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Abstract. We prove that the truncated correlation functions of the charge and gradient fields asso-
ciated with the massless sine-Gordon model on R2 with ˇ D 4� exist for all coupling constants and
are equal to those of the chiral densities and vector current of free massive Dirac fermions. This is
an instance of Coleman’s prediction that the massless sine-Gordon model and the massive Thirring
model are equivalent (in the above sense of correlation functions). Our main novelty is that we
prove this correspondence starting from the Euclidean path integral in the nonperturbative regime
of the infinite volume models. We use this correspondence to show that the correlation functions
of the massless sine-Gordon model with ˇ D 4� decay exponentially and that the corresponding
probabilistic field is localized.

Keywords. Coleman, bosonization, sine-Gordon model, Thirring model, free fermions, Coulomb
gas

1. Introduction and main results

Statistical and quantum field theory in two (Euclidean) dimensions is rich and special
in various ways. This manifests itself, for example, through the existence of the pow-
erful theory of conformal field theory (CFT), the possibility of quasiparticles which are
neither bosons nor fermions but instead have anyonic particle statistics, or the perhaps
surprising possibility of equivalence of fermionic and bosonic field theories – known as
bosonization. The two-dimensional setting also provides one of the main test cases for the
understanding of strongly interacting field theories. The massless sine-Gordon model is a
principal example of a nonconformal perturbation of a CFT in two dimensions. Despite
the absence of conformal symmetry, there is a detailed but almost entirely conjectural
description of many of its physical features, not accessible by perturbation theory, includ-
ing the prediction of a mass gap for all coupling constants. These features pertain to
the infinite volume theory. In this paper, we study the arguably most fundamental (and
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simplest) instance of this – the Coleman correspondence at the free fermion point, which
we prove starting from the path integral formulation in the nonperturbative regime of the
infinite volume models and for all coupling constants.

1.1. Coleman correspondence

The Coleman correspondence is a prototype for bosonization [16]. It states that the mass-
less sine-Gordon model with parameters .ˇ; z/ and the massive Thirring model with
parameters .g; �/ are equivalent in the sense of correlation functions when .ˇ; z/ and
.g; �/ are appropriately related. This is an instance of bosonization because the sine-
Gordon model is a bosonic quantum field theory while the massive Thirring model is
a fermionic quantum field theory. The equivalence is especially striking when ˇ D 4� ,
which corresponds to parameters of the massive Thirring model for which it becomes
noninteracting (free massive Dirac fermions), while the sine-Gordon model is interacting
(non-Gaussian).

Previous mathematical results have established variants of the Coleman correspon-
dence in the perturbative regime, i.e., for small coupling constants and with finite volume
interaction term (or with external mass term); see [7, 21, 33, 55] and Section 1.3. In this
article, we prove that, for ˇ D 4� , the Coleman correspondence holds in the nonpertur-
bative regime of the infinite volume models (without external mass term). Unlike the
previous results, our proof has thus strong implications for the massless sine-Gordon
model with ˇ D 4� : we show exponential decay of correlations for all z ¤ 0 and that
the field is probabilistically localized – results that are nonperturbative in the coupling
constant (and false for z D 0).

Before stating our results, we first introduce the sine-Gordon model and free Dirac
fermions (both in their Euclidean versions). The massless sine-Gordon model with
coupling constants ˇ 2 .0; 8�/ and z 2 R is defined in terms of "! 0, m! 0, L!1
the limit of the probability measures

�SG.ˇ;zj";m;L/.d'/ / exp
�
2z

Z
ƒL

"�ˇ=4� cos.
p
ˇ '.x// dx

�
�GFF.";m/.d'/; (1.1)

where ƒL D ¹x 2 R2 W jxj � Lº is the Euclidean disk of radius L, and �GFF.";m/ is the
Gaussian free field (GFF) on R2 with mass m > 0 regularized at scale " > 0. Here the
precise choice of the regularization of the GFF is not important, but to be concrete, we
choose �GFF.";m/ as the Gaussian measure supported on C1.R2/ with covariance kernelZ 1

"2
ds e�s.��Cm

2/.x; y/: (1.2)

We denote the expectation with respect to the measure �SG.ˇ;zj";m;L/ by h�iSG.ˇ;zj";m;L/.
The gradient correlation functions are the moments of @' and N@' in the limit " ! 0,
m ! 0, L ! 1. The charge correlation functions are the limits (when they exist) of
linear combinations of expectations of products of

We˙i
p
ˇ '.x/

W" WD "
�ˇ=4�e˙i

p
ˇ '.x/ (1.3)
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or their smeared versions, defined for f 2 L1.R2/ with compact support by

We˙i
p
ˇ '
W".f / WD "

�ˇ=4�

Z
R2
dx f .x/e˙i

p
ˇ '.x/: (1.4)

The relevant linear combinations are the truncated correlation functions (or joint cumu-
lants). For example, for ˇ � 4� , the charge one-point function hWei

p
ˇ ' W".f /iSG.ˇ;zj";m;L/

diverges when z ¤ 0 and
R

R2 f ¤ 0 (see Proposition 1.4), but we will see that the trun-
cated charge two-point function, defined by

hWei
p
ˇ '
W".f1/ We

�i
p
ˇ '
W".f2/i

T
SG.ˇ;zj";m;L/ D hWe

i
p
ˇ '
W".f1/We

�i
p
ˇ '
W".f2/iSG.ˇ;zj";m;L/

� hWei
p
ˇ '
W".f1/iSG.ˇ;zj";m;L/hWe

�i
p
ˇ '
W".f2/iSG.ˇ;zj";m;L/; (1.5)

has a nontrivial limit for test functions f1 and f2 with disjoint supports. In general, the
truncated correlation function of observables O1; : : : ; On can be defined inductively by

hO1 � � �Oni
T
D hO1 � � �Oni �

X
P2Pn

Y
j

DY
i2Pj

Oi

ET
; hOi i

T
D hOi i; (1.6)

where the sum is over proper partitions P D .Pj / 2 Pn of Œn� D ¹1; : : : ; nº. Note that
hO1 � � �Oni

T does not only depend on the product of the Oi , and a more precise notation
would be hO1I : : : IOniT . However, the formal product notation without semicolons is
standard and more convenient for our purposes. Equivalent to (1.6), the truncated correla-
tions are Taylor coefficients of the logarithm of the joint moment generating function of
O1; : : : ; On if it exists; see Appendix A.

Free fermions are defined in terms of their correlation kernel. The correlation kernel
of free Dirac fermions of mass � 2 R is the fundamental solution of the massive Dirac
operator on R2 for which we use the representation

=@C � D

�
� 2N@

2@ �

�
; (1.7)

where @ D 1
2
.�i@0 C @1/ and N@ D 1

2
.i@0 C @1/ and we identify x D .x0; x1/ 2 R2 with

ix0 C x1 2 C. In terms of the modified Bessel function K0, this fundamental solution is
explicitly given by

S.x; y/ D �
1

2�

�
��K0.j�j jx � yj/ 2N@xK0.j�j jx � yj/

2@xK0.j�j jx � yj/ ��K0.j�j jx � yj/

�
�

1

2�

�
0 1=. Nx � Ny/

1=.x � y/ 0

�
; (1.8)

where � holds as �! 0; see Section 6. For distinct points x1; : : : ; xn; y1; : : : ; yn 2 R2,
and any ˛1; : : : ; ˛n; ˇ1; : : : ; ˇn 2 ¹1; 2º, we then denote the correlation functions of free
Dirac fermions byD nY

iD1

N ˛i .xi / ˇi .yi /
E
FF.�/

D det .S˛i ǰ .xi ; yj //
n
i;jD1: (1.9)
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The right-hand side is regarded as the definition of the left-hand side. In Appendix A,
some standard operational tools for free fermions that we will use later are collected.
Because S is singular, the correlations of N ˛i .xi / ˇi .xi / are not defined, in general,
but for distinct points x1; : : : ; xn with n > 1, the truncated correlations of N ˛i ˇi .xi /
formally make sense and are given byD nY

iD1

N ˛i ˇi .xi /
ET
FF.�/

D .�1/nC1
X
�

nY
iD1

S˛
�i .1/

ˇ
�iC1.1/

.x�i .1/; x�iC1.1// (1.10)

where the sum is over cyclic permutations � of Œn� D ¹1; : : : ; nº. For our purposes, we
again regard the right-hand side of (1.10) as the definition of the left-hand side of (1.10).
(As explained in Appendix A, if S was not singular, then (1.10) would be an identity that
follows from (1.6) and (1.9) without restriction to distinct points. Alternatively, one could
thus define the truncated correlations as limits of regularized correlations and arrive at
the same result as in our definition.) Finally, for any f1; : : : ; fn W R2 ! R such that the
following integrand is (absolutely) integrable, we will writeD nY
iD1

N ˛i ˇi .fi /
ET
FF.�/
D

Z
dx1 � � �dxnf1.x1/ � � �fn.xn/

D nY
iD1

N ˛i ˇi .xi /
ET
FF.�/

: (1.11)

Since S.x; y/ has singularity O.1=jx � yj/, for n � 3 the above integrand is integrable
for all bounded fi with compact support. For nD 2, this is true for f1 and f2 with disjoint
compact supports.

For ˇ D 4� , the Coleman correspondence is the following theorem, our first main
result.

Theorem 1.1. Let ˇ D 4� and z 2 R. Then the "! 0, m! 0, L!1 limits of the
truncated correlation functions of @'; N@'; WeCi

p
ˇ ' W; We�i

p
ˇ ' W of the sine-Gordon model

exist .under the restrictions below/, and they are equal to the correlation functions of
free massive Dirac fermions with mass � D Az .the constant A is defined below/: for
n C n0 C q C q0 � 2 and all test functions f C1 ; : : : ; f

C
n ; f

�
1 ; : : : ; f

�
n0 2 L

1.R2/ and
gC1 ; : : : ; g

C
q ; g

�
1 ; : : : ; g

�
q0 2 C

1
c .R

2/, all with disjoint compact supports,

lim
L!1

lim
m!0

lim
"!0

D nY
kD1

WeCi
p
4� '
W".f

C

k
/

n0Y
k0D1

We�i
p
4� '
W".f

�
k0 /

�

qY
jD1

.�i@'.gCj //

q0Y
j 0D1

.�i N@'.g�j 0//
ET
SG.4�;zj";m;L/

D AnCn
0

BqCq
0
D nY
kD1

N 1 1.f
C

k
/

n0Y
k0D1

N 2 2.f
�
k0 /

qY
jD1

N 2 1.g
C

j /

q0Y
j 0D1

N 1 2.g
�
j 0/
ET
FF.�/

;

(1.12)

where A D 4�e�=2 and B D
p
� .and where  is the Euler–Mascheroni constant/.

Moreover, for nC n0 C q C q0 � 3 and nC n0 D q C q0 D 1, the statement is true
without the disjoint support assumption.
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We emphasize that the right-hand side is the explicit polynomial in S˛ˇ .x; y/ given
by (1.10) which is integrated over the test functions as in (1.11). To lighten notation, we
will write the limit on the left-hand side of (1.12) asD nY

kD1

WeCi
p
4�'
W.f C

k
/

n0Y
k0D1

We�i
p
4�'
W.f �k0 /

qY
jD1

.�i@'.gCj //

q0Y
j 0D1

.�i N@'.g�j 0//
ET
SG.4�;z/

:

(1.13)

By choosing nC n0 D 0 and q C q0 D 2, respectively nC n0 D 2 and q C q0 D 0, the
gradient and charge two-point functions of the sine-Gordon model are in particular given,
for test functions f1 and f2 with disjoint support, by

h@'.f1/@'.f2/iSG.4�;z/

D �
B2

�2

Z
dx1 dx2 f1.x1/f2.x2/.@x1K0.Ajzj jx1 � x2j//

2; (1.14)

h@'.f1/N@'.f2/iSG.4�;z/

D �
B2A2z2

4�2

Z
dx1 dx2 f1.x1/f2.x2/.K0.Ajzj jx1 � x2j//

2; (1.15)

and

hWei
p
4�'
W.f1/ We

�i
p
4�'
W.f2/i

T
SG.4�;z/

D
A2

�2

Z
dx1 dx2 f1.x1/f2.x2/j@x1K0.Ajzj jx1 � x2j/j

2; (1.16)

hWei
p
4�'
W.f1/ We

i
p
4�'
W.f2/i

T
SG.4�;z/

D �
A4z2

4�2

Z
dx1 dx2 f1.x1/f2.x2/.K0.Ajzj jx1 � x2j//

2: (1.17)

Indeed, for example, by (1.10) and (1.8),

h N 2 1.x/ N 2 1.y/i
T
FF.�/ D �S21.x; y/S21.y; x/ D

1

.2�/2
.2@xK0.j�j jx � yj//

2;

(1.18)

so that (1.12) gives (1.14), noting that for the gradient two-point function we can drop
the truncation of the expectation since h@'.fi /iSG.ˇ;z/ D 0 by symmetry. The equalities
(1.15)–(1.17) are analogous.

Note that the right-hand side of (1.16) is not integrable for overlapping test functions,
explaining the restriction in the .nC n0; q C q0/ D .2; 0/ case in Theorem 1.1. For the
gradient two-point functions, i.e., the case .n C n0; q C q0/ D .0; 2/, the statement can
be extended to test functions with overlapping support, but the singular integrals on the
right-hand side of (1.14) and (1.15) then require a more careful interpretation, as in the
following theorem. Similarly as before, we write

h@'.f1/@'.f2/iSG.4�;z/ WD lim
L!1

lim
m!0

lim
"!0
h@'.f1/@'.f2/iSG.4�;zj";m;L/ (1.19)

when the limits exist, and similarly for its complex conjugate and h@'.f1/N@'.f2/iSG.4�;z/.
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Theorem 1.2. Let ˇ D 4� and z 2 R. Then for f1; f2 2 C1c .R
2/,

h@'.f1/@'.f2/iSG.4�;z/ D �
B2

�2
p:v:

Z
dx1 dx2 f1.x1/f2.x2/ .@x1K0.Ajzj jx1�x2j//

2;

(1.20)

h@'.f1/N@'.f2/iSG.4�;z/ D �
B2A2z2

4�2

Z
dx1 dx2 f1.x1/f2.x2/ .K0.Ajzj jx1�x2j//

2

C
1

4

Z
dx f1.x/f2.x/; (1.21)

where p:v:
R

denotes the Cauchy principal value integral, limı!0

R
jx1�x2j�ı

.
In particular, the limits defining the left-hand sides exist.

In particular, since the modified Bessel function K0 and its derivative decay expo-
nentially, the massless sine-Gordon correlation functions decay exponentially whenever
z ¤ 0, when ˇD 4� . It is conjectured (but in general open) that the massless sine-Gordon
model has exponential decay of correlations for all ˇ 2 .0; 8�/ and z 2 R n ¹0º, with an
explicit conjectured relation between the rate of exponential decay (mass) and the param-
eters of the sine-Gordon model [61]. For further discussion of this problem, see also the
last paragraph of [7, p.717] and Section 1.3 below.

The exponential decay is, of course, in contrast to the well-known situation for the
GFF (i.e., the case z D 0). It is an elementary computation that GFF correlations decay
polynomially:

h@'.x/@'.y/iGFF D
�1

4�.x � y/2
; (1.22)

h@'.x/N@'.y/iGFF D 0; (1.23)

hWei
p
4� '.x/

W We�i
p
4� '.y/

WiGFF D
4e�

jx � yj2
; (1.24)

hWei
p
4� '.x/

W Wei
p
4� '.y/

WiGFF D 0; (1.25)

and that the one-point functions exist and vanish; see, for example, the computations in
Section 2.2. The free field correlations h�iGFF are defined as in (1.13) with z D 0.

While the above results are for the charge and gradient correlation functions, as a
consequence we can also construct the (probabilistic) massless sine-Gordon field itself
when ˇ D 4� and z ¤ 0. Note that the assumption z ¤ 0 is essential as the massless GFF
on R2 only exists up to an additive constant – not in the sense of the following theorem.

Theorem 1.3. Let ˇ D 4� and z 2 R, z ¤ 0. Then there exists a probability measure
on � 0.R2/ .not restricted to test functions with mean 0/ whose expectation we denote by
h�iSG.4�;z/ with the following properties. For any f; g 2 C1c .R

2/ with
R
f D 0 D

R
g,

hei'.f /iSG.4�;z/ D lim
L!1

lim
m!0

lim
"!0
hei'.f /iSG.4�;zj";m;L/; (1.26)

h'.f /'.g/iSG.4�;z/ D lim
L!1

lim
m!0

lim
"!0
h'.f /'.g/iSG.4�;zj";m;L/: (1.27)
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For f; g 2 C1c .R
2/, one has h'.f /iSG.4�;z/ D 0 and the two-point function is given by

h'.f /'.g/iSG.4�;z/ D

Z
R2

dp

.2�/2
Of .p/ Og.�p/ OCAz.p/; (1.28)

where Of .p/ D
R

R2 dx f .x/e
�ip�x is the Fourier transform of f ,

OC�.p/ D �
�2F.jpj=�/; where F.x/ D

1

x2
� 4

arsinh.x=2/

x3
p
4C x2

; (1.29)

and arsinh.x/ D log.x C
p
x2 C 1/ is the inverse hyperbolic sine.

In particular, the above massless sine-Gordon field on R2 is localized and has expo-
nential decay of correlation: for any f 2 C1c .R

2/,

sup
x;y2R2

h.'.fx/ � '.fy//
2
iSG.4�;z/ <1; (1.30)

and
h'.fx/'.fy/iSG.4�;z/ decays exponentially as jx � yj ! 1, (1.31)

where fx.y/ D f .y � x/ denotes the translation of f to x 2 R2.

Finally, we comment on the exclusion of the one-point functions in Theorem 1.1.
While the charge one-point functions vanish in the massless free field case, the following
proposition shows that they typically diverge when z ¤ 0.

Proposition 1.4. Let ˇ D 4� and z 2 R. For f 2 L1.R2/ with compact support, the
charge one-point functions satisfy

lim
L!1

lim
m!0

lim
"!0

�
1

log "�1
hWe˙i

p
ˇ '
W".f /iSG.4�;zj";m;L/

�
D 2�ze�

Z
R2
dxf .x/; (1.32)

while the gradient one-point functions vanish .by symmetry/:

h@'.f /iSG.4�;z/ D h
N@'.f /iSG.4�;z/ D 0: (1.33)

The above divergence of the charge one-point functions is shown in Theorem 3.1 (iv),
in fact more generally for all ˇ 2 Œ4�; 6�/. As a consequence of this and of the existence
of the truncated charge correlation functions, none of the untruncated charge correlation
functions involving a test function with

R
R2 f ¤ 0 converge as " ! 0. On the other

hand, since the gradient one-point functions exist, the existence of the truncated gradient
correlation functions also implies that of the untruncated gradient correlation functionsD qY

jD1

@'.gCj /

q0Y
j 0D1

N@'.g�j 0/
E
SG.4�;z/

; (1.34)

with explicit expressions given by inverting (1.6).
Before discussing consequences of Theorems 1.1–1.2 and our more general analysis

in their proofs, we remark on the physical interpretation of the fermionic side of the
Coleman correspondence.
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Remark 1.5. The Coleman correspondence can be written in terms of Dirac matrices �

satisfying �� C �� D 2ı��1. In the representation we have chosen, these are

1 D
�
1 0

0 1

�
; 0 D

�
0 i

�i 0

�
; 1 D

�
0 1

1 0

�
; 5 D

�
1 0

0 �1

�
: (1.35)

Thus 0 D��2, 1 D �1, 5 D �3, where the �i are the Pauli matrices. In terms of these,
the Dirac operator can be written as

=@ D 0@0 C 
1@1 D

�
0 i@0 C @1

�i@0 C @1 0

�
D

�
0 2N@

2@ 0

�
: (1.36)

The Coleman correspondence can then be regarded as the following equivalence of the
fields:

Wei
p
4� '
W $ A N 1 1 D

A

2
N .1C 5/ ; (1.37)

We�i
p
4� '
W $ A N 2 2 D

A

2
N .1 � 5/ ; (1.38)

�i@' $ B N 2 1 D
B

2
N .i0 C 1/ ; (1.39)

�i N@' $ B N 1 2 D
B

2
N .�i0 C 1/ : (1.40)

The right-hand sides of (1.37)–(1.38) have the interpretation of being the chiral densities
associated with the spinor field  , and the right-hand sides of (1.39)–(1.40) that of the
vector current N � (written in complex coordinates); see, for example, [30, Section 3].

1.2. Further results

Our estimates for the sine-Gordon model together with the correlation inequalities
from [32] also imply the following results for the infinite volume limit for ˇ 2 .0; 6�/.

The first theorem is for the infinite volume limit of the massless sine-Gordon field
modulo constants (the “gradient field”). Let � 0.R2/=constants denote the topological dual
of the (closed) subspace of integral-0 functions of the Schwartz space �.R2/.

Theorem 1.6. Let ˇ 2 .0; 6�/ and z 2 R. Then for any f 2 C1c .R
2/ with

R
f D 0, the

limit
hei'.f /iSG.ˇ;z/ WD lim

L!1
lim
m!0

lim
"!0
hei'.f /iSG.ˇ;zj";m;L/ (1.41)

exists, and extends to the characteristic functional of a probability measure on the space
� 0.R2/=constants whose expectation we denote by h�iSG.ˇ;z/. This measure is invariant
under Euclidean transformations and satisfies

hei'.f /iSG.ˇ;z/ � e
� 12 .f;.��/

�1f /; h'.f /2iSG.ˇ;z/ � .f; .��/
�1f /: (1.42)

Form > 0 fixed and z > 0, we similarly obtain the existence of the infinite volume of
limit of the massive sine-Gordon field.
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Theorem 1.7. Let ˇ 2 .0; 6�/ and m; z > 0. For any f 2 C1c .R
2/ .not assumingR

f D 0/, the limit

hei'.f /iSG.ˇ;zjm/ WD lim
L!1

lim
"!0
hei'.f /iSG.ˇ;zj";m;L/ (1.43)

exists, and extends to the characteristic functional of a probability measure on � 0.R2/
whose expectation we denote by h�iSG.ˇ;zjm/. This measure is invariant under Euclidean
transformations and satisfies

hei'.f /iSG.ˇ;zjm/ � e
� 12 .f;.��Cm

2/�1f /; h'.f /2iSG.ˇ;zjm/ � .f; .��Cm
2/�1f /;

(1.44)
and

hei'.f /iSG.ˇ;zjm/ � he
i'.f /
iSG.ˇ;z/; h'.f /

2
iSG.ˇ;zjm/ � h'.f /

2
iSG.ˇ;z/; (1.45)

where the right-hand sides of the last two bounds are as in Theorem 1.6 and hold ifR
f D 0.

For ˇ D 4� , we can then deduce using the localization bound (1.30) that the m! 0

limit can be taken after the infinite volume limit, which means that the formal ' 7!
' C 2�p

ˇ
Z-symmetry of the massless sine-Gordon model is spontaneously broken in the

infinite volume limit.

Corollary 1.8. Let ˇD4� and z >0. Then for any f 2C1c .R
2/ .not assuming

R
f D0/,

h'.f /2iSG.4�;zj0C/ WD lim
m!0

lim
L!1

h'.f /2iSG.4�;zjm;L/�

Z
R2

dp

.2�/2
j Of .p/j2 OCAz.p/<1;

(1.46)
where OC�.p/ is as in Theorem 1.2.

Moreover, the limit h�iSG.4�;zj0C/ WD limm!0 limL!1h�iSG.4�;zjm;L/ exists in the
sense of characteristic functionals and defines a probability measure on � 0.R2/ .not
dividing out constants/.

We expect that h�iSG.4�;zj0C/ is the same as h�iSG.4�;z/ but our arguments do not imply
this.

1.3. Heuristics and previous results

The formal equivalence of the massless sine-Gordon model and the massive Thirring
model was observed by Coleman [16]. The massive Thirring model with parameters
.g; �/ is formally given by a fermionic path integral with “density”

exp
�
�

Z
R2
dx
�
 =@ N C �. 1 N 1 C  2 N 2/C 2g 1 N 2 2 N 1

��
: (1.47)

Coleman observed that, order by order in a formal expansion, the massless sine-Gordon
model with parameters .ˇ; z/ is related to the massive Thirring model if the parameters
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of the two models are related by

g D B2
�
1 �

4�

ˇ

�
; � D Az: (1.48)

Heuristically this prediction is not difficult to understand from the type of massless Gaus-
sian free field and massless free fermion computations we derive in Section 2; these are
versions of the identifications (1.37)–(1.40) in the elementary situation of the massless
Gaussian free field and massless free fermions. Indeed, after rescaling ' by

p
4�=ˇ, the

measure of the sine-Gordon model with parameters .ˇ; z/ has formal density

exp
�
�

Z
R2
dx

�
8�

ˇ
.@'/.N@'/ � z.Wei

p
4� '
W C We�i

p
4� '
W/

��
D exp

�
�

Z
R2
dx 2.@'/.N@'/

�

Z
R2
dx

�
2

�
1 �

4�

ˇ

�
.�i@'/.�i N@'/ � z.Wei

p
4� '
W C We�i

p
4� '
W/

��
: (1.49)

Thus relative to the massless free fermion “measure” respectively the massless Gaussian
free field measure, formally, the massive Thirring model and the sine-Gorden model are
weighted by

exp
�Z

R2
dx
�
�2g N 1 2 N 2 1 C �. N 1 1 C N 2 2/

��
; (1.50)

exp
�Z

R2
dx

�
�2

�
1 �

4�

ˇ

�
.�i@'/.�i N@'/C z.Wei

p
4� '
W C We�i

p
4� '
W/

��
; (1.51)

and one can see the order by order correspondence of the models with parameters (1.48),
using the equivalence of the correlations of (1.37)–(1.40) with respect to the noninteract-
ing measures. To directly apply these identities, note that we changed the order of the
Grassmann variables in (1.50) compared to (1.47) explaining the change of the sign of the
quadratic term.

Mathematically, this formal argument is however far from a proof. To start with, the
probabilistic or analytic existence of the massless sine-Gordon model and the massive
Thirring model is a nontrivial problem. Both the ultraviolet (short-distance) and infrared
(long-distance) behavior of both models cause significant difficulties, while both regimes
need to be handled to establish the Coleman correspondence for the infinite volume mod-
els. We summarize the most relevant previous results on these problems now.

Concerning the ultraviolet stability of the sine-Gordon model, we note that various
constructions of the finite volume sine-Gordon model exist under different assumptions
(see in particular [4,8,13,22,23,27,33,44,47,52]), but none of these covers all ˇ 2 .0; 8�/
and all z 2 R. For the ultraviolet construction of the Thirring model, for jgj small, we
refer in particular to [6] which considers the massive case using previous results on the
massless case including [9, 10]; see also the further references therein. In preparation for
later discussion, we stress that it is a technically important ingredient of these analyses
that the finite volume regularizations of these models are defined on a torus with spatially
constant mass term.
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Concerning the infrared behavior of the massless sine-Gordon and the massive
Thirring models, the following previous results are particularly relevant. For the sine-
Gordon model with ˇ >0 small, exponential decay of the charge correlation functions was
proved for the model constructed with Dirichlet boundary conditions [60]; see also the
discussion on Debye screening further below. For the massive Thirring model, stretched
exponential correlation decay was proved for jgj small (corresponding to jˇ � 4�j small
on the sine-Gordon side), with antiperiodic boundary conditions [6]. For a potential appli-
cation of these results to a proof of the Coleman correspondence in the regimes they apply
to (and thus to transfer the results from one side to the other as we do for ˇ D 4� in this
article), we emphasize the boundary conditions the former results are proved for. Indeed,
the generalization of the argument we use for ˇ D 4� (which is in line with Coleman’s
original proposal) would require “free” boundary versions of the former results, by which
we mean that the sine-Gordon model is defined in terms of the infinite volume free field
but with finite volume interaction, and that the massive Thirring model is defined with
infinite volume quartic interaction term but with finite volume mass term, all with uni-
form dependence on the volume. We expect such estimates are true, but due to lack of
translation invariance, they are significantly more difficult to obtain and pose interesting
problems for future work.

Concerning the Coleman correpondence, i.e., the equivalence of both models, we
mention that in view of the restrictions in the domains of construction of the two mod-
els, previous results are restricted to models with finite volume sine-Gordon interaction
or with fixed external “bare” mass m > 0. In particular, to avoid any doubt, we stress
that the Coleman correspondence for the massless sine-Gordon model in infinite volume
remains open for ˇ ¤ 4� . In the presence of a bare mass or finite volume interaction,
the relevant previous results are as follows. For ˇ < 4� , a variant of the Coleman corre-
spondence between the massive sine-Gordon model (i.e., m > 0 fixed) and the massive
Thirring–Schwinger model (QED2) was proved in [33] for z=m2 sufficiently small; see
also [29] for a review. Also for ˇ < 4� , but now with finite volume interaction instead of
with an external mass term, a version of the Coleman correspondence was shown in [55].
In the same regime, ˇ < 4� and finite volume sine-Gordon interaction, a construction of
Haag–Kastler nets of the sine-Gordon model with finite volume interaction in Lorentzian
signature was carried out in [2], and a version of the Coleman correspondence was verified
in this setting of algebraic QFT. For ˇ D 4� but with finite volume interaction, a version
of the Coleman correspondence applying to the sine-Gordon model with small coupling
constant z (depending on the volume) was proved in [21]. Finally, for ˇ in a neighborhood
of 4� , but again in finite volume and with all coupling constants small depending on the
volume, the Coleman correspondence was proved in [7].

The integrability of two-dimensional conformal field theories is celebrated and well
known. That nonconformal perturbations of conformal field theories are in some cases
expected to remain integrable is perhaps more surprising. The sine-Gordon and massive
Thirring models are such examples, and our result confirms the most fundamental (and
arguably simplest) instance of this integrability. In the physics literature, many other exact
results have been predicted by employing various techniques. For example, at the free
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fermion point ˇ D 4� , exact expressions for the fractional charge two-point functions,
i.e., hWei

p
˛1 '.x1/W Wei

p
˛2 '.x2/WiSG.4�;z/ with ˛1; ˛2 2 .0; 4�/, were derived in [11], the

mass was determined for general ˇ by using a mapping to the continuum limit of an inho-
mogeneous six-vertex model and the Bethe ansatz in [20, 61], and exact expressions for
the fractional charge one-point function hWei

p
˛'.x/WiSG.ˇ;z/ for ˛ 2 .0; 4�/ and general ˇ

were derived in [48] by extrapolation of exact results for ˇ D 4� and in the asymptotics
ˇ! 0. Further references are [19,25,49], and for a review, see also [59]. All of these inte-
grability results in infinite volume remain conjectural (except for our results at ˇ D 4�).
In finite volume, we mention the rigorous connection to the XOR Ising model at ˇ D 2�
proved in [43].

It is also well known that the sine-Gordon model is exactly related to the classical two-
dimensional (two-component) Coulomb gas. For this, we refer in particular to [28] and
also [32] where, using this relation, many fundamental properties of the Coulomb gas have
been derived when ˇ < 4� including existence of the pressure and correlation functions,
the exact equation of state for the pressure, and the exact scaling behaviour in z of the rate
of exponential decay of correlations assuming its existence in a suitable sense. The latter
exponential decay of correlations is in general open. For the related three-dimensional
Coulomb gas, exponential decay (Debye screening) was proved for ˇ > 0 and z both small
in [12]. The methods have also been partially extended to the two-dimensional Coulomb
gas in [60]. This last result is incomplete in the sense that it requires small coupling
constants and more significantly that it relies on Dirichlet boundary conditions. On the
other hand, the relation between the sine-Gordon model and the Thirring model only holds
for “free” boundary conditions in finite volume in the previously discussed sense. Thus
the proof of Debye screening of the two-dimensional Coulomb gas with free boundary
condition (and its equivalence with Dirichlet boundary conditions) remains an interesting
problem. For related results in the three-dimensional setting, see also [26]. Correlation
inequalities for the Coulomb gas and the sine-Gordon model as well as their applications
are discussed in [31, 32, 53]; we make some use of these in Section 3. Assuming the
validity of the Coleman correspondence at the free fermion point (which we prove here),
its implications for the Coulomb gas at ˇ D 4� are discussed in [17]; see also [34].

Next, we mention a few related bosonization results. The concept of bosonization
goes at least back to [50]; see also [58] for a review. In the free field case, the boson–
fermion correspondence has been extended by disorder operators [30]. Second, while the
bosonization relations in this paper rely essentially on the precise asymptotics of the corre-
lations in the continuum limit, in the massless free field case, exact discrete versions have
been found as well; see in particular [24]. Some bosonization results are also expected to
extend to Riemann surfaces [30]. For applications of bosonization of free fermions, see,
for example, [42, Chapter 10.5].

Finally, let us emphasize that the massless sine-Gordon model is an essential example
of a two-dimensional nonconformal perturbation of a CFT. For conformal field theories,
a lot of recent progress has been made, in particular for the Ising model (see [14, 15, 41]
and references therein) and for the Liouville CFT (see [39, 45] and references therein).
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Moreover, we mention that models related to the massless Thirring model have also been
studied in detail, in particular recently in the form of interacting dimers [36, 37].

1.4. Outline of the paper

The paper is structured as follows.
In Section 2, we derive the Coleman correspondence in the (noninteracting) massless

case z D � D 0. This analysis is elementary and the result is well known, but lacking
a reference providing exactly what we need later we include the short and instructive
proofs. This is also an opportunity for us to introduce notation as well as to collect various
estimates for Gaussian free fields and massless fermions for later use.

In Section 3, we state our estimates for the sine-Gordon model and free fermions, and
then prove our main theorems assuming these estimates. As discussed already briefly in
Section 1.3, it is important that these estimates apply to “free” boundary versions of both
models. The remainder of the paper is mainly devoted to proving these estimates.

In Sections 4 and 5, we consider the sine-Gordon side. In particular, we construct
the renormalized potential for the regularized sine-Gordon model in Section 4, and then
use it, in Section 5, to prove the analyticity of the partition function of the sine-Gordon
model and the convergence of the correlations functions, for any finite volume interaction.
The analysis in Section 4 extends the continuous renormalization group approach of [13]
by allowing space dependent coupling constants and extraction of the precise estimates
needed subsequently; similar results could presumably be obtained using the related meth-
ods of [5,7]. The analyticity and convergence results of Section 5 rely on the combination
of the expansions for the renormalized potential up a finite scale at which they converge
with qualitative bounds and concentration estimates for Gaussian measures, which pro-
vide sufficient control in the regime where the expansions fail to converge.

In Section 6, we prove the corresponding results on the free fermion side. Our main
work here goes into the analysis of the Green’s function of the Dirac operator with finite
volume mass term. Due to lack of the maximum principle or a random walk representa-
tion for the Dirac operator as well as lack of translation invariance, we rely on a series
construction by expansion in a carefully chosen basis. This basis is related to eigenfunc-
tions of the Laplacian on the disk and the spherical geometry is convenient here, but we
expect that analogous results hold in more general geometry.

In Appendix A, we collect a few (well-known) operational tools for cumulants and
free fermions that we use in various places throughout the paper.

