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1. Introduction

Let � � RN , N � 2, be an open bounded set with boundary @� of class C 2 and
we consider the situation where � moves in RN periodically. Precisely, we denote
S1 D R=2�Z and we consider moving domain �.t/ defined by

(1.1) �.t/ D
®
R.t/x C c.t/I x 2 �

¯
for t 2 S1;

whereR.t/WS1! SO.N /, c.t/WS1!RN are given 2�-periodic functions of classC 2.
We study the existence of 2�-periodic bounce trajectories of the following Hamiltonian
system in the moving domain �.t/:

(1.2) Rq Cr zV
�
t; q.t/

�
D 0:

Here zV .t; x/W xD ! R, D D
S
t2S1.¹tº ��.t// is a given 2�-periodic function of

class C 2 and � D d
dt

, r D .@x1 ; : : : ; @xN /.
Here we say q.t/WS1 ! RN is a 2�-periodic bounce trajectory for (1.2) if

(1) q.t/ 2 x�.t/ for all t 2 S1.

(2) q.t/ is of class C 2 except for at most a finitely number of instants t1; : : : ; tk 2 S1

for which q.tj / 2 @�.tj /.

(3) q.t/ satisfies for t 2 S1 n ¹t1; : : : ; tkº

(1.3) Rq Cr zV
�
t; q.t/

�
D 0:
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(4) For t 2 ¹t1; : : : ; tkº, q.t/ bounces in an elastic way and the usual law of reflection
is satisfied in the dynamic coordinate system. That is, denote q.t/ as

q.t/ D R.t/u.t/C c.t/

with u.t/WS1 ! x�. We have for Nt 2 ¹t1; : : : ; tkº

u.Nt / 2 @�;

Pu˙.Nt / D lim
s!˙0

Pu.Nt C s/ exists;ˇ̌
PuC.Nt /

ˇ̌
D
ˇ̌
Pu�.Nt /

ˇ̌
;

PuC.Nt / D Pu�.Nt / � c�
�
u.Nt /

�
;

where c � 0 and �.x/ is the unit outward vector at x 2 @�.

We call ¹tj º that appeared in (2)–(4) as bounce instants for (1.2).
Our main result is the following theorem.

Theorem 1.1. Assume � � RN is an open bounded set which is symmetric with
respect to 0 and 0 2 �. Let �.t/ be a moving domain given in (1.1), which moves 2�-
periodically in RN and zV .t; x/ 2 C 2. xD;R/, where D D

S
t2S1.¹tº ��.t//. Then

(1.2) has infinitely many 2�-periodic bounce trajectories .qn/1nD1 2H 1.S1;RN / such
that

(1) each qn.t/ has at most finitely many bounce instants;

(2)
R 2�
0
j Pqnj

2 dt !1 as n!1.

The existence of such bounce trajectories is studied in Benci–Giannoni [5] and
Liu–Jiang [11]. In these papers authors consider the existence of periodic bounce
trajectories in a fixed domain, that is,R.t/� I and c.t/� 0, but without the assumption
of symmetry of the domain. In [5], Benci and Giannoni consider the case zV .t; x/ is
independent of t and find the existence of at least one bounce trajectory with at most
N C 1 bounce instants.

In [11], Liu and Jiang consider the case x� is C 2 diffeomorphic to the unit ball
B1 D ¹x 2 RN I jxj � 1º and for 2�-periodic function zV .t; x/ 2 C 2.S1 � x�;R/ they
showed the existence of infinitely many bounce trajectories using perturbation from
symmetry (cf. [1–4, 7, 8, 12, 14–17]). We also refer to [9, 10] for billiard problems.

In both of [5, 11], they study (1.2) through approximation schemes. They introduce
penalty functions to (1.2) and first they find periodic solutions of penalized problems.
In [5], they introduce a penalty function of form "U.x/, where U.x/ 2 C 2.�;R/
satisfies for ı > 0 small

U.x/ D

´
1

dist.x;@�/2 for x 2 � with dist.x; @�/ < ı;
0 for x 2 � far from @�:
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That is, they introduce a penalty U inside� such that U.x/!1 as dist.x; @�/! 0.
First they find a periodic solution q" of

Rq Cr zV .t; q/C "rU.q/ D 0

and second they take a limit as "! 0.
In [11], Liu and Jiang introduce another penalty. After extending zV .t; x/ on S1 �

RN , they consider a penalty of form �.x/n, where �.x/ 2 C1.RN ;R/ satisfies �.x/ 2
.0; 1/ in�, �.x/ > 1 in RN n x�, and �.x/D jxj2 for large jxj. First they find a periodic
solution of

Rq Cr zV .t; q/Cr�n.q/ D 0

and second they take a limit as n!1.
In this paper we take an approach different from those in [5, 11]. For simplicity we

explain our idea in the case R.t/ � I , c.t/ � 0. For ı > 0 small we set

�ı D
®
x 2 RN I dist.x;�/ < ı

¯
and we consider a function Uı.x/ 2 C 2.�ı ;R/ such that

Uı.x/ D 0 in x�; Uı.x/ > 0 in �ı n x�;
Uı.x/!1 as dist.x; @�ı/! 0:

First for ` � 1 we find a critical point u` of

I`.u/ D
1

2

Z 2�

0

j Puj2 dt �

Z 2�

0

zV .t; u/ dt � `

Z 2�

0

Uı.u/ dt 2 C
2.ƒı ;R/;

via suitable minimax methods. Here

ƒı D
®
u 2 H 1.S1;RN /I u.t/ 2 �ı for all t 2 S1

¯
:

Second we take a limit as `!1. As a virtue of this approach, the limit of minimax
values can be characterized as minimax values of the limit functional J1.u/. Here
J1WH

1.S1;RN /! Œ�1;1/ is defined by

J1.u/ D

´
1
2

R 2�
0
j Puj2 dt �

R 2�
0
zV .t; u/ dt for u 2 xƒ0;

�1 for u 62 xƒ0;

where xƒ0 D ¹u 2 H 1.S1;RN /I u.t/ 2 x� for all t 2 S1º. As a special case, this
property gives a minimax characterization of a bounce trajectory using J1.u/. It is
also convenient to apply the ideas in a perturbation from symmetry. A similar idea was
used in [15] in a different situation. Approximation schemes in [5,11] do not have such
a property.
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Remark 1.2. An orbit u1.t/ with #¹t 2 S1I u1.t/ 2 @�.t/º D 1 may appear
as a limit of critical points u` of I`.u/. We give 2 examples here. Let N D 2 and
� D ¹.x; y/ 2 R2I x2 C y2 < 1º, V.t; x/ � 0.

