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Abstract. Let M be an atomless semifinite von Neumann algebra (or an atomic von Neumann
algebra with all atoms having the same trace) acting on a (not necessarily separable) Hilbert space H

equipped with a semifinite faithful normal trace � . LetE.M; �/ be a symmetric operator space affil-
iated with M, whose norm is order continuous and is not proportional to the Hilbertian norm k�k2
on L2.M; �/. We obtain a general description of all bounded hermitian operators on E.M; �/. This
is the first time that the description of hermitian operators on a symmetric operator space (even for
a noncommutative Lp-space) is obtained in the setting of general (non-hyperfinite) von Neumann
algebras. As an application, we resolve a long-standing open problem concerning the description of
isometries raised in the 1980s, which generalizes and unifies numerous earlier results.

Keywords. Surjective isometry, hermitian operator, semifinite von Neumann algebra, symmetric
operator space

1. Introduction

The main purpose of this paper is to answer the following long-standing open question
concerning isometries on a symmetric operator space (see e.g. [4, 23, 48, 93]).

Question 1.1. IfE.0;1/ is a separable symmetric function space on .0;1/ and if .M; �/

is a semifinite von Neumann algebra .on a separable Hilbert space/ with a semifinite
faithful normal trace � , how can one describe the family of surjective isometries on the
symmetric operator space E.M; �/ associated with E.0;1/?

This is one of the most fundamental questions in the theory of symmetric opera-
tor/function/sequence spaces, and it has attracted substantial interest.

The study of the above question has a very long history, initiated by Stefan
Banach [10], who obtained the general form of isometries between Lp-spaces on a finite
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measure space in the 1930s. This result was extended by Lamperti [61] to certain Orlicz
function spaces over � -finite measure spaces. Representations of isometries between more
general complex symmetric function spaces were later obtained by Lumer and by Zaiden-
berg [39, 100, 101] (see Arazy’s paper [8] for the case of complex sequence spaces).
More precisely, Zaidenberg showed that under mild conditions on the complex function
spaces E1.�1; †1; �1/ and E2.�2; †2; �2/ over the atomless � -finite measure spaces
.�1; †1; �1/ and .�2; †2; �2/, any surjective isometry T between two complex sym-
metric function spaces E1.�1; †1; �1/ and E2.�2; †2; �2/ must be of the elementary
form

.Tf /.t/ D h.t/.T1f /.t/; f 2 E1; (1.1)

where T1 is the operator induced by a regular set isomorphism [39, Definition 3.2.3]
from �1 onto �2 and h is a measurable function on �2 [39, Theorem 5.3.5] (see also
[100, 101]). Let .�; †; �/ be a discrete measure space on a set � with �.¹º/ D 1 for
every  2 � . We denote by p̀.�/, 1 � p � 1, the Lp-space on .�; †; �/ [64, p. xi].
Whereas p̀.�/ is a well-studied object (see e.g. [45, 64, 85] and references therein) and
the description of surjective isometries of p̀.�/ already follows from [86,99], the case of
arbitrary symmetric spaces E.�/ for uncountable � has remained untreated. The descrip-
tion of isometries of these classical Banach spaces is a simple corollary of our general
result, Theorem 1.2 below. We also note that isometries on real symmetric function spaces
and those on complex symmetric function spaces have substantial differences (see e.g. the
works of Braverman and Semenov [18,19], Jamison, Kamińska and Lin [49], and Kalton
and Randrianantoanina [55, 56, 75, 76]). Throughout this paper, unless stated otherwise,
we only consider complex Banach spaces and surjective linear isometries.

A noncommutative version of Banach’s description of isometries between Lp-spaces
[10] was obtained by Kadison [53] in the 1950s, who showed that a surjective isometry
between two von Neumann algebras can be written as a Jordan �-isomorphism followed
by multiplication by a unitary operator. After the non-commutative Lp-spaces were intro-
duced by Dixmier [27] and Segal [83] in the 1950s, the study of Lp-isometries was
conducted by Broise [20], Russo [79], Arazy [5], Tam [96], etc. A complete descrip-
tion (for the semifinite case) was obtained in 1981 by Yeadon [99], who proved that every

isometry T W Lp.M1; �1/
into
��! Lp.M2; �2/, 1 � p ¤ 2 <1, has the form

T .x/ D uBJ.x/; x 2M1 \ Lp.M1; �2/; (1.2)

where u is a partial isometry in M2,B is a positive self-adjoint operator affiliated with M2

and J is a Jordan �-isomorphism from M1 onto a weakly closed �-subalgebra of M2 (see
[51, 52, 86, 97] for the case when M1;M2 are of type III).

Isometries of general symmetric operator spaces on semifinite von Neumann algebras
have been widely studied since the notion of symmetric operator spaces was introduced in
the 1970s (see e.g. [34,35,57,72,73,92] and references therein). The question posed at the
beginning of the paper indeed asks whether these isometries T have a natural description
as in the cases of symmetric function spaces and noncommutative Lp-spaces (see (1.1)
and (1.2)). One of the most important developments in this area is due to Sourour [90],
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who described isometries on separable symmetric operator ideals, that is, when M is the
�-algebra B.H / of all bounded linear operator on a separable Hilbert space H . Adopting
Sourour’s techniques, the second author [93] obtained the description of isometries on
separable symmetric operator spaces affiliated with hyperfinite type II factors. However,
the approach used in [90] strongly relies on the matrix representation of compact operators
on a separable Hilbert space H , which is not applicable to symmetric operator spaces
affiliated with general semifinite von Neumann algebras. In the latter case, only partial
results have been obtained. For example, the general form of isometries of Lorentz spaces
on a finite von Neumann algebra was obtained in [23] (see also [69]). Under additional
conditions on the isometries (e.g., disjointness-preserving, order-preserving, etc.), similar
descriptions can be found in [1, 23, 25, 26, 40, 48, 58, 62, 68, 77, 91], which provide partial
answers to the question posed at the outset of this paper.

The following theorem answers Question 1.1 in full generality.

Theorem 1.2. Let M1 and M2 be atomless von Neumann algebras .or atomic von Neu-
mann algebras whose atoms all have the same trace/ equipped with semifinite faithful
normal traces �1 and �2, respectively. Let E.M1; �1/ and F.M2; �2/ be symmetric oper-
ator spaces whose norms are order continuous and are not proportional to k�k2. If T W
E.M1; �1/! F.M2; �2/ is a surjective isometry, then there exist nets Ai 2 F.M2; �2/,
i 2 I , disjointly supported from the right, andBi 2F.M2; �2/; i 2 I , disjointly supported
from the left, a surjective Jordan �-isomorphism J WM1 !M2 and a central projection
z 2M2 such that

T .x/ D k�kF -
X
i2I

J.x/Aiz C BiJ.x/.1 � z/; x 2 E.M1; �1/ \M1;

where the series is taken as the limit of all finite partial sums. In particular, if M is � -
finite, then the nets ¹Aiº and ¹Biº are countable. If the trace � is finite, then there exist
elements A;B 2 F.M2; �2/ such that

T .x/ D J.x/Az C BJ.x/.1 � z/; x 2 E.M1; �1/ \M1:

This extends numerous earlier results on this topic (see e.g. [8, 23, 25, 26, 66–69, 79,
86,90,93,97,99]), and Theorem 1.2 yields the first description of surjective isometries on
symmetric operator spaces associated with non-hyperfinite algebras. On the other hand,
we show that if M has atoms whose traces are different, then there exists a symmetric
space E.M; �/ (whose norm is not proportional to k�k2) and an isometry on E.M; �/

which is not of the form (1.1) (see Example 6.2). This demonstrates that the assumption
imposed on the von Neumann algebra is sharp.

Recall that the notion of hermitian operators on a Banach space was formulated by
Lumer [66] in his seminal paper in the 1960s, for the purpose of extending Hilbert space
type arguments to Banach spaces. This notion plays an important role in different fields
such as operator theory on Banach spaces, matrix theory, optimal control theory and com-
puter science (see e.g. [14, 39, 39, 40, 43, 66, 87, 98] and references therein).
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The main method used in this paper for the description of isometries is to establish and
employ the general description of hermitian operators on the symmetric operator spaces
E.M; �/. The following result is rather surprising as it shows that the stock of hermitian
operators does not depend on the symmetric space E.M; �/, and it is fully determined by
the algebra M.

Theorem 1.3. LetE.M; �/ be a symmetric space on an atomless semifinite von Neumann
algebra .or an atomic von Neumann algebra with all atoms having the same trace/ M

equipped with a semifinite faithful normal trace � . Assume that k�kE is order continuous
and is not proportional to k�k2. Then a bounded operator T on E.M; �/ is a hermitian
operator on E.M; �/ if and only if there exist self-adjoint operators a and b in M such
that

T x D ax C xb; x 2 E.M; �/:

In particular, T can be extended to a bounded hermitian operator on the von Neumann
algebra M.

This idea to employ hermitian operators to describe isometries lurks in the back-
ground of Lumer’s description of isometries on Orlicz spaces [39], but the study of
hermitian operators on noncommutative spaces is substantially more difficult than that of
function spaces, and descriptions of hermitian operators are known only for very few oper-
ator spaces. For example, Sinclair [87] obtained the general form of hermitian operators
on a C �-algebra using earlier results on derivations on operator algebras; Sourour [90]
obtained the general form of hermitian operators on separable operator ideals of B.H /

when H is separable; and the case of symmetric operator spaces on hyperfinite type II
factors was settled by the second author [93] by adopting Sourour’s approach. For more
general von Neumann algebras, the form of a hermitian operator on a symmetric space
(even on noncommutative Lp-spaces, see [88, Theorem 4] and [89, Theorem 4.2] for
partial results) has been unknown. Theorem 1.3 yields a complete description of hermi-
tian operators on a symmetric operator space having order continuous norm by using a
different approach than those in [90, 93].

The main ingredient of the proof of Theorem 1.3 is the following surprising obser-
vation: any bounded hermitian operator on E.M; �/ can be “reduced” to a bounded
hermitian operator on the so-called � -compact ideal C0.M; �/ (which is a C �-algebra),
and therefore it can be written as the sum of left multiplication by a self-adjoint oper-
ator in M and right multiplication by a self-adjoint operator in M [87]. Having such
a description at hand, we are able to describe isometries on symmetric operator spaces
affiliated with M and infer Theorem 1.2. However, the structure of a bounded hermitian
operator on a von Neumann algebra is more complicated than for a factor, and this infer-
ence is far from straightforward. As pointed out in [25, p. 825], constructing a suitable
Jordan �-isomorphism from an isometry (even if this isometry is positive and finiteness-
preserving [25]) is always ‘problematic’. A simple adaptation of proofs in [90, 93] does
not yield Theorem 1.2. Many new techniques are required in the proof of Theorem 1.2,
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which are of interest in their own right and have potential usage in the future study of
hermitian operators, Jordan �-isomorphisms and isometries of vector-valued spaces.

Finally, as an application of Theorem 1.2, we consider a variant of Pełczyński’s prob-
lem on the uniqueness of symmetric structure of operator ideals for symmetric structure
of E.M; �/ affiliated with a II1 factor, which establishes a noncommutative version of
a result by Abramovich and Zaidenberg on uniqueness of symmetric structure of Lp.0; 1/
[2, Theorem 1] and its generalizations due to Zaidenberg [100] and Kalton and Randri-
anantoanina [56, 75].

2. Preliminaries

In this section, we recall the main notions of the theory of noncommutative integration,
introduce some properties of generalised singular value functions and define noncommu-
tative symmetric operator spaces. For details of von Neumann algebra theory, the reader
is referred to e.g. [15, 28, 54, 94]. General facts concerning measurable operators may be
found in [30, 71, 83] (see also the forthcoming book [32]). For the convenience of the
reader, some of the basic definitions are recalled.