1.5. Notation

We will write f 2 L1c .R
2/ if f is compactly supported and essentially bounded. We

write similarly f 2 L1c .R
2 � ¹˙1º/ if f .x;˙1/ is compactly supported and essentially

bounded. We often write � D .x; �/ 2 R2 � ¹˙1º andZ
d� f .�/ �

Z
R2�¹�1;1º

d� f .�/ �
X

�2¹�1;1º

Z
R2
dx f .x; �/: (1.52)
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Throughout the paper, j � j denotes the Euclidean norm, and we will often make use of
the identification of R2 and C. More precisely, we will denote the components of a point
x 2 R2 by x D .x0; x1/ and its identification with an element in C by x1 C ix0. We will
also repeatedly write Œn� WD ¹1; : : : ; nº. We write A � B to indicate that A is any subset
of B (no need to be proper).

2. Free field estimates and bosonization of massless fermions

A well-understood (but essential) step in the proof of Theorem 1.1 is to verify (1.12)
when z D � D 0. Results of this flavor exist in the literature – see [30, Section 3] or
[21, Section 2.2], for example, but since neither of these references provides the exact
statements that we need, we will give a derivation in our set-up in this section. Along the
way we will also collect estimates for the correlations of the free field that we require for
the proof of the Coleman correspondence with z ¤ 0.

2.1. Fermionic side: massless free fermion correlations

We start with computation of the correlation functions of free massless Dirac fermions
whose correlation kernel S is given by (1.8) with � D 0, i.e.,

S.x; y/ D
1

2�

�
0 1=. Nx � Ny/

1=.x � y/ 0

�
: (2.1)

In this section, the fermionic correlation functions are then defined byD nY
iD1

N ˛i .xi / ˇi .yi /
E
FF.0/

D det .S˛i ǰ .xi ; yj //
n
i;jD1 (2.2)

whenever the determinant on the right-hand side is well defined, i.e., for all i; j 2 Œn�,
either xi ¤ yj or ˛i D ǰ . The Coleman correspondence is in terms of truncated cor-
relation functions, and importantly, we shall require the setting where xi D yi . These
truncated correlation functions are defined byD nY

iD1

N ˛i ˇi .xi /
ET
FF.0/

D .�1/nC1
X
�

nY
iD1

S˛
�i .1/

ˇ
�iC1.1/

.x�i .1/; x�iC1.1//; (2.3)

where the sum is over cyclic permutations � , whenever the right-hand side is well defined,
i.e., for all i; j 2 Œn�, either xi ¤ xj or ˛i D ǰ and j̨ D ˇi . These definitions are con-
sistent with (1.9) and (1.10) but slightly more general. (This generality is required for the
proof of Theorem 1.1.)

We will need various identities for these determinants defining our correlation func-
tions. These identities are conveniently seen in the representation of these determinants in
terms of Grassmann integrals. We discuss the details of this representation and prove the
required (well-known) properties in Appendix A. The connection between our discussion
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there and that here is that to study the correlation functions h
Q
1�i�n

N ˛i .xi / ˇi .yi /iFF.0/

the matrix .Kij / in Lemma A.2 can be defined to be S˛i ǰ .xi ; yj / off the diagonal and on
the diagonal to be a constant real number chosen so large that K is invertible – the exact
value of this constant is irrelevant (see also Remark A.3). This definition and Lemma A.2
then allow us to deduce that the properties of Lemma A.4 hold also for the correla-
tion functions we are considering here. Based on this representation, we can also use
Lemma A.5 to see that (2.3) is also consistent with (1.6), i.e.,

h N ˛i ˇi .xi /i
T
FF.0/ D h

N ˛i ˇi .xi /iFF.0/ D 0 .assuming ˛i D ˇi /; (2.4)

and, for n � 2,D nY
iD1

N ˛i ˇi .xi /
ET
FF.0/
D

D nY
iD1

N ˛i ˇi .xi /
E
FF.0/
�

X
P2Pn

Y
j

DY
i2Pj

N ˛i ˇi .xi /
ET
FF.0/

(2.5)

when the right-hand sides exist. Thus when the untruncated correlation functions exist,
they determine the truncated ones by (2.5). In view of this fact, the next lemma determines
the truncated correlation functionsD nY

kD1

N 1 1.xk/

n0Y
k0D1

N 2 2.yk0/
ET
FF.0/

(2.6)

when xk ¤ yk0 for all k and k0.

Lemma 2.1. For any x1; : : : ; xn; y1; : : : ; yn0 in R2 with xk ¤ yk0 for all k 2 Œn� and
k0 2 Œn0�,D nY
kD1

N 1 1.xk/

n0Y
k0D1

N 2 2.yk0/
E
FF.0/

D 1nDn0
1

.2�/2n

ˇ̌̌̌
det

�
1

xk � yk0

�n
k;k0D1

ˇ̌̌̌2
: (2.7)

Proof. First consider n ¤ n0. Then every term in the expansion of the determinant (2.2)
that defines the left-hand side must contain a factor S11 or S22 and hence vanish. Let us
assume now that n D n0. Then, by anticommutativity (see (A.22)),D nY

kD1

N 1.xk/ 1.xk/

nY
kD1

N 2.yk/ 2.yk/
E
FF.0/

D .�1/n
D nY
kD1

N 1.xk/ 2.yk/

nY
kD1

N 2.yk/ 1.xk/
E
FF.0/

: (2.8)

Since S11 D S22 D 0 the right-hand side factorizes (see (A.23)), and by (2.2) it is hence
equal to

.�1/n
D nY
kD1

N 1.xk/ 2.yk/
E
FF.0/

D nY
kD1

N 2.yk/ 1.xk/
E
FF.0/

D
.�1/n

.2�/2n
det

�
1

Nxk � Nyk0

�n
k;k0D1

det
�

1

yk � xk0

�n
k;k0D1

; (2.9)

which gives the right-hand side of the claim.



R. Bauerschmidt, C. Webb 3152

The next two lemmas then allow computing all truncated correlation functions involv-
ing also the factors N 2 1 and N 1 2.

Lemma 2.2. For nC n0C qC q0 � 2 and any distinct x1; : : : ; xn, y1; : : : ; yn0 , z1; : : : ; zq ,
w1; : : : ; wq0 , z, w in R2, the following identities hold:

D
N 2 1.z/

qY
jD1

N 2 1.zj /

q0Y
j 0D1

N 1 2.wj 0/

nY
kD1

N 1 1.xk/

n0Y
k0D1

N 2 2.yk0/
ET
FF.0/

D
1nDn0
2�

nX
iD1

�
1

xi � z
�

1

yi � z

�

�

D qY
jD1

N 2 1.zj /

q0Y
j 0D1

N 1 2.wj 0/

nY
kD1

N 1 1.xk/

nY
k0D1

N 2 2.yk0/
ET
FF.0/

; (2.10)

and

D
N 1 2.w/

qY
jD1

N 2 1.zj /

q0Y
j 0D1

N 1 2.wj 0/

nY
kD1

N 1 1.xk/

n0Y
k0D1

N 2 2.yk0/
ET
FF.0/

D
1nDn0
2�

nX
iD1

�
1

Nxi � Nw
�

1

Nyi � Nw

�

�

D qY
jD1

N 2 1.zj /

q0Y
j 0D1

N 1 2.wj 0/

nY
kD1

N 1 1.xk/

nY
k0D1

N 2 2.yk0/
ET
FF.0/

: (2.11)

The right-hand sides are interpreted as 0 when n D n0 D 0.

Proof. Since the proofs of (2.10) and (2.11) are analogous, we only consider (2.10).
By (2.3), when nC n0 C q C q0 � 2, we have

D qY
jD1

N 2 1.zj /

q0Y
j 0D1

N 1 2.wj 0/

nY
kD1

N 1 1.xk/

n0Y
k0D1

N 2 2.yk0/
ET
FF.0/

D .�1/nCn
0CqCq0C1

X
�2CnCn0CqCq0

nCn0CqCq0Y
iD1

S˛
�i .1/

ˇ
�iC1.1/

.u�i .1/; u�iC1.1// (2.12)

where Cp is the set of cyclic permutations of ¹1; : : : ; pº and we have defined

.˛i ; ˇi ; ui / D

8̂̂̂̂
<̂
ˆ̂̂:
.1; 1; xi / .1 � i � n/;

.2; 2; yi�n/ .n < i � nC n0/;

.2; 1; zi�n�n0/ .nC n0 < i � nC n0 C q/;

.1; 2; wi�n�n0�q/ .nC n0 C q < i � nC n0 C q C q0/:

(2.13)
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By (2.1), all terms that contain a factor S11 or S22 vanish. Therefore it is necessary that the
number of factors of N 1 equals that of  2, which implies that n D n0 if (2.12) is nonzero,
which we thus assume from now on. The truncated correlation functionD
N 2 1.z/

qY
jD1

N 2 1.zj /

q0Y
j 0D1

N 1 2.wj 0/

nY
kD1

N 1 1.xk/

n0Y
k0D1

N 2 2.yk0/
ET
FF.0/

(2.14)

is given by replacing one of the factors S˛ˇ 0.u; u0/ in (2.12) by

�S˛1.u; z/S2ˇ 0.z; u
0/ (2.15)

and then summing over the choice of which factor gets replaced. Using again S11 D
S22 D 0, the last term vanishes unless .˛; ˇ0/ D .2; 1/, and in this case,

�S21.u; z/S21.z; u
0/ D

1

.2�/2.u � z/.u0 � z/
D

1

.2�/2

�
1

u � z
�

1

u0 � z

�
1

u0 � u

D
1

2�

�
1

u0 � z
�

1

u � z

�
S21.u; u

0/: (2.16)

Thus the replacement of the factor S21.u; u0/ is equivalent to multiplying it by

1

2�

�
1

u0 � z
�

1

u � z

�
: (2.17)

The possibilities for .u; u0/ that are compatible with the constraint .˛; ˇ0/ D .2; 1/ are

.u;u0/D .yi ;xj /; .u;u0/D .yi ; zk/; .u;u0/D .zk ;xj /; .u;u0/D .zk ; zl /; (2.18)

for some i; j 2 Œn� and k; l 2 Œq� with k ¤ l . In these cases we obtain factors of, respec-
tively,

1

2�

�
1

xj � z
�

1

yi � z

�
;

1

2�

�
1

zl � z
�

1

zk � z

�
;

1

2�

�
1

zk � z
�

1

yi � z

�
;

1

2�

�
1

xj � z
�

1

zk � z

�
:

(2.19)

In the sum over cycles in (2.12), we may restrict to cycles which give a nonvanishing
contribution, and we will do this in the following. Then by symmetry, given any pair
.i; j / 2 Œn�2, the proportion r of such cycles giving the factor S21.yi ; xj / is independent
of .i; j /; given any pair .i; k/ 2 Œn�� Œq�, the proportion s of such cycles giving the factor
S21.yi ; zk/ is independent of .i; k/ and the same as the proportion of cycles giving the
factor S21.zk ; xi /; and given any pair .k; l/ 2 Œq�2 with k ¤ l the proportion t of cycles
giving the factor S21.zk ; zl / is independent of .k; l/. Therefore (2.14) is obtained from
(2.12) by multiplication by 1=2� and

r
X
i;j

�
1

xj � z
�

1

yi � z

�
C s

X
i;k

�
1

zk � z
�

1

yi � z

�
C s

X
i;k

�
1

xi � z
�

1

zk � z

�
C t

X
k;l

�
1

zl � z
�

1

zk � z

�
D .rnC sq/

X
i

�
1

xi � z
�

1

yi � z

�
: (2.20)
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Since for any cycle � with nonvanishing contribution, each of the points yi must appear
once as the first argument of S˛ˇ (and then necessarily ˛ D 2) and each xi once as the
second argument of S˛ˇ (and then necessarily ˇ D 1) in the product in (2.12), we also see
that rnC sq D 1. Thus we have recovered (2.10) in the case nC n0 ¤ 0.

For the case n D n0 D 0, the same argument shows that the only possibility for u; u0

is now .u; u0/ D .zk ; zl /, and as before, this gives a zero contribution since the sumP
k;l ..zk � z/

�1 � .zl � z/
�1/ vanishes. This concludes the proof.

Lemma 2.3. For q C q0 � 2 and any distinct z1; : : : ; zq; w1; : : : ; wq0 in R2,

D qY
jD1

N 2 1.zj /

q0Y
j 0D1

N 1 2.wj 0/
ET
FF.0/

D

8̂̂<̂
:̂

1
.2�/2.z1�z2/2

.q D 2; q0 D 0/;

1
.2�/2. Nw1� Nw2/2

.q D 0; q0 D 2/;

0 else:

(2.21)

Proof. Lemma 2.2 implies that the left-hand side is 0 when q C q0 > 2. In the case
.q; q0/ D .1; 1/, any of the products in (2.3) must contain factors S11 or S22, and thus
vanish as well. In the case .q; q0/ D .2; 0/, by (2.3), we get

�S21.z1; z2/S21.z2; z1/ D �
1

.2�/2
1

z1 � z2

1

z2 � z1
D

1

.2�/2
1

.z1 � z2/2
: (2.22)

The case .q; q0/ D .0; 2/ is analogous.

2.2. Bosonic side: free field correlations

For the computation of the free field correlations, we first recall that, for " > 0 andm> 0,
our regularized GFF is the centered Gaussian field with covarianceZ 1

"2
ds e�s.��Cm

2/.x; y/ D

Z 1
"2

ds
e�
jx�yj2

4s

4�s
e�m

2s : (2.23)

We write �GFF.";m/ for the (centered) Gaussian measure with this covariance. It is a
basic fact that this measure is supported on smooth functions and that the covariance
of the derivatives of the field is given by the derivatives of the covariance; see e.g. [46,
Appendix B]. We also recall the definition

We˙i
p
ˇ '.x/

W" WD "
�ˇ=4�e˙i

p
ˇ '.x/: (2.24)

Our goal is to compute the truncated correlation functions

D qY
jD1

@'.zj /

q0Y
j 0D1

N@'.wj 0/

nY
kD1

WeCi
p
ˇ '.xk/W

n0Y
k0D1

We�i
p
ˇ '.yk0 /W

ET
GFF

WD lim
m!0

lim
"!0

D qY
jD1

@'.zj /

q0Y
j 0D1

N@'.wj 0/

nY
kD1

WeCi
p
ˇ '.xk/W"

n0Y
k0D1

We�i
p
ˇ '.yk0 /W"

ET
GFF.";m/

(2.25)

as well as smeared versions of them.
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The following estimates for the covariance of ' and its derivatives will be useful. (As
before,  is the Euler–Mascheroni constant.)

Lemma 2.4. Uniformly on compact subsets of x ¤ y 2 R2, as "! 0,

h'.x/2iGFF.";m/ C
1

2�
log "! �

1

2�
logm �



4�
; (2.26)

h'.x/'.y/iGFF.";m/ ! �
1

2�
logm �

1

2�
log
jx � yj

2
�


2�
CO.mjx � yj/: (2.27)

Moreover, uniformly on compact sets of x ¤ y, as "! 0 and then m! 0,

�h@'.x/'.y/iGFF.";m/ D h'.x/@'.y/iGFF.";m/ !
1

4�

1

x � y
; (2.28)

and

h@'.x/@'.y/iGFF.";m/ ! �
1

4�

1

.x � y/2
; h@'.x/N@'.y/iGFF.";m/ ! 0: (2.29)

Moreover, for any g 2 L1c .R
2/, uniformly on compact subsets of u 2 R2,

h'.u/@'.g/iGFF.";m/ ! �

Z
R2
dx g.x/

1

4�

1

x � u
; (2.30)

and for all f; g 2 L1c .R
2/ with disjoint supports,

h@'.f /@'.g/iGFF.";m/ ! �
1

4�

Z
R2
dx dy f .x/ g.y/

1

.x � y/2
: (2.31)

Finally, for any f 2 L1c .R
2/ with

R
f D 0, uniformly on compact subsets of x 2 R2,

h'.x/'.f /iGFF.";m/ ! �

Z
R2
dy

1

2�
log jx � yjf .y/: (2.32)

The limits above also exist when "! 0 with m > 0 fixed and have the same local unifor-
mity.

Proof. The estimates here are largely routine, so we sketch the main ideas and leave
the full details to the reader. Let us consider separately pointwise estimates and smeared
estimates.

Pointwise estimates: For (2.26), we note that by definition,

h'.x/2iGFF.";m/ D

Z 1
"2

dt
e�m

2t

4�t
D

Z 1
m2"2

dt
e�t

4�t

D
1

4�
�.0;m2"2/

D �
1

2�
log.m"/ �



4�
CO."2m2/; (2.33)
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where � is the incomplete Gamma function and we have used its well-known asymptotics.
Similarly, for (2.27), we note that as "! 0,

h'.x/'.y/iGFF.";m/ !

Z 1
0

dt
e�jx�yj

2=4t

4�t
e�m

2t

D

Z 1
0

dt
e�.mjx�yj=2/.tC1=t/

4�t
D

1

2�
K0.mjx � yj/

D �
1

2�
log

mjx � yj

2
�


2�
CO.mjx � yj/; (2.34)

where K0 is the modified Bessel function of the second kind and we have used its well-
known asymptotics. The proofs of (2.28) and (2.29) are similar, and make use of standard
asymptotics of Bessel functions – we omit further details.

Smeared estimates: Consider next (2.30). For g 2 L1c .R
2/ and u 2 R2, we have

h'.u/r'.g/iGFF.";m/ D

Z
R2
dx g.x/

Z 1
"2

ds

�
�
x � u

2s

�
e�
jx�uj2

4s

4�s
e�m

2s

D �

Z
R2
dy ye�jyj

2=4

Z 1
"2

ds
e�m

2s

8�
p
s
g.uC

p
s y/: (2.35)

Thus if u 2 R2 is in some fixed compact set, say a disk of radius r1, and we choose
r2 > 0 such that supp.g/ � B.0; r2/ (where both r1; r2 are independent of "; m),
then one readily checks via the triangle inequality that we have jg.u C

p
s y/j �

kgkL1.R2/1¹s � .r1 C r2/2=jyj2º. Applying this type of bound in the above integral
representation, it follows that as "; m! 0, h'.u/r'.g/iGFF.";m/ converges uniformly in
u in a fixed compact set. On the other hand, this type of estimate can be readily used to
justify the use of the dominated convergence theorem, so using (2.28), we see that in fact
as ";m! 0,

h'.u/r'.g/iGFF.";m/ ! �

Z
R2
dx g.x/

1

2�

x � u

jx � uj2
; (2.36)

and that this is a locally bounded function of u.
The bound (2.31) follows directly from (2.29), while (2.32) follows from (2.27)

through similar estimates as above (and making use of our assumption that
R
f D 0).

This concludes our proof.

Next, we record a basic estimate for the charge correlation functions.

Lemma 2.5. For any ˇ > 0 and any distinct x1; : : : ; xn; y1; : : : ; yn0 in R2, where
nC n0 � 1, the limitsD nY

kD1

WeCi
p
ˇ '.xk/W

n0Y
k0D1

We�i
p
ˇ '.yk0 /W

E
GFF.m/

D lim
"!0

D nY
kD1

WeCi
p
ˇ '.xk/W"

n0Y
k0D1

We�i
p
ˇ '.yk0 /W"

E
GFF.";m/

; (2.37)
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D nY
kD1

WeCi
p
ˇ '.xk/W

n0Y
k0D1

We�i
p
ˇ '.yk0 /W

E
GFF

D lim
m!0

lim
"!0

D nY
kD1

WeCi
p
ˇ '.xk/W"

n0Y
k0D1

We�i
p
ˇ '.yk0 /W"

E
GFF.";m/

(2.38)

exist, and

D nY
kD1

WeCi
p
ˇ '.xk/W

n0Y
k0D1

We�i
p
ˇ '.yk0 /W

E
GFF

D 1nDn0.4e� /ˇn=4�
Q
i<j jxi � xj j

ˇ=2� jyi � yj j
ˇ=2�Q

i;j jxi � yj j
ˇ=2�

(2.39)

where the empty product
Q
i<j is interpreted as 1 if n D n0 D 1.

Proof. Since ' is Gaussian under �GFF.";m/ with covariance c.x;y/Dh'.x/'.y/iGFF.";m/,D nY
kD1

WeCi
p
ˇ '.xk/W

n0Y
k0D1

We�i
p
ˇ '.yk0 /W

E
GFF.";m/

D "�.nCn
0/.ˇ=4�/e�

ˇ
2 Œ
Pn
i;jD1 c.xi ;xj /C

Pn0
i;jD1 c.yi ;yj /�2

Pn
iD1

Pn0
jD1 c.xi ;yj /�

D ."�1=2�e�c.0;0//ˇ.nCn
0/=2e�ˇŒ

P
i<j c.xi ;xj /C

P
i<j c.yi ;yj /�

P
i;j c.xi ;yj /�: (2.40)

By Lemma 2.4, the "! 0 and m! 0 limits both exist, and the "; m! 0 limit is given
by

lim
m#0

m.ˇ=4�/.n�n
0/2e.ˇ=4�/.nCn

0/=2.2ˇ=2�e�ˇ=2�/n

Q
i<j jxi � xj j

ˇ=2� jyi � yj j
ˇ=2�Q

i;j jxi � yj j
ˇ=2�

D 1nDn0.4e� /ˇn=4�
Q
i<j jxi � xj j

ˇ=2� jyi � yj j
ˇ=2�Q

i;j jxi � yj j
ˇ=2�

(2.41)

as claimed.

By definition, the truncated correlation functions of We˙i
p
ˇ ' W are determined by

(2.39) and (1.6). The next two lemmas give the general truncated correlations also involv-
ing factors @' or N@'.

Lemma 2.6. Let ˇ > 0. For n � 1, q; q0 � 0, x1; : : : ; xn; z1; : : : ; zq; w1; : : : ; wq0 2 R2

distinct, and �1; : : : ; �n 2 ¹�1; 1º, the limits

D nY
kD1

Wei
p
ˇ �k'.xk/W

qY
jD1

@'.zj /

q0Y
j 0D1

N@'.wj 0/
ET
GFF.m/

D lim
"!0

D nY
kD1

Wei
p
ˇ �k'.xk/W"

qY
jD1

@'.zj /

q0Y
j 0D1

N@'.wj 0/
ET
GFF.";m/

; (2.42)
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D nY
kD1

Wei
p
ˇ �k'.xk/W

qY
jD1

@'.zj /

q0Y
j 0D1

N@'.wj 0/
ET
GFF

D lim
m!0

lim
"!0

D nY
kD1

Wei
p
ˇ �k'.xk/W"

qY
jD1

@'.zj /

q0Y
j 0D1

N@'.wj 0/
ET
GFF.";m/

(2.43)

exist uniformly on compact subsets of ui ¤ uj for i ¤ j .where the ui are an enumeration
of the points xk ; zj ; wj 0/, and we have

D nY
kD1

Wei
p
ˇ �k'.xk/W

qY
jD1

@'.zj /

q0Y
j 0D1

N@'.wj 0/
ET
GFF

D

D nY
kD1

Wei
p
ˇ �k'.xk/W

ET
GFF

qY
jD1

�
i

p
ˇ

4�

nX
kD1

�k

xk � zj

� q0Y
j 0D1

�
i

p
ˇ

4�

nX
kD1

�k

Nxk � Nwj 0

�
:

(2.44)

Proof. By Lemma A.1, when ";m > 0, the truncated correlation functions are given by

D nY
kD1

Wei
p
ˇ �k'.xk/W"

qY
jD1

@'.zj /

q0Y
j 0D1

N@'.wj 0/
ET
GFF.";m/

D

nY
kD1

@

@�k

ˇ̌̌̌
�kD0

qY
jD1

@

@�j

ˇ̌̌̌
�jD0

q0Y
j 0D1

@

@�j 0

ˇ̌̌̌
�j 0D0

log
D
exp

h nX
kD1

�k We
i
p
ˇ �k'.xk/W" C

qX
jD1

�j @'.zj /C

q0X
j 0D1

�j 0 N@'.wj 0/
iE

GFF.";m/
: (2.45)

We would like to use the Girsanov–Cameron–Martin theorem to get rid of the @' and
N@' terms at the expense of replacing �k by something which depends on �j , �j 0 , zj , and
wj 0 as well. We need to be slightly careful here as @' and N@' are complex-valued, and
Girsanov’s theorem holds a priori only for real-valued Gaussian random variables.

To justify the use of Girsanov’s theorem in our setting, assume we have some
real-valued Gaussian random variables X1; : : : ; XN and (possibly complex) constants
1; : : : ; N . Then by a routine combination of the dominated convergence theorem (to
justify continuity), Fubini’s theorem, and Morera’s theorem, one finds that

.�1; : : : ; �N / 7!
˝
e
PN
jD1 j e

iXj
e
PN
jD1 �jXj

˛
(2.46)

is an entire function. Then by an elementary version of Girsanov’s theorem for finite-
dimensional Gaussian vectors (which is just completion of the square and change of
variables), we find for real �i that

˝
e
PN
jD1 j e

iXj
e
PN
jD1 �jXj

˛
D
˝
e
PN
jD1 j e

iXjCi
PN
kD1

�khXjXki ˛
e
1
2 h.

PN
jD1 �jXj /

2i: (2.47)
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Using a similar argument as before, one checks that this also defines an entire function of
the �i , so since as these entire functions agree on real values, they must be the same:˝
e
PN
jD1 j e

iXj
e
PN
jD1 �jXj

˛
D
˝
e
PN
jD1 j e

iXjCi
PN
kD1

�khXjXki ˛
e
1
2 h.

PN
jD1 �jXj /

2i; (2.48)

also for complex �i .
Applying this to our setting (taking Xk to consist of '.xk/ and the real and imaginary

parts of @'.zj / and N@'.wj 0/ – the values of i and �i are chosen accordingly), we see that
the expectation on the right-hand side of (2.45) equals (when the expectation is nonzero
– this is true at least for small enough parameter values, and in the end, we evaluate
derivatives at zero)D
exp

h nX
kD1

�k We
i
p
ˇ �k'.xk/W"

� e
i
p
ˇ �k Œ

Pq
jD1

�j h'.xk/@'.zj /iGFF.";m/C
Pq0
j 0D1

�j 0 h'.xk/
N@'.wj 0 /iGFF.";m/�

iE
GFF.";m/

� exp
�
1

2

D� qX
jD1

�j @'.zj /C

q0X
j 0D1

�j 0 N@'.wj 0/
�2E

GFF.";m/

�
: (2.49)

The last term does not contribute when we take derivatives with respect to �k so we
can ignore it. Therefore, using the last identity and rewriting the result in terms of the
truncated charge correlations given by (2.45) with q D q0 D 0 yields
nY
kD1

@

@�k

ˇ̌̌̌
�kD0

log
D
exp

h nX
kD1

�k We
i
p
ˇ �k'.xk/W" C

qX
jD1

�j @'.zj /C

q0X
j 0D1

�j 0 N@'.wj 0/
iE

GFF.";m/

D

D nY
kD1

Wei
p
ˇ �k'.xk/W"

ET
GFF.";m/

�

nY
kD1

e
i
p
ˇ �k Œ

Pq
jD1

�j h'.xk/@'.zj /iGFF.";m/C
Pq0
j 0D1

�j 0 h'.xk/
N@'.wj 0 /iGFF.";m/�: (2.50)

Thus, carrying out the �j and �j 0 differentiations, we obtainD nY
kD1

Wei
p
ˇ �k'.xk/W"

qY
jD1

@'.zj /

q0Y
j 0D1

N@'.wj 0/
ET
GFF.";m/

D

D nY
kD1

Wei
p
ˇ �k'.xk/W"

ET
GFF.";m/

�

qY
jD1

�
i
p
ˇ

nX
kD1

�kh'.xk/@'.zj /iGFF.";m/

�
�

q0Y
j 0D1

�
i
p
ˇ

nX
kD1

�kh'.xk/N@'.wj 0/iGFF.";m/

�
: (2.51)

Using the covariance estimate (2.28) (and its complex conjugate version), we obtain (2.44)
by taking "! 0 and m! 0.
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Lemma 2.7. For q C q0 � 1 and z1; : : : ; zq; w1; : : : ; wq0 2 R2 distinct, the limitsD qY
jD1

@'.zj /

q0Y
j 0D1

N@'.wj 0/
ET
GFF.m/

D lim
"!0

D qY
jD1

@'.zj /

q0Y
j 0D1

N@'.wj 0/
ET
GFF.";m/

; (2.52)

D qY
jD1

@'.zj /

q0Y
j 0D1

N@'.wj 0/
ET
GFF
D lim
m!0

lim
"!0

D qY
jD1

@'.zj /

q0Y
j 0D1

N@'.wj 0/
ET
GFF.";m/

(2.53)

exist, and

D qY
jD1

@'.zj /

q0Y
j 0D1

N@'.wj 0/
ET
GFF
D

8̂̂<̂
:̂
�
1
4�

1
.z1�z2/2

.q D 2; q0 D 0/;

�
1
4�

1
. Nw1� Nw2/2

.q D 0; q0 D 2/;

0 else:

(2.54)

Proof. Since @'.zj / and N@'.wj 0/ are Gaussian variables, only the second order cumulants
(truncated correlation functions) are nonzero and given by the covariance

D qY
jD1

@'.zj /

q0Y
j 0D1

N@'.wj 0/
ET
GFF.";m/

D

8̂̂̂̂
<̂
ˆ̂̂:
h@'.z1/@'.z2/iGFF.";m/ .q D 2; q0 D 0/;

hN@'.w1/N@'.w2/iGFF.";m/ .q D 0; q0 D 2/;

h@'.z1/N@'.w1/iGFF.";m/ .q D 1; q0 D 1/;

0 else:
(2.55)

Their limits as "! 0 andm! 0 are given by (2.29) (and its complex conjugate version).

We are ultimately interested in smeared correlation functions, and there is some care
to be taken on the diagonal of the pointwise correlation functions. The following result
describes what happens with the truncated charge correlation functions.

Lemma 2.8. For ˇ 2 .0; 6�/ and n ¤ 2, the truncated charge correlations are locally
integrable: for any �1; : : : ; �n 2 ¹�1; 1º and any compact set K � .R2/n,Z

K

dx1 � � � dxn

ˇ̌̌D nY
kD1

Wei
p
ˇ �k'.xk/W

ET
GFF

ˇ̌̌
<1: (2.56)

Moreover, if f1; : : : ; fn 2 L1c .R
2 � ¹�1; 1º/, then for n ¤ 2,

lim
m!0

lim
"!0

Z
.R2�¹�1;1º/n

d�1 � � � d�n f1.�1/ � � � fn.�n/
D nY
kD1

Wei
p
ˇ �k'.xk/W"

ET
GFF.";m/

D

Z
.R2�¹�1;1º/n

d�1 � � � d�n f1.�1/ � � � fn.�n/
D nY
kD1

Wei
p
ˇ �k'.xk/W

ET
GFF
: (2.57)

If K and the set ¹xk D xk0 for some k ¤ k0º are disjoint and if the fk have disjoint sup-
ports, the statements also hold for n D 2.
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The proof of this lemma is not completely straightforward from the direct definition
of the truncated charge correlation functions. For example, in [21, Lemma 3], the analo-
gous statement is only shown for ˇ < 4� (and the need for the statement at ˇ D 4� is
circumvented there by defining the sine-Gordon model with ˇ D 4� in terms of the limit
as ˇ " 4�). For us, Lemma 2.8 follows immediately as a by-product of our later analysis,
and we thus postpone its proof to Section 5.4.

For the gradient fields, we have the following smeared analogue of Lemma 2.7.

Lemma 2.9. For q; q0 � 0 with q C q0 � 1 and g1; : : : ; gq; h1; : : : ; hq0 2 C1c .R
2/, the

limitsD qY
jD1

@'.gj /

q0Y
j 0D1

N@'.hj 0/
ET
GFF.m/

WD lim
"!0

D qY
jD1

@'.gj /

q0Y
j 0D1

N@'.hj 0/
ET
GFF.";m/

; (2.58)

D qY
jD1

@'.gj /

q0Y
j 0D1

N@'.hj 0/
ET
GFF
WD lim

m!0
lim
"!0

D qY
jD1

@'.gj /

q0Y
j 0D1

N@'.hj 0/
ET
GFF.";m/

(2.59)

exist, and

D qY
jD1

@'.gj /

q0Y
j 0D1

N@'.hj 0/
ET
GFF

D

8̂̂̂̂
<̂
ˆ̂̂:

1
2�

R
R2�R2 dx dy @g1.x/@g2.y/ log jx � yj�1 .q D 2; q0 D 0/;

1
2�

R
R2�R2 dx dy

N@h1.x/N@h2.y/ log jx � yj�1 .q D 0; q0 D 2/;
1
4

R
R2 dx g1.x/h1.x/ .q D q0 D 1/;

0 else:

(2.60)

For .q; q0/ D .2; 0/; .0; 2/, the right-hand sides are also equal to the Cauchy principal
value integrals

�1

4�
p:v:

Z
dx dy

g1.x/g2.y/

.x � y/2
;
�1

4�
p:v:

Z
dx dy

h1.x/h2.y/

. Nx � Ny/2
: (2.61)

Proof. The fact that the truncated correlation function vanishes if q C q0 D 1 or q C q0

� 3 follows from the fact that we are dealing with centered Gaussian random variables.
We thus need to only focus on the qC q0D 2 case. The qD 2;q0D 0 and q0D 2;qD 0

cases follow readily from (2.32) (note that
R
@gi D

R
N@hj D 0). For the q D q0 D 1 case,

we find again from (2.32) and integrating by parts that

h@'.g1/N@'.h1/iGFF.";m/ !
1

2�

Z
R2
dx dy @g1.x/N@h1.y/ log jx � yj�1

D
1

4�

Z
R2
dx dy @g1.x/h1.y/

1

Ny � Nx
; (2.62)

from which the claim follows after noting that @x 1
�. Nx� Ny/

D ı.x � y/. For smooth test
functions, it is well known that (2.61) follows by integration by parts.
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With Lemmas 2.8 and 2.9 in hand, we can describe the smeared free field correlation
functions in the generality we need.

Lemma 2.10. Let ˇ 2 .0; 6�/, n D 1 or n � 3, and q; q0 � 0. Suppose f1; : : : ; fn 2
L1c .R

2 � ¹�1; 1º/ and g1; : : : ; gq; h1; : : : ; hq0 2 C1c .R
2/. Then

.�1; : : : ; �n; z1; : : : ; zq; w1; : : : ; wq0/

7! f1.�1/ � � � fn.�n/g1.z1/ � � �gq.zq/h1.w1/ � � � hq0.wq0/

�

D nY
kD1

Wei
p
ˇ �k'.xk/W

qY
jD1

@'.zj /

q0Y
j 0D1

N@'.wj 0/
ET
GFF

2 L1..R2 � ¹�1; 1º/n � .R2/qCq
0

/; (2.63)

and

lim
m!0

lim
"!0

D nY
kD1

Wei
p
ˇ �k' W.fk/

qY
jD1

@'.gj /

q0Y
j 0D1

N@'.hj 0/
ET
GFF.";m/

D

Z nY
iD1

d�i fi .�i /

qY
jD1

dzj gj .zj /

q0Y
j 0D1

dwj 0 hj 0.wj 0/

�

D nY
kD1

Wei
p
ˇ �k'.xk/W

qY
jD1

@'.zj /

q0Y
j 0D1

N@'.wj 0/
ET
GFF
: (2.64)

Moreover, if the fj have disjoint supports or if q C q0 � 1, then the claims hold also
for n D 2.

