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Abstract. The theory of one-dimensional stochastic differential equations driven by Brownian
motion is classical and has been largely understood for several decades. For stochastic differen-
tial equations with jumps the picture is still incomplete, and even some of the most basic questions
are only partially understood. In the present article we study existence and uniqueness of weak
solutions to

dZt D �.Zt�/ dXt
driven by a two-sided ˛-stable Lévy process, in the spirit of the classical Engelbert–Schmidt time-
change approach. Extending and completing results of Zanzotto we derive a complete characteri-
sation for existence and uniqueness of weak solutions for ˛ 2 .0; 1/. Our approach is not based on
classical stochastic calculus arguments but on the general theory of Markov processes. We prove
integral tests for finiteness of path integrals under minimal assumptions.

Keywords. Stochastic differential equations, stable processes, Markov processes, perpetual
integrals, time change

1. Introduction

Itô diffusions are solutions of stochastic differential equations driven by a Brownian
motion, and their study as stochastic processes in their own right has a rich history dat-
ing back to the foundational works of Feller [14, 15] in the 1950s. Itô diffusions continue
to motivate theoretical research, due in some part to their many applications, and this
sustained interest has also given rise to various generalisations. The present article is con-
cerned with solutions of stochastic differential equations driven not by a Brownian motion
but by a Lévy process. Our objective is to study solutions to the one-dimensional driftless
stochastic differential equation

dZt D �.Zt�/ dXt ; Z0 D z 2 R; (1)
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where X is a Lévy process and � is a non-negative, measurable function on R. Solution
processes Z are distinguished in contrast to continuous Itô diffusions by the presence
of discontinuities and are therefore known as jump diffusions. In the present article we
always assume the driving Lévy process X is strictly stable, that is, the scaling property

.cXc�˛ t ; t � 0/ under Px is equal in law to .Xt ; t � 0/ under Pcx

holds for some ˛ 2 .0;2�. The strictly stable process of index ˛D 2 is simply the Brownian
motion.

In 1981 Engelbert and Schmidt [13] proved a zero-one law for finiteness of so-called
finite-time path integrals

R t
0
f .Bs/ ds of the Brownian motion. In the same paper they

made use of their zero-one law and a time-change representation of Brownian SDEs to
comprehensively address the question of weak existence and uniqueness of solutions to
(1) – see [13, Theorem 4] or Karatzas and Shreve [22, Theorems 3.4.2 and 3.4.6]. Almost
two decades later Zanzotto [34] extended Engelbert and Schmidt’s results to stable pro-
cesses of index ˛ 2 .1; 2�. Proving the time-change representation for stable SDEs is
significantly harder than for Brownian SDEs, because it is no longer possible to argue
using quadratic variation. Despite this difficulty, Zanzotto’s result is nearly identical in
form to that for the Brownian motion: see Theorem 2.32 of his paper. A few years later
Zanzotto generalised his result further – see [36, Theorems 2.2 and 2.6], but was still
restricted to ˛ 2 .1; 2� for precise results. Harder results for SDEs concern strong exis-
tence and pathwise uniqueness. Following seminal work of Yamada and Watanabe [33]
for the Brownian case, strong existence and pathwise uniqueness have been studied in
many variations. The classical setup gives positive results for Lipschitz continuous drift
and 1

2
-Hölder continuous noise coefficient. Extensions to stable SDEs are surprisingly

recent, mostly motivated by the study of continuous state branching processes. For spec-
trally positive stable processes (only positive jumps) and ˛ 2 .1; 2/ the Yamada/Watanabe
argument was generalised by Li and Mytnik [26] leading to Lipschitz continuous drift
and .1� 1=˛)-Hölder continuous noise coefficient. The symmetric case was dealt with by
Bass [4] leading to 1=˛-Hölder continuous noise coefficient. Since 1=˛ > 1 for ˛ 2 .0; 1/
it comes as no surprise that results must be structurally different for small ˛. Partial results
for ˛ 2 .0; 1/ on the pathwise uniqueness problem appeared in the past two decades (see
for instance Bass–Burdzy–Chen [5] for a counterexample). To the best of our knowledge
proofs for sharp conditions are still unknown. The aim of the present article is not to solve
the strong existence/uniqueness problem, but to give a complete solution to the weak
existence/uniqueness problem in the spirit of Engelbert and Schmidt’s results.

The works of Engelbert–Schmidt and Zanzotto together answer questions for weak
solutions to (1) in the case of ˛ 2 .1; 2�. In all of them the time change method is used
to reduce the SDE to a time change of the driving process X using the time changeR t
0
�.Xs/

�˛ ds, which is usually called a path integral (or perpetual integral). The cru-
cial tool for analysing those path integrals is the occupation time formula and local time
for X . This is the barrier to results for ˛ 2 .0; 1�: while the time-change representations
of Zanzotto continue to hold, there is no local time to work with. The challenge we tackle
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in the present article is the study of finite- and infinite-time path integrals of the form

I
f
t D

Z t

0

f .Xs/ ds; t 2 .0;1�;

where f is a measurable function taking values in Œ0;1�. The value1 for f is crucial
as it corresponds to the zeros of � . What we seek is a collection of ‘integral tests’, which
are statements tying the law of a path integral to finiteness of a related deterministic
integral. Path integrals have attracted some interest in recent years, mostly for restricted
classes of integrands (such as f being locally integrable or continuous) and processes
(such as Lévy processes or diffusion processes) leading to very clean results. For X a
Brownian motion with positive drift, Salminen and Yor [29, 30] obtained results via the
Ray–Knight theorem, and similar results for spectrally negative Lévy processes can be
found in Koshnevisan, Salminen, and Yor [23]. The recent article of Kolb and Savov [24]
has the most up-to-date results for Lévy processes. The technique we use only requires
minimal assumptions, i.e. f measurable and X a standard Markov process. Allowing f
to be infinite changes the picture completely as known zero-one laws for path integrals
(see for instance Kyprianou and Döring [11]) fail immediately for transient X (take f
to be an infinite indicator on a set which X visits with probability in .0; 1/). Hence, it is
clear that for a general theorem sets which are hit with probability less than 1 must appear
in the statements of results. Such sets are called avoidable; we call their complements
supportive, and these sets will play a fundamental role in this work. Assuming only that
X is a standard Markov process on a general state space E with potential measure U we
will prove the following theorem on path integrals.

Theorem. Let f W E ! Œ0;1� be measurable and X a standard Markov process on E
with . possibly infinite/ lifetime �. Let z 2 E. Then the following are equivalent:

(i) Pz.
R �
0
f .Xs/ ds <1/ > 0.

(ii) The integral test
R
EnB

f .x/U.z; dx/ <1 holds for a Pz-avoidable set B .

We remind the reader that the integral test in (ii) says nothing but

Ez

�Z �

0

1BC .Xs/f .Xs/ ds
�
<1:

Thus, the path integral is finite with positive probability if and only if it has finite mean
away from an avoidable set. In several situations the potential measure U is explicit and
avoidable sets can be described analytically to turn the integral tests into analytic state-
ments.

The general form of the path integral theorem allows us to deduce a couple of con-
sequences on finite-time path integrals which we will need to study the SDE (1) via
time-change techniques. For finite-time path integrals the role of avoidable sets is replaced
by sets which are avoided for a positive amount of time, called thin sets. Let us sum-
marise the main findings for the SDE (1) driven by a two-sided stable Lévy process with
˛ 2 .0; 1/; see Section 5 for the theorems.
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Theorem. If N.�/ denotes the zero-set of � and

O.�; ˛/ D

²
x 2 R W

Z
RnB

�.y/�˛jx � yj˛�1 dy D1 for all Px-thin sets B
³

(2)

denotes the set of irregular points, then the following statements hold:

(i) For fixed z 2 R there exists a non-trivial .i.e. non-constant/ local weak solution if
and only if z … O.�; ˛/.

(ii) A global weak solution exists for all initial conditions z 2 R if and only if O.�; ˛/

� N.�/.

(iii) A non-trivial global weak solution exists for all z 2 R if and only if O.�; ˛/ D ;.

(iv) There exists a global weak solution for all z 2 R, each of which is unique in law, if
and only if O.�; ˛/ D N.�/.

Since thin sets of stable processes have analytic descriptions through capacities, the
theorem gives a full analytic description of weak solutions for the stable SDE (1). The
analytic description allows for the Px-thin sets to be removed in many examples, such as
when � is monotone on either side of a zero at x.

Statements (i)–(iv) are identical to the Engelbert–Schmidt–Zanzotto theorems for
Brownian SDEs and stable SDEs for ˛ 2 .1; 2/, but differ in the set O.�; ˛/ of irregu-
lar points, which in those cases is given by1

O.�; ˛/ D

²
x 2 R W

Z
x

�.y/�˛ dy D1
³
:

This set is different from (2) in two respects. First, since complements of Px-thin sets
contain balls around x, for ˛ 2 .1; 2/ those sets do not appear. Second, the polynomial
factor in the integral tests is not present; for ˛ 2 .0; 1/ this factor has a pole, which puts a
tighter restriction on the function � . Let us quickly give two examples that highlight the
two differences.

Integral test: To get an idea for the additional factor jyj˛�1 it is instructive to check the
simple example

dZt D jZt jˇ dXt ; Z0 D 0: (3)

Since the trivial solution Z � 0 always exists, using (i) the Engelbert–Schmidt–Zanzotto
criterion implies that weak uniqueness holds for ˛ 2 .1; 2� if and only if

R
0
��˛.y/ dy DR

0
jyj�ˇ˛ dy D C1 around 0, which is equivalent to ˇ > 1=˛ and thus coincides with

the Yamada–Watanabe–Bass criterion for pathwise uniqueness. Since �.x/D jxjˇ is Lip-
schitz continuous for ˇ � 1 the Engelbert–Schmidt–Zanzotto integral test must be wrong
for ˛ 2 .0; 1/. Let us check our modified integral test with the additional factor jyj˛�1 but
ignoring the thin sets (which we justify later in Corollary 5.7 as � has a monotone zero
at 0):Z
0

�.y/�˛jyj˛�1 dy D
Z
0

jyj�ˇ˛jyj˛�1 dy D
Z
0

jyj˛.1�ˇ/�1 dy D C1 ” ˇ � 1:

1Here,
R
x means integrating in any arbitrarily small neighbourhood around ¹xº.
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Hence, (i) implies that weak uniqueness for the SDE (3) holds if and only if ˇ � 1, the
Lipschitz case. In contrast to ˛ 2 .1; 2/ the statement is independent of ˛ which bears
some similarity to the results of Bass–Burdzy–Chen [5]. Of course, this is an artifact of �
being a polynomial, in the general setting our integral test is not independent of ˛.

Thin sets: The next example is helpful for understanding how the path behaviour of the
driving stable process forces the thin sets to appear in the integral test. For a two-sided
stable process with ˛ 2 .0; 1/ we can choose a P0-thin set A with positive potential (for
example a union of well-chosen small disjoint intervals accumulating at 0, similarly to
Example 2.14). If we define � D 1AC we can construct a local weak solution by running
the stable process until it hits A. Since A is thin at 0, the solution is non-trivial. Without
the thin set B D A in the integral test, statement (i) would fail as ��˛ equals C1 on A
and A has positive potential. The situation is simpler for ˛ 2 .1; 2� because in that case a
set is thin at 0 if and only if its complement contains a ball around 0.

The present article only deals with SDEs for two-sided stable processes with
˛ 2 .0; 1/, exploiting crucially the transience. We were only able to derive partial results
for the Cauchy process (˛ D 1) which we defer to future research.

Organisation of the article

The article is organised as follows. The core of the work is carried out in Section 2, where
we present the general integral test for infinite-time-horizon path integrals

R1
0
f .Xs/ ds

for general standard processes. By killing these processes in various ways we deduce
integral tests for finite-time-horizon integral tests

R t
0
f .Xs/ ds in Sections 3 and 4. In

Section 5 the results from Sections 2–4 are translated into SDE theorems using Zanzotto’s
time-change techniques.

2. Infinite-time path integral tests

2.1. Setting

Before we begin it is worthwhile precisely establishing the setting in which our theorems
are proved, as several aspects of the proofs rely upon it. We do not assume anything out
of the ordinary, and the reader familiar with the potential theory of Markov processes can
skip ahead to Section 2.2.

Take E to be a locally compact Hausdorff space with a countable base, and let �
be adjoined to E as the point at infinity if E is non-compact, and as an isolated point
if E is compact. Let E be the Borel � -algebra on E, and E� the Borel � -algebra on
E� WD E [ ¹�º: Let D be the space of paths w W Œ0;1�! E� such that w.1/ D �,
and if w.t/ D � then w.s/ D � for all s � t . Let (Xt , t 2 Œ0;1�) be the family
of coordinate maps Xt W D ! E�, i.e. Xt .w/ D wt for all t 2 Œ0;1�; and denote by
Ft D �.Xs; 0 � s � t ) and F D � (Xs , s 2 Œ0;1�) the canonical filtration of X . Let
.�t ; t 2 Œ0;1�/ be the family of translation maps �t W D! D W w 7! .wtCs; s � 0/, and
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let (Px ; x 2 E�) be a family of probability measures on .D;F / satisfying the following
conditions:

(i) (Regularity) For each measurable Y W D ! E and each B 2 E , the map x 7!
Px.Y 2 B/ is E�-measurable.

(ii) (Normality) Px.X0 D x/ D 1 for all x 2 E�.

(iii) (Càdlàg paths) The path functions t ! Xt .w/ are right-continuous on Œ0;1/ and
have left limits on Œ0; �/ Px-almost surely for all x 2 E, where the random time
�.w/ WD inf ¹t > 0 W Xt .w/ D �º is called the lifetime of X .

(iv) (Quasi-left-continuity) For any sequence Tn of increasing Ft -stopping times with
limit T , we have XTn ! XT Px-almost surely on ¹T < �º, for all x 2 E.

(v) (Strong Markov property) For all x 2E�, stopping times T , s 2 Œ0;1�, and bounded
measurable f the strong Markov property holds:

Ex Œf .XTCs/jFT � D EXT Œf .Xs/� Px-almost surely.

