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Abstract. We establish a system of PDE, called open WDVYV, that constrains the bulk-deformed
superpotential and associated open Gromov—Witten invariants of a Lagrangian submanifold L C X
with a bounding chain. Simultaneously, we define the quantum cohomology algebra of X relative
to L and prove its associativity. We also define the relative quantum connection and prove it is flat.
A wall-crossing formula is derived that allows the interchange of point-like boundary constraints
and certain interior constraints in open Gromov—Witten invariants. Another result is a vanishing
theorem for open Gromov—Witten invariants of homologically non-trivial Lagrangians with more
than one point-like boundary constraint. In this case, the open Gromov—Witten invariants with one
point-like boundary constraint are shown to recover certain closed invariants. From open WDVV
and the wall-crossing formula, a system of recursive relations is derived that entirely determines
the open Gromov—Witten invariants of (X, L) = (CP", RP™) with n odd, defined in previous
work of the authors. Thus, we obtain explicit formulas for enumerative invariants defined using the
Fukaya—Oh—Ohta—Ono theory of bounding chains.
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1. Introduction

1.1. Overview

Let (X, w) be a symplectic manifold with dimg X = 2n, and let L C X be a Lagrangian
submanifold. We assume L admits a relative spin structure and fix one, so the standard
theory of orientations for moduli spaces of J-holomorphic disks [7,25] applies.

A bounding chain for L is a solution of the Maurer—Cartan equation in the Fukaya A
algebra of L. Bounding chains provide a systematic method to compensate for the disk
bubbling phenomenon that generally spoils the invariance of counts of J-holomorphic
curves with boundary. There is a natural equivalence relation on bounding chains known
as gauge equivalence. The superpotential of L is a function on the space of bounding
chains modulo gauge equivalence. The superpotential counts J-holomorphic disks in X
with boundary in L constrained to pass through the given bounding chain. Cycles on X
give rise to deformations of the Fukaya A, algebra, bounding chains, and superpotential
of L, known as bulk deformations. The deformed superpotential counts J-holomorphic
disks in X with boundary on L with the interior constrained to pass through the cycles
in X and the boundary constrained to pass through the deformed bounding chain. If one
can invariantly parameterize the space of bounding chains modulo gauge equivalence, the
superpotential becomes a generating function for open Gromov—Witten invariants [8,32].
Thus, the superpotential is an analog in open Gromov—Witten theory of the genus zero
closed Gromov—Witten potential in closed Gromov—Witten theory. Indeed, the closed
Gromov—Witten potential is a generating function for genus zero closed Gromov—Witten
invariants, which count J -holomorphic spheres in X . To invariantly count J-holomorphic
disks with boundary contractible in L, it is natural to define an enhanced superpotential
that includes contributions from J-holomorphic spheres as well as disks [8, 20,26]. The
sphere contributions compensate for the phenomenon of the boundary of the disk collaps-
ing to a point.
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We prove a system of quadratic PDE, called the open WDVV equations, satisfied
by the bulk-deformed enhanced superpotential of an arbitrary L equipped with a bound-
ing chain for bulk deformations in a Frobenius subalgebra of big quantum cohomology
U C QH(X) (see Theorem 3). The coefficients of open WDVV are given by the partial
derivatives of the closed Gromov—Witten potential. Viewing the superpotential as a gen-
erating series of open Gromov—Witten invariants, open WDVV gives rise to a system of
quadratic equations relating Gromov—Witten invariants of different degrees, both closed
and open. Thus, open WDVYV is an analog in open Gromov—Witten theory of the WDVV
equations in closed Gromov—Witten theory [22,27,36].

Simultaneously, for a Lagrangian submanifold equipped with a bounding chain for
bulk deformations in a Frobenius subalgebra U C Q H(X), we define the relative quantum
cohomology algebra Q Hy (X, L) and prove its associativity (see Theorem 7). Denoting
by O the relevant Novikov ring, we have a long exact sequence of Q-modules,

QHy(X.L) U

S A

Qln]

where the top arrow is an algebra homomorphism. The algebra structure on QH (X, L) is
given by counting both J-holomorphic spheres in X and J-holomorphic disks in X with
boundary in L. When L is a real cohomology sphere, one may consider U = QH(X)
and find a bounding chain for all associated bulk deformations as shown in Theorem 8.
A typical situation in which it is useful to consider U C QH(X) a proper subalgebra is
when an anti-symplectic involution fixing L is used to construct the bounding chain as in
Theorem 9.

To naturally integrate both disk and sphere contributions in the enhanced superpoten-
tial, the open WDV'V system, and the relative quantum product, we introduce a cone com-
plex C(i). We define a relative potential ¥ € C(i) and a tensor potential 1: C(i) — C(i),
which combine both the enhanced superpotential and the closed Gromov—Witten poten-
tial. The open WDV'V equations and associativity of relative quantum cohomology follow
from a commutation relation for partial derivatives of the tensor potential, which holds up
to chain homotopy (see Theorem 5). We interpret the commutation relation for partial
derivatives of 1 as the flatness of the relative quantum connection in Corollary 1.7.

The chain homotopy underlying the open WDVV equations and associativity is con-
structed from operators on the Fukaya A, algebra of L associated to moduli spaces of
J-holomorphic disks with three marked points constrained to a geodesic. These mod-
uli spaces come in three different families with either one, two, or three of the marked
points on the geodesic being in the interior of the disk, while the rest are on the bound-
ary. In addition, the construction of the chain homotopy uses a family of J-holomorphic
sphere moduli spaces with the cross ratio of four marked points constrained to be real.
Bubbling in Gromov converging sequences of J-holomorphic disks with three marked
points constrained to a geodesic gives rise to A type relations for the geodesic opera-
tors. The Maurer—Cartan equation satisfied by the bounding chain cancels the terms of the
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geodesic A relations corresponding to many types of bubbling. The remaining types of
bubbling give rise to the open WDV'V equations. Figure 1 shows the two types of bubbling
of J-holomorphic disks with three interior marked points on a geodesic that contribute
to the open WDV'V equation. In the bubbling depicted on the left, the components of the
Gromov limit are a disk without any geodesic constraints and a sphere. This type of bub-
bling gives rise to products of the enhanced superpotential and the closed Gromov—Witten
potential in the open WDVV equations (15)—(16). In the bubbling depicted on the right,
one of the two disk components of the limit open stable map retains the geodesic con-
straint. Namely, two of the interior marked points and the node must lie on the geodesic.
A priori, it is not clear how to interpret the disk component with the geodesic constraint in
terms of the enhanced superpotential, which counts disks without a geodesic constraint.
Remarkably, the Maurer—Cartan equation and the interaction of the geodesic constraint
with the unit of the Fukaya A, algebra of L nonetheless allow the open WDV'V equations
to capture this type of bubbling with quadratic expressions in the enhanced superpotential.

()

o

\

Fig. 1. The bubbling of J-holomorphic disks with three interior points constrained to a geodesic.

Again using the tensor potential 3, we obtain a wall-crossing formula for open
Gromov—Witten invariants that allows one to exchange a boundary constraint for a cer-
tain type of interior constraint (see Theorem 6). Furthermore, from the proof that 1 is a
chain map, we derive a vanishing theorem for open Gromov—Witten invariants with more
than one boundary constraint when [L] # 0 € H,(X). In this case, we show the open
Gromov—Witten invariants with one boundary constraint recover certain closed invariants
(see Theorem 2).

We apply the open WDV'V equations and the wall-crossing formula to calculate the
superpotential open Gromov—Witten invariants of [32] for (X, L) = (CP",RP") with
n odd (see Corollary 1.9 and sample values in Section 1.3.11). When n = 3, it is shown
in [32] that the superpotential invariants recover Welschinger’s invariants [35]. Thus, our
calculations recover those of [2, 3]. For arbitrary odd n, interior constraints restricted to
odd powers of w, and no boundary constraints, it is shown in [32] that the superpotential
invariants recover the invariants of Georgieva [12]. Thus, our calculations recover those
of [13, 14]. When at least one interior constraint is an odd power of w, the invariants
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of Georgieva vanish. However, our calculations show that the superpotential invariants
do not vanish. Also, the superpotential invariants for arbitrary odd n allow for boundary
constraints that behave like real point constraints for Welschinger’s invariants in dimen-
sion 3. Point-like boundary constraints are not allowed in other constructions for n > 3.
Our calculations show the superpotential invariants with point-like boundary constraints
are non-trivial for n > 3.

The open WDVYV equations of the present work are an extension of the equations
introduced in [29] in the real setting for n = 2 (see also [4, 19]). We establish the open
WDVV equations without regard to real structure and in any dimension. A prelimi-
nary version of our results appeared in [34]. A discussion of the formal properties of
open WDVV in arbitrary dimension appeared in [1]. The real WDVV equations of [13]
can be obtained from open WDVV by setting certain parameters to zero. Recently, the
preprint [5] has appeared, which obtains some of our results in the real setting when
n = 3 by different methods.

1.2. Background

1.2.1. Notation. Consider a symplectic manifold (X, w) of dimension 2n and a con-
nected, Lagrangian submanifold L with relative spin structure s. Let J be an w-tame
almost complex structure on X. Denote by u : H2(X, L) — Z the Maslov index. Denote
by A*(L) the ring of differential forms on L with coefficients in R. Let IT be a quotient
of Hy(X, L;7Z) by a possibly trivial subgroup S;, contained in the kernel of the homo-
morphismw @ u : Ho(X, L;Z) — R @ Z. Thus the homomorphisms w, u descend to IT.
Denote by By the zero element of I1. Let

o Hy(X;Z) =TI (1)

denote the composition of the natural map H,(X;Z) — H,(X, L;Z) with the projection
H>(X,L;7Z) — II.

1.2.2. Coefficient rings. Define Novikov coefficient rings

o0
A= {ZaiTﬁf
i=0

o0
A= {Za_,rw(ﬂf) ‘ aj €R. fj € Ha(X:2). w(B)) 2 0. lim w(p)) = oo} <A.
=0

ai € R, fi € T w(B) = 0, lim w(f;) = oo},

Gradings on A, A, are defined by declaring T# to be of degree w(B). Define ideals
AT <A and A} <A, by

oo
A ={Yarh en|w@)>0vil Af=A.0AT
i=0
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For a graded real vector space V, let R[[V]] denote the ring of formal functions
on the completion of V' at the origin and let my C R[[V]] denote the unique maximal
ideal. More explicitly, let {v; }ic7,, be a homogeneous basis of V, let {v/};cs, be the
dual basis of V*, and let #; be a formal variable of degree —|v;|. We will often identify
R[[t;]lier, = R[[V]] by the natural isomorphism taking #; to v¥. Under this isomor-
phism, the ideal (#;); <y, is identified with the ideal my . Since each tangent space of V' is
canonically isomorphic to V', the R[[V]]-module of formal vector fields on V' is canoni-
cally isomorphic to V' ® R[[V]]. Each formal vector field v € V ® R[[V]] gives rise to a
derivation d,, : R[[V]] = R[[V]]. In coordinates, if v = ), fiv; with f; € R[[V]], then
dy = y_; fi0i. For [ € Z, let V[I] denote the shift of V by [/, that is, V[/] is the graded
vector space with V[/]} = Vi*+! Let S be another graded real vector space. Write

Ry = AQR[[V[2] & S[]ll. Qv :=A@R[[V[2]]] = Ry.

The vector space V' will be used to parameterize deformations associated with marked
points in the interior of a Riemann surface while S will be used to parameterize defor-
mations associated with marked points on the boundary of a Riemann surface. So, the
grading of V is shifted by the real dimension of a Riemann surface and the grading of S
is shifted by the dimension of the boundary. Define ideals Ky < Ry and J < Qy by

Ky = ATRy + myRy +msRy, Jdy =AY Qy +myQy.

We may drop the subscript V' from the notations Qy, Ry, dy, Ky in statements that hold
for all choices of V. Denote by I'y € V ® Qy the vector field corresponding to the parity
operator P : V — V given by P (v) = (—1)%evy, that is,

I'y = Z (—l)lvilvi ® U;k = Z tiv;.
iely iely
Note that |[I'y| = 2.