(1) AssumeR.t/D
� cos t � sin t

sin t cos t

�
, c.t/D �

� cos t
sin t

�
with � > 1. Then J`.u/ has a critical

point

u`.t/ D

�
a`
0

�
;

where a` 2 .1; 1C ı/ is suitably chosen. We have a`! 1 as `!1 and u1.t/D�
1
0

�
.

(2) Assume R.t/ � I and c.t/ � 0. Then J`.t/ has a critical point

u`.t/ D a`

�
cos t
sin t

�
;

where a` 2 .1; 1C ı/ with a` ! 1 as `!1 and u1.t/ D
� cos t

sin t
�
.

In both examples, we have u1.t/ 2 @� for all t and u1.t/ does not satisfy (1.3) at all
t 2 S1. We also note that J`.u`/ stays finite as `!1 and we will see in Remark 4.8
that the Morse index diverges as `!1. It is an interesting question to ask in which
situation such solutions appear.

2. Preliminaries

Let � be an open bounded set with boundary @� of class C 2. We assume

(2.1) Œ�2; 2�N � �:

Let h.x/ be the signed distance function from @�; that is,

h.x/ D

´
dist.x; @�/ for x 2 RN n�;

� dist.x; @�/ for x 2 �:

We can see that for ı0 > 0 small, h.x/ is of class C 2 and jrh.x/jD1 in ¹x2RN I

dist.x; @�/ � ı0º. We also observe that �.x/ D rh.x/ is the unit outward normal
vector at x 2 @�.

For ı 2 Œ0; ı0�, we set

�ı D
®
x 2 RN I h.x/ < ı

¯
:

We note that � D �0 � x�0 � �ı . We extend �.x/ onto x�ı0 by

�.x/ D  
�
h.x/

�
rh.x/;
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where  .t/ 2 C1.R;R/ such that  .t/D 1 in Œ� ı0
2
; ı0�,  .t/D 0 in .�1;�ı0� and

 .t/ 2 Œ0; 1� for all t . We also define �.t/W .�1; 1/! R and �ı.t/W .�1; ı/! R by

�.t/ D

´ �
t
1�t

�4 for t 2 Œ0; 1/;
0 for t 2 .�1; 0/;

�ı.t/ D �.t=ı/:

And we define Uı.x/W�ı ! R by

Uı.x/ D �ı
�
h.x/

�
:

Lemma 2.1. �ı.t/ and Uı.x/ have the following properties:

(i) For t 2 .0; ı/,

�0ı.t/ D
4

t.1 � t=ı/
�ı.t/ �

16

ı
�ı.t/;(2.2)

�00ı .t/ �
3

t
�0ı.t/:(2.3)

(ii) For x 2 �ı ,�
rUı.x/; �.x/

�
D
ˇ̌
rUı.x/

ˇ̌
;(2.4)

rUı.x/ D
ˇ̌
rUı.x/

ˇ̌
�.x/;(2.5)

Uı.x/ �
1

4
h.x/

�
1 � h.x/=ı

�ˇ̌
rUı.x/

ˇ̌
�

ı

16

ˇ̌
rUı.x/

ˇ̌
:(2.6)

For x 2 �ı n x�,

(2.7) r
2Uı.x/

�
�.x/; �.x/

�
�

�
3

h.x/
� C

�ˇ̌
rUı.x/

ˇ̌
;

where C > 0 is independent of x.

Proof. (i) We compute

�0ı.t/ D
4

ı

.t=ı/3

.1 � t=ı/5

D
4

ı

1

t=ı.1 � t=ı/

�
t=ı

1 � t=ı

�4
D

4

t.1 � t=ı/

�
t=ı

1 � t=ı

�4
D

4

t.1 � t=ı/
�ı.t/ �

16

ı
�ı.t/;
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�00ı .t/ D
12

ı2
.t=ı/2

.1 � t=ı/5
C
20

ı2
.t=ı/3

.1 � t=ı/6
D

4

ı2

�
3

t=ı
C

5

1 � t=ı

�
.t=ı/3

.1 � t=ı/5

D
1

ı

�
3

t=ı
C

5

1 � t=ı

�
�0ı.t/ �

3

t
�0ı.t/:

Thus (i) is proved.
(ii) First we note Uı.x/ D 0 on x�. We need to show the desired inequalities for

x 2 �ı n x�. Since �.x/ D rh.x/ and j�.x/j D 1 on �ı n x�, we have

rUı.x/ D �
0
ı.h.x//rh.x/ D �

0
ı.h.x//�.x/:

Thus we have jrUı.x/j D �0
ı
.h.x// and jrUı.x/j D .rUı.x/; �.x//. Then (2.6)

follows from (2.2). For (2.7), we have for v 2 RN

r
2Uı.x/.v; v/ D �

00
ı

�
h.x/

��
rh.x/; v

�2
� �0ı

�
h.x/

�
r
2h.x/.v; v/:

Setting v D �.x/, we have from the boundedness of r2h.x/ in �ı and (2.3)

r
2Uı.x/

�
�.x/; �.x/

�
� �00ı

�
h.x/

�
� C�0ı

�
h.x/

�
�

�
3

h.x/
� C

�
�0ı
�
h.x/

�
�

�
3

h.x/
� C

�ˇ̌
rUı.x/

ˇ̌
:

We set E D H 1.S1;RN / and for u 2 E

kukp D

�Z 2�

0

jujp dt

�1=p
for p 2 Œ1;1/;

kuk1 D ess sup
ˇ̌
u.t/

ˇ̌
;

kukE D
�
k Puk22 C kuk

2
2

�1=2
and for u, v 2 L2.S1;RN /, we denote

.u; v/2 D

Z 2�

0

uv dt:

For ı 2 .0; ı0=2� we set

ƒı D
®
u 2 EI u.t/ 2 �ı for all t 2 S1

¯
;

@ƒı D
®
u 2 EI u.t/ 2 �ı for all t 2 S1 and u.t/ 2 @�ı for some t 2 S1

¯
:

We also set

ƒ0 D
®
u 2 EI u.t/ 2 � for all t 2 S1

¯
;

ƒ0 D
®
u 2 EI u.t/ 2 x� for all t 2 S1

¯
:
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Since Uı.x/ satisfies the strong force condition at @�ı , we have the following
lemma.