The family (Px , x 2 E�) is called a standard Markov process on the state space
.E; E/, with cemetary state � and lifetime �. It is often more convenient to refer to X
(with associated laws Px) as the process. The assumption that E is Hausdorff ensures that
compact subsets of E are closed, and therefore E-measurable. In the proofs that follow
we shall also work with a strong Markov process (a time-changed Markov process) which
may not satisfy either (ii) or (iv).

For future use we define, for a Borel set B 2 E�, the random times

DB WD inf ¹t � 0 WXt 2 Bº; TB WD inf ¹t > 0 WXt 2 Bº; LB WD sup ¹t � 0 WXt 2 Bº:

Both DB and TB are stopping times, and are called the first entry time and first hitting
time of B respectively. LB is not in general a stopping time, and is called the last exit time
of B . By convention we set inf; D 1 and sup; D 0.

The (infinite-time-horizon/ path integral over a Markov process X on the state space
.E;E/ and for a non-negative E�-measurable function f W E� ! Œ0;1� is defined to be

I f1 D

Z 1
0

f .Xs/ ds:

If X has semigroup .Pt /0<t<1 and lifetime �, then the potential measure of X is defined
as

U.z; B/ D

Z 1
0

Pt .z; B/ dt D Ez

�Z �

0

1.Xt2B/ dt
�
; where Pt .z; B/ D Pz.Xt 2 B/;

for x 2 E and measurable B , with the corresponding potential operator

Uf .z/ WD

Z
E

f .x/U.z; dx/ D Ez

�Z �

0

f .Xs/ ds
�
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for B 2 E� and f measurable. In the Markov process literature, functions f on E are
commonly extended over E� by setting f .�/ D 0, and this conveniently allows us to
replace � in the definition of U by 1. In what follows we will study how finiteness
of If1 (almost surely and with positive probability) is related to the law of the potential
operator Uf .

Several complementary concepts of transience exist for Markov processes. The clas-
sical definition is that a standard Markov process on the state space .E; E/ is transient
if there exists a strictly positive, universally measurable function h such that Uh is finite
everywhere. This concept is not strong enough for our purposes, and we instead define
a transient standard Markov process as one which simultaneously satisfies the following
two conditions:

(i) U. � ; K/ is bounded for all compact K;

(ii) Pz.LK <1/ D 1 for all compact K and all z 2 E.

Chung and Walsh [10, §3.7] show that both conditions above imply classical transience,
and in Corollary 2.3 of his seminal paper Getoor [16] demonstrated that, under a regularity
condition on the excessive functions of X , they are equivalent to it. If further

(iii) Pz.LK < �/ D 1 for all compact K and all z 2 E,

we say that X is strongly transient. Clearly any transient process with an almost surely
infinite lifetime is also strongly transient. It is worth mentioning that for Lévy processes
all the definitions of transience discussed above are automatically equivalent – see for
example Sato [31, Theorem 35.4] – and in addition are equivalent to the condition that

(iv) limt!1jXt j D 1 almost surely.

Our analysis of path integrals uses the trick of viewing a path integral as the explosion
time of a time-changed process. To define the time change we use the finite-time path
integrals

I
f
t D

Z t

0

f .Xs/ ds; t 2 Œ0;1/:

Note that the convention f .�/ D 0 allows us to write either t 2 Œ0;1/ or t 2 Œ0; �/.
The right-continuous inverse of .I ft , t � 0/ will be denoted by 'f . Each 'ft is a stopping
time forX . When f is unambiguous we shall drop it from the notation. The time-changed
process .Yt , t 2 Œ0;1�/ of interest is defined as

Yt D X't for t 2 Œ0;1/; Y1 D �; (4)

which moves on the same state space E as X . It is not immediately clear which of the
properties of X are inherited by X' . Volkonskiı̆ [32] proved that X' is a strong Markov
process if

t 7! It is continuous on the whole of Œ0;1/, (5)

which is equivalent to assuming I1 D NI WD supt2Œ0;1/W It<1 It : Note that

' NI D '1 WD lim
t!1

't : (6)
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A sufficient condition for (5) to hold almost surely, though not necessary, is that

It <1 for all t 2 Œ0;1/ almost surely; (7)

which is what we are going to check when we use the strong Markov property of the time
change. This implies (indeed is equivalent to) '1 D1 almost surely, and we getZ 1

0

�.X's / ds D
Z 1
0

�.Xt /f .Xt / dt almost surely. (8)

This will be of particular use to us later in this section.
As alluded to earlier, in contrast to existing theory of stable SDEs for ˛ 2 .1; 2�, our

analysis is based on general Markov process theory. For this reason we now introduce an
object which commonly appears in potential theory of Markov processes, called the fine
topology. IfM is a Borel set then x 2E is called a regular point forM if Px.TM >0/D 0.
We denote the set of regular points by M r , and note that XTM 2 M

r [M Py-almost
surely for all y 2 E. A measurable set is called finely closed if M r � M and finely
open if the complement is finely closed. The collection of finely open sets with compact
closure in E forms the base of a topology called the fine topology. It is immediately seen
that right-continuity of paths of X implies that all open sets are finely open, and therefore
closed sets are finely closed.

We will also make use of a result on the regularity of q-excessive functions, for which
we refer to Blumenthal and Getoor [9, Theorem VI(4.9)] or Chung and Walsh [10, The-
orem 13.80]. If X is a standard Markov process on .E; E/ with strong Feller resolvents
(and dual resolvents, which is automatically fulfilled for Lévy processes) then the follow-
ing are equivalent:

(H) If K � E is a non-polar set then some point of K must be regular for K.

(R) If f is a locally integrable q-excessive function for some q > 0, then t 7! f .Xt / is
continuous whenever t 7! Xt is continuous on Œ0; �/.

(R/0 If f is a locally integrable q-excessive function for some q > 0, and Tn is an increas-
ing sequence of stopping times with limit T , then f .XTn/! f .XT / on ¹T < �º.

The assumption that X has strong Feller resolvents is fairly strong for general standard
MarkovX , but Hawkes [18] showed that for Lévy processes it is equivalent to existence of
a density uq for the q-potential measure, which is known to hold for a broad class of Lévy
processes, including stable processes (see Sato [31, Theorem 41.15, Remark 41.20]).
Property (H) is commonly known as Hunt’s condition, and equivalent formulations can be
found in Chung and Walsh [10, Chapter 13]. Hunt’s condition is satisfied by all non-trivial
stable processes on Rd (see Kanda [20, 21]), but for general Lévy processes the question
of whether or not it holds remains an open problem (for an example of a Lévy process
not satisfying (H) see Hawkes [18, Theorem 4.1], and for further discussion see Bertoin
[6, Chapter II.7]). Property (R) is called regularity of f , and it is interesting to compare
it with the fact that for every standard Markov process X , t 7! f .Xt / is right-continuous
and has left-hand limits on Œ0;1/ for any q-excessive function f .
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2.2. Positive probability case

The classification of finiteness and the computation of distributions of path integrals If1
and Ift have a rich history. Integral tests were derived for different classes of stochastic
processes under different assumptions on f . Applications can be found for instance in
SDEs, branching processes, or random walks in random environments. The closest article
in its general form was recently published by Kolb and Savov [22]. For a Lévy process
drifting to C1 a complete integral-test characterisation of finiteness was proved under
rather strong assumptions on f – most importantly, f was assumed finite:

Theorem 2.1 (Kolb–Savov [22]). If the measurable function f W R! Œ0;1/ is either
continuous or ultimately non-increasing andX is a transient Lévy process with limitC1,
the following are equivalent:

(i) Pz.
R1
0
f .Xs/ ds D1/ > 0.

(ii) Pz.
R1
0
f .Xs/ ds D1/ D 1.

(iii) The integral test
R

RnB f .x/ U.z; dx/ D 1 holds for all Borel sets B such that
Pz.LB <1/ D 1.

The sets B appearing in (iii) are called Pz-transient sets. The occurrence of transient
sets is clearly necessary as the finite-time occupation of a transient set does not influence
finiteness of the path integral due to the assumptions on f . In Kolb and Savov’s theorem
either of the two assumptions on f , in combination with the fact thatX is a Lévy process,
is enough to ensure that the zero-one law Pz.I

f
1 <1/ 2 ¹0; 1º holds. It might be unclear

how to use the theorem due to the occurrence of the stochastically defined transient sets.
Kolb and Savov provide several examples of Lévy processes for which the sets can be
characterised. For example, if X has local time at points, the theorem works with B D
.�1; a�, a 2 R, and recovers the integral test at infinity of [11].

The present article extends the Kolb–Savov theorem in two directions. First, we shall
allow extended measurable functions f W R! Œ0;1� without any further assumptions,
and second, we shall consider X to be a general standard Markov process. The general-
isation to extended measurable functions is crucial in order to study SDEs with singular
coefficients, such as �.x/ D jxjˇ , since path integrals for f D ��˛ need to be analysed
as part of the representation of solutions via a time change. The generalisation to standard
Markov processes is useful for instance to understand finite-time-horizon path integrals
by applying the infinite-time-horizon theorem to killed processes.

The main difficulty arising from our weaker assumptions on f is a breakdown of
the zero-one law for path integrals, even for a Lévy process. As an example, let X be a
symmetric ˛-stable process with ˛ 2 .0; 1/. Then it is well-known that P0.TŒ1;2� <1/ 2
.0; 1/, which implies that P0

�R1
0
C11Œ1;2�.Xs/ ds <1

�
2 .0; 1/. Similarly to transient

sets in the setting of Kolb and Savov, avoidable sets must play a special role in the setting
of path integrals for which zero-one laws fail. As a consequence we will prove different
theorems for the positive probability case and the probability 1 case.
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In this section we provide a complete classification of finiteness with positive prob-
ability of infinite-time-horizon path integrals for standard Markov processes. The almost
sure case and the general form of the Kolb–Savov theorem will be treated in the next
section.

Definition 2.2. Let X be a standard Markov process on E with lifetime �. A Borel set
B 2E is called Pz-avoidable if Pz.DB <�/< 1. IfB is Pz-avoidable then its complement
M D E n B is called Pz-supportive, and satisfies

Pz.Xt 2M for all t 2 Œ0; �// > 0:

In general it is not at all clear what form avoidable or supportive sets should take but
a vast literature exists for special processes. Here are the most relevant examples for the
present article:

� If X is a recurrent Markov process then only polar sets are avoidable.

� If X is a two-sided stable process on R of index ˛ 2 .1; 2� then only the empty set is
avoidable.

� If X is a two-sided stable process on R of index ˛ 2 .0; 1/ then any compact set not
containing z is Pz-avoidable.

We can now formulate our general theorem on path integrals, an integral test which is not
a zero-one law, and which requires minimal assumptions on f and X .

Theorem 2.3. Let f WE! Œ0;1� be measurable andX a standard Markov process with
. possibly infinite/ lifetime �. Let z 2 E. Then the following are equivalent:

(i) Pz.
R1
0
f .Xs/ ds <1/ > 0.

(ii) The integral test
R
EnB

f .x/U.z; dx/ <1 holds for a Pz-avoidable set B .

Just as the occurrence of transient sets is clearly needed for the Kolb–Savov theorem,
the occurrence of avoidable (or supportive) sets is needed here since f can be anything
in avoidable sets without harming the positivity of the probability of finite path integral.
As for the Kolb–Savov theorem, extra knowledge on avoidable sets for particular pro-
cesses (such as the Wiener test for stable processes) can turn the integral test into a purely
analytic statement.

An equivalent formulation of Theorem 2.3 using supportive sets of Definition 2.2 is
that the following are equivalent:

(i) Pz.
R1
0
f .Xs/ ds D1/ D 1.

(ii) The integral test
R
M
f .x/U.z; dx/ D1 holds for all Pz-supportive sets M .

Supportive sets will appear most often in our proofs as an explicitly constructed set of
‘safe points’, in the sense that those are the issuing points of the state space from which the
path integral remains finite with positive probability. The idea of the proof of Theorem 2.3
is to use the observation that If1 <1 is equivalent to finite-time explosion of the time-
changed strong Markov process X' from (4) if the time change is well-behaved in the
sense of (7). The latter leads to the introduction of an additional indicator over a so-called
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super-finite set for the pair .X;f /, in the forthcoming Lemma 2.6 and Proposition 2.9. For
the analysis of explosion we exploit an old argument from the general study of transience
due to Getoor [16]; see Proposition 2.7.

In all of this section, X is a standard Markov process on a state space .E; E/, and
f W E ! Œ0;1� is a measurable function.

Definition 2.4. A super-finite set for .X; f / is defined by

M D

²
y 2 E W Py

�Z 1
0

f .Xs/ ds � n
�
> c

³
:

for some n 2 N and c 2 .0; 1/.

The regularity condition on X allows the pullback of .c;1/ by x 7! Px.I
f
1 � n/ to

be a set in E�, and it is trivial to remove the � point and see that M 2 E .
Our first lemma shows that if there exists some super-finite set for .X; f / then it is

possible to choose another measurable g W E ! Œ0;1� such that the whole state space E
is super-finite for .X; g/. The constant c2 is not optimal, but it suffices for our use of this
lemma.

Lemma 2.5. Suppose M D ¹y 2 E W Py.
R1
0
f .Xs/ ds � n/ > cº is a non-empty super-

finite set for .X; f / and let g D 1M � f . Then

Py

�Z 1
0

g.Xs/ ds � 2n
�
> c2; 8y 2 E:

That is, the entire state space E is super-finite for .X; g/.