Below, we assume that each index set Iy for a basis of a vector space V is endowed
with an order, and we implicitly use this order in every graded-commutative product over
i € Iy. We denote by I v the same set with the order reversed. We reserve the formal
variables {s;};es, for coordinate functions on the vector space S. We abbreviate sk =

k;
[lierg si" and k! = [;cpg kil

1.2.3. Moduli spaces. Let My 1 () be the moduli space of genus zero J-holomorphic
open stable maps u : (X, 90X) — (X, L) of degree [u.([Z, dX])] = B € IT with one
boundary component, k + 1 boundary marked points, and / interior marked points. The
boundary points are labeled according to their cyclic order. The space My ;(B) carries
evaluation maps associated to boundary marked points,

evb? : Mig10(B) > L, j=0....k
and evaluation maps associated to interior marked points,

evil My (B) = X, j=1.. 0



Relative quantum cohomology 3503

Let M;4+1(B) be the moduli space of genus zero J-holomorphic stable maps u :
¥ — X of degree u«([X]) = B € H»(X;Z) with [ + 1 marked points. The space M;11(8)
carries evaluation maps

e i M (B) = X, j=0. .1

We assume that all J-holomorphic genus zero open stable maps with one boundary
component are regular, the moduli spaces My 41,7(B; J) are smooth orbifolds with cor-
ners, and the evaluation maps evbg are proper submersions. Furthermore, we assume that
all the moduli spaces M;1(f) are smooth orbifolds and evy is a submersion. Exam-
ples include (C P",R P") with the standard symplectic and complex structures or, more
generally, flag varieties, Grassmannians, and products thereof (see [31, Example 1.5 and
Remark 1.6]. Throughout the paper we fix a connected component § of the space of w-
tame almost complex structures satisfying our assumptions. All almost complex structures
are taken from J. The results and arguments of the paper extend to general target mani-
folds with arbitrary w-tame almost complex structures if we use the virtual fundamental
class techniques of [6,8—11]. Alternatively, it should be possible to use the polyfold theory
of [15-18,23]. See Section 1.3.12 for a detailed discussion of regularity assumptions.

1.2.4. Operations. We encode the geometry of the moduli spaces of open stable maps in
operations

Gt P AT(L: A)®F @ A*(X)® — A*(L: A)
defined by

Qi (0t oo Qg e, ) =01 - 810 - doy

+ (—1) X ey D1 ™ Tﬂ(evbﬁ)*(/k\ (evb?)*a; A ,/l\ (i) ).
Bell j=1 j=1
The push-forward (evbg )« is defined by integration over the fiber; it is well defined
because evbg is a proper submersion. Intuitively, the n; should be thought of as interior
constraints, while «; are boundary constraints. Then the output is a cochain on L that is
“Poincaré dual” to the image of the boundaries of disks that satisfy the given constraints.
We define similar operations using moduli spaces of stable maps,

Go s AN(X; A — A* (X A,

as follows. Recall that the relative spin structure s on L determines a class wg in
H?(X:Z/27) such that wo(TL) = i *ws. By abuse of notation we think of ws as acting
on Hy(X;Z). Set

l
api(m...om) =Y (—D%‘”T“ﬂkevﬁ)*(/\(evf)*n,-). )
BeH>(X;Z) 7=l

The sign (—1)*=®) is designed to balance out the sign of gluing spheres as explained
in [31, Lemma 2.12]. Below, we use the same notation for the linear extensions of these
operations to spaces of differential forms with larger coefficient rings.
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1.2.5. Bounding chains. Consider the subcomplex of differential forms on X with trivial
integral on L,

waLyz{neAWX)‘/nzo}
L
For an R-algebra T, write
AX.L: V)= AX.L)® Y, H*(X.L:Y):= H*(A(X,L:Y).d).

Definition 1.1. A pair (y,b) € Jy A*(X; Qv) & Ky A*(L; Ry) is called a bounding
pair if dy =0, |y| =2, |b| = 1, and there exists ¢ € Ky such that [c| = 2 and the
Maurer—Cartan equation holds,

1
> ok 0%y =1, (3)

k>0 °

In this case, we call b a bounding chain. Let W C H *(X, L;R) be a graded vector
subspace. A bounding pair over W is a bounding pair (y, b) € dw A*(X, L; Qw) &
Kw A*(L; Rw) with [y] = T'w. We say a bounding chain b is separated if

LbeA@RmumcRW

A bounding chain is point-like if the vector space S is one-dimensional and [, Lb=s,
where s is the single coordinate on .

The definition of a bounding chain is due to Fukaya—Oh—Ohta—Ono [7]. The notion
of a point-like bounding chain is due to [32]. In Remark 4.17 we explain why generically,
all open Gromov—Witten invariants can be obtained from point-like bounding chains.

1.2.6. Gromov-Witten potential. Define a bilinear form on A*(X) by

(n.Ox = (~)! /X IAL.

The pairing (-, -)x descends to the Poincaré pairing on cohomology, for which we use the
same notation. Let U C H*(X;R) be a linear subspace, and let yy € Jy A*(X; Qu)
satisfy dyy = 0 and [yy] = I'y.

Consider the formal function

1
oy =) m(qg,l(ygl),yu)x € Qu. )

>0

Writing yu = 3¢, tivi, we have

Tww)n'ef tiri
Oy = Guliden) = Y. ()P Gw, (@ (1)),
BeHa(X;Z) [Tier, rit iely

ri>0
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where GWg (71, ..., nny) denotes the closed Gromov—Witten invariant. The sign
(=1)»=®) compensates for the sign in (2). The gradient of ®y with respect to (-, -)x
is given by

1 *

Vou(y) =) plani (i)l € H*(X: Qu). 5)
>0

It is well known that qﬂ,l(ysﬂ) is closed and that @y only depends on the cohomology

class of yy.

1.2.7. Quantum cohomology. The big quantum product
*y t H*(X; Qu) ® H*(X; Qu) — H*(X; Qu)

is given by

1
)+ ) = D~ Jrlans 2 vgl.

>0

It is well known to be commutative and associative (see Remark 3.6). Moreover, the
Poincaré pairing makes (H*(X; Qu), *y) a Frobenius algebra,

(n*v &.8)x = (n.& xvu {)x.
We denote this Frobenius algebra by Q Hy (X).

1.3. Results

1.3.1. Relative potential. The usual superpotential of a Lagrangian submanifold L C X
does not give invariant counts of J-holomorphic disks in X with boundary contractible
in L and no boundary constraints. The lack of invariance stems from the possibility of
the boundary of such disks collapsing to a point in a 1-parameter family. In order to
formulate the open WDV'V equations, we define an enhanced superpotential that gives
invariant counts of all types of J-holomorphic disks in X with boundary in L. Invariance
is achieved by including certain contributions from J-holomorphic spheres that cancel
the boundary collapse phenomenon. We begin by defining a relative potential that counts
both J-holomorphic disks and J-holomorphic spheres. The natural home for the relative
potential is the following cone complex. Let W be a graded real vector space and consider
the map of complexes of Oy -modules

i:A*(X; Ow) — Rw[-nl, nH(—l)"“"'/Li*n,

where Ry [—n] is equipped with the trivial differential. The cone C(i) is the complex
with underlying graded Qw-module A*(X; Qw) ® Rw[—n — 1] and differential

dc(n.§) := (dn.i(n) —d§) = (dn.i(n)).
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Let (y,b) € dwA*(X, L; Ow) & KwA*(L; Rw) be a bounding pair and define
¥ (y.b) € C(i) by

Y(.b) 1=
1 1
(om0 (X sy tans0®ir 00+ X a-a0°0) ).
I1z0 k,1>0 =

(6)

In Section 4.3, we show that d¢ v (y,b) = 0. Thus, we define the relative potential ¥ (y, b)
to be the cohomology class of ¥ (y, b). Definition 2.23 gives a notion of gauge equivalence
between a bounding pair (y, b) with respect to J and a bounding pair (y’, b’) with respect
to J'. We prove the following.

Theorem 1. If (y, b) is gauge equivalent to (y',b"), then ¥(y,b) = W(y',b’).
1.3.2. The relative potential and the closed potential. Let
p: H*(X,L;R) - H*(X:R) (7
denote the natural map. Let
UcH*(X;:R), W=p'(U)c H*(X,L:R),

and suppose (yw, b) is a bounding pair over W. Denote by p* : Quy — Qw the induced
map of rings and let 7 : H*(C(i)) - H*(X; Qw) be the natural map. We show in
Lemma 5.9 that

m(W(yw, b)) = p*(VOy).

That is, the relative potential W(yw , b) lifts the gradient of the closed Gromov—Witten
potential V& to the cohomology of the cone complex H*(C(i)).

1.3.3. Enhanced superpotential. From the long exact sequence of the cone

H*(C(1) - H*(X: Ow)

we obtain an exact sequence

0 — Cokeri & H*(C(i)) 5> H*(X; Ow). )

If [L] = 0 € H,(X;R), then Cokeri ~ Ry [—n — 1]. Otherwise, we have Cokeri =~
(Rw/Qw)[—n — 1]. We choose

P : H*(C(i)) — Cokeri,
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a left inverse to the map x from the exact sequence (8) satisfying natural conditions
detailed in Section 4.4. The choice of P is equivalent to the choice of a left inverse

Pr : H*(X,L;R) — Cokerig ©)

to the map y : Cokerir — H *(X, L; R) induced by the map y from the long exact

sequence
0

H*(X,L:R) H*(X:R) (10)

(1]
y iR
R{-n]
If [L] # 0O, then Cokerigr = 0, so P is unique. A geometric interpretation of P is given

in Remark 4.12.
Define the enhanced superpotential Q(y,b) € Cokeri by

Q(y.b) := PY(y,b). (1n

Define the superpotential Q(y, b) € Ry as follows. Let D : Ry — Qw denote the
unique Qw-module homomorphism such that D|p,, = Id, D(s*) = 0 fork € Z>; and
D(T#) =0 for B ¢ Imw. Let ¢ : Rw — Rw/Qw denote the quotient map, and let
g : Cokeri — Ry /Qw be the induced map. Then Q € Ry is the unique element such
that ¢(Q) = () and D(2) = 0. The following is immediate from Theorem 1.

Corollary 1.2. The enhanced superpotential Q and the superpotential Q are invariant
under gauge equivalence of bounding pairs.

Assume now that (y, b) = (yw, b) is a bounding pair over W C ﬁ*(X, L). We define
the associated open Gromov—Witten invariants

OGWp i : W - R, 1.k e€Zso pell,

to be the coefficients of the series expansion of Q(yw, b). More explicitly, write yy =
dic 1y tivi- Then the invariants OGW are defined by the equation in Coker i,

B .k o
TPs" [iery ti

Qyw.b) = Q0. {tihiery) = Y 0GWsi( ® [1i1°7). (12

pen k!niEIW ri! iely
k>0
ri >0
Thus, if [L] # 0 € H,(X; R), the invariants OGWg (yi,, ..., ¥;,) are undefined

when k = 0 and B € Im w. Indeed, Q(yw.b) € Cokeri ~ (Rw/Ow)[—n — 1], and
T8 Hieiw /" € Ow when B € Imw.

Define open Gromov—-Witten invariants OGWpg j : W® - Rforl, k € Zso,B €11,
by

0, k=0and B € Imw,
OGWg x(n1,....m1) = (13)

OGWg x(n1,...,n7), otherwise.
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So, equation (12) holds in Ry with Q replaced by © and OGW replaced by OGW.
Lemma 4.13 shows that 2 and therefore the invariants OGW are independent of the
choice of P. Thus, the choice of P only influences the invariants OGWpg x for k = 0
and f € Imw.

Remark 1.3. Lemma 4.14 shows the superpotential 2 coincides with the superpoten-
tial defined in [32]. For (y, b) a bounding pair of the type considered in [32], the open
Gromov—Witten invariants OGW defined here coincide with those defined there.

1.3.4. Vanishing theorem. In order to formulate the open WDVV equations, we need
the following property of the element ¢ € Ry associated to a bounding pair (y, b) €
dwA*(X,L; Ow) ® Kw A*(L: Ry ) by the Maurer—Cartan equation (3). Let PD([L]) €
H"(X;R) denote the Poincaré dual to the fundamental class [L] € H,(X;R).

Theorem 2. Suppose [L] # 0 and let n € H*(X:R) be such that [, n = 1. Then

T@(B) ;
c= ), () —— GWy (. PD(L]), [11®).
BeH>(X;Z) '
>0
In particular, c € Qw.
Corollary 1.4. The product ¢ € Coker1i is well defined.

Theorem 2 has the following consequences for open Gromov—Witten invariants when
[L] # 0 (see Lemma 4.16). Recall the map p from (7).