Lemma 2.2. Let ı2.0; ı0=2�. If .uj /1jD1�ƒı satisfies uj * u02@ƒı weakly in E,
then Z 2�

0

Uı.uj / dt !1 as j !1:

3. Functional setting and Palais–Smale condition

We extend zV .t; x/ on S1 �RN and set

V.t; x/ D zV
�
t; R.t/x C c.t/

�
2 C 2.S1 �RN ;R/:

Clearly we may assume V.t; x/, Vt .t; x/, rV.t; x/ are bounded on S1 �RN .
Writing q.t/ D R.t/u.t/C c.t/, where u.t/WS1 ! x�, solutions q.t/ of (1.2) can

be characterized as critical points of

I.u/ D
1

2




 d
dt

�
R.t/uC c.t/

�


2
2
�

Z 2�

0

V
�
t; u.t/

�
dt:

To find critical points of I.u/, we introduce a penalized functional I`.u/ for ` 2 Œ1;1/
by

I`.u/ D
1

2




 d
dt

�
R.t/uC c.t/

�


2
2
�

Z 2�

0

V
�
t; u.t/

�
dt � `

Z 2�

0

Uı.u/ dt:

We observe Iı.u/ 2 C 2.ƒı ;R/.
To show the Palais–Smale condition for I`.u/, we start with fundamental properties

of ƒı , �.u/, etc.

Lemma 3.1. Let ı 2 .0; ı0=2�.

(i) There exists C > 0 independent of u 2 ƒı such that

kuk1 � C;


�.u/



2
� C;




 d
dt

�
�.u/

�



2
� C

�
k Puk2C 1

�
for all u 2ƒı :

(ii) For u 2 ƒı , set q.t/ D R.t/uC c.t/. Then

kqk1 � C; k Puk2 � C � kPqk2 � k Puk2 C C for all u 2 ƒı :

Proof. (i) We note that d
dt
.�.u//Dr�.u/ Pu and �.x/ is bounded in�ı . Since u 2ƒı

implies u.t/ 2 �ı for all t , (i) follows.
(ii) follows from the fact that PqDR.t/ PuC PR.t/uC Pc.t/ and kR.t/ Puk2Dk Puk2.
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Next we show that the Palais–Smale condition holds for I`.u/ for small ı.

Proposition 3.2. There exists ı 2 .0; ı0=2� small with the following properties:

(i) For any ` � 1, I`.u/Wƒı ! R satisfies the Palais–Smale condition.

(ii) For any b 2 R there exists a constant Cb > 0 independent of ` 2 Œ1;1/ such
that if u 2 ƒı satisfies

I 0`.u/ D 0; I`.u/ � b;

then

k Puk2 � Cb; `

Z 2�

0

�
rUı.u/; �.u/

�
dt � Cb; `

Z 2�

0

Uı.u/ dt � Cb:

Proof. We divide the proof into two steps.

Step 1. First we prove (ii) in a slightly general situation. Assume that ` 2 Œ1;1/ and
u 2 ƒı satisfies 

I 0`.u/

E� � 1;(3.1)

I`.u/ � b C 1:(3.2)

We show the conclusion of (ii) holds for a constant Cb independent of ` 2 Œ1;1/.
By Lemma 3.1 (i), we have from (3.1) that

(3.3) I 0`.u/�.u/ �


�.u/



E
� C

�
k Puk2 C 1

�
:

On the other hand, we have for q D R.t/uC c.t/

(3.4) I 0`.u/�.u/D
�
Pq;
d

dt

�
�.u/

��
2
�

Z 2�

0

rV.t;u/�.u/dt � `

Z 2�

0

rUı.u/�.u/dt:

By Lemma 3.1 (i), we haveˇ̌̌�
Pq;
d

dt

�
�.u/

��
2

ˇ̌̌
� C

�
k Puk22 C 1

�
;(3.5) ˇ̌̌̌Z 2�

0

rV.t; u/�.u/ dt

ˇ̌̌̌
� C:(3.6)

Combining (3.3)–(3.6), we have

(3.7) `

Z 2�

0

�
rUı.u/; �.u/

�
dt � C 0

�
k Puk22 C 1

�
:
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By (2.6) and (2.4), we have

(3.8) `

Z 2�

0

Uı.u/ dt �
ı

16
`

Z 2�

0

�
rUı.u/; �.u/

�
dt � ıC 00

�
k Puk22 C 1

�
:

Thus by (3.2) and Lemma 3.1 (ii),

b C 1 �
1

2
k Puk22 �

Z 2�

0

V.t; u/ dt � `

Z 2�

0

Uı.u/ dt

�

�
1

2
� ıC 00

�
k Puk22 � C � ıC

00:

Thus for ı > 0 small, k Puk2 is uniformly bounded with respect to ` 2 Œ1;1/. The
uniform boundedness of `

R 2�
0
.rUı.u/; �.u// dt and `

R 2�
0
Uı.u/ dt follows from

(3.8). Thus the results of Step 1 and (ii) of Proposition 3.2 hold.

Step 2: Proof of (i). Next we show (i). We assume that .uj / satisfies

I`.uj /! b;


I 0`.uj /

E� ! 0 as j !1:

We may assume that (3.1)–(3.2) hold for u D uj for all j 2 N. By Step 1,

kuj kE ; `

Z 2�

0

Uı.uj / dt

is bounded as j !1. Extracting a subsequence if necessary, we may assume uj *
u1 2 ƒı weakly in E. Since

R 2�
0
Uı.uj / dt stays bounded, we have u1 2 ƒı by

Lemma 2.2. Thus
inf
j2N

dist
�
uj
�
Œ0; 2��

�
; @�ı

�
> 0

and we can show the strong convergence of .uj /1jD1 in the standard way. Thus (ii) is
proved.

In what follows, we fix small ı > 0, for which Proposition 3.2 holds. Proposition 3.2
enables us to apply minimax methods to find the critical points of I`.u/ for ` 2 Œ1;1/.
Later we apply symmetric mountain pass theorem and take a limit as `!1.