Proof. Since g � f , also I gt � I
f
t for all t 2 Œ0;1�. Then the result holds immediately

for y 2M , since by definition of that set,

Py.I
g
1 � 2n/ � Py.I

f
1 � 2n/ � Py.I

f
1 � n/ > c > c

2:

We now prove the result for regular points y 2M r . Lemma I.10.19 of [9] gives a nested
increasing sequence of compact sets Km � M , m 2 N, such that, Py-almost surely,
TKm # TM as m!1. Since Py.TM D 0/ D 1 it then follows that

Py

�Z TK1

0

g.Xs/ ds � n
�

D Py

� 1\
mD1

²Z TK1

TKm

g.Xs/ ds � n
³�
D lim
m!1

Py

�Z TK1

TKm

g.Xs/ ds � n
�

� lim
m!1

Py

�Z TK1

TKm

g.Xs/ ds � nI TKm <1
�

D lim
m!1

Z
Km

Pa

�Z TK1

0

g.Xs/ ds � n
�

Py.XTKm 2 daI TKm <1/

� lim
m!1

Z
Km

Pa

�Z 1
0

f .Xs/ ds � n
�

Py.XTKm 2 daI TKm <1/:
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From [9, Lemma I.11.4] we know that XTKm 2 Km � M almost surely, and thus we
obtain the lower bound

Py

�Z TK1

0

g.Xs/ ds � n
�
> c � lim

m!1
Py.TKm <1/ D c � Py.TM <1/ D c:

In addition, since TKm decreases to TM D 0 Py-almost surely, it follows that we have
Py.AI TKm < 1/ " Py.A/ for any A 2 F . This, in combination with the inequality
above, shows that there exists a choice of j 2 N such that

Py

�Z TK1

0

g.Xs/ ds � nI TKj <1
�
> c:

Monotonicity of the sequence of sets .Km, m 2 N/ yields TK1 � TKj , and thus

Py

�Z TKj

0

g.Xs/ ds � nI TKj <1
�
> c: (9)

Fix this j . Next, using the strong Markov property, we get

Py

�Z 1
0

g.Xs/ ds � 2nI TKj <1
�

� Py

�Z TKj

0

g.Xs/ ds � nI
Z 1
TKj

g.Xs/ ds � nI TKj <1
�

D Ey
�
1
.
R TKj
0

g.Xs/ ds�n/
1.TKj <1/Ey

�
1.R1TKj g.Xs/ ds�n/

ˇ̌
FTKj

��
D Ey

�
1
.
R TKj
0

g.Xs/ ds�n/
1.TKj <1/PXTKj

�Z 1
0

g.Xs/ ds � n
��
;

and now since I g1 � I
f
1,

� Ey

�
1
.
R TKj
0

g.Xs/ ds�n/
1.TKj <1/PXTKj

�Z 1
0

f .Xs/ ds � n
��
:

SinceKj �M the inner probability is bounded below by c. This holds even in the extreme
case Kj DM , because then M is compact and XTKj 2M almost surely. The remaining
expectation can also be bounded from below by c using (9). In total this leads to

Py

�Z 1
0

g.Xs/ ds � 2n
�
� Py

�Z 1
0

g.Xs/ ds � 2nI TKj <1
�
> c2:

Thus the lemma is proved for regular points y 2M r . What now remains is to extend it to
all y 2 E. In this case,

Py

�Z 1
0

g.Xs/ ds � 2n
�

D Py

�Z 1
0

g.Xs/ ds � 2nI TM <1

�
C Py

�Z 1
0

g.Xs/ ds � 2nI TM D1
�
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D Py

�Z 1
TM

g.Xs/ ds � 2nI TM <1

�
C Py.TM D1/;

D

Z
E

Pa

�Z 1
0

g.Xs/ ds � 2n
�

Py.XTM 2 daI TM <1/C Py.TM D1/:

Lemma I.11.4 of [9] tells us that the integrating measure is concentrated onM [M r , and
thus we can use what we have already proved for elements of M [M r to conclude that

Py

�Z 1
0

g.Xs/ ds � 2n
�
> c2Py.TM <1/C Py.TM D1/

� c2.Py.TM <1/C Py.TM D1// D c
2:

The proof of the lemma is now complete.

The next lemma serves as preparation for the proposition that follows it. It shows
that restricting f to a super-finite set ensures that the path integral does not explode in
finite time, which is exactly condition (7), and ensures that the time change of X with the
inverse of the path integral is strong Markov.

Lemma 2.6. Suppose M D ¹y 2 E W Py.
R1
0
f .Xs/ ds � n/ > cº is a non-empty super-

finite set for .X; f /. Let g D 1M � f . Then

Py

�
9 t 2 .0;1/ W

Z t

0

g.Xs/ ds D1
�
D 0; 8y 2 E:

Proof. Fix y 2 E and recall the stopping times

'gn D inf ¹t > 0 W I gt > nº; n 2 N; 'g1 D lim
n!1

'gn :

Since

'gn <1 ”

Z 1
0

g.Xs/ ds > n ” 9 t 2 .0;1/ W

Z t

0

g.Xs/ ds > n; (10)

we deduce from Lemma 2.5 that for all y 2 E,

Py.'
g
2n <1/ � 1 � c

2: (11)

We then see for k; n 2 N that

Py.'
g

2kn
<1/ D Py

�
9t > 0 W

Z t

0

g.Xs/ ds > 2kn
�

D Py

�
'
g

2n.k�1/
<1I 9t 0 > 0 W

Z '
g

2n.k�1/
Ct 0

'
g

2n.k�1/

g.Xs/ ds > 2n
�

D Ey
�
1.'g

2n.k�1/
<1/Ey

�
1
.9t 0>0W

R 'g2n.k�1/Ct0
'
g
2n.k�1/

g.Xs/ ds>2n/

ˇ̌
F'g

2n.k�1/

��
D Ey

�
1.'g

2n.k�1/
<1/PX'g

2n.k�1/

�
9t 0 > 0 W

Z t 0

0

g.Xs/ ds > 2n
��

D Ey Œ1.'g
2n.k�1/

<1/PX'g
2n.k�1/

.'
g
2n <1/�;
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and by (11),

� .1 � c2/Py.'
g

2n.k�1/
<1/

:::

� .1 � c2/k ! 0 as k !1:

Continuity of measures yields Py.'
g
1 <1/ D 0, which via (10) implies the claim.

The next proposition is partially motivated by ideas from Getoor [16], in particular the
proof of Lemma (3.1) there, albeit used in a different fashion. It proves that super-finite
sets for .X; f / have finite f -potential.

Proposition 2.7. Suppose that M D ¹y 2 E W Py.
R1
0
f .Xs/ ds � n=2/ > pº for some

n 2 N and p 2 .0; 1/ is a non-empty super-finite set for .X; f /. ThenZ
M

f .x/U.y; dx/ �
n

p2
for all y 2 E:

Proof. With g D 1M � f we introduce the time-changed process Yt D X'gt
from (4),

where

'
g
t D inf

²
s > 0 W

Z s

0

g.Xu/ du > t
³
; t 2 Œ0;1/:

Lemma 2.6 tells us that (7) and thus (5) are fulfilled almost surely and therefore, as per the
discussion of the work of Volkonskiı̆ [32] in Section 2.1, Y is a strong Markov process.
For this proof we will use the notation

h.x/ D Px.I
g
1 � n/; x 2 E: (12)

By Lemma 2.5, h is bounded below by p2 on E.
We denote by .Pt / the transition operator of Y and by UY the corresponding potential

operator, to distinguish it from UX , the potential operator of X . The function h from (12)
is extended to E� by setting h.�/ D 0 as usual. We then see that

Pn1E .x/ D Px.X'gn 2 E/ D Px.'
g
n < �X /

D Px

�
9s < �X W

Z s

0

g.Xu/ du > n
�

� Px

�Z �X

0

g.Xu/ du > n
�
D 1E .x/ � h.x/

for all x 2 E�. The main part of the proof is showing that UY h is bounded above. Using
the definition of the potential, the estimate of Pn1E above, and the semigroup property
yields

UY h.x/ D lim
t!1

Z t

0

Psh.x/ ds

� lim
t!1

Z t

0

.Ps1E .x/ � PsPn1E .x// ds
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D lim
t!1

�Z t

0

Ps1E .x/ ds �
Z t

0

PsCn1E .x/ ds
�

D lim
t!1

�Z t

0

Ps1E .x/ ds �
Z tCn

n

Ps1E .x/ ds
�

D lim
t!1

�Z n

0

Ps1E .x/ ds �
Z tCn

t

Ps1E .x/ ds
�

�

Z n

0

Ps1E .x/ ds � n (13)

for all x 2 E�. It has already been noted that h is bounded below by p2 > 0 on E. Then
by monotonicity of the potential operator,

UY 1E .y/ �
1

p2
UY h.y/ for all y 2 E: (14)

Combining (13) and (14) implies UY 1E .y/ � 1
p2
UY h.y/ �

n
p2

for all y 2 E. Bearing in
mind the following identity for bounded measurable functions b, obtained via change of
variables and the definition g D 1M � f :

UY b.y/DEy

�Z 1
0

b.X'gs /ds
�
DEy

�Z 1
0

b.Xt /g.Xt /dt
�
D

Z
M

b.x/f .x/UX .y;dx/;

we obtain the desired estimateZ
M

f .x/UX .y; dx/ D UY 1E .y/ <
n

p2
for all y 2 E:

The proof is now complete.

Proposition 2.7 is a strong result for super-finite sets. All that remains to be done in
order to prove Theorem 2.3 is to prove that non-empty super-finite sets are also supportive.
Before doing so, another technical lemma is needed.

Lemma 2.8. For n 2 N and c 2 .0; 1/, the set

B D

²
x 2 E W Px

�Z 1
0

f .Xs/ ds � n
�
� c

³
contains its regular points, and is therefore finely closed.

Proof. The definition of B is exactly that of the complement in E of some super-finite set
for .X; f /. Let K � B be a compact set, so that, by right-continuity of paths, XTK 2 K
almost surely. Then for any a 2 E we obtain

Pa.I
f
1 � n/ D Pa.I

f
1 � nI TK < �/C Pa.I

f
1 � nI TK � �/

� Pa

�Z 1
TK

f .Xs/ ds � nI TK < �
�
C Pa.I

f
1 � nI TK � �/

D

Z
Py.I

f
1 � n/Pa.XTK 2 dyI TK < �/C Pa.I

f
1 � nI TK � �/

� c C Pa.TK � �/; (15)
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as K � B . Since (15) is true for all compact sets K � B , we find for all a 2 E that

Pa

�Z 1
0

f .Xs/ ds � n
�
� c C inf

K�B
Pa.TK � �/: (16)

We now argue that the second summand of the right-hand side of (16) equals 0 if a is
regular for B . From [9, Lemma I.10.19] it follows that there exists an increasing sequence
.Kn/ of compact subsets of B such that Pa.TKn # TB/ D 1. Monotonicity of measures
implies infK�B Pa.TK � �/ D limn!1 Pa.TKn � �/ D Pa.TB � �/ D 0. But then (16)
implies a 2 B . Thus Br � B . Equivalence of B being finely closed and containing its
regular points is Exercise II.4.9 of [9].

We have built enough structure around super-finite sets to now prove the final proposi-
tion of this section, which establishes that super-finite sets are supportive when the process
is issued from them.

Proposition 2.9. For n 2 N and c 2 .0; 1/ the super-finite set

Mn;c D

²
y 2 E W Py

�Z 1
0

f .Xs/ ds � n
�
> c

³
is Pz-supportive if and only if z 2Mn;c . In particular, if Pz.I

f
1 <1/ > 0 for some fixed

z 2 E then there exists a super-finite set for .X; f / which is also Pz-supportive.

Proof. For ease of notation let hn.x/D Px.
R1
0
f .Xs/ds � n/ and defineBn;c D ¹x 2E W

hn.x/ � cº D E nMn;c as in Lemma 2.8.
Necessity of z 2 Mn;c for Mn;c to be supportive is clear, and we shall prove suffi-

ciency by proving the contrapositive. Let us suppose for the moment that Mn;c is not
Pz-supportive, that is,

Pz.DBn;c < �/ D Pz.DEnMn;c < �/ D 1:

From this we obtain

hn.z/ D Pz

�Z 1
0

f .Xs/ ds � nI DBn;c < �
�

� Pz

�Z 1
DBn;c

f .Xs/ ds � nI DBn;c < �
�

D

Z
E

Pa

�Z 1
0

f .Xs/ ds � n
�

Pz.XDBn;c 2 daI DBn;c < �/: (17)

Due to Lemma 2.8 the regular points of Bn;c belong to Bn;c , and therefore Lemma I.11.4
of [9] tells us that Py.XDBn;c 2 daI DBn;c < �/ is concentrated on Bn;c . Then returning
to (17) we can deduce from the definition of Bn;c that

hn.z/ �

Z
E

Pa

�Z 1
0

f .Xs/ ds � n
�

Pz.XDBn;c 2 daI DBn;c < �/ � c:
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To recap, we have proved that

Mn;c is not Pz-supportive H) hn.z/ � c;

or equivalently
hn.z/ > c H) Mn;c is Pz-supportive: (18)

Since z 2 Mn;c if and only if hn.z/ > c, the first claim is proved. For the second claim,
note that, by continuity of measures, Pz.

R1
0
f .Xs/ ds <1/ > 0 implies

hn0.z/ D Pz

�Z 1
0

f .Xs/ ds � n0

�
> 0

for some n0 2 N. Hence in this case (18) implies the existence of some c0 such that
Mn0;c0 is Pz-supportive.

Proof of Theorem 2.3. Path integral proofs typically have a simple and a complicated
direction. The simple direction “(” uses the potential expression to deduce finiteness
of the expectation. In our setting the argument goes as follows. Suppose that B is a Pz-
avoidable set with complement M D E n B satisfying

Ez

�Z 1
0

1M .Xs/f .Xs/ ds
�
D

Z
M

f .x/U.z; dx/ <1:

Then Pz.
R1
0

1M .Xs/f .Xs/ ds <1/ D 1, and thus

Pz

�Z 1
0

f .Xs/ ds <1
�
� Pz

�Z 1
0

f .Xs/ ds <1I Xs 2M 8s < �
�

D Pz

�Z 1
0

1M .Xs/f .Xs/ ds <1I Xs 2M 8s < �
�

D Pz.Xs 2M for all s < �/ > 0:

This shows the “(” direction of Theorem 2.3.
To prove the “)” direction we take the super-finite supportive set from Proposi-

tion 2.9 and obtain the integral test from Proposition 2.7.