2.1. � -Measurable operators and generalised singular values

In what follows, H is a (not necessarily separable) Hilbert space and .B.H /; k�k1/ is
the �-algebra of all bounded linear operators on H , and 1 is the identity operator on H .
Let M be a von Neumann algebra on H . Let P .M/ be the set of all projections of M.
We denote by Mp the reduced von Neumann algebra pMp generated by a projection
p 2 P .M/.

A linear operator x W D.x/! H , where the domain D.x/ of x is a linear subspace
of H , is said to be affiliated with M if yx� xy for all y 2M0, where M0 is the commutant
of M. A linear operator x W D.x/ ! H is termed measurable with respect to M if x
is closed, densely defined, affiliated with M, and there exists a sequence ¹pnº1nD1 in
the set P .M/ of all projections of M such that pn " 1, pn.H / � D.x/ and 1 � pn is
a finite projection (with respect to M) for all n. It should be noted that the condition
pn.H / � D.x/ implies that xpn 2M. The collection of all operators measurable with
respect to M is denoted by S.M/; it is a unital �-algebra with respect to strong sums and
products (denoted simply by x C y and xy for all x; y 2 S.M/).

Let x be a self-adjoint operator affiliated with M. We denote its spectral measure by
¹exº. It is well known that if x is a closed operator affiliated with M with polar decompo-
sition xD ujxj, then u 2M and e 2M for all projections e 2 ¹ejxjº. Moreover, x 2 S.M/

if and only if x is closed, densely defined, affiliated with M and ejxj.�;1/ is a finite pro-
jection for some � > 0. It follows immediately that when M is a von Neumann algebra of
type III or a type I factor, we have S.M/ DM. For type II von Neumann algebras, this is
no longer true. From now on, let M be a semifinite von Neumann algebra equipped with
a faithful normal semifinite trace � .
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For any closed and densely defined linear operator x WD.x/!H , the null projection
n.x/ D n.jxj/ is the projection onto the kernel Ker.x/. The left support l.x/ is the pro-
jection onto the closure of the range Ran.x/, and the right support r.x/ of x is defined by
r.x/ D 1 � n.x/.

An operator x 2 S.M/ is called � -measurable if there exists a sequence ¹pnº1nD1
in P .M/ such that pn " 1, pn.H / �D.x/ and �.1 � pn/ <1 for all n. The collection
of all � -measurable operators is a unital �-subalgebra of S.M/, denoted by S.M; �/. It
is well-known that a linear operator x belongs to S.M; �/ if and only if x 2 S.M/ and
there exists � > 0 such that �.ejxj.�;1// <1. Alternatively, an unbounded operator x
affiliated with M is � -measurable (see [37]) if and only if

�.ejxj.n;1//! 0; n!1:

Definition 2.1. Let a semifinite von Neumann algebra M be equipped with a faithful
normal semifinite trace � and let x 2 S.M; �/. The generalised singular value function
�.x/ W t 7! �.t I x/, t > 0, of the operator x is defined by

�.t I x/ D inf¹kxpk1 W p 2 P .M/; �.1 � p/ � tº:

An equivalent definition in terms of the distribution function of the operator x is the
following. For every self-adjoint operator x 2 S.M; �/, setting

dx.t/ D �.e
x.t;1//; t > 0;

we have (see e.g. [37, 65])

�.t I x/ D inf ¹s � 0 W djxj.s/ � tº:

Note that dx.�/ is a right-continuous function (see e.g. [32, 37]).
Consider the algebra MDL1.0;1/ of all Lebesgue measurable essentially bounded

functions on .0;1/. The algebra M can be viewed as an abelian von Neumann algebra
acting via multiplication on the Hilbert space H D L2.0;1/, with the trace given by
integration with respect to Lebesgue measure m: It is easy to see that the algebra of all
� -measurable operators affiliated with M can be identified with the subalgebra S.0;1/
of the algebra of Lebesgue measurable functions which consists of all functions f such
that m.¹jf j > sº/ is finite for some s > 0. It should also be pointed out that the gener-
alised singular value function �.f / is precisely the decreasing rearrangement �.f / of
the function jf j (see e.g. [11, 59]) defined by

�.t If / D inf ¹s � 0 W m.¹jf j � sº/ � tº:

For the convenience of the reader, we also recall the definition of the measure topol-
ogy t� on the algebra S.M; �/. For every "; ı > 0; we define the set

V."; ı/ D ¹x 2 S.M; �/ W 9p 2 P .M/ such that kx.1 � p/k1 � "; �.p/ � ıº:
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The topology generated by the sets V."; ı/, "; ı > 0; is called the measure topology
t� on S.M; �/ [32, 37, 71]. It is well known that the algebra S.M; �/ equipped with
the measure topology is a complete metrizable topological algebra [71]. We note that a
sequence ¹xnº1nD1 � S.M; �/ converges to zero in the measure topology t� if and only if
�.ejxnj.";1//! 0 as n!1 for all " > 0 [32].

The space S0.M; �/ of � -compact operators is the space associated to the algebra of
functions from S.0;1/ vanishing at infinity, that is,

S0.M; �/ D ¹x 2 S.M; �/ W �.1I x/ D 0º:

The two-sided ideal F .�/ in M consisting of all elements of � -finite range is defined by

F .�/ D ¹x 2M W �.r.x// <1º D ¹x 2M W �.s.x// <1º:

Note that S0.M; �/ is the closure of F .�/ in the measure topology [30].
A further important vector space topology on S.M; �/ is the local measure topology

[30, 32]. A neighbourhood base for this topology is given by the sets V."; ıIp/, "; ı > 0,
p 2 P .M/ \ F .�/, where

V."; ıIp/ D ¹x 2 S.M; �/ W pxp 2 V."; ı/º:

It is clear that the local measure topology is weaker than the measure topology [30,32]. If
¹x˛º � S.M; �/ is a net and if x˛ !˛ x 2 S.M; �/ in the local measure topology, then
x˛y ! xy and yx˛ ! yx in the local measure topology for all y 2 S.M; �/ [30, 32]. If
ai � 0 is an increasing net in S.M; �/ and if a 2 S.�/ is such that a D sup ai , then we
write 0 � ai " a [30, p. 212]. If ¹xiº is an increasing net in S.M; �/C and x 2 S.M; �/C
is such that xi ! x in the local measure topology, then xi " x (see e.g. [32, Chapter II,
Proposition 7.6 (iii)]).

2.2. Symmetric spaces of � -measurable operators

Let E.0;1/ be a Banach space of real-valued Lebesgue measurable functions on .0;1/
(with identificationm-a.e.), equipped with a norm k � kE . The space E.0;1/ is said to be
absolutely solid if x 2 E.0;1/ and jyj � jxj, y 2 S.0;1/ implies that y 2 E.0;1/ and
kykE � kxkE : An absolutely solid space E.0;1/ � S.0;1/ is said to be symmetric if
for every x 2 E.0;1/ and every y 2 S.0;1/, the assumption �.y/ D �.x/ implies that
y 2 E.0;1/ and kykE D kxkE [59]. Without loss of generality, throughout this paper,
we always assume that k�.0;1/kE.0;1/ D 1.

We now come to the definition of the main object of this paper.

Definition 2.2. Let M be a semifinite von Neumann algebra equipped with a faithful
normal semifinite trace � . Let E be a linear subset in S.M; �/ equipped with a com-
plete norm k � kE . We say that E is a symmetric space if for every x 2 E , the conditions
y 2 S.M; �/ and �.y/ � �.x/ imply that y 2 E and kykE � kxkE .
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Let E.M; �/ be a symmetric space. It is well-known that any symmetrically normed
space E.M; �/ is a normed M-bimodule (see e.g. [30, 32]). That is, for any symmetric
operator space E.M; �/, we have kaxbkE � kak1kbk1kxkE , a; b 2M, x 2 E.M; �/.
It is known that if E.M; �/ has order continuous norm k�kE , i.e., kx˛kE # 0 whenever
0 � x˛ # 0 � E.M; �/, then E.M; �/ � S0.M; �/ [30, 32, 48].

The so-called Köthe dual is identified with an important part of the dual space. If
E.M; �/ � S.M; �/ is a symmetric space, then the Köthe dual E.M; �/� of E is defined
by

E.M; �/� D
°
x 2 S.M; �/ W sup

kykE�1; y2E.M;�/

�.jxyj/ <1
±
:

The Köthe dualE.M; �/� can be identified as a subspace of the Banach dualE.M; �/ via
the trace duality [30, p. 228]. Recall that x 2 L1.M; �/CM WD ¹a 2 S.M; �/ W �.a/ 2

L1.0;1/CL1.0;1/º can be equipped with the norm kxkL1CL1 D
R 1
0
�.sIx/ ds and

x 2 L1.M; �/ \M WD ¹a 2 S.M; �/ W �.a/ 2 L1.0;1/ \ L1.0;1/º can be equipped
with the norm kxkL1\L1 WD max ¹kxk1; kxk1º. In particular, .L1.M; �/ \M/� D

L1.M; �/CM and L1.M; �/ \M D .L1.M; �/CM/� [30, Example 4].
The carrier projection cE 2M of E.M; �/ is defined by

cE WD
_
¹p W p 2 P .E/º:

It is clear that cE is in the centre Z.M/ of M [30]. It is often assumed that the carrier
projection cE is equal to 1. Indeed, for any symmetric function spaceE.0;1/, the carrier
projection of the corresponding operator space E.M; �/ is always 1 (see e.g. [30, 57]).
On the other hand, if M is atomless or is atomic and all atoms have equal trace, then the
carrier projection of any non-zero symmetric space E.M; �/ is necessarily 1 [30, 32]. In
this case, whenever E.M; �/ has order continuous norm, then E.M; �/� is isometrically
isomorphic to E.M; �/� (see e.g. [35], [29, Proposition 6.4] or [30, Proposition 47 (v)]).

There exists a strong connection between symmetric function spaces and operator
spaces [57] (see also [30, 65]). The operator space E.M; �/ defined by

E.M; �/ WD ¹x 2 S.M; �/ W �.x/ 2 E.0;1/º; kxkE.M;�/ WD k�.x/kE ;

is a complete symmetric space whenever .E.0;1/; k � kE / is a complete symmetric
function space on .0;1/ [57]. In particular, for any symmetric function space E.0;1/,
F.�/ � E.M; �/ [30, Lemma 18]. In the special case when E.0;1/ D Lp.0;1/, 1 �
p � 1, E.M; �/ is the noncommutative Lp-spaces affiliated with M and we denote the
norm by k�kp . We note that if E.0;1/ is separable (i.e. has order continuous norm),
then E�.M; �/ is isometrically isomorphic to E.M; �/� [30, p. 246]. Recall that every
separable symmetric sequence/function space E is fully symmetric, that is, if x 2 E and
y 2 `1 (resp. y 2 S.0;1/) withZ s

0

�.t Iy/ dt �

Z s

0

�.t I x/ dt; s � 0;

(denoted by y �� x), then y 2 E with kykE � kxkE (see e.g. [59, Chapter II,Theorem
4.10] or [32, Chapter IV, Theorem 5.7]).
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3. Hermitian operators

Let X be a Banach space. Recall that a semi-inner product (abbreviated s.i.p.) on X is a
mapping h�; �i of X �X into the field of complex numbers such that

(1) hx C y; zi D hx; zi C hy; zi for x; y; z 2 X ;

(2) h�x; yi D �hx; yi for x; y 2 X and � 2 C;

(3) hx; xi > 0 for 0 ¤ x 2 X ;

(4) jhx; yij2 � hx; xihy; yi for any x; y 2 X .