Corollary 1.5. Suppose that [L] # 0 and (yw,b) is a bounding pair over W C H* (X,L)
with b point-like. Let ny,...,n; € W. If k > 2, orif k > 1 and B ¢ Im w, then

OGWg k(n1,....m1) = 0.

Moreover, for € Inw and n € H*(X;R) such that [, n = 1,

OGWp i1(m,...m) = D (=1 =B GW; (1, PD(L), p(m). - .. p(m)-
BeH,(X:2)
@ (B)=p
Theorem 2 does not a priori give information about the invariants OGWg (11, . ... 11).

1.3.5. Open WDVV equations. Recall the map p from (7). To formulate the open WDVV
equations, we need the following two assumptions:

(A.1) U C H*(X;R) is a subspace such that U ® Qy C QHy (X) is a Frobenius sub-
algebra.

(A.2) (yw.b) is a bounding pair over W = p~1(U) C ﬁ*(X, L;R) with b separated.
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More explicitly, assumption (A.1) means that U is a subalgebra with respect to the big
quantum product x7, and the restriction of the Poincaré pairing to U is non-degenerate.
All point-like bounding chains satisfy assumption (A.2). Both assumptions are satisfied
in the cases discussed in [32], as explained in Section 1.3.9 below. The map Pr from (9)
determines a complement W’ = Ker(Pr|w) € W to the image of the map y from the
exact sequence (10). In particular, p|w- is injective. Choose index sets Iy C I, a basis
A;jeU,ie€ly,andabasisI'; € W',i € Iy, suchthat p(I';) = A;. By abuse of notation,
denote by 0; : Qu — Qu (resp. 9; : Ry — Rw) the derivations corresponding to A;,
i €ly (resp.I';,i € Iw). Let

gij ‘= / A UA;, Q) ely,
X

and let (g%/) be the inverse matrix to (g; 7), which exists by assumption (A.1). Abbreviate
® = dy € Qy and Q = Q(yw.b) € Ry. Let p* : Qu — Ow denote the induced
ring homomorphism as in Section 1.3.2. We are now ready to formulate the open WDVV
equations.

Theorem 3 (Open WDVV equations). Let ¢ be the coefficient of the Maurer—Cartan
equation (3) for the bounding pair (yw,b), and letu,v e W & S and w € W. Let uw , vy
denote the projections of u, v to W, and let w = p(w),u = p(uw),v = p(vw). Then

> 0,02 g p 00 05D — Dy - 0y 0y Q2
lely,,mely
= Y pr0a0p0®- g 0m0yQ — 0,0u Q- dye.  (14)

lely,mely,

Corollary 1.6. Suppose b is point-like and let u,v,w € W. Let u = p(u), v = p(v), and
w = p(w). If[L] = 0, then

> 0,02 g p 0005 D — 0,05Q - 0,0, Q2
lely,,mely
= ) 0000 g 0m0yQ — 0,052 0,02, (15)

lelu,mGIW/

and

> 0:0,Q g p*Om0p 05 ® — 072 0,0, Q = —0,00, Q- 0,0,Q.  (16)

lEIW/,mEIU

If [L] # 0, then equation (15) holds with Q replaced by .

1.3.6. The tensor potential and the relative quantum connection. To prove Theorem 3,
we construct an invariant 3 € End(C(i)) called the tensor potential. The tensor potential
1is closely related to the total derivative of the relative potential 1. The derivative of the
tensor potential is the connection 1-form of the relative quantum connection.
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In greater detail, let (y,b) € Jw A* (X, L; Ow) & Kw A*(L; Ry ) be a bounding pair.
We define the tensor potential'

1=P: CG) = C)
by

1 1
2.6 = (. fonen 0@y 0 (L s e 6% © o). 0

>0 k, >0
1
+> 79—+ ® J/®l)) —c- 5)- a7
>0

Theorem 4. The tensor potential 1is a chain map. If the bounding pairs (y,b) and (y',b’")
are gauge equivalent, then the tensor potentials ¥ and 'Y are chain homotopic.

The open WDV'V equations and in fact the closed WDVV equations as well are a con-
sequence of the following theorem. The notation d,,1 is explained in detail in Section 4.2.

Theorem 5. For all formal vector fields u,v € Qw @ W & Ry ® S, the composition
dyd 0 D3 is chain homotopic to (—1)#11019 10 3,2,

Since H*(C(1)) is a free Q-module, it can be viewed as the formal sections of a
vector bundle over W. The tensor potential 1 induces a map 3: H*(C(i)) — H*(C()).
We define the relative quantum connection V on H*(C(i)) by

Vu(X) =0, T +0,3(Y), ueQw W, YT e H*(C(®H)).
A straightforward calculation using Theorem 5 gives the following.
Corollary 1.7. The relative quantum connection is flat.
1.3.7. Wall-crossing formula. Recall the long exact sequence (10). LetAU Cc H*(X;R)
be a subspace, and let (yy, b) be a bounding pair over W = p~1(U) C H*(X, L;R). Let
I'e:=y(l)eW.

The following result relates open Gromov—Witten invariants with boundary constraints to
open Gromov—Witten invariants with interior constraints I,

Theorem 6 (Wall-crossing). Suppose [L] = 0 and b is point-like. The invariants OGW
satisfy
OGWg k41(m, ... m) = —OGWg k (Co, 1, .. M)
Geometrically, we can understand Theorem 6 as follows. Poincaré-Lefschetz duality
gives an isomorphism

Hn,_1(X \ L:R) ~ H"(X, L;R) ~ H""'(X, L;R).

IRead as “noon.”



Relative quantum cohomology 3511

Under this isomorphism, I, € Ht1 (X, L;R) corresponds to the class in H,—; (X \ L;R)
of a small (n — 1)-dimensional sphere X linked with L. As we shrink X, it converges to
a point in L. Thus, at an intuitive level, it makes sense that the interior constraint I'¢
can be swapped with a point boundary constraint. To see why Theorem 6 is called the
wall-crossing formula, consider the following scenario. Let M be an (n — 1)-dimensional
manifold, and let g : [0, 1] x M — X be a map transverse to L such that g~ (L) is a single
pointin (z,mz) € (0,1) x M.Let g' : M — X be givenby g’ (p) = g(t, p). Fori =0, 1,
let i, € H"t1(X, L:R) be the class corresponding to g’ ([M]) € H,_;(X \ L;R) under
Poincaré-Lefschetz duality. Then, it is easy to see that nj — 79 = I's. So,

OGWpg k(0. M1+ - --.m) — OGWg k(10 1. - ... ) = OCGWg k(To. M1, ..., M)

On the other hand, roughly speaking, the invariant ng, k (nf), n1,...,n;) counts disks of
degree B with boundary constrained to pass through k points in L and interior constrained
to pass through g/ (M) as well as representatives of the Poincaré duals of 7y, ..., 7;.
To compare the invariants for i = 0, 1, consider the one-dimensional family of interior
constraints g’ (M). At times ¢ # 7, the invariant is constant. At time ¢, the interior
constraint g'2 (M) intersects L at the unique point g;, (mr). As t — 7, from below, the
interior intersection points with g,(M) of a subset B of the disks being counted limit
to a boundary point. These disks are no longer counted for ¢ > 77. So, the number of
disks in B is OGWg ¢ (4. 1, - ... m) — OGWpg £ (13, 11, - .., m;). On the other hand, at
t = tr,, the boundaries of the disks in B pass through k + 1 points in L, one of which
is g' (my), and the interiors of these disks pass through representatives of the Poincaré
duals of 11, ..., n;. So, the number of disks in B is Wﬂ,kﬂ(m, e M.

1.3.8. Relative quantum cohomology. Suppose again that assumptions (A.1) and (A.2)
hold. Define Qw = Ow ®a, A and

C(i) := (C(i)/x(ms)) ®o, Ow.

The map 1: C(i) — C(i) induces a map 3 : 6(i) — é(i), which in turn induces a map

1: H*(é(i)) — H*(é(i)). Since @(i) is the cone of the map i : A™(X; QW) — QAW,
we have a canonical isomorphism
H*(X.L: Ow) = H*(C(1)).

We define the relative quantum cohomology as a vector space by QHy (X, L)=W & Q W,
and we define the relative quantum product’

®: QHy(X,L)® QHy(X.L) - QHy(X, L)

by
B(w, v) = 0y 3(V).

A more explicit formula for 2 is given in Lemma 5.5.

2Read as “mem”.
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Theorem 7. The relative quantum product 1 is graded-commutative, associative, and
depends only on the gauge-equivalence class of the bounding pair (yw, b).

Remark 1.8. Theorem 7 is a consequence of Theorem 5 for u,v € Qw ® W. On the
face of it, the relative quantum cohomology algebra Q Hy (X, L) contains no informa-
tion about open Gromov—Witten invariants with boundary constraints. Indeed, in the
definition of QHy (X, L), we have quotiented by m g, the ideal generated by the param-
eters that keep track of boundary constraints. However, by Corollary 1.5, when [L] # 0
in H, (X;R), open Gromov—Witten invariants with at least one boundary constraint con-
tain no information beyond closed Gromov—Witten invariants. By the wall-crossing for-
mula of Theorem 6, when [L] = 0, open Gromov—Witten invariants with boundary con-
straints are equivalent to open Gromov—Witten invariants with interior constraints. Thus,
the associativity of 2 is essentially equivalent to Theorem 5.

1.3.9. Examples. In this section, we give examples where assumptions (A.1) and (A.2)
hold. The following is an immediate consequence of [32, Theorem 2]. See [32, Sec-
tion 5.4] for further details.

Theorem 8. Suppose H*(L;R) ~ H*(S";R). Let U = H*(X), so W = p~ ' (U) =
H*(X, L). Then there exists a unique (up to gauge equivalence) bounding pair (yw, b)
over W with b point-like. In particular, assumptions (A.1) and (A.2) hold.

The open Gromov—Witten invariants OGW associated with such (yw, b) coincide
with those of [32].

A real setting is a quadruple (X, L, w, ¢) where ¢ : X — X is an anti-symplectic
involution such that L C Fix(¢). Whenever we discuss a real setting, we fix a connected
subset §4 C ¢ consisting of J € & such that ¢*J = —J. All almost complex structures
of areal setting are taken from g4. If we use virtual fundamental class techniques, we can
treat any w-tame almost complex structure J satisfying ¢*J = —J. In addition, whenever
we discuss a real setting, we take S;, C Hy (X, L; Z) with Im(Id 4 ¢«) C S, so ¢« acts
onIl; = H>(X,L;Z)/St as —1d. Also, the formal variables ¢; have even degree. Given
areal setting, let H ;" (X ) (resp. H o (X, L)) denote the direct sum over k of the (—1)¥-
eigenspaces of ¢* acting on H2K(X;R) (resp. H? (X, L; R)). Extend the action of ¢*
to A, Q,R,C,and D, by taking

¢*TP = (—)HPPTE p*y = ()% 2y, ¢rs = —s. (18)
Elementsa € A, Q, R, C, D, and pairs thereof are called real if
¢*a = —a. (19)
The main ingredient in the following is Theorem 3 of [32]. See Appendix A for details.

Theorem 9. Suppose (X, L, w, @) is a real setting, s is a spin structure, and n # 1
(mod 4). Moreover,

e ifn =3 (mod 4), assume H (L;R) ~ H'(S™;R) fori = 0,3 (mod 4);
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e ifn =2 (mod 4), assume H' (L;R) ~ H*(S™;R) fori # 1 (mod 4);

e ifn =0 (mod 4), assume H' (L;R) ~ H*(S";R) fori # 2 (mod 4).

LetU = Hy*"(X) C H*(X). Then

(A U® Qu C QHy(X) is a Frobenius subalgebra;

(b) W =p'(U) = H5*"(X. L);

(c) there exists a (unique up to gauge equivalence) real bounding pair (yw,b) over W
such that b is point-like.

In particular, assumptions (A.1) and (A.2) hold.

The open Gromov—Witten invariants OGW associated with such (yw, b) again coin-
cide with those of [32].

1.3.10. Special case: projective space. Consider the special case (X, L) = (CP",RP")
with @ = wpgs the Fubini-Study form, J = J the standard complex structure, and n odd.
We normalize @ so that f(CPl o = 1. Take I1 = H,(X, L;Z) and identify IT with Z in
such a way that 8 € IT with w(8) > 0 are identified with non- negatlve integers. Similarly,
identify H,(X; Z) with Z in such a way that /3 € Hy(X;Z) with a)(ﬂ) > 0 are identified
with non-negative integers. So, the map @w : Hy(X;Z) — II is given by multiplication
by 2. By Theorem 8, our results apply with W = ﬁ*(X, L;R). Write

I =[w/]e H*(X.L:R) and A; = [0/] € H*(X:R).