2.3. Almost sure case

Theorem 2.3 was formulated and proved in great generality. In the following sections we
derive a couple of corollaries by adding or changing the assumptions. A first variant of our
proof technique provides a complete theorem in the probability 1 setting. The unpleasant
supportive sets do not vanish in the integral test

R
M
f .x/U.z; dx/ <1, but can be made

large.

Theorem 2.10. Let X be a standard Markov process on the state space E, and let f W
E ! Œ0;1� be measurable. Then the following are equivalent:

(i) Pz.
R1
0
f .Xs/ ds <1/ D 1.

(ii) For every " > 0 there exists a Pz-supportive set M such that
R
M
f .x/U.z; dx/ <1

and X stays in M with probability at least 1 � ".
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Before going into the proof let us recall again that the theorem can be formulated
equivalently using the more familiar notion of avoidable sets, the complements of sup-
portive sets. We stick to the notion of supportive sets as those are constructed in the proof.

Proof of Theorem 2.10. (i))(ii) Assuming (i) it follows that for every " > 0, and in
particular for any choice of " 2 .0; 1=2/, there exists an n 2 N such that

Pz

�Z 1
0

f .Xs/ ds � n
�
> 1 � ": (19)

Fix these n; " and define the super-finite set M D ¹y 2 E W Py.
R1
0
f .Xs/ ds � n/ > "º;

which by (19) contains z, and thus by Propsition 2.9 is Pz-supportive. Moreover,

Pz

�Z 1
0

f .Xs/ ds � n
�

D Pz

�Z 1
0

f .Xs/ ds � nI DEnM D1
�
C Pz

�Z 1
0

f .Xs/ ds � nI DEnM <1

�
� Pz.DEnM D1/C Pz

�Z 1
DEnM

f .Xs/ ds � nI DEnM <1

�
:

Applying the strong Markov property atDEnM and recalling from Lemma 2.8 thatE nM
contains its regular points, which implies that XDEnM 2 E nM almost surely, gives
the upper bound Pz.DEnM D 1/ C ". In combination with (19) this yields 1 � 2" <
Pz.DEnM D1/: It remains only to note via Proposition 2.7 that

R
M
f .x/U.z;dx/ <1.

(i)((ii) Take " > 0 small and let M be such that Pz.DEnM <1/ � " and

Ez

�Z 1
0

f .Xs/1M .Xs/ ds
�
D

Z
M

f .x/U.z; dx/ <1:

Then Pz.
R1
0
f .Xs/1M .Xs/ ds <1/ D 1 and, in particular,

Pz

�Z 1
0

f .Xs/ ds <1
�
� Pz

�Z 1
0

f .Xs/ ds <1I DEnM D1
�

D Pz

�Z 1
0

f .Xs/1M .Xs/ ds <1I DEnM D1
�

D Pz.DEnM D1/ > 1 � ":

This holds for arbitrarily small " > 0, and thus Pz.
R1
0
f .Xs/ ds <1/ D 1.

Example 2.13 below shows what the large supportive sets might be, and why they
cannot be omitted. In that example f has a pole, and the large supportive sets can be
chosen to be all sets that do not contain a small interval around the pole of f .

We can immediately derive an interesting consequence of Theorem 2.10 when f is
locally bounded and X is transient. The main point here is that the local boundedness
of f implies that finiteness of path integrals is not affected by the behaviour of X for a
finite amount of time. Hence, speaking about sets in which X spends no time (avoidable)
or finite time (transient) should be the same. The first result makes this idea precise, and
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the following theorem specialises to processes with trivial tail � -algebra (such as Lévy
processes) for which transience of sets are zero-one events.

Corollary 2.11. Let X be a transient standard Markov process on Rd , and let f W Rd !
Œ0;1/ be measurable and bounded on compact sets. Then the following are equivalent:

(i) Pz.
R1
0
f .Xs/ ds <1/ D 1.

(ii) For every " > 0 there exists a set B 2 B.Rd / such that
R

Rd nB f .x/ U.z; dx/ <1
and Pz.LB < �/ � 1 � ".

Proof. For any Borel set B the last exit time LB is clearly zero on the event that the
first entry time DB is infinite. Therefore, if we assume (i), Theorem 2.10 gives a set
B WD Rd nM such that Pz.LB < �/ � 1 � " and

R
Rd nB f .x/ U.z; dx/ <1. So (ii) is

proven.
Now suppose (ii) holds. We first make use of the following argument from [9, proof of

Proposition I(9.3)]. Let .Kn/ be an increasing sequence of compact sets withKn �KınC1
for all n and

S
Kn D Rd . Let T WD limn!1 TRd nKn . By quasi-left-continuity, XT

Rd nKn

! XT almost surely on ¹T < �º, and by right-continuity, XTRd nKnC1
… Kn for all n.

Therefore XT D � almost surely on ¹T < �º; clearly this is also true on ¹T � �º, and
thus it holds almost surely. Since the lifetime � is the first time thatX reaches the cemetary
state, we conclude that T � � almost surely. Now fix some " > 0, and let B be the set
satisfying Pz.LB < �/ � 1 � " and

R
Rd nB f .x/ U.z; dx/ < 1: Due to continuity of

measure,
Pz.LB � TRd nKn/ # Pz.LB � �/ < ":

Then we can find a compact set K � Rd such that Pz.LB < TRd nK/ > 1 � 2": Define
M DK [ .Rd nB/. This definition implies that on the eventLB <TRd nK , the processX
never leaves M . That is,

Pz.DRd nM D1/ � Pz.LB < TRd nK/ > 1 � 2";

so X stays in M with probability at least 1 � 2". In additionZ
M

f .x/U.z; dx/ �
Z

Rd nB
f .x/U.z; dx/C U.z;K/ sup

x2K

f .x/:

This together with the integral test of (ii), boundedness of f on compact sets, andU.z;K/
<1 implies that

R
M
f .x/ U.z; dx/ <1: Our choice of " > 0 was arbitrary, and so the

result follows from Theorem 2.10.

In the case of a trivial tail � -algebra, Corollary 2.11 simplifies and for the special case
of a Lévy process matches exactly the main theorem of Kolb and Savov [24], which we
recalled in Theorem 2.1. For a Markov process X with infinite lifetime, we say X has a
trivial tail � -algebra when issued from z 2 E if

A 2
\
s�0

�.Xt ; t � s/ H) Pz.A/ 2 ¹0; 1º:

As an example, a Lévy process on Rd has a trivial tail � -algebra when issued from every
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z 2 Rd . Since the events ¹LB <1º are in the tail � -algebra, the previous theorem can
be reformulated using transient sets, i.e. the sets with Pz.LB <1/ D 1.

Theorem 2.12 (Generalised Kolb–Savov zero-one law for perpetual integrals). Let X be
a standard Markov process on Rd with trivial tail � -algebra when issued from z 2 Rd ,
and let f W Rd ! Œ0;1/ be measurable and bounded on compact sets. Suppose in addi-
tion that Pz.� D1/ D 1. Then the following are equivalent:

(i) Pz.
R1
0
f .Xs/ ds <1/ > 0.

(ii) Pz.
R1
0
f .Xs/ ds <1/ D 1.

(iii) There exists a transient set B .that is, a Borel set with Pz.LB <1/ D 1/ such that
the integral test

R
Rd nB f .x/U.z; dx/ <1 holds.

2.4. Examples for stable Lévy processes

In this section we give two examples that go beyond the drastic example f D C11Œ1;2�
from Section 2.2. Both examples are for transient symmetric stable processes on R, i.e.
˛ 2 .0; 1/. In that setting the potential measure is absolutely continuous with (ignoring
constants)

U.z; dx/ D jz � xj˛�1 dx; z; x 2 R:

The first example shows that supportive sets also cannot be omitted in the integral test for
finite (or bounded) f . Nonetheless, the supportive sets can be chosen large as proved in
Theorem 2.10.

Example 2.13. Assume z D 0, fix a point y 2 R not equal to zero, and let " > 0 be such
that jyj > ". Suppose that f has support on B".y/ D ¹x W jx � yj < "º. Since the density
u.x/ D jxj˛�1 of U.0; dx/ is bounded on the support of f we find thatZ

R
f .x/U.0; dx/ <1 ”

Z
R
f .x/ dx <1:

Hence, if we define such an f with a non-integrable pole at y, for instance f .x/ D
.x � y/�21B".y/.x/, we have

R
R f .x/U.0; dx/ D 1. Now recall that X stays a positive

distance away from the pole y almost surely.2 It follows that

� WD sup
t2Œ0;1/

f .Xt / <1 almost surely.

In addition, P0.LB".y/ <1/D 1. Therefore, the infinite-time path integral is finite almost
surely, that is, Z 1

0

f .Xs/ ds � �LB".y/ <1;

but the integral test fails without a supportive set. The supportive set can be chosen large.
Any set not containing a small ball around the pole of f at y is possible. This is exactly
the phenomenon that we found in Theorem 2.10.

2This well-known fact can be proven using the density of the point of closest reach of X (see
[25]).
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The next example gives a bounded function f for which the supportive set in the
integral test can be given explicitly.

Example 2.14. We construct an avoidable set A with potential U.z; A/ D 1 for sym-
metric ˛-stable processes with ˛ 2 .2=3; 1/. Then the function f WD 1A is a further
(bounded) counterexample for which

R1
0
f .Xs/ ds is finite with positive probability

(it is actually finite almost surely as the tail � -algebra of a Lévy process is trivial) butR
f .x/ U.z; dx/ D 1. The set A is a disjoint union of shrinking intervals drifting off to

infinity. The sizes of the intervals are shrinking sufficiently fast to be avoidable, but not
fast enough to have finite potential.

For transient isotropic stable processes a result called Wiener’s criterion gives an ana-
lytic description of sets which are thin at a point; see [8, Corollary V.4.17] for a classical
presentation. That result can be extended to an analytic description of avoidable sets via
[28, Corollary A.4], and is stated as follows. With so-called shells Sn WD ¹x 2 R W �n�1 <
jx � zj � �nº for arbitrary fixed � 2 .1;1/,

B is P0-avoidable ”
1X

nD�1

�n.˛�1/C.B \ Sn/ <1;

where C.B \ Sn/ is the capacity of B \ Sn. The capacity of a stable process can be
computed or estimated using results from probabilistic potential theory. Define the sets
A;A1; : : : 2 B.R/ by

An WD Œ2
n
� 2.n�1/=3; 2n/ and A WD

1[
nD1

An:

Because 2n � 2.n�1/=3 > 2n � 2.n�1/ D 2n�1, we can take � D 2 in the definition of Sn
and have An � Sn for each n 2 N, and in particular A \ Sn D An. We now show that A
is P0-avoidable for all ˛ 2 .0; 1/.

Let B" D ¹x 2 R W jxj < "º. Notice that each A \ Sn is just a translation of the ball
of radius 2�12.n�1/=3 D 2.n�4/=3. Then Proposition 42.12 of Sato [31] yields C.A \ Sn/
D C.B2.n�4/=3/ D C.2.n�4/=3B1/: From the scaling property C.aB/ D a1�˛C.B/ for
capacities of stable processes it follows that

C.A \ Sn/ D 2
.n�4/.1�˛/=3C.B1/:

Now the summation test of Wiener with � D 2 is
1X

nD�1

2n.˛�1/C.A \ Sn/ D

1X
nD1

2n.˛�1/C.A \ Sn/

D C.B1/
1X
nD1

2n.˛�1/2.n�4/.1�˛/=3

D 24.˛�1/=3C.B1/
1X
nD1

2.2n=3/.˛�1/:
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SinceC.B1/D
�. 12 /

�.˛2 /�..
1�˛
2 /C1/

is a finite constant (see Bliedtner and Hansen [8, Example

V.4.16(2)]), the quantity above is finite if and only if
P1
nD1 2

.2n=3/.˛�1/ is finite, and this
is equivalent to 2.2=3/.˛�1/ < 1, that is, ˛ < 1. Hence, A is an avoidable set for all stable
processes with ˛ 2 .0; 1/.

With the explicit form of the potential we can compute the potential U.0;A/:

U.0;A/ D

Z
A

jxj˛�1 dx D
1X
nD1

Z 2n

2n�2.n�1/=3
x˛�1 dx

�

1X
nD1

2n.˛�1/.2n � .2n � 2.n�1/=3// (monotonicity of x˛�1)

D 2�1=3
1X
nD1

2n.˛�2=3/:

This sum is infinite if ˛ > 2=3. Combining both computations we found an avoidable set
A with infinite potential for symmetric stable processes of index ˛ 2 .2=3; 1/. Setting
f D 1A we have an example function for which

R1
0
f .Xs/ ds D 0 < 1 with posi-

tive probability and
R

R f .x/ U.0; dx/ D 1. Hence, the supportive set M D RnA inR
M
f .x/ U.0; dx/ is needed also for bounded f . The example of course allows modi-

fications for which f has support on A and f is smooth or vanishes (slowly enough) at
infinity.

3. Finite-time path integral tests

The results of Section 2 for infinite-time-horizon path integrals will now be used to study
finite-time-horizon path integrals simultaneously for all finite times. We profit here from
the very general assumptions of Theorem 2.3 which allows us to use path integrals in
different setups, such as for killed processes. We derive conditions under whichZ t

0

f .Xs/ ds <1 for every t < �

holds with positive probability or probability 1. These questions were raised and answered
for the Brownian motion by Engelbert and Schmidt [13] in 1981, in the form of the fol-
lowing zero-one law. For f W R! Œ0;1� measurable they proved the equivalence of

(i) P0.
R t
0
f .Ws/ ds <1 for every t � 0/ > 0;

(ii) P0.
R t
0
f .Ws/ ds <1 for every t � 0/ D 1;

(iii)
R
K
f .y/ dy <1 for all compact K � R.