Proof. If n ¤ 2 or the fk have disjoint supports, the claim follows immediately from
Lemmas 2.6 and 2.8. Thus the only slightly delicate case is the claim that the supports
of f1 and f2 need not be disjoint for n D 2 if q C q0 � 1. For this, note first that if
�1 D �2, then the charge correlation function vanishes and there is nothing to prove. For
�1 ¤ �2, let us only prove that the limiting quantity is integrable – justifying convergence
can be readily deduced with a similar argument. By (2.39), the truncated charge two-point
function is proportional to

1

jx1 � x2jˇ=2�
; (2.65)

and, by Lemma 2.6, the correlation function in the claim is thus proportional to

1

jx1 � x2jˇ=2�

qY
jD1

�
i

p
ˇ

4�

�
1

x1 � zj
�

1

x2 � zj

��
�

q0Y
j 0D1

�
i

p
ˇ

4�

�
1

Nx1 � Nwj 0
�

1

Nx2 � Nwj 0

��
: (2.66)
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It thus suffices to show that

1

jx1 � x2jˇ=2�

qY
jD1

ˇ̌̌̌
1

x1 � zj
�

1

x2 � zj

ˇ̌̌̌ q0Y
j 0D1

ˇ̌̌̌
1

x1 � wj 0
�

1

x2 � wj 0

ˇ̌̌̌

� jx1 � x2j
�ˇ=2�CqCq0

qY
jD1

1

jzj � x1j jzj � x2j

q0Y
j 0D1

1

jwj 0 � x1j jwj 0 � x2j
(2.67)

is locally integrable. One readily checks that since we are integrating over given compact
sets, each zj -integral gives a bound of the form 1C

ˇ̌
log jx1 � x2j

ˇ̌
and analogously for

the wj 0 -integrals. Thus it suffices to check the local integrability of�
1C

ˇ̌
log jx1 � x2j

ˇ̌�qCq0
jx1 � x2j

�ˇ=2�CqCq0 : (2.68)

As we are in two dimensions, this certainly holds for ˇ < 6� when q C q0 � 1.

2.3. Bosonization in the massless case

That the Coleman correspondence (1.12) holds in the noninteracting case z D � D 0

follows by matching the above computations of the correlation functions of massless free
fermions and of the massless Gaussian free field, together with the following well-known
identity for Cauchy–Vandermonde matrices:

det
�

1

xi � yj

�n
i;jD1

D

Q
1�i<i 0�n.xi � xi 0/

Q
1�j<j 0�n.yj � yj 0/Q

1�i�n

Q
1�j�n.xi � yj /

: (2.69)

This allows us to prove the Coleman correspondence in the case � D z D 0.

Corollary 2.11. Let ˇ D 4� , z D �D 0. For n;n0; q; q0 � 0 with nC n0C qC q0 D 1 or
nC n0C qC q0� 3, f C1 ; : : : ;f

C
n ;f

�
1 ; : : : ;f

�
n0 2L

1
c .R

2/, and gC1 ; : : : ;g
C
q ;g

�
1 ; : : : ;g

�
q0 2

C1c .R
2/, the identity (1.12) holds:

D nY
kD1

WeCi
p
4� '
W.f C

k
/

n0Y
k0D1

We�i
p
4� '
W.f �k0 /

qY
jD1

.�i@'.gCj //

q0Y
j 0D1

.�i N@'.g�j 0//
ET
GFF

D AnCn
0

BqCq
0
D nY
kD1

N 1 1.f
C

k
/

n0Y
k0D1

N 2 2.f
�
k0 /

qY
jD1

N 2 1.g
C

j /

q0Y
j 0D1

N 1 2.g
�
j 0/
ET
FF.0/

;

(2.70)

where A and B are as in Theorem 1.1.
Moreover, if nC n0C qC q0D 2, we have the following statements: (i) for nC n0D 2,

qC q0D 0, the claim holds if f ˙i have disjoint supports, (ii) if nC n0D 1 and qC q0D 1,
the claim holds in the same generality as for nC n0C qC q0 � 3 .both sides vanish/, and
(iii) if nC n0 D 0 and q C q0 D 2, the claim holds either if g˙j have disjoint supports, or
if the right hand side is understood as that given by Lemma 2.9.
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Proof. Let qD q0D 0. Then applying (2.39) with ˇD 4� , the determinant identity (2.69),
and finally (2.7), we find that for any distinct points,D nY

kD1

WeCi
p
ˇ '.xk/W

n0Y
k0D1

We�i
p
ˇ '.yk0 /W

E
GFF

D 1nDn0.4e� /ˇn=4�
Q
i<j jxi � xj j

ˇ=2� jyi � yj j
ˇ=2�Q

i;j jxi � yj j
ˇ=2�

D 1nDn0.4e� /n
Q
i<j jxi � xj j

2jyi � yj j
2Q

i;j jxi � yj j
2

D .4�e�=2/nCn
0
D nY
kD1

N 1 1.xk/

n0Y
k0D1

N 2 2.yk0/
E
FF.0/

: (2.71)

Using this, if q C q0 > 0 then (2.10)–(2.11) and (2.21) for the fermionic side respectively
(2.44) for the bosonic side imply that, for any distinct points,D nY
kD1

WeCi
p
4� '.xk/W

n0Y
k0D1

We�i
p
4� '.yk0 /W

qY
jD1

.�i@'.zj //

q0Y
j 0D1

.�i N@'.wj 0//
ET
GFF

D .4�e�=2/nCn
0p
�
qCq0

�

D nY
kD1

N 1 1.xk/

n0Y
k0D1

N 2 2.yk0/

qY
jD1

N 2 1.zj /

q0Y
j 0D1

N 1 2.wj 0/
ET
FF.0/

: (2.72)

The claim (along with the relevant restrictions for the n C n0 C q C q0 D 2 case) now
follows from Lemma 2.9 (possibly using integration by parts) and Lemma 2.10.

3. Estimates for the sine-Gordon model and free fermions; proof of main theorems

In this section, we record our main estimates for sine-Gordon correlation functions as well
as those for free fermions with a finite volume mass term. The proofs of these estimates
are presented in the remainder of the paper. Assuming these estimates, we then give our
proofs of the theorems of Section 1. The intuition for Theorems 1.1–1.2 is as outlined in
Section 1.3. Namely, in view of the Coleman correspondence when zD�D 0, i.e., Corol-
lary 2.11, the sine-Gordon measure which is formally obtained from the GFF measure by
weighting it by

e2�
R
dx Wcos

p
4� '.x/W 1ƒL .x/ (3.1)

should correspond to the massless free fermion “Grassmann measure” weighted by

eAz
R
dx . N 1 1.x/C N 2 2.x//1ƒL .x/: (3.2)

Our estimates stated in this section provide the required analyticity and convergence to
make this correspondence rigorously. Our main innovation here is that our estimates hold
for all z in a complex neighborhood of the entire real axis (not just a neighborhood of
the origin) and for all L > 0, and that we control the infinite volume limit as L!1.
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The main analyticity results for the sine-Gordon model stated in this section do not cause
additional difficulties for general ˇ 2 .0; 6�/, so we state them in this generality. Together
with well-known correlation inequalities they then imply the remaining results stated in
Section 1.

3.1. The sine-Gordon model and estimates for its correlation functions

To state our estimates for the sine-Gordon model, we begin with the precise definition of
our regularization of the continuum, finite volume, massless sine-Gordon model.

For "; m > 0, we define the probability measure �GFF.";m/ of the regularized GFF
as in Section 2.2 and recall that �GFF.";m/ is supported on C1.R2/. We then take as a
regularization of the sine-Gordon model the probability measure

�SG.ˇ;zj";m;ƒ/.d'/ D
1

Z.ˇ; zj";m;ƒ/
exp

�
2z

Z
ƒ

dx "�ˇ=4� cos.
p
ˇ '/

�
�GFF.";m/.d'/;

(3.3)

where ƒ � R2 is a compact set, ˇ 2 .0; 6�/, z 2 R, and Z is the partition function
– a normalization constant. We will also write h�iGFF.";m/ for integration with respect to
�GFF.";m/ and h�iSG.ˇ;zj";m;ƒ/ for integration with respect to �SG.ˇ;zj";m;ƒ/. ForƒDƒL D
¹x 2 R2 W jxj � Lº we of course recover our definition of h�iSG.ˇ;zj";m;L/ in (1.1), but we
allow more general ƒ here because this allows us to obtain the Euclidean invariance of
the infinite volume limits in Theorems 1.6 and 1.7.

Let us comment briefly on some of the restrictions we have imposed here. As men-
tioned earlier, the continuum sine-Gordon model is interesting for ˇ 2 .0; 8�/. While
we are mainly interested in proving the Coleman correspondence for ˇ D 4� , the sine-
Gordon estimates we prove hold for all ˇ 2 .0; 6�/, so we present the results in this
generality. The regime ˇ 2 Œ6�; 8�/ is also interesting, but would require finer estimates.
For ˇ 2 .0; 4�/, the sine-Gordon measure is absolutely continuous with respect to the
GFF when ƒ is compact. The free fermion point, ˇ D 4� , is precisely where this fails.

We now state our main result about the sine-Gordon correlation functions that are
important for the Coleman correspondence.

Theorem 3.1. Let ˇ 2 .0; 6�/, z 2 R, n; q; q0 � 0, and letƒ � R2 be compact. Suppose
f1; : : : ; fn 2 L

1
c .R

2/, g1; : : : ; gq; h1; : : : ; hq0 2 C1c .R
2/ and �1; : : : ; �n 2 ¹�1; 1º.

(i) If either .n; q C q0/ ¤ .1; 0/ and .n; q C q0/ ¤ .2; 0/ or if f1; f2 have disjoint
supports, the limit

D nY
kD1

Wei
p
ˇ �k' W.fk/

qY
jD1

@'.gj /

q0Y
j 0D1

N@'.hj 0/
ET
SG.ˇ;zjƒ/

WD lim
m!0

lim
"!0

D nY
kD1

Wei
p
ˇ �k' W".fk/

qY
jD1

@'.gj /

q0Y
j 0D1

N@'.hj 0/
ET
SG.ˇ;zj";m;ƒ/

(3.4)

exists and is finite.
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(ii) Under the assumptions of item (i), the function

z 7!
D nY
kD1

Wei
p
ˇ �k' W.fk/

qY
jD1

@'.gj /

q0Y
j 0D1

N@'.hj 0/
ET
SG.ˇ;zjƒ/

(3.5)

has an analytic continuation into a ƒ-dependent neighborhood of the real axis.
Moreover, it is even in z when n D 0.

(iii) Under the assumptions of item (i), for any l � 0,

d l

dzl

ˇ̌̌̌
zD0

D nY
kD1

Wei
p
ˇ �k' W.fk/

qY
jD1

@'.gj /

q0Y
j 0D1

N@'.hj 0/
ET
SG.ˇ;zjƒ/

D

D nY
kD1

Wei
p
ˇ �k' W.fk/

qY
jD1

@'.gj /

q0Y
j 0D1

N@'.hj 0/.We
i
p
ˇ '.1ƒ/WCWe�i

p
ˇ '.1ƒ/W/l

ET
GFF
:

(3.6)

(iv) For any f 2 L1c .R
2/ with support in ƒ we have, for ˇ 2 .4�; 6�/,

lim
m!0

lim
"!0

Œ"
ˇ
2��2hWe˙i

p
ˇ '
W".f /iSG.ˇ;zj";m;ƒ/�

D 2�ze�
ˇ
4�

Z
ƒ

dx f .x/

Z 1
0

dr r�
ˇ
2�C1e�

ˇ
4� �.0;r

2/; (3.7)

where � is the incomplete gamma function, and for ˇ D 4� ,

lim
m!0

lim
"!0

�
1

log "�1
hWe˙i

p
ˇ '
W".f /iSG.ˇ;zj";m;ƒ/

�
D 2�ze�

Z
R2
dx f .x/: (3.8)

By essentially the same proof, we also obtain the existence of the ' field.

Theorem 3.2. Let ˇ 2 .0; 6�/, z 2 R,m 2 .0;1/, and letƒ � R2 be compact. Then for
any f 2 C1c .R

2/ and w 2 C, the limit

hew'.f /iSG.ˇ;zjm;ƒ/ D lim
"!0
hew'.f /iSG.ˇ;zj";m;ƒ/ (3.9)

exists and is entire in w. If also
R
f D 0, then the limit

hew'.f /iSG.ˇ;zjƒ/ D lim
m!0

lim
"!0
hew'.f /iSG.ˇ;zj";m;ƒ/ (3.10)

also exists and is an even function of z and an entire function of w.

Before turning to fermions, we comment here on a few facts the reader might want to
keep in mind concerning these theorems.

First of all, we recall from (1.6) and the discussion following it that the product nota-
tion in the truncated correlation functions h

Qn
iD1 Xi i

T means hX1I : : : IXniT , and that
correspondingly, in item (iii), terms involving powers should be interpreted asD� nY

iD1

Xi

�
Y l
ET
D hX1I : : : IXnIY I : : : IY i

T ; (3.11)

with l copies of Y .
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Next we mention that by Lemma 2.10 and our assumptions on n; q; q0 the derivatives
in item (iii) are indeed finite as they should be.

Finally, we mention that in the literature, there certainly exist some results that are
similar to parts of this theorem – see in particular [7, 21, 23, 47]. What we believe is truly
new, and critical to our proof of the Coleman correspondence, is that we are able to treat
all values of z 2 R and prove analyticity in a neighborhood of the real axis – not just in a
neighborhood of the origin.

We now turn to describing what we need to know about free massive fermions with a
finite volume mass term.

3.2. Free fermion estimates

As discussed at the beginning of Section 3, we will establish the equivalence of the sine-
Gordon measure with finite volume interaction with that of Dirac fermions with a finite
volume mass term. We will here choose ƒ D ƒL to be a disk of radius L > 0 centered
at the origin. We again take the pragmatic approach of defining the free fermion model
with a finite volume mass term, formally represented by the fermionic path integral with
weight (3.2), directly through its correlation functions. Namely, given a corresponding
propagator S�1ƒL constructed in Theorem 3.3 below, the correlation functions are defined
by formulas like (1.9) and (1.10) but now with S�1ƒL instead of S . In particular, given
n � 3, f1; : : : ; fn 2 L1c .R

2/ and ˛1; ˇ1; : : : ; ˛n; ˇn 2 ¹1; 2º, the smeared truncated
correlation functions are defined by

D nY
iD1

N ˛i ˇi .fi /
ET
FF.�1ƒL /

WD .�1/nC1
X
�

Z
.R2/n

nY
iD1

fi .xi /

nY
iD1

S�1ƒL I˛�i .1/ˇ�iC1.1/
.x�i .1/; x�iC1.1//; (3.12)

where we sum over cyclic permutations � – as we see in our proof of Theorem 3.3, this
is finite for n � 3. For n D 2, the same definition applies to f1 and f2 with disjoint
compact supports. For n D 2 and f1 and f2 with overlapping supports the above integral
is no longer necessarily finite and we will instead consider the two-point function with
the singularity subtracted, i.e.,Z
dx1 dx2 f1.x1/f2.x2/

�
�
�S�1ƒL I˛1ˇ2

.x1; x2/S�1ƒL I˛2ˇ1
.x2; x1/C S0I˛1ˇ2.x1; x2/S0I˛2ˇ1.x2; x1/

�
;

(3.13)

with S0 given by the right-hand side of (2.1). This is formally equal to

h N ˛1 ˇ1.f1/
N ˛2 ˇ2.f2/i

T
FF.�1ƒ/ � h

N ˛1 ˇ1.f1/
N ˛2 ˇ2.f2/i

T
FF.0/: (3.14)



R. Bauerschmidt, C. Webb 3168

Therefore the existence of the propagator S�1ƒL and some of its basic properties are our
main result concerning such models – this is summarized in the following theorem. Here
recall our definition of the Dirac operator =@ from (1.7).

Theorem 3.3. For each � 2 R and L > 0, the Dirac operator with finite volume
mass term, i =@ C �1ƒL , where ƒL D ¹x 2 R2 W jxj � Lº, has a fundamental solution
S�1ƒL .x; y/, x ¤ y, with values in C2�2, that is,

.i =@x C �1ƒL.x//S�1ƒL .x; y/ D ı.x � y/ and lim
x!1

S�1ƒL .x; y/ D 0; (3.15)

such that given n� 3, f1; : : : ; fn 2 L1c .ƒL/ and ˛1; ˇ1; : : : ; ˛n; ˇn 2 ¹1; 2º, the smeared
truncated correlation functions (3.12) satisfy the following properties:

(i) The function

� 7!
D nY
iD1

N ˛i ˇi .fi /
ET
FF.�1ƒL /

(3.16)

has an analytic continuation into an L-dependent neighborhood of the real axis.
In particular, the smeared truncated correlation function is finite. .For � D 0,
S�1ƒ D S0:/

(ii) For l � 1,

d l

d�l

ˇ̌̌̌
�D0

D nY
iD1

N ˛i ˇi .fi /
ET
FF.�1ƒL /

D

D nY
iD1

N ˛i ˇi .fi /
�
N 1 1.1ƒL/C N 2 2.1ƒL/

�l ET
FF.0/

: (3.17)

(iii) For any � 2 R, as L!1,D nY
iD1

N ˛i ˇi .fi /
ET
FF.�1ƒL /

!

D nY
iD1

N ˛i ˇi .fi /
ET
FF.�/

: (3.18)

On the right-hand side, the correlation functions with index FF.�/ are defined by the
propagator (1.8) of Dirac fermions with infinite volume mass term �.

For n D 2, the same statements remain true if f1 and f2 have disjoint compact supports,
or if the truncated two-point function is replaced by (3.13) in (i) and on the left-hand sides
of (ii) and (iii), and analogously on the right-hand side of (iii).

We again comment on some issues regarding this theorem.
First of all, one could readily formulate a nonsmeared version of this result as well,

but for the proof of Theorem 1.1, the smeared versions of the correlation functions are the
relevant ones.

Secondly, in item (ii), the correct way to understand the term on the right-hand side
is that one expands the power, uses multilinearity, and (1.9). Moreover, the fact that the
right-hand side is finite follows from the last statement in Corollary 2.11.

Finally, we mention that given that this theorem is essentially about controlling a finite
volume approximation to massive free fermions, we expect that at least parts of this result
are well known to some experts. Unfortunately, we have been unable to find a suitable
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reference for the results we need. Our proof makes use of the convenient domain of a
disk, but we expect that the result also holds for much more general domains.

3.3. Proofs of Theorems 1.1 and 1.2

Assuming Theorems 3.1 and 3.3, we are now in a position to prove the Coleman corre-
spondence at ˇ D 4� .

Proof of Theorem 1.1. It suffices to show that the correlation functions of the massless
sine-Gordon model with an interaction term supported in ƒL at ˇ D 4� and those of
free Dirac fermions with a mass term supported in ƒL agree for all z 2 R (and corre-
sponding � D Az) and all L <1. Indeed, by Theorem 3.3 (iii), the smeared truncated
correlation functions of free Dirac fermions with a ƒL mass term converge as L!1 to
their infinite volume versions, and hence the identification in finite volume implies that
the sine-Gordon correlation functions converge to the same limit.

For the equivalence in finite volume, let us write OB
k

for one of the quantities
We˙i

p
4� ' W, @', or N@' on the sine-Gordon side, and write OF

k
for the corresponding one

on the fermionic side – the correspondence being the one given by the statement of The-
orem 1.1. Thus Wei

p
4� ' W corresponds to A N 1 1, We�i

p
4� ' W corresponds to A N 2 2, @'

corresponds to iB N 2 1, and N@' corresponds to iB N 1 2. We also let fj be compactly
supported and either essentially bounded or smooth (depending on whether it is a charge
or gradient observable that is acting on it) that OB

k
and OF

k
act on.

Let us first focus on the case where nC n0 C qC q0� 3 and let us not assume that the
supports of the test functions are disjoint. To see that the truncated correlation functions
agree for all z2R whenL<1, we use that both are analytic in z respectively � in a com-
plex neighborhood of the real axis, by Theorems 3.1 (ii) and 3.3 (i). By unique analytic
continuation, it therefore suffices to verify that they agree in a complex neighborhood of
z D �D 0. This in turn holds if the truncated correlation functions agree at z D 0 and all
z-derivatives at zD0 agree. That the correlation functions agree at zD0 is Corollary 2.11.
On the fermionic side, the �-derivatives at �D 0 are given by Theorem 3.3 (ii) as

d l

dzl

DnCn0CqCq0Y
kD1

OFk .fk/
ET
FF.Az1ƒL /

ˇ̌̌̌
zD0

D Al
DnCn0CqCq0Y

kD1

OFk .fk/
�
N 1 1.1ƒL/C N 2 2.1ƒL/

�l ET
FF.0/

: (3.19)

On the sine-Gordon side, the z-derivatives at z D 0 are given by Theorem 3.1 (iii) as

d l

dzl

DnCn0CqCq0Y
kD1

OBk .fk/
ET
SG.ˇ;zjƒL/

ˇ̌̌̌
zD0

D

DnCn0CqCq0Y
kD1

OBk .fk/
�
Wei
p
ˇ '.1ƒL/W C We

�i
p
ˇ '.1ƒL/W

�l ET
GFF
: (3.20)

That these are equal when ˇ D 4� again follows from Corollary 2.11.
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The same argument is valid for nC n0 D q C q0 D 1. Moreover, if we further assume
that the fk have disjoint supports, then the same argument works also for general nC n0C
q C q0 D 2.

The remaining .n C n0; q C q0/ D .0; 2/ case with overlapping test functions, i.e.,
Theorem 1.2, works similarly, as follows.

Proof of Theorem 1.2. By Theorem 3.1, the relevant finite volume "; m! 0 limits exist
on the sine-Gordon side. Moreover, by Lemma 2.9, it suffices to show that

h@'.f1/@'.f2/iSG.4�;z/ � h@'.f1/@'.f2/iGFF

D �
B2

�2

Z
dx1 dx2 f1.x1/f2.x2/

�
.@x1K0.Ajzj jx1 � x2j//

2
�

1

4.x1 � x2/2

�
;

(3.21)
h@'.f1/N@'.f2/iSG.4�;z/ � h@'.f1/N@'.f2/iGFF

D �
B2A2z2

4�2

Z
dx1 dx2 f1.x1/f2.x2/ .K0.Ajzj jx1 � x2j//

2: (3.22)

The claim then follows from the result about the GFF two-point function from Lemma 2.9.
The proof of (3.21) and (3.22) is analogous to that of Theorem 1.1, as follows. To

be concrete, we focus on the proof of (3.21); the other one is analogous. By Theorem
3.3 (iii), it suffices to show that

h@'.f1/@'.f2/iSG.4�;zjƒL/ � h@'.f1/@'.f2/iGFF D B
2

Z
dx1 dx2 f1.x1/f2.x2/

�
�
�SAz1ƒI21.x1; x2/SAz1ƒI21.x2; x1/C S0I21.x1; x2/S0I21.x1; x2/

�
: (3.23)

For z D 0, this claim is trivial as both sides vanish then. Theorem 3.1 and the special
nD 2 case of Theorem 3.3 now again imply that both sides are analytic in z and that their
derivatives are identical, using Corollary 2.11.

3.4. Proofs of Theorems 1.6 and 1.7

For the proofs of the results stated in Section 1.2, we need the following correlation
inequalities from [32].

First note that the ' 7! �' symmetry of the measure implies hei'.f /iSG.ˇ;zj";m;ƒ/ D

hcos.'.f //iSG.ˇ;zj";m;ƒ/. For z > 0, it then follows from [32, Corollary 3.2] that, as a
function of m > 0 and z > 0 and the set ƒ,

hei'.f /iSG.ˇ;zj";m;ƒ/ is increasing and h'.g/2iSG.ˇ;zj";m;ƒ/ is decreasing: (3.24)

Indeed, by rescaling ' by
p
ˇ , in the notation of [32, Section 3], one has

hF.'=
p
ˇ /iSG.ˇ;zj";m;ƒ/ D hF.'/iC;�; (3.25)

where

C D ˇ

Z 1
"2

dt et��tm
2

; �.dx/ D 2z"�ˇ=4�1ƒ.x/ dx; (3.26)
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and [32, Corollary 3.2] states that if �1 � �2 and C2 � C1 then

hcos.'.g//iC2;�2 � hcos.'.g//iC1;�1 ; h'.g/
2
iC2;�2 � h'.g/

2
iC1;�1 : (3.27)

The monotonicity (3.24) is immediate from this.
As a particular case of (3.24) we get the following infrared bound: for any f 2

C1c .R
2/, m; z > 0 and ƒ, we have

h'.f /2iSG.ˇ;zj";m;L/ � h'.f /
2
iGFF.";m/: (3.28)

Proof of Theorems 1.6 and 1.7. Since the proofs of Theorems 1.6 and 1.7 are essentially
identical, we focus on the first theorem and leave the modifications for the second theorem
to the reader.

By Theorem 3.2, for any f 2 C1c .R
2/ with

R
f D 0, the limit

hei'.f /iSG.ˇ;zjƒ/ WD lim
m!0

lim
"!0
hei'.f /iSG.ˇ;zj";m;ƒ/ (3.29)

exists and is invariant under z 7! �z. Thus without loss of generality we can and will
assume z > 0. By (3.24), it follows that hei'.f /iSG.ˇ;zjƒ/ is monotone in ƒ, and thus
converges as ƒ " R2 to a limit which we denote by hei'.f /iSG.ˇ;z/.

The limit is trivially bounded above by 1 and the map f 7! hei'.f /iSG.ˇ;z/ satisfies
the following continuity estimate: for any g 2 C1c .R

2/ with
R
g D 0,

jhei'.fCg/iSG.ˇ;z/ � he
i'.f /
iSG.ˇ;z/j �

1
2
h'.g/2iSG.ˇ;z/ �

1
2
.g; .��/�1g/: (3.30)

Indeed, for "; m > 0 and ƒ finite, the analogue of the first inequality is immediate, and
the second inequality follows from (3.24). The claimed inequality then follows by taking
the limits in ";m;ƒ.

In particular, if functions gk 2 C1c .R
2/ with

R
gk D 0 converge to 0 in the topol-

ogy of �.R2/, the right-hand side of (3.30) converges to 0. Since C1c .R
2/ is dense

in �.R2/ (and likewise for the subspaces of functions which integrate to 0), it follows
that hei'.f /iSG.ˇ;z/ extends to a continuous functional on � 0.R2/=constants (the topolog-
ical dual space of the closed subspace of integral-0 functions in �.R2/). Minlos’s theorem
then implies that hei'.f /iSG.ˇ;z/ is the characteristic functional of a probability measure
on � 0.R2/=constants.

That the limit is Euclidean invariant is a standard argument that follows from the
Euclidean invariance of the GFF and the monotonicity of hei'.f /iSG.ˇ;zjƒ/ in ƒ for any
increasing family of sets; see, e.g., [57, Section VIII.6].

Finally, the bounds (1.42)–(1.45) are immediate from the monotonicity of (3.24).

3.5. Proof of Theorem 1.3 and Corollary 1.8

Proof of Theorem 1.3. The main step of the proof will be to show that (1.28) holds for
functions with integral 0, i.e., for all f1; f2 2 �.R2/ with

R
fi D 0,

h'.f1/'.f2/iSG.4�;z/ D lim
L!1

lim
m!0

lim
"!0
h'.f1/'.f2/iSG.4�;zj";m;L/: (3.31)
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To this end, let us first further assume that there are gi ; hi 2 C1c .R
2/ such that

fi D @gi C N@hi : (3.32)

In this case, we note that, by integrating by parts,

h'.f1/'.f2/iSG.4�;zj";m;L/ D h@'.g1/@'.g2/iSG.4�;zj";m;L/

C hN@'.h1/N@'.h2/iSG.4�;zj";m;L/

C h@'.g1/N@'.h2/iSG.4�;zj";m;L/

C hN@'.h1/@'.g2/iSG.4�;zj";m;L/; (3.33)

and we find that, by Theorem 1.2, the ";m! 0, L!1 limits exist and

h'.f1/'.f2/iSG.4�;z/ D h@'.g1/@'.g2/iSG.4�;z/

C hN@'.h1/N@'.h2/iSG.4�;z/

C h@'.g1/N@'.h2/iSG.4�;z/

C hN@'.h1/@'.g2/iSG.4�;z/: (3.34)

To express the right-hand side as in (1.28)–(1.29), let us first look at the g1; g2 term – the
remaining terms are similar. Recalling that 1

2�
K0.Ajzj jx � yj/ is the covariance of the

massive free field, we have the following Fourier space representation of K0:

K0.Ajzj jx � yj/ D

Z
R2

dp

2�

e�ip�.x�y/

jpj2 C A2jzj2
; (3.35)

where the integral is understood either in principal value sense or in the sense of distribu-
tions. Thus with the convention Of .p/ D

R
R2 f .x/e

�ip�xdp for the Fourier transform and
2O@ D i Np, Theorem 1.2 and a routine calculation show that (with integrals understood in
principal value sense)

h@'.g1/@'.g2/iSG.4�;z/

D
1

16�3

Z
R2�R2

dp1 dp2 Og1.p1 C p2/ Og2.�p1 � p2/
Np1 Np2

.jp1j2 C A2jzj2/.jp2j2 C A2jzj2/

D

Z
R2

dp

.2�/2
Og1.p/ Og2.�p/

Z
R2

dq

4�

Nq. Np � Nq/

.jqj2 C A2jzj2/.jp � qj2 C A2jzj2/

D

Z
R2

dp

.2�/2
b@g1.p/b@g2.�p/ 1

� Np2

Z
R2
dq

Nq. Np � Nq/

.jqj2 C A2jzj2/.jp � qj2 C A2jzj2/

DW

Z
R2

dp

.2�/2
b@g1.p/b@g2.�p/ OCAjzj.p/: (3.36)

The OC on the right-hand side can be computed as follows. Going into polar coordinates,
scaling the radial variable, and translating the angular variable shows that

OCAjzj.p/ D
2

jpj2

Z 1
0

dr
r

r2 C �2p

Z 2�

0

dt

2�

e�itr.1 � re�it /

1C r2 � 2r cos t C �2p
: (3.37)
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where �p D Ajzj=jpj. To evaluate the t -integral through the residue theorem, we note
that out of the two poles for � D e�it ,

� D
1C �2p C r

2 ˙

q
.1C �2p C r

2/2 � 4r2

2r
; (3.38)

only the minus-one is inside the unit disk, and we thus find

OCAjzj.p/ D
2

jpj2

Z 1
0

dr
r

r2 C �2p

I
j�jD1

d�

2�i�

�r.1 � r�/

1C r2 � r.�C ��1/C �2p

D
2

jpj2

Z 1
0

dr
r

r2C�2p

��2pC r
2� .�2pC r

2/2C .�2pC r
2/
q
.1C�2pC r

2/2� 4r2

2
q
.1C�2pC r

2/2� 4r2
:

(3.39)

A straightforward (but slightly tedious) calculation shows that the last integrand can be
written as

1

4
@r

�
r2 �

q
.1C �2p/

2 C 2.�2p � 1/r
2 C r4 �

2�2p log.r2 C �2p/q
1C 4�2p

C

2�2p log
�
1C 3�2p � r

2 C

q
1C 4�2p

q
.1C �2p/

2 C 2.�2p � 1/r
2 C r4

�q
1C 4�2p

�

D
r

r2 C �2p

��2p C r
2 � .�2p C r

2/2 C .�2p C r
2/
q
.1C �2p C r

2/2 � 4r2

2
q
.1C �2p C r

2/2 � 4r2
; (3.40)

from which we see after another slightly tedious calculation that OCAjzj.p/ equals

1

jpj2

�
1C

�2pq
1C 4�2p

�
log�2p C log

�q
1C 4�2p � 1

�
� log.1C 3�2p C .1C �

2
p/
q
1C 4�2p/

��
: (3.41)

Finally, an elementary calculation shows that

x3 C 3x C .x2 C 1/
p
x2 C 4

p
x2 C 4 � x

D

�
x

2
C

r
x2

4
C 1

�4
; (3.42)

from which we can deduce (1.29) with another routine calculation.
We see in particular from this that OCAjzj is bounded for jzj > 0. A similar calculation

shows that

h@'.g1/N@'.h2/iSG.4�;z/ D

Z
R2

dp

.2�/2
b@g1.p/bN@g2.�p/ OCAjzj.p/; (3.43)
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with the same OCAjzj. Thus taking complex conjugates of these identities, we find that for
our fi given by fi D @gi C N@hi ,

h'.f1/'.f2/iSG.4�;z/ D

Z
R2

dp

.2�/2
Of1.p/ Of2.�p/ OCAjzj.p/; (3.44)

which is precisely the claim for the fi which can be represented this way.
Finally, to extend the statement to arbitrary fi 2C1c .R

2/ or fi 2 �.R2/with
R
fi D 0,

we note that such fi can be written as in (3.32) but with gi and hi in �.R2/, by Taylor
expanding Ofi . Thus it remains to extend our argument to Schwartz functions. For this,
given fi 2 �.R2/ satisfying

R
fi D 0, let gi ; hi 2 �.R2/ be such that we have the rep-

resentation (3.32). Let us take � 2 C1c .R
2/ nonnegative, bounded by 1, supported in

ƒ2R D ¹x 2 R2 W jxj < 2Rº, equal to 1 in ƒR, and with gradient bounded as a function
of R. Then write gi D �gi C .1 � �/gi and similarly for hi . We then have

h'.f1/'.f2/iSG.4�;zj";m;L/ D †1.Rj";m;L/C†2.Rj";m;L/; (3.45)

where in †1, we have kept only the �gi ; �hi terms, while in †2 we have at least one
.1 � �/gi or .1 � �/hi term.

Using the initial part of this proof and a routine dominated convergence argument,
we see that when we let " ! 0, m ! 0, L ! 1, and finally R ! 1, †1 converges
to our target – namely (3.44) (which is perfectly well defined for fi 2 �.R2/). Thus we
need to show that †2 tends to zero in the same limit. For this, using (3.28) and routine
Cauchy–Schwarz arguments shows that (in the "! 0, m! 0, L!1 limit) we end up
estimating e.g. quantities of the formZ

R2�R2
dx dy jr..1 � �.x//g1.x//j jr..1 � �.y//g1.y//j

ˇ̌
log jx � yj

ˇ̌
: (3.46)

By dominated convergence, this tends to zero as R!1, and one finds that †2 tends to
zero in our limit. This shows that (3.44) is true also for f1;f2 2 �.R2/ satisfying

R
fi D 0.