We take the map Pgr of (9) to be the unique left inverse of y such that W’ = Ker(Pr|w) =
Span {I';}_, and this determines the map P.

The following is a consequence of Corollary 1.6, the Kontsevich—Manin axioms [22],
and analogous axioms for open Gromov—Witten invariants given by Proposition 4.19. The
proof is given in Section 6.

Theorem 10. The invariants OGWg i satisfy the following recursions.
(@) Letl >2andlet I :={js,..., ji} (possibly I = Q). Then

OGWg 4 (T),.....T}) = OGWa 1 (Tjy—1. Tjpt1 Ty T

n a
m+DHB -
+ Y D =D 7 (GW4(A1L Ay, ALy, A)OGWg, & (Tymi, Ty -1, T1,)
w(ﬂ)+ﬂ1 =g i=0

Iiulr=1

—GW; (A1, Aj—1. Apy . Ai) OGW, i (Dp—i. Ty, I'1,))

+ Z ( ) OGWﬂl kl(Fl Jj1—1» FI])OGWﬁz k2+1(F]27F12)

B1+B2=8
ki1+kr=k
Lul,=I = =

1 — OGWpg, k, (T, Ly, I'ry ) OGWﬁz,k2+1(Fj1—1’ Flz))'
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(b) Letk >2andlet I := {j1,...,j1}. Then

n43 ———
(-2 OGVVIB’]((FJ'1 s 1)

n ~
4D —_—
=2 ), D (=D 7 GW(A1L Ay AL A)OGWp, ki (Tn-i. Try)
@ (B)+B1=p+11=0
Lul,=1

k—2\ e _
-2y ( . )OGwﬂl,kl(rl,r,,,r,l)OGw,g2,k2+2(r,2)

k—2\ —— —
+2 )y ( ) OGWp, &, +1(T't, T1,) OGWp, sy 41(Tw. T1).
BitBo=p+1° !
1<B1=B
ki +ko=k—2
Lul,=1
From the definition, one computes OGW > = 2 for an appropriately chosen relative spin
structure. It then follows from the open WDVV equations that

OGWl,l(F%) =0, OGleo(Fn) = (—1)’1;3'

Corollary 1.9. The open Gromov-Witten invariants of (C P*,RP") are entirely deter-
mined by the open WDVV equations, the axioms of OGW, the wall-crossing formula of
Theorem 6, the closed Gromov—Witten invariants of C P", and OGW1, = 2.

Moreover, the recursion process readily implies Corollary 6.2, which says the invari-
ants are rational numbers with denominator a power of 2. The denominators arise from
the divisor axiom.

1.3.11. Sample values for projective space. We continue with the setting and notation of
the preceding section. Below, we write OGWE’ « for invariants of (C P",RP").

The invariants OGWE,k coincide with the analogous invariants of Welschinger [35]
up to a factor of £21~! by [32, Theorem 5]. We have verified this for small values of
n,l, B by comparing the tables in [2, 3] with computer calculations based on Theorem 10.

On the other hand, we are not aware of a definition of open Gromov—Witten invariants
generalizing Welschinger’s invariants with k > 0 real point constraints in dimensions
n > 3 besides the invariants OGWg ;. In Table 1, we present the results of computer
calculations based on Theorem 10, which show these invariants are non-trivial.

For iy, ..., i; odd, the invariants OGWE,O(FiI, ..., 1) coincide with the analogous
invariants of Georgieva [12] up to a factor of 2!~/ by [32, Theorem 6]. We have verified
this for small values of n, [, 8, by comparing the tables in [13] with computer calculations
based on Theorem 10.
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n Bk OGW%

3 3 6 -2

35 10 90

307 14 —29178

5 5 8 2

5 9 14 1974

5 13 20 42781410

5 17 26 7024726794150

7 7 10 -2

7 13 18 35498

7 19 26 —40083246650

7 25 34 680022893749060370
9 9 12 2

9 17 22 587334

9 25 32 31424766229890

9 33 42 49920592599715322910150
15 15 18 -2
15 29 34 2247512778

Tab. 1. Sample values with only boundary constraints.

On the other hand, if one or more of iy, .
while the invariants OGW%,O(Fil e

.., 17 is even, the invariants of [12] vanish,

I';,) are often non-vanishing. See Tables 2 and 3,

which present results of computer computations based on Theorem 10.

gl1 3 5 7 9
1)
0 |1 _43515 601224741985 _ 116238642273889476915 140294698313130485254672005681
8 512 32768 2097152 134217728
| |1 _255 602002259  113202029455499631 20113658490667274313737811
2 32 1024 131072 2007152
» o _—u 42354213  1929681317485627 797025207129184980573997
3 2048 131072 8388608
2 o 3 88007 136049411385 526360518604567156539
8 128 512 524288

Tab. 2. Values of OGW% ()(l"?ll ® I‘f’lz). The value of /1 is determined by B and /5.

The reliance on general bounding chains is the main difference between the invari-
ants OGWg ;. and the invariants of Welschinger and Georgieva. In the situations where
the invariants OGWg . coincide with Welschinger’s and Georgieva’s invariants, bound-
ing chains become explicit: either zero or an n-form with integral s. However, the general
construction of bounding chains in [32, Theorems 2 and 3], upon which we rely in The-
orems 8 and 9, uses an inductive argument based on the obstruction theory of [7]. It is
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B 1 3 5 7
I
0 140990173  _ 679329355023877929  _ 304348375415626014616826203269
y) 8192 2097152 536870912
| 1 23229 32941896518265  3267223276596315843861141
2 512 131072 33554432
) 0 11 2874828463  54161348711499099171
32 8192 2097152
3 0 0 338633 _ 1318018642164857
512 131072

Tab. 3. Values of OGWZ} 0(1“5@ h ® F6® 12). The value of /1 is determined by 8 and /. Here we
chose to take no constraints in I'4.

difficult to give an explicit description of the resulting bounding chain. Nonetheless, the
results of this paper allow explicit calculations of the invariants OGW g .

Write n = 2r + 1. To illustrate the geometric significance of the relative cohomology
H *(X, L) and the wall-crossing formula, we consider the real analog of the classical
result that there are r + 1 complex lines in C P” through 4 generic complex subspaces of
dimension r. Real lines correspond to conjugate pairs of holomorphic disks of degree 1.
When 8 = 1, it is not hard to see that the invariants OGWg ;. enumerate disks of degree 1;
the bounding chain plays a role only when B > 1. Recall that the class A, = [0 7] €
H"t1(C P™) is Poincaré dual to the class of an r-plane in H,_;(CP"). However, the
class Tpy; = [0 1] € H"*t1(CP",RP") is not Poincaré dual to the class of an r-plane
in H,,_1(CP" \ RP"). Rather, the classes

AE=T, F %Fo
are Poincaré dual to two distinct classes of r-planes in H,_;(C P" \ RP"). We have
OGW', =2, OGW]  (Ty41) =0, OGW] (41, 41) = —1/2,

The first two values are stated in Theorem 10 and the third is a consequence of equation (a)
and the divisor axiom. Applying the wall-crossing formula of Theorem 6, we obtain

OGW’{’O(F05 FO) = 2, OGW’;,O(Fr-"-l, FO) = O
Thus, it follows by multi-linearity that
OGW! ,(A*,2%) =0, OGW! (A, AF) = 1.

When 7 = 1 (mod 4) the classes A* are anti-conjugate, so the Poincaré dual of a conjugate
pair of complex r-planes is 2,1 = AT + A~. Thus, an invariant count of real lines
through two conjugate pairs of complex r-planes is half of the corresponding disk count:

3 OGW1,0(2T 41,205 41) = —1.
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As expected, this agrees with the complex count mod 2. When n = 3 (mod 4), the classes
A% are conjugation invariant, so the Poincaré dual of a conjugate pair of complex r-
planes may be either 24" or 21~ Thus, there are four possible invariant counts of real
lines through two conjugate pairs of complex r-planes:

1OGW;o(24%,24%F) =0 and 1OGW,;0(22%,247) = —2.

Again, these invariants agree with the complex count mod 2. In [21, Example 12], Kollar
constructs a generic configuration of two conjugate pairs of complex r-planes of the same
class, such that there is no real line that intersects them. This shows that the vanishing
invariant is optimal for such pairs. However, for conjugate pairs of complex r-planes of
different classes, we obtain a positive lower bound of 2.

1.3.12. Regularity assumptions. We proceed with the regularity assumptions set in [31],
namely, that moduli spaces are smooth orbifolds with corners and the evaluation maps at
the zero point are proper submersions. To that we add in Section 3 the assumption that the
zero evaluation maps remain submersions after restricting to a subspace of open stable
maps where certain marked points are constrained to lie on a geodesic of the hyperbolic
metric of the disk.

In [31, Example 1.5 and Remark 1.6] we show that the regularity assumptions hold
for homogeneous spaces. The additional assumption concerning moduli spaces of open
stable maps with geodesic constraints on marked points holds for homogeneous spaces as
well. Indeed, suppose J is integrable and suppose there exists a Lie group Gy that acts
transitively on X by J-holomorphic diffeomorphisms. Furthermore, suppose there exists
a subgroup Gy C Gy that preserves L and acts transitively on L. Let Mg ,4.5(8) C
Mp,1(B) be a moduli space with a geodesic constraint, as defined in Section 3. Then
Gy acts on My 1.4 5(B) as well, and the evaluation maps are equivariant. Since G acts
transitively on L, we see that evby remains a submersion after restricting to M ;.4.5(B).

In particular, (C P", R P") with the standard symplectic and complex structures, or
more generally, Grassmannians, flag varieties and products thereof, satisfy our regularity
assumptions. Using the theory of the virtual fundamental class from [6,8-11] or [15-18,
23], our results extend to general target manifolds.

2. Background

2.1. Integration properties

In the following, M, N and P are orbifolds with corners. We follow the conventions
of [33] concerning smooth maps and orientations of orbifolds with corners except that
here we require by definition that a proper submersion satisfies the additional property
of strong smoothness. Let f : M — N be a proper submersion with fiber dimension
reldim f = r, and let T be a graded-commutative algebra over R. Denote by

fe t AX(M;X) — A*(N; V) [~r]
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the push-forward of forms along f, that is, integration over the fiber, as defined in [33].
We will need the following properties of fx proved in [33]. In particular, property a of
Proposition 2.1 is immediate from [33, Definition 4.14] while the remaining properties
of f, are given in Theorem 1.

Proposition 2.1. (a) Let f : M — ptanda € A"(M) ® Y. Then

P Sy, m=dimM,
o =
* 0, otherwise.

(b) Letg: P — M and f : M — N be proper submersions. Then

Sroge =(f 08«

(c) Let f : M — N be a proper submersion, « € A*(N;Y) and 8 € A*(M;Y). Then

f(ffanp) =an fiB.
d) Let
MxyP-2p
Ql lg
Mm—L N

be a pull-back diagram of smooth maps, where g is a proper submersion. Let
o € A*(P). Then

gsp o = frg.a.

Proposition 2.2 (Stokes’ theorem). Let f : M — N be a proper submersion with
dimM = s, and let § € A" (M;Y). Then

d(fs8) = fuld&) + 1) (flam) £,
where OM is understood as the fiberwise boundary with respect to f.

Remark 2.3. Proposition 2.2 applied to f : M — pt yields the classical Stokes theorem

up to a sign,
/ dé — (_l)dimM-HEH-l/ E
M oM

The sign arises from the possibly non-trivial grading of the coefficient ring. See [31,
Remark 2.3] for an extended discussion.

The following result is Lemma 5.4 of [30].