The proof is a direct consequence of the occupation time formulaZ t

0

f .Ws/ ds D
Z

R
f .x/Lt .x/ dx
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and the joint continuity of the local time in both coordinates. In one dimension the
Brownian motion shares many properties with stable processes of index ˛ 2 .1; 2/, and
Zanzotto [34] extended Engelbert and Schmidt’s equivalence of (i)–(iii) to this class. Zan-
zotto’s proof is identical to the Brownian case as the local time for the stable processes is
also jointly continuous. With the same proof, the equivalence of (i)–(iii) holds equally for
all Lévy processes with jointly continuous local time. As in the previous section the same
result cannot hold for ˛ 2 .0;1/ due to the transient nature of those stable processes, which
allows regions with large f values to be avoided, so that avoidable (or supportive) sets
must occur in the theorems. The results presented in this section are Engelbert–Schmidt-
type results for general transient Markov processes. In Section 3.1 we prove theorems
which are close to the Engelbert–Schmidt theorem with the exception of the appearance
of supportive sets. In Section 3.2 we use our methods to extend the Engelbert–Schmidt–
Zanzotto theorem to Lévy processes with local time which are not necessarily jointly
continuous.

3.1. Transient Markov processes

For general transient Markov processes the Engelbert–Schmidt zero-one law mentioned
above fails, since, with positive probability, X can avoid regions in which f can be arbi-
trarily large. This in particular implies that a general result should not be a zero-one law
at all. Here we present two theorems that together provide a counterpart to Engelbert and
Schmidt’s theorem for standard transient Markov process. The first concerns the positive
probability case, and the theorem for almost sure finiteness is given below.

Theorem 3.1. LetX be a strongly transient standard Markov process and f WE! Œ0;1�

measurable. For z 2 E, the following are equivalent:

(i) Pz.
R t
0
f .Xs/ ds <1 for every t < �/ > 0.

(ii) There exists a Pz-supportive setM such that
R
M\K

f .y/U.z; dy/ <1 for all com-
pact K � E.

Proof. (i))(ii) Let .Kn; n � 1/ be a sequence of increasing compact sets satisfy-
ing

S
n�1 Kn D E, and define fn D f 1Kn . Since X is strongly transient, we have

Pz.LKn < �/ D 1 for all n, and thus

Pz

�Z t

0

f .Xs/ ds <1 for every t < �
�
> 0

H) Pz

�Z LKn

0

f .Xs/ ds <1 for every n 2 N

�
> 0

H) 9p > 0 W Pz

�Z 1
0

fn.Xs/ ds <1 for every n 2 N

�
> p: (20)

It follows that there exists a constant C1 > 0 such that

Pz

�Z 1
0

f1.Xs/ ds < C1;
Z 1
0

fn.Xs/ ds <1 for every n � 2
�
> p:
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Repeating this process inductively for every n gives a sequence of positive, non-
decreasing .Cn; n � 1/ such that Pz.

Tk
nD1 Bn/ > p for all k � 1, where Bn D

¹
R1
0
fn.Xs/ ds < Cnº. Now letting B WD

T1
nD1 Bn we see from continuity of measures

that

Pz.B/ D lim
k!1

Pz
� k\
nD1

Bn

�
� p: (21)

This motivates us to define the Borel set M WD ¹y 2 E W Py.B/ > p=2º; which (21)
tells us contains the point z, and the remainder of the proof will be showing that M is
Pz-supportive and satisfies the integral test.

We begin by showing that M is Pz-supportive, which requires first showing that
M c D E nM contains its regular points, a property known as being finely closed. We
argue in the spirit of the reasoning used in the proof of Lemma 2.8. Let y be an arbitrary
point which is regular for M c , and so satisfies Py.TMc D 0/ D 1. Let K � M c be a
compact set, so that, by right-continuity of paths, XTK 2 K almost surely. Then

Py.B/ D Py

�Z 1
0

f1.Xs/ ds < C1; : : : I TK < �
�

C Py

�Z 1
0

f1.Xs/ ds < C1; : : : I TK � �
�

� Py

�Z 1
TK

f1.Xs/ ds < C1;
Z 1
TK

f1.Xs/ ds < C2; : : : I TK < �
�
C Py.TK � �/

D

Z
Pa

�Z 1
0

f1.Xs/ ds < C1; : : :
�

Py.XTK 2 daI TK < �/C Py.TK � �/

D

Z
Pa.B/Py.XTK 2 daI TK < �/C Py.TK � �/

�
p

2
C Py.TK � �/

sinceK �M c . It follows exactly as in the proof of Lemma 2.8 that Py.TK � �/ D 0 and
therefore y 2M c . Thus M c contains its regular points.

Now we can show that M is supportive for any point contained in it. Let x 2 E be
arbitrary and suppose first that M is not Px-supportive, that is, Px.DMc < �/ D 1: From
this it follows that

Px.B/ D Px

�Z 1
0

f1.Xs/ ds < C1; : : : I DMc < �

�
� Px

�Z 1
DMc

f1.Xs/ ds < C1; : : : I DMc < �

�
D

Z
E

Pa.B/Px.XDMc 2 daI DMc < �/: (22)

We demonstrated above that M c contains its regular points, and it follows from Blumen-
thal and Getoor [9, Theorem I(11.4)] that Px.XDMc 2 daI DMc < �/ is concentrated
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on M c . In particular, it follows from (22) that

Px.B/ �

Z
E

Pa.B/Px.XDMc 2 daI DMc < �/ �
p

2
:

What we have thus proven is that for arbitrary x 2 E, if M is not Px-supportive then
Px.B/ � p=2. Equivalently,

Px.B/ >
p

2
H) M is Px-supportive:

We saw earlier in the proof that our particular choice of z 2 E is contained in M , that is,
Pz.B/ > p=2, and thus it follows that M is Pz-supportive.

Finally, we show that M satisfies the integral test of (ii). It is clear that for any n � 1,

M �Mn WD ¹y 2 E W Py.Bn/ > p=2º D

²
y 2 E W Py

�Z 1
0

fn.Xs/ ds < Cn

�
> p=2

³
:

Since Mn is super-finite for .X; fn/, Proposition 2.7 yields
R
Mn

fn.x/U.y; dx/ <1 for
all y 2 E. We therefore see thatZ

M\Kn

f .x/U.z; dx/ �
Z
Mn

fn.x/ U.z; dx/ <1 for all n � 1:

Because Kn " E, any compact set will be covered by Kn for some n 2 N. Hence, we
obtain the integral test

R
M\K

f .x/U.z; dx/ <1 for all compact K � E.
(i)((ii) Suppose the existence of a Pz-supportive M such that for all compact K,

Ez

�Z 1
0

f .Xs/1M\K.Xs/ ds
�
D

Z
M\K

f .y/U.z; dy/ <1:

Since M is supportive, there exists a positive c > 0 such that Pz.TMc � �/ > c. Let
K1; K2; : : : be an increasing sequence of compact sets with limit E. Then for all n 2 N,

Ez

�Z 1
0

f .Xs/1M\Kn.Xs/ ds
�
<1 H) Pz

�Z 1
0

f .Xs/1M\Kn.Xs/ ds <1
�
D 1

H) Pz

�Z 1
0

f .Xs/1Kn.Xs/ ds <1
�
> c

H) Pz

�Z TEnKn

0

f .Xs/ ds <1
�
> c

so that

c � lim
n!1

Pz

�Z TEnKn

0

f .Xs/ ds <1
�

D Pz

�Z TEnKn

0

f .Xs/ ds <1 for all n 2 N

�
: (23)

Since X is strongly transient, limn!1 TEnKn D �, and thus

Pz

�Z t

0

f .Xs/ ds <1 for all t < �
�
� c > 0:

The proof is complete.
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In general almost nothing is known about the supportive – or equivalently avoidable
– set in the statement of Theorem 3.1, but under some tight restrictions on X , some
results exist. For example, in two recent papers Mimica and Vondraček studied unavoid-
able unions of balls in Rd , for censored stable processes in [27] and for isotropic Lévy
processes satisfying a particular scaling condition – which generalises the scaling of stable
processes – in [28]. In a similar vein, Grzywny and Kwaśnicki [17] give an explicit form
of the hitting probability of a ball by a unimodal isotropic Lévy process. However, a gen-
eral characterisation of avoidable sets for general Lévy processes remains a challenging
problem. The final example of Hawkes’ seminal paper [18] gives a nice demonstration
of how the problem differs from that of polar sets. Nevertheless we will later discuss
stronger assumptions on f , with X a stable process, under which the supportive sets can
be omitted entirely from Theorem 3.1.

The following theorem addresses the same problem as Theorem 3.1 but in the case
where the infinite-time path integral is finite almost surely. As in Theorem 2.10, the sup-
portive sets do not disappear, but they can be made large.

Theorem 3.2. LetX be a strongly transient standard Markov process and f WE! Œ0;1�

measurable. For z 2 E, the following are equivalent:

(i) Pz.
R t
0
f .Xs/ ds <1 for every t < �/ D 1.

(ii) For every " 2 .0; 1/ there is a Pz-supportive set M such that
R
M\K

f .y/ U.z; dy/
<1 for all compact K � E and X stays in M with probability at least 1 � ".

Proof. (i))(ii) Let K1 � K2 � � � � be an increasing sequence of compact sets with
limit E. For n 2 N let LKn be the last exit time from Kn. Then, since X is strongly
transient,

Pz

�Z t

0

f .Xs/ ds <1 for every t < �
�
D 1

H) Pz

�Z LKn

0

f .Xs/ ds <1 for every n 2 N

�
D 1

H) Pz

�Z LKn

0

f .Xs/ ds <1
�
D 1 for every n 2 N

H) Pz

�Z 1
0

f .Xs/1Kn.Xs/ ds <1
�
D 1 for every n 2 N: (24)

Now fix " 2 .0; 1/ and n 2 N. We can choose a constant Nn such that

Pz

�Z 1
0

f .Xs/1Kn.Xs/ ds � Nn

�
> 1 � 2�n":

Then write fn D f 1Kn and define a super-finite set for each .X; fn/

M "
n WD

²
y 2 E W Py

�Z 1
0

fn.Xs/ ds � Nn

�
> 2�n"

³
; n 2 N:
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By Proposition 2.9 each M "
n is Pz-supportive. Moreover, since by Lemma 2.8, E nM "

n

contains its regular points,

1 � 2�n" < Pz

�Z 1
0

fn.Xs/ ds � Nn

�
D Pz

�Z 1
0

fn.Xs/ ds � NnI TEnM"
n
<1

�
C Pz

�Z 1
0

fn.Xs/ ds � NnI TEnM"
n
D1

�
� Pz

�Z 1
TEnM"

n

fn.Xs/ ds � NnI TEnM"
n
<1

�
C Pz.TEnM"

n
D1/

D

Z
EnM"

n

Pa

�Z 1
0

fn.Xs/ ds � Nn

�
dPz

�
XTEnM"

n
2 daI TEnM"

n
<1

�
C Pz.TEnM"

n
D1/

� 2�n"C Pz.TEnM"
n
D1/;

and therefore not only is eachM "
n Pz-supportive, but the probability of remaining in each

is bounded away from 0 by Pz.TEnM"
n
D1/ > 1� 21�n": Now letM " WD

T
nM

"
n : Then

by subadditivity of measure,

Pz.TEnM" D1/ � 1 �

1X
nD1

Pz.TEnM"
n
<1/ > 1 � "

1X
nD1

21�n D 1 � 2":

Because Kn " E, any compact set will be covered by Kn for some n 2 N. ThereforeZ
M"\K

f .y/U.z; dy/ �
Z
M"
n\Kn

f .y/U.z; dy/ D
Z
M"
n

fn.y/ U.z; dy/:

The right-hand side is finite due to Proposition 2.7 and the definition of M "
n .

(i)((ii) Suppose that for any " > 0 there exists a Pz-supportive set M " such that X
stays inM " with probability at least 1� " and

R
M"\K

f .y/U.z;dy/ <1 for all compact
K � E. Let K1 � K2 � � � � be a nested sequence of compact sets with limit E. Then for
all n 2 N,

Ez

�Z 1
0

f .Xs/1M"\Kn.Xs/ ds
�
<1

H) Pz

�Z 1
0

f .Xs/1M"\Kn.Xs/ ds <1
�
D 1

H) Pz

�Z 1
0

f .Xs/1Kn.Xs/ ds <1
�
> 1 � "

H) Pz

�Z TEnKn

0

f .Xs/ ds <1
�
> 1 � ":
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Thus, since X is strongly transient, we have limn!1 TEnKn D � and

1 � " < lim
n!1

Pz

�Z TEnKn

0

f .Xs/ ds <1
�

D Pz

�Z TEnKn

0

f .Xs/ ds <1 for all n 2 N

�
D Pz

�Z t

0

f .Xs/ ds <1 for all t < �
�
: (25)

Since " > 0 is arbitrary, we see that Pz.
R t
0
f .Xs/ ds <1 for all t < �/ D 1:

3.2. Lévy processes with local time

One can ask whether, for the special case of Lévy processes with jointly continuous local
time, the additional supportive set compared to the Engelbert–Schmidt [13] and Zanzotto
[34] theorems discussed at the beginning of Section 3 can be removed. Let us quickly
recall from Bertoin [6] some important results on local time for Lévy processes. If ‰
denotes the characteristic exponent of a Lévy process X , then X has local time if and
only if Z 1

�1

R

�
1

1C‰.�/

�
d� <1

(see [6, V.1 Theorem 1]). A deep result due to Barlow [2] and Barlow and Hawkes [3]
gives a necessary and sufficient condition for the existence of a jointly continuous version
of the local time process .t; x/ 7! Lxt ; see [6, Chapter V].

We now provide a proof of the Engelbert–Schmidt–Zanzotto result without appealing
to local time, instead working only with densities of the potential measures of the killed
Lévy process. Our method also works for Lévy processes for which no jointly continuous
version of the local time exists.

Theorem 3.3. Let X be a Lévy process on R which has local time, and f W R! Œ0;1�

be measurable. The following are equivalent:

(i) P0.
R t
0
f .Xs/ ds <1 for every t � 0/ D 1.

