oz
b";!

."/

�"
and, for i sufficiently large,

corresponding variations a"i with �i@"b" D �@"Fa"i .a0/, �
"
i D �i�" and !.";i/ in H�1

1 .y!/

so that @"!.";i/ ! @"! in C 1.S2/.

The above error estimates ensure that the resulting elements Qeij D
d
d"
j"D0z

ai";!
.i;"/

�i"
of

TziZ converge to e1j in the sense described in the lemma. As we furthermore have that
h Qeij ; Qe

i
k
izi D ıjk C o.1/, we can hence obtain the desired orthonormal basis from Gram–

Schmidt orthogonalisation.
For the sake of completeness we finally include the following proof:

Proof of (2.12). We can assume that 2��1 � r0 as the claim is trivially true for � in a
bounded range as �z � c��1, c D c.†; g/ > 0.

As ��2
�
dvg � c�

2dvgE on D2��1 , c D 1
25

, we can bound, writing for short zw D
w ı Fa,

kwk2z � c�
2

Z
D2��1nD��1

j zwj2 dx � c�
Z 2��1

��1

Z
S1
j zw.rei� /j2 d� dr:

We can thus choose r 2 Œ��1; 2��1� so that j
¬
S1
zw.rei� /j � Ckwkz and hence boundˇ̌̌̌−

S1
zw.r0e

i� / d�
ˇ̌̌̌
� Ckwkz C

−
S1

Z r0

r

j@s zw.se
i� /j ds d�

� Ckwkz C C Œlog.r0/ � log.r/�
1
2 krwkL2.†/

� C.log�/
1
2 kwkz :

As a standard compactness argument givesˇ̌̌̌−
@B�.a/

w dSg �
−
†

w dvg

ˇ̌̌̌
� CkrwkL2.†;g/

for some C D C.†; g/, we hence obtain claim (2.12) from the above bound on−
@B�.a/

w dSg D
−
S1
zw.r0e

i� / d�:
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