Lemma 24. Let f : M — M be a diffeomorphism and let @« € A*(M). Then f*a =
(—1ype) £l
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2.2. Open stable maps

Here, we recall definitions and notations for open stable maps and moduli spaces thereof
from [31, Section 2.2.1]. A J-holomorphic genus zero open stable map to (X, L) of
degree B € I1 with one boundary component, k + 1 boundary marked points, and / inte-
rior marked points is a quadruple (X, u,Z, w) defined as follows. The domain X is a genus
zero nodal Riemann surface with boundary consisting of one connected component,

u:(%,0%) - (X,L)
is a continuous map, J-holomorphic on each irreducible component of X, with
ux([X,9%]) = B,

and
Z=1(z0,.-.2k)s W= (Wy,...,wp),

with z; € 0¥, w; € int(X), distinct. The labeling of the marked points z; respects the
cyclic order given by the orientation of 9% induced by the complex orientation of X.
Stability means that if X; is an irreducible component of X, then either u|x, is non-
constant or it satisfies the following requirement: If X; is a sphere, the number of marked
points and nodal points on ¥; is at least 3; if X; is a disk, the number of marked and nodal
boundary points plus twice the number of marked and nodal interior points is at least 3.
An open stable map is called irreducible if its domain consists of a single irreducible
component. An isomorphism of open stable maps (X, u,Z, w) and (X', u/,Z', w’) is a
homeomorphism 6 : ¥ — ¥/, biholomorphic on each irreducible component, such that

u=uob, z]’-=¢9(zj), j=0,...k, w}=9(w,~), j=1,....1

Denote by My 41,1(B) = Mi+1,(B; J) the moduli space of J-holomorphic genus
zero open stable maps to (X, L) of degree 8 with one boundary component, k + 1 bound-
ary marked points, and / internal marked points. Denote by

ebe cMiy1g0(B) = L, j=0,....k,

vif t Mysrg(B) > X, j =10,

the evaluation maps given by evbf (Z,u,Z,w)) =u(z;) and evi}3 (Z,u,z,w)) = u(wy).
We may omit the superscript 8 when the omission does not create ambiguity.

2.3. Structure equations and properties

Forall B € I, k,l > 0, and (k, [, B) € {(1,0, Bo), (0,0, Bo)}, define

ap, A*(L1R)®* ® A*(X: 0)® — A*(L:R)
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by

1
qf,](al R Qur; Y1 Q-+ Vl) ‘= (_1)8((1)(evbg)*( /\
j=1

B ke Bes
(evi;)*yj A '/\1(evbj) ozj)
j:

with
k
e(a) := Zj(lajl +1)+ 1.
j=1
In addition, define Q'f?o (@) := da and qgf)o := 0. Set

ak =3 TPal,
Bell

Forl >0, (I, B) # (1, Bo), (0, Bo), define
of asATX: 0% -0
by
B B
Fumeomi= [ Aeiy
Mo, (B) j=1
and
G- (1 ®®y) =y TP e ).
Bell

Define also qé 01,1 :=0and qﬁ 01,0 := 0. Lastly, define similar operations using spheres,

ag1: A*(X; 0)® — A*(X: R),

as follows. For 8 € Hy(X;Z) let M;+1(B) be the moduli space of genus zero J-holomor-
phic stable maps with / + 1 marked points indexed from O to /, representing the class S.
Denote by evf : My+1(B) = X the evaluation map at the j-th marked point. Assume
that all the moduli spaces M;41(8) are smooth orbifolds and evq is a submersion. Let
w : Hy(X:;Z) — TI denote the projection and let ws € H?(X; Z) be the class given by
the relative spin structure on L. For/ > 0, (I, 8) # (1,0), (0, 0), set

1
0 ) = EDO V)L (A @) y),
=1

and define

and

Gy = Y. T7Pl (v ).
BeH(X:2)
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Denote by (, ) : A*(L; R) ® A*(L; R) — R the signed Poincaré pairing on L:

— (—1)nl
=0 [ ean 0)
It satisfies
(E.n) = (_1)|n|+|ﬂ|-\5|/ NAE = (—1)('”‘“)(‘5‘“)“(’1,E)- Q1)
L

Proposition 2.5 (Structure equations for k > 0, [31, Proposition 2.4]). For any fixed a =
(ala“-’ak)r Yy = (yl""’yl)’

l
i—1 .
0= Z(_l)l-‘rz/:l |)’j|qk’l( ® v ® d)/z ® ® V])

i=1 J=i+1
+ Z (_1)t(<x,y;i,1)
k1+ka=k+1
1<i<k;
uJ={1,...,1}
i—1
X Qky, \I|(® aj @ Gk, |J|(® Ajti-1; Q VJ) ® ® o Q VJ)
1 JjeJ Jj=i+ko jel
where
ey D) = (14Xl ) Z(|a,| D+ Y vl D ml -yl
jeJ jel me_I,jeJ
j<m

Proposition 2.6 (Structure equation for k = —1, [31, Proposition 2.5]). For any fixed
y =10

0= Z( D= il 11(@ Vi ®dyi ® ® VJ)

im1 Jj=i+1
1 . %
+5 0 2 DD a0 (@ 1) a0 (® Vj)>+(—1)'y‘“/l 40 (y)-
TuJ={1,...,.1} Jel jeJ L
Lemma 2.7 (Linearity, [31, Proposition 3.1]). The q operators are multilinear, in the
sense that for a € R we have

Gre (01, oo 1, A Oy e O Yoy V)
= (—1)""'("+Z3_=11 o 1+ =1 17D g Sk (O, QR Y VDS

and for a € Q we have

. i.71 .
Gri(@r, . oy, a i, ) = (—l)|‘1|21=1 |yf|a-qk’1(a1,...,ak;yl,...,yl),
. lA_l .
Q01 (V1@ v y) = (D= ag g ().
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In addition, the pairing ( , ) defined by (20) is R-bilinear in the sense that

(aay,a0) = alay, az),

(a1, a) = (=D AFDy (o) as), Va e R, ar,a, € A*(L: R).
Lemma 2.8 (Cyclic structure, [31, Proposition 3.3]). For any ay,...,ar+1 € A*(L; R)
andyy, ...,y € A¥(X; Q),

(Gr,1 (01, oo O VLo VE)s Okg)
K 4
= (=)t D21 (G D (@, @1, k13 V1 -5 V)5 k)

The following is a straightforward generalization of [31, Proposition 3.5] and [32,
Lemma 5.8].

Lemma 2.9 (Degree). Forallk,l > 0 and f € T, the map
Gt AL R®F @ A (X1 Q)® — A*(LiR)
is of degree 2 — k — 21. Forl > 0 and B € 11, the map
a_1 AT (X: 0)® > R
is of degree 3 —n — 21.

For a permutation 0 € Sy and y = (y1,...,y;) with y; € A*(X; Q), define

se) = Y lul-lyl= YD vewl el (mod2).  (22)
i<j i>j
o L@)>71()) o(i)<a()j)

Lemma 2.10 (Symmetry, [31, Proposition 3.6]). Letk > —1. For any permutation o € Sj,

Gt @1y v v) = (D P (@, Vo) -5 Vo))

Lemma 2.11 (Zero energy, [31, Proposition 3.8]). Fork > 0,

doy, (k, 1) = (1,0),

Bo _ =Dty Az, (k1) = (2,0),

A P (k.1) = (0.1),
0, otherwise.

Furthermore,
% v =0

The following lemma is an immediate consequence of [31, Proposition 3.12].

Lemma 2.12. Suppose (k,l,B) €{(1,0,Bo), (0,1, Bo),(2,0,B0)}. Then fL qf,l(a; y)=0
for all lists a, y.
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Lemma 2.13 (Chain map, [31, Proposition 3.13]). The operator
0 =@ ass PAX: 0% - 4*(X;0)
1

=0 >0
is a chain map.
The following lemmas are well known.
Lemma 2.14 (Closed unit). For yy,...,yi—1 € A*(X),
v1, B=PBoandl =2,

B
ag Ly, ....v—1) =
piY yimt {0, otherwise.

Lemma 2.15 (Closed degree). Fory = (y1,...,y1), and B € Hx(X;7Z),

lah, ()] = Iyl =20 —2¢1(B) + 4.

Equivalently, the map
G A (X: Q)% — A*(X: Q)

is of degree 4 — 21.

Lemma 2.16 (Closed symmetry). For yq, ...,y € A*(X) and a permutation ¢ € S,
a0 (1) = (D45 Voy. - Vo)

with s (y) defined by (22).

Lemma 2.17 (Closed zero energy). For yq,...,y; € A*(X),

YiAY2, | =2,

0
sees V1) =
qﬂ’l(yl 0 { 0, otherwise.

Lemma 2.18 (Closed divisor). For y1,...,y; € A*(X) with dy; =0, |y1| = 2, and
B € Hy(X;Z), we have

qg,l(yl, ) = (/ﬁ 7/1) .qg,l_lm,...,m.

2.4. Pseudoisotopies

Let I = [0, 1] and let {J;};es be a path in ¢ from J = Jy to J' = J;. For each B8, k, 1,
set
Mic1,0(B) == {(t.u) |u € Miy1,1(B: J1)}.
We have evaluation maps
evb; : Mip10(B) — I x L. j €{0.....k}.

evb; (1, [u. 2, 0]) := (. u(z))),
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and

evij : My g(B) > I x X, je{l,... I}
evi; (¢, [u, 2, B]) 1= (1, u(w;)).

It follows from the assumption on ¢ that all ﬂkﬂ,l (B) are smooth orbifolds with corners,
and evby is a proper submersion. Let

pr:IxL—1, py: e/qkﬂ,l(ﬁ) — I
be the projections. For k,/ > 0, define

qk, A*(I x L:R)®* @ A*(I x X;: 0)® — A*(I x L; R)

sk L G~ koL
qk,l(® aji; Q yj) = (=1)%¢* (evbo)*( A (evbj)*a; A A (evij) yj),
j=1 " j=1 j=1 j=1
a,0j € A(I x L), y; € A*(I x X).
Define also
G AU xX;0)® > A*(1;0), =0,
by
I
~ 7. -— Y
21(® 7) 1= a0 ( A\ @177

As before, denote the sum over 8 by

dk,l(édﬁé?) ZTﬂQk1(®&]9® 1)’
j=1  j=1 Bell j=1  j=1
iu(87) = T (7).

j=1 Bell j=1
Lastly, define similar operations using spheres,
;AT x X; 0)® > A*(I x X; R),
as follows. For § € Hy(X; Z) let
My i1 (B) = {(t.u) |u € Mysa (B J0)).
For j =0,...,1,let

&) Mir(B) > I x X. & (0. [u B = (t.u(w)),
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be the evaluation maps. Assume that all the moduli spaces eA:ZIH (B) are smooth orbifolds
and €V is a submersion. For [ > 0, (I, 8) # (1,0), (0, 0), set

1
i) = OO @ (A &),

j=1
Gou(Gr... =Y. T"Pal (Gr.....7).

BeH>(X)

and define

dg,l =0, 5&8,0 = 0.
Proposition 2.19 (Structure equations for k > 0, [31, Proposition 4.3]). For any fixed
a=(,....00), Yy = V1. V1)

0= Z( 1) 1] qm( ®y]®d%® ® y])

i=1 j=i+1
+ Z (_l)l(&,?;l,l)
k1 +ko=k+1
1<i<k;
IuJ={1,....I}
X Gk, II\(® aj ® Gy, |J|<® djti-1; @ V/) ® ® aj; @ VJ)

jeJ Jj=i+k> Jjel

To formulate the next results, define

(E.7) == (=D (p)«(E AT, &7 €A xL:iR).

Proposition 2.20 (Structure equations for k = —1, [31, Proposition 4.4]). For any fixed
V=01....7)
1

—d§ () = Y (~)FE= G 11(® Bedie @ 7)

i=1 J=i+1

D 0010 (@ 7)o (@ 1)) + O )i G0 )

TuJ={1,..,I}
Lemma 2.21 ([31, Proposition 4.18]). For all lists y = (y1, ..., V1), we have
(G0, (7). 1) = {0’ ] =
—(pD)«(lrxe), 1 =1.

Lemma 2.22 (Chain map, [31, Proposition 4.19]). The operator
= @dn PAUxX:0)® - A1 x X;0)

iz0 >0

is a chain map.
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Recall the notion of bounding pairs from Definition 1.1.

Definition 2.23. We say a bounding pair (y, b) with respect to J is gauge equivalent to a
bounding pair (y’, ") with respect to J' if there exist p € JA*(X; Q) and b € KX A*(L; R)
such that

Go)*7=v. U)7=v. Go)*h=b ((n*b=>b, dy=0, [7|=2,
3 G =1 ceX. o =2
k, >0

In this case, we say that (7, b) is a pseudoisotopy from (y, b) to (y,b’) and write (y, b) ~
(', 0.