(ii)
R
K
f .y/ dy <1 for all compact K � R.

Proof. The proof makes use of the killed processXq , that is, the Lévy process killed at an
independent exponentially distributed time �q with parameter q > 0. In the literature such
a process is sometimes called a q-subprocess; see for example Blumenthal and Getoor [9,
Example III(3.17)]. The killed process is a standard Markov process on R with cemetary
state �, and has transition semigroup

P
q
t .x; A/ D Px.Xt 2 AI t < �

q/ D e�qtPt .x; A/ (26)

for a Borel set A. The potential operator of Xq is U q , the q-potential operator of X . By
[6, Theorems II.5 and II.16], U q has a bounded density uq . We denote by Ouq the dual
potential density, that is, the potential density of the dual Lévy process OX D �X . Since
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�q is almost surely finite, any killed Lévy process is transient. SinceX has lifetime � D1
almost surely, Xq is not strongly transient.

(i))(ii) Fix q > 0, and let Xq be the killed process above. Since �q has support
.0;1/, our assumption implies that Xq satisfies condition (i) of Theorem 2.10. Fix some
" > 0; by Theorem 2.10, there exists a P0-supportive setM " forXq such that P0.Xs 2M "

for all s < �q/ D P0.X
q
s 2M

" for all s < �/ > 1 � " andZ
M"\K

f .y/U q.0; dy/ �
Z
M"

f .y/U q.0; dy/ <1

for any compact K � R. Set B" D R nM " and fix a compact K � R. Then

P0.Xs 2 B
"
\K for some s < �q/ D P0.X

q
s 2 B

"
\K for some s < �/

� P0.X
q
s 2 B

" for some s < �/ < ":

Now suppose B" \ K is non-empty, so there exists some x 2 B" \ K. With T¹xº D
inf ¹s > 0 W Xs D xº we find that

P0.Xs 2 B
"
\K for some s < �q/ � P0.Xs D x for some s < �q/

D E0Œe�qT¹xº � D Ouq.x/C q;

for a positive constant C q (using [31, Theorem 43.3]). Because X hits points, Ouq is
bounded below on the compact set K (because uq is lower-semicontinuous as a q-exces-
sive function, and pointwise positive). Hence, there is a c > 0 with P0.Xs 2 B" \K for
some s < �q/ > c; and this constant c is independent of ". Now we have shown that c < ",
but our choice of " was arbitrary, and the resolution of this apparent contradiction is that
for " � c there does not exist any point x 2 B" \K, that is, K �M ". Thus for such ",

1 >

Z
M"\K

f .y/U q.0; dy/ D
Z
K

f .y/uq.y/ dy:

Again because uq is bounded below on compacts, uq can be omitted in the integral test
and the claim follows.

(i)((ii) Fix q > 0. Since X has local time, Bertoin [6, Theorem II.16] shows that uq

is bounded, and thus for arbitrary compact K,

E0

�Z 1
0

f .Xqs /1K.X
q
s / ds

�
D

Z
K

f .y/uq.y/ dy � sup
x2R

uq.x/

Z
K

f .y/ dy <1:

Now E0Œ
R1
0
f .X

q
s /1K.X

q
s /ds� <1 implies P0.

R1
0
f .X

q
s /1K.X

q
s /ds <1/D 1 for all

compact K. Thus by continuity of measure and monotone convergence,

P0

�Z �q

0

f .Xs/ ds <1
�
D P0

�Z 1
0

f .Xqs / ds <1
�
D 1:

Since �q is independent of X and has support .0;1/, this implies

P0

�Z t

0

f .Xs/ ds <1 for every t <1
�
D 1;

and (ii) has been proven.
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4. Small-time path integral tests

We now come to local versions of the path integral tests. Integral tests for path integrals up
to finite random times are known by the work of Engelbert and Schmidt for the Brownian
case and Zanzotto for the stable case with ˛ 2 .1; 2/, and take the form of the following
equivalent statements:

(i) Pz.9t > 0 W
R t
0
f .Xs/ ds <1/ > 0.

(ii) Pz.9t > 0 W
R t
0
f .Xs/ ds <1/ D 1.

(iii) There exists an " > 0 such that the integral test
R zC"
z�"

f .y/ dy <1 holds.

Those authors’ arguments, as in the case of finite-time-horizon path integrals, rely upon
the occupation time formula and the joint continuity of local time. For our study of stable
SDEs for ˛ 2 .0; 1/ we need a version for transient Lévy processes. A more general
version for transient Markov processes can be found in the PhD thesis of Baguley [1].

Theorem 4.1. Let X be a transient Lévy process on Rd which does not hit points, and
let f W Rd ! Œ0;1� be measurable. For z 2 Rd , the following are equivalent:

(i) Pz.9t > 0 W
R t
0
f .Xs/ ds <1/ D 1.

(ii) There exists a Pz-thin set B such that
R

Rd nB f .y/U.z; dy/ <1.

Recall that a measurable set B is called Pz-thin if Pz.TB > 0/ D 1.

The reader should keep in mind the following relation of avoidable (or supportive) sets
and thin sets. Since an avoidable set is never hit with positive probability, the first hitting
time is trivially non-zero with positive probability. Since this event obeys a zero-one law
(Blumenthal’s zero-one law), the first hitting time is non-zero with probability 1. Hence,
any Pz-avoidable set is also Pz-thin. The converse is obviously wrong.

Proof of Theorem 4.1. (i))(ii) We begin by using the fact that X does not hit points,
i.e. Pz.L¹zº D 0/ D 1, to show that the last exit times of balls B".z/ are arbitrarily small
as " # 0. First suppose that l WD lim"#0LB".z/ > 0. Then there exists a time t 2 .0; l� such
thatXt 2 B".z/ for all " > 0, that is,Xt D z. Therefore L¹zº � t > 0, which is prohibited
by the fact that X does not hit points. So it follows that lim"#0LB".z/ D 0 almost surely.

In particular, under the assumption of (i), there exists some open set G 3 z such that
Pz.9t > LG W

R t
0
f .Xs/ ds <1/ > 0: Thus

Pz

�Z LG

0

f .Xs/ ds <1
�
� Pz

�
9t > LG W

Z t

0

f .Xs/ ds <1
�
> 0:

It therefore follows that

Pz

�Z 1
0

f .Xs/1G.Xs/ ds <1
�
> 0: (27)

Then Theorem 2.3 yields a Pz-supportive set M such thatZ
M\G

f .x/U.z; dx/ <1:
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SinceM is Pz-supportive, the complement of RdnM is avoidable so that Pz.TRd nM > 0/

� Pz.TRd nM D1/ > 0: Hence, Blumenthal’s zero-one law implies that Pz.TRd nM > 0/

D 1, that is, Rd nM is Pz-thin. Since G is open and contains z, Rd nG is also Pz-thin.
The union of finitely many Pz-thin sets is again Pz-thin, and thus we defineB D .Rd nM/

[ .Rd nG/ D Rd n .M \G/, which is Pz-thin and satisfiesZ
Rd nB

f .x/U.z; dx/ D
Z
M\G

f .x/U.z; dx/ <1:

(i)((ii) Let B be the Pz-thin set from (ii). Proposition II(4.3) of Blumenthal and
Getoor [9] says that there is a compact set K � Rd n B such that z 2 K and Rd nK is
again Pz-thin. We shall work with the hitting time � D TRd nK : Since Rd nK is Pz-thin,
� is Pz-almost surely positive. In addition, by transience of X , � � LK <1 Pz-almost
surely, and so Pz.0 < � <1/ D 1. We have assumed that

Ez

�Z 1
0

f .Xs/1Rd nB.Xs/ ds
�
D

Z
Rd nB

f .x/U.z; dx/ <1:

This implies that Pz.
R1
0
f .Xs/1Rd nB.Xs/ ds <1/ D 1. From K � Rd n B it follows

that � � TB . Therefore

Pz

�Z �

0

f .Xs/ ds <1
�
� Pz

�Z TB

0

f .Xs/ ds <1
�

� Pz

�Z 1
0

f .Xs/1Rd nB.Xs/ ds <1
�
D 1:

Then (i) follows from the fact that � is almost surely positive.

4.1. The case of stable Lévy processes

It is generally impossible to remove the thin sets from Theorem 4.1. The following the-
orem is a version of Theorem 4.1 in a particular situation in which the thin set can
be removed by capacity comparisons. Its proof relies on a remarkably precise analytic
description of Pz-thin sets for stable processes. The theorem will be applied later with
f D ��˛ to study the SDE (1), for instance with �.x/ D jxjˇ .

Theorem 4.2. Let X be a symmetric stable process on R with index ˛ 2 .0; 1/, and let
f W R! Œ0;1� be measurable. Suppose that f has an isolated monotone pole at z, in
the sense that there exists ı > 0 such that f is increasing on .z � ı; z/ and decreasing on
.z; z C ı/. Then the following are equivalent:

(i) Pz.9t > 0 W
R t
0
f .Xs/ ds <1/ D 1.

(ii) There exists an " > 0 such that
R zC"
z�"

f .y/jz � yj˛�1 dy <1.

Theorem 4.2 above can be directly extended to ‘almost monotone’ measurable
functions g, in the sense that there exists a C < 1 such that for all jx � zj < ı,
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jg.x/ � f .x/j � C for some measurable f which has an isolated monotone pole at z,
by virtue of the fact that in this case, for " < ı,ˇ̌̌̌Z zC"

z�"

g.y/jyj˛�1 dy �
Z zC"

z�"

f .y/jyj˛�1 dy
ˇ̌̌̌
�
2C"˛

˛

and ˇ̌̌̌Z t

0

g.Xs/ ds �
Z t

0

f .Xs/ dy
ˇ̌̌̌
� Ct:

Proof of Theorem 4.2. Since X is a Lévy process, we can without loss of generality set
z D 0. Recall that U.0; dy/ D jyj˛�1 dy, up to a constant factor which we freely ignore.
The implication (ii))(i) follows from Theorem 4.1 and the fact that R n .�"; "/ is P0-thin
for the stable process.

Now suppose (i). Again from Theorem 4.1 there exists a P0-thin set B such thatZ
RnB

f .y/U.0; dy/ D
Z

RnB
f .y/jyj˛�1 dy <1:

Take " 2 .0; ı/ and let the map g be defined by g.y/D f .y/jyj˛�11.�";"/.y/. It is imme-
diately seen that g shares the same monotonicity property as f . The intuition to have in
mind is that the monotone nature of g will allow its behaviour on B to be determined by
its behaviour on R n B .

According to Wiener’s criterion for thin sets of stable processes (see for instance
Bliedtner and Hansen [8, Corollary V.4.17]), the P0-thin set B satisfies

1X
kD1

2k.1�˛/C.B \ Sk/ <1; (28)

where C.�/ is capacity and Sk D ¹x 2 R W 2�.kC1/ < jxj � 2�kº defines a sequence
of decreasing shells of Lebesgue measure 2.2�k � 2�.kC1// D 2�k . The isoperimetric
inequality of Betsakos [7, Theorem 1] states that the capacity of any compact set is no
smaller than that of the ball of the same Lebesgue measure. Example 42.17 of Sato [31]
then shows that for any compact K,

C.K/ � C.B 1
2�.K/

/ D C

�
�.K/

2
B1
�
D

�
�.K/

2

�1�˛
C.B1/ D C0�.K/1�˛;

where Br is the ball about 0 of radius r , C0 WD C.B1/2˛�1, and � represents the Lebesgue
measure. We can extend this result to a wider class of Borel sets as follows. Let G � R
be a bounded open set. Then there exists an increasing sequence of compact setsKn � G
such thatG D

S1
nD1Kn, and thus from Sato [31, Propositions 42.10 and 42.12] it follows

that C.Kn/ " C.G/. The isoperimetric inequality applied to each Kn then yields

C.G/ D lim
n!1

C.Kn/ � lim
n!1

C0�.Kn/
1�˛
D C0�.G/

1�˛:
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Now for a general bounded Borel set A � R,

C.A/ D inf ¹C.G/ W G open and A � Gº

� C0 inf ¹�.G/1�˛ W G open, bounded and A � Gº D C0�.A/1�˛:

The first equality is due to C being a Choquet capacity, and details can be found in [9,
Theorem I(10.5)] and the discussion following it. This in particular holds for the bounded
sets B \ Sk , and so from (28) we can deduce that

1X
kD1

2k.1�˛/C0�.B \ Sk/
1�˛
D C0

1X
kD1

.2k�.B \ Sk//
1�˛ <1:

Since C0 D C.B1/2˛�1 <1 and �.Sk/ D 2�k , this implies

1X
kD1

�
�.B \ Sk/

�.Sk/

�1�˛
<1:

From this it follows that for any fixed c 2 .0;1/ there existsN 2N such that for all n�N ,
�.B \ Sn/ � c�.Sn/ D c2

�n, and therefore

�.Bc \ Sn/ � .1 � c/�.Sn/ D .1 � c/2
�n: (29)

We will use this relationship to bound the integral of g over B .
For n � N we shall now consider the two pieces of Sn separately, using the notation

SCn D Sn \ .0;1/, S�n D Sn \ .�1; 0/. Taking advantage of the monotonicity of g,
with the notation Ngn D sup

S
C
n
g and g

n
D inf

S
C
n
g, we see for n � N thatZ

B\S
C
n

g.x/ dx � Ngn�.B \ SCn / � Ngnc�.S
C
n / D Ngn2c�.S

C
nC1/:

Using (29) and the fact that Ngn � gnC1, we continue the chain of inequalities as

�
2c

1 � c
g
nC1

�.Bc \ SCnC1/ �
2c

1 � c

Z
Bc\S

C

nC1

g.x/ dx:

Exactly the same procedure works for S�n , and adding the two pieces givesZ
B\Sn

g.x/ dx �
2c

1 � c

Z
Bc\SnC1

g.x/ dx:

Summing over n � N tells us thatZ
B\B

2�N

g.x/ dx �
2c

1 � c

Z
Bc
g.x/ dx <1:

Let Q" D " ^ 2�N . Summing the integrals over B and Bc then yields
R Q"
�Q"
f .x/jyj˛�1 dx

<1.
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5. Stochastic differential equations

In this final section we translate the foregoing results on different path integrals into results
for stable stochastic differential equations. The (driftless) stable SDE equation with issu-
ing point z 2 R is defined to be the equation

dZt D �.Zt�/ dXt ; Z0 D z: (30)

More precisely, let X be a two-sided stable process on R and probability space P D

.�;F ;P /, andZ an R-valued stochastic process on the same probability space satisfying
P .Z0 D z/ D 1 for some z 2 R. Let � W R! Œ0;1/ be a measurable function, extended
as usual via �.�/ D 0. For A � R the collection .X; Z;P/ is called a weak solution
to (30) on the measurable set A if

Zt � z D

Z t

0

�.Zs�/ dXs for all t < TAc (31)

and TAc > 0. The latter condition only excludes trivial cases. If A D R then .X; Z;P/

is called a global weak solution, and if A ¨ R then .X; Z;P/ is called a local weak
solution. We say a solution is trivial if it is constant.