The localization bound (1.30) now follows easily by observing that
R
.fx � fy/ D 0

so by (1.28) for integral-0 test functions (for which we have now established (1.28)), the
left-hand side of (1.30) is given by

sup
x2R2

Z
R2

dp

.2�/2
j Of .p/j2.2 � 2 cos.p � x// OCAz.p/: (3.47)

This is uniformly bounded since OC�.p/ is bounded for � ¤ 0.
Finally, we construct the required probability measure h�iSG.4�;z/ on � 0.R2/. In The-

orem 1.6, we have already constructed such a measure on � 0.R2/=constants, i.e., for
test functions f 2 �.R2/ with

R
f D 0. Using the uniform bound on OC� for � ¤ 0

we can extend this measure to all test functions in �.R2/ as follows. Let N .x/ D
.2�N/�1e�jxj

2=2N be the density of the two-dimensional Gaussian probability measure
of varianceN and Fourier transform ON .p/D e�

1
2N jpj

2
. For any f 2 �.R2/, the function

f � Of .0/N 2 �.R2/ then has integral 0, and

hei'.f �
Of .0/N /iSG.4�;z/ (3.48)
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is well defined by Theorem 1.6. For � ¤ 0, we will show that it is a Cauchy sequence
in N , as a consequence of the boundedness of OC�. Indeed,

jhei'.f �
Of .0/N /iSG.4�;z/ � he

i'.f � Of .0/M /iSG.4�;z/j

�
j Of .0/j2

2
h'.N � M /

2
iSG.4�;z/

D
j Of .0/j2

2

Z
R2

dp

.2�/2

ˇ̌
e�

1
2N jpj

2

� e�
1
2M jpj

2 ˇ̌2 OCAjzj.p/! 0 (3.49)

as N;M !1. For f 2 �.R2/, we may thus define

hei'.f /iSG.4�;z/ D lim
N!1

hei'.f �
Of .0/N /iSG.4�;z/: (3.50)

That this is indeed the characteristic functional of a probability measure on � 0.R2/ again
follows from Minlos’s theorem and the continuity of f 7! hei'.f /iSG.4�;z/, which follows
from the boundedness of OC� by an argument analogous to the above Cauchy sequence
argument. This argument also shows that the covariance is given by

h'.f1/'.f2/iSG.4�;z/ D

Z
R2

dp

.2�/2
Of1.p/ Of2.�p/ OCAjzj.p/: (3.51)

The exponential decay (1.31) now follows (see e.g. [54, Theorem IX.14]) from the fact
that OC�.p/ is uniformly bounded and that, as one readily checks from (1.29), it has an
analytic continuation into a strip jIm.p0/j; jIm.p1/j < � for some � > 0 (proportional
to j�j).

For the proof of Corollary 1.8, we need the following observation from [32] adapted
to our setting.

Lemma 3.4. Let ˇ 2 .0; 6�/ and m; z > 0. Then for any f 2 C1c .R
2/, with fx.y/ D

f .y � x/,
h'.f /'.fx/iSG.ˇ;zjm/ ! 0 .jxj ! 1/: (3.52)

Proof. The argument is as in the proof of [32, Theorem 4.4]. Indeed, by Theorem 1.7, the
measure h�iSG.ˇ;zjm/ is translation invariant and satisfies, for any f 2 C1c .R

2/,

h'.f /2iSG.ˇ;zjm/ � .f; .��Cm
2/�1f / D

Z
R2

dp

.2�/2
j Of .p/j2

jpj2 Cm2
: (3.53)

Therefore Cf .x/ D h'.f /'.fx/iSG.ˇ;zjm/ satisfies

0 � OCf .p/ �
j Of .p/j2

jpj2 Cm2
2 L1.R2/ (3.54)

in the distributional sense. Indeed, this follows from

h.' � f /.g/2iSG.ˇ;z/ D

Z
R2�R2

dx dy g.x/Cf .x � y/g.y/D

Z
R2

dp

.2�/2
j Og.p/j2 OCf .p/:

(3.55)
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Thus the Riemann–Lebesgue lemma implies that

h'.f /'.fx/i D

Z
R2

dp

.2�/2
eip�x OCf .p/! 0 .jxj ! 1/ (3.56)

as claimed.

Proof of Corollary 1.8. By (3.52), for m > 0,

h'.f /2iSG.ˇ;zjm/ D
1
2

lim
jxj!1

h.'.f / � '.fx//
2
iSG.ˇ;zjm/: (3.57)

By monotonicity in m and L due to (3.24), the m! 0 and L!1 limits exist in both
orders, and if

R
f D 0,

sup
m>0

lim
L!1

h'.f /2iSG.ˇ;zjm;ƒL/ � lim
L!1

sup
m>0

h'.f /2iSG.ˇ;zjm;ƒL/ D h'.f /
2
iSG.ˇ;z/:

(3.58)
In conclusion, we get

sup
m>0

h'.f /2iSG.ˇ;zjm/ D
1
2

sup
m>0

lim
jxj!1

h.'.f / � '.fx//
2/iSG.ˇ;zjm/

�
1
2

lim sup
jxj!1

sup
m>0

h.'.f / � '.fx//
2/iSG.ˇ;zjm/

�
1
2

lim sup
jxj!1

h.'.f / � '.fx//
2/iSG.ˇ;z/: (3.59)

For ˇ D 4� , the right-hand side is finite by Theorem 1.3. In fact, since j Of j2 OC� is inte-
grable for � ¤ 0, by the Riemann–Lebesgue lemma it is equal to

lim sup
x!1

Z
R2

dp

.2�/2
j Of .p/j2.1�cos.p � x// OCAz.p/D

Z
R2

dp

.2�/2
j Of .p/j2 OCAz.p/ (3.60)

as claimed.
The proof of the existence of the infinite volume measure as m! 0 is now exactly as

in the proof of Theorems 1.6 and 1.7, only using the now proved bound (1.46) instead of
the last bound in (3.30) for the continuity of the characteristic functional.

4. The sine-Gordon model: the renormalized potential

One of our main tools in the proof of Theorem 3.1 is estimates for a renormalized ver-
sion of the sine-Gordon potential, and we turn to studying it now. For ' 2 Cb.R2/ and
� 2 L1c .R

2 � ¹�1; 1º;C/, we define

v0.�; 'j"/ D "
�
ˇ
4�

Z
R2�¹�1;1º

d� �.�/ei
p
ˇ �'.x/; (4.1)

which we refer to as the microscopic (sine-Gordon) potential. In terms of this microscopic
potential, we introduce the following generalized partition function that can be seen as a
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generating function for charge correlation functions:

Z.�j";m/ D he�v0.�;'j"/iGFF.";m/; (4.2)

where the GFF expectation is over '. For � D �z1ƒ this would just be the partition
function of the (regularized) sine-Gordon model.

Our analysis of the generating function Z.�j"; m/ relies on a convenient decomposi-
tion of the regularized free field GFF."; m/. More precisely, we define, for any t; m > 0

and x; y 2 R2 with x ¤ y,

cm
2

t .x � y/ WD

Z t

0

ds Pcm
2

s .x � y/ WD

Z t

0

ds e�m
2s e
�
jx�yj2

4s

4�s
: (4.3)

For any t > "2, note that cm
2

t � c
m2

"2
and cm

2

1 � c
m2

t are covariances, so the fact that the
sum of two independent Gaussian processes is a Gaussian process whose covariance is
the sum of the covariances of the two processes implies that we can in fact write (4.2) as

Z.�j";m/ D he�vt .�;'j";m/iGFF.
p
t ;m/ (4.4)

where we have defined the renormalized potential vt by

e�vt .�;'j";m/ D E
cm
2

t �c
m2

"2

.e�v0.�;'C�j"//; (4.5)

and have written E
cm
2

t �c
m2

"2

for the expectation with respect to the law of the Gaussian

process with covariance cm
2

t � c
m2

"2
and the last integral is over �.

The analysis of the "; m! 0 behavior of the generating function Z.�j"; m/ can thus
be rephrased in terms of ";m! 0 asymptotics of the renormalized potential vt .�; �j";m/.
Note that as � is complex, only e�vt .�;'j";m/ is a priori well defined, but we will see in
this section that for any given � 2 L1c .R

2 � ¹�1; 1º/ and t small enough, its logarithm
vt .�; 'j"; m/ is also well defined. Moreover, the goal of this section is to prove bounds
for vt .�; 'j";m/ that are uniform in " > 0 and m > 0. Our analysis follows the approach
of [13] as presented in [3, Section 3], but it permits space-dependent coupling constants
and we also work directly in the continuum. As discussed in Section 1.4, we expect that
similar results could be obtained by using the methods of [5, 7]. The "! 0 and m! 0

limits will be studied in Section 5.
To control vt we will show in this section that the following expansion is convergent

and agrees with vt .'; �j";m/ for � 2 L1c .R
2 � ¹�1; 1º/ and suitable t :

1X
nD1

1

nŠ

Z
.R2�¹�1;1º/n

d�1 � � � d�n �.�1/ � � � �.�n/zv
n
t .�1; : : : ; �nj";m/e

i
p
ˇ
Pn
jD1 �j '.xj /

(4.6)

where the coefficients zvnt are determined recursively as follows. For t > "2 and for
� 2 R2 � ¹�1; 1º, we set

zv1t .�j";m/ D e
�
ˇ
2 .
R t
"2
ds Pcm

2

s .0/C 1
4� log "2/; (4.7)
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and for n � 2 and �j D .xj ; �j / 2 R2 � ¹�1; 1º,

zvnt .�1; : : : ; �nj";m/

D
1

2

Z t

"2
ds

X
I1 P[I2DŒn�

X
i2I1; j2I2

Pum
2

s .�i ; �j /zv
jI1j
s .�I1 j";m/zv

jI2j
s .�I2 j";m/

� e�.w
m2

t .�1;:::;�n/�w
m2

s .�1;:::;�n//; (4.8)

where

Pum
2

s .�1; �2/ D ˇ�1�2 Pc
m2

s .x1 � x2/; (4.9)

wm
2

t .�1; : : : ; �n/ � w
m2

s .�1; : : : ; �n/ D
1

2

nX
i;jD1

Z t

s

dr Pum
2

r .�i ; �j /: (4.10)

We have also written Œn� D ¹1; : : : ; nº and I1 P[I2 D Œn� to indicate that I1 \ I2 D ;
and I1 [ I2 D Œn�. To control the expansion (4.6), we introduce the following norms for
f W .R2 � ¹�1; 1º/n ! C:

kf kn D

´
sup�2R2�¹�1;1º jf .�/j if n D 1;

sup�12R2�¹�1;1º

R
.R2�¹�1;1º/n�1 d�2 � � � d�n jf .�1; : : : ; �n/j if n � 2:

(4.11)

The goal of the rest of this section is to prove the following proposition. In its state-
ment, the condition ˇ < 6� necessitates the exclusion of the nD 2 term as the analogous
estimate fails when ˇ� 4� ; see also Remark 4.2 below. The nD 2 term will be considered
explicitly later.

Proposition 4.1. For ˇ 2 .0; 6�/, t > 0, and n ¤ 2, there exist functions hnt W .R
2 �

¹�1; 1º/n ! Œ0;1� which are independent of ";m and for 0 < "2 < t < m�2, one has

jzvnt .�1; : : : ; �nj";m/j � h
n
t .�1; : : : ; �n/ (4.12)

for all �1; : : : ; �n 2 .R2 � ¹�1; 1º/n and

khnt kn � n
n�2t�1

�
Cˇ t

1� ˇ
8�

�n (4.13)

for some constant Cˇ depending only on ˇ.

Remark 4.2. It remains a conjecture [5, p. 672] that similar estimates remain valid for all
ˇ < 8� when not only the nD 2 term is excluded but when the first n0 terms are excluded
where n0 is the largest integer such that 2.n0 � 1/� ˇn0=4� � 0. (The results of [23,52]
which do construct the (massive) sine-Gordon model for all ˇ < 8� do not proceed by
this expansion and instead rely on probabilistic estimates on large gradients, thus leaving
this stronger conjecture open.)

Proposition 4.1 allows us to identify the expansion (4.6) with the renormalized poten-
tial as follows.
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Corollary 4.3. For all 0<"2<t <m�2<1, ' 2C1.R2/, and � 2L1c .R
2�¹�1;1º;C/

satisfying
sup

�2R2�¹�1;1º

j�.�/j <
1

eCˇ t1�ˇ=8�
(4.14)

where Cˇ is the constant from Proposition 4.1, the sums and integrals in the expansion
(4.6) converge absolutely and equal vt .�; 'j";m/ defined in (4.5):

vt .�; 'j";m/ D

1X
nD1

1

nŠ

Z
.R2�¹�1;1º/n

d�1 � � � d�n �.�1/ � � � �.�n/

� zvnt .�1; : : : ; �nj";m/e
i
p
ˇ
Pn
jD1 �j '.xj /: (4.15)

Proof. Throughout the proof, we fix ";m > 0 and � 2 L1.R2 � ¹�1; 1º/ with support in
a compact set ƒ � ¹�1; 1º � R2 � ¹�1; 1º, and we will always assume that t 2 ."2; t0/
where t0 is the supremum over t > "2 such that (4.14) holds. Then, for n � 3,

1

nŠ

Z
.R2�¹�1;1º/n

d�1 � � � d�n
ˇ̌
�.�1/ � � � �.�n/zv

n
t .�1; : : : ; �nj";m/e

i
p
ˇ
Pn
jD1 �j '.xj /

ˇ̌
�
1

nŠ
2jƒj k�kn

L1.R2�¹˙1º/kh
n
t kn � 2jƒjn

�2t�1.t=t0/
.1�ˇ=8�/n (4.16)

where we have used nn=nŠ � en. The n D 1; 2 terms are trivially bounded with "; m-
dependent constants when t > "2, uniformly in ' WR2!R, by the definitions (4.7)–(4.8).
For t < t0, it follows that the sum over n in (4.6) converges geometrically, again uniformly
in ' W R2 ! R. We denote this sum by at .'/ and note that at .'/ only depends on 'jƒ,
so that we can consider ' 7! at .'/ as a function at W C.ƒ/! R. We will denote the
supremum norm on C.ƒ/ by k � k below. From the geometric convergence,ˇ̌̌

ei
p
ˇ
Pn
jD1 �jf .xj / � 1 � i

p
ˇ

nX
jD1

�jf .xj /
ˇ̌̌
�
1

2
ˇn2kf k2; (4.17)

and similar estimates for higher derivatives, we then see that at W C.ƒ/! R is actually
smooth, i.e., Fréchet differentiable to any order, for t 2 ."2; t0/. Its first two derivatives
are given by

Dat .'If1/ D i
p
ˇ

1X
nD1

1

nŠ

Z
.R2�¹�1;1º/n

d�1 � � � d�n �.�1/ � � � �.�n/

�

nX
kD1

�kf1.xk/zv
n
t .�1; : : : ; �nj";m/e

i
p
ˇ
Pn
jD1 �j '.xj /

DW

Z
dx1 f1.x1/rat .'; x1/; (4.18)

D2at .'If1; f2/ D �ˇ

1X
nD1

1

nŠ

Z
.R2�¹�1;1º/n

d�1 � � � d�n �.�1/ � � � �.�n/

�

nX
kD1

�kf1.xk/

nX
lD1

�lf2.xl /zv
n
t .�1; : : : ; �nj";m/e

i
p
ˇ
Pn
jD1 �j '.xj /

DW

Z
dx1 dx2 f1.x1/f2.x2/Hess at .'; x1; x2/; (4.19)



R. Bauerschmidt, C. Webb 3180

where f1;f2 2C.ƒ/. As in (4.16), krat .'; �/kL1.R2/ and kHessat .'; �; �/kL1L1.R2�R2/

are bounded independently of ', and since � has support inƒ, it is also clear thatrat .'; �/
has support in ƒ and that Hess at .'; �; �/ has support in ƒ2. Defining

� Pctat .'/ D

Z
ƒ2
dx1 dx2 Pc

m2

t .x1 � x2/Hess at .'; x1; x2/; (4.20)

.rat .'/; Pc
m2

t rat .'// D

Z
ƒ2
dx1 dx2 Pc

m2

t .x1 � x2/rat .'; x1/rat .'; x2/; (4.21)

it then follows from (4.8) that, for t 2 ."2; t0/,

@

@t
at .'/ D

1
2
� Pctat .'/ �

1
2
.rat .'/; Pc

m2

t rat .'//: (4.22)

Let ht .'/ D e�at .'/. Then by the chain rule, ht is also twice Fréchet differentiable with
(using similar notation)

rht .'; x1/ D �rat .'; x1/e
�at .'/; (4.23)

Hess ht .'; x1; x2/ D Œ�Hess at .'; x1; x2/Crat .'; x1/rat .'; x2/�e�at .'/; (4.24)

and hence

1

2
� Pctht .'/ �

@

@t
ht .'/

D

�
�
1

2
� Pctat .'/C

1

2
.rat .'/; Pc

m2

t rat .'//C
@

@t
at .'/

�
e�at .'/ D 0: (4.25)

We will show that e�vt satisfies the same heat equation (with the same initial data at
t D "2) and argue that the solution must be unique, so vt D at , which will then yield the
proof.

The Laplacian � Pctht can alternatively be expressed as follows. Since ƒ is bounded,
assume that ƒ � Œ�L; L�2. Let � be a smooth function with �.t/ D 1 for t � 4L and
�.t/ D 0 for t � 8L. We then choose a torus ƒ0 of period 16L and define Pc0t .x/ DP
n2Z2 Pc

m2

t .x C 16Ln/�.jx C 16Lnj/. Thus Pc0t is a smooth (periodic) function on ƒ0,
and we note that Pc0t .x/ D Pc

m2

t .x/ if jxj � 4L. Thus if we regard ƒ as a subset of ƒ0

(by embedding it into a fundamental domain centered at 0 in the obvious way), we have
Pc0t .x � y/ D Pc

m2

t .x � y/ for x; y 2 ƒ. In particular, there are P�t;k � 0 decaying rapidly
in k for each t > 0 such that

Pcm
2

t .x � y/ D Pc0t .x � y/ D
X
k

P�k;tfk.x/fk.y/ for x; y 2 ƒ; (4.26)

where .fk/ is the real orthonormal Fourier basis of L2.ƒ0/ consisting of sin and cos
functions, so in particular satisfying kfkk � C . For a general function g 2 C 2

b
.C.ƒ//

and t > 0 we can now define

� Pctg.'/ D
X
k

P�k;tD
2g.'Ifk ; fk/: (4.27)
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By Fubini (whose application is justified by rapid convergence of all sums and integrals),
this definition is consistent with (4.20).

Let …N' be the L2.ƒ0/ projection of 'jƒ0 to Fourier modes k � N . For any N , the
above implies that hNt .'/ D ht .…N'/ satisfies the finite-dimensional heat equation

@th
N
t .'/ D

1

2

X
k�N

P�k;tD
2hNt .'Ifk ; fk/; hN

"2
.'/ D h"2.…N'/: (4.28)

Next we will verify that gt .'/ D e�vt .'/ defined in (4.5) also satisfies the heat equation
@tgt D

1
2
� Pctgt with the same initial condition g"2 D h"2 . To see this, first observe that the

definition of gt .'/ in (4.5) only depends on �jƒ. The Gaussian field �jƒ has covariance
.cm

2

t � c
m2

"2
/jƒ�ƒ and can be realized in terms of independent standard Gaussian random

variables .Xk/k2N as

�jƒ D
X
k

q
�k;t Xkfkjƒ (4.29)

where P�k;t above is the t -derivative of these �k;t . (This follows from the fact that �k;t D
.fk ; c

0
tfk/ and the differentiability of c0t in t .) From this representation we again see that

gNt .'/ D gt .…N'/ satisfies

@tg
N
t .'/D

1

2

X
k�N

P�k;tD
2gNt .'Ifk ;fk/; gN

"2
.'/D g"2.…N'/D h"2.…N'/: (4.30)

By the standard uniqueness of bounded solutions to such equations (finite-dimensional
heat equations), we conclude that hNt .'/ D gNt .'/ for all t 2 ."2; t0/ and N 2 N. It
remains to deduce that this implies that gt .'/ D ht .'/ for all smooth '. Indeed, we
have k…N' � 'k ! 0 for any smooth ' and since both gt and ht are continuous in
' 2 C.ƒ/, it follows that hNt .'/ D ht .…N'/ ! ht .'/ as N ! 1 and analogously
gNt .'/! gt .'/.

4.1. Covariance and (massive) heat kernel estimates

For the proof of Proposition 4.1, we require some basic estimates for the covariance cm
2

t

and the (massive) heat kernel Pcm
2

t . We turn to recording these now. The most basic esti-
mate we shall have use for is just for cm

2

t .x/.

Lemma 4.4. There exists a universal constant C > 0 such that for 0 < t < m�2 and
x 2 R2, we have the estimateˇ̌̌̌

cm
2

t .x/C
1

2�
log
�
jxj
p
t
^ 1

�ˇ̌̌̌
� C: (4.31)

Proof. Let us write

cm
2

t .x/ D

Z t

0

ds
e�m

2s

4�s
e�
jxj2

4s D

Z t

jxj2

0

ds
e�m

2sjxj2

4�s
e�

1
4s : (4.32)
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For jxj=
p
t � 1, we see that

0 � cm
2

t .x/ �

Z 1

0

ds
e�

1
4s

4�s
<1; (4.33)

so it is sufficient to focus on the regime jxj <
p
t . Here (using je�x � 1j � x for x > 0)ˇ̌̌̌

cm
2

t .x/C
1

2�
log
jxj
p
t

ˇ̌̌̌
�

Z t

jxj2

1

ds
je�m

2sjxj2� 1
4s � 1j

4�s
C

Z 1

0

ds
e�

1
4s

4�s

�
m2t

4�
C

1

16�

Z 1
1

ds

s2
C

Z 1

0

ds
e�

1
4s

4�s
: (4.34)

Recalling that we are assuming that m2t � 1, this concludes the proof.

The next estimate is slightly more involved.

Lemma 4.5. For ˇ 2 .0; 6�/, �1; �2; �3 2 R2 � ¹�1; 1º, and 0 < "2 � t � m�2 we have

j Pum
2

t .�1; �3/C Pu
m2

t .�2; �3/j
ˇ̌
1 � e��1�2ˇ

R t
"2
ds Pcm

2

s .x1�x2/
ˇ̌
� Ft .�1; �2; �3/ (4.35)

for some function Ft W .R2 � ¹�1; 1º/3 ! Œ0;1� which is invariant under permutations
of the coordinates, independent of ";m, and in the notation (4.11), satisfies

kFtk3 � Cˇ t (4.36)

for some constant Cˇ depending only on ˇ.

Proof. The proof is slightly lengthy and we split it into two parts.

Case 1: �1 ¤ �2. In this case, we bound the quantity j Pum
2

t .�1; �3/ C Pu
m2

t .�2; �3/j D

ˇj Pcm
2

t .x1 � x3/� Pc
m2

t .x2 � x3/j. Let us write Œx1; x2� for the line segment from x1 to x2.
Then by the mean value theorem (recalling that t � m�2),

j Pcm
2

t .x1 � x3/ � Pc
m2

t .x2 � x3/j D
e�m

2t

4�t

ˇ̌
e�
jx1�x3j

2

4t � e�
jx2�x3j

2

4t

ˇ̌
�

1

4�t
jx1 � x2j sup

u2Œx1;x2�

ˇ̌
rue

�
ju�x3j

2

4t

ˇ̌
: (4.37)

To bound the gradient, we use that for any ˛ > 0, there exists A.˛/ (depending only on ˛)
such that ˇ̌

rue
�
ju�x3j

2

4t

ˇ̌
�
ju � x3j

t
e�
ju�x3j

2

4t � A.˛/t�1=2e
�˛
ju�x3jp

t : (4.38)

We used here the estimate that there exists A.˛/ such that xe�x
2=4 � A.˛/e�˛x for all

x > 0.
From the triangle inequality we find that, for u 2 Œx1; x2�,

�ju � x3j � jx1 � uj � jx1 � x3j � jx1 � x2j � jx1 � x3j: (4.39)
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This leads to the following bound: for any ˛ > 0,

j Pcm
2

t .x1 � x3/ � Pc
m2

t .x2 � x3/j � A.˛/
1

4�t3=2
jx1 � x2je

˛
jx1�x2jp

t e
�˛
jx1�x3jp

t : (4.40)

The second term in our statement we bound with the following estimate which is a
consequence of Lemma 4.4 (recall that

R t
"2
Pcm
2

r .x1 � x2/ dr � c
m2

t .x1 � x2/):ˇ̌
1 � eˇ

R t
"2
dr Pcm

2

r .x1�x2/
ˇ̌
� eˇc

m2

t .x1�x2/ � 1

D

Z t

0

dr ˇ Pcm
2

r .x1 � x2/e
ˇcm

2

r .x1�x2/

� C

Z t

0

dr

r
e�
jx1�x2j

2

4r e
�
ˇ
2� logŒ

jx1�x2jp
r
^1�
; (4.41)

where the constant is universal.
Combining our estimates, we see that for each ˛ > 0, there exist A.˛/; zA.˛/ (depend-

ing only on ˛ and possibly different from our previous A.˛/) such that

j Pum
2

t .�1; �3/C Pu
m2

t .�2; �3/j
ˇ̌
1 � e��1�2ˇ

R t
"2
ds Pcm

2

s .x1�x2/
ˇ̌

� A.˛/t�3=2
Z t

0

dr

r
jx1 � x2je

˛
jx1�x2jp

t e
�˛
jx1�x3jp

t e�
jx1�x2j

2

4r e
�
ˇ
2� logŒ

jx1�x2jp
r
^1�

� zA.˛/t�3=2
Z t

0

dr

r
jx1 � x2je

˛
jx1�x2jp

t e
�˛
jx1�x3jp

t e
�2˛

jx1�x2jp
r e

�
ˇ
2� logŒ

jx1�x2jp
r
^1�

� zA.˛/t�3=2
Z t

0

dr

r
jx1 � x2je

�˛
jx1�x3jp

t e
�˛
jx1�x2jp

r e
�
ˇ
2� logŒ

jx1�x2jp
r
^1�
; (4.42)

where we made use of the facts that for some A.˛/, e�x
2
� A.˛/e�4˛x for x > 0, and

that for r � t , e˛
jx1�x2jp

t
�˛
jx1�x2jp

r � 1. To summarize, choosing ˛ D 1 we have the bound

j Pum
2

t .�1; �3/C Pu
m2

t .�2; �3/j
ˇ̌
1 � e��1�2ˇ

R t
"2
ds Pcm

2

s .x1�x2/
ˇ̌

� Ct�3=2
Z t

0

dr

r
jx1 � x2je

�
jx1�x3jp

t e
�
jx1�x2jp

r e
�
ˇ
2� logŒ

jx1�x2jp
r
^1� (4.43)

for some universal constantC and we can then defineFt (at least in the case �1¤ �2) to be
the function obtained by symmetrizing the above function with respect to the variables xi .
Note in particular that this is independent of ";m.

To control kFtk3, let us in all of our terms (coming from symmetrization) shift x2 and
x3 by x1 so we are left with the estimate

kFt1�1¤�2k3 � Ct
�3=2

Z t

0

dr
p
r

Z
R2
dx e

�
jxjp
t

Z
R2
dy
jyj
p
r
e
�
jyjp
r

�
jyj
p
r
^ 1

�� ˇ
2�

(4.44)

for some universal constantC . By a change of integration variables, the x-integral is some
universal constant times t , while the y-integral is some constant depending on ˇ times r
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(note that the singularity at the origin is integrable precisely for ˇ < 6�). Thus for some
constant Cˇ (depending only on ˇ),

kFt1�1¤�2k3 � Cˇ t
�1=2

Z t

0

dr r1=2 � Cˇ t; (4.45)

which was the claim.

Case 2: �1 D �2. In this case, we simply write

j Pum
2

t .�1; �3/C Pu
m2

t .�2; �3/j �
ˇ

4�t

�
e�
jx1�x3j

2

4t C e�
jx2�x3j

2

4t

�
; (4.46)

while for the exponential, we have by Lemma 4.4 (for some universal constant C )ˇ̌
1 � e�ˇ

R t
"2
dr Pcm

2

r .x1�x2/
ˇ̌
� 1 � e�ˇc

m2

t .x1�x2/

D

Z t

0

dr ˇ Pcm
2

r .x1 � x2/e
�ˇcm

2

r .x1�x2/

� C

Z t

0

dr
e�
jx1�x2j

2

4r

r
e
ˇ
2� logŒ

jx1�x2jp
r
^1�
: (4.47)

Combining the estimates, we have (for some possibly different universal constant)

j Pum
2

t .�1; �3/C Pu
m2

t .�2; �3/j
ˇ̌
1 � e�ˇ

R t
"2
dr Pcm

2

r .x1�x2/
ˇ̌

� Ct�1
�
e�
jx1�x3j

2

4t C e�
jx2�x3j

2

4t

� Z t

0

dr
e�
jx1�x2j

2

4r

r
e
ˇ
2� logŒ

jx1�x2jp
r
^1�
: (4.48)

The relevant function Ft is again obtained by symmetrizing with respect to x1; x2; x3.
To estimate the norm, we can again get rid of x1 by a shift of the integration variables.

One is left with the estimate

kFt1�1D�2k3 � C
Z

R2
dx
e�
jxj2

4t

t

Z t

0

dr

Z
R2

dy

r
e�
jyj2

4r

�
jyj
p
r
^ 1

� ˇ
2�

� zCt (4.49)

now for universal constants C; zC . This concludes the proof.

The final estimate we shall need involves four points.

Lemma 4.6. For ˇ 2 .0; 6�/, 0 < "2 � t < m�2, and �1; : : : ; �4 2R2 � ¹�1; 1º, we haveˇ̌̌ X
i2¹1;2º;j2¹3;4º

Pum
2

t .�i ; �j /
ˇ̌̌ˇ̌
1 � e�ˇ�1�2

R t
"2
dr Pcm

2

r .x1�x2/
ˇ̌ ˇ̌
1 � e�ˇ�3�4

R t
"2
dr Pcm

2

r .x3�x4/
ˇ̌

� Gt .�1; �2; �3; �4/ (4.50)

for some function Gt which is independent of "; m and is symmetric in the arguments.
Moreover, there exists a constantCˇ depending only on ˇ such that, in the notation (4.11),

kGtk4 � Cˇ t
2: (4.51)

Proof. The proof is very similar to that of Lemma 4.5. We again split it into two cases.
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Case 1: �1 ¤ �2 and �3 ¤ �4. Arguing as in (4.37), but noting that now we are dealing
with a kind of second order difference, we find bounds in terms of the second order deriva-
tive of the heat kernel. Using again an elementary estimate bounding x2e�x

2
C e�x

2
in

terms of e�˛x times a constant depending only on ˛ > 0, we find that for each ˛ > 0 there
exists a constant A.˛/ (depending only on ˛) such thatˇ̌̌ X
i2¹1;2º
j2¹3;4º

Pum
2

t .�i ; �j /
ˇ̌̌
D
ˇ̌
Pcm
2

t .x1 � x3/ � Pc
m2

t .x2 � x3/ � Pc
m2

t .x1 � x4/C Pc
m2

t .x2 � x4/
ˇ̌

� A.˛/
jx1 � x2j jx3 � x4j

t2
sup

u2Œx1;x2�
v2Œx3;x4�

e
�˛ ju�vjp

t : (4.52)

Instead of the bound (4.39), we now use the fact (again following from the triangle
inequality) that

�ju� vj � jx1 � uj C jx3 � vj � jx1 � x3j � jx1 � x2j C jx3 � x4j � jx1 � x3j; (4.53)

which implies for our choice of � ’s that for each ˛ > 0, there exists A.˛/ such thatˇ̌̌ X
i2¹1;2º; j2¹3;4º

Pum
2

t .�i ; �j /
ˇ̌̌
� t�2A.˛/jx1 � x2j jx3 � x4je

˛
jx1�x2jp

t
C˛
jx3�x4jp

t
�˛
jx1�x3jp

t :

(4.54)

We estimate the exponentials as in (4.41) and arguing as in the proof of Lemma 4.5
(choosing ˛0 and ˛ in a similar way etc.), we arrive at the boundˇ̌̌ X
i2¹1;2º;j2¹3;4º

Pum
2

t .�i ; �j /
ˇ̌̌ˇ̌
1 � e�ˇ�1�2

R t
"2
dr Pcm

2

r .x1�x2/
ˇ̌ ˇ̌
1 � e�ˇ�3�4

R t
"2
dr Pcm

2

r .x3�x4/
ˇ̌

� Ct�2e
�
jx1�x3jp

t

Z t

0

dr

r1=2
jx1 � x2j
p
r

e
�
jx1�x2jp

r

�
jx1 � x2j
p
r
^ 1

�� ˇ
2�

�

Z t

0

ds
p
s

jx3 � x4j
p
s

e
�
jx3�x4jp

s

�
jx3 � x4j
p
s
^ 1

�� ˇ
2�

: (4.55)

Symmetrizing with respect to the xi yields our function Gt . Its norm can be estimated
with similar scaling arguments as in the proof of Lemma 4.5 and we find

kGt1�1¤�21�3¤�4k4 � Cˇ t
�1

�Z t

0

dr r1=2
�2
� Cˇ t

2; (4.56)

which was the claim.

Case 2: �1 D �2 or �3 D �4 or both. Let us assume (by symmetry) that �3 D �4. We can
then use Lemma 4.5 (and the triangle inequality) to writeˇ̌̌ X
i2¹1;2º;j2¹3;4º

Pum
2

t .�i ; �j /
ˇ̌̌ˇ̌
1 � e�ˇ�1�2

R t
"2
dr Pcm

2

r .x1�x2/
ˇ̌ ˇ̌
1 � e�ˇ�3�4

R t
"2
dr Pcm

2

r .x3�x4/
ˇ̌

� .Ft .�1; �2; �3/C Ft .�1; �2; �4//
�
1 � e�ˇ

R t
0 dr Pc

m2

r .x3�x4/
�

� ˇ.Ft .�1; �2; �3/C Ft .�1; �2; �4//

Z t

0

dr

4�r
e�
jx3�x4j

2

4r : (4.57)
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The claim follows now by symmetrizing and Lemma 4.5, which implies

kGt .1 � 1�1¤�21�3¤�4/k4 � Cˇ t
Z

R2
dx

Z t

0

dr

4�r
e�
jxj2

4r � Cˇ t
2 (4.58)

as needed.

4.2. Proof of Proposition 4.1

We begin our proof of Proposition 4.1 with the remark that (4.7) implies (using x > 0,
1 � e�x � x and m2t � 1)

0 � zv1t .�j";m/ D e
�
ˇ
2 .
R t
"2
ds e
�m2s�1
4�s C 1

4� log t/
� t�

ˇ
8� e

ˇ
8�m

2t
� Cˇ t

�
ˇ
8� DW h1t .�/

(4.59)

for a constant Cˇ depending only on ˇ. This verifies the bound in Proposition 4.1 for
n D 1. We will verify the claimed bound explicitly also for n D 3 and n D 4, but prove
the rest of it by induction. We will make use of the following explicit form of the n D 2
term:

zv2t .�1; �2j";m/ D ˇ�1�2

Z t

"2
ds
�
Pcm
2

s .x1 � x2/e
�ˇ.

R s
"2
dr Pcm

2

r .0/C 1
4� log "2/

� e�ˇ
R t
s dr Pc

m2

r .0/�ˇ�1�2
R t
s dr Pc

m2

r .x1�x2/
�

D e�ˇ.
R t
"2
dr Pcm

2

r .0/C 1
4� log "2/.1 � e�ˇ�1�2

R t
"2
ds Pcm

2

s .x1�x2//: (4.60)

Indeed, this equality follows from a straightforward calculation (using (4.7) and (4.8)).
This allows us to prove Proposition 4.1 in the special case n D 3.

Lemma 4.7. For ˇ 2 .0; 6�/ and t > 0, there exists a function h3t which is independent
of ";m > 0 and for 0 < "2 < t < m�2,

jzv3t .�1; �2; �3j";m/j � h
3
t .�1; �2; �3/ (4.61)

and, in the notation (4.11), kh3t k3 � Cˇ t
�1.t1�ˇ=8�/3 for a constant Cˇ depending only

on ˇ.