3. Geodesic conditions

3.1. Geodesic operators

Leta,e € Zso besuchthata + e = 3,and let My 41 1.4, (B) C Mg41,1(B) be the closure
of the subspace consisting of one-component maps such that a of the boundary points and
the first e of the interior points lie on a common geodesic in the domain with respect to
the hyperbolic metric. When we need to specify which of the boundary points are taken
to lie on a geodesic, we add their labels as subscripts to a, in which case the order of
the indices indicates the order in which the points appear on the geodesic. If not indicated
explicitly, the points are assumed to appear according to their labeling order. For example,
Mr+1,1;2 5,1 (B) is the space of stable disks with k& + 1 boundary and / marked points,
such that the first interior point lies on the geodesic between the zeroth and last boundary
points. In My1,1:14,2(8), the geodesic starts at the zeroth boundary point and passes
through the first and second interior points, in that order. As mentioned in Section 1.3.12,
we assume that evbo [, | ., . (8) IS @ proper submersion.

To determine the orientation on My y1 1.4,.(B), it is useful to identify it with a fiber
product of oriented orbifolds, as follows. Denote by vy, v2, v3 € {29, ..., Zk, W1,...,W;}
the marked points that lie on the geodesic, labeled according to the order in which they
appear on the geodesic. Given a nodal Riemann surface with boundary ¥ with complex
structure j, denote by X a copy of X with the opposite complex structure — j . For a point
v € X, let ¥ € X denote the corresponding point. The complex double ¢ = X Iy =
is a closed nodal Riemann surface, so it is possible to define the cross ratio of four points
on Xc asin [24, Appendix D.4]. We define

X Mer10(B) = C, x(u,Z,Z,w) := (2,1, v3, v2).

On the irreducible locus of My ;(B), the domain X can be identified with the upper
half-plane and y has the explicit formula

(v3 — v2)(v2 — v1)

K. 2. 1) = (v3 —v1)(v2 — T2)
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Note that the second marked point on the geodesic is necessarily an interior point, so
U # vy, and thus y is well defined. Then the condition that vy, v,, v3, lie on a geodesic
is equivalent to the condition y(u,Z, w) € [0, 1]. Thus, we have

Mis1,5a,e(B) = M1 = [0, 1] x¢ Miy1,1(B) —— My41,1(B)

| &

[0.1]€ C

and the fiber product identification determines orientation, as in [33].
Denote by

U1y = et ATLIR)®F @ A*(X: 0)® — A*(L: R)

the operators defined analogously to qf ; With Mpy11:0..(B) in place of Myi11(B).
Explicitly,

qllz,l;a,e(a1 R Qa1 Q- ® )/[)
l k
= (—1)81(“)(evb§)*< A (evif)*yj AN (evbf)*aj)
Jj=1 j=1

with
k

ex(a) ==¢e(a) + |a| + k = Z(j + D(Jej| + 1) + 1.
j=1
In addition, define
07 e 1 (AT(X:10)® - R
by
8 /I\ B+
a’ . (V1®~--®)/1)1=—/ (evi;)7y;-
B0 Moroe®) j=1

Set

Ok,l;x = Qk,la,e -= Z Tﬂq,’f,l;a’e.
Bell

Again, specifying boundary points and the order of the points on the geodesic can be done
by adding a subscript to a and e.

Lastly, consider the moduli space M;1(f) of spheres with [ 4+ 1 marked points
wo, ..., w;. Let

xo: Mip1(B) = C,  yo(u,Z,w) := (wo, wy, w3z, wa),

be the cross ratio map. Let M; 1., (8) = [0, 1] xc M;41(B) be the associated geodesic
moduli space and denote by

Ty 1oy F0Iix0 * AT(X: Q)% — A*(X: Q)
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the associated operators. Explicitly,
8 Y N
410 1 ® @ yp) 1= (~1) 2P (evh )*(_/\ @),

Qa.l:x0 = Z Tw(ﬂ)%lxo
BeH>(X;Z)

3.2. Structure equations

Here we formulate structure equations for the geodesic g operations, similarly to the
structure equations that govern the usual g operators. The proofs are similar to those
of [31, Propositions 2.4-2.5], and are based on Stokes’ theorem (Proposition 2.2).

For ordered lists B = (by,...,bx) and I = (iy,...,i;), denote by B o I the ordered
list resulting from concatenation, i.e., B o I := (by,...,bg,i1,...,1]).

Let B be a list of indices and let n = (7j)jep C A*(X: Q). For a sublist / C B,
denote by 5! the list (3 7)jer. For a partition / LI J of B into two ordered sublists, define
sgn(o;, ;) by the equation

A i A A ny = (D)) A g

iel jeJ keB
where the wedge products are taken in the order of the respective lists. Explicitly,

sgn(ofy) =Y Inil-Injl (mod2).

iel, ]EJ
j<i

Throughout, let @ = (&1, ...,ax) and y = (¥1....,y;) be lists with ; € A*(L; R)
and y; € A*(X, L; Q).
Use the following notation for signs, modulo 2:
i—1
no=uleyii 1) =y 1+ 1) ) (el + 1) +sen(o]y,) + Iy,

=1
i—1

=, yii I) =y Z(|“j| + 1)+ |y'| +sen(o],,) + 1,
j=1
t3:= (@, i) == o + k + |y| +n + 1 +sgn(),,).
Proposition 3.1 (The spaces M 41,1:2¢ ,n,1(B))-
i—1

O—D =l qkzzo,,,l(@m,,@y, Bdye @ ) (AI)
i=1 j= j=i+1
i—1
+ Z ( l)tl(ayl(l)OI)qk A1 20m1(®a] ®Qk212<®%+1 ls®)/]>
k1 +ka=k+1 jeJ
m+1<i<k;
IuJ={2,...,l}

ki
® & Uthk—1:71® ®)’j)
j=i+1 jel

(ATD)
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+ Z (_1)11(ot,)/;i,(l)OI)C”ﬂ’l1 20.m—ty 41,1 (® a; ® Qk2,12(® Oj4i—1; ® J/J)

ky+ho=k+1 j=1
1<i<m—k»>
IuJ={2,..,0} ki
® Q Uihkr-1:710 Q )’j)
j=i+1 jeI
(ATID)
(@.yii.0) 2
+ Z (— 1)yt Qk1511<®a1®(1k21220m i+1,1 (@aﬁ-z 1,y1®®)/])
ki+ko=k+1 jeJ
m—kr+1<i<m
TuJ={2,...,1} ki
® ® i1 @)
j=i+1 jeI
(AIV)
+ Z (—1)“(a’y;i’(l)on(}kl,ll;20z, (® aj @ Gk, lz(® jti-1: Q )/])
ki +ko=k+1 1 jeJ
m—ky+1<i<m
TuJ={2,...,1} k1
® & Hik-1:710 Q Vj)-
j=i+1 jel
(AV)
See Figure 2.

Zl

) 21

Fig. 2. Boundary components of M2 2:2, ;,1(Bo)-
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Proposition 3.2 (The spaces My 1,1:1,,2(B)).

O—Z( DE= g, 2(®a,,®y,®dyl® ® ) (B)
J=i+1
i (120D o o el o
+ Z (=D Gki,l1310,2 ® aj @ Gky,ln ® o ® Vj
ki+ka=k+1 Jj=1 Jj=i jeJ
1<i<k; X
TuJ={3,...,1}
® Q @:;V1®12® ®Vj)
j=itko jel
(BII)
(ayii0) i—1 i+ky—1
+ Z (=Derh Ok, (Qaj ® Gka,la;10,2 ( ® ;19728 @3 Vj)
ki+ky=k+1 J= JE
11<12<k] .
TuJ={3,...,1}
® ® o:Q V.i)
j=i+ks,  jel
(BII)
(@yii(Dol) P i+kp-1
+ Z (—1)n st qkl,zl;zo,,-,1(® o ® ka,lz( ® ;Y2 ® X yj)
ki+kr=k+1 Jj=1 J jeJ
1<i<k; %
TuJ={3,..,1}
® @ o:n® ®Vj)
Jj=i+k»> jel
(BIV)
—1)l@yD) . _ ' BV
+ =D ak (a0 (11 @720 7)) © R v)). (BV)
IUJ={3,...,I} jeJ jeI
See Figure 3.
Proposition 3.3 (The spaces My 11,1,0,3(B)). Fork >0,
0= Z( D=l qk103(®a,,®3f, Bdr® @ ) (CI)
i=1 J=1 Jj=i+1
-1 1 (,y5i,(1,2,3)01) . itky—1 . )
+ Z (=D Gk1,01;0,3 ® Uj Q Gkl ® @ ® Vi
ki+ko=k+1 J=1 J=i jeJ
1<i<k; ‘
TuJ={4,..1}
® Q@ :;V1®1®y:;® ®yj)
j=i+k> jel
(CID)
@,y:i.I) i—1 i+kr—1
+ Z (—1@riDg, | (® Olj®<1k2,12;0,3< ® aj; V189Y20Y3Q @3 J/j)
k1+ko=k+1 Jj=1 j=i je
11<12<k1 f
TuJ={4,..,1}
® ® o:Q® Vj)

j=i+k,  jeI
(CIII)
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Zy

Zo ‘

Zy ‘
‘ Z
BN, >
z z
N
4
Fig. 3. Boundary components of M1,2:1,,2(Bo).
(@i (Do) 2 P
+ Z (_1)12 a,y;i, CYSWA (® (X_/@ka,lz;loJ( ® o V2Qy3® ® Vj)
ki+ko=k+1 j=l1 j=i jeJ
1<i<k; .
Tur={1,..1}
® & aj;y1 ® X )/j)
j=itks jel
(CIv)
(@75,2,3)00) 2 et
+ Z (—1) @732, le,ll;l,-,z(® o ®Qk2,12( ® #:1®Q yj-)
k1+ko=k+1 J=1 j=i jeJ
lsi{skl 5 .
1uJ="{4,..,
® @ @:72®y:® ®yj)
Jj=i+k> jel
(CV)
@yii.@.)el) H et
1y (e, y51,(2, .
_ Z (1)1 Cers qkl,ll;li,2(® o ® qk2,12< ® @ir3® @ yj)
ki+ko=k+1 J=1 Jj=i jeJ
1<i<k;
TuJj={4,..1}

k
® ® Olj§7/2®)’1®®yj)
Jj=i+k> jel

(CVI)
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o i—1 i+ko—1
_ Z (_l)tz(a,)/,l,(Z,l) I)Qkhll (® aj®(1k2,lz;lo,2( ® oj; y2®yl®® J/j)
ky+hko=k+1 Jj=1 J=i jeJ
I ‘1,51'{54]61 I} k
uJ={4,...,
® ® oiy3® ®)’j>
Jj=i+ks jel
(CVID
— > (1)er®eDe (a;q@,zz (Vl ®reQ Vj) ®y: 0 Q )fj)
TuJ={4,..1} jeJ jel
(CVII)
+ Z (_I)LB(V;(I)OI)qk,ll (oz;q@,z2 ()/2 RY3® ® )/,-) Ry ® ® yj). (CIX)
IuJ={4,..1} jeJ jel
See Figure 4.
/>
" >
Fig. 4. Boundary components of Mg _3:0,3(Bo).
Proposition 3.4 (The spaces Mg .0,3(B)).
SR = ‘o 4
0= Y (=Dxi=1l Q—1,1;0,3( yi®dyi ® & Vj) (DD
i=1 Jj=1 Jj=i+1

+ Y (—1)“(y;(1’2’3)°1)<q(),|1\;o,3()/1 ®1®y:®Q Vj), qO,|J|(® )/j)>
IuJ={4,..1} Jjel jeJ

(DII)
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+ > (e “)°”<40 \1|(V1 ® ® V,) %o, 1: 102()/2 ®y:® ® w))

TUT={4,..1} jeJ
(DIII)
- Y DD g (e ® @) aun (e Q)
TuJ={4,..,0} Jjel jeJ
(DIV)
- > (—1)‘3(”(3)°”q—1,u|(qﬂ,m(yl 728 Q Vj) Ry ®Q )’j) (DV)
TuJ={4,..1} jes jel
Y 0O (an (@78 @) @7 @ @ ;) (DVD
TuJ={4,..1} jeJ jer
1
+ (—1)‘3(””:”’/ i*(w,z;xo (Vl ®12®Y®Q® y,-)). (DVII)
L j=4

Proposition 3.5.

dapisnre ) = 3D qmm(® nedn® ® )
i=1 Jj=i+1

+ (_1)|V|+1+Sgn(‘7(1,2,3)oJu1)

X Z a9, |1|+2(V1 ® ag, \J|+2(7/2 Ry ® Q y]) ® ® y,)
IuJ={4,..,1} jeJ

Y
_ (_1)‘)""‘1"'58“(‘7(1,2)<>Ju(3)ol)

x Y qg,|1|+z(%,|f|+z<y1 ®7128Q Vj) ®y:®Q )’j)~

TuJ={4,..1} jeJ jel
See Figure 5.