5.1. Existence and uniqueness of (local) solutions

Following the classical Engelbert–Schmidt approach to Brownian SDEs, in a sequence of
articles Zanzotto succeeded in reformulating weak solutions of dZt D �.Zt�/ dXt into
time changes of the driving process with path integrals

R t
0
�.Xs/

�˛ ds. Using quadratic
variations this is straightforward for the Brownian motion (see for instance Karatzas and
Shreve [22, Chapter 5]), but the arguments for the stable case are more involved. The
following reciprocal connection of SDE solutions and time change is a combination of
three of Zanzotto’s results ([34, Lemma 2.26], [35, Theorem 2], and [36, Theorem 2.2])
and a time change due to Kallenberg [19, Theorem 4.1].

Theorem 5.1 (Zanzotto–Kallenberg time change). (i) Let X be a two-sided stable pro-
cess of index ˛ 2 .0; 2� on the probability space .�;F ;Pz/, and let � W R! Œ0;1/

be measurable. Define

It D

Z t

0

�.Xs/
�˛ ds; 't D inf

²
s > 0 W

Z s

0

�.Xu/
�˛ du > t

³
; t � 0;

and let X' be the time-changed process with the definitions from (4) and below. Then
there exists a two-sided stable process Y of index ˛ on an extension xP D .x�; xF ; xP /
of .�;F ;Pz/ such that

X't � z D

Z t

0

�.X's / dYs; t 2 Œ0; NI /: (32)
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(ii) Let .X;Z;P/ be a global weak solution of (30) with initial condition z. Then there
exists a two-sided stable process Y of index ˛ 2 .0;2� on an extension xP D .x�; xF ; xP /
of .�;F ;P / such that

Zt D Y QIt for all t 2 Œ0;1/ xP -a.s.; (33)

where QIt D
R t
0
�.Zs/

˛ ds:

Zanzotto’s abstract time-change representation in (32) was proved for all ˛ 2 .0; 2/,
whereas the translation into SDEs (i.e. showing the running time is a first hitting time
of a known set A) and the precise analysis of situations in which the time-change rep-
resentation is non-trivial was restricted to ˛ 2 .1; 2/. This was caused by the lack of
understanding of finiteness of path integrals which for ˛ 2 .0; 1/ we fully provided in
the sections above. The usefulness of our precise results lies not only in providing nec-
essary and sufficient properties of � for the existence and uniqueness of solutions, but
also in giving information about properties of those solutions, for example whether they
are global, and whether they explode in finite time. In what follows we shall present the
complete picture for stable SDEs with ˛ 2 .0; 1/, utilising the integral tests from Sections
2–4.

This first proposition is a more general version of Lemma 2.3 of Zanzotto [36]. It is
more involved than the original because of the complexity of finely open sets for general
stable processes, compared to the simpler case for ˛ 2 .1; 2�. The lemma connects the
statement (i) of Theorem 5.1 to the notion of local weak solutions, by demonstrating that
the running time NI of X' in (32) is indeed a first hitting time of a measurable set.

Proposition 5.2. Let X be a Markov process on E with strong Feller resolvent satisfy-
ing Hunt’s condition .see (H) at the end of Section 2.1/, and let f be non-negative and
measurable. Define the path integrals and inverses as before:

It D

Z t

0

f .Xs/ ds; 't D inf
²
s > 0 W

Z s

0

f .Xu/ du > t
³
; t 2 Œ0;1/:

Then TO D '1 Py-almost surely for all y 2 E, where

O D

²
x 2 Rd W Px

�
8t > 0 W

Z t

0

f .Xs/ ds D1
�
D 1

³
:

If f is strictly positive, then I.TO/ D NI D inf ¹s > 0 W X's 2 Oº.

Note that this statement does not hold for all Markov processes. It fails for instance
for X a deterministic positive drift on R with f .x/ D jxj�11.�1;0/.x/, because in that
case O D ; but '1 D T¹0º <1 under Px if the initial value x is negative. However, the
proposition does apply for two-sided stable Lévy processes.

Proof of Proposition 5.2. Fix a q > 0 and let Xq be the process killed at an independent
exponential time �q , so thatZ 1

0

f .Xqs / ds D
Z �q

0

f .Xs/ ds almost surely:
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For c 2 .0; 1/ we define the sets Mc WD ¹x 2 R W Px.
R1
0
f .X

q
s / ds � 1=c/ > cº and

Ac WD R nMc : The sets Mc are super-finite for .Xq; f /, and increasing as c # 0. Their
complements Ac decrease as c # 0 to A WD ¹x 2 R W Px.

R1
0
f .X

q
s / ds <1/ D 0º: It is

clear that O � A. We can also note that if x 2 A then

Px

�Z t

0

f .Xs/ ds D1 for all t � 0
�
D 1;

since �q is independent and has support .0;1/. Therefore x 2 O, and so A D O. For our
purposes it is easier to work with A than O for the rest of the proof.

We saw in Lemma 2.6 that for any choice of c, and for all y 2 R,

Py

�Z t

0

f .Xqs /1Mc .X
q
s / ds <1 for all t � 0

�
D 1: (34)

Since Xq stays in Mc before TAc , this implies that Py-almost surely
R t
0
f .X

q
s / ds <1

for all t � TAc , where TAc is the first exit time of Mc by the unkilled process X . Since
the sets Ac are decreasing, the times TAc are almost surely increasing. In particular, since
(34) holds for arbitrary c 2 .0; 1/, it follows that, for any y 2 R,

Py

�Z t

0

f .Xqs / ds <1 for all t < lim
c#0

TAc

�
D 1:

Again, since �q is independent of X and has support .0;1/, this implies that

Py

�Z t

0

f .Xs/ ds <1 for all t < lim
c#0

TAc

�
D 1:

Therefore '1 � limc#0 TAc Py-almost surely. If we can show the first equality of

T WD lim
c#0

TAc D TA D TO (35)

Py-almost surely for any y 2 R then we will have proven the first inequality '1 � TO .
Recall that for a Borel set A and q > 0 the function ˆqA.x/ D Ey Œe�qTA ITA <1� D

Ey Œe�qTA � is q-excessive. Since our processX satisfies condition (H) andˆqA is bounded,
the discussion at the end of Section 2.1 tells us that ˆqA is regular (in the sense of (R) or
(R/0), and thus in particular

ˆ
q
A.XTAc /! ˆ

q
A.XT / almost surely on ¹T <1º as c # 0.

If we fix A D Ac0 for some c0 > 0 then ˆqA.XTAc / D 1 for all c � c0, since the sets Ac
are decreasing and contain their regular points by Lemma 2.8 so thatXTAc is contained in
Ac � Ac0 on the event ¹T <1º for any y 2 R. Thus ˆqA.XT / D 1 on ¹T <1º, that is,
PXT .w/.TAc0 D 0/ D 1 for Py-almost every w such that T .w/ <1. Since Ac0 contains
its regular points, this implies that XT 2 Ac0 on ¹T <1º. Then because our choice of
c0 > 0 was arbitrary, it follows that

XT 2 A D
\
c>0

Ac almost surely on ¹T <1º:
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This implies (35) on ¹T < 1º. On the event ¹T D 1º, (35) is trivial, and so it holds
almost surely, and thus '1 � TA D TO almost surely.

The inequality '1 � TO comes from the fact that for any u > 0 and any y 2 R,

Py.'1 � TO C uI TO <1/ D Py

�Z TOCu

0

f .Xs/ ds D1I TO <1

�
D Ey

�
PXTO

�Z u

0

f .Xs/ ds D1
�
I TO <1

�
D Py.TO <1/;

using the fact that O D A D
T
c>0 Ac and all Ac (and thus the intersection) are

finely closed by Lemma 2.8 so that XTO
2 O. This implies that Py.'1 � TO C u/ D

Py.'1 � TO C u <1/C Py.TO D1/D 1. Therefore '1 � TO C u almost surely for
all u > 0, and so '1 � TO almost surely.

Finally, we note that if f > 0 then the integrals t 7! It are strictly increasing (up to
a possibly finite explosion time). Hence, the generalised inverse ' does not jump toC1,
that is, '1 D N' D ' NI . Now since TO D '1 it follows that NI D inf ¹s > 0 W X's 2 Oº: It
remains to note that since I is left-continuous, NI D I.'1/ D I.TO/.

Although the setting of Proposition 5.2 is quite general, we will always use it for stable
SDEs with f D ��˛ . Since the presence of the set O is crucial (local solutions will live
on the complement), and it depends on ˛ and � , we shall give it a name:

Definition 5.3. For � W R! Œ0;1/ measurable and X a two-sided stable Lévy process
we denote the set of irregular points by

O.�; ˛/ WD

²
x 2 R W Px

�Z t

0

�.Xs/
�˛ ds D1

�
D 1 for all t > 0

³
and the null-set of � by N.�/ WD ¹x 2 R W �.x/ D 0º.

Note that the definition of O.�; ˛/ is purely stochastic and as such is not very useful
in SDE theorems. It is the results on path integrals which will make the following time-
change results for SDEs useful.

Before turning to the main theorem let us first translate the first part of Theorem 5.1
into a statement on (local) weak solutions on the complement of the irregular points.

Proposition 5.4. If z 2 RnO.�; ˛/, then .Y;X' ; xP/ from Theorem 5.1 (i) is a local weak
solution to the SDE (30) on A D R nO.�; ˛/. In addition, if either

(a) Pz.�.X'1/ D 0/ D 1, or

(b) Pz. NI D1/ D 1,

then the solution is global.

Proof. Since ��˛ > 0, Proposition 5.2 tells us that NI D inf ¹s > 0 WX's 2O.�;˛/º: Thus,
Zanzotto’s time change implies that with Z WD X' the triple .Y;Z; xP/ is a local solution
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to (30) on the complement of O.�; ˛/. Assuming either (a) or (b) implies that the integral
equation (32) holds for all t 2 Œ0;1/, and therefore the solution is global.

Conversely, we use the second part of Theorem 5.1 to derive necessary conditions for
the existence of solutions.

Proposition 5.5. If there exists a non-trivial local weak solution to (30) on a set A with
issuing point z, then z 2 R nO.�; ˛/. This in particular holds when AD R, that is, in the
case of global weak solutions.

Proof. To make use of Kallenberg’s time change let us turn the local into a global solution
by defining �� WD � � .1 � 1Ac[.Ac/r /. Then the process Z�t WD Zt^TAc satisfies

Z
�
t � z D

Z t

0

��.Z�s�/ dXs for all t � 0:

Thus Kallenberg’s time change tells us that there exists a two-sided stable process Y such
that Z�t D Y QI�t

for all t � 0 almost surely, where QI �t D
R t
0
��.Z

�
s / ds, and thus Zt D Y QIt

for all t � TAc almost surely, using QIt D
R t
0
�.Zs/ds and Q't D inf ¹s > 0 W QIs > tº. Since

Z is not constant, it follows from the SDE equation that �.Zs/ > 0 for some Lebesgue-
positive set of times s < TAc , and thus QI is also not constantly zero, and Q' does not jump
instantaneously to1. Combining this with

Q't �

Z Q't
0

1.�.Zs/>0/ ds D
Z Q't
0

�.Zu/
�˛�.Zu/

˛ du D
Z t

0

�.Z Q's /
�˛ ds

D

Z t

0

�.Ys/
�˛ ds DW It

we have shown that there is almost surely some t < TAc such that It � Q't <1. It therefore
follows by definition of O.�; ˛/ that the issuing point z of Y under xP is an element of
R nO.�; ˛/.

Finally, we can use our results on path integrals to turn the abstract formulations into
analytic results. For ˛ 2 .1; 2�, Zanzotto provided the analytic expression

O.�; ˛/ D

²
x 2 R W

Z xC"

x�"

�.y/�˛ dy D1 for all " > 0
³
: (36)

For ˛ 2 .0; 1/ according to Theorem 4.1 we have

O.�; ˛/ D

²
x 2 R W

Z
RnB

�.y/�˛jx � yj˛�1 dy D1 for all Px-thin sets B
³

(37)

sinceU.x;dy/D jx � yj˛�1 dy modulo some normalising constant. Since Wiener’s crite-
rion (see [8, Corollary V.4.17]) gives an analytic test for thinness in terms of capacities, the
test is also analytic. If in addition � has only isolated monotone zeros (e.g. �.x/ D jxjˇ )
then Theorem 4.2 implies for ˛ 2 .0; 1/ the clean integral tests

O.�; ˛/ D

²
x 2 R W

Z xC"

x�"

�.y/�˛jx � yj˛�1 dy D1 for all " > 0
³
;
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which is precisely Zanzotto’s integral test modulo an additional polynomial factor. Recall
from the introduction that complements of all Pz-thin sets for a stable process with ˛ > 1
contain a ball around z. Hence, on a structural level the difference between the integral
tests for ˛ 2 .1; 2� and ˛ 2 .0; 1/ is the appearance of the new polynomial factor.