Proof. From the definitions of zvnt in (4.7) and (4.8) and the expression for zv2t from (4.60),
a straightforward calculation shows that, for any �1; �2; �3,

zv3t .�1; �2; �3j";m/

D ˇ.zv1t .�j";m//
3

Z t

"2
ds
��
Pum

2

s .�1; �2/C Pu
m2

s .�1; �3/
�
.1 � e��2�3ˇ

R s
"2
dr Pcm

2

r .x2�x3//

C . Pum
2

s .�2; �1/C Pu
m2

s .�2; �3//
�
1 � e��1�3ˇ

R s
"2
dr Pcm

2

r .x1�x3/
�

C . Pum
2

s .�3; �1/C Pu
m2

s .�3; �2//
�
1 � e��1�2ˇ

R s
"2
dr Pcm

2

r .x1�x2/
��

� e�ˇ
P
1�i<j�3 �i�j

R t
s dr Pc

m2

r .xi�xj /: (4.62)
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We claim that we have the following estimate: for t > s, for any �1; �2; �3 and x1; x2; x3
and for some universal constant C > 0,

�1�2

Z t

s

dr Pcm
2

r .x1 � x2/C �1�3

Z t

s

dr Pcm
2

r .x1 � x3/C �2�3

Z t

s

dr Pcm
2

r .x2 � x3/

� �
1

4�
log

t

s
� C: (4.63)

Indeed, the worst case scenario is when �1D �2¤ �3 and jx1 � x2j � jx1 � x3j; jx2 � x3j
(or the same with a permutation of indices). By the triangle inequality, at least one of
jx1 � x3j and jx2 � x3j is greater than 1

2
jx1 � x2j. Thus from Lemma 4.4 we have

�1�2

Z t

s

dr Pcm
2

r .x1 � x2/C �1�3

Z t

s

dr Pcm
2

r .x1 � x3/C �2�3

Z t

s

dr Pcm
2

r .x2 � x3/

� inf
x2R2

�Z t

s

dr . Pcm
2

r .x/ � Pcm
2

r .x=2//

�
�

1

4�

Z t

s

dr

r

D inf
x2R2

�
�
1

2�
log
�
jxj
p
t
^ 1

�
C

1

2�
log
�
jxj

2
p
t
^ 1

��
�

1

4�
log

t

s
CO.1/; (4.64)

where the implied constant is universal. Going through the various cases (jxj<
p
t ,
p
t �

jxj< 2
p
t , and jxj � 2

p
t ), one readily checks that the infimum is � 1

2�
log2 and we have

the bound (4.63).
Now making use of Lemma 4.5, (4.63), and (4.59), we find that for a constant zCˇ

(depending only on ˇ)

jzv3t .�1; �2; �3j"; m/j �
zCˇ t
�
3ˇ
8�

Z t

0

ds

�
t

s

� ˇ
4�

Fs.�1; �2; �3/ DW h
3
t .�1; �2; �3/; (4.65)

which is independent of ";m as required. Finally, by Lemma 4.5, there is another constant
Cˇ depending only on ˇ such that

kh3t k3 � Cˇ t
�
3ˇ
8�

Z t

0

ds

�
t

s

� ˇ
4�

s � Cˇ t
2� 3ˇ8� ; (4.66)

which was precisely the claim.

We now turn to zv4t .

Lemma 4.8. For ˇ 2 .0; 6�/ and t > 0 there exists a function h4t , which is independent
of m and ", such that for 0 < "2 < t < m�2,

jzv4t .�1; �2; �3; �4j";m/j � h
4
t .�1; �2; �3; �4/ (4.67)

and kh4t k4 � Cˇ t
�1.t1�ˇ=8�/4 for a constant Cˇ depending only on ˇ.

Proof. We begin with the recursion (4.8). We see that there are two types of contribu-
tions: either jI1j D jI2j D 2 or jI1j; jI2j 2 ¹1; 3º (with jI1j C jI3j D 4). Let us consider



R. Bauerschmidt, C. Webb 3188

the latter case first. Here we can use (4.59) and Lemma 4.7 along with the remark that
wm

2

t � w
m2

s � 0 (since Pcm
2

r is a covariance), to get the simple upper bound

1

2

ˇ̌̌̌ X
I1 P[I2DŒ4�
jI1j;jI2j¤2

Z t

"2
ds

X
i2I1; j2I2

Pum
2

s .�i ; �j /zv
jI1j
s .�I1 j";m/zv

jI2j
s .�I2 j";m/

� e�.w
m2

t .�1;:::;�4/�w
m2

s .�1;:::;�4//

ˇ̌̌̌
� Cˇ

4X
kD1

Z t

0

ds

s

X
l¤k

e�
jxk�xl j

2

4s h1s .�k/h
3
s .�Œ4�n¹kº/; (4.68)

which is the contribution to h4t from the jI1j; jI2j ¤ 2 case. Note that using (4.59) and
Lemma 4.7, one can check readily that the k � k4-norm of this quantity is bounded by (for
some constants Cˇ ; zCˇ depending only on ˇ)

Cˇ

Z t

0

ds s�
ˇ
8� s�1s3.1�

ˇ
8� / � zCˇ t

�1t4.1�
ˇ
8� /; (4.69)

which is precisely of the required form (note that the integral here is convergent since
ˇ < 6�).

It remains to control the jI1j D jI2j D 2 case. A typical term that one encounters in
the sum is of the formZ t

"2
ds
�
Pum

2

s .�1; �3/C Pu
m2

s .�2; �3/C Pu
m2

s .�1; �4/C Pu
m2

s .�2; �4/
�
e�2ˇ.

R s
"2
dr Pcm

2

r .0/C 1
4� log "2/

�
�
1 � e�ˇ�1�2

R s
"2
dr Pcm

2

r .x1�x2/
��
1 � e�ˇ�3�4

R s
"2
dr Pcm

2

r .x3�x4/
�

� e�
1
2ˇ

P
i;j2Œ4� �i�j

R t
s dr Pc

m2

r .xi�xj /: (4.70)

The last exponential term can again be dropped by positive definiteness of Pcm
2

r , so using
Lemma 4.6 and (4.59), we see that for some Cˇ depending only on ˇ, such terms can be
bounded by

Cˇ

Z t

0

ds s�
ˇ
2�Gs.�1; �2; �3; �4/; (4.71)

where Gs is as in Lemma 4.6. Summing over the other contributions shows that all of the
jI1j D jI2j terms can be bounded by such quantities. Combining this with the jI1j; jI2j ¤ 2
case gives the definition of h4t . Moreover, we note from Lemma 4.6 thatZ t

0

ds s�
ˇ
2� kGsk4 � Cˇ

Z t

0

ds s2�
ˇ
2� � zCˇ t

�1t4.1�
ˇ
8� / (4.72)

for some constants Cˇ ; zCˇ depending only on ˇ. Again, ˇ < 6� played an impor-
tant role here. Together with the estimate from the previous case, we see that kh4t k4 �
Cˇ t

�1t4.1�ˇ=8�/ as required. This concludes the proof.

We turn now to the proof of the general case.
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Proof of Proposition 4.1. As mentioned already, the proof is by induction. To propagate
the induction, we find it convenient to prove the claim in a slightly different form. More
precisely, we will prove the existence of functions hnt (independent of "; m) for which
jzvnt .�j"; m/j � h

n
t and for some Cˇ depending only on ˇ and some universal constant

C > 0,
khnt kn � n

n�2t�1C n�1ˇ

�
Ct1�

ˇ
8�

�n
; (4.73)

which of course implies the claim (with a possibly different Cˇ ). For n D 1, (4.73) is
(4.59) and for n D 3 and n D 4, (4.73) is proved in Lemmas 4.7 and 4.8. Let us now
assume as our induction hypothesis that for some n � 5, the estimate (4.73) holds for
all k � n � 1 with k ¤ 2. As mentioned, this has been verified for n D 5. To advance
the induction, we plug the hypothesis into (4.8), and need to be slightly careful about the
contributions from jI1j D 2 or jI2j D 2.

Let us consider the terms in (4.8) with jI1j ¤ 2 and jI2j ¤ 2 first. In (4.8), it will be
sufficient to just drop thewm

2

t �w
m2

s term (which, as before, is allowed due to the positive
definiteness of Pcm

2

r ). Then one readily checks (from (4.8) and our induction hypothesis)
that the jI1j; jI2j ¤ 2 contribution can be bounded by

h
n;1
t .�1; : : : ; �n/ WD

ˇ

8�

X
I1 P[I2DŒn�
jI1j;jI2j¤2

X
i2I1; j2I2

Z t

0

ds

s
e�
jxi�xj j

2

4s hjI1js .�I1/h
jI2j
s .�I2/: (4.74)

Note that this is indeed independent of ";m as required. Using the fact that
R

R2 dx
e�jxj

2=4t

4�t

D 1 and our induction hypothesis, we find for the norm of this the bound

kh
n;1
t kn �

ˇ

2

X
I1 P[I2DŒn�
jI1j;jI2j¤2

jI1j jI2j

Z t

0

ds khjI1js kjI1jkh
jI2j
s kjI2j

�
ˇ

2
C n�2ˇ C n

X
I1 P[I2DŒn�
jI1j;jI2j¤2

jI1j
jI1j�1jI2j

jI2j�1

Z t

0

ds s�2Cn.1�
ˇ
8� /

D
ˇ

2

1

�1C n
�
1 � ˇ

8�

�C n�2ˇ C nt�1tn.1�
ˇ
8� /

n�1X
kD1

�
n

k

�
kk�1.n � k/n�k�1

D
ˇ

2

2.n � 1/

�1C n
�
1 � ˇ

8�

�nn�2C n�2ˇ t�1
�
Ct1�

ˇ
8�

�n (4.75)

where in the last equality we made use of the identity
Pn�1
kD1

�
n
k

�
kk�1.n � k/n�k�1 D

2.n � 1/nn�2. (This identity has the following combinatorial interpretation. The num-
ber of trees on Œn� is nn�2. Thus 2.n � 1/nn�2 represents the number of trees on Œn�
together with a choice of a directed edge. Such trees rooted by a directed edge can also be
obtained by connecting two disjoint vertex rooted trees with k and n � k vertices by an
edge between their roots.) Now for n � 5 and ˇ 2 .0; 6�/, 0 � ˇ

2
2.n�1/

n.1�ˇ=8�/�1
is bounded
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by a universal constant, so possibly increasing Cˇ verifies that the bound (4.73) holds for
the contribution coming from jI1j; jI2j ¤ 2.

Let us now turn to the case where jI1j D 2 or jI2j D 2. We again drop the wm
2

t �w
m2

s

term from the exponential by positive definiteness. In terms of the notation of Lemma 4.5,
we find (using the lemma and (4.60)) that the contribution from the jI1j D 2 or jI2j D 2
case can be bounded by

zCˇ
X

1�a<b�n

X
j2Œn�n¹a;bº

Z t

0

ds j Pum
2

s .�a; �j /C Pu
m2

s .�b; �j /jh
n�2
s .�Œn�n¹a;bº/

� s�
ˇ
4� j1 � e�ˇ�a�bc

m2

s .xa�xb/j

�

X
1�a<b�n

X
j2Œn�n¹a;bº

Z t

0

ds s�
ˇ
4� Fs.�a; �b; �j /h

n�2
s .�Œn�n¹a;bº/

DW h
n;2
t .�1; : : : ; �n/ (4.76)

for some constant zCˇ depending only on ˇ. For the norm of this, we readily find from
Lemma 4.5 and our induction hypothesis that (for some possibly different zCˇ , still
depending only on ˇ)

kh
n;2
t kn �

zCˇC
n�3
ˇ C n�2n2.n � 2/.n � 2/n�4

Z t

0

ds s�
ˇ
4� s.n�2/.1�

ˇ
8� /

D zCˇC
n�3
ˇ C n�2nn�2

.n � 2/

1 � ˇ
4�
C .n � 2/

�
1 � ˇ

8�

� t .n�2/.1� ˇ
8� /C1�

ˇ
4� :

The ratio here is again bounded by a universal constant, so possibly increasing Cˇ (to
account for this universal constant and zCˇ ) then yields the bound we are after.

In particular, choosing hnt D h
n;1
t C h

n;2
t gives the required function and concludes

the proof.

5. The sine-Gordon model: the partition and correlation functions

The goal of this section is to prove Theorem 3.1, which is our main statement about the
correlation functions of the sine-Gordon model. As already suggested in the previous
section, a central tool in our proof of Theorem 3.1 is a suitable generating function for the
correlation functions. To reiterate, the generating function we consider is (as in (4.2)) for
� 2 L1c .R

2 � ¹�1; 1º/ given by

Z.�j";m/ D Z.ˇ; �j";m/ D

�
exp

�
�

Z
d� "�

ˇ
4� �.�/ei

p
ˇ �'.x/

��
GFF.";m/

(5.1)

with � D .x; �/ and
R
d� D

P
�2¹˙1º

R
R2 dx as before. Of course, �.�/ D �z1ƒ.x/ is

admissible and Z.�j";m/ then reduces to the normalization constant in (3.3). In general,
note that we allow complex-valued functions �, and that Z.�j";m/ is then not necessarily
a normalizing constant for a positive measure. The purpose of introducing Z.�j"; m/ is



The Coleman correspondence at the free fermion point 3191

that by choosing � to depend on suitable external parameters, we can obtain (smeared)
sine-Gordon correlation functions from logarithmic derivatives of Z.�j";m/ with respect
to these parameters. Thus if we can control Z.�j";m/ in the ";m! 0 limit, we can also
control the correlation functions.

A significant part of our analysis will rely on properties of the free field correlation
functions studied in Section 2.2. Particularly important for us will be charge correlation
functions. Their importance can be seen, for example, from the fact that since Wei

p
ˇ '.x/W"

is a bounded random variable for any " > 0 one finds (for more details, see Lemma 5.5)

Z.�j";m/D

1X
kD0

.�1/k

kŠ

Z
d�1 � � �d�k �.�1/ � � ��.�k/

D kY
jD1

Wei
p
ˇ �j '.xj /W"

E
GFF.";m/

: (5.2)

It turns out that for ˇ � 4� (so in particular for ˇ D 4�), Z.�j"; m/ does not converge
as "! 0. Heuristic evidence for this can be seen from Lemma 2.5 combined with the
expansion (5.2): one expects to have divergence already at order k D 2 in the expansion
since

hWei
p
ˇ '.x/

W We�i
p
ˇ '.y/

WiGFF / jx � yj
�
ˇ
2� (5.3)

is not integrable for ˇ � 4� . It turns out that for ˇ 2 Œ4�; 6�/, this is in a sense the only
type of divergence that occurs and a nontrivial limit can be obtained once Z is multiplied
by an explicit counterterm. This counterterm and the limit theorem for the partition func-
tion are most conveniently expressed in terms of truncated free field correlation functions,
which we again recall from Section 2.2.

The counterterm is then defined as follows: for �1; �2 2 R2 � ¹�1; 1º let

A.�1; �2j";m/ D hWe
i
p
ˇ �1'.x1/W" We

i
p
ˇ �2'.x2/W"i

T
GFF.";m/: (5.4)

We then define our renormalized partition function as

Z.�j";m/ WD Z.�j";m/ exp
�
�
1

2

Z
d�1 d�2 �.�1/�.�2/A.�1; �2j";m/

�
: (5.5)

It follows from Lemma 2.5 that

lim
m!0

lim
"!0

A.�1; �2j";m/ D ı�1C�2;0e
�
ˇ
4�

�
2

jx1 � x2j

� ˇ
2�

; (5.6)

and since this is nonintegrable for ˇ � 4� , our counterterm at least has a chance to cure
the divergence of the partition function. This is indeed true, in that Z turns out to have
a finite limit for ˇ < 6� , and thus in particular for ˇ D 4� , which is the case we are
interested in. For ˇ � 6� further counterterms, which turn out to involve higher order
truncated correlation functions, would be required; see [8, 23, 52].

Before stating our result about the convergence of Z.�j";m/, recall from Lemma 2.8
that while the truncated charge two-point function is not integrable, all higher order charge
correlation functions are integrable. With this notation and fact in hand, we are in a posi-
tion to state our main result about Z.�j"; m/. For ˇ < 4� the conclusions also follow
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from [28], but our extension to ˇ < 6� (crucially including the free fermion point ˇD 4�)
relies on new ideas. We prove this in Section 5.4 and then deduce Theorem 3.1 in Sec-
tion 5.6.

Theorem 5.1. For ˇ 2 .0; 6�/,m 2 .0;1/, and � 2 L1c .R
2 � ¹�1; 1º;C/ the following

claims hold:

(i) The limits

Z.�jm/ D lim
"!0

Z.�j";m/; Z.�/ D lim
m!0

lim
"!0

Z.�j";m/; (5.7)

exist and are finite.

(ii) The functions z 7! Z.z�jm/ and z 7! Z.z�/ are entire functions of z 2 C and
Z.z�/ D Z.�z�/.

(iii) If �.x; 1/ D �.x;�1/ for almost all x 2 R2, then Z.�jm/ > 0 and Z.�/ > 0.

(iv) Finally, if �˛ 2 L1c .R
2 � ¹�1; 1º/ depends on some complex parameters ˛ 2 CN

and �˛.�j"; m/ 2 L1c .R
2 � ¹�1; 1º/ depends also on "; m > 0 and these complex

parameters ˛ in such a way that for some K � CN compact,

lim
m!0

lim sup
"!0

sup
˛2K

k�˛.�j";m/ � �˛kL1.R2�¹�1;1º/ D 0; (5.8)

then
lim
m!0

lim sup
"!0

jZ.�˛.�j";m/ j ";m/ �Z.�˛/j D 0 (5.9)

and the convergence is uniform in ˛ 2 K. An analogous statement holds for m 2
.0;1/ fixed.

As a preliminary remark, we note that by rescaling space it suffices to prove the state-
ments for fixed m > 0 in this theorem only for m 2 .0; 1/; we will henceforth assume
this.

Before we turn to the actual proofs, we need to recall some basic facts about regularity
and extrema of Gaussian processes.

5.1. Preliminaries: regularity and extrema of Gaussian processes

In this section, we record some basic facts we need to know about the regularization of the
GFF to a scale

p
t which is of order 1, namely we look at the Gaussian process with law

�GFF.
p
t ;m/ – in particular in the m! 0 limit. Given (4.4), this will be useful to control

the renormalized partition function. The main fact we will prove in this section is the
following.

Lemma 5.2. For 0 < t < m�2, ƒ � R2 compact, and p > 0, we have

hepkr'kL1.ƒ/iGFF.
p
t ;m/ � Cp;t;ƒ (5.10)

for some constant Cp;t;ƒ <1 which is independent of m.
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We will apply this estimate with t > 0 fixed as in Corollary 4.3. Clearly, the constant
Cp;t;ƒ must diverge as t ! 0 or jƒj ! 1 (as the limiting Gaussian free field is not
differentiable as t ! 0 or bounded as m! 0); these divergences are not important for
our application.

First of all, using arguments based on Kolmogorov–Chentsov-type results (see e.g.
[46, Appendix B]), one can check that the smoothness of cm

2

1 � c
m2

t (recall the notation
(4.3)) implies that we can regard ' as a smooth function, and r' is a centered Gaussian
process with covariance

h@i'.x/@j'.y/iGFF.
p
t ;m/ D

Z 1
t

ds
e�m

2s

4�s

�
ıi;j

1

2s
�
.xi � yi /.xj � yj /

4s2

�
e�
jx�yj2

4s :

(5.11)

To estimate the exponential moments in Lemma 5.2, we rely on two classical theorems
about Gaussian processes. The first one is Dudley’s theorem (see e.g. [1, Theorem 1.3.3])
which states that if for a centered real-valued Gaussian processX on say a compact metric
space T we define a new (pseudo) metric by setting dX .t; s/D

p
E Œ.X.t/ �X.s//2�, then

E
�

sup
t2T

X.t/
�
� C

Z 1
0

d"
p

logNX ."/; (5.12)

where C is a universal constant, and NX ."/ is the minimal number of (closed) dX -radius
" balls required to cover T .

The second result we need is the Borell-TIS inequality (see e.g. [1, Theorem 2.1.1]),
which states that in the same setting as in Dudley’s theorem, if X is further assumed to be
almost surely bounded on T , and if �2T WD supt2T EX.t/

2, then for all u > 0,

P
�

sup
t2T

X.t/ �E
h
sup
t2T

X.t/
i
> u

�
� e
� u2

2�2
T : (5.13)

With these tools, we can prove our claim about r'.

Proof of Lemma 5.2. First of all, we note that by a simple Cauchy–Schwarz argument, it
is enough for us to prove the claim for k@0'kL1.ƒ/ (or k@1'kL1.ƒ/ as they both have
the same distribution) instead of kr'kL1.ƒ/. Then noting that

hepk@0'kL1.ƒ/iGFF.
p
t ;m/ � he

p supx2ƒ @0'.x/iGFF.
p
t ;m/ C he

p supx2ƒ.�@0'.x//iGFF.
p
t ;m/

D 2hep supx2ƒ @0'.x/iGFF.
p
t ;m/; (5.14)

we see that it is enough to consider only supx2ƒ @0'.x/ instead of supx2ƒ j@0'.x/j. In
this set-up we can use Dudley’s theorem and Borell-TIS.

To apply Dudley’s theorem, we note that

d@0'.x; y/
2
D 2

Z 1
t

ds
e�m

2s

8�s2

�
1 � e�

jx�yj2

4s

�
C 2.x0 � y0/

2

Z 1
t

ds
e�m

2s

16�s3
e�
jx�yj2

4s

� C 2t jx � yj
2 (5.15)
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for a constant Ct independent of m. Thus we have ¹y 2 ƒ W d'1.x; y/ � "º � ¹y 2 ƒ W
Ct jx � yj � "º. So the number of radius-" d@0'-balls it takes to cover ƒ is less than the
number of radius-"=Ct Euclidean balls it takes to cover ƒ. It thus follows from Dudley’s
theorem, (5.12), that hsupx2ƒ @0'.x/iGFF.

p
t ;m/ �

zCt;ƒ for some constant zCt;ƒ which is
independent of m.

Now �2ƒ D
R1
t
ds e

�m2s

8�s2
�
R1
t

ds
8�s2
DW yCt . In particular, we have, for say u > 2 zCt;ƒ,

.u � hsupx2ƒ @0'.x/iGFF.
p
t ;m//

2

�2ƒ
�
.u � zCt;ƒ/

2

yCt
�

u2

4 yCt
: (5.16)

Thus we find from the Borell-TIS inequality (5.13) that, for u > 2 zCt;ƒ,

�GFF.
p
t ;m/

�
sup
x2ƒ

@0'.x/ > u
�
� e
� u2

4 yCt (5.17)

and

hep supx2ƒ @0'.x/iGFF.
p
t ;m/ D

Z
R
dupepu�GFF.

p
t ;m/

�
sup
x2ƒ

@0'.x/ > u
�

�

Z 2 zCt;ƒ

�1

dupepu C

Z 1
2 zCt;ƒ

dupepue
� u2

4 yCt ; (5.18)

which yields the desired claim for the exponential moments of supx2ƒ @0'.x/ and by our
preliminary considerations, also for kr'kL1.ƒ/. This concludes the proof.

5.2. Uniform bounds for the renormalized partition function

We are now ready to turn to analysis of the partition function. We begin with the bounds
for Z stated in the following proposition. The estimate of item (ii) applies to uniformly
small coupling constants � and is thus a standard consequence of the expansion of the
renormalized potential. The estimates of items (i) and (iii) on the other hand apply to
arbitrarily large � and make in addition use of the Gaussian concentration estimate of
Lemma 5.2.

Proposition 5.3. Fix ƒ � R2 compact and ˇ 2 .0; 6�/.

(i) For any fixed M > 0,

sup
";m2.0;1/

sup
�2L1c .R

2�¹�1;1º/
supp.�.�;˙1//�ƒ

k�k
L1.R2�¹�1;1º/�M

jZ.�j";m/j <1: (5.19)

(ii) There exists a ı D ıƒ;ˇ > 0 independent of ";m such that

inf
";m2.0;1/

inf
�2L1c .R

2�¹�1;1º/
supp.�.�;˙1//�ƒ

k�k
L1.R2�¹�1;1º/�ı

jZ.�j";m/j > 0: (5.20)
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(iii) For any fixed M > 0,

inf
";m2.0;1/

inf
�2L1c .R

2�¹�1;1º/
supp.�.�;˙1//�ƒ

k�k
L1.R2�¹�1;1º/�M

�.�;1/D�.�;�1/

Z.�j";m/ > 0: (5.21)

Before we turn to the proof, we record a simple estimate that we will have use for in
the proof and also later on.

Lemma 5.4. For each t > 0 and ˇ 2 .0; 6�/, there exists a function gt 2 L1loc.R
2 �R2/

which is independent of "; m 2 .0; 1/ such that for all �1; �2 2 R2 � ¹�1; 1º, with
A.�1; �2j";m/ from (5.4) and zv2t .�1; �2j";m/ from (4.60),

jA.�1; �2j";m/C zv
2
t .�1; �2j";m/j � gt .x1; x2/: (5.22)

Proof. By the definitions in (5.4) and (4.60), we have

A.�1; �2j";m/C zv
2
t .�1; �2j";m/

D e�ˇ
R 1
"2
ds e
�m2s�1
4�s �ˇ

R1
1 ds e

�m2s

4�s .e�ˇ�1�2
R1
"2
ds Pcm

2

s .x1�x2/ � 1/

� e�ˇ
R 1
"2
ds e
�m2s�1
4�s �ˇ

R t
1 ds

e�m
2s

4�s .e�ˇ�1�2
R t
"2
ds Pcm

2

s .x1�x2/ � 1/: (5.23)

Note first of all that the
R 1
"2

-integral is common to both terms and bounded for m < 1,
so that we can ignore it. Moreover, the contribution of the 1’s is also uniformly bounded
in m (for any fixed t ), so that we can also ignore them. Finally, if �1 D �2, then also the
e�ˇ�1�2

R
.��� / terms are uniformly bounded, so there is nothing to prove in this case. The

remaining question is to prove the required estimate for

ˇ̌
e�ˇ

R1
1 ds e

�m2s

4�s eˇ
R1
"2
ds Pcm

2

s .x1�x2/ � e�ˇ
R t
1 ds

e�m
2s

4�s eˇ
R t
"2
ds Pcm

2

s .x1�x2/
ˇ̌

D eˇ
R 1
"2
ds Pcm

2

s .x1�x2/eˇ
R t
1 ds

e�m
2s

4�s .e
�
jx1�x2j

2

4s �1/
ˇ̌
1 � eˇ

R1
t ds e

�m2s

4�s .e
�
jx1�x2j

2

4s �1/
ˇ̌
:

(5.24)

Using repeatedly the estimate j1 � e�xj � x for x > 0 and Lemma 4.4, along with some
elementary considerations, we find that, for some universal constant C ,

ˇ̌
e�ˇ

R1
1 ds e

�m2s

4�s eˇ
R1
"2
ds Pcm

2

s .x1�x2/ � e�ˇ
R t
1 ds

e�m
2s

4�s eˇ
R t
"2
ds Pcm

2

s .x1�x2/
ˇ̌

� C jx1 � x2j
2.jx1 � x2j ^ 1/

�
ˇ
2� e

ˇ
4�

R max.1;t/
min.1;t/

ds
s

Z 1
t

ds

s2
: (5.25)

Note that this function is locally integrable for ˇ < 6� (in fact for ˇ < 8�), so we are
done.

With this in hand, we can turn to the proof of Proposition 5.3.
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Proof of Proposition 5.3 (i). ForM >0 and ˇ 2 .0;6�/, let us choose t D tM;ˇ 2 .0;m�2/
independent of " (so that Lemma 5.2 is applicable) but small enough that Corollary 4.3 is
applicable: for Cˇ as in Proposition 4.1, we assume that

eCˇMt1�
ˇ
8� � 1=2: (5.26)

With this choice of t , we use (4.4) and Corollary 4.3 to write for � 2 L1c .R
2 � ¹�1; 1º/

satisfying supp.�.�;˙1// � ƒ, k�kL1.R2�¹�1;1º/ �M ,

Z.�j";m/ D
˝
e�

P1
nD1

1
nŠ

R
d� �.�1/����.�n/zv

n
t .�1;:::;�nj";m/Œe

i
p
ˇ
Pn
jD1

�j '.xj /�ın;2�
˛
GFF.
p
t ;m/

� e
� 12

R
.R2�¹�1;1º/2 d�1 d�2 �.�1/�.�2/.A.�1;�2j";m/Czv

2
t .�1;�2/j";m//; (5.27)

where
R
d� stands for

R
.R2�¹�1;1º/n d�1 � � � d�n. The second factor in (5.27) is bounded

(uniformly in ";m; �) by Lemma 5.4, our assumption that �.�;˙1/ has support in ƒ, and
our assumption k�kL1.R2�¹�1;1º/ � M , so we only need to consider the first factor. For
this, Proposition 4.1 yields˝ˇ̌
e�

P1
nD1

1
nŠ

R
d� �.�1/����.�n/zv

n
t .�1;:::;�nj";m/Œe

i
p
ˇ
Pn
jD1

�j '.xj /�ın;2�
ˇ̌˛

GFF.
p
t ;m/

� e
P
n¤2 2jƒj

Mn

nŠ n
n�2.Cˇ t

1�
ˇ
8� /nt�1

�
˝
e
M2

2

R
.ƒ�¹�1;1º/2

d�1 d�2 jzv
2
t .�1;�2j";m/j je

i
p
ˇ
P2
jD1

�j '.xj /�1j˛
GFF.
p
t ;m/

: (5.28)

Since nn=nŠ� en, by our choice of t in (5.26), the n¤ 2 sum in the first term on the right-
hand side above depends only on ˇ;ƒ;M (in particular, it does not depend on ";m; �), so
it only remains to control the n D 2 contribution, i.e., the second term on the right-hand
side. For this, we note from (4.60) that the �1 D �2 contribution is uniformly bounded
by a quantity independent of "; m; �, so again using (4.60) and the elementary estimate
jei
p
ˇ .'.x1/�'.x2// � 1j �

p
ˇ kr'kL1.ƒ/jx1 � x2j for x1; x2 2ƒ, we see that, for some

constant C D Cˇ;ƒ;M (in particular, independent of ";m; �),˝ˇ̌
e�

P1
nD1

1
nŠ

R
d� �.�1/����.�n/zv

n
t .�1;:::;�nj";m/Œe

i
p
ˇ
Pn
jD1

�j '.xj /�ın;2�
ˇ̌˛

GFF.
p
t ;m/
�

C
˝
e
p
ˇ M2kr'kL1.ƒ/e

�ˇ.
R t
"2
dr Pcm

2
r .0/C 1

4�
log"2/ R

ƒ2
dx1 dx2 je

ˇcm
2

t .x1�x2/�1j jx1�x2j
˛
GFF.
p
t ;m/

:

(5.29)

From Lemma 4.4, we see that
R
ƒ2
dx1 dx2 je

ˇcm
2

t .x1�x2/ � 1j jx1 � x2j can be bounded
by a quantity depending only on ƒ; t; ˇ, while on the other hand, recalling (4.59) (and
that we chose in addition to (5.26) that t � m�2)

e�ˇ.
R t
"2
dr Pcm

2

r .0/C 1
4� log "2/

� zCˇ t
�.1� ˇ

8� / (5.30)

for a constant zCˇ depending only on ˇ. In summary,˝ˇ̌
e�

P1
nD1

1
nŠ

R
d� �.�1/����.�n/zv

n
t .�1;:::;�nj";m/Œe

i
p
ˇ
Pn
jD1

�j '.xj /�ın;2�
ˇ̌˛

GFF.
p
t ;m/

� C hepkr'kL1.ƒ/iGFF.
p
t ;m/; (5.31)
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for some constantsC DCˇ;ƒ;M and pDpˇ;ƒ;M independent of ";m;�. Thus Lemma 5.2
shows that the expectation part of (5.27) is bounded by a quantity independent of m; "; �.

Proof of Proposition 5.3 (ii). Consider first � 2L1c .R
2�¹�1;1º/with k�kL1.R2�¹�1;1º/

D 1 (say) and let us look at the function z 7! Z.z�j";m/. Since for z D 0, Z.z�j";m/ D

1, it will turn out to be sufficient to bound the derivative of Z.z�j"; m/ uniformly in
some neighborhood of the origin – then taking a small enough neighborhood (independent
of "; m), we can bound the distance to zero in this neighborhood. Translating this into
a statement about � with small enough L1-norm will follow from a scaling argument.

For the derivative, note that for ";m > 0, the relevant random variables are determinis-
tically bounded, so Z.z�j";m/ is an entire function. Thus for any compact K 0 � B.0;R/
and z 2 K 0, by Cauchy’s integral formula we have

d

dz
Z.z�j";m/ D

2

2�i

I
jwjDR

dw
Z.w�j";m/

.w � z/2
: (5.32)

By Proposition 5.3 (i), we can bound the numerator uniformly in "; m; � (recall that we
normalized k�kL1.R2�¹�1;1º/ D 1) and we can assume jw � zj to be uniformly bounded
from below, so we see that also the derivative is uniformly bounded in compact subsets.
Thus there exists some ı > 0 (independent of ";m; �) for which we have

inf
";m2.0;1/

inf
jzj<ı

inf
�2L1c .R

2�¹�1;1º/
supp.�.�;˙1//�ƒ

k�k
L1.R2�¹�1;1º/D1

jZ.z�j";m/j > 0: (5.33)

By scaling, we note that this can be translated into precisely the claim of the proposition.

Proof of Proposition 5.3 (iii). Note from (4.6) that under the condition �.x;1/D�.x;�1/,
the renormalized potential vt .�; �j"; m/ is real. Thus making the same choices as in the
proof of Proposition 5.3 (i), we can write

Z.�j";m/

�
˝
e�

P1
nD1

1
nŠ

R
d�1���d�n j�.�1/����.�n/zv

n
t .�1;:::;�nj";m/Œe

i
p
ˇ
Pn
jD1

�j '.xj /�ın;2�j
˛
GFF.
p
t ;m/

� e�
R
d�1 d�2 j�.�1/�.�2/.A.�1;�2j";m/Czv

2
t .�1;�2j";m//j: (5.34)

We can now argue exactly as in the proof of Proposition 5.3 (i): the sum of the n¤ 2 terms
is deterministically bounded uniformly in ";m;�. Similarly, Lemma 5.4 lets us deduce that
that theAC zv2t .�j";m/ term can be bounded from below by a uniform constant. It remains
to argue that˝

e�
1
2

R
d�1 d�2 j�.�1/�.�2/zv

2
t .�1;�2j";m/Œe

i
p
ˇ
P2
jD1

�j '.xj /�1�j
˛
GFF.
p
t ;m/

> C > 0 (5.35)

for some constant C independent of "; m; �. As in the proof of Proposition 5.3, this fol-
lows from Lemma 5.2, though now combined with Jensen’s inequality (used in the form
E 1
X
�

1
EX for a positive random variable X ). This concludes the proof.
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Before turning to the proof of Theorem 5.1, we introduce some notation and make
some preliminary remarks about the renormalized partition function as an analytic func-
tion.

5.3. Expansion of the renormalized partition function

Our proof of convergence of the renormalized partition function and entirety of the limit
will go through analyzing the series expansion of z 7! Z.z�j";m/ and making use of the
estimates from Propositions 4.1 and 5.3. For this purpose, we introduce some notation for
the series expansion of z 7! Z.z�j";m/. We formulate this as the following lemma.