When a s.i.p. is defined onX , we callX a semi-inner-product space (abbreviated s.i.p.s.).
IfX is a s.i.p.s., then hx;xi1=2 is a norm onX . On the other hand, every Banach space can
be made into a s.i.p.s. (in general, in infinitely many ways) so that the s.i.p. is consistent
with the norm, i.e., hx; xi1=2 D kxk for any x 2 X [39]. By virtue of the Hahn–Banach
theorem, this can be accomplished by choosing one bounded linear functional fx for each
x 2 X such that kfxk D kxk and fx.x/ D kxk2 (fx is called a support functional of x),
and then setting hx; yi D fy.x/ for arbitrary x; y 2 X [14, 39, 66]. Given a linear trans-
formation T mapping a s.i.p.s. into itself, we denote by W.T / the numerical range of T ,
that is, ¹hT x; xi W hx; xi D 1; x 2 Xº. Let T be an operator on a Banach space .X; k�k/.
Although in principle there may be many different s.i.p. consistent with k�k, nonetheless
if the numerical range of T relative to one such s.i.p. is real, then the numerical range
relative to any such s.i.p. is real (see e.g. [39, p. 107], [66, Section 6] and [14, p. 377]). If
this is the case, T is said to be a hermitian operator on X .

From now on, unless stated otherwise, we always assume that M is an atomless semifi-
nite von Neumann algebra or an atomic semifinite von Neumann algebra with all atoms
having the same trace (without loss of generality, we assume that �.e/ D 1 for any atom
e 2M), and we assume that � is a semifinite faithful normal trace on M.

In particular, when M is atomless (resp. atomic), the set

E.0; �.1// WD ¹f 2 S.0; �.1// W �.f / D �.x/ for some x 2 E.M; �/º

(resp.
`E WD ¹f 2 `1 W �.f / D �.x/ for some x 2 E.M; �/º/

is a symmetric function (resp. sequence) space [65, Theorem 2.5.3]. There exists a
bijective correspondence between symmetric operator spaces and symmetric function/
sequence spaces. Therefore, if k�kE on E.M; �/ is not proportional to k�k2 on L2.M; �/,
then k�kE is not proportional to k�k2 on L2.A; �/ for any maximal abelian von Neumann
subalgebra A of M.

Sourour [90, Lemma 1] obtained Lemma 3.3 below in the setting of B.H / by
using a result due to Schneider and Turner (see e.g. [82, Lemma 3.1] and [39, Lemma
9.2.7]). Arazy gave a self-contained alternative proof in the setting of complex sequence
spaces [8]. In the proof of the following lemma, we adapt Arazy’s proof. Due to the
technical differences between the atomless case and atomic case, we provide a full proof
below.
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To prove Lemma 3.3 below, we need the following well-known proposition. For the
sake of completeness, we provide a short proof below.

Proposition 3.1. Let p 2F .�/ be a projection and letE.M; �/ be an arbitrary symmetric

operator space having order continuous norm. Then kpk
2
E

�.p/
p 2 E.M; �/� is a support

functional of p 2 E.M; �/, i.e.,

�

�
p �
kpk2E
�.p/

p

�
D kpk2E D kpkE

kpk2E�.p/
p


E�
:

In particular, for any bounded hermitian operator T on E.M; �/, we have

�.T .p/p/ 2 R: (3.1)

Proof. We only consider the case when M is atomless; the atomic case uses the same
argument (see also [8] or [39, Theorem 5.2.13]).

Note that

kpkE� D kpkE� D sup
²Z �.p/

0

�.sI z/ ds W z 2 E.M; �/; kzkE D 1

³
:

SinceR �.p/
0

�.sI z/ ds

�.p/
�.p/ D

R �.p/
0

�.sI z/ ds

�.p/
�.0;�.p// �� �.z/; z 2 E.M; �/; kzkE D 1

(see e.g. [65, Section 3.6]), we obtain
R �.p/
0 �.sIz/ ds

�.p/
kpkE � kzkE D 1, and therefore

kpkE� �
�.p/

kpkE
:

On the other hand, by [30, Remark 3] we have

�.p/ � kpkE�kpkE :

Hence, �.p/ D kpkE�kpkE , i.e. �
�
p �
kpk2

E

�.p/
p
�
D kpk2E D kpkE

 kpk2E
�.p/

p

E�

.

Corollary 3.2. Let u 2 F .�/ be a partial isometry and let E.M; �/ be an arbitrary

symmetric operator space having order continuous norm. Then ku
�uk2

E

�.u�u/
u� 2 E.M; �/� is

a support functional of u 2 E.M; �/. In particular, for any bounded hermitian operator
T on E.M; �/, we have

�.T .u/u�/ 2 R:

Proof. Since u 2 F .�/, it follows that r.u/ and l.u/ are � -finite projections. Hence,
r.u/ _ l.u/ is also � -finite. Therefore, there exists a unitary element v in Mr.u/_l.u/ such
that v�l.u/v D r.u/ [95, Chapter XIV, Lemma 2.1].
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Define v0 WD uC v � .r.u/ _ l.u/ � r.u//. Note that

.r.u/ _ l.u/ � r.u//v�u D .r.u/ _ l.u/ � r.u//v�l.u/u

D .r.u/ _ l.u/ � r.u//r.u/v�u D 0:

We have

.v0/�v0 D
�
uC v � .r.u/ _ l.u/ � r.u//

���
uC v � .r.u/ _ l.u/ � r.u//

�
D r.u/C .r.u/ _ l.u/ � r.u// D r.u/ _ l.u/:

Hence, v0 is a unitary element in Mr.u/_l.u/, and therefore

v00 WD v0 C .1 � r.u/ _ l.u//

is a unitary element in M. It follows that .v00/�T .v00�/ on E.M; �/ is also a bounded
hermitian operator [39, p. 22]. Noting that v00r.u/ D u, we obtain

�.T .u/u�/ D �
�
.v00/�T .v00r.u//r.u/

� (3.1)
2 R:

Lemma 3.3. Let E.M; �/ be a symmetric space affiliated with M, whose norm is order
continuous and is not proportional to k�k2. Let x1; x2 2 F .�/ be two partial isometries
such that l.x1/ ? l.x2/ and r.x1/ ? r.x2/. Then, for any bounded hermitian operator
T W E.M; �/! E.M; �/, we have

�.T .x1/x
�
2 / D 0:

Consequently, if x1 2 E.M; �/ and x2 2 L1.M; �/\M with l.x1/ ? l.x2/ and r.x1/ ?
r.x2/, then

�.T .x1/x
�
2 / D 0:

Proof. We only handle the case of an atomless von Neumann algebra; the atomic case
follows by a similar argument.

We first consider the case when x1 and x2 are two projections such that x1x2 D 0.
Since k�kE is not proportional to k�k2, it follows that there exists a set ¹eiº1�i�n of

pairwise orthogonal projections having the same trace such that k�kE on E.A/ is not
proportional to k�k2 on L2.A/, where A is the abelian weakly closed �-algebra generated
by ¹eiº1�i�n. Let

t1;2 WD �.T .e1/e2/ and t2;1 WD �.T .e2/e1/:

By Proposition 3.1, we find that �.T .e1/e1/; �.T .e2/e2/ 2 R. We claim that

ti;j D tj;i (3.2)

when i; j D 1; : : : ; n and i ¤ j . Define x� WD e1 C e
i�e2, 0 � � � 2� . In particular,

�.x�x
�
�
/ D �.e1 C e2/ 2 R. By Corollary 3.2, we obtain

�.T .x� /x
�
� / 2 R;

i.e., ei� ti;j C e�i� tj;i 2 R for all � . Hence, (3.2) follows.
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By [8, Lemma 4] (see also [4, 39]), there exist 1 < n <1, x D
Pn
kD1 x.k/ek , and

y D
Pn
kD1 y.k/ek such that

(1) x.k/; y.k/ � 0 for all k;

(2) kxkE D kykE� D �.xy�/ D 1;

(3) x and y are linearly independent.

Let � D .�1; : : : ; �n/, 0 � �k � 2� , and let

x� D

nX
kD1

ei�kx.k/ek and y� D

nX
kD1

ei�ky.k/ek :

By the assumption on x and y, we obtain

kx�kE D ky�kE� D �.y
�
� x� /

.2/
D 1:

Therefore, by the definition of a hermitian operator, for any � we have

0 D Im�.y�� T .x� // D Im
nX

k;lD1

ei.�k��l /x.k/y.l/tl;k

3.2
D

1

2i

X
k¤l

x.k/y.l/.ei.�k��l /tl;k � e
i.�l��k/tk;l /

D
1

2i

X
k¤l

x.k/y.l/ei.�k��l /tl;k �
1

2i

X
k¤l

x.k/y.l/ei.�l��k/tk;l

D
1

2i

X
k¤l

x.k/y.l/ei.�k��l /tl;k �
1

2i

X
k¤l

x.l/y.k/ei.�k��l /tl;k

D
1

2i

X
k¤l

ei.�k��l /tl;k.x.k/y.l/ � x.l/y.k//:

This implies that tl;k.x.k/y.l/ � x.l/y.k// D 0 for all k and l .
Since x; y are linearly independent, it follows that there exist k ¤ l such that

x.k/y.l/ � x.l/y.k/ ¤ 0 and thus tl;k D 0. Replacing in this argument x and y by
x� D

P
xke�.k/ and y� D

P
yke�.k/, respectively, where � is an arbitrary permuta-

tion of ¹1; : : : ; nº, we deduce that tk;l D 0 for every k ¤ l . Therefore,

�.T .p/q/ D 0

for any projections p;q with pq D 0 and �.p/D �.q/D �.e1/. Clearly, if the norm of the
space .E.A/; k�kE.M;�// on the algebra generated by ek , 1 � k � n, is not proportional
to k�k2, then the norm k�kE on E.A0/ on the algebra generated by e0

k
, 1 � k � 2n, is not

proportional to k�k2 either, where �.e0
k
/ D 1

2
�.ek/. This implies that for any k 2 N, if

p; q are � -finite projections such that pq D 0 and �.p/ D �.q/ D 1

2k
�.e1/, then

�.T .p/q/ D 0: (3.3)

The case when �.p/¤ �.q/ follows by standard approximation argument. Indeed, let
p; q be � -finite projections with pq D 0. For any " > 0, there exist two sets ¹piº1�i�n
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and ¹qiº1�i�m of � -finite projections such that

�
�
p �

nX
iD1

pi

�
; �
�
q �

mX
iD1

qi

�
� "

and
�.pi / D �.qj / D

1

2k
�.e1/; 1 � i � n; 1 � j � m;

for some k 2 N. Note that

�.T .p/q/ D �
�
T .p/

�
q �

mX
iD1

qi

��
C �

�
T
�
p �

nX
iD1

pi

� mX
iD1

qi

�
C �

�
T
� nX
iD1

pi

� mX
iD1

qi

�
(3.3)
D �

�
T .p/

�
q �

nX
iD1

pi

��
C �

�
T
�
p �

nX
iD1

pi

� mX
iD1

qi

�
:

Since ˇ̌̌
�
�
T .p/

�
q �

mX
iD1

qi

��ˇ̌̌
� �

�ˇ̌̌
T .p/

�
q �

mX
iD1

qi

�ˇ̌̌�
D

T .p/�q � mX
iD1

qi

�
1
! 0

as "! 0 (see e.g. [31, Lemma 3.10] and [29]) andˇ̌̌
�
�
T
�
p �

nX
iD1

pi

� mX
iD1

qi

�ˇ̌̌
� kT k

p � nX
iD1

pi


E

 mX
iD1

qi


E�

� kT k
p � nX

iD1

pi


E

 mX
iD1

q

E�
! 0

as "! 0 because the norm k�kE is order continuous, it follows that (3.3) also holds.
The general case when x1 and x2 are partial isometries in F .�/ such that l.x1/? l.x2/

and r.x1/ ? r.x2/ is reduced to the case just considered via the same argument as in
Corollary 3.2. Thus, we obtain �.T .x1/x�2 / D 0, which completes the proof of the first
assertion.