4. Limit process

In this section we study the behavior of critical points .u`/ of I`.u/ as `!1. We
assume that for some sequence j̀ !1 as j !1

I
j̀
.u

j̀
/! b;(4.1)

I 0
j̀
.u

j̀
/ D 0(4.2)

for some b 2 R. For sake of simplicity of notation, we write ` instead of j̀ .
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By Proposition 3.2, there exists Cb > 0 such that

k Pu`k2 � Cb;(4.3)

`

Z 2�

0

�
rUı.u`/; �.u`/

�
dt � Cb;(4.4)

`

Z 2�

0

Uı.u`/ dt � Cb:(4.5)

Thus .u`/ is bounded in E and we may assume that u` * u1 2 E weakly in E. By
(4.5), we have u1 2 xƒ0; i.e., u1.t/ 2 x� for all t .

Since I 0
`
.u`/ D 0, we have I 0

`
.u`/.R.t/

�1'/ D 0 for all ' 2 E; that is, writing
q` D R.t/u` C c.t/,

. Pq`; P'/2 �
�
rV.t; u`/; R.t/

�1'
�
2
�
�
`rUı.t; u`/; R.t/

�1'
�
2
D 0 for all ' 2 E:

Thus the following Euler–Lagrange equation holds:

(4.6) Rq` CR.t/
�
rV.t; u`/C `rUı.u`/

�
D 0:

We have the following lemma.

Lemma 4.1. .u`/ has the following property:

`

Z 2�

0

Uı.u`/ dt ! 0 as `!1:

Proof. Since u1.t/ 2 x� for all t ,

max
t2S1

h
�
u`.t/

�
! 0:

By (2.6) and (2.4),

`

Z 2�

0

Uı.u`/ dt �
1

4
`

Z 2�

0

h.u`/
�
1 � h.u`/=ı

��
rUı.u`/; �.u`/

�
dt

�
1

4
max
t2S1

h
�
u`.t/

�
� `

Z 2�

0

�
rUı.u`/; �.u`/

�
dt ! 0:

By (2.4) and (4.4), we observe that `rUı.u`/ is bounded in L1.0; 2�/. Thus we
may assume

(4.7) `
ˇ̌
rUı.u`/

ˇ̌
* �

for a positive finite measure � on S1. Since rUı.x/ D 0 on �, we also observe that

(4.8) supp� � C.u1/ �
®
t 2 S1I u1.t/ 2 @�

¯
:
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Since rUı.u`/ D jrUı.u`/j�.u`/ by (2.5), `rU.u`/ * ��.u1/ and thus

(4.9) Rq1 CR.t/rV.t; u1/C �R.t/�.u1/ D 0:

We set

F`.t/ D
1

2

ˇ̌
Pq`.t/

ˇ̌2
C V

�
t; u`.t/

�
C `Uı

�
u`.t/

�
�
�
Pq`.t/; PR.t/u`.t/C Pc.t/

�
:

Then we have the following lemma.

Lemma 4.2. .u`/ and .q`/ have the following properties:

(i) . Ru`/ is bounded in L1.S1/ and . Pq`.t// has a strongly convergent subsequence
in L2.S1/ as `!1.

(ii) F`.t/ has a strongly convergent subsequence in W 1;1.S1/ as `!1.

Proof. (i) We recall that .`rUı.u`// is bounded in L1.S1/. Thus by the Euler–
Lagrange equation (4.6) we observe that . Rq`/ is bounded in L1.S1/. Thus . Pq`/ is
bounded in W 1;1.S1/. By the compactness of embedding W 1;1.S1/ � L2.S1/, . Pq`/
has a strongly convergent subsequence in L2.S1/.

(ii) Clearly F`.t/ has a strongly convergent subsequence in L1.S1/ by (i) and
Lemma 4.1. We compute

1

2

d

dt

�
j Pq`j

2
�
D . Rq`; Pq`/2 D . Rq`; R.t/ Pu` C PR.t/u` C Pc/

D �
�
rV.t; u`/C `rUı.u`/; Pu`

�
C . Rq`; PRu` C Pc/;

d

dt
. Pq`; PRu` C Pc/ D . Rq`; PRu` C Pc/C . Pq`; PR Pu` C RRu` C Rc/:

Thus
d

dt
F`.t/ D Vt .t; u`/ � . Pq`; PR Pu` C RRu` C Rc/:

By (i), . Pq`/ and . Pu`/ have a strongly convergent subsequence in L2.S1/ and thus
d
dt
F`.t/ also has a strongly convergent subsequence in L1.S1/. Thus (ii) holds.

The following corollary follows from Lemma 4.1 and Lemma 4.2 (i).

Corollary 4.3. I`.u`/! 1
2
k
d
dt
.Ru1 C c/k

2
2 �

R 2�
0
V.t; u1/ dt as `!1.

We also have the following corollary.

Corollary 4.4. t 7! j Pu1.t/j2 is continuous.
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Proof. We note that

F`.t/ D
1

2
jR Pu` C PRu` C Pcj

2
C V.t; u`/C `Uı.u`/ � .R Pu` C PRu` C Pc; PRu` C Pc/

D
1

2
j Pu`.t/j

2
�
1

2
j PRu` C Pcj

2
C V.t; u`/C `Uı.u`/:

Thus by Lemma 4.1

F`.t/! F1.t/ �
1

2

ˇ̌
Pu1.t/

ˇ̌2
�
1

2
j PRu1 C Pcj

2
C V.t; u1/

strongly in W 1;1.S1/ and C.S1/. Thus ju1.t/j2 is continuous.

Next we study non-regular instants of u1.t/. Following [5], we say Nt 2 S1 is a
non-regular instant of u1.t/ if and only if for any � > 0 u1.t/ does not satisfy

Rq1 CR.t/rV.t; u1/ D 0 in .Nt � �; Nt C �/:

We have the following proposition.

Proposition 4.5. Assume that Nt 2 S1 is a non-regular instant of u1.t/. Then

(i) u1.Nt / 2 @�.

(ii) For any � > 0

lim inf
`!1

`

Z NtC�
Nt��

ˇ̌
rUı.u`/

ˇ̌
dt > 0:

Proof. (i) Since u1.t/ satisfies (4.9), if Nt 2 S1 is a non-regular instant, we have
Nt 2 supp� � C.u1/. Thus by (4.8) we have u1.Nt / 2 @�.

(ii) We argue indirectly. If Nt 2 S1 satisfies

lim
`!1

`

Z NtC�
Nt��

ˇ̌
rUı.u`/

ˇ̌
dt D 0;

then by (4.7), �D 0 on .Nt � �; Nt C �/. Thus Nt is not a non-regular instant of u1.t/.