Remark 3.6. Proposition 3.5 implies the WDV'V equation for the closed Gromov—Witten
potential (4). Equivalently, the quantum product xy of Section 1.2.7 is associative.

3.3. Properties
3.3.1. Degree.
Lemma 3.7. For any k,l > 0, and a geodesic condition y, the map
Qi P AL R @ A*(X: 0)® — A*(L: R)
is of degree 3 —k —21. Foralll > 0and B € Hy(X;Z), the map
Qoo A*(X:0)® — A% (X: Q)
is of degree 5 — 21.

The proof is similar to that of [31, Proposition 3.5].
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=)

Fig. 5. Boundary components of My;y, (Bo).

3.3.2. Linearity. The following is a direct analog of the linearity properties of the usual
g operators. The signs reflect the fact that the map of shifted complexes

Qi+ AL R ® A*(X: 0)® — A™(L: R)[1]
has degree 0 (mod 2).
Lemma 3.8. The geodesic q operators are multilinear, in the sense that for a € R we

have

Qk,l;x(ala e 01,0, e O YT s J/l)
i—1 l
. T 141 . . .
= (—l)lal @j= (o D+25 = vilg . Qk,l;x(al, QYL s VDS

and for a € Q we have

N B PR 725 SPRN RS VRN 7).
= (—DM= Wil qp e,y ).,
q‘@,l;XO(yls e, a Vz% ceey Vl) = (_1)“1‘ Zj:l |yj|a : Cm,l;xo()’h ey Vl)
3.3.3. Unit on the geodesic. The following lemmas concern geodesic operators where

the unit is fed to one of the inputs constrained to the geodesic. They have no direct analog
for the usual g operators.

Lemma 3.9.
1,1 () = =D"(q0,1;19,2(¥). 1).

The proofs of this lemma and the next are given after Lemma 3.11.
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Lemma 3.10. Serox = (ay,...,0r) and &’ = (a2, ..., ar). Whenever applicable,

(ak—10(s ), 1)
k )
= Z(—l)HZ;:z(l“le)(Qk,l;1,~,2(0lz,~~-,Oli,1,Oti+1,-~-,0lk:l/)70!1)
i=1
k )
= Z(—l)"JrZ;:z(lale)(Qk,l;z,-.o,l(az,m,Oli,1,06i+1,--.,ak;3/),061)~
i=1
Let x; : Mg41,1(B) — C be the cross ratio map such that the condition y; (1) € [0, 1]
constrains the marked points v; = z;, v3, v3, to lie on a geodesic in that order. Let

Pi i Micy1,05(B) — Mic 1 (B)

denote the forgetful map given by forgetting z;, shifting the labels of z; 11, ..., zx, down
by 1, and stabilizing the resulting open stable map.

Lemma 3.11. The forgetful map p; restricts to a diffeomorphism from the irreducible
locus to an open subset of the irreducible locus that changes orientation by sgn(p;) =
n+i+1

Fig. 6. Left: the domain of an irreducible stable map in Ms,1;25 (,1(B). Right: the domain of an
irreducible stable map in the image of the forgetful map p3 : Ms,1;25 o,1(8) — M4,1(B) with the
possible locations of w shaded. The dotted lines are geodesics.

Proof of Lemma 3.9. Let p = pg : My 1.15,2(8) = Mo (B) be the forgetful map as
in Lemma 3.11. Denote by evi} the evaluation maps at interior marked points on
Mi,1:10,2(B), and by evi? the evaluation maps at interior marked points on Mg ;(8). In

. -0 _ -1
particular, evij op = evi; 4, . Set

1 1
£ = A@i)yim. £:= Aevi)'y = p*¢.
j=1 j=1
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For any space, denote by pt the map from it to a point. In the following calculation we use
the fact that

pt,(p*&) = pt, pu(p*E' A1) = pt, (€' A pul) = (=) P pt. ' € R.

So,

(G0.1:102(1): 1) = Pta(Go.1510.2(1)) = (=1 P pt, (evbo).&

= (_1)8)((@)/ p*;g_/ — (_1)8X(®)+sgn(p)/ ;__/
Mi.1:14.2(8) Mo .1 (B)

-1
= @ [ A i)y
Mo, (B) j=0

= ()@@ ().
The total sign is therefore

e4(0) +sgn(p) =1+n+1=n (mod2). [
Proof of Lemma 3.10. Let evi;, evb;, be the evaluation maps on My ;(8), and set

) k—1
E/ = /\ (evij)*yj VAN /\ (evbj)*ozj+1.
j=1 j=0

Then
, 1 ) k—1
PLE = Pl (evbo)«( A (evi))*; A (evbo)*an A N\ (evb;)*a+1)
=1 j=1
1 ) k—1
= (=])lall¥l pt*(evbo)*((evbo)*al AN (evip)*y; AN (evbj)*aj+1)
j=1 j=1

1 k—1
= (=)l pe, (041 A (eVbO)*( (evij))*y; A N\ (eVbj)*oth))
j=1 j=1

- (_l)lal [yl+lei|(ly|+le|—reldim(evbo))

1 k—1
X pt, ((evbo)*( (evij))*y; A N\ (evbj)*ajH) A oe1>
j=1 j=1

= (—DlerleFh=DHal+e@D () (@5 y),an). (23)

Let p; : My 41,15, (B) = My 1 (B) be the forgetful map from Lemma 3.11 with v, v3,
taken to be wy, w, for the first equation, or wy, zq for the second equation. Varying i, we
get a diffeomorphism onto an open dense subset of the irreducible stratum:

p= 11 ri: [ Misra:0(B) > M (B).

1<i<k 1<i<k

See Figure 6.
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Let evij, evb; be the evaluation maps on My ;(8), and let evil, evb} be the evaluation

maps on My 11 7;, (B). In particular,

. evb; o p;, <,
evb; = J© P j .
evbj_jop;, j>Ii.

Set & := (p;)*€’. Then, by Proposition 2.1 (c),

k k
P’ =D (=D)FP) pr ' A (pi)el) = D (=P pt,(pi)a(pfE)
i=1 i=1
k
=2 (P pu;. 24)
i=1

By Proposition 2.1 (b, c) we have

1 i . . k :
pt.&i = pt*( A (©vi)*y; AN (evbi_ ) aj A (evb)* LA A\ (evb})*aj)
Jj=1 j=1 j=i+1

= (—l)l‘m""pt*(evbo)*((evbo)*al A /I\ (evij)*y; A

i .
(evb_;)*a;
=2

Jj=1 J
. k .
Aevb)* T A A (evb})*ozj)
j=i+1
— (_1)|a1 |(lee’ | +rel dim evbg)
I i ) . k .
- pt, ((evbo)*(/\ (evij)*yi A A (evbi_)"a; A (evb)* I A A (evb;-)*ozj) /\ocl)
j=1 j=2 j=i+1
— (_1)8x(az ,,,,, Q1,0 4150 ) Hlay [+ [(Jo/ [+k—1)
Aqk sy (s, Loy, .o op), an).
Thus, using (23), (24), and Lemma 3.11, we obtain
k
(gr-11(@;y), 1) = Z(—l)*(Qk,l;x,« (a2, 0 Latigr, ..o o), on)
i=1

with
x = ey, .. 0, Ldip1, ..., 0p) +e@)+n+i+1

=l | +k+elaa,...,05, 1, 0i41,....,0r) +el@d)+n+i+1

k
=l +k+i+ > (ol +D+n+i+]1
j=i+1

EZ(|O{,|+1)+n(mod2). (]
j=2
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3.3.4. Reversing the geodesic. We consider the effect on the geodesic operators of revers-
ing the order of the marked points constrained to the geodesic.

Lemma 3.12. For all lists o, y, and elements 11, 02, 113, we have

Qk,l;za,e,l(Oﬁ y) = —Qk,l;ze,a,l(a; Y,

and

1
Qk,l+3;0,3(012 MmN AN Q Vj)
j=1

l
= (=)lFmlinl+mlinsl+nzlinslg, oo 3(a; BRMmOM e ® yj).
j=1
Proof. Let x, ' : Mg+1,1(8) — C be the cross ratio maps such that the condition that
x(u) €[0,1] (resp. y'(u) € [0, 1]) constrains the marked points v1, v, v3 (resp. vz, U2, V1)
to lie on a geodesic in that order. Note that
X' = (02,v3,v1,02) = 1 — (V2,v1,v3,v2) = 1 — 1.

Then we have the following diagram, where the front and back are pullback diagrams:

Mit1,1:1(B) Mi1,1(8)

~
4
~

X

It
Mk+l,l;x’(:3)

Mi1,1(8)

[0’ 1] C (C X/

6—~>1—06 z—>1-z

[0, 1]¢ C

By [7, Lemma 8.2.3 (4)], the induced map ¢ is an orientation-reversing isomorphism. The
result follows from the definition of the geodesic g operators. ]

3.3.5. Unit. The following is a direct analog of the unit property of the usual g operators.

Lemma 3.13. Let oy, ...,ar € A*(L; R), and y1,...,y; € A*(X; Q). If z; is not con-
strained to lie on the geodesic, then

1
q‘k-'rl,l;a,e(al"")ai—lv1’ai""’ak; ® Yr) = 0'
r=1

Moreover, if zg is not constrained to lie on a geodesic, then
k I
<Qk,l;a,e(® o] ® Vj), 1> =0.
Jj=1 J=1

The proof is similar to that of [31, Propositions 3.2 and 3.12].
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3.3.6. Symmetry
Lemma 3.14. Let k > —1 and let y be a geodesic condition. For any permutation o € Sy,

Ghetig @1e e 0 V1Y) = (DD (@ 0k Vo1 - Vo)

where 54 (y) is defined by equation (22), and x4 is given by y composed with the diffeo-
morphism of My41.1(B) induced by 6~ acting on the labels of interior marked points.

The proof is similar to that of [31, Proposition 3.6].

3.3.7. Cyclic symmetry. The following is a direct analog of the cyclic symmetry property
of the usual g operators.

Lemma 3.15. Let x be a cross ratio map, and let y' be the map obtained from y by
shifting boundary indices up by 1, modulo k + 1. For all ay, ..., 041 € A*(L; R) and
Yi,...,Y1 € A*(X; Q), we have

<Qk,l;x(051, e OV, Vl),Olk+1)
Kk
— (_1)(\ak+1|+1)-Zj=1(|aj|+1) . <Qk,l;x’(04k+1»051, e O— 15 Vs V1) ).
The proof is similar to that of [31, Proposition 3.3].
Foralista = («y, ..., o) and a cyclic permutation o € Z/kZ, denote by o the list

(Ao (1)s -+ - Ao (k))-
Corollary 3.16. Set o = (a1,...,0x) and &’ = (az, ..., o). Whenever applicable,
(@ey (@ 7). 1) = Z (_1)n+|a|+k+(|a1|+1)-(\a'|+k—1)+sg‘](a)

o€Z/kZ
- (—1yrHalHerGar 4 Do k=D +s6 @) ¢

(Qk,l;lo,Z(aU; y)s 1)

q‘kal§20ﬂ—l(]):1(ag; y)v 1)7
0€EZ/KZ

N
with 56¢1(@) = ¥ j e 01> m (%] + 1) - (o@m] + 1).
Proof. Apply Lemma 3.15 repeatedly to the expressions in Lemma 3.10 to move the
input 1 to the right-hand side of the pairing (-, -). Moving 11, ..., @, @1 past 1 con-
tributes (Ja1|+ 1) + Zf=i+1(|aj| + 1) to the sign, which combines with Z}=1 (loej| + 1)
in the sign of Lemma 3.10 to give || + k. Moving «; past o’ contributes (Jo1| + 1) -
(Jo’| + k — 1) to the sign. The remaining cyclic permutation of & contributes s([fll(a). L]

3.4. Deformed g operators

Lety € 4A*(X; Q) be such that |[y| =2 and dy = 0. Let b € K A*(L; R) be such that
|b| = 1. Define

v,b !
q_’151<® 7’}])
j=1
1 1

1 I
. k. ®t Rt
_:E T o \Gk I+ (b® ,®77‘®)/ ,b>+ —Q—l,+l( Ny )
e e 0% @ ) b)Y o (8
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For k > 0, define

b .
qz,l(al,...,ak,81,...,81)

1 . L.
= Zm > (P g @ g
s,t '

1<iy<-<iy<s o ) I
® b®lk—tk_1—1 R ap ® b®5_lk; ® 8]’ ® )/®t_l).

j=1
Define also
v (& 1 4 ®t
qg,l(® nj) = ;q@,m(@ nj®y )
=1 PRRE =1
For j > 0, the deformed geodesic q operators are given by

b .
qz,l;lj,z(al’ e 03 61,00, 00)

1 . o
= Z =1 Z Fs,t31;, ,2(b®ll '®a; @b g ...
s,t '

1<ij<-<ig<s 1
e® p®ik—ik—1-1 R ap ® b®S—lk; ® 5], ® )/®t_l>,

Jj=1

v,b .
qk’l;zo'j’l(al, e Qg 61, ..., 07)

1 P i
= Z =D Z QS,Z‘;ZO,i/,l(b®ll 'Qay@p®2171g...
s,t : ’

1<ij<-<iy<s l
o @ hOKTiIk-171 0 p®s ik . X 5 ® y®tfl)’

j=1

and similarly for other geodesic operations.
Lety e JA*(I x X; Q) with |y| =2anddy =0.Letb € K A*(I x L; R) such that
|b| = 1. Define deformed operations on the product,

GIb A I x L R)®F @ A*(I x X; 0)® — A*(I x L; R)

fork > 0 and 3

~V.b L4 . .