We are now in a position to formulate a set of statements which, for the Brownian
motion, are known under the name of Engelbert–Schmidt theorems. The main theorem of
this article extends the Engelbert–Schmidt theorems to stable SDEs with ˛ 2 .0; 1/. The
same result was proved for ˛ 2 .1; 2/ by Zanzotto [36], and our proofs follow his closely,
with the important distinction being that our Proposition 5.2 is a more general version of
his Lemma 2.3 that no longer depends on local times.

Theorem 5.6. SupposeX is a two-sided stable process with ˛ 2 .0;1/ and � WR! Œ0;1/

is measurable. Then the following statements hold with the set O.�; ˛/ of irregular points
from (37):

(i) For fixed z 2 R there exists a non-trivial local weak solution to the SDE (30) if and
only if z 2 RnO.�; ˛/.

(ii) A global weak solution to (30) exists for all z 2 R if and only if O.�; ˛/ � N.�/.

(iii) A non-trivial global weak solution to (30) exists for all z 2 R if and only if
O.�; ˛/ D ;.

(iv) There exists a global weak solution to (30) for all z 2 R, each of which is unique
in law, if and only if O.�; ˛/ D N.�/. In that case the solution process Z satisfies
Z D Y' , where Y is a two-sided stable process on R of index ˛ and 't D inf ¹s > 0 WR s
0
�.Yu/

�˛ du > tº for t � 0:

Let us compare again with the case ˛ 2 .1; 2�. In this case RnO.�; ˛/ is open, so in
the situation of (i) one can always consider local solutions on small intervals Œu; v� around
the starting value z. Without further assumptions on � this is generally false for ˛ 2 .0; 1/
using examples where � vanishes on very small disjoint intervals accumulating at z.

Proof of Theorem 5.6. (i) First suppose that z 2 R n O.�; ˛/. From Proposition 5.4 it
follows that there exists a local weak solution, with solution process Z D X' . Further
TO.�;˛/ > 0 almost surely, because O.�; ˛/ is finely closed for X (see the end of the
proof of Proposition 5.2). Otherwise z would be a regular point of O.�; ˛/ and as such
in O.�;˛/. This implies that '1 D TO.�;˛/ > 0, and thus t 7!

R t
0
�˛.Xs/ds does not jump

to C1 immediately. This implies that the time change does not explode instantaneously
(i.e. N' > 0) almost surely, and so the solution Z D X' is not trivial.

For the reverse implication, from Proposition 5.5 it follows that if there exists a non-
trivial local weak solution then z 2 R nO.�; ˛/.

(ii) Since O.�; ˛/ is finely closed for X (see the end of the proof of Proposition 5.2),
we see that XTO.�;˛/

2 O.�; ˛/ on the event that the hitting time is finite. Hence if we
suppose that O.�;˛/�N.�/, it follows that �.X'1/D �.XTO.�;˛/

/D 0 Pz-almost surely
for any z 2 R. Thus Proposition 5.4 gives existence of a global solution, with solution
process Z D X' .
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Now suppose that a global solution exists for every issuing point z 2 R. Proposi-
tion 5.5 tells us that if z 2 O.�; ˛/ then there is no non-trivial local weak solution to (30)
with issuing point z. If we then assume that there exists a weak solution for all issuing
points, it follows that the solution for z 2 O.�; ˛/ is trivial, and therefore �.z/ must be
zero for z 2 O.�; ˛/.

(iii) First suppose that O.�; ˛/ is empty. Then since ��˛ > 0, Proposition 5.2 yields
NI D inf ¹s > 0 W X's 2 Oº D 1 almost surely under any Pz . Therefore for any z 2 R,
Proposition 5.4 gives existence of a global weak solution, with solution process Z D X' .

Now we prove the reverse implication. Proposition 5.5 tells us that if z 2 O.�; ˛/ then
there is no non-trivial solution to (30) with issuing point z. If we then assume that there
exists a non-trivial weak solution for all issuing points, it follows that O.�; ˛/ is empty.

(iv) “)” Suppose that for every z 2 R there exists a global weak solution to (30)
and that each of those solutions is unique in law. Then part (ii) of this theorem implies
that O.�; ˛/ � N.�/. Now suppose for contradiction that there is a point z 2 N.�/ \
.R nO.�; ˛//. Since z 2 N.�/, the trivial solution is a solution. Since z 2 RnO.�; ˛/, (i)
tells us that there exists a non-trivial weak solution with solution process Z D X' . Then
we have two weak solutions issued from z which are not equal in law, which contradicts
uniqueness. Hence, N.�/ � O.�; ˛/, and the equality has been proved.

“(” Now suppose that O.�; ˛/ D N.�/. For this part of the proof we will closely
follow the proof of Theorem 2.6 in Zanzotto [36], the crucial difference being that our
Proposition 5.2 generalises his Lemma 2.3. By (ii), a global weak solution exists for all
z 2R. We now use the representation of Kallenberg in Theorem 5.1 (ii) to prove the time-
change representation for this solution, and thus to deduce uniqueness. If we fix one of
these solutions .X; Z;P/, then Kallenberg’s time-change representation of (33) shows
that there is a two-sided stable process Y such that Y QIt D Zt , t 2 Œ0;1/, defined in
general on an extension of P , where QIt WD

R t
0
�.Zs/

˛ ds. Since QI Q't D t ^ QI1 we obtain
Z Q's D Ys for s 2 Œ0; QI1/, where Q's WD inf ¹t > 0 W QIt > sº. Further,

Q't �

Z Q't
0

1¹�.Zu/>0º du D
Z t^ QI1

0

�.Z Q's /
�˛ ds D

Z t^ QI1

0

�.Ys/
�˛ ds; t � 0: (38)

We shall now show that (38) holds as an equality. Let T be the first hitting time of
O.�; ˛/ by Y , and suppose first that QI1 � T . We know that the relation Yt D Z Q't holds
for all times t < QI1, and therefore it follows from the fact that Q' is strictly increasing
that the first hitting time of O.�; ˛/ by Z is greater than or equal to Q' QI1 . In particular,
since O.�; ˛/ D N.�/, the indicator in the left-hand integral of (38) is identically equal 1
for all t � 0, and thus the formula is an equality. Now suppose that QI1 � T . From the
relation Yt D Z Q't we see that Q'T is the first hitting time of O.�; ˛/ by Z, and as above
we note that up to this time equality holds in (38) because the indicator on the left is equal
to 1. After time T the right-hand side of (38) is equal to C1 (this is the main result of
Proposition 5.2, where we showed that T D '1) and so we have shown in any case that

Q't D

Z t^ QI1

0

�.Ys/
�˛ ds; t � 0: (39)
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But in fact now we can show something more. By definition either QI1 D C1 or
Q' QI1 D C1. Since T is (again by Proposition 5.2) less than or equal to any time t for
which the integral It D

R t
0
�.Ys/

�˛ ds is infinite, it follows that in either case QI1 � T .
But in addition, since Q' is by definition strictly increasing, it follows from (39) thatR t
0
�.Ys/

�˛ ds must be finite for all times less than QI1, and so QI1 � T . We can deduce
that the two times are almost surely equal. It directly follows that

Q't D

Z t

0

�.Ys/
�˛ ds; t � 0; (40)

with both sides being equal to C1 after time QI1 D T . Plugging this into the relation
Y QIt DZt for t � 0 shows thatZ has the xP -almost sure representationZt D Y't for t � 0:
If z 2O.�;˛/ the time change is identically 0 and the time-changed solution and the trivial
solution coincide, so the solution is unique. If z 2 R nN.�/ then the trivial solution does
not exist, so the non-trivial time-changed solution is unique. Since O.�; ˛/ D N.�/, we
have proven uniqueness for all z 2 R.

We can specialise the theorem a bit more if X is symmetric and � has a monotone
zero. In that case the thin sets disappear from the integral test. The situation might look
artificial but occurs in many examples.

Corollary 5.7. Suppose that X is symmetric and � has an isolated monotone zero at
z 2 R. Then there exists a non-trivial local weak solution to the SDE (30) started at z if
and only if

R zC"
z�"

�.y/�˛jz � yj˛�1 dy <1 for some " > 0.

Proof. Follows from Theorem 5.6 (i), where Theorem 4.2 gives the path integral over
f D ��˛ .

Let us consider the previous corollary for the particular situation

dZt D jZt�jˇ dXt ; Z0 D 0:

According to the corollary there is a non-trivial solution if and only ifZ "

�"

��˛.y/jyj˛�1 dy D
Z "

�"

jyj�˛ˇC˛�1 dy <1

for some " > 0, which holds if and only if �˛ˇ C ˛ � 1 > �1, that is, ˇ < 1. Since
the trivial solution Z � 0 is also a solution, our integral test combined with the known
results for ˛ 2 .1; 2� applied to this situation gives the failure of uniqueness for the sim-
ple polynomial stable SDE if and only if ˇ < .1=˛/ ^ 1. This corresponds nicely to the
counterexamples of Bass, Burdzy, and Chen [5] to pathwise uniqueness for stable SDEs.

5.2. Properties of solutions

In this final section we will explore properties of solutions to the stable SDE

dZt D �.Zt�/ dXt ; Z0 D z;



S. Baguley, L. Döring, A. Kyprianou 3284

using the integral tests we developed earlier in this paper. Let us assume O.�; ˛/ � N.�/,
which ensures by Theorem 5.6 that there exists a global solution with the solution process
having time-change representationZ D Y' . Since � takes values in Œ0;1/, it follows that
the path integral It D

R t
0
�.Ys/

�˛ ds is continuous in t , which, as we noted around (5),
ensures that Z is a strong Markov process. Note that the solution can explode in finite
time, in which case Z is sent to the cemetery state �.

Explosion. Let � WD inf ¹t > 0 WZt D�º denote the lifetime ofZ. Since the driving stable
process Y has infinite lifetime, the time-change representation Z D Y' implies that

� D

Z 1
0

�.Ys/
�˛ ds almost surely.

We say that Z explodes if � <1. If It is finite for all t � 0 almost surely then the event
¹� < 1º is in the tail � -algebra of the stable process Y , and so in this case explosion
becomes a zero-one law. In general, however, Z can explode with probability in .0; 1/.
Note that the recurrence of the two-sided stable processes excludes the possibility of
explosion for all ˛ 2 .1; 2/. We can now fully characterise explosion through integral
tests via our earlier results: Theorem 2.3 gives a necessary and sufficient condition for
explosion of Z with positive probability, and Theorem 2.10 does the same but for explo-
sion with probability 1.

Here is an example. If we assume that � is bounded away from zero on compact
sets then a unique global weak solution exists for all initial conditions, and according to
Theorem 2.12 explosion of Z is a zero-one law, and Z explodes almost surely if and only
if there exists a transient set B such thatZ

RnB
�.x/�˛jx � zj˛�1 dx <1:

It would be nice to remove B from the integral test, but Example 2.14 shows that in
general this is not possible. Under strong regularity assumptions this question has been
addressed for all starting conditions simultaneously in Döring and Kyprianou [12] by
appealing to duality theory for Markov processes.

Freezing. We say that Z is frozen if there exists a time t 2 Œ0;1/ such that Zs D Zt
for all s � t . It follows from the time-change representation Z D Y' that Z is frozen if
and only if '1 <1, which from the definition of ' occurs if and only if there exists a
t 2 Œ0;1/ such that Z t

0

�.Ys/
�˛ ds D1:

Thus it is clear that freezing and explosion preclude each other. If ˛ 2 .1; 2/ then Y is
point recurrent, and Zanzotto’s zero-one law shows that freezing is a zero-one law, and
gives a sufficient and necessary condition for freezing to occur. If ˛ 2 .0; 1/ then Y is
transient, and Theorem 3.2 gives a sufficient and necessary condition for Z to be frozen
with positive probability, while Theorem 3.1 gives a sufficient and necessary condition
for freezing to occur almost surely.
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[17] Grzywny, T., Kwaśnicki, M.: Potential kernels, probabilities of hitting a ball, harmonic func-
tions and the boundary Harnack inequality for unimodal Lévy processes. Stochastic Process.
Appl. 128, 1–38 (2018) Zbl 1386.60265 MR 3729529

[18] Hawkes, J.: Potential theory of Lévy processes. Proc. London Math. Soc. (3) 38, 335–352
(1979) Zbl 0401.60069 MR 531166

[19] Kallenberg, O.: Some time change representations of stable integrals, via predictable transfor-
mations of local martingales. Stochastic Process. Appl. 40, 199–223 (1992) Zbl 0754.60044
MR 1158024

[20] Kanda, M.: Two theorems on capacity for Markov processes with stationary independent
increments. Z. Wahrsch. Verw. Gebiete 35, 159–165 (1976) Zbl 0316.60048 MR 405594

[21] Kanda, M.: Characterization of semipolar sets for processes with stationary independent incre-
ments. Z. Wahrsch. Verw. Gebiete 42, 141–154 (1978) Zbl 0362.60078 MR 483039

[22] Karatzas, I., Shreve, S. E.: Brownian Motion and Stochastic Calculus. 2nd ed., Grad. Texts in
Math. 113, Springer, New York (1991) Zbl 0638.60065 MR 1121940

[23] Khoshnevisan, D., Salminen, P., Yor, M.: A note on a.s. finiteness of perpetual integral func-
tionals of diffusions. Electron. Comm. Probab. 11, 108–117 (2006) Zbl 1111.60061
MR 2231738

[24] Kolb, M., Savov, M.: A characterization of the finiteness of perpetual integrals of Lévy pro-
cesses. Bernoulli 26, 1453–1472 (2020) Zbl 1466.60096 MR 4058374

[25] Kyprianou, A. E., Rivero, V., Satitkanitkul, W.: Deep factorisation of the stable process III:
the view from radial excursion theory and the point of closest reach. Potential Anal. 53, 1347–
1375 (2020) Zbl 1460.60024 MR 4159383

[26] Li, Z., Mytnik, L.: Strong solutions for stochastic differential equations with jumps. Ann. Inst.
H. Poincaré Probab. Statist. 47, 1055–1067 (2011) Zbl 1273.60070 MR 2884224
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