The next proposition gives an estimate of Morse index from below by the number
of non-regular instants of u1.t/. For a critical point u of I`.u/, we define the Morse
index i.I 00

`
.u// and augmented Morse index i0.I 00` .u// by

i
�
I 00` .u/

�
D max

®
dimH I H � E is a subspace of E such that
I 00` .u/.v; v/ < 0 for all v 2 H n ¹0º

¯
;

i0.I
00
` .u// D max

®
dimH I H � E is a subspace of E such that
I 00` .u/.v; v/ � 0 for all v 2 H

¯
:
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Proposition 4.6. We have the following Morse index estimate for .u`/:

lim inf
`!1

i
�
I 00` .u`/

�
� #¹Nt 2 S1I Nt is a non-regular instant of u1º:

Proof. Let Nt be a non-regular instant of u1. For a given � > 0 we choose a function

'.t/ 2 C1.S1;R/

such that

'.t/ D 1 for jt � Nt j � �;

'.t/ D 0 for jt � Nt j � 2�;

'.t/ 2 Œ0; 1� for all t 2 S1:

To show Proposition 4.6, it suffices to show

(4.10) I 00` .u`/
�
'�.u`/; '�.u`/

�
! �1 as `!1:

Note that r2Uı.u`.t// D 0, rUı.u`.t// D 0 if h.u`.t// � 0 and recall (ii) of Propo-
sition 4.5. By (2.7),

`

Z 2�

0

r
2Uı.u`/

�
'�.u`/; '�.u`/

�
dt

� `

Z
¹t Ih.u`.t//>0º

�
3

h.u`/
� C

�ˇ̌
rUı.u`/

ˇ̌
'.t/2 dt

� inf
¹t Wh.u`.t//>0º

�
3

h.u`/
� C

�
� `

Z NtC�
Nt��

ˇ̌
rUı.u`/

ˇ̌
dt!1 as `!1:

(4.11)

Here we use the fact that maxt2Œ0;2�� h.u`.t//! 0 as `!1, which follows from
u` ! u1 2 xƒ0.

On the other hand, it is easy to see that


 d
dt

�
R.t/u` C c.t/

�


2
2
;

Z 2�

0

r
2V.t; u`/

�
'�.u`/; '�.u`/

�
dt

stay bounded as `!1. Thus (4.10) follows.

We summarize the results obtained in this section.

Proposition 4.7. Suppose .u`/ � ƒı satisfies (4.1)–(4.2). After extracting a subse-
quence, we assume u` * u1 weakly in E. Then we have the following:

(i) Except for non-regular instants for u1.t/,

(4.12) Rq1 CR.t/rV.t; u1/ D 0:

(ii) #¹Nt 2 S1I Nt is a non-regular instant of u1º � lim inf`!1 i.I 00` .u`//.
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(iii) Assume that Nt is an isolated non-regular instant for u1.t/. Then

Pu1;˙.Nt / D lim
s!˙0

Pu1.Nt C s/

exists. Moreover, ˇ̌
Pu1;C.Nt /

ˇ̌
D
ˇ̌
Pu1;�.Nt /

ˇ̌
;(4.13)

Pu1;C.Nt / D Pu1;�.Nt / � c�
�
u1.Nt /

�
;(4.14)

where c � 0.

Proof. We need to show (iii). Since Nt is an isolated non-regular instant, for some
� > 0, u1.t/ is of class C 2 in ŒNt � �; Nt � and ŒNt ; Nt C ��. Thus Pu1;˙.Nt / exists. Then
(4.13) follows from Corollary 4.4. Remark that

Pq1;C.Nt / � Pq1;�.Nt / D R.Nt /
�
Pu1;C.Nt / � Pu1;�.Nt /

�
:

By (4.9), we obtain (4.14) with c � 0.

Remark 4.8. As we stated in Remark 1.2, there are examples in which the limit
u1.t/ has infinitely many non-regular instants. Let N D 2, � D ¹x 2 R2I jxj < 1º,
V.t; x/ � 0.

(1) When R.t/ D
� cos t � sin t

sin t cos t

�
, c.t/ D �

� cos t
sin t

�
with � > 1. Then J 0

`
.u`/ D 0 holds if

and only if
Rq` C `R.t/rUı.u`/ D 0;

where q`.t/ D R.t/u`.t/C c.t/. u`.t/ D
� a`
0

�
is a solution if and only if a` 2

.1; 1C ı/ satisfies
�.a` C �/C `�

0
ı.a` � 1/ D 0:

We note that �0
ı
.0/ D 0 and �0

ı
.t/!1 as t ! ı � 0. Thus for any ` 2 Œ1;1/

there exists a solution a` 2 .1; 1C ı/. We can easily see that a` ! 1 as `!1
and u1.t/ D lim`!1 u`.t/ D

�
1
0

�
. Clearly q1.t/ does not satisfy Rq1 D 0 and

all t 2 S1 are non-regular instants.

(2) Assume R.t/ � I and c.t/ � 0. Then

u`.t/ D a`

�
cos t
sin t

�
is a critical point of I`.u/ if and only if �a` C `�0ı.a` � 1/ D 0. Such a a` 2
.1; 1C ı/ exists and it satisfies a` ! 1 as `!1. Thus

u`.t/! u1.t/ D

�
cos t
sin t

�
as `!1:
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Clearly q1.t/ D u1.t/ does not satisfy Rq1 D 0 and all t 2 S1 are non-regular
instants.

5. Minimax methods

To define minimax values, first we define an extension of I`.u/ to E. We define
J`.u/WE ! Œ�1;1/ by

J`.u/ D

´
I`.u/ for u 2 ƒı ;
�1 for u 2 E nƒı :

We note that J`.u/ is of class C 2 in its effective domain ¹u 2 EI J`.u/ > �1º D ƒı .
We also define J1.u/WE ! Œ�1;1/ by

J1.u/ D

´
1
2



 d
dt
.RuC c/



2
2
�
R 2�
0
V.t; u/ dt for u 2 xƒ0;

�1 for u 2 E n xƒ0:

We can easily see the following lemma.

Lemma 5.1. J`.u/ has the following limit behavior:

(i) For ` 2 Œ1;1�, J`.u/ is upper semi-continuous; that is, uj ! u1 strongly in E
implies

J`.u1/ � lim sup
j!1

J`.uj /:

(ii) For each u 2 E,
` 7! J`.u/I Œ1;1�! Œ�1;1/

is non-increasing on Œ1;1�.