Lemma 5.5. For fixed ";m > 0 and � 2 L1c .R
2 � ¹�1; 1º/, the function z 7! Z.z�j";m/

is entire and we have

Z.z�j";m/ D

1X
nD0

zn

nŠ
Mn.�j";m/; (5.36)

where

Mn.�j";m/ D

Z
.R2�¹�1;1º/n

d�1 � � � d�n �.�1/ � � � �.�n/ zM.�1; : : : ; �nj";m/ (5.37)

with .recall the definition of A from (5.4)/

zM.�1; : : : ; �nj";m/ D
1

nŠ

X
�2Sn

�bn=2cX
jD0

nŠ

j Š.n � 2j /Š
.�1/n�j 2�j

�

� jY
lD1

A.��2l�1 ; ��2l j";m/
�D nY
l 0D2jC1

Wei
p
ˇ ��l0

'.x�l0
/
W"

E
GFF.";m/

�
; (5.38)

where Sn denotes the group of permutations of the set Œn�. Moreover, for each ı;M > 0

and ƒ � R2 compact, there exists a constant C.ı;M;ƒ/ independent of "; m; �; n such
that

sup
";m2.0;1/

sup
�2L1c .R

2�¹�1;1º/
supp.�.�;˙1//�ƒ

k�k
L1.R2�¹�1;1º/�M

jMn.�j";m/j � C.ı;M;ƒ/ı
nnŠ: (5.39)

Proof. Let us recall from (5.1) and (5.5) that

Z.z�j";m/ D
˝
e
�z

R
R2�¹�1;1º d� �.�/ We

i
p
ˇ�'.x/W"

˛
GFF.";m/

� e
� z

2

2

R
.R2�¹�1;1º/2 d�1 d�2 �.�1/�.�2/A.�1;�2j";m/: (5.40)

As mentioned in the proof of Proposition 5.3, for each "; m > 0, the expectation is an
entire function of z since Z

R2�¹�1;1º
d� �.�/ Wei

p
ˇ �'.x/

W" (5.41)
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is a bounded random variable. The second factor in (5.40) is trivially an entire function
of z (for any fixed ";m > 0). Thus we see that indeed Z.z�j";m/ is entire.

For the expansion coefficients, by series expanding both terms (and interchanging the
order of summation/integration and expectation which is justified by the boundedness of
the relevant random variables and a routine Fubini argument), we find

Z.z�j";m/

D

1X
jD0

.�1/j z2j

2j j Š

Z
.R2�¹�1;1º/2j

d�1 � � � d�2j �.�1/ � � � �.�2j /

jY
lD1

A.�2l�1; �2l j";m/

�

1X
kD0

.�z/k

kŠ

Z
.R2�¹�1;1º/k

d� 01 � � � d�
0
k �.�

0
1/ � � � �.�

0
k/
D kY
l 0D1

Wei
p
ˇ � 0

l0
'.x0

l0
/
W"

E
GFF.";m/

:

(5.42)

The claim about the representation of Mn.�j"; m/ now follows by relabeling our inte-
gration variables (write n D k C 2j and � 0

l 0
D �2jCl 0 ) and then symmetrizing in the

arguments.
Finally, for the proof of the bound (5.39), note that as Z.z�j";m/ is entire, Cauchy’s

integral formula implies that, for any R > 0,

Mn.�j";m/ D
nŠ

2�i

I
jwjDR

dw
Z.w�j";m/

wnC1
: (5.43)

The claim now follows by choosing R D ı�1 and (by Proposition 5.3)

C.ı;M;ƒ/ � sup
";m2.0;1/

sup
�2L1c .R

2�¹�1;1º/
supp.�.�;˙1//�ƒ

k�k
L1.R2�¹�1;1º/�ı

�1M

jZ.�j";m/j: (5.44)

In the course of our proof of convergence of Z.�j";m/, we will have use for an alter-
native representation for Mn.�j"; m/ in terms of the renormalized potential. To control
the kernel zM in terms of this alternative representation, we record the following simple
fact.

Lemma 5.6. For "; m > 0, zM.�1; : : : ; �nj"; m/ is the unique continuous function of
�1; : : : ; �n for which

1

nŠ

@

@ı1
� � �

@

@ın
Mn.ı1f1 C � � � C ınfnj";m/

D

Z
.R2�¹�1;1º/n

d�1 � � � d�n f1.�1/ � � � fn.�n/ zM.�1; : : : ; �nj";m/ (5.45)

for all f1; : : : ; fn 2 L1c .R
2 � ¹�1; 1º/.

Proof. Uniqueness can be seen, for example, by choosing fi to be of the form

e2�ik1x1=2Le2�ik2x2=2L1¹jx1j; jx2j � Lº (5.46)
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in the x-variables and to be a Kronecker ı in the � -variable. This shows that any two
functions zM satisfying this relation have the same Fourier series in an arbitrary square,
so by continuity they must be the same in this square. Since the square was arbitrary, they
must be the same in all of R2.

To see that zM actually satisfies this relation, write

Mn

� nX
lD1

ılfl

ˇ̌̌
";m

�
D

Z
.R2�¹�1;1º/n

d�1 � � � d�n

nY
jD1

� nX
lD1

ılfl .�j /
�
zM.�1; : : : ; �nj";m/:

(5.47)

Say the ın-derivative can hit any of the n terms in the j -product and produce a factor of
fn.�j / for some j . The ın�1-derivative can hit any of the n � 1 remaining terms in the
j -product (and produce a factor of fn�1.�j 0/ for some j 0 ¤ j ) etc. We see that

@

@ı1
� � �

@

@ın
Mn.ı1f1 C � � � C ınfnj";m/

D

X
�2Sn

Z
.R2�¹�1;1º/n

d�1 � � � d�n f1.��1/ � � � fn.��n/
zM.�1; : : : ; �nj";m/

D nŠ

Z
.R2�¹�1;1º/n

d�1 � � � d�n f1.�1/ � � � fn.�n/ zM.�1; : : : ; �nj";m/; (5.48)

where in the last step we simply relabeled our integration variables.

As a final ingredient before we turn to proving convergence of the renormalized
partition function, we will construct an integrable upper bound on j zMj by representing
Mn.�j";m/ in terms of the renormalized partition function. Before stating the bound, we
state the representation of Mn.�j";m/ in terms of the renormalized potential vt .�; �j";m/.

Lemma 5.7. Let ˇ 2 .0; 6�/, let � 2 L1c .R
2 � ¹�1; 1º/, and choose t 2 ."2;m�2/ as in

Corollary 4.3. Then Mn.�j";m/ defined in Lemma 5.5 can be expressed as

Mn.�j";m/ D

Z
d�1 � � � d�n �.�1/ � � � �.�n/

�

bn=2cX
jD0

nŠ

j Š
2�j .�1/j

jY
lD1

�
A.�2l�1; �2l j";m/C zv

2
t .�2l�1; �2l j";m/

�
�

n�2jX
kD1

.�1/k

kŠ

X
1�n1;:::;nk�n�2j
n1C���CnkDn�2j

1

n1Š � � �nkŠ

�

kY
lD1

zv
nl
t .�2jCn1C���Cnl�1C1; : : : ; �2jCn1C���Cnl j";m/

�

D kY
lD1

�
e
i
p
ˇ
P2jCn1C���Cnl
pD2jCn1C���Cnl�1C1

�p'.xp/
� ınl ;2

�E
GFF.
p
t ;m/

; (5.49)

with the interpretation that if n D 2j , then the k-sum equals 1.
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Proof. From Corollary 4.3, we have (for our choice of t )

Z.z�j";m/ D F1.z/F2.z/; (5.50)

where

F1.z/ WD e
� z

2

2

R
d�1 d�2 �.x1/�.x2/.A.�1;�2j";m/Czv

2
t .�1;�2j";m//; (5.51)

F2.z/ WD
˝
e�

P1
nD1

zn

nŠ

R
d�1���d�n �.�1/����.�n/zv

n
t .�1;:::;�nj";m/.e

i
p
ˇ
Pn
jD1

�j '.xj /�ın;2/
˛
GFF.
p
t ;m/

:

(5.52)

Note that F1 is entire and nonvanishing, so by Lemma 5.5, also F2 is entire, and for any
fixed R > 0 we have

F
.k/
2 .0/ D

kŠ

2�i

I
jzjDR

dz
F2.z/

zkC1
: (5.53)

By Fubini and the proof of Proposition 5.3 (more precisely, Fubini is readily justified by
controlling the n ¤ 2 terms with Proposition 4.1 and the n D 2 term with Lemma 5.2),
we find that if R is chosen to satisfy (5.26), then

F
.k/
2 .0/ D

kŠ

2�i

�I
jzjDR

dz

zkC1

� e�
P1
nD1

zn

nŠ

R
d� �.�1/����.�n/zv

n
t .�1;:::;�nj";m/.e

i
p
ˇ
Pn
jD1

�j '.xj /�ın;2/

�
GFF.
p
t ;m/

: (5.54)

Moreover, again by Proposition 4.1, the z-integrand is an entire (random) function and
we find

F
.k/
2 .0/

D

�
dk

dzk

ˇ̌̌̌
zD0

e�
P1
nD1

zn

nŠ

R
d� �.�1/����.�n/zv

n
t .�1;:::;�nj";m/.e

i
p
ˇ
Pn
jD1

�j '.xj /�ın;2/

�
GFF.
p
t ;m/

D

kX
lD1

.�1/l

lŠ

X
1�n1;:::;nl�k
n1C���CnlDk

kŠ

n1Š � � �nl Š

� kY
lD1

�Z
.R2�¹�1;1º/nl

d�1 � � � d�nl �.�1/ � � � �.�nl /

� zv
nl
t .�1; : : : ; �nl j";m/

�
e
i
p
ˇ
Pnl
jD1

�j '.xj / � ınl ;2
���

GFF.
p
t ;m/

(5.55)

with the interpretation that if kD 0, then F .k/2 .0/D 1. The claim now follows from noting
that

Mn.�j";m/ D
dn

dzn

ˇ̌̌̌
zD0

F1.z/F2.z/ (5.56)

and relabeling integration variables suitably.

To conclude this section, we use this representation to prove that zM.�1; : : : ; �nj";m/

has an integrable upper bound which is independent of "; m (allowing the use of domi-
nated convergence).
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Lemma 5.8. For ˇ 2 .0; 6�/, n � 1, and t > 0 there exists gt 2 L1loc..R
2 � ¹�1; 1º/n/,

independent of ";m, such that for 0 < "2 < t < m�2,

j zM.�1; : : : ; �nj";m/j � gt .�1; : : : ; �n/: (5.57)

Proof. By Lemma 5.7, we see that j zMj can be bounded by a sum of products of terms of
the form

G1.y�1; y�2j";m/ WD
ˇ̌
A.y�1; y�2j";m/C zv

2
t .
y�1; y�2j";m/

ˇ̌
; (5.58)

G2.�
0
1; : : : ; �

0
n0 j";m/ WD

ˇ̌
zvn
0

t .�
0
1; : : : ; �

0
n0 j";m/

ˇ̌
(5.59)

with 2 ¤ n0 � n, and

G3.z�1; : : : ; z�2kj";m/

WD

D kY
lD1

ˇ̌
zv2t .
z�2l�1; z�2l j";m/

�
ei
p
ˇ .z�2l�1'.zx2l�1/Cz�2l'.zx2l // � 1

�ˇ̌E
GFF.
p
t ;m/

(5.60)

where we have written y�; � 0; z� to indicate that these variables are subsets (depending on
the term in the sum) of the actual integration variables �i of zM. Note that in each product
of the Gi , the factors depend on disjoint sets of the �i . Thus it is enough to prove the
corresponding integrability bounds for the Gi terms separately.

For G1, this is simply Lemma 5.4. For G2, this follows from Proposition 4.1. Finally,
for G3, we note that if z�2l�1 D z�2l , we can bound

jei
p
ˇ .z�2l�1'.zx2l�1/Cz�2l'.zx2l // � 1j � 2

and from (4.60), one readily gets the uniform bound

jzv2t .
z�2l�1; z�2l j";m/j � e

ˇ
R 1
0 ds

1�e�m
2s

4�s � eˇ
R 1
0 ds

1�e�s

4�s : (5.61)

It remains to control the quantities with z�2l�1 ¤ z�2l . For these we note (as in the proof of
Proposition 5.3), that for x2l�1; x2l in a given compact set ƒ � R2, we find from (4.60)
thatˇ̌
zv2t .
z�2l�1; z�2l j";m/.e

i
p
ˇ .'.zx2l�1/�'.zx2l // � 1/

ˇ̌
�
p
ˇ kr'kL1.ƒ/jzx2l�1 � zx2l je

ˇ
R 1
0 ds

1�e�s

4�s jeˇc
m2

t .zx2l�1�zx2l / � 1j

�
p
ˇ kr'kL1.ƒ/jzx2l�1 � zx2l je

ˇ
R 1
0 ds

1�e�s

4�s

�
1C

�
jzx2l�1 � zx2l j
p
t

^ 1

�� ˇ
2�
�
:

(5.62)

By Lemma 5.2, arbitrary moments of kr'kL1.ƒ/ under �GFF.
p
t ;m/ are bounded uni-

formly in m, so using the fact that jx � yj1�ˇ=2� is locally integrable (for ˇ < 6�), one
gets a locally integrable upper bound which is independent of ";m also for G3. This con-
cludes the proof.
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5.4. Convergence of the renormalized partition function

We now turn to the convergence of Z.�j";m/ as ";m! 0. With the uniform bounds from
Section 5.3 in place, the main step is to show that zM.�1; : : : ; �nj"; m/ has a pointwise
limit as ";m! 0. This is the content of the following lemma. For �1; : : : ; �n 2 R � ¹˙1º
distinct, let

zM.�1; : : : ; �n/ D
1

nŠ

X
�2Sn

bn=2cX
jD0

nŠ

j Š.n � 2j /Š
.�1/n�j 2�j

�

� jY
lD1

hWei
p
ˇ ��2l�1'.x�2l�1 /W Wei

p
ˇ ��2l '.x�2l /WiGFF

�
�

D nY
l 0D2jC1

Wei
p
ˇ ��l0

'.x�l0
/
W

E
GFF

(5.63)

and define zM.�1; : : : ; �njm/ analogously with GFF.m/ instead of GFF.

Lemma 5.9. If �i ¤ �j for i ¤ j , then

lim
"!0

zM.�1; : : : ; �nj";m/ D zM.�1; : : : ; �njm/; (5.64)

lim
m!0

lim
"!0

zM.�1; : : : ; �nj";m/ D zM.�1; : : : ; �n/: (5.65)

Moreover, zM.�1; : : : ; �n/ D 0 if n is odd.

Proof. The convergence follows immediately from the definition of zM.�j"; m/ in (5.38)
and Lemma 2.5 for the charge correlation functions of the GFF.

That zM.�1; : : : ; �n/D 0 if n is odd follows from the case n¤ n0 in Lemma 2.5, i.e., the
fact that the massless GFF charge correlation functions vanish for nonneutral charge.

With this result in hand, we can prove Theorem 5.1.

Proof of Theorem 5.1. We only consider the statements for "! 0 and m! 0; the ones
with m > 0 fixed are completely analogous. Let us begin by defining our limit candidate.
By Lemmas 5.8–5.9, with zM defined in (5.63), we see that

lim
m!0

lim
"!0

Mn.�j";m/D

Z
d�1 � � �d�n �.�1/ � � � �.�n/ zM.�1; : : : ; �n/DWMn.�/: (5.66)

and this quantity is finite for all � 2 L1c .R
2 � ¹�1; 1º/. In fact, this argument also shows

that if �˛.�j";m/! �˛ inL1.R2 � ¹�1;1º/ and uniformly in ˛ in some compact set, then
also Mn.�˛.�j";m/ j ";m/!Mn.�˛/ uniformly in ˛. Moreover, from (5.39), we see that
if ˛ is in some fixed compact setK � CN , then for each ı > 0, jMn.�˛/j � C.ı;K/ı

nnŠ.
In particular,

Z.z�˛/ WD

1X
nD0

zn

nŠ
Mn.�˛/ (5.67)
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defines an entire function and we have, for any fixed R > 0,

sup
jzj<R

sup
˛2K

jZ.z�˛/j <1: (5.68)

Moreover, when m D 0, Z.z�˛/ is even since Mn.�˛/ D 0 if n is odd.
Let us then turn to the convergence claim. Fix any compact set K � CN as in the

statement of item (iv). By Cauchy’s integral formula, for any A � 0 and ˛ 2 K,

jZ.�˛.�j";m/ j ";m/ �Z.�˛/j

�

AX
nD0

1

nŠ
jMn.�˛.�j";m/ j ";m/ �Mn.�˛/j

C

1X
nDAC1

ˇ̌̌̌I
jwjD2

Z.w�˛.�j";m/ j ";m/

wnC1
dw

2�i

ˇ̌̌̌
C

1X
nDAC1

ˇ̌̌̌I
jwjD2

Z.w�˛/

wnC1
dw

2�i

ˇ̌̌̌
�

AX
nD0

1

nŠ

ˇ̌
Mn.�˛.�j";m/ j ";m/ �Mn.�˛/

ˇ̌
C

�
sup
jwjD2

jZ.w�˛.�j";m/ j ";m/j C sup
jwjD2

jZ.w�˛/j
��1
2

�A
: (5.69)

Uniform convergence now follows readily from our uniform bounds for the partition func-
tions as well as our remark that Mn.�˛.�j";m/j";m/ converges uniformly. This takes care
of statements (i), (ii), and (iv) in Theorem 5.1. The final positivity claim, claim (iii), fol-
lows from Proposition 5.3 (iii).

5.5. Proof of Lemma 2.8

Before we go into the proof of Theorem 3.1, we point out here that Lemma 5.8 can be
used to give a proof of Lemma 2.8.

Proof of Lemma 2.8. Let us begin by noting that from multilinearity of the truncated cor-
relation functions as well as the definition (A.1), for any f1; : : : ; fn 2 L1c .R

2 � ¹�1; 1º/

we haveZ
.R2�¹�1;1º/n

d�1 � � � d�n f1.�1/ � � � fn.�n/
D nY
kD1

Wei
p
ˇ �k'.xk/W"

ET
GFF.";m/

D

D nY
kD1

Wei
p
ˇ �k' W".fk/

ET
GFF.";m/

D
@n

@t1 � � � @tn

ˇ̌̌̌
tD0

log
˝
e
Pn
kD1 tk We

i
p
ˇ�k' W".fk/

˛
GFF.";m/

D
@n

@t1 � � � @tn

ˇ̌̌̌
tD0

logZ.�t1f1 � � � � tnfnj";m/ ; (5.70)

where for f 2 L1c .R
2 � ¹�1; 1º/, recall that we understand Wei

p
ˇ �' W".f / as shorthand

notation for
R

R2�¹�1;1º d� f .�/ We
i
p
ˇ �'.x/W". For n � 3, we can write this in terms of the
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renormalized partition function asZ
.R2�¹�1;1º/n

d�1 � � � d�n f1.�1/ � � � fn.�n/
D nY
kD1

Wei
p
ˇ �k'.xk/W"

ET
GFF.";m/

D
@n

@t1 � � � @tn

ˇ̌̌̌
tD0

log Z.�t1f1 � � � � tnfnj";m/ : (5.71)

On the other hand, by using the expansion (with the notation (5.66)–(5.67))

Z.�t1f1 � � � � � tnfnj";m/ D

1X
iD0

.�1/i

i Š
Mi .t1f1 C � � � C tnfnj";m/; (5.72)

we have (for small enough jtkj)

log Z.�t1f1 � � � � tnfnj";m/

D log
� 1X
iD0

.�1/i

i Š

Z
.R2�¹�1;1º/i

d�1 � � � d�i

iY
kD1

� nX
lD1

tlfl .�k/
�
zM.�1; : : : ; �i j";m/

�
:

(5.73)

Carrying out the t -derivatives, we see thatZ
.R2�¹�1;1º/n

d�1 � � � d�n f1.�1/ � � � fn.�n/
D nY
kD1

Wei
p
ˇ �k'.xk/W"

ET
GFF.";m/

D

Z
.R2�¹�1;1º/n

d�1 � � � d�n f1.�1/ � � � fn.�n/P .�1; : : : ; �nj";m/; (5.74)

where P can be expressed in terms of zM, i.e., for some constants cP , we have

P .�1; : : : ; �nj";m/ D
X
P2Pn

cP
Y
j

zM..�l /l2Pj j";m/: (5.75)

As the fk are arbitrary, this allows us to identify (for n � 3)D nY
kD1

Wei
p
ˇ �k'.xk/W"

ET
GFF.";m/

D P .�1; : : : ; �nj";m/; (5.76)

and the convergence and local integrability, for n � 3, follow immediately from Lem-
ma 5.9 respectively Lemma 5.8.

It remains to consider the n D 1 and n D 2 cases. The n D 1 case is trivial, while
for n D 2 the statements are straightforward to check due to the assumptions that K
is supported away from the diagonal respectively that the test functions have disjoint
support; we omit further details.

5.6. Analysis of the sine-Gordon correlation functions

We are finally in a position to prove our main result concerning the sine-Gordon correla-
tion functions, i.e., prove Theorem 3.1.
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In preparation of the proof, one readily checks that since we are dealing with Gaussian
random variables and bounded random variables, for any ";m > 0 and ƒ � R2 compact,
the function

.�1; : : : ; �n; �1; : : : ; �q; �1; : : : ; �q0 ; z/

7! log
D
exp

h nX
kD1

�k We
i
p
ˇ �k' W".fk/C

qX
jD1

�j @'.gj /C

q0X
j 0D1

�j 0 N@'.hj 0/
iE

SG.ˇ;zj";m;ƒ/

(5.77)

is analytic in some neighborhood of the origin (which may a priori depend on "; m; ƒ)
and the correlation function of interest is obtained from it by differentiating once with
respect to each �k ; �j ; �j 0 , and then setting these parameters to zero. Our goal is to prove
that (after suitable renormalization) this function is actually analytic in a larger domain
that does not depend on "; m, and that it converges uniformly in the relevant parameters.
The limiting function will then automatically be analytic in the given domain, and also the
relevant derivatives will converge. In particular, as we will eventually see, this will imply
the convergence of the correlation functions, and that they are also analytic in z.

We begin by applying the Girsanov–Cameron–Martin theorem in a similar way as in
Lemma 2.6. We now need the following version for Gaussian fields on R2: Let ' be a
smooth Gaussian field on R2 and let Y be a Gaussian random variable measurable with
respect to .'.x//x2Rd . Then

E.F.'/eY�EY 2/ D E.F.' C E.'Y ///; (5.78)

where E.'Y / stands for the function x 7! E.'.x/Y /; see, e.g., [18, Theorem 2.8] for a
more general setting. This implies that for real z (the application for complex arguments
in the exponential below is justified as in the proof of Lemma 2.6)
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(5.79)

where we have introduced the notation (recall � D .x; �/)
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(5.80)
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In terms of the renormalized partition function (5.5), we may write (5.79) as

Z.��;�;�;z;ƒ.�j";m/ j ";m;ƒ/

Z.zj";m;ƒ/

� exp
�
1

2

Z
d�1 d�2 ��;�;�;z;ƒ.�1j";m/��;�;�;z;ƒ.�2j";m/A.�1; �2j";m/

�
� exp

�
�
z2

2

Z
d�1 d�2 1ƒ.x1/ 1ƒ.x2/ A.�1; �2j";m/

�
� exp

�
1

2

�� qX
jD1

�j @'.gj /C

q0X
j 0D1

�j 0 N@'.hj 0/

�2�
GFF.";m/

�
: (5.81)

To study the ";m! 0 limit, we define ��;�;�;z;ƒ.�/ exactly as ��;�;�;z;ƒ.�j";m/ in (5.80)
with GFF.";m/ replaced by GFF and where h'.x/@'.g/iGFFD

R
dy g.y/h'.x/@'.y/iGFF

is given by (2.28). Indeed, Lemma 2.4 implies that, as ";m! 0, one has

��;�;�;z;ƒ.�j";m/! ��;�;�;z;ƒ.�/ (5.82)

uniformly on compact sets in �, and �k ; �j ; �j 0 ; z (where ƒ is fixed). Moreover, since
��;�;�;z;ƒ.�j";m/ has uniformly compact support in �, the convergence is in fact uniform
in � 2 R2 � ¹˙1º. We conclude from Theorem 5.1 (iv) and (5.82) that

Z.��;�;�;z;ƒ.�j";m/ j ";m/! Z.��;�;�;z;ƒ/: (5.83)

Once again, from the fact that we are dealing with bounded random variables, one readily
checks that Z.��;�;�;z;ƒ.�j";m/ j ";m/ extends to an entire function of �k ; �j ; �j 0 ; z. Thus
our uniform convergence implies that also Z.��;�;�;z;ƒ/ extends to an entire function of
the variables.

We now consider the cases n > 2 and n D 0; 1; 2 of Theorem 3.1 (i)–(iii) separately.
The arguments are all very similar.

Proof of Theorem 3.1 (i)–(iii) for n > 2. For n > 2, only Z.��;�;�;z;ƒ.�j"; m/ j "; m/ in
(5.81) plays a role for the correlation functions – the other terms vanish when we take
logarithmic derivatives and set the various parameters to zero. Indeed,

D nY
kD1

Wei
p
ˇ �k' W".fk/

qY
jD1

@'.gj /

q0Y
j 0D1

N@'.hj 0/
ET
SG.ˇ;zj";m;ƒ/

D

nY
kD1

@

@�k

ˇ̌̌̌
�kD0

qY
jD1

@

@�j

ˇ̌̌̌
�jD0

q0Y
j 0D1

@

@�j 0

ˇ̌̌̌
�j 0D0

log Z.��;�;�;z;ƒ.�j";m/ j ";m/: (5.84)

Now recall from (5.83) that

Z.��;�;�;z;ƒ.�j";m/ j ";m/! Z.��;�;�;z;ƒ/ (5.85)
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and that the right-hand side is entire in �k ; �j ; �j 0 ; z. Moreover, by Theorem 5.1 (iii), we
know that Z.�0;0;0;z;ƒ/ > 0 for z 2 R, so we see that there exists some complex neigh-
borhood of the origin N � C and some neighborhood of the real axis R � N 0 � C such
that log Z.��;�;�;z;ƒ.�j";m/ j ";m/! log Z.��;�;�;z;ƒ/ uniformly in �k ; �j ; �j 0 2 N and
z in a compact subset ofN 0, and that the limit is analytic in this domain. This implies that
also the �; �; � derivatives of this logarithm evaluated at zero converge and are analytic in
z 2 N 0. We have thus proven items (i) and (ii) of Theorem 3.1 for n > 2. Let us turn to
item (iii).

Again, since we know that log Z.��;�;�;z;ƒ.�j";m/ j ";m/ converges uniformly (and is
analytic in a suitable domain), we know that also its derivatives converge. In particular,
going back in our argument, our remaining task is to evaluate the "! 0, m! 0 limit of

d l

dzl

ˇ̌̌̌
zD0

D nY
kD1

Wei
p
ˇ �k' W".fk/

qY
jD1

@'.gj /

q0Y
j 0D1

N@'.hj 0/
ET
SG.ˇ;zj";m;ƒ/

D

X
�1;:::;�l2¹�1;1º

D nY
kD1

Wei
p
ˇ �k' W".fk/

qY
jD1

@'.gj /

q0Y
j 0D1

N@'.hj 0/

lY
sD1

Wei
p
ˇ �s' W".1ƒ/

ET
GFF.";m/

(5.86)

for l � 0. The claim for item (iii) for n > 2 now follows from Lemma 2.10.

Proof of Theorem 3.1 (i)–(iii) for n D 2. For n D 2, also the term

1

2

Z
d�1 d�2 ��;�;�;z;ƒ.�1j";m/��;�;�;z;ƒ.�2j";m/A.�1; �2j";m/ (5.87)

in (5.81) and the contribution from the Girsanov transform need to be taken into account.
More precisely, one finds (recalling (5.4)) thatD 2Y

kD1

Wei
p
ˇ �k' W".fk/

qY
jD1

@'.gj /

q0Y
j 0D1

N@'.hj 0/
ET
SG.ˇ;zj";m;ƒ/

(5.88)

equals

2Y
kD1

@

@�k

ˇ̌̌̌
�kD0

qY
jD1

@

@�j

ˇ̌̌̌
�jD0

q0Y
j 0D1

@

@�j 0

ˇ̌̌̌
�j 0D0

log Z.��;�;�;z;ƒ.�j";m/ j ";m/

C

Z
.R2/2

dx1 dx2 hWe
i
p
ˇ �1'.x1/W"We

i
p
ˇ �2'.x2/W"i

T
GFF.";m/f1.x1/f2.x2/

�

qY
jD1

�
i
p
ˇ �1h'.x1/@'.gj /iGFF.";m/ C i

p
ˇ �2h'.x2/@'.gj /iGFF.";m/

�
�

q0Y
j 0D1

�
i
p
ˇ �1h'.x1/N@'.hj 0/iGFF.";m/ C i

p
ˇ �2h'.x2/N@'.hj 0/iGFF.";m/

�
: (5.89)
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The Z-term again converges uniformly and gives rise to a function analytic in its param-
eters. The remaining term on the other hand is readily seen (as in the proof of Lemma
2.10) to converge if q C q0 � 1 or if f1; f2 have disjoint supports. This reasoning proves
items (i) and (ii) of Theorem 3.1 for nD 2, and item (iii) for nD 2 is verified in the same
manner as for n > 2.

Since nD 1 is relevant also to item (iv), let us next consider nD 0, and then conclude
the proof with the case n D 1.

Proof of Theorem 3.1 (i)–(iii) for n D 0. The proof for n D 0 is again similar, but now
with a further contribution from the third exponential in (5.81):D qY

jD1

@'.gj /

q0Y
j 0D1

N@'.hj 0/
ET
SG.ˇ;zj";m;ƒ/

(5.90)

equals

qY
jD1

@

@�j

ˇ̌̌̌
�jD0

q0Y
j 0D1

@

@�j 0

ˇ̌̌̌
�j 0D0

log Z.�0;�;�;z;ƒ.�j";m/ j ";m/

C
z2

2

X
�1;�22¹�1;1º

Z
ƒ2
dx1 dx2 hWe

i
p
ˇ �1'.x1/W"We

i
p
ˇ �2'.x2/W"i

T
GFF.";m/

�

qY
jD1

�
i
p
ˇ �1h'.x1/@'.gj /iGFF.";m/ C i

p
ˇ �2h'.x2/@'.gj /iGFF.";m/

�
�

q0Y
j 0D1

�
i
p
ˇ �1h'.x1/N@'.hj 0/iGFF.";m/ C i

p
ˇ �2h'.x2/N@'.hj 0/iGFF.";m/

�
C ıq;1ıq0;1h@'.g1/N@'.h1/iGFF.";m/

C ıq;2ıq0;0h@'.g1/@'.g2/iGFF.";m/ C ıq;0ıq0;2hN@'.h1/N@'.h2/iGFF.";m/: (5.91)

The Z-term can be treated as before and the last three terms converge by Lemma 2.9. For
the z2-term, we can argue exactly as in the proof of Lemma 2.10 and conclude that also
in this case, the correlation functions converge and define analytic functions of z. Thus
we have proven items (i) and (ii) of Theorem 3.1 in the case n D 0. Item (iii) is verified
in the same way as for n > 2.

Finally, to see that the limit of right-hand side is symmetric in z, note that �0;�;�;z is
proportional to z (since n D 0) and that Z is even in � in the ";m! 0 limit.

Proof of Theorem 3.1 (i)–(iii) for n D 1. We finally consider n D 1. Let us first look at
the situation where q C q0 � 1 where the quantityD

Wei
p
ˇ �1' W".f1/

qY
jD1

@'.gj /

q0Y
j 0D1

N@'.hj 0/
ET
SG.ˇ;zj";m;ƒ/

(5.92)
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equals

@

@�1

ˇ̌̌̌
�1D0

qY
jD1

@

@�j

ˇ̌̌̌
�jD0

q0Y
j 0D1

@

@�j 0

ˇ̌̌̌
�j 0D0

log Z.��;�;�;z;ƒ.�j";m/ j ";m/

C

X
�2¹�1;1º

Z
R2�ƒ

dx1 dx2 hWe
i
p
ˇ �1'.x1/W"We

i
p
ˇ �'.x2/W"i

T
GFF.";m/f1.x1/

�

qY
jD1

�
i
p
ˇ �1h'.x1/@'.gj /iGFF.";m/ C i

p
ˇ �h'.x2/@'.gj /iGFF.";m/

�
�

q0Y
j 0D1

�
i
p
ˇ �1h'.x1/N@'.hj 0/iGFF.";m/ C i

p
ˇ �h'.x2/N@'.hj 0/iGFF.";m/

�
: (5.93)

Finiteness and convergence of this quantity is again argued analogously as in the proof of
Lemma 2.10, so we have the proof of items (i) and (ii) also in the n D 1 case. Item (iii)
follows by the same argument as before.

Proof of Theorem 3.1 (iv). The only thing that remains is thus item (iv). For this, we find
with similar reasoning as before (recall we chose f to be supported in ƒ)˝
Wei
p
ˇ �1' W".f /

˛T
SG.ˇ;zj";m;ƒ/

D
@

@�1

ˇ̌̌̌
�1D0

log Z.��1;0;0;z;ƒ.�j";m/ j ";m/

C

X
�2¹�1;1º

z

Z
ƒ2
dx1 dx2 hWe

i
p
ˇ �1'.x1/W"We

i
p
ˇ �'.x2/W"i

T
GFF.";m/f .x1/: (5.94)

The first term once again has a finite limit as "; m! 0, but as we now prove, the sec-
ond term blows up. For the second term, if � D �1, then everything is bounded, but for
� ¤ �1, the leading order behavior (in ") is given by (making use of asymptotics e.g. from
Lemma 2.4)Z
ƒ2
dx1 dx2 "

�
ˇ
2� e�ˇh'.0/

2iGFF.";m/eˇh'.x1/'.x2/iGFF.";m/f .x1/

D .1C o.1//

Z
ƒ2
dx1 dx2m

ˇ
2� e

ˇ
4� eˇ

R1
"2
ds e
�m2s

4�s e
�
jx1�x2j

2

4s
f .x1/

D .1C o.1/CO.m2//

�

Z
ƒ2
dx1 dx2 e

ˇ
R 1
"2
ds e
�m2s�1
4�s e

�
jx1�x2j

2

4s Cˇ
R 1
"2
ds 1

4�s e
�
jx1�x2j

2

4s

� eˇ
R1
1 ds e

�m2s

4�s .e
�
jx1�x2j

2

4s �1/f .x1/; (5.95)
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from which we see that the leading order terms (as ";m! 0) are given byZ
ƒ2
dx1 dx2 e

ˇ
R 1
"2
ds 1

4�s e
�
jx1�x2j

2

4s Cˇ
R1
1 ds 1

4�s .e
�
jx1�x2j

2

4s �1/f .x1/

D e�
ˇ
4�

Z
ƒ2
dx1 dx2 jx1 � x2j

�
ˇ
2� e
�
ˇ
4� �.0;

jx1�x2j
2

"2
/
f .x1/

D e�
ˇ
4�

Z
ƒ

dx f .x/

Z
x�"u2ƒ

du "2�
ˇ
2� juj�

ˇ
2� e�

ˇ
4� �.0;juj

2/: (5.96)

For ˇ > 4� , u 7! juj�
ˇ
2� e�

ˇ
4� �.0;juj

2/ 2 L1.R2/, and we see that

e�
ˇ
4�

Z
ƒ

dx f .x/

Z
x�"u2ƒ

du "2�
ˇ
2� juj�

ˇ
2� e�

ˇ
4� �.0;juj

2/

D .1C o.1//"2�
ˇ
2� 2�e�

ˇ
4�

Z
ƒ

dx f .x/

Z 1
0

dr r�
ˇ
2�C1e�

ˇ
4� �.0;r

2/; (5.97)

which also concludes the proof of item (iv) for ˇ > 4� .
For ˇ D 4� , on the other hand, we obtain a logarithmic singularity from the long

range behavior of the u-integral and one finds for the relevant asymptotics

e�
Z
ƒ

dx f .x/

Z
x�"u2ƒ

du juj�2e��.0;juj
2/
D .1C o.1//e�2� log "�1 �

Z
ƒ

dx f .x/:

(5.98)

This concludes the proof of item (iv) for ˇD 4� as well, and also the proof of the theorem.