Now, we prove the second assertion. Since E.M; �/ � S0.M; �/, there exist
two sequences ¹ynº and ¹y0nº in F .�/ such that 0 � yn " jx1j and 0 � y0n " jx2j

and yn (resp. y0n) are generated by spectral projections of jx1j (resp. jx2j). Let x1 D
u1jx1j and x2 D u2jx2j be the polar decompositions. By the first assertion of the
lemma, �.T .u1yn/.u2y0m/

�/ D 0 for all n and m. Since u1yn !n x1 in k�kE , it
follows that T .u1yn/ ! T .x1/ in k�kE , and so T .u1yn/ ! T .x1/ weakly. Hence,
�.T .x1/.u2y

0
m/
�/ D 0 for each m.
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Consider the special case when x2 2 F .�/. We may then assume in addition that
ky0m � x2k1 ! 0. We obtainˇ̌

�
�
T .x1/jx2ju

�
2

�ˇ̌
D
ˇ̌
�
�
T .x1/r.x2/.y

0
m � jx2j/u

�
2

�ˇ̌
� kT .x1/r.x2/k1

y0m � jx2j1 ! 0: (3.4)

For the general case, let p WD E jx2j.ı;1/, ı > 0, be a � -finite spectral projection of
jx2j such that

jx2j.1 � p/L1\L1 � ". Hence,ˇ̌
�
�
T .x1/jx2ju

�
2

�ˇ̌ (3.4)
D
ˇ̌
�
�
T .x1/.1 � p/jx2ju�2

�ˇ̌
� kT .x1/kL1CL1

.1 � p/jx2ju�2L1\L1
� kT .x1/kL1CL1 � ":

Since " is arbitrary, it follows that j�.T .x1/x�2 /j D 0.

The following result is a semifinite version of [90, Corollary 1].

Corollary 3.4. Let E.M; �/ be a symmetric space having order continuous norm and
k�kE is not proportional to k�k2. Let T be a bounded hermitian operator on E.M; �/. For
any x 2 E.M; �/, there exist y; z 2 E.M; �/ such that T .x/ D y C z and r.y/ � r.x/
and l.z/ � l.x/.

Proof. Denote A WD T .x/. Note that

A D l.x/Ar.x/C l.x/Ar.x/? C l.x/?Ar.x/C l.x/?Ar.x/?:

Assume that l.x/?Ar.x/? ¤ 0. Let p 2 F .�/ be a � -finite projection such that z D
l.x/?Ar.x/?p ¤ 0. Let zp D ujzpj be the polar decomposition. Then

u�l.x/?Ar.x/?p D u�zp � 0;

i.e.,
�
�
T .x/r.x/?pu�l.x/?

�
D �

�
u�l.x/?Ar.x/?p

�
> 0:

Note that l.l.x/?upr.x/?/ ? l.x/ and r.l.x/?upr.x/?/ ? r.x/. By Lemma 3.3,

�
�
u�l.x/?Ar.x/?p

�
D �.T .x/r.x/?pu�l.x/?/ D 0;

a contradiction. Taking y D l.x/Ar.x/C l.x/?Ar.x/ and zD l.x/Ar.x/?, we complete
the proof (note that the choices of y and z are not necessarily unique).

The following lemma shows that any bounded hermitian operator T on E.M; �/

(whose norm is not proportional to k�k2) maps the set of all � -finite projections to a
uniformly bounded set in M, which should be compared with the estimates in [93,
Remark 2.5].

Lemma 3.5. Let E.M; �/ be an arbitrary symmetric operator space having order con-
tinuous norm. Assume that k�kE is not proportional to k�k2. Let T be a bounded hermitian
operator on E.M; �/. Then kT .p/k1 � 3kT k for any � -finite projection p 2 P .M/.
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Proof. Let p 2 P .M/ be an arbitrary � -finite projection. By Corollary 3.4,

T .p/ D App C pBp (3.5)

for some (not necessarily unique) Ap;Bp 2 E.M; �/ with r.Ap/ � p and l.Bp/ � p. For
two � -finite projections q1; q2 2M such that q1q2 D 0 and q1 C q2 D p, we have

T .p/ D T .q1 C q2/ D Aq1q1 C q1Bq1 C Aq2q2 C q2Bq2

D .Aq1q1 C Aq2q2/p C p.q1Bq1 C q2Bq2/:

Therefore,
q1T .q1/q1

(3.5)
D q1Aq1q1 C q1Bq1q1 D q1T .p/q1 (3.6)

and

p?Apq1
(3.5)
D p?T .p/q1 D p

?.Aq1q1 C Aq2q2/pq1 D p
?Aq1q1

D p?.Aq1q1 C q1Bq1/
(3.5)
D p?T .q1/: (3.7)

Consider the following decomposition (see Corollary 3.4 or (3.5)):

T .p/ D p?T .p/C T .p/p? C pT .p/p D p?App C pBpp
?
C pT .p/p:

We claim that kp?Apk1 � kT kE!E . Assume otherwise. Then, taking q D

E jp
?Ap j.kT k;1/ ¤ 0, we obtain

kT k kqkE < kp
?ApqkE

(3.7)
D kp?T .q/kE � kT .q/kE � kT k kqkE ;

a contradiction. Similarly, kBpp?k1 � kT k. Now, we aim to show that kpT .p/pk1
� kT k. Note that, by (3.5), we have

pT .p/p D p.Ap C Bp/p DW C:

We claim that C is self-adjoint. Indeed, assume that p.Ap C Bp/p D aC ib, where a; b
are non-zero self-adjoint operators inE.M; �/ and r.a/; r.b/�p. Let q WDEb.0;1/�p
(or q WD Eb.�1; 0/ if Eb.0;1/ D 0) so that qbq ¤ 0, which is a � -finite projection.
We obtain

�.T .q/q/ D �.qT .q/q/
(3.6)
D �.qpT .p/pq/

(3.5)
D �.qp.Ap C Bp/pq/

D �.qaq C iqbq/ … R;

which contradicts Proposition 3.1. Hence, bD 0. This implies that pT .p/p is self-adjoint.
Recall that for any q � p, we have

qT .p/q
(3.6)
D qT .q/q:

Let q WD E jpT.p/pjŒkT k C ";1/, " > 0. If q ¤ 0, then

.kT k C "/kqkE D
.kT k C "/q

E
� kpT .p/pqkE D kqT .p/qkE D kqT .q/pkE

� kT .q/kE � kT k kqkE ;
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a contradiction. Hence, E jpT.p/pjŒkT k C ";1/ D 0 for any " > 0. This implies that
kpT .p/pk1 � kT k.

Combining the estimates kp?Apk1 � kT k, kBpp?k1 � kT k and kpT .p/pk1
� kT k, we obtain

kT .p/k1 � 3kT k

for any � -finite projection p. In particular, Ap and Bp can be taken with kApk1; kBpk1
� 3kT k (see the proof of Corollary 3.4).

The following lemma is the key auxiliary tool in the proof of Proposition 3.8 below,
which shows that any bounded hermitian operator T on E.M; �/ is a bounded operator
from .F .�/; k�k1/ into .C0.M; �/; k�k1/. By applying the generalized Gleason theorem
[44, Theorem 5.2.4] (see also [16, 41, 42, 70] for related results), we manage to prove all
but one case in the following lemma. However, the case when a von Neumann algebra has
an I2 direct summand is exceptional, not covered by the generalized Gleason theorem.
This special case is rather complicated and requires a careful study of the restriction of a
hermitian operator to the type I2 summand.

We denote by C0.M; �/ the closure in the norm k�k1 of the linear span of � -finite pro-
jections in M. Equivalently,C0.M; �/D¹a 2 S.M; �/ W�.a/2L1.0;1/; �.1;a/D 0º

[65, Lemma 2.6.9].

Lemma 3.6. Let E.M; �/ be an arbitrary symmetric operator space having order
continuous norm. Assume that k�kE is not proportional to k�k2. Let T be a bounded
hermitian operator on E.M; �/. Then T is a bounded operator from .F .�/; k�k1/ into
.C0.M; �/; k�k1/. In particular, T extends to a bounded operator from C0.M; �/ into
C0.M; �/.

Proof. There exists a decomposition M D M1 ˚M2, where M1 has no type I2 direct
summand and M2 is either 0 or the type I2 direct summand of M (see e.g. [15, Chapter
III.1.5.12]).

By Lemma 3.5, kT .p/k1 � 3kT k for any � -finite projection p 2 M1. Moreover,
T .p/ D Ap C Bp (see Corollary 3.4) for some Ap; Bp 2 E.M; �/ with r.Ap/ � p and
l.Bp/ � p. Since p � 1M1

, it follows that Ap D Ap1M1
2M1 and Bp D 1M1

Bp 2M1.
On the other hand, �.p/ <1 implies that T .p/ 2 F .M1/� C0.M1; �/� C0.M; �/. Let
Pf .M1/ be the set of all � -finite projections in M1. It follows from [44, Theorem 5.2.4]
that for any � -finite projection p, T jPf .M1/ extends uniquely to a bounded linear operator
Rp from the reduced algebra pMp into C0.M; �/. Moreover,

kRpjpM1pkk�k1!k�k1 � 12kT k

(see the proof of [44, Theorem 5.2.4]). Moreover, by the uniqueness of the extension Rp
[44, Theorem 5.2.4], if p � q, then Rp coincides with Rq on qM1q.

We claim that Rp coincides with T on pM1p. Indeed, let x be a positive operator
in pM1p. Then there exists a sequence of positive operators xn whose singular values
are step functions such that xn " x and kxn � xk1 ! 0. Since Rp coincides with T on
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all projections q � p, it follows that Rp.xn/ D T .xn/. Since E.M1; �/ has order con-
tinuous norm, it follows that T .xn/! T .x/ in k�kE , and hence in the measure topology
[30, Proposition 20]. On the other hand, the k�k1-k�k1-boundedness of Rp implies that
Rp.xn/ ! Rp.x/ in k�k1, and in the measure topology [30, Proposition 20]. Hence,
T .x/ D Rp.x/. Since p is an arbitrary � -finite projection, it follows that T is a bounded
linear operator from .F .�/ \M1; k�k1/ into .C0.M1; �/; k�k1/.