(iii) ` 7! J`.u/ is continuous on Œ1;1/ and J`.u/ ! J1.u/ as ` ! 1 in the
following sense:

J`.u/ D J1.u/ > �1 if u 2 xƒ0;
J`.u/! J1.u/ D �1 if u 2 ƒı n xƒ0;
J`.u/ D �1 for all ` 2 Œ1;1� if u 2 E nƒı :

(iv) For any non-empty compact set K � E and ` 2 Œ1;1�

max
u2K

J`.u/

is attained. Here we regard

max
u2K

J`.u/ D �1 if ` 2 Œ1;1/ and K \ƒı D ;;

max
u2K

J1.u/ D �1 if K \ xƒ0 D ;:
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In what follows, we consider minimax values for J`.u/. For ` 2 Œ1;1/, I`.u/
satisfies the Palais–Smale condition and we can develop the deformation theory to show
finite minimax values are critical values. For J`.u/ (` 2 Œ1;1/), if minimax values
are finite, we can also show that the minimax values are critical values since we may
assume under the deformation the level set ¹u 2 EI J`.u/ 2 Œ�1; c�º is invariant for
c 2 .�1;1/ less than minimax values. To find critical points, we apply ideas in the
perturbation from symmetry in [1–4,12, 14, 17]. Here we follow mainly Rabinowitz
[12, 13] and Tanaka [17].

Now we assume that 0 2 � and � is symmetric with respect to 0. We also assume

(5.1) � �
®
x 2 RN I jxj � L

¯
:

We choose an orthonormal basis e1; e2; : : : ; eN ; eNC1; : : : in E. We may assume
e1 D .1; 0; : : : ; 0/, . . ., eN D .0; : : : ; 0; 1/ are constant functions.

For n 2 N we set
En D span¹e1; : : : ; enº

and choose 0 < R1 < � � � < Rn < � � � such that

(5.2) kuk1 � L for u 2 En with kukE � Rn:

We also set

Dn D
®
.�1; : : : ; �n/ 2 RnI �21 C � � � C �

2
n � R

2
n

¯
;

@Dn D
®
.�1; : : : ; �n/ 2 RnI �21 C � � � C �

2
n D R

2
n

¯
:

We regard D1 � D2 � � � � and for � D .�1; : : : ; �n/ 2 Dn we set


0.�/ D

nX
iD1

�iei :

By (5.1)–(5.2), we have J`.
0.�// D �1 for all � 2 @Dn and ` 2 Œ1;1�.
Following [12], we introduce minimax values b`n for n 2 N and ` 2 Œ1;1� as

follows:
b`n D inf


2�n
max
�2Dn

J`
�

.�/

�
;

where
(5.3)
�nD

®

 2C.Dn;E/I 
.��/D�
.�/ for all � 2Dn; 
.�/D 
0.�/ for all � 2 @Dn

¯
:

We also define
c`n D inf


2�
C

nC1

max
�2D

C

nC1

J`
�

.�/

�
;
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where

DCnC1 D
®
.�1; : : : ; �n; �nC1/ 2 DnC1I �nC1 � 0

¯
;

�CnC1 D
®

 2 C.DCnC1; E/I


 jDn 2 �n; 
.�/ D 
0.�/ for j�j D RnC1 or � 2 En nDn
¯
:

We note that for any ` 2 Œ1;1�, n 2 N,

J`
�

.�/

�
D �1 for all 
 2 �n and � 2 @Dn;

J`
�

.�/

�
D �1 for all 
 2 �CnC1 and � 2 @DCnC1 nDn:

We have the following proposition.

Proposition 5.2. .b`n/ and .cn
`
/ have the following properties:

(i) For any n 2 N and 1 � ` � `0 � 1,

�1 < b1n � b
`0

n � b
`
n � b

1
n;

�1 < c1n � c
`0

n � c
`
n � c

1
n;

b`n � c
`
nC1:

(ii) For any n 2 N,
b`n ! b1n ; c`n ! c1n as `!1:

Proof. (i) Since 0 D 
.0/ 2 
.Dn/ for 
 2 �n,

max
�2Dn

J1
�

.�/

�
� J1.0/ D

1

2
k Pck22 �

Z 2�

0

V.t; 0/ dt > �1:

Thus we have b1n > �1. Monotonicity on ` and b`n � c`n are clear from the definition.
(ii) For any 
 2 �n, K D 
.Dn/ is a compact subset of E and we observe that

` 7! max
u2K

J`.u/I Œ1;1�! R

is continuous and monotone non-increasing. Thus ` 7! b`nD inf
2�n max�2Dn J`.
.�//
is left-continuous on Œ1;1�. In particular, b`n ! b1n as `!1. In a similar way, we
can show c`n ! c1n as `!1.

By the argument in [12], if b`n < c`n, we can show J`.u/ has a critical value greater
than b`n. Moreover, if b1n < c1n , we can show b`n < c

`
n for large `. We will show the

existence of a sequence .nk/ � N with b1nk < c
1
nk

.
Next we study the behavior of .b1n / as n!1. We will show the following result

in Section 6.
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Lemma 5.3. lim infn!1
b1n
n2

> 0.

The following proposition follows from the above lemma.

Proposition 5.4. There exists a sequence .nk/ � N such that

0 < b1nk C 1 � c
1
nk

for k D 1; 2; : : : :

Proof. Arguing indirectly, we assume that for some n0 2 N

(5.4) c1n � b
1
n C 1 for n � n0:

We note that �u 2 xƒ0 for u 2 xƒ0 since� is symmetric with respect to 0. We have for
u 2 xƒ0

J1.�u/ � J1.u/ D
1

2

�


 d
dt
.�RuC c/




2
2
�




 d
dt
.RuC c/




2
2

�
�

Z 2�

0

V.t;�u/ � V.t; u/ dt

D �2

�
d

dt
.Ru/; Pc

�
2

�

Z 2�

0

V.t;�u/ � V.t; u/ dt

D 2.Ru; Rc/2 �

Z 2�

0

V.t;�u/ � V.t; u/ dt:

Thus there exists C > 0 such that

(5.5) J1.�u/ � J1.u/C C for all u 2 xƒ0:

For 
.�/ 2 �CnC1, we set z
.�/ 2 �nC1 by

z
.�/ D

´

.�/ for � 2 DCnC1;
�
.��/ for � 2 �DCnC1:

By (5.5), for any 
 2 �CnC1,

max
�2�D

C

nC1

J1
�
z
.�/

�
D max
�2D

C

nC1

J1
�
� 
.�/

�
� max
�2D

C

nC1

J1
�

.�/

�
C C:

Thus

max
�2DnC1

J1
�
z
.�/

�
� max

®
max

�2D
C

nC1

J1
�
z
.�/

�
; max
�2�D

C

nC1

J1
�
z
.�/

�¯
� max
�2D

C

nC1

J1
�

.�/

�
C C:
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Since 
 2 �CnC1 is arbitrary, we have

b1nC1 � c
1
n C C for all n:

Thus under (5.4) we have

b1nC1 � b
1
n C C C 1 for n � n0;

which implies
b1n � b

1
n0
C .C C 1/.n � n0/ for n � n0:

This is a contradiction to Lemma 5.3.