5.7. Existence of ' field

Finally, we prove Theorem 3.2. Since the proof is essentially identical to that of Theo-
rem 3.1, we will be somewhat brief.

Proof of Theorem 3.2. We are interested in the function

.w; z/ 7! hew'.f /iSG.ˇ;zj";m;ƒ/ (5.99)

which we may again write using Girsanov’s theorem as

Z.�w;z;ƒ.�j";m/ j ";m;ƒ/

Z.zj";m;ƒ/

� exp
�
1

2

Z
d�1 d�2 �w;z;ƒ.�1j";m/�w;z;ƒ.�2j";m/A.�1; �2j";m/

�
� exp

�
�
z2

2

Z
d�1 d�2 1ƒ.x1/ 1ƒ.x2/A.�1; �2j";m/

�
� exp

�
w2

2
h'.f /2iGFF.";m/

�
(5.100)
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where now
�w;z;ƒ.�j";m/ D �z1ƒ.x/ei

p
ˇ �wh'.x/'.f /iGFF.";m/ : (5.101)

We only consider the "; m ! 0 limit; the argument for " ! 0 with m > 0 fixed is
analogous. Thus let f 2 L1c .R

2/ with
R
f D 0. Then h'.f /2iGFF.";m/ converges as

";m! 0 by Lemma 2.4. Moreover, again using Lemma 2.4, we see that �w;z;ƒ.�j";m/!
�w;z;ƒ.�/ uniformly in � 2 R2 � ¹˙1º and uniformly on compact sets of z; w, and thus
Z.�w;z;ƒ.�j"; m/ j "; m/! Z.�w;z;ƒ/ and the limit is entire in z; w. As in the proof of
Theorem 3.1, the same is true for the other terms.

6. Estimates for free fermions with finite volume mass

In this section, we prove Theorem 3.3. Most of our work goes into the construction and
analysis of the fundamental solution (Green’s function) of the Dirac operator with a finite
volume mass term. We state these estimates in Section 6.1, then deduce Theorem 3.3
in Section 6.2, and finally prove the estimates stated in Section 6.1 in the remainder of
Section 6.

6.1. Statement of estimates on the Green’s function

Recall that we are consideringƒL D ¹x D .x0; x1/ 2 R2 W jxj � Lº, and that we identify
R2 with C. We are interested in the Dirac operator

D D D�;ƒL D =@C �1ƒL WD
�
�1ƒL 2N@

2@ �1ƒL

�
(6.1)

where @D 1
2
.�i@0C @1/ and N@D 1

2
.i@0C @1/. For each y 2 int.ƒL/D ¹z 2C W jzj<Lº,

we are looking for a continuous function S�1ƒL .�; y/ W C n ¹yº ! C2�2 such that

DS�1ƒL .�; y/ D ıy and lim
jxj!1

S�1ƒL .x; y/ D 0: (6.2)

Our results for this function S�1ƒL are summarized in the following theorem. In the
statement, we also use S0 and S� to denote the explicit infinite volume Dirac Green’s
function (1.8):

S0.x; y/ D
1

2�

�
0 1=. Nx � Ny/

1=.x � y/ 0

�
; (6.3)

S�.x; y/ D �
1

2�

�
��K0.j�j jx � yj/ 2N@xK0.j�j jx � yj/

2@xK0.j�j jx � yj/ ��K0.j�j jx � yj/

�
.� ¤ 0/; (6.4)

where K0 is the 0th modified Bessel function of the second kind. It is well known that S0
and S� really are the fundamental solutions of i =@ and i =@C � on R2 and it also follows
from the well-known asymptotics ofK0 that S�.x;y/! S0.x;y/ as �! 0 when x ¤ y.
For a matrix S , we will denote by jS j a submultiplicative matrix norm of S .
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Theorem 6.1. For eachL� 1, y 2 int.ƒL/ and � 2R, there exists a continuous function
S�1ƒL .�; y/ W C n ¹yº ! C2�2 that satisfies (6.2) and has the following properties for
some polynomial P D P.L; j�j/ in both variables .which does not depend on any of the
arguments below/.

(i) For all x; y 2 int.ƒL/, x ¤ y, and L � 1, we have .with S0 as in (6.3)/

jS�1ƒL .x; y/ � S0.x; y/j � P.L; j�j/
�
1C

ˇ̌
log jx � yj

ˇ̌�
: (6.5)

(ii) For all x 2 ƒc
L, y 2 int.ƒL/, and L � 1, we have

jS�1ƒL .x; y/j �
P.L; j�j/

L � jyj
: (6.6)

(iii) For each x; y 2 int.ƒL/ with x ¤ y, the function � 7! S�1ƒL .x; y/ has an analytic
continuation into someL-dependent neighborhood of the real axis, this analytic con-
tinuation also satisfies the estimate (6.5), and

lim
�!0

S�1ƒL .x; y/ D S0.x; y/ D
1

2�

�
0 1=. Nx � Ny/

1=.x � y/ 0

�
: (6.7)

(iv) For any x; y 2 int.ƒL/ with x ¤ y, for � 2 R we have

@�S�1ƒL .x; y/ D �

Z
ƒL

duS�1ƒL .x; u/S�1ƒL .u; y/: (6.8)

(v) For each fixed � 2R n ¹0º, uniformly on compact subsets of x¤ y 2R2, asL!1,

S�1ƒL .x; y/! S�.x; y/ D �
1

2�

�
��K0.j�j jx � yj/ 2N@xK0.j�j jx � yj/

2@xK0.j�j jx � yj/ ��K0.j�j jx � yj/

�
:

(6.9)

6.2. Proof of Theorem 3.3

For Theorem 3.3, our function S�1ƒL is of course the Green’s function of Theorem 6.1.
We will denote the components of the 2 � 2 matrix S�1ƒL .x; y/ by S�1ƒL Iij .x; y/

where i; j 2 ¹1; 2º. We also recall the definition of the truncated correlation functions
from (3.12), as well as the truncated two-point functions with singularity subtracted from
(3.13). Let us begin with the proof of Theorem 3.3 (i). We formulate this as the following
lemma.

Lemma 6.2. For n � 3 and f1; : : : ; fn 2 L1c .ƒL/,

� 7!
D nY
iD1

N ˛i ˇi .fi /
ET
FF.�1ƒL /

(6.10)

has an analytic continuation to an L-dependent neighborhood of R .with S�1ƒL D S0
for � D 0/. For n D 2, the same holds if f1 and f2 have disjoint compact supports or
if the truncated two-point function is replaced by (3.13).
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Proof. From Theorem 6.1 (i), which implies jS�1ƒ.x; y/j � P.L; j�j/=jx � yj for
x; y 2 ƒL, and the representation (3.12), we see that the smeared truncated correlation
functions exist for all � 2 R and n � 3 (the claim about what happens at �D 0 following
from Theorem 6.1 (iii)). Here we use the fact that for, any compact K � R2,Z

K

du
1

jx � uj ju � yj
� CK

�
1C

ˇ̌
log jx � yj

ˇ̌�
: (6.11)

For n D 2, in the same way, the truncated two-point function with subtracted singularity
(3.13) exists; or, alternatively, if f1 and f2 have disjoint compact supports, the trun-
cated two-point function also exists trivially. Moreover, Theorem 6.1 (iii) (in particular,
the analogue of (6.5) for complex �) allows us to construct a candidate for the analytic
continuation of the truncated correlation functions (with subtracted singularity for nD 2).
More precisely, we define the candidate by (3.12) though now using the analytic contin-
uation of the Green’s function provided by Theorem 6.1 (iii). Using Theorem 6.1 (iii) (or
more precisely, the bound analogous to (6.5) for complex �), a routine dominated conver-
gence argument shows that this candidate for the analytic continuation is continuous in �
(in this L-dependent neighborhood of the real axis). By Morera’s theorem, it remains to
prove that for any closed loop  (in our L-dependent neighborhood of the real axis), we
have I



d�
D nY
iD1

N ˛i ˇi .fi /
ET
FF.�1ƒL /

D 0; (6.12)

where we have used the h�iFF.�1ƒL /
notation for our candidate for the analytic continua-

tion.
Now using the analogue of (6.5) provided by Theorem 6.1 (iii), one can use Fubini to

translate this into a contour integral over suitable products of S�1ƒL at distinct points. By
Theorem 6.1 (iii) and Cauchy’s integral theorem, this contour integral vanishes, and we
are done.

We next turn to item (ii) of Theorem 3.3 which we formulate as the following lemma.

Lemma 6.3. For l � 1 and n � 3 and f1; : : : ; fn 2 L1c .ƒL/,

d l

d�l

ˇ̌̌̌
�D0

D nY
iD1

N ˛i ˇi .fi /
ET
FF.�1ƒL /

D

D nY
iD1

N ˛i ˇi .fi /
�
N 1 1.1ƒL/C N 2 2.1ƒL/

�l ET
FF.0/

: (6.13)

For n D 2, the same holds if f1 and f2 have disjoint compact supports or if the truncated
two-point function on the left-hand side is replaced by (3.13).

Before the proof, let us just mention that this derivative is finite by the massless corre-
spondence Corollary 2.11 and Lemma 2.10, which implies that the corresponding bosonic
correlation functions are integrable, and thus these smeared correlation functions exist.
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Proof of Lemma 6.3. First assume that n � 3. We begin by noting that due to Theorem
6.1 (iv) (interchanging the order of integration and differentiation follows from a routine
Cauchy-integral formula/Fubini argument utilizing Lemma 6.2 and Theorem 6.1)

d

d�

D nY
iD1

N ˛i ˇi .fi /
ET
FF.�1ƒL /

D .�1/nC2
X
�2Cn

nX
jD1

2X
˛nC1D1

2X
ˇnC1D1

1˛nC1DˇnC1

Z
ƒ
nC1
L

dx1 � � �dxnC1 f1.x1/ � � �fn.xn/

� S�1ƒL I˛�j .1/ˇnC1
.x�j .1/; xnC1/S�1ƒL I˛nC1ˇ�jC1.1/

.xnC1; x�jC1.1//

�

Y
i W i¤j

S�1ƒL I˛�i .1/ˇ�iC1.1/
.x�i .1/; x�iC1.1//: (6.14)

Note that .�; j / 2 Cn � Œn� defines a cyclic permutation � 2 CnC1 in terms of which the
right-hand side is

.�1/nC2
X

�2CnC1

2X
˛nC1D1

2X
ˇnC1D1

1˛nC1DˇnC1

Z
ƒ
nC1
L

dx1 � � � dxnC1 f1.x1/ � � � fn.xn/

�

nC1Y
iD1

S�1ƒL I˛�i .1/ˇ�iC1.1/
.x� i .1/; x� iC1.1//: (6.15)

In particular, this implies (recalling (1.10)) that

d

d�

D nY
iD1

N ˛i ˇi .fi /
ET
FF.�1ƒL /

D

2X
˛nC1D1

2X
ˇnC1D1

1˛nC1DˇnC1

�

Z
ƒ
nC1
L

dx1 � � � dxnC1 f1.x1/ � � � fn.xi /
DnC1Y
iD1

N ˛i ˇi .xi /
ET
FF.�1ƒL /

D

D nY
iD1

N ˛i ˇi .fi /.
N 1 1.1ƒ/C N 2 2.1ƒ//

ET
FF.�1ƒL /

: (6.16)

Setting � D 0 (note that this uses Theorem 6.1 (iii)), we find that

d

d�

ˇ̌̌̌
�D0

D nY
iD1

N ˛i ˇi .fi /
ET
FF.�1ƒL /

D

D nY
iD1

N ˛i ˇi .fi /.
N 1 1.1ƒ/C N 2 2.1ƒ//

ET
FF.0/

;

(6.17)

which is the claim when l D 1. The case of general l follows by induction. For n D 2,
assuming that the truncated two-point function is replaced by (3.13) (or alternatively that



R. Bauerschmidt, C. Webb 3216

f1 and f2 have disjoint compact supports), we note that the argument is completely anal-
ogous. The subtracted singularity ensures the integrability of the left-hand sides, but does
not contribute to the derivatives.

The final statement of Theorem 3.3 is the following lemma. Recall that, on the right-
hand side, the correlation functions are given by (smeared versions of) (1.10) now with
the propagator (1.8) (with infinite volume mass term).

Lemma 6.4. For any � 2 R, n � 3, and f1; : : : ; fn 2 L1c .R
2/, as L!1,D nY

iD1

N ˛i ˇi .fi /
ET
FF.�1ƒL /

!

D nY
iD1

N ˛i ˇi .fi /
ET
FF.�/

: (6.18)

For n D 2, the same holds if f1 and f2 have disjoint compact supports or if the truncated
two-point function on the left-hand side is replaced by (3.13) and analogously on the
right-hand side.

Proof. This is immediate from the uniform convergence of Theorem 6.1 (v). (The modi-
fication for n D 2 is again only used to guarantee integrability.)

Combining these lemmas yields the proof of Theorem 3.3, so we are done.

6.3. Facts about the Laplacian Green’s function and eigenfunctions in a disk

Our proof of Theorem 6.1 relies on relating S�1ƒL to the Green’s function of the Lapla-
cian in the disk as well as expansions in terms of the eigenfunctions of this Laplacian. We
begin by collecting some well-known facts about these. First, we recall that

GƒL.x; y/ D
1

2�
log

1

jx � yj
�

1

2�
log

1ˇ̌
L � xy

L

ˇ̌ (6.19)

is the Green’s function for the (positive) Laplacian with zero Dirichlet boundary condi-
tions:

��xGƒL.x; y/ D ıy.x/ for x; y 2 int.ƒL/; (6.20)

GƒL.x; y/ D 0 for x 2 @ƒL; y 2 int.ƒL/: (6.21)

In (6.19) we wrote x D x1 � ix0 for x D x1 C ix0, while in (6.21) we wrote �x for the
Laplacian acting on the x-variable. We also recall that the eigenfunctions of �� on ƒL
(with zero boundary conditions) can be written explicitly in terms of Bessel functions and
Fourier modes. More precisely, if for n � 0, Jn is the nth Bessel function of the first kind
and for k � 1, jn;k is the kth positive zero of Jn (recall that Jn.0/ D 0 for n > 0, so we
do not count this zero), then for n 2 Z and k � 1,

en;k.x/ D
1

p
� LJjnjC1.jjnj;k/

Jjnj.jjnj;kr=L/e
in� (6.22)
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are the eigenfunctions of �� on ƒL (with zero boundary conditions), normalized so that
they form an orthonormal basis of L2.ƒL/. Here we have written x D rei� . In particular,Z

ƒL

dx en;k.x/em;l .x/ D ın;mık;l : (6.23)

To simplify notation, we set jn;k D jjnj;k for n < 0. The eigenvalue associated to en;k is
then j 2

n;k
=L2:

��en;k D
j 2
n;k

L2
en;k : (6.24)

In terms of the eigenfunctions and eigenvalues, the Laplacian Green’s function is

GƒL.x; y/ D
X
n2Z

1X
kD1

L2

j 2
n;k

en;k.x/en;k.y/; (6.25)

understood in the sense that for g 2 L2.ƒL/ written as g D
P
n2Z

P1
kD1 gn;ken;k (with

convergence in L2.ƒL/ since the en;k form an orthonormal basis of L2.ƒL/), we haveZ
ƒL

dy GƒL.x; y/g.y/ D
X
n2Z

1X
kD1

L2

j 2
n;k

gn;ken;k.x/; (6.26)

again with convergence in L2.ƒL/.
Since the Dirac Green’s function is related to derivatives of the Laplacian Green’s

function, our construction of the Dirac Green’s function also involves another family of
functions (which are also Laplacian eigenfunctions, but with different boundary condi-
tions): for n; k � 1, we define

fn;k.x/ D �2
L

jn�1;k
N@en�1;k.x/: (6.27)

The following lemma collects the properties of the en;k and fn;k we need. The stated
estimates are not all optimal, but sufficient for our purposes. We write rpg for the vec-
tor of all combinations of p derivatives of g and krpgkL1.K/ for the maximum of the
L1.K/-norm of all combinations of p derivatives of g.

Lemma 6.5. For n 2 Z and k � 1, the eigenvalues .up to the factor L2/ satisfy

j 2n;k � n
2
C
�
k � 1

4

�2
�2: (6.28)

The eigenfunctions satisfy . for some universal constant C/

ken;kkL1.ƒL/ � C
jn;k

L
; kren;kkL1.ƒL/ � C

j 2
n;k

L2
.n 2 Z; k � 1/; (6.29)

kfn;kkL1.ƒL/ � C
jn�1;k

L
; krfn;kkL1.ƒL/ � C

j 3
n�1;k

L3
L .n; k � 1/: (6.30)
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Moreover, for any p; q � 0, any compactK � int.ƒL/, and any f 2 C1c .int.ƒL//, there
are constants Cp;K;L and Cp;q;f;L such that

kr
pen;kkL1.K/ C kr

pfn;kkL1.K/ � Cp;K;Lj
1Cp

n;k
; (6.31)ˇ̌̌̌Z

dx f .x/rpen;k.x/

ˇ̌̌̌
C

ˇ̌̌̌Z
dx f .x/rpfn;k.x/

ˇ̌̌̌
� Cp;q;f;Lj

�q

n;k
: (6.32)

Proof. The bounds on the jn;k follow, for example, from [40, Theorem 3] and the main
result of [51]. The bounds (6.29) on the eigenfunctions en;k and their derivatives ren;k
follow, for example, from [38, Theorem 1] and [56, Corollary 1.1] (as well as scaling
by L). The claim for kfn;kkL1.ƒL/ in (6.30) follows directly from the definition of fn;k
in (6.27) combined with the gradient estimate from (6.29).

For the bound on the gradient of fn;k in (6.30), we note that since

2@fn;k D �
L

jn�1;k
�en�1;k D

jn�1;k

L
en�1;k ; (6.33)

by (6.29) we have k@fn;kkL1.ƒL/�Cj
2
n�1;k

=L2, so it suffices to control kN@fn;kkL1.ƒL/.
For this purpose, using the eigenfunction property (6.24), we see from (6.26) that

fn;k.x/ D �2
jn�1;k

L
N@

Z
ƒL

dy GƒL.x; y/en�1;k.y/;

D
jn�1;k

L

Z
ƒL

dy

�
1

2�

1

Nx � Ny
�

1

2�

y

L

1

Nxy=L � L

�
en�1;k.y/

D �
jn�1;k

L

Z
ƒL

dy

�
1

�
N@y log jx � yj C

1

�

y2

L2
@y log jx � L2=yj

�
en�1;k.y/

D
jn�1;k

L

Z
ƒL

dy
1

�
log jx � yjN@en�1;k.y/

C
1

�L2
jn�1;k

L

Z
ƒL

dy log jx � L2=yj@.y2en�1;k.y// (6.34)

where in the last step we integrated by parts and made use of the fact that en�1;k vanishes
on the boundary. Thus we find, for some universal constant C > 0,

jN@fn;k.x/j � C
jn�1;k

L
kren�1;kkL1.ƒL/

Z
ƒL

dy
1

jx � yj

C C
jn�1;k

L3

�
Lken�1;kkL1.ƒL/ C L

2
kren�1;kkL1.ƒL/

� Z
ƒL

dy
1

jx � L2=yj
:

(6.35)

Since x 2 ƒL, for the first integral we readily get the boundZ
ƒL

dy
1

jx � yj
�

Z
jx�yj�2L

dy
1

jx � yj
� CL (6.36)
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for a universal constant C . For the second integral, one finds on the other hand by rotation
invariance thatZ

ƒL

dy
1

jx � L2=yj
�

Z
ƒL

dy
1

jL � L2=yj
D L

Z
juj�1

du

j1 � 1=uj
: (6.37)

The last integral here is simply some finite constant. Putting everything together and using
(6.29) (and (6.28) to deduce that j 2

n�1;k
� j 3

n�1;k
), we see that for some universal constant

C > 0,

kN@fn;kkL1.ƒL/ � CL
j 3
n�1;k

L3
; (6.38)

which leads to the claim, as discussed before.
The bounds (6.31) on the higher derivatives in the interior are a standard consequence

of elliptic regularity theory for the Laplace operator. For example, one may apply [35,
(4.19)] iteratively.

To see the decay of (6.32), by integrating by parts, it suffices to check this for p D 0
and for en;k only. In this case, since en;k is a Laplace eigenfunction, integration by parts
shows that, for any q,ˇ̌̌̌Z

dx f .x/ en;k.x/

ˇ̌̌̌
D

�
L2

j 2
n;k

�q ˇ̌̌̌Z
dx .��/qf .x/en;k.x/

ˇ̌̌̌
� C

�
L2

j 2
n;k

�q�1=2
k�qf kL1 ; (6.39)

which gives the claimed bound.

6.4. The building blocks of the Dirac Green’s function – I

We next introduce the key building blocks of our construction of the Dirac Green’s func-
tion with a finite volume mass term. We begin with the following function which is the
projection of the Laplacian Green’s function to nonpositive Fourier modes related to the
x-variable. More precisely, for x; y 2 ƒL, let

E1.x; y/ D

1X
nD0

1X
kD1

L2

j 2
n;k

e�n;k.x/e�n;k.y/; (6.40)

where convergence is understood in L2.ƒL �ƒL/. We then define inductively, for j � 1,
the functions

EjC1.x; y/ D

Z
ƒL

duGƒL.x; u/Ej .u; y/; (6.41)

Fj .x; y/ D 4N@x@yEjC1.x; y/: (6.42)

That the derivatives indeed exist is a consequence of the explicit formulas we will derive
below. These show that, for y 2 ƒL, the functions E1.x; y/ and F1.x; y/ are defined
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pointwise for x ¤ y, and that Ej .x; y/ and Fj .x; y/ with j > 1 are defined pointwise for
all x; y 2 ƒL. We also note that, by (6.25),

Ej .x; y/ D

1X
nD0

1X
kD1

�
L2

j 2
n;k

�j
e�n;k.x/e�n;k.y/; (6.43)

as an element of L2.ƒL �ƒL/. Based on the definition of Fj and fn;k , one then expects
that also

Fj .x; y/ D

1X
nD1

1X
kD1

�
L2

j 2
n�1;k

�j
fn;k.x/fn;k.y/: (6.44)

This is indeed true, and we prove it in Lemma 6.8 (for j � 3).
We begin calculating E1 and F1 using (6.19) in the next lemma.

Lemma 6.6. For .almost every/ x; y 2 int.ƒL/ with x ¤ y,

E1.x; y/ D

´
�
1
2�

log jyj � 1
4�

log
�
1 � Nx

Ny

�
C

1
2�

logLC 1
4�

log
�
1 � Nxy

L2

�
; jxj < jyj;

�
1
2�

log jxj � 1
4�

log
�
1 � y

x

�
C

1
2�

logLC 1
4�

log
�
1 � Nxy

L2

�
; jxj > jyj;

(6.45)

F1.x; y/ D

´
�
1
4�

log
�
1 � x

y

�
; jxj < jyj;

�
1
4�

log
�
1 � Ny

Nx

�
; jxj > jyj;

(6.46)

where the branches of the logarithms are understood to be given by the series expansion of
log.1C z/ for jzj< 1, and, for jxj D jyj with x ¤ y,E1 and F1 are defined by continuity.
In particular,

E1.x; y/C F1.x; y/ D �
1

2�
log jx � yj C

1

2�
log.L2 � Nxy/: (6.47)

Proof. Let us write zE1 for the right-hand side of the claim. Using (6.19), we see that

GƒL.x; y/ �
zE1.x; y/ D

´
�
1
4�

log
�
1 � x

y

�
C

1
4�

log
�
1 � x Ny

L2

�
; jxj < jyj;

�
1
4�

log
�
1 � Ny

Nx

�
C

1
4�

log
�
1 � x Ny

L2

�
; jxj > jyj:

(6.48)

Going into polar coordinates, one can readily check from this (since there are only strictly
positive Fourier modes when one expands the logarithms) that for n � 0 and k � 1,Z

ƒL

dx .GƒL.x; y/ �
zE1.x; y//e�n;k.x/ D 0: (6.49)

Similarly one finds in polar coordinates that for n > 0 and k � 1 (again since there are
only nonpositive Fourier modes in the expansion of the logarithms)Z

ƒL

dx zE1.x; y/en;k.x/ D 0: (6.50)

From these two facts, one finds immediately that zE1 D E1.
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For the claim for F1, note that from the identity for E1, for y; u 2 int.ƒL/,

@yE1.u; y/ D �1¹juj < jyjº
1

4�

1

y � u
D �1¹juj < jyjº

1

4�

1

y

1X
jD0

�
u

y

�j
: (6.51)

Moreover, for x; u 2 int.ƒL/ we have

N@xGƒL.x; u/ D �
1

4�

1

Nx � Nu
�

u

4�L2
1

1 � Nxu
L2

: (6.52)

In polar coordinates, one readily checks that the second term on the right-hand side is
orthogonal to @yE1.u; y/ (when integrated over u). One then finds

F1.x; y/ D

Z
juj<jyj

du
1

4�2
1

Nx � Nu

1

y � u

D

8̂̂<̂
:̂

1
Nxy

1
4�2

P1
j;kD0

1

Nxj yk

R
juj<jyj

du Nujuk ; jxj > jyj;

1
Nxy

1
4�2

P1
j;kD0

1

Nxj yk

R
juj<jxj

du Nujuk

�
1
y

1
4�2

P1
j;kD0

Nxj

yk

R
jxj<juj<jyj

du Nu�j�1uk ; jxj < jyj;

D

´
1
4�

P1
jD0

1

NxjC1yjC1
1
jC1
jyj2jC2; jxj > jyj;

1
4�

P1
jD0

1

NxjC1yjC1
1
jC1
jxj2jC2; jxj < jyj;

D

´
�
1
4�

log
�
1 � Ny

Nx

�
; jxj > jyj;

�
1
4�

log
�
1 � x

y

�
; jxj < jyj:

(6.53)

The claim that the values of E1.x; y/ and F1.x; y/ for jxj D jyj with x ¤ y are
given by continuity follows by noting that (6.41) and (6.42) are continuous away from the
diagonal. Finally, (6.47) is a direct computation. This concludes the proof.

Lemma 6.7. There exists a polynomial P D P.L/ such that for L � 1 and all x; y 2
int.ƒL/ with x ¤ y,

jE1.x; y/j C jF1.x; y/j � P.L/
�
1C

ˇ̌
log jx � yj

ˇ̌�
; (6.54)

j@xE1.x; y/j C j@xF1.x; y/j �
P.L/

jx � yj
; (6.55)

jE2.x; y/j C jF2.x; y/j C j@xE2.x; y/j C j@xF2.x; y/j � P.L/: (6.56)

Proof. We begin by bounding E1. By symmetry (up to complex conjugation), we can
assume that jxj < jyj. We start from the elementary inequalityˇ̌̌̌

�
1

2�
log jyj �

1

4�
log
�
1 �
Nx

Ny

�ˇ̌̌̌
� C C C

ˇ̌
log jyj

ˇ̌
C C

ˇ̌
log jx � yj

ˇ̌
: (6.57)

Since jyj> jxj, we have jyj � 1
2
jy � xj, so we conclude that for some (possibly different)

C > 0,ˇ̌̌̌
�
1

2�
log jyj �

1

4�
log
�
1 �
Nx

Ny

�ˇ̌̌̌
� C C C logLC C

ˇ̌
log jx � yj

ˇ̌
: (6.58)
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Similarly, jxj< jyj implies jL2 � xyj D jyj j L
2

jyj2
y � xj � jyj jy � xj � 1

2
jy � xj2, which

leads toˇ̌̌̌
1

2�
logLC

1

4�
log
�
1 �
Nxy

L2

�ˇ̌̌̌
� C C C

ˇ̌
log jL2 � Nxyj

ˇ̌
� C C C logLC C

ˇ̌
log jx � yj

ˇ̌
: (6.59)

Similar reasoning readily proves the analogous bound for F1. For @xE1 and @xF2,
we obtain the required bound by noting that these derivatives are explicitly given by
1=.4�.x � y// or 0 by differentiating (6.45) and (6.46).

In order to bound E2, we start from the definition

E2.x; y/ D

Z
ƒL

duGƒL.x; u/E1.u; y/: (6.60)

Using the bound for E1 and that jGƒL.x; u/j � C
�
1C

ˇ̌
log jx � uj

ˇ̌�
, we readily see that

E2 is uniformly bounded by a polynomial inL. For the derivative, using j@xGƒL.x;u/j �
P.L/=jx � uj, it similarly follows from the above bound for E1 that

j@xE2.x; y/j � P.L/

Z
ƒL

du
1

jx � uj
E1.u; y/ � P.L/; (6.61)

where the two polynomialsP.L/ can be different. Again the bounds forF2 are similar.

We next show that the Ej and Fj are bounded for j � 3.

Lemma 6.8. For j � 3, Ej and Fj are given by the series (6.43) and (6.44), which
converge uniformly in ƒL �ƒL.

Proof. For Ej , we already saw that it agrees with the series in an L2-sense. Let us now
argue that the series converge uniformly and the Ej series can be differentiated termwise
(which implies that Fj will be given by the corresponding series). This follows imme-
diately from applying the bounds (6.29), (6.30), and (6.28) in the series representations
(6.43) and (6.44).

Next we note that theEj and Fj are smooth when tested against a smooth test function
that is compactly supported in ƒL.

Lemma 6.9. For any j � 1 and f 2 C1c .int.ƒL//,

y 7!

Z
ƒL

dx f .x/Ej .x; y/ 2 C
1.int.ƒL//;

y 7!

Z
ƒL

dx f .x/Fj .x; y/ 2 C
1.int.ƒL//:

(6.62)

Proof. By (6.32) and (6.31), it follows that for any p > 0, f 2 C1c .int.ƒL//, and K �
int.ƒL/, there are constants Cp;f;K;L such that

sup
y2K

ˇ̌̌̌
r
p
y

Z
dx f .x/ e�n;k.x/e�n;k.y/

ˇ̌̌̌
� Cp;f;K;Lj

�p

n;k
; (6.63)
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and analogously for such expressions with e�n;k replaced by fn;k . From this, the claim
follows again by differentiating the series term by term.

As a final property of the functions Ej and Fj , we record the following recursion
properties.

Lemma 6.10. For j; k � 1 and x; y 2 int.ƒL/, we have

EjCk.x; y/ D

Z
ƒL

duEj .x; u/Ek.u; y/; (6.64)

FjCk.x; y/ D

Z
ƒL

duFj .x; u/Fk.u; y/; (6.65)Z
ƒL

duEj .x; u/Fk.u; y/ D

Z
ƒL

duFk.x; u/Ej .u; y/ D 0: (6.66)

Proof. The claim for EjCk follows immediately from continuity and the representation
(6.43) which implies that the two functions are the same as elements of L2.ƒL � ƒL/
(and thus in particular for almost all x; y 2 int.ƒL/).

For FjCk , we integrate by parts (note that N@xEjC1.x; u/ vanishes for u 2 @ƒL by
(6.41) and the fact that Ej .v; u/ vanishes for u 2 @ƒL – which follows e.g. from the
explicit representation of E1 from Lemma 6.6 and (6.41)) and findZ

ƒL

duFj .x; u/Fk.u; y/ D 4N@x@y

Z
ƒL

duEjC1.x; u/.��u/EkC1.u; y/

D 4N@x@yEjCkC1.x; y/ D FjCk.x; y/: (6.67)

where we have used the fact that��xEjC1.x;y/DEj .x;y/ by (6.41) and the first claim
of this lemma.

For the final claim, the fact that the first integral vanishes follows immediately from
the remark that considering Ej .x; u/ and Fk.u; y/ in polar coordinates for u, Ej has
only nonpositive Fourier modes while Fk has only strictly positive Fourier modes, so the
claim follows from Fourier orthogonality. The vanishing of the second integral follows by
a similar argument.

6.5. The building blocks of the Dirac Green’s function – II

The functionsEj and Fj constructed above will turn out to be responsible for the singular
behavior of our Dirac Green’s function. To understand the behavior in �, we introduce
the following functions: for m � 1, let

RmI11.x; yI�;L/ D .�1/
m

1X
nD0

1X
kD1

L2.mC1/�2mC1�
1C �2L2

j2
n;k

�
j
2.mC1/

n;k

e�n;k.x/e�n;k.y/

C .�1/m
1X
nD1

1X
kD1

L2.mC1/�2mC1�
1C �2L2

j2
n�1;k

�
j
2.mC1/

n�1;k

fn;k.x/fn;k.y/ (6.68)
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and

RmI21.x; yI�;L/ D .�1/
mC1

1X
nD0

1X
kD1

L2.mC1/�2m�
1C �2L2

j2
n;k

�
j
2.mC1/

n;k

.2@e�n;k/.x/e�n;k.y/

C .�1/mC1
1X
nD1

1X
kD1

L2.mC1/�2m�
1C �2L2

j2
n�1;k

�
j
2.mC1/

n�1;k

.2@fn;k/.x/fn;k.y/:

(6.69)

A priori, it may not be clear in what sense these series converge, but we now describe the
basic facts we will need about these functions – including regularity.

Lemma 6.11. For any m � 3 and y 2 int.ƒL/, the functions x 7! RmI11.x; y/ and x 7!
RmI21.x; y/ are continuously differentiable in int.ƒL/ and have the following properties:

(i) 1
�
2@xRmI11.x; y/ D �RmI21.x; y/ for all x; y 2 int.ƒL/.

(ii) �2N@xRmI21.x; y/��RmI11.x; y/ D .�1/mC1�2m.Em.x; y/ C Fm.x; y// for all
x; y 2 int.ƒL/, with Em as in (6.41) and Fm as in (6.42).

(iii) There exists a polynomial Pm D Pm.L; j�j/, which does not depend on x; y, such
that

sup
x;y2int.ƒL/

jRm.x; y/j � Pm.L; j�j/: (6.70)

(iv) For any f 2 C1c .int.ƒL//, y 7!
R
ƒL
dx f .x/Rm.x; y/ 2 C

1.int.ƒL//.