Now, we consider the case when M2 is a non-vanishing type I2 von Neumann direct
summand (if M2 D 0, then the lemma follows from the above result). It is known that
M2 can be written as M2 ˝A, where M2 is the algebra of all 2˝ 2 matrices and A is a
� -finite commutative von Neumann algebra (see e.g. [54,94] or [15, Chapter III.1.5.12]).
For every element of the form

�
p 0
0 0

�
, where p is a projection in A such that �.1˝p/<1,

we have (see Corollary 3.4)

T

�
p 0

0 0

�
D Ap

�
p 0

0 0

�
C

�
p 0

0 0

�
Bp:

By Lemma 3.5, Ap and Bp are uniformly bounded. Assume that

Ap D

�
a1 a2
a3 a4

�
and Bp D

�
b1 b2
b3 b4

�
:

Without loss of generality, we may assume in addition that a2; a4; b3; b4 are 0. Hence,

T

�
p 0

0 0

�
D

�
a1 0

a3 0

��
p 0

0 0

�
C

�
p 0

0 0

��
b1 b2
0 0

�
D

�
.a1 C b1/p b2p

a3p 0

�
:

Recall that kApk1; kBpk1 � 3kT k (see the proof of Lemma 3.5). We infer that
a1; a3; b1; b2 � 3kT k. Hence, for any x 2 A whose singular value function is a step
function, we have

T

�
x 0

0 0

�
D

�
h1x h2x

h3x 0

�
;

where kh1k1; kh2k1; kh3k1 � 6kT k. Therefore, kT
�
x 0
0 0 /


1
� 12kT k kxk1. For any

self-adjoint x 2 F .�/ there exists a sequence of self-adjoint elements xn 2 A such that
jxnj " jxj, kxn � xk1 ! 0 and �.xn/ are step functions. Since E.M; �/ has order con-
tinuous norm, it follows T�xn 0

0 0

�
� T

�
x 0

0 0

�
E

! 0;

and therefore T
�
xn 0
0 0

�
! T

�
x 0
0 0

�
in measure [30, Proposition 20]. On the other hand,T � xn 0

0 0

�
1
� 12kT k kxnk1 � 12kT k kxk1. Since the unit ball of M2 is closed in the

measure topology [30, Theorem 32], we obtainT�x 0

0 0

�
1

� 12kT k kxk1
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for any self-adjoint operator
�
x 0
0 0

�
2 F .�/ \M2. Since every element in F .�/ \M2 is

a linear combination of two self-adjoint elements, we obtainT�x 0

0 0

�
1

. kT k kxk1

for any
�
x 0
0 0

�
2 F .�/ \M2. The same argument shows that

T � 0 00 x �1 . kT k kxk1.
To estimate

T � 0 0x 0 �1 and
T � 0 x0 0 �1, just note that

T 0.�/ WD

��
0 1A

1A 0

�
C 1M1

�
T

���
0 1A

1A 0

�
C 1M1

�
�

�
is also a hermitian operator on E.M; �/ and

T 0
�
x 0

0 0

�
D T

�
0 0

x 0

�
:

By taking linear combinations, we see that for any x 2 F .�/ \M2,

kT .x/k1 . kT k kxk1:

This completes the proof.

We prove below an analogue of Proposition 3.1 for the symmetric space C0.M; �/.

Proposition 3.7. Let E.M; �/ be an arbitrary symmetric operator space having order
continuous norm. Assume that k�kE is not proportional to k�k2. Let T be a bounded
hermitian operator on E.M; �/. Then, for any operator x 2 C0.M; �/ and a � -finite
projection p 2 P .M/ commuting with jxj, we have

hT x; pu�i.C0.M;�/;C0.M;�/�/ WD �.T .x/pu
�/ 2 R;

where x D ujxj is the polar decomposition.

Proof. We only consider the case when x is positive; the general case follows from the
same argument by replacing Proposition 3.1 used below with Corollary 3.2.

Let xn WD
P
1�k�n ˛kpk 2 F .�/ be such that xn! x in k�k1, where pk are � -finite

spectral projections of xn which commute with p, and ˛k are real numbers. For each pk ,
we have

hTpk ; pi.C0.M;�/;C0.M;�/�/

D hT .ppk/; ppki.C0.M;�/;C0.M;�/�/ C hT .ppk/; p � ppki.C0.M;�/;C0.M;�/�/

C hT .pk � ppk/; pi.C0.M;�/;C0.M;�/�/

(3.3)
D hT .ppk/; ppki.C0.M;�/;C0.M;�/�/

D �.T .ppk/ppk/
(3.1)
2 R:
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Hence, hT xn; pi.C0.M;�/;C0.M;�/�/ 2 R for every n. Moreover,

jhT x; pi.C0.M;�/;C0.M;�/�/ � hT xn; pi.C0.M;�/;C0.M;�/�/j

� kT kC0.M;�/!C0.M;�/ kx � xnk1kpk1 ! 0;

which shows that hT x; pi.C0.M;�/;C0.M;�/�/ 2 R.

Proposition 3.8. Let E.M; �/ be an arbitrary symmetric operator space having order
continuous norm. Assume that k�kE is not proportional to k�k2. Let T be a bounded
hermitian operator on E.M; �/. Then T can be extended to a bounded operator on
C0.M; �/ .still denoted by T / and, for any operator x 2 C0.M; �/, there exists a support
functional x0 in C0.M; �/� of x such that hT x; x0i 2 R. In particular, T is a hermitian
operator on C0.M; �/.

Proof. By Lemma 3.6, T can be extended to a bounded operator on C0.M; �/.
Without loss of generality, we assume in addition that kxk1 D 1. Let x D ujxj be the

polar decomposition. Recall that x 2 C0.M; �/. Hence, �.E jxj.1� 1=n; 1�/ <1 for any
n > 0. Recall that .C0.M; �//� D L1.M; �/ (see e.g. [84, Lemma 8] and [30, Theorem
53]). Define

xn D
E jxj.1 � 1=n; 1�

�.E jxj.1 � 1=n; 1�/
u� 2 L1.M; �/ � C0.M; �/�; n � 1:

We have kxnkC0.M;�/� D kxnk1 D 1 [30, p. 228]. Note that

1 �
1

n
� �.xxn/ D

�.jxjE jxj.1 � 1=n; 1�/

�.E jxj.1 � 1=n; 1�/
� 1: (3.8)

By Alaoglu’s theorem [24, p. 130, Theorem 3.1], there exists a subnet ¹xiº of
¹xnºn converging to some x0 2 C0.M; �/� in the weak� topology of C0.M; �/� and
kx0kC0.M;�/� � 1. On the other hand,

kx0kC0.M;�/� D kxk1kx
0
kC0.M;�/� � x

0.x/ D lim
i
�.xxi /

(3.8)
D 1:

Hence, kx0kC0.M;�/� D 1. This implies that x0 is a support functional of x. Therefore, by
taking p D E jxj.1 � 1=n; 1� in Proposition 3.7, we obtain

hT x; x0i D w�- lim
i
hT x; xi i 2 R:

This completes the proof.

Recall that a derivation on an algebra A is a linear operator satisfying the Leibniz rule.
Although it is known that a derivation from C0.M; �/ into C0.M; �/ is not necessarily
inner [12, 46] (see [80, Example 4.1.8] for examples of non-inner derivations on K.H /,
the �-algebra of all compact operators on a Hilbert space H ), it has been shown recently
that every derivation ı from an arbitrary von Neumann subalgebra of M into C0.M; �/

is inner, i.e., there exists an element a 2 C0.M; �/ such that ı.�/ D Œa; �� [13, 46]. On
the other hand, every derivation from C0.M; �/ into C0.M; �/ is spatial, i.e., it can be
implemented by an element from M (see e.g. [80, Theorem 2] and [9, Theorem 4.1]).
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Lemma 3.9. Every derivation ı from C0.M; �/ into C0.M; �/ is spatial. In particular, if
ı is a �-derivation, then the element implementing ı can be chosen to be self-adjoint.

Proof. The first statement follows from [80, Theorem 2] (or [9, Theorem 4.1]) and the
fact that C0.M; �/ is a C �-algebra. For the second statement, see e.g. [46, Chapter 3.4,
Remark 3.4.1].

We now come to the main result of this section, which gives the full description of
hermitian operators on a symmetric space E.M; �/.

Theorem 3.10. Let E.M; �/ be a symmetric space affiliated with an atomless semifinite
von Neumann algebra .or an atomic von Neumann algebra with all atoms having the
same trace/ M equipped with a semifinite faithful normal trace � . Assume that k�kE is
order continuous and is not proportional to k�k2. Then a bounded linear operator T on
E.M; �/ is hermitian if and only if there exist self-adjoint operators a and b in M such
that

T x D ax C xb; x 2 E.M; �/: (3.9)

In particular, T can be extended to a bounded hermitian operator on the von Neumann
algebra M.

Proof. The ‘if’ part is obvious (see e.g. the argument in [90, p. 71] or [40, p. 167]).
By Corollary 3.8, T is a bounded hermitian operator on C0.M; �/. Recall that any

hermitian operator T on a C �-algebra A is the sum of left multiplication by a self-adjoint
operator in A and a �-derivation in A (see e.g. [87, p. 213]). It follows from Lemma 3.9
that there exist self-adjoint elements a; b 2M such that

T x D ax C xb; x 2 C0.M; �/:

Noting that F .�/ � C0.M; �/, we obtain

T x D ax C xb; x 2 F .�/:

Since E.M; �/ has order continuous norm, it follows that F .�/ is dense in
.E.M; �/;k�kE / (see e.g. [30, Proposition 46] or [48, Remark 2.9]). For any x 2E.M; �/,
there exists a sequence ¹ynº � F .�/ such that kyn � xkE ! 0. Hence,

T x D k�kF - lim
n
T .yn/ D k�kF - lim

n
.ayn C ynb/ D ax C xb; x 2 E.M; �/:

This completes the proof.

4. Isometries

The goal of this section is to answer the question posed in [23,93] and stated at the outset
of this paper. Throughout this section, unless stated otherwise, we always assume that
M is an atomless semifinite von Neumann algebra or an atomic semifinite von Neumann
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algebra with all atoms having the same trace, and we assume that � is a semifinite faithful
normal trace on M.

To prove Theorem 4.4 below, we need the following auxiliary tool, which extends
[90, Corollary 2] and [93, Corollary 3.2].

Corollary 4.1. Let .M; �/ be an atomless semifinite von Neumann algebra or an atomic
von Neumann algebra whose atoms all have the same trace. Let E.M; �/ be a symmetric
operator space whose norm is order continuous and is not proportional to k�k2. Let T
be a bounded hermitian operator on E.M; �/. Then T 2 is also a hermitian operator on
E.M; �/ if and only if

T .y/ D ay C yb; y 2 L1.M; �/ \M;

for some self-adjoint operators a 2Mw and b 2M1�w , where w 2 P .Z.M//.

Proof. .(/ Note that T 2.y/ D a2y C yb2 for all y 2 L1.M; �/ \M. It follows from
Theorem 3.10 that T 2 is a hermitian operator.

.)/ Recall that, by Theorem 3.10, we have T .y/ D ay C yb, y 2M, for some self-
adjoint elements a; b 2M. Due to the assumption that T 2 is also hermitian, there exist
self-adjoint operators c; d 2M such that

T 2.y/ D cy C yd D a2y C 2ayb C yb2; y 2M:

The claim follows from Theorem A.6 in Appendix A.