Now we can complete the proof of Theorem 1.1.

End of the proof of Theorem 1.1. By Proposition 5.4, there exists a sequence .nk/
� N such that b1nk C 1 � c

1
nk

for all k 2 N. We choose 
0;nk 2 �nk such that

max
�2Dnk

J1
�

0;nk .�/

�
� b1nk C

1

3

and we set
z�CnkC1 D

®

 2 C.DCnkC1; E/I 
 jDnk D 
0;nk

¯
and for ` 2 Œ1;1�

Qc`nk D inf

2z�
C

nkC1

max
�2Dnk

J`
�

.�/

�
:

Then we have

b1nk C 1 � c
1
nk
� Qc1nk ;

b`nk C
2

3
� Qc`nk for sufficiently large ` � 1:

Since the Palais–Smale condition holds for J`.u/with ` 2 Œ1;1/ and for all 
 2 z�CnkC1

max
�2@D

C
nk

J`
�

.�/

�
D max
�2@D

C
nk

J`
�

0;nk .�/

�
! max

�2@D
C
nk

J1
�

0;nk .�/

�
< b1nk C

1

3
;

there exists a critical point u`nk 2 ƒı such that

J`.u
`
nk
/ D Qc`nk ; J 0`.u

`
nk
/ D 0; i

�
J 00` .u

`
nk
/
�
� nk for large ` � 1:

For the estimate of the Morse index, see [17].
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Noting Qc`nk ! Qc
1
nk
2 Œb1nk ;1/, after extracting a subsequence if necessary, we may

assume
u`nk * u1nk weakly in E:

We can deduce that u1nk is a bounce trajectory and

J1.u
1
nk
/ D Qc1nk � b

1
nk
!1;

#
®
Nt I Nt is a non-regular instant of u1nk

¯
� nk :

Thus there exist infinitely many bounce trajectories and the proof of Theorem 1.1 is
completed.

6. Proof of Lemma 5.3

6.1. One-dimensional problem
To prove Lemma 5.3, first we consider the following 1-dimensional problem:

RuCW 0ı .u/ D 0 in R;(6.1)
u.t C 2�/ D u.t/ in R:(6.2)

Here u.t/WS1 ! R is unknown and Wı.t/W .�1 � ı; 1C ı/! R is given by

Wı.t/ D

8̂̂<̂
:̂
�ı.t � 1/ for t 2 Œ1; 1C ı/;
0 for t 2 Œ0; 1/;
Wı.�t / for t 2 .�1 � ı; 0/:

This is a special case studied in previous sections and a related problem is studied
well in Berestycki [6]. See also [17] for related results on Morse indices. Here we give
related results to [6].

We set

F D H 1.S1;R1/;

‚ı D
®
u 2 F I u.t/ 2 .�1 � ı; 1C ı/ for all t

¯
;

H.u/ D
1

2
k Puk22 �

Z 2�

0

Wı.u/ dt 2 C
2.‚ı ;R/:

Solutions of (6.1)–(6.2) are characterized as critical points of H.u/.
We have the following lemma.

Lemma 6.1. Choosing ı 2 .0; ı0=2� smaller if necessary, we have the following:

(i) For any critical point u of H , H.u/ � 1
4
k Puk22. In particular, all critical values

of H.u/ are non-negative.

(ii) H.u/ satisfies the Palais–Smale condition.
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Proof. (i) For t 2 .0; ı/, we have from (2.2) that

Wı.1C t / D �ı.t/ �
ı

16
�0ı.t/ �

ı

16
�0ı.t/.1C t / �

ı

16
W 0ı .1C t /.1C t /:

Noting Wı.t/ D 0 for t 2 Œ�1; 1�, we have

Wı.t/ �
ı

16
W 0ı .t/t for all t 2 .�1 � ı; 1C ı/:

Thus

(6.3)
Z 2�

0

Wı.u/ dt �
ı

16

Z 2�

0

W 0ı .u/u dt for all u 2 ‚ı :

It follows from H 0.u/u D 0 that

(6.4) k Puk22 D

Z 2�

0

W 0ı .u/u dt:

Thus, by (6.3) and (6.4) we have for a critical point u

H.u/ D
1

2
k Puk22 �

Z 2�

0

Wı.u/ dt

�
1

2
k Puk22 �

ı

16

Z 2�

0

W 0ı .u/u dt

D

�
1

2
�
ı

16

�
k Puk22:

Thus for ı 2 .0; 1/ we have (i). (ii) is a special case of Proposition 3.2.

It is easy to see that solutions of (6.1)–(6.2) are constant or 2�
k

-periodic with k 2N.
We have the following proposition.

Proposition 6.2. Constant and periodic solutions have the following properties:

(i) For constant solution ua.t/ � a 2 Œ�1; 1�, we have

H.ua/ D 0; i0
�
H 00.ua/

�
D 1:

(ii) For 2�
k

-periodic solution uk.t/ with minimal period 2�
k

(k 2 N), we have

H.uk/ �
2k2

�
; i0

�
H 00.uk/

�
� 2k C 1:

Proof. (i) Since H 00.0/.h; h/ D k Phk22 for h 2 F , we have i0.H 00.ua// D 1.
(ii) Let uk.t/ be a 2�

k
-periodic solution of (6.1)–(6.2). We may assume uk.0/ D 0

and u0
k
.0/ > 0. We observe that uk.�k i/ D 0 for i D 1; 2; : : : ; 2k and uk.t/ takes
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maximum at t D �
2k

and uk. �2k / > 1. Thus

1 <

Z �
2k

0

Puk dt �
� �
2k

�1=2
k PukkL2.0; �

2k
/;

which implies

k Pukk
2
2 D k Pukk

2
L2.0;2�/

D 4kk Pukk
2
L2.0; �

2k
/
>
8k2

�
:

By (i) of Lemma 6.1, we have H.uk/ � 2k2

�
.