Proof. For continuous differentiability, let us first consider RmI11. Using (6.29) and
(6.30), we find that, for some C.L;�/ > 0,

1X
nD0

1X
kD1

L2.mC1/�2m�
1C �2L2

j2
n;k

�
j
2.mC1/

n;k

kre�n;kkL1.ƒL/ke�n;kkL1.ƒL/

C

1X
nD1

1X
kD1

L2.mC1/�2m�
1C �2L2

j2
n�1;k

�
j
2.mC1/

n�1;k

krfn;kkL1.ƒL/kfn;kkL1.ƒL/

� C.L;�/

1X
nD0

1X
kD1

j
�2.mC1/C4

n;k
: (6.71)

By (6.28), this series is convergent for m � 3, so standard results concerning uniform
convergent series (involving continuity and differentiability) yields continuous differen-
tiability. For R21, we point out that, by (6.27) and (6.24),

2@e�n;k D �
jn;k

L
fnC1;k ; 2@fn;k D �

L

jn�1;k
�en�1;k D

jn�1;k

L
en�1;k : (6.72)

Thus the same argument making use of (6.28)–(6.30) implies the continuous differentia-
bility. (Now we end up with the series

P1
nD0

P1
kD1 j

�2.mC1/C5

n;k
, which is still convergent

for m � 3.)
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We now turn to statement (i). This follows immediately from our preceding argument
for continuous differentiability as it allows us to differentiate term by term.

For (ii), we note that again by our continuous differentiability argument, we can dif-
ferentiate term by term. We find (using (6.27)) that

�2N@xRmI21.x; y/ D .�1/
mC1

1X
nD0

1X
kD1

L2.mC1/�2m�
1C �2L2

j2
n;k

�
j
2.mC1/

n;k

.��e�n;k/.x/e�n;k.y/

C .�1/mC1
1X
nD1

1X
kD1

L2.mC1/�2m�
1C �2L2

j2
n�1;k

�
j
2.mC1/

n�1;k

.��fn;k/.x/fn;k.y/

D .�1/mC1
1X
nD0

1X
kD1

L2m�2m�
1C �2L2

j2
n;k

�
j 2m
n;k

e�n;k.x/e�n;k.y/

C .�1/mC1
1X
nD1

1X
kD1

L2m�2m�
1C �2L2

j2
n�1;k

�
j 2m
n�1;k

fn;k.x/fn;k.y/ (6.73)

and

�2N@xRmI21.x; y/��RmI11.x; y/

D .�1/mC1
1X
nD0

1X
kD1

L2.mC1/�2m�
1C �2L2

j2
n;k

�
j
2.mC1/

n;k

�
�2 C

j 2
n;k

L2

�
e�n;k.x/e�n;k.y/

C .�1/mC1
1X
nD1

1X
kD1

L2.mC1/�2m�
1C �2L2

j2
n�1;k

�
j
2.mC1/

n�1;k

�
�2 C

j 2
n�1;k

L2

�
fn;k.x/fn;k.y/

D .�1/mC1�2m
1X
nD0

1X
kD1

�
L2

j 2
n;k

�m
e�n;k.x/e�n;k.y/

C .�1/mC1�2m
1X
nD1

1X
kD1

�
L2

j 2
n�1;k

�m
fn;k.x/fn;k.y/: (6.74)

Recalling (6.43) and Lemma 6.8, this concludes the proof of claim (ii).
For (iii), we will prove the claim for RmI21, the proof for RmI11 being similar. Using

(6.29) and (6.30), we find that, for some constant C > 0 (independent of m;�;L)

kRmI21kL1.ƒL�ƒL/ � CL
2m�1�2m

1X
nD0

1X
kD1

j�2mC2
n;k

(6.75)

and the claim follows from (6.28).
Finally, to prove (iv), let f 2 C1c .ƒL/. Then (6.63) holds and an analogous bound

holds with e�n;k replaced by fn;k or derivatives of these. Substituting this into the defini-
tion ofRmIij , we see that all y-derivatives of the series that defines

R
dx f .x/RmIij .x; y/

converge, and thus
R
dx f .x/RmIij .x; y/ is smooth in y.

This concludes the proof.
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6.6. The proof of Theorem 6.1

In this section, we first define our Dirac Green’s function, then prove it satisfies the bounds
stated in items (i) and (ii) of Theorem 6.1, then prove item (iii) of the theorem, namely
analyticity in a neighborhood of the real axis, item (iv) of the theorem – a kind of resolvent
identity – and finally prove convergence as L!1. We split this section into parts where
these tasks are carried out.

6.6.1. Constructing the Green’s function. We begin by defining the function that will be
our S�1ƒL in Theorem 6.1, and then prove that it satisfies (6.2). For this definition, recall
first the key building blocks Ej , Fj , RmI11 and RmI12 from (6.41), (6.42), (6.68), and
(6.69).

Definition 6.12. For � 2 R, L � 1, and y 2 int.ƒL/ and x 2 ƒL, let

S�1ƒL I11.x; y/D

2X
lD0

.�1/l�2lC1.ElC1.x; y/CFlC1.x; y//CR3I11.x; y/;

S�1ƒL I21.x; y/D2@x

2X
lD0

.�1/lC1�2l .ElC1.x; y/CFlC1.x; y//CR3I21.x; y/;

S�1ƒL I12.x; y/DS�1ƒL I21.x; y/;

S�1ƒL I22.x; y/DS�1ƒL I11.x; y/;

(6.76)

and for y 2 int.ƒL/ but x D rei� 2 ƒc
L, define

S�1ƒL .x; y/ D
r2 � L2

2�

Z 2�

0

d�
1

r2 C L2 � 2rL cos.� � �/
S�1ƒL .Le

i� ; y/: (6.77)

In particular, for x 2 ƒc
L, S�1ƒL .x; y/ is the harmonic extension of S�1ƒ.�; y/j@ƒL .

We now show that this is indeed a Green’s function for the problem we are considering.

Proposition 6.13. S�1ƒL defined in Definition 6.12 satisfies (6.2).

Proof. Our goal is to show that S�1ƒL .�; y/ as defined in Definition 6.12 vanishes at
infinity and that for each f 2 C1c .R

2/ and y 2 int.ƒL/,

�

Z
ƒL

dx S�1ƒL .x;y/f .x/�2

Z
R2
dx

 
N@f .x/S�1ƒL I21.x; y/

N@f .x/S�1ƒL I22.x; y/

@f .x/S�1ƒL I11.x; y/ @f .x/S�1ƒL I12.x; y/

!
D

�
f .y/ 0

0 f .y/

�
: (6.78)

Writing out DS�1L from (6.2) explicitly, for x; y 2 int.ƒL/ we have

DS�1L.x; y/

D

 
2N@S�1ƒL I21.x; y/C �S�1ƒL I11.x; y/ 2N@S�1ƒL I11.x; y/C �S�1ƒL I21.x; y/

2@S�1ƒL I11.x; y/C �S�1ƒL I21.x; y/ 2@S�1ƒL I21.x; y/C �S�1ƒL I11.x; y/

!
:

(6.79)
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We can thus focus on the first column. Let us first consider the 21-entry. Using Defini-
tion 6.12 and Lemma 6.11, we find immediately that

2@xS�1ƒL I11.x; y/C �S�1ƒL I21.x; y/ D 0 for x 2 int.ƒL/: (6.80)

For the 11-entry, we have similarly, using Definition 6.12 and Lemma 6.11,

2N@xS�1ƒL I21.x; y/C �S�1ƒL I11.x; y/

D

2X
lD0

.�1/l�2l .�2 ��x/.ElC1.x; y/C FlC1.x; y//

C 2N@xR3I21.x; y/ � �R3I11.x; y/

D

2X
lD0

.�1/l�2l .�2 ��x/.ElC1.x; y/C FlC1.x; y//

� �6.E3.x; y/C F3.x; y//: (6.81)

Note that for l � 1, we have, from (6.41) and (6.42),

��x.ElC1.x; y/C FlC1.x; y// D El .x; y/C Fl .x; y/: (6.82)

Thus we see that there are cancellations in the sum and we have in fact

2N@xS�1ƒL I21.x; y/C �S�1ƒL I11.x; y/ D ��x.E1.x; y/C F1.x; y//: (6.83)

By Lemma 6.6, we see that

E1.x; y/C F1.x; y/ D
1

2�
log

1

jx � yj
C

1

2�
logLC

1

4�
log
�
1 �
Nxy

L2

�
: (6.84)

As the latter term here is harmonic (or actually anti-analytic) in int.ƒL/, we have

2N@xS�1ƒL I21.x; y/C �S�1ƒL I11.x; y/ D ��x.E1.x; y/C F1.x; y//

D ��x
1

2�
log

1

jx � yj
D ıy.x/: (6.85)

Let us consider now the case x 2ƒc
L. Note that for x 2ƒc

L and y 2 int.ƒL/, to prove
(6.2) we need to show that 

2N@xS�1ƒL I21.x; y/ 2N@xS�1ƒL I11.x; y/

2@xS�1ƒL I11.x; y/ 2@xS�1ƒL I21.x; y/

!
D 0 (6.86)

and that x 7! S�1ƒL .x; y/ vanishes at infinity. For x 2 ƒc
L, we note that S�1ƒL .x; y/

is defined as the harmonic extension of S�1ƒL .�; y/j@ƒL (where the boundary values
are understood as being given by a limit from the interior of ƒL). Thus our goal
is equivalent to S�1ƒL I21.�; y/j@ƒL having only (strictly) negative Fourier modes and
S�1ƒL I11.�; y/j@ƒL only (strictly) positive Fourier modes.
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Recalling that e�n;k vanishes on @ƒL while fn;k.Lei� / is proportional to ein� , we see
from (6.68) that R3I11j@ƒL has only positive Fourier modes. Similarly Ej .�; y/ vanishes
on @ƒL while Fj .�; y/j@ƒL has only positive Fourier modes (this follows from (6.42)
since EjC1 has only negative Fourier modes), so we see indeed that S�1ƒL I11.�; y/j@ƒL
has only positive Fourier modes. Thus S�1ƒL I11.�; y/ is of the correct form. The argument
for S�1ƒL I21.�; y/ is similar, but makes use of the fact that @e�nC1;k / fn;k and @fn;k /
�en�1;k / en�1;k – we omit the details. We conclude that, for x 2 ƒc

L and y 2 int.ƒL/,

DS�1ƒL .x; y/ D 0: (6.87)

The claim (6.78) now follows by splitting the integral over R2 into that over ƒL
and ƒc

L, integrating by parts – the boundary terms cancel due to continuity of x 7!
S�1ƒL .x; y/ across the boundary – and combining (6.80), (6.85), and (6.87). Vanish-
ing at infinity follows from the fact that the entries of S�1ƒL .�; y/j@ƒL had only strictly
positive or negative Fourier modes (and the corresponding entries were given by either
antiholomorphic or holomorphic continuation of these boundary values), so S�1ƒL .x; y/

decays at worst like jxj�1 as x !1.

We now turn to proving that S�1ƒL satisfies the bounds we are after.

6.6.2. Proof of Theorem 6.1 (i)–(ii): Bounds on the Green’s function. The goal of this
section is to prove the following proposition which is precisely item (i) and item (ii) of
Theorem 6.1.

Proposition 6.14. For L � 1 and � 2 R, we have for some polynomial P D P.L; j�j/,
which is independent of x 2 C and y 2 int.ƒL/, the estimates

jS�1ƒL .x; y/ � S0.x; y/j � P.L; j�j/
�
1C

ˇ̌
log jx � yj

ˇ̌�
for x 2 ƒL, (6.88)

jS�1ƒL .x; y/j �
P.L; j�j/

L � jyj
for x 2 ƒc

L: (6.89)

Proof. For x; y 2 int.ƒL/, it follows from Lemma 6.7 that

jE1.x; y/j C jF1.x; y/j � P.L/
�
1C

ˇ̌
log jx � yj

ˇ̌�
; (6.90)

j@xE1.x; y/j C j@xF1.x; y/j �
P.L/

jx � yj
; (6.91)

jE2.x; y/j C jF2.x; y/j C j@xE2.x; y/j C j@xF2.x; y/j � P.L/; (6.92)

and note that S0 is given by

S0I11.x; y/ D S0I22.x; y/ D 0; S0I21.x; y/ D �2@x.E1.x; y/C F1.x; y//; (6.93)

and complex conjugation for the 12-entry. Hence the singular @x.E1 C F1/ term in
the definition of S�1ƒI21 in Definition 6.12 is canceled by S0I21 (and analogously for
the 21-entry). The above bounds on the E1; F1; E2; F2 together with the bounds from
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Lemma 6.11 for R3 thus readily imply the required bounds for S�1ƒL .x; y/ when
x; y 2 int.ƒL/.

For x 2 ƒc
L, the claim follows from the maximum principle. Indeed, S1ƒL .�; y/ is

harmonic in ƒc
L, vanishes at infinity, and is continuous up to the boundary.

6.6.3. Proof of Theorem 6.1 (iii): Analyticity in �. The goal of this section is to prove
item (iii) of Theorem 6.1, which is implied by the following proposition.

Proposition 6.15. For x; y 2 int.ƒL/ with x ¤ y, the function � 7! S�1ƒL .x; y/ has
an analytic continuation into some L-dependent neighborhood of the real axis. In this
neighborhood, the estimate (6.5) continuous to hold. Moreover, in an L-dependent neigh-
borhood of the origin, we have

S�1ƒL I11.x; y/ D

1X
lD0

.�1/l�2lC1.ElC1.x; y/C FlC1.x; y//; (6.94)

S�1ƒL I21.x; y/ D

1X
lD0

.�1/lC1�2l2@x.ElC1.x; y/C FlC1.x; y//; (6.95)

where ElC1 and FlC1 are as in (6.41) and (6.42). In particular,

lim
�!0

S�1ƒL .x; y/ D
1

2�

�
0 1=. Nx � Ny/

1=.x � y/ 0

�
: (6.96)

Proof. By Definition 6.12, to prove analyticity, it is enough to prove analyticity of R11
and R21. For this purpose, consider � 2 C with j Im.�/j < 1

2
3�
4L

. For such � we have
Im.�/2L2

j2
n;k

< 1
4

by (6.28) andˇ̌̌̌
1C

�2L2

j 2
n;k

ˇ̌̌̌2
D

�
1C

.Re.�/2�Im.�/2/L2

j 2
n;k

�2
C

�
2Re.�/ Im.�/L2

j 2
n;k

�2
�
9

16
: (6.97)

Thus retracing our proof of Lemma 6.11, we can check that the series defining R11 and
R21 converge uniformly in � in such a complex strip. It then follows, for example, by
Morera’s theorem that R11 and R21 are analytic functions in � on such a strip.

For the analogue of (6.5), we note that the proof of Proposition 6.14 works in this
setting as well, and we recover our bounds.

The expansion in terms of El and Fl in a neighborhood of the origin follows readily
from similar arguments and the definition of R11 and R21 along with (6.43) and Lemma
6.8.

For the claim about the�! 0 limit, we see from the expansions that lim�!0S�1ƒL I11

D 0, while
lim
�!0

S�1ƒL I21.x; y/ D �2@x.E1.x; y/C F1.x; y// (6.98)

and the claim for the 21-entry follows from (6.47). The claim for the 12- and 22-entries
follows simply by complex conjugation (recalling Definition 6.12).

Our next goal is to establish a type of resolvent identity for S1ƒL .
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6.6.4. Proof of Theorem 6.1 (iv): A resolvent identity. The goal of this section is to prove
item (iv) in Theorem 6.1, that is, the following result.

Proposition 6.16. For any L � 1 and x; y 2 ƒL with x ¤ y, we have for � 2 R,

@�S�1ƒL Iij .x; y/ D �
X

k2¹1;2º

Z
ƒL

duS�1ƒL Iik
.x; u/S�1ƒL Ikj

.u; y/: (6.99)

Proof. By the definition of S�1ƒL I22.x; y/ and S�1ƒL I12.x; y/ from Definition 6.12, it
is sufficient to prove the claim for S�1ƒL I11.x; y/ and S�1ƒL I21.x; y/. Moreover, as one
readily checks from Proposition 6.15 that both sides are analytic functions of� in a neigh-
borhood of the real axis, it is enough for us to verify the claim for � in the neighborhood
of the origin where we can use the series expansion of Proposition 6.15. Our key tool in
the proof will be Lemma 6.10.

Let us begin with S�1ƒL I11. Using the expansion of Proposition 6.15, we have

@�S�1ƒL I11.x; y/ D

1X
lD0

.2l C 1/.�1/l�2l .ElC1.x; y/C FlC1.x; y//: (6.100)

Also, using again Proposition 6.15 for the expansions and Lemma 6.10 to calculate the
integrals, we getX
k2¹1;2º

Z
ƒL

duS�1ƒL I1k
.x; u/S�1ƒL Ik1

.u; y/

D

1X
l;mD0

.�1/lCm�2lC2mC2
Z
ƒL

du .ElC1.x; u/C FlC1.x; u//

� .EmC1.u; y/C FmC1.u; y//

C

1X
l;mD0

.�1/lCm�2lC2m
Z
ƒL

du .2N@xElC1.x; u/C 2N@xFlC1.x; u//

� .2@uEmC1.u; y/C 2@uFmC1.u; y//: (6.101)

The integrals without the derivatives can be evaluated immediately from Lemma 6.10. For
the derivative terms, note that

N@xFlC1.x; u/ D N@x4@x N@uElC2.x; u/ D �N@uElC1.x; u/;

@uFmC1.u; y/ D �@yEmC1.u; y/:
(6.102)

Thus, integrating by parts and recalling that Ej vanishes on @ƒL (with respect to either
variable), and using Lemma 6.10, we findZ
ƒL

du
�
2N@xElC1.x; u/C 2N@xFlC1.x; u/

��
2@uEmC1.u; y/C 2@uFmC1.u; y/

�
D �

Z
ƒL

duFl .x; u/EmC1.u; y/ � 4N@x@y

Z
ƒL

duElC1.x; u/EmC1.u; y/

�

Z
ƒL

duElC1.x; u/Em.u; y/ �

Z
ƒL

duElC1.x; u/Fm.u; y/

D �FlCmC1.x; y/ �ElCmC1.x; y/: (6.103)
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We conclude thatX
k2¹1;2º

Z
ƒL

duS�1ƒL I1k
.x; u/S�1ƒL Ik1

.u; y/

D

1X
l;mD0

.�1/lCm�2lC2mC2.ElCmC2.x; y/C FlCmC2.x; y//

�

1X
l;mD0

.�1/lCm�2lC2m.ElCmC1.x; y/C FlCmC1.x; y//

D

1X
nD0

h 1X
l;mD0

1¹l CmC 1 D nº
i
.�1/nC1�2n.EnC1.x; y/C FnC1.x; y//

C

1X
nD0

h 1X
l;mD0

1¹l Cm D nº
i
.�1/nC1�2n.EnC1.x; y/C FnC1.x; y//: (6.104)

Noting that

1X
l;mD0

1¹l CmC 1 D nº C
1X

l;mD0

1¹l Cm D nº D nC .nC 1/ D 2nC 1; (6.105)

we see that

�

X
k2¹1;2º

Z
ƒL

duS�1ƒL I1k
.x; u/S�1ƒL Ik1

.u; y/ D @�S�1ƒL I11.x; y/ (6.106)

as was required.
We now turn to the 21-entry. For this, we begin with the remark (from Proposition

6.15) that

@�S�1ƒL I21.x; y/ D

1X
lD1

2l.�1/lC1�2l�12@x.ElC1.x; y/C FlC1.x; y//: (6.107)

On the other hand, we haveX
k2¹1;2º

Z
ƒL

duS�1ƒL I2k
.x; u/S�1ƒL Ik1

.u; y/

D

1X
l;mD0

.�1/lCmC1�2lC2mC1
Z
ƒL

du 2@x.ElC1.x; u/C FlC1.x; u//

� .EmC1.u; y/C FmC1.u; y//

C

1X
l;mD0

.�1/lCmC1�2lC2mC1
Z
ƒL

du .ElC1.x; u/C FlC1.x; u//

� 2@u.EmC1.u; y/C FmC1.u; y//: (6.108)
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The first integrals can again be evaluated directly by taking the x-derivative outside the
integral and using Lemma 6.10. For the second integrals, we treat various terms in differ-
ent ways: the E-E term we integrate by parts and note as before that

�@uElC1.x; u/ D @xFlC1.x; u/; (6.109)

which by Lemma 6.10 leads to a term which integrates to zero.
In the F -E term we write FlC1.x; u/ D 4@x N@uElC2.x; u/ and integrate by parts the

u-derivative, which (by Lemma 6.10) leads to

2@x

Z
ƒL

duElC2.x; u/.��u/EmC1.u; y/ D 2@xElCmC2.x; y/: (6.110)

For the E-F and F -F terms we note that 2@uFmC1.u; y/ D �2@yEmC1.u; y/. Thus
by Lemma 6.10 (and a similar argument as before utilizing the definition of Fj ), the F -F
term integrates to zero whileZ

ƒL

duElC1.x; u/2@uFmC1.u; y/ D �2@yElCmC2.x; y/ D 2@xFlCmC2.x; y/:

(6.111)

Putting everything together, we conclude that both types of integrals have the same
total contribution andX
k2¹1;2º

Z
ƒL

duS�1ƒL I2k
.x; u/S�1ƒL Ik1

.u; y/

D 2

1X
l;mD0

.�1/lCmC1�2lC2mC12@x.ElCmC2.x; y/C FlCmC2.x; y//

D 2

1X
nD0

h 1X
l;mD0

1¹l Cm D nº
i
.�1/n�2nC12@x.EnC2.x; y/C FnC2.x; y//

D

1X
nD0

2.nC 1/.�1/nC1�2nC12@x.EnC2.x; y/C FnC2.x; y//

D

1X
nD1

2n.�1/n�2n�12@x.EnC1.x; y/C FnC1.x; y//; (6.112)

which is precisely of the desired form and we are thus done.

Finally, we turn to convergence as L!1.

6.6.5. Proof of Theorem 6.1 (v): The L!1 limit. In this section, we prove item (v) of
Theorem 6.1. We state this separately as the following proposition.

Proposition 6.17. For � ¤ 0, as L!1,

S�1ƒL .x; y/! �
1

2�

�
��K0.j�j jx � yj/ 2N@xK0.j�j jx � yj/

2@xK0.j�j jx � yj/ ��K0.j�j jx � yj/

�
DW S�.x; y/

(6.113)
uniformly on compact subsets of ¹.x; y/ 2 C2 W x ¤ yº.
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For the proof of Proposition 6.17, we will need the following result which can also be
interpreted as a resolvent identity.

Lemma 6.18. For x; y 2 int.ƒL/, x ¤ y,

S�1ƒL .x; y/ � S�.x; y/ D �

Z
ƒc
L

duS�.x; u/S�1ƒL .u; y/: (6.114)

Proof. It is of course sufficient for us to prove that for any f; g 2 C1c .int.ƒL// with
disjoint supports,Z
ƒL�ƒL

dx dy f .x/g.y/ŒS�1ƒL .x; y/ � S�.x; y/�

D �

Z
ƒL�ƒL

dx dy f .x/g.y/

Z
ƒc
L

duS�.x; u/S�1ƒL .u; y/: (6.115)

Using the disjointness of the supports of f and g, Proposition 6.14 for S�1ƒL , and routine
asymptotics of Bessel functions for S�, we see that the integrands here are L1-functions.
By Fubini, we can thus perform the integrals in any order we wish. We now claim that,
on the left-hand side of (6.115),

y 7! g.y/

Z
ƒL

dx f .x/S�1ƒL .x; y/ 2 C
1
c .int.ƒL//;

x 7! f .x/

Z
ƒL

dy g.y/S�.x; y/ 2 C
1
c .int.ƒL//:

(6.116)

The fact that these functions have compact supports follows from f and g having compact
support. The smoothness of the S�1ƒL term follows from Lemma 6.11 (iv) and (6.62). The
smoothness of the S� term follows immediately from the explicit expression of S� which
is smooth off the diagonal.

By definition of the Green’s functions, we have .i =@x C �/S�.x; u/ D ı.x � u/ and
.i =@x C �1ƒL.x//S�1ƒL .x; u/ D ı.x � u/. Since S�.x; u/ is a function of x � u, also
.�i =@u C �/S�.x; u/ D ı.x � u/. Thus the above smoothness (and integration by parts)
implies thatZ
ƒL�ƒL

dx dy f .x/g.y/ŒS�1ƒL .x; y/ � S�.x; y/�

D

Z
R2
du

�
.�i =@u��/

Z
ƒL

dx f .x/S�.x; u/

��Z
ƒL

dy g.y/S�1ƒL .u; y/

�
�

Z
R2
du

�Z
ƒL

dx f .x/S�.x; u/

��
.i =@uC�1ƒL.u//

Z
ƒL

dy g.y/S�1ƒL .u; y/

�
D

Z
R2
du

�Z
ƒL

dx f .x/S�.x; u/

��
.i =@uC�/

Z
ƒL

dy g.y/S�1ƒL .u; y/

�
�

Z
R2
du

�Z
ƒL

dx f .x/S�.x; u/

��
.i =@uC�1ƒL.u//

Z
ƒL

dy g.y/S�1ƒL .u; y/

�
D

Z
R2
du

�Z
ƒL

dx f .x/S�.x; u/

�
.���1ƒL.u//

�Z
ƒL

dy g.y/S�1ƒL .u; y/

�
; (6.117)

which is the right-hand side of (6.114).
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We now turn to the proof of the final claim of Theorem 6.1.

Proof of Proposition 6.17. We can assume that L is so large that x; y 2 int.ƒL/. By
Lemma 6.18,

S�1ƒL .x; y/ � S�.x; y/ D �

Z
ƒc
L

duS�.x; u/S�1ƒL .u; y/: (6.118)

Using the fact that for any fixed a > 0, the Bessel function K0 satisfies, for jxj � a,
jK0.j�j jxj/j � Cae

�j�j jxj for some constant Ca (independent of �; x) and a similar
bound for @K0.j�j jxj/, we find from Proposition 6.14 that for some polynomial P D
P.L; j�j/,

jS�.x; y/ � S�1ƒL .x; y/j �
P.L; j�j/

L � jyj

Z
ƒc
L

du e�j�j jx�uj: (6.119)

As we take x; y in a fixed compact subset B of C, j
R
ƒc
L
e�j�j jx�uj duj � e�˛j�jL uni-

formly in x 2 B for some ˛ > 0 depending only on B . We thus deduce that given a fixed
compact subset K � ¹.x; y/ 2 C2 W x ¤ yº (independent of L) and � ¤ 0,

lim
L!1

sup
.x;y/2K

jS�.x; y/ � S�1ƒL .x; y/j D 0; (6.120)

which was the claim.

Putting together the propositions from this section also concludes our proof of Theo-
rem 6.1, and thus that of Theorem 3.3.

Appendix A. Truncated and free fermion correlations

In this appendix, we collect some well-known properties of truncated correlations (joint
cumulants) and free fermion correlations.

A.1. Truncated correlations

For arbitrary random variables Ai , the truncated correlations are defined by

hA1 � � �Ani
T
D

@n

@t1 : : : @tn

ˇ̌̌̌
tD0

log
˝
e
Pn
iD1 tiAi

˛
(A.1)

when the right-hand side exists. For N 2 N and t D .t1; : : : ; tN /, it is often convenient to
define the tilted measure with expectation h�it by

hF it D
hFetAi

hetAi
; etA D e

PN
iD1 tiAi ; (A.2)

when these expressions exist. For 1 � n � N � 1, it then follows from (A.1) that

hA1 � � �AnC1i
T
t D

@

@tnC1
hA1 � � �Ani

T
t : (A.3)
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The next lemma shows that the definition (A.1) is consistent with (1.6).

Lemma A.1. Assume that A1; : : : ; An are random variables. Then

hA1 � � �Ani
T
D hA1 � � �Ani �

X
P2Pn

Y
j

DY
i2Pj

Ai

ET
(A.4)

assuming all expectations exist.

Proof. It suffices to show the claim with h�i replaced by h�it where t D .t1; : : : ; tN / and
n � N . This is clear for n D 1. To advance the induction, note that

hA1 � � �AnC1i
T
t D

@

@tnC1
hA1 � � �Ani

T
t

D
@

@tnC1

h
hA1 � � �Anit �

X
P2Pn

Y
j

DY
i2Pj

Ai

ET
t

i
D hA1 � � �AnC1it � hA1 � � �Anit hAnC1it

�

X
P2Pn

X
k

D Y
i2Pk[¹nC1º

Ai

ET
t

Y
j¤k

DY
i2Pj

Ai

ET
t

D hA1 � � �AnC1it �
X

P2PnC1

Y
j

DY
i2Pj

Ai

ET
t

(A.5)

as needed.

A.2. Grassmann integrals

Let
V2N be the exterior algebra (Grassmann algebra) on 2N generators N 1;  1; : : : ;

N N ; N over C. The bars only have notational meaning here and for notational simplicity
we drop the ^ from the product notation, e.g., N i ^ j � N i j . Thus elements F 2

V2N

are noncommutative polynomials in the generators of degree at most 2N . An element
F 2

V2N is called even if it is a linear combination of even monomials (i.e., ones with
an even number of factors of the generators). Let @ N j and @ j be the antiderivations onV2N defined by

@ N j .
N jF / D F; @ N jF D 0 (A.6)

for any (noncommutative) monomial F 2
V2N that does not contain a factor N j , and

analogously for the @ j . For any F 2
V2N the Grassmann integral of F is then defined

by Z
d d N F WD @ @ N F WD @ N @ N N � � � @ 1@ N 1 F: (A.7)

Note that the right-hand side is a scalar. For any even elements A1; : : : ; An of
V2N and

any smooth function g 2 C1.Rn/, we define an element g.A1; : : : ; An/ 2
V2N by the
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truncation of the formal Taylor expansion of g at order 2N . For example, using the above
definitions, we write, for any N �N matrix M ,

e� M
N 
D

NX
nD0

.�1/n

nŠ

� NX
i;jD1

 iMij
N j

�n
; (A.8)

and then haveZ
d d N e

� M N 
D
.�1/N

NŠ

Z
d d N . M

N /N D
.�1/N

NŠ
@ @ N . M

N /N D detM;

(A.9)
by the anticommutativity of the generators and the definition of the determinant.

The following lemma is a variant of Wick’s theorem for Grassmann integrals.

Lemma A.2. Let K be an invertible N �N matrix. Then

detK �
Z
d d N 

nY
iD1

N ˛i ˇi e
� K�1 N 

D det .K˛i ǰ /
n
i;jD1: (A.10)

Remark A.3. Note that the Grassmann integral representation of the determinant, (A.10),
can be used in the context of (1.9) and (2.2). For finitely many points x1; : : : ;xn;y1; : : : ;yn
one may indeed apply this lemma to the matrix defined byKij D S˛i ǰ .xi ; yj / for i ¤ j
and Ki i D C for a sufficiently large constant C such that K is invertible.

Proof of Lemma A.2. For an invertible N � N matrix K, the fermionic Gaussian inte-
gration by parts formula holds:Z

d d N 
N iF e

� K�1 N 
D

X
j

Kij

Z
d d N .@ jF /e

� K�1 N : (A.11)

Indeed, it follows from the definitions that

@ j e
� K�1 N 

D �

X
i

.K�1/j i N ie
� K�1 N ; (A.12)

and hence
N ie
� K�1 N 

D �

X
j

Kij @ j e
� K�1 N : (A.13)

Note that we may assume that F is odd in (A.11) as otherwise both sides are 0. ThereforeZ
d d N 

N iF e
� K�1 N 

D�

Z
d d N F

N i e
� K�1 N 

D

X
j

Kij

Z
d d N F@ j e

� K�1 N :

(A.14)
The claim now follows from the fact that, since F is odd, for any G one has

0 D

Z
d d N @ j .FG/ D

Z
d d N Œ.@ jF /G � F.@ jG/�: (A.15)
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Note that for any monomial F 2
V2N with n factors of N 1; : : : ; N N we have F D

1
n

P
i
N i@ N iF . Thus if F has degree 2n thenZ

d d N Fe
� K�1 N 

D
1

n

X
i;j

Kij

Z
d d N .@ j @ N iF /e

� K�1 N 

D
1

n

Z
d d N .�KF /e

� K�1 N (A.16)

where
�KF D

X
i;j

Kij @ j @ N iF: (A.17)

Iterating this, for F of degree 2n we getZ
d d N F e

� K�1 N 
D

1

nŠ
�nKF

Z
d d N e

� K�1 N : (A.18)

In particular,

detK �
Z
d d N 

N i j e
� K�1 N 

D Kij (A.19)

and repeated application gives

detK �
Z
d d N 

nY
iD1

N ˛i ˇi e
� K�1 N 

D det .K˛i ǰ /
n
i;jD1: (A.20)

as claimed.

Given an invertible N �N matrix K, we now write

hF i D detK �
Z
d d N e

� K�1 N F: (A.21)

From this representation, it is also easy to deduce the following properties of the fermionic
correlation functions. Using Remark A.3, we make use of the properties in Section 2.1.

Lemma A.4. For any � 2 Sn,D nY
kD1

N ik jk

E
D .�1/�

D nY
kD1

N ik j�.k/

E
(A.22)

Moreover, if F; G 2
V2N are monomials such that for every factor N i in F and every

factor  j in G one has Kij D 0 and for every factor  i in F and every factor N j in G
one also has Kij D 0 then

hFGi D hF ihGi: (A.23)

As in (A.1), for even elements Ai 2
V2N the truncated correlations are defined by

hA1 � � �Ani
T
D

@n

@t1 : : : @tn

ˇ̌̌̌
tD0

log
˝
e
Pn
iD1 tiAi

˛
: (A.24)

The next lemma gives equivalent characterizations of the truncated correlation functions.
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Lemma A.5. Assume that A1; : : : ; An are even elements of
V2N . Then

hA1 � � �Ani
T
D hA1 � � �Ani �

X
P2Pn

Y
j

DY
i2Pj

Ai

ET
: (A.25)

Moreover, if the Ai are of the form Ai D N ˛i ˇi , then

hA1 � � �Ani
T
D .�1/nC1

X
�2Cn

nY
iD1

K˛
�i .1/

ˇ
�iC1.1/

: (A.26)

Proof. The proof of (A.25) is identical to that of Lemma A.1. To see (A.26), we assume
by induction that the identity holds for every invertible matrix K. If n D 1, this claim is

hA1i D h N ˛1 ˇ1i D K˛1ˇ1 ; (A.27)

which is true by Lemma A.2. To advance the induction, for t sufficiently small, setK.t/D
.1C

P
i tiK1ˇi˛i /

�1K where 1ij is the matrix with value 1 in entry ij and 0 in all other
entries, and define h�it as in (A.21) with K.t/ instead of K. Since

K.t/�1 D K�1
�

1C
X
i

tiK1ˇi˛i
�
D K�1 C

X
i

ti1ˇi˛i (A.28)

this definition is consistent with h�it defined as in (A.2), i.e.,

hF it D
hFe�

P
ti ˇi

N ˛i i

he�
P
ti ˇi

N ˛i i

D
hFe

P
ti N ˛i ˇi i

he
P
ti N ˛i ˇi i

: (A.29)

Also note that
@

@tj
K.t/ D �K.t/1

ǰ j̨
K.t/ (A.30)

as follows from

@

@tj

�
1C

X
i

tiK1ˇi˛i
��1
D �

�
1C

X
i

tiK1ˇi˛i
��1

K1
ǰ j̨

�
1C

X
i

tiK1ˇi˛i
��1

:

(A.31)
By the induction hypothesis, now

hA1 � � �Ani
T
t D .�1/

nC1
X
�2Cn

nY
iD1

K˛
�i .1/

ˇ
�iC1.1/

.t/; (A.32)

and the claim follows from (A.3) and (A.30).
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