Remark 4.2. Let T , a, b, w be defined as in Corollary 4.1. In particular, l.a/ � w and
l.b/ � 1 � w. Define

za WD sup ¹p 2 P .Z.M// W p � w; pa 2 Z.M/º;

zb WD sup ¹p 2 P .Z.M// W p � 1 � w; pb 2 Z.M/º:

For any z1; z2 2 ¹p 2 P .Z.M// W p � w; pa 2 Z.M/º and d 2M, we have

.z1 _ z2/ad D .z1 C z2 � z1z2/ad D z1ad C z2.1 � z1/ad
D z1ad C z2a.1 � z1/d D dz1aC d.1 � z1/z2a D d.z1 _ z2/a:

That is, z1 _ z2 2 ¹p 2P .Z.M// W p �w; pa 2Z.M/º. Hence, ¹p 2P .Z.M// W p �w;

pa 2 Z.M/º is an increasing net with the partial order � of projections. Therefore, by
Vigier’s theorem [65, Theorem 2.1.1], we infer that zaa 2 Z.M/. That is,

za 2 ¹p 2 P .Z.M// W p � w; pa 2 Z.M/º:

Similarly,
zb 2 ¹p 2 P .Z.M// W p � 1 � w; pb 2 Z.M/º:

We have

T .y/D a.w� za/yC yb..1�w/� zb/C .azaC bzb/y; y 2L1.M; �/\M: (4.1)

In particular,
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(1) w � za, .1 � w/ � zb , za C zb are pairwise orthogonal projections in Z.M/;

(2) if p 2 Z.M/ is such that p � w � za and ap 2 Z.M; �/ .or p � .1 � w/ � zb and
bp 2 Z.M//, then p D 0;

(3) w�za .resp. .1�w/�zb/ is the central support of a.w�za/ .resp. b..1�w/�zb//.

Remark 4.3. Let M be a semifinite factor. It is an immediate consequence of Corol-
lary 4.1 that if T a bounded hermitian operator on M, then T 2 is hermitian if and only
if T is left (or right) multiplication by a self-adjoint operator in M (see also the proof of
[90, Corollary 2] and [93, Corollary 3.2]).

Let M1 and M2 be von Neumann algebras. A complex-linear map J WM1

injective
���!M2

is called a Jordan �-isomorphism if J.x�/D J.x/� and J.x2/D J.x/2, x 2M1 (equiva-
lently, J.xy C yx/D J.x/J.y/C J.y/J.x/, x;y 2M1) (see e.g. [17,86,99]). A Jordan
�-isomorphism is called normal if it is completely additive (equivalently, ultraweakly
continuous). Alternatively, we adopt the following equivalent definition: J.x˛/ " J.x/
whenever x˛ " x 2MC1 (see e.g. [28, Chapter I.4.3]). If J WM1 !M2 is a surjective
Jordan �-isomorphism, then J is necessarily normal [78, Appendix A].

The following theorem is the main result of this section. Due to the complicated nature
of hermitian operators on a von Neumann algebra distinct from a factor, the proof below
is substantially more involved than those in [90, 93].

Theorem 4.4. Let M1 and M2 be atomless von Neumann algebras .or atomic von
Neumann algebras whose atoms have the same trace/ equipped with semifinite faithful
normal traces �1 and �2, respectively. Let E.M1; �1/ and F.M2; �2/ be two sym-
metric operator spaces whose norms are order continuous and are not proportional
to k�k2. If T W E.M1; �1/! F.M2; �2/ is a surjective isometry, then there exist two nets
Ai 2 F.M2; �2/, i 2 I , disjointly supported from the right, and Bi 2 F.M2; �2/; i 2 I ,
disjointly supported from the left, and a surjective Jordan �-isomorphism J WM1 !M2

and a central projection z 2M2 such that

T .x/ D k�kF -
X
i2I

J.x/Aiz C BiJ.x/.1 � z/; x 2 E.M1; �1/ \M1;

where the series is taken as the limit of all finite partial sums.

Proof. The indices of von Neumann algebras M1 and M2 play no role in the proof below.
So, to reduce the notation, we assume that M1 DM2 DM. We denote by La (resp. Ra)
left (resp. right) multiplication by a 2M, that is,

La.x/ D ax

(resp. Ra.x/ D xa) for all x 2 S.M; �/. For any self-adjoint operator a 2M, TLaT �1

and TL2aT
�1 are hermitian on F.M; �/ (see e.g. [38, Lemma 2.3] or [50]).

We divide the proof into several steps.



Hermitian operators and isometries on symmetric operator spaces 3309

Step 1. We aim to prove that there exists z 2P .Z.M// (not depending on a below) such
that

TLaT
�1
D LJ1.a/z CRJ2.a/.1�z/; a D a� 2M; (4.2)

where J1.a/; J2.a/ are self-adjoint operators in M. Let z.f / be the central support of
f D f � 2M. For any fixed b D b� 2M,

TLbT
�1y

(4.1)
D LJ1.b/y CRJ2.b/y C J3.b/y; y 2 L1.M; �/ \M; (4.3)

for some self-adjoint operators J1.b/; J2.b/ 2M and J3.b/D J3.b/� 2 Z.M/ such that

(1) z.J1.b//, z.J2.b// and z.J3.b// are pairwise orthogonal projections in Z.M/ (see
Remark 4.2 (1, 3));

(2) if p 2 Z.M/ satisfies p � z.J1.b// and J1.b/p 2 Z.M; �/ (or p � z.J2.b// and
J2.b/p 2 Z.M/), then p D 0 (see Remark 4.2 (2)).

By (4.3), for any self-adjoint a 2M, we have

TLaT
�1y D LJ1.a/y CRJ2.a/y C J3.a/y; y 2 L1.M; �/ \M; (4.4)

and

TLaCbT
�1y D LJ1.aCb/y CRJ2.aCb/y C J3.aC b/y; y 2 L1.M; �/\M: (4.5)

Now, we consider the reduced algebra Mz.J1.b//^z.J2.a//. For all

y 2 .L1 \ L1/.Mz.J1.b//^z.J2.a//; �/;

we have

LJ1.b/y CRJ2.a/y D LJ1.b/y CRJ2.b/y C J3.b/y C LJ1.a/y CRJ2.a/y C J3.a/y

(4.3);(4.4)
D TLbT

�1y C TLaT
�1y

D TLbCaT
�1y

(4.5)
D LJ1.aCb/y CRJ2.aCb/y C J3.aC b/y:

By Theorem A.6, there exists a central projection

p � z.J1.b// ^ z.J2.a//

such that J1.b/p and J2.a/.z.J1.b// ^ z.J2.a// � p/ are in the centre Z.M/ of M.
However, by Remark 4.2 (2) (used twice),

p D 0 D z.J1.b// ^ z.J2.a// � p:

That is,
z.J1.b// ^ z.J2.a// D 0:



J. Huang, Fedor Sukochev 3310

Note that a; b are arbitrary. Defining

z WD
_

bDb�2M

z.J1.b//;

we obtain

TLbT
�1y

(4.3)
D LJ1.b/y CRJ2.b/y C J3.b/y

D LJ1.b/CJ3.b/zy CRJ2.b/CJ3.b/.1�z/y; y 2 L1.M; �/ \M:

Replacing J1.b/ C J3.b/z (resp. J2.b/ C J3.b/.1 � z/) with J1.b/ (resp. J2.b/), we
obtain (4.2).

Step 2. Note that

LJ1.a/2z CRJ2.a/2.1�z/
(4.2)
D .TLaT

�1/2 D TLa2T
�1 (4.2)
D LJ1.a2/z CRJ2.a2/.1�z/

for every a D a� 2M. By a standard argument (see e.g. [93, p. 117]), we find that

J.�/ WD J1.�/z C J2.�/.1 � z/ (4.6)

is an injective Jordan �-isomorphism on M. Let 0 � ai " a 2 M. Clearly, J.ai /z "�
J.a/z (see e.g. [48, (12)] and [17, p. 211]). Since ai " a, it follows that for any
x 2 E.M; �/, x�aix " x�ax [30, Proposition 1 (vi)] and x�aix ! x�ax in the mea-
sure topology [30, Proposition 2 (iv)]. Since t 7! t1=2 is an operator monotone function
[33, Proposition 1.2], we deduce that .x�.a � ai /x/1=2 is a decreasing net. Note that
.x�.a � ai /x/

1=2 ! 0 in measure [30, p. 213]. By [30, Proposition 2 (iii)], we see that
.x�.a � ai /x/

1=2 # 0, and therefore

E.M; �/ 3 j.a � ai /
1=2xj D .x�.a � ai /x/

1=2
# 0:

It follows from the order continuity of k�kE that

kJ.a � ai /zT .x/kF
(4.2)
D kT ..a � ai /x/kF D k.a � ai /xkE

� k.a � ai /
1=2
k1k.a � ai /

1=2xkE ! 0

for all x 2 E.M; �/ such that T .x/ is a � -finite projection in F .�/ less than z. Therefore,
J.ai /z ! J.a/z in the local measure topology [30, Proposition 20]. Hence, J.ai /z "
J.a/z (see Section 2.1). The same argument shows that J.ai /.1 � z/ " J.a/z.1 � z/.
Therefore, J.M/ is weakly closed [48, Remark 2.16] and J WM! J.M/ is a surjective
(normal) Jordan �-isomorphism.

Step 3. We claim that J is surjective. Let c D c� 2M. Note that T �1.Lcz CRc.1�z//T
and its square T �1.Lc2z CRc2.1�z//T are hermitian operators. Hence, by Corollary 4.1,
there exists a central projection z0 2M and c0 D .c0/� 2M such that

T �1.Lcz CRc.1�z//T D Lc0z0 CRc0.1�z0/: (4.7)
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Applying to (4.7) the argument used in Steps 1 and 2, we obtain a normal injective Jordan
�-isomorphism J 00 WM!M such that J 00.c/ D c0. Moreover, for each c 2 J.M/,

LJ�1.c/
(4.2)
D T �1.Lcz CRc.1�z//T

(4.7)
D Lc0z0 CRc0.1�z0/:

Hence, LJ�1.c/�c0z0 D Rc0.1�z0/. In particular, c0.1 � z0/ 2 Z.M/. Hence, LJ�1.c/ D
Lc0z0Cc0.1�z0/ D Lc0 D LJ 00.c/. That is, for each c 2 J.M/, we have J 00.c/ D J�1.c/

(see also [93, Remark 3.3] for the case when M is a factor). Hence, J 00.J.M// D

J�1.J.M// DM. By the injectivity of J 00, we conclude that J.M/ DM. This proves
the claim.

Step 4. Applying (4.2) to T .x/, we obtain

T .ax/ D J1.a/zT .x/C T .x/.1 � z/J2.a/
D J1.a/zT .x/C T .x/J2.a/.1 � z/
(4.6)
D J.a/zT .x/C T .x/J.a/.1 � z/

for all a D a� 2M and x 2 E.M; �/ \M: For any � -finite projection e in M, we have

T .xe/ D J.x/T .e/z C T .e/J.x/.1 � z/; x 2M:

Let ¹eiºi2I be a net of pairwise orthogonal � -finite projections in M such that supi ei D 1
[30, Corollary 8] and let ¹�˛º be the collection of all finite subsets of I , partially ordered
by inclusion. By the order continuity of k�kE , we have lim˛

P
e2�˛

xei D x [29, Theorem
6.13], and since T is an isometry, it follows that

T .x/ D k�kF - lim̨
X
ei2�˛

T .xei / D k�kF - lim̨
X
ei2�˛

J.x/T .ei /z C T .ei /J.x/.1 � z/

D k�kF -
X
i2I

J.x/T .ei /z C T .ei /J.x/.1 � z/; x 2 E.M; �/ \M:

Note that
T .ei / D J.ei /T .ei /z C T .ei /J.ei /.1 � z/:

Recall that Jordan �-isomorphisms preserve the disjointness for projections (see e.g.
[48, Proposition 2.14]). Letting Bi WD T .ei /z D J.ei /T .ei /z and Ai WD T .ei /.1 � z/ D
T .ei /J.ei /.1 � z/, we complete the proof.