We denote i -th eigenvalue of � d2

dt2
�W 0

ı
.uk/ in .0; 2�/ under Neumann (periodic

respectively) boundary conditions by �Ni (�Pi respectively).
Differentiating (6.1), we observe that v.t/ D u0

k
.t/ satisfies

Rv CW 0ı .uk/v D 0 in R;

Pv.0/ D Pv.2�/ D 0 in R:
(6.5)

Thus v.t/ is an eigenfunction of � d2

dt2
�W 0

ı
.uk/ under Neumann boundary condition.

Since v.t/ has 2k zeros in .0; 2�/, we have �N
2kC1

D 0. Thus

0 D �N2kC1 < �
N
2kC2 � �

P
2kC2:

Thus we have i0.H 00.uk// � 2k C 1.

6.2. Estimate for b1n
Since Œ�1 � ı; 1C ı�N � � by (2.1), there exists C > 0 such that

(6.6) V.t; x/ �

NX
iD1

Wı.xi /C C for all x D .x1; : : : ; xN /:

Here we regard Wı.t/ D1 for jt j � 1C ı.
We define yH.u/WE ! Œ�1;1/ by

yH.u/ D

´PN
iD1H.ui / for u D .u1; : : : ; uN / with ui 2 ‚ı for all i;

�1 otherwise:

By (6.6), we have for a constant C > 0 independent of u

J1.u/ D
1

2




 d
dt
.RuC c/




2
2
�

Z 2�

0

V.t; u/ dt

D
1

2



.R PuC PRuC Pc/

2
2
�

Z 2�

0

V.t; u/ dt

�
1

4
k Puk22 � C �

1

2
yH.u/ � C for all u 2 xƒ0:

(6.7)
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We set for n 2 N

ˇn D inf

2�n

max
�2Dn

yH
�

.�/

�
;

where �n is defined in (5.3).
Since yH.u/ is an even functional, symmetric mountain pass values ˇn are critical

values of yH.u/. More precisely, we have the following lemma.

Lemma 6.3. .ˇn/ has the following properties:

(i) b1n �
1
2
ˇn � C for all n.

(ii) For n � N C 1, we have

(1) ˇn > 0;

(2) ˇn is a critical value of yH.u/;

(3) there exists a critical point wn 2 E such that

0 < yH.wn/ � ˇn; i0
�
yH 00.wn/

�
� n:

Proof. (i) follows from (6.7).
(ii) (1) In a small neighborhood of 0 in E, we have

yH.u/ D
1

2
k Puk22:

Since u 7! k Puk22 is positive definite on E?N , we can deduce ˇn > 0 for n � N C 1.
(2) Since yH.u/ satisfies the Palais–Smale condition and yH.u/ is even, we can see

that ˇn > 0 is a critical value. (3) follows from [17].

Finally we give an estimate for yH.wn/, where wn appeared in Lemma 6.3 (ii) (3).

Lemma 6.4. There exists c > 0 independent of n such that

ˇn � cn
2 for n � N C 1:

Proof. Let wn D .!1; : : : ; !N / be a critical point of yH.u/ obtained in Lemma
6.3 (ii) (3). Then !i ’s are the critical point of H.u/ and

NX
iD1

H.!i / D yH.wn/ � ˇn;(6.8)

NX
iD1

i0
�
H 00.!i /

�
D i0

�
yH 00.wn/

�
� n:(6.9)
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By (6.9), there exists !i such that i0.H 00.!i // � Œ nN �. Suppose that !i is 2�
k

-periodic.
By Proposition 6.2, we have

2k C 1 � i0
�
H 00.!i /

�
�

h n
N

i
;

H.!i / �
2k2

�
:

Thus we have for some constant c > 0 independent of n,

yH.wn/ � H.!i / � cn
2 for n � N C 1:

Thus Lemma 6.4 is proved.

End of the proof of Lemma 5.3. Combining Lemma 6.3 (i) and Lemma 6.4, we
have

b1n �
1

2
cn2 � C 0 for n � N C 1:

Thus Lemma 5.3 is proved.

7. Benci–Giannoni’s bounce orbit

Finally in this section, we give another approach to show the existence of a bounce
trajectory in the setting of the paper [5].

Here we assume��RN with 0 2� is an open-bounded domain with boundary @�
of class C 2 (we do not assume symmetry of�). For simplicity we assume V.t; x/ � 0
and we consider the situation R.t/ � I , c.t/ � 0.

For small ı > 0 we define �ı , Uı.x/ as in previous sections and

J`.u/ D

´
1
2
k Puk22 � `

R 2�
0
Uı.u/ dt for u 2 ƒı ;

�1 for u 2 E nƒı ;

J1.u/ D

´
1
2
k Puk22 for u 2 xƒ0;
�1 for u 2 E n xƒ0:

We set for R > 0

Q D
®
y C reNC1I y 2 EN ; kykE � R; 0 � r � R

¯
:

We observe that ¹y 2 EN I kykE � Rº \�ı D ; for large R � 1 and J1.u/ � 0 for
all u 2 @Q.
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We introduce

z� D
®

 2 C.Q;E/I 
.u/ D u for all u 2 @Q

¯
;

b` D inf

2z�

max
u2Q

J`
�

.u/

�
for ` 2 Œ1;1�:(7.1)

Since J1.u/ D 1
2
k Puk22 in a neighborhood of 0, we observe that for small � > 0

inf
u2S�

J1.u/ > 0;

where
S� D

®
u 2 E?N I kukE D �

¯
:

Since 
.Q/ \ S� 6D ; for all 
 2 z� , we have b1 > 0 and thus

0 < b1 � b` � b1 for all ` 2 Œ1;1/;

b` ! b1 as `!1:

Since J`.u/ satisfies the Palais–Smale condition for ` 2 Œ1;1/, there exists a sequence
.u`/ of critical points of J`.u/ such that

J`.u`/ D b
`
! b1; J 0`.u`/ D 0; i

�
J 00` .u`/

�
� N C 1:

After extracting a subsequence, we assume u` ! u1 weakly in E. From the argu-
ment in previous sections, we have the following theorem, which gives a minimax
characterization of a bounce trajectory.

Theorem 7.1. For b1 defined in (7.1), there exists a bounce trajectory u1.t/ such
that

J1.u1/ D b
1;

u1.t/ has at most N C 1 non-regular instants:
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