5. Uniqueness of symmetric structure

Let CE be the symmetric operator ideal in B.H / generated by a symmetric sequence
space E. We say that CE has a unique symmetric structure if CE isomorphic to some
ideal CF corresponding to a symmetric sequence space F implies that E D F with
equivalent norms. At the International Conference on Banach Space Theory and its Appli-
cations at Kent, Ohio (August 1979), Pełczyński posed the following question concerning
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the symmetric structure of ideals of compact operators on the Hilbert space `2 (see also
[7, Question (B)] and [6, Problem A]): Does the ideal CE of compact operators corre-
sponding to an arbitrary separable symmetric sequence spaceE have a unique symmetric
structure? For readers who are interested in this topic, we refer to [6, 7, 47].

We assume, in addition, that kekE D 1 for any atom e 2M if M D B.H / equipped
with the standard trace, and k1kE D 1 if M is a type II1 factor equipped with the unique
faithful normal tracial state. Here, we consider an analogue of Pełczyński’s problem in
the sense of isometric isomorphisms. The above assumption implies that if k�kE is pro-
portional to k�k2, then k�kE D k�k2. Let F.M; �/ be a symmetric operator space. If a
symmetric operator space E.M; �/ isometric to F.M; �/ implies that E.M; �/ coincides
with F.M; �/, then we say that F.M; �/ has a unique symmetric structure up to isome-
try. The following corollary extends results in [2, 56, 74, 75, 100] to the noncommutative
setting.

Corollary 5.1. Let M D B.H / be equipped with the standard trace � or M be a II1 fac-
tor equipped with the unique faithful normal tracial state � . Let E.M; �/ and F.M; �/ be
symmetric operator spaces whose norms are order continuous and are not proportional
to the norm of L2.M; �/. Then T is a surjective isometry from E.M; �/ to F.M; �/ if
and only if there exist a unitary element u 2M and a trace-preserving Jordan �-isomor-
phism J such that

T .x/ D uJ.x/; x 2M: (5.1)

In particular, any symmetric space E.M; �/ .including the case when E.M; �/ D

L2.M; �// has a unique symmetric structure up to isometry.

Proof. By Theorem 4.4, it suffices to show that the Jordan �-isomorphism is
trace-preserving. Indeed, when M D B.H /, this follows from the fact that every �-
automorphism on B.H / is inner [36, Corollary 5.42] (see also argument in [90, p. 75]).
When M is a II1 factor, then the corollary follows from the same argument as in [93,
pp. 118–119].

For the uniqueness of symmetric structure, we only need to show that if L2.M; �/ is
isometric to F.M; �/ (when MD B.H / or a II1 factor), then F.M; �/DL2.M; �/ (with
the same norm). Indeed, all other cases follow from (5.1) immediately.

If there exists a surjective isometry T W L2.M; �/ ! F.M; �/, then F.M; �/�

is isometric to L2.M; �/. That is, F.M; �/ is isometric to F.M; �/�. In particular,
both F.M; �/ and F.M; �/� have the Fatou property and order continuous norms [30,
Theorem 45]. Hence, F.M; �/ coincides with F.M; �/�� with the same norm [30, The-
orem 32]. If k�kF � is proportional to k�k2, then the norm of the Köthe dual F.M; �/��

is also proportional to k�k2. By the assumption that kekE D 1 for any atom e 2 M if
M D B.H / (or k1kE D 1 if M is a type II1 factor), we conclude that F.M; �/ coin-
cides with L2.M; �/ and k�kF D k�k2. Hence, we only need to consider the case when
k�kF � is not proportional to k�k2. Recalling that F.M; �/ is isometric to F.M; �/�,
by (5.1), F.M; �/ coincides with F.M; �/� with k�kF D k�kF � , and therefore, for any
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x 2 F.M; �/, by the definition of Köthe dual, we have

�.xx�/ <1; x 2 F.M; �/;

i.e., F.M; �/D F.M; �/� � L2.M; �/. On the other hand, by the definition of the Köthe
dual, F.M; �/ � L2.M; �/ implies that F.M; �/� � L2.M; �/. Hence, F.M; �/ D

F.M; �/� D L2.M; �/ (as sets).
Since kxk22 D �.xx�/ � kxkF kxkF � D kxk

2
F , we have kxk2 � kxkF D kxkF � .

Moreover,
kxkF � D sup

kykF�1

j�.xy/j � sup
kyk2�1

j�.xy/j D kxk2:

We see that kxk2 D kxkF D kxkF � . This completes the proof.

6. Final remarks

Remark 6.1. Theorem 4.4 above covers all existing results of surjective isometries on
(complex) symmetric operator/function/sequence spaces in the literature:

(1) When � is finite, we have T .x/ D T .z/J.x/ C J.x/T .1 � z/. This recovers and
extends [23, Theorem 3.1], [25, Theorem 4.11] and [91, Theorem 6].

(2) When MDL1.�;†;�/, where .�;†;�/ is some � -finite atomless measure space,
we have T .x/ D BJ1.x/; x 2M; for some measurable function B on .�;†;�/. In
particular, Zaidenberg’s results are recovered (see (1.1) and [100, 101]).

(3) When M D .�; †; �/ is a discrete measure space on a set � with �.¹º/ D 1 for
every  2 � , we find that if T is an isometry on a symmetric space E.�/ whose norm
is order continuous and is not proportional to k�k2, then

.T x/./ D A./ � x.�.//; x 2 E.�/;  2 �;

where A./ are unimodular scalars and � is a permutation of � . Indeed, by The-
orem 4.4, there exists a surjective Jordan �-isomorphism J on `1.�/. By the
bijectivity and disjointness-preserving property of J , we infer that J maps atoms
onto atoms in `1.�/. Hence, J is generated by a permutation. This extends Arazy’s
description of isometries on E.N/ [8, Theorem 1].

(4) When H is a (not necessarily separable) Hilbert space and M D B.H /, Theorem 4.4
recovers and extends Sourour’s result [90, Theorem 2].

(5) When M is a hyperfinite type II-factor, Theorem 4.4 extends [93, Theorem 4.1],
which was established under the assumption that H is separable.

(6) When E D F D Lp , Theorem 4.4 extends and complements results in e.g. [5,58,86,
96, 99].

(7) When E and F are Lorentz spaces, [23, Theorem 6.1] (see also [21, 26, 60, 69]) is
recovered.
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(8) When T is a positive isometry, several results are recovered and extended (see e.g.
[1, Theorem 1], [23, Theorem 3.1], [91, Theorem 6], [48, Corollaries 5.4 and 5.5]
and [25]).

(9) When M is an atomic von Neumann algebra, Theorem 4.4 extends the main result
in [67], which was established under the assumption that M is a � -finite von Neumann
algebra.

It is shown by Zaidenberg [101] (see also [39]) that under certain conditions, every
surjective isometry between two complex symmetric function spaces on a � -finite atom-
less measure space can be represented in the form of (1.1) (see [8] for the case of
symmetric sequence spaces). In this respect, the condition imposed on the von Neumann
algebras in Theorems 3.10 and 4.4 is very natural. One may expect that Theorems 3.10
and 4.4 (and [101, Theorem 1]) can be proved for more general von Neumann algebras,
e.g., M DM1 ˚M2, where M1 is an atomless von Neumann algebra (or an atomic von
Neumann algebra with all atoms having the same trace but the trace of an atom in M1

is different from that in M2) and M2 is an atomic von Neumann algebra with all atoms
having the same trace. See e.g. [39, Definition 5.3.1] or [11] for the definition of symmet-
ric function spaces on general measure spaces. However, the following simple example
shows that for an atomic von Neumann algebra (or measure space) whose atoms have dif-
ferent measures, isometries may have forms different from (1.1). This demonstrates that
the condition imposed on the von Neumann algebras in Theorems 3.10 and 4.4 is sharp.
For an arbitrary (not necessarily atomless or atomic with all atoms having the same trace)
semifinite von Neumann algebra M, it would be of interest to characterize those symmet-
ric operator spaces E.M; �/ such that all isometries on E.M; �/ have elementary forms.

Example 6.2. Let .�;m/ be a measure space consisting of two atoms e1 and e2. Assume
that m.e1/ D 1 and m.e2/ D 2. Then there exists a symmetric space E.�/ whose norm
is not proportional to the L2.�/ norm but which is isometric to the 2-dimensional Hilbert
space. In particular, there exists a non-elementary isometry and a hermitian operator on
E.�/ which cannot be written as multiplication by an element in L1.�/.

Proof. A non-trivial projection in E.�/must be e1, e2 or e1C e2, where e1 (resp. e2 and
e1 C e2) denotes the indicator function on e1 (resp. e2 and e1 C e2).

For an element ae1 C be2, we define a norm by

kae1 C be2kE WD
p
jaj2 C 3jbj2: (6.1)

Indeed, this can be considered as the L2-norm on a measure space having an atom of
measure 1 and the other of measure

p
3. We claim that k�kE is symmetric. Indeed, assume

that x WD a1e1 C a2e2 � 0 and y WD b1e1 C b2e2 � 0 and �.x/ � �.y/.
If b1 � b2, then two cases are possible:

� If a1 � a2, then b1 � a1 and b2 � a2. In this case, kxkE � kykE .

� If a1 � a2, then sincem.e1/�m.e2/ and b1 � a2, it follows that b2 � a2 � a1. Hence,
kxkE � kykE .
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If b1 � b2, then two cases are possible:

� If a1 � a2, then b2 � a1 � a2 and b1 � a2. Note that kxk2E D a
2
1 C 3a

2
2 and kyk2E D

b21 C 3b
2
2 . We obtain

kyk2E � kxk
2
E D 3b

2
2 � a

2
1 C b

2
1 � 3a

2
2 � .3 � 1/b

2
2 � .3 � 1/a

2
2 � 0:

� If a1 � a2, then b2 � a2 and b1 � a1. Hence, kxkE � kykE .

Consider the matrix

T WD

0@� ip
2

p
3
p
2

ip
2
p
3

1p
2

1A ;
that is, T .e1/D � ip

2
e1 C

ip
2

1p
3
e2, T .e2/D

p
3 1p

2
e1 C

1p
2
e2, T .1/D .

p
3�i
p
2
; iC
p
3

p
2
p
3
/.

For any a; b 2 C, we have

kT .ae1 C be2/k
2
E D

��iap
2
C

p
3 b
p
2

�
e1 C

�
ia
p
2
p
3
C

b
p
2

�
e2

2
E

D

ˇ̌̌̌
�ia
p
2
C

p
3 b
p
2

ˇ̌̌̌2
C 3

ˇ̌̌̌
ia
p
2
p
3
C

b
p
2

ˇ̌̌̌2
:

By the parallelogram law, we obtain

kT .ae1 C be2/k
2
E D jaj

2
C 3jbj2

(6.1)
D kae1 C be2k

2
E :

This implies that T is an isometry on E.�/.
Assume that T can be written in the elementary form, that is, there exists B 2 E.�/

and a Jordan isomorphism J on L1.�/ such that T D BJ . Since J.e1 C e2/D e1 C e2,
it follows that either

J.e1/ D e1; J.e2/ D e2

or

J.e1/ D e2; J.e2/ D e1:

However, T .e1/ D � ip
2
e1 C

ip
2

1p
3
e2 ¤ BJ.e1/ for any B 2 E.�/. Hence, T cannot

be written in the elementary form.
Consider the hermitian operator T on E.�/ defined by

T WD

�
1 i

p
3

�
ip
3

1

�
;

i.e., T .e1/ D e1 � ip
3
e2 and T .e2/ D i

p
3 e1 C e2. Assume that T .x/ D ax for some

a 2 E.�/. Then e1 � ip
3
e2 D T .e1/ D ae1 D �e1 for some � 2 C, a contradiction.

Remark 6.3. Recall that Zaidenberg’s description of isometries on complex symmetric
function spaces only requires that a symmetric function space has a Fatou norm, which is
a slightly weaker assumption than having an order continuous norm [39, Theorem 5.3.5].
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Throughout this paper, we always consider symmetric spaces having order continuous
norms. It will be interesting to verify Theorem 4.4 under a slightly weaker assumption
that the symmetric operator spaces have Fatou norms only. This problem is yet unsolved.
There are some partial answers in this direction obtained in [3, 4, 22, 63] in the setting
of B.H /.

Remark 6.4. The structure of (real or complex) symmetric sequence space (under the
assumption that the spaces in question have the Fatou property, which is a stronger
assumption than having a Fatou norm) has been discussed by Braverman and Semenov
[18, 19] and by Arazy [8]. Abramovich and Zaidenberg [2, Theorem 1] showed LpŒ0; 1�,
1 � p <1, has a unique symmetric structure up to isometry. The uniqueness of sym-
metric structure of separable complex symmetric function spaces on Œ0; 1� was obtained
by Zaidenberg [100]. By using a generalized Zaidenberg’s theorem [75, Theorem 1 and
Proposition 3] (see also [56, Theorem 7.2]), the uniqueness of symmetric structure of sep-
arable real symmetric function spaces under some technical conditions was obtained by
Randrianantoanina [75].

Remark 6.5. Note that when M is a II1 factor, Corollary 5.1 may fail because the Jor-
dan �-isomorphism J on M may not be trace-preserving. This is an oversight in the
proof of [93, Theorem 4.1]. Indeed, letting R0 D

N
1�n<1M2 be the hyperfinite II1

factor equipped with a faithful normal tracial state � , we consider the hyperfinite II1 fac-
tor M D B.H /˝ R0 equipped with the trace Tr˝ � . Let �1 be a �-isomorphism from
.R0; �/ onto .

N
2�n<1M2; �/, and �2 be a natural �-isomorphism from B.H /˝ 1R0

onto B.H / ˝M2 ˝ 1N
2�n<1M2

. Clearly, �1 ˝ �2 is a �-isomorphism on M which
does not preserve the trace Tr ˝ � . Indeed, �2 maps atoms in B.H / ˝ 1R0 to atoms
in B.H / ˝M2 ˝ 1N

2�n<1M2
. Let p 2 B.H / be an atom. In particular, Tr.p/ D

.Tr˝ �/.p˝ 1R0/D 1 and .Tr˝ �/.�1.p/˝ 1N
2�n<1M2

/D 1
2

. This oversight in [93,
Theorem 4.1] is rectified by Theorem 4.4 above. It is natural to compare this result with
[39, Theorem 5.3.5] (see also (1.1) and [21, Main Theorem]), where the set-isomorphism
may not necessarily preserve the measure.

Appendix A

In this appendix, we extend [93, Theorem 3.1] and [90, Lemma 2] to the setting of arbi-
trary von Neumann algebras. Our technique is different from that used in [90,93]. We are
grateful to Dmitriy Zanin for providing us with a correction of our initial argument and
allowing us to use it in this paper.

Let M be a von Neumann algebra. Let p be a projection in M. We denote by z.p/ the
central support of p.

Lemma A.1 ([81, Theorem 1.10.7]). Let p; q 2M be projections such that

pyq D 0; 8y 2M:

Then z.p/z.q/ D 0:
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Lemma A.2. Let a; b; e; f 2M be self-adjoint and such that

ey C yf D ayb; 8y 2M:

We have

(1) Œa; b� D 0;

(2) Œb; Œa; y�� D 0 for every y 2M:

Proof. Setting y D 1; we obtain e C f D ab: Taking adjoints, we obtain e C f D ba:
Thus, ab D ba: This proves the first assertion.

Substituting f D ab � e; we obtain

Œe; y� D Œa; y�b; 8y 2M:

Taking adjoints yields
Œe; y� D bŒa; y�; 8y 2M:

Comparing the right hand sides, we establish the second assertion.

Lemma A.3. Let a; b 2M be commuting self-adjoint elements such that

Œb; Œa; y�� D 0; 8y 2M:

Then
Œp; Œq; y�� D 0; 8y 2M;

for all spectral projections p and q of a and b; respectively.

Proof. Note that for all y 2M, we have

Œbn; Œa; y�� D Œb; Œbn�1; Œa; y���C ŒŒb; Œa; y��; bn�1� D Œb; Œbn�1; Œa; y���

D � � � D Œb; Œb; : : : Œb; Œa; y�� : : :�� D 0:

By linearity,
ŒP.b/; Œa; y�� D 0; 8y 2M;

for every polynomial P: Since the polynomials are norm-dense in the algebra of continu-
ous functions, it follows that

Œx; Œa; y�� D 0; 8y 2M;

for every x in the C �-algebra generated by b: By weak continuity of our equation,

Œx; Œa; y�� D 0; 8y 2M;

for every x in the von Neumann algebra generated by b: In particular,

Œq; Œa; y�� D 0; 8y 2M:
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Using the Jacobi identity

Œq; Œa; y��C Œa; Œy; q��C Œy; Œq; a�� D 0

and taking into account that Œq; a� D 0; we have

Œa; Œq; y�� D 0; 8y 2M:

Repeating the argument in the first paragraph of the proof, we complete the proof.

Lemma A.4. If p; q 2M are commuting projections such that

Œp; Œq; y�� D 0; 8y 2M; (A.1)

then
z.p/z.q/z.1 � p/z.1 � q/ D 0:

Proof. Denote
z0 WD z.p/z.q/z.1 � p/z.1 � q/:

Assume for contradiction that z0 ¤ 0: By (A.1), we have

Œpz0; Œqz0; y�� D 0; 8y 2Mz0 ;

and

z.pz0/z.qz0/z.z0 � pz0/z.z0 � qz0/
[54, Prop. 5.5.3]
D z0 � z.p/z.q/z.1 � p/z.1 � q/ D z0:

Hence, by passing to the reduced von Neumann algebra Mz0 , we may assume without
loss of generality that z0 D 1: In other words,

z.p/ D z.q/ D z.1 � p/ D z.1 � q/ D 1: (A.2)

Obviously, assumption (A.1) is equivalent to

pqy C ypq D pyq C qyp: (A.3)

Replacing y in (A.3) with .1 � q/y.1 � p/; we obtain

0C 0 D p.1 � q/y.1 � p/q C 0; 8y 2M:

By Lemma A.1, we have

z.p.1 � q// � z..1 � p/q/ D 0: (A.4)

Let w1 WD z.p.1 � q// and w2 WD z..1 � p/q/: We have w1w2 D 0: Set w3 WD
1 � w1 � w2. By (A.1), we have

Œpw1; Œqw1; y�� D 0; 8y 2 w1M; (A.5)

Œpw2; Œqw2; y�� D 0; 8y 2 w2M;

Œpw3; Œqw3; y�� D 0; 8y 2 w3M:
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Step 1. We claim that

qw1 � pw1; pw2 � qw2; pw3 D qw3: (A.6)

Note that

z..w1 � pw1/ � qw1/
[54, Prop. 5.5.3]
D w1 � z..1 � p/q/ D w1 � w2

(A.4)
D 0:

Hence,
.w1 � pw1/ � qw1 D 0: (A.7)

In other words, qw1 � pw1:
Similarly,

z.pw2 � .w2 � qw2//
[54, Prop. 5.5.3]
D z.p.1 � q// � w2 D w1 � w2

(A.4)
D 0:

Hence,
pw2 � .w2 � qw2/ D 0:

In other words, pw2 � qw2:
Arguing similarly, we have pw3 � qw3 and qw3 � pw3: This completes the proof

of (A.6).

Step 2. We claim that
w1 D 0; w2 D 0; w3 D 0: (A.8)

We only prove the first equality; the proofs of the other two are similar.
By (A.5), we have

Œpw1; Œqw1; .w1 � pw1/y�� D 0; 8y 2Mw1 :

Since
.w1 � pw1/ � qw1

(A.7)
D 0; (A.9)

it follows that for all y 2Mw1 ,

0 D Œpw1; Œqw1; .w1 � pw1/y�� D Œpw1; qw1.w1 � pw1/y � .w1 � pw1/yqw1�

(A.9)
D �Œpw1; .w1 � pw1/yqw1�:

Since pw1 � .w1 � pw1/ D 0 and qw1
(A.6)
� pw1; it follows that

.w1 � pw1/yqw1 D 0; 8y 2Mw1 :

By Lemma A.1, we have
z.w1 � pw1/ � z.qw1/ D 0:

In other words,

w1
(A.2)
D z.1 � p/z.q/w1

[54, Prop. 5.5.3]
D z.w1 � pw1/ � z.qw1/ D 0:

This proves the first equality of (A.8).
Finally, 1 D w1 Cw2 Cw3 D 0, which is impossible. Hence, z D 0. This completes

the proof.
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Lemma A.5. If a; b 2M are commuting elements such that

Œb; Œa; y�� D 0; 8y 2M;

then there exists a central projection z such that both a.1 � z/ and bz are central.

Proof. Since a commutes with b, it follows from Lemmas A.3 and A.4 that

z.p/z.q/z.1 � p/z.1 � q/ D 0

for any spectral projection p (resp. q) of a (resp. b).
For brevity, denote zq D z.q/z.1 � q/: We have

z.pzq/ � z.zq � pzq/
[54, Prop. 5.5.3]
D z.p/z.1 � p/zq D z.p/z.1 � p/z.q/z.1 � q/ D 0:

Therefore,

0 D z.pzq/z.zq � pzq/ � z.pzq/.zq � pzq/ � .zq � pzq/z.pzq/.zq � pzq/

� .zq � pzq/pzq.zq � pzq/ D 0:

This implies that
pzq � z.pzq/ � pzq;

that is,
pzq D z.pzq/ 2 Z.M/: (A.10)

Thus, pz.q/z.1 � q/ D pzq is a central projection. By the spectral theorem, we have
az.q/z.1 � q/ 2 Z.M/.

Define z0 2 P .Z.M// by

1 � z0 D
_
q

z.q/z.1 � q/;

where the supremum is taken over all spectral projections q of b. We have a.1 � z0/ D
a �
W
q z.q/z.1 � q/ 2 Z.M/. On the other hand (see e.g. [94, Chapter V, Proposition

1.1]),
z0 D

^
q

.1 � z.q/z.1 � q//:

In particular,
z0 � 1 � z.q/z.1 � q/ (A.11)

for every q: Thus,

z0 � z.z0q/z.z0 � z0q/
[54, Prop. 5.5.3]
D z0 � .1 � z.q/z.1 � q// (A.11)

D z0

for every q. That is,
z.z0q/z.z0 � z0q/ D 0

for every q: Hence, z0q 2 Z.M/ for every spectral projection q of b (see e.g. the proof
for (A.10)). By the spectral theorem, bz0 2 Z.M/.

The following theorem is an immediate consequence of Lemmas A.2 and A.5. It
should be compared with [93, Theorem 3.1] and [90, Lemma 2].
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Theorem A.6. Let a; b; e; f 2M be self-adjoint and such that

ey C yf D ayb; 8y 2M: (A.12)

Then there exists a central projection z such that a.1 � z/; e.1 � z/ and bz; f z are cen-
tral.

Proof. By Lemmas A.2 and A.5, we deduce that there exists z 2 P .Z.M// such that
a.1 � z/; bz 2 Z.M/. Replacing y with z in (A.12), we obtain

ez C f z D abz; 8y 2Mz :

We have f z D abz � ez. Hence,

yf z
(A.12)
D .abz � ez/y D f zy; 8y 2Mz :

This implies that f z 2 Z.M/. The same argument shows that e.1 � z/ 2 Z.M/.
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