87 1ge AT X X Q)® — AX(I; R),
by the formulas above with g instead of q.
Lemma 3.17. The structure equations and all properties of Sections 2.3 and 2.4 hold
for q,’é’ll’ and &Z’f for all k > —1,1 > 0. The structure equations and all properties of
Sections 3.2 and 3.3 hold for )., , and )7, forall k > 1,1 > 0.

From now on, we may implicitly use Lemma 3.17, referring to the usual properties
when working with deformed operators.
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4. Tensor potential and relative potential

4.1. Tensor potential

Let (y,b) € dJw A*(X; Qw) ® Kw A*(L; Rw) be a bounding pair as in Definition 1.1.
Recall that in (17) we have defined the operator 1: C(i) — C(i) by

3(0.8) = (o, (). (=D)" g7} () — ¢ - £). (25)

Lemma 4.1. Forany n € A*(X; Qw), we have

(=)"1e"7 (dn) —c - i(n) = i(aly ().

Proof. By Proposition 2.6,

b b b b b %
a’71dn) = 2D ad T ). alo) + (abo. ap i) + (D! [L i*a ()

()R8 (). q12) + (—1)n+ / "ol (n)
L

= e o on. 1)+ 0 [ e,
L

= e [aghon+ o e
(by Lemmas 2.12 and 2.11)
= (—1)‘"‘“6'/i*fi+(—1)'"'+1/i*qg,1(n).
L L
This proves
P @ —e- [ = [ e,

Equivalently,
b ) .
(D" a2 ((dn) —c-i(n) = gy, (). n

Corollary 4.2. For closed 1, we have ¢ - [, i*n = — [, i*q} (0.
Lemma 4.3. Foralla € A*(L; Rw),n € A*(X; Rw), we have
('lai*“)X = (—1)n<l*7770‘)

Proof. For any space, denote by pt the map from it to a point. By Proposition 2.1 (c), we
have

(i*n.a) = (=D pt,(i*n A@) = (=) pt,is(i*n A )
= (=D pt,(n A ) = (=D G ey n
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Proof of Theorem 2. By assumption, |, 1 1*n = 1. Therefore, by Corollary 4.2, we have

T /L a0 = —(i*a) (1), 1) = (=1 e} (1), i 1)x

1
— Z (—1)n+1+w5('3)Tw(’3)—GWﬁ(T},l*l,V®I) -
>0 i
BeH>(X:Z)

Lemma 4.4. The map 1 is a chain map.
Proof. We need to show that 3 commutes with d¢, that is,
dc (3(n. §)) = 2dn.i(n)
or, in other words,
(daly  (n).i(ah () = (o, (@n). (=1)" g7 [(dn) — c - i(n)).

Indeed, equality of the first component follows from Lemma 2.13. Equality of the second
component follows from Lemma 4.1. ]

We denote by 1 the induced map on cohomology,
1: H*(C(@{)) = H*(C(@{)).
Lemma 4.5. Consider the fiber product

Lixpy (I xX)——1xX

| b

L——— X

The natural diffeomorphism
Lixp,(I xX)—1xL
has sign (—1)".
Proof. By [7, Lemma 8.2.3 (3)],
Lixpy(I X X) = Ly Xy xpt(X X I) = (L ;X1ay X) yXpd =L x 1
=(=D"I x L. (]

Lemma 4.6. Consider the diagram

Let o € A*(I x X). Then

(pL)«i"a = (=1)"i* (px)sa.
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Proof. This is an immediate consequence of Lemma 4.5 and Proposition 2.1 (d). ]

Lemma 4.7. If (y, b) is gauge equivalent to (y', "), then ¥'* and Y'Y are chain homo-
topic.

Proof. For each n, set i := (px)*n. Define H : C(i) — C(i) by

H®.8) = (=D (px)ad ], (7). pt @72, (7).

‘We show
dcoH+ Hodc =3"Y —b, (26)

On the one hand,

(dc o H + H odc)(n.§)
= de (=DM (px)dh () (D pL, GTE L i) + H(d. i(n)
= (D" (px)sdl , (). (=D Hi((px)«dly | (7))
+ (=D (px)ad]y (@), (=) pt, 67T, (d 7))
= (=D (d(px)wdly , (i) — (px)+a 1 (d7]).
D ((px)ad] (D) + (D pt,GTE L (@)
On the other hand,
@Y =) .) = @), (). D)"Y — ¢ €)
— (@ (). (=1 g7 () —c - £)
= (ap, () —ap, (D, "GV — a2 ). @D)

By Lemma 2.22 and Stokes’ theorem (Proposition 2.2), applied to px, we have
(D" d(px)wdy (D) = ()1 (@) = (i = J6) @1 (D) = a1 (1) = 6, ().

which proves the first component of (26).
To prove the second component, we proceed as follows. By Stokes’ theorem and
Proposition 2.20,

R VAR CUAC) B ()
= () pt,(@d”, (i)
= (=1 pt, g7, (@7) + pt, (pr)«i*Gn,1 (7))

(=D a7 (7 &7 T
+ T pts ((_1) " «Q(),l(n)s Q(),o» + «Q-o,o’ Q(),1(77)»)~ (28)
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By the symmetry of the cyclic structure,

Lo ((=D)"(&]  (@). 85 o) + (@b 0.0, (@D))

LD Ed (. ad oh + (D &S L (). a5 o))
= (=D"(E3  (@).c- 1) = (=D"e - (&5, (). 1)

= (=D"* e (pr)ui*i.

where the last equality is by Lemma 2.21. Furthermore, by Proposition 2.1 (c),

Pt (pr)«i ™7 = ptu(pr)«i* (px)*n = ptu(pr)*i*n = pt,(pL)«((pL)*i* n A 1)
=pt, (i(*n A (pr)«1) = 0.

By Lemma 4.6,

Pt *G0,1(7) = pto(pr)i*Go,1 () = (—=1)" ptoi* (px)«(Ga,1 (7))
= (D)"Y (px)« @G, (7).

Plugging the preceding calculations into (28) above, we get

% b T - . Y
D" @) = a2 ) = DM pta? (@ i) + D ((px)« Goa (),
which gives the second component of (26). ]

Proof of Theorem 4. The first part is given by Lemma 4.4, and the second by Lemma 4.7.
(]

4.2. Flatness relation

The objective of this section is to prove Theorem 5. We begin by explaining the notation
in greater detail.

Let W and S be graded real vector spaces. In this section, it will be useful to note
that elements of W and S define derivations on C(i) = A*(X; Qw) ® Rw[—n — 1], as
follows. For u € W, the derivation 0,, : R[[W]] — R[[W]] induces a derivation on Qw =
A ® R[[W]], which in turn induces a derivation on A*(X; Qw) = A*(X;R) ® Qw.In
addition, the derivation on Qw extends trivially to Ry . In total, we get

3 C(i) — C(i).

For s € S, the derivation d5 extends trivially from R[[S]] to Ry, and acts trivially on
A*(X; Qw). This defines
ds : C(i) — C(1).

It is immediate from the definition that d,,, d5 are chain maps, and so descend to coho-
mology. Furthermore, foru € Qw ® W of the form u = r ® w, we define d,, = r - 9y,
and similarly for u € Qw ® S. Moreover, since d; for s € S acts as zero on the first
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component of C(i), we can in fact define d,, for u € Ry ® S, and it is a chain map. In
other words, there are chain map derivations

w:CA) = CGl), YueOwW)®(Rw ®S).
Finally, for a chain map ® : C(i) — C(i), the derivative operator d,,® is defined by

(0.0) () = 9(O () — O ().

Proof of Theorem 5. Letu,v € (Qw @ W) ® (Rw ® S). Define Hy,, : C(i) — C(i) by

Hiy (0. §) = (1) IR mllog o @uy.n. duy),
(_1)\7l|+|u\+|v|+|7]\Iv\ql’b 0.3(0uy. 1. 3vY)
+ (- 1)(\n|+l)(lu\+|v|+1)(q o210, (1, 3uY), dub)
+ (- 1)|ﬂ|+(|n|+1)(|u|+|v\)+\u||v|< ¥:b 02(,77 3yy), 0ub)
+ (- 1)|n|+(|n|+1)(|u|+|v\)+\u||v|< 201, L@ybi1), d b))

The four summands of the second component of H,,, correspond to the four pictures in
Figure 7. We show that

330 0y3— (=DM 30 8,3 = de o Hyy + (=) HIV M H,, 0 de. (29)

The heart of the proof is based on an analysis of the boundaries of the moduli spaces
of stable disks with geodesic constraints shown in Figure 7 using the geodesic structure
equations. In preparation for this analysis, we expand both sides of (29) into their con-
stituent parts.

C

Fig. 7. The four summands in the second component of Hyy.

B
) ) . m
nooy

Let (n,&) € C(i). By Lemma 2.16 the derivative 1 operator is given by

0u3(1.£) = (a5 @uy. ). (1" 13,077 1 (1) — dyc - £). (30)
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To compute the left-hand side of (29), first calculate

33 0 Dy3(1. )
= 33((q,(Bwy. 1), (—1)" 19,677 1) =3y - §))
= (5.2 3wy, a3, (v, M),
(—1"184678 (@], @oy. 1) — duc - (1) 10,672 () — Buc - £)
= (352 Buy, a3, (3o, M),
(=)™ (0407 1 (@ 2 @uy. ) — duc - 30677 1 (1)) + duc - dye - €).

Symmetrizing, we get

030 0y3(n. §) — (=D)M1"13,30 9,309, 8)
= (ap,@uy. af, @y, ) — (=D Pla¥ (@yy. afs , 0wy, m)).
(1" 0ua”? (@5 (Do 1) — Buc - ua?% | ()
— (DPI,670 (ah,@uy. ) + (D3, - 3,672 ().
Compute the right-hand side of (29):
de (Huy(0.§)) = (=) @ gf o @y, 807). (6] 3:00 Burn. 801))),

and

(=DM Hyy (de (1.6)) = (DM gy (dn. ()
= ((=plrnlilg @uy.dn, dvy),
1 (=11l \vqu’iS;O’S(au% dn, ,7)
+ (_1)\u|+|v|+|n|+|nl(lu|+|vl)hg:g;lo,z(dm duy), 0ub)
+ (_1)1+|n|+|u|+|v\+\ﬂ|(\u|+|v|)+|u\ Iv\( V’b o, 1o (dn, 3,y), 3ub)
+ (- 1)1+|n|+|u|+|v\+\n|(\u|+|v|)+|u\Iv\( 201 [(3yb;dn), b))

Equality in the first component of (29) follows from Propositlon 3.5. Equality in the sec-
ond component reads

(=" (39" (sz(av% n) — dyc - avq 1)
(D)l grh 1(% L(0uy, ) + (=DM Ma,c 8,670 ()
— (1)l ol g0 (¥ 1, 80))
(_1)1+|v\+|n|+|n||v|q1’b 0.3y, dn, dyy)
(DRI RIGHD (0F i B,0). 8,b)
+(—1)1+|71|+\u|+|v|+|77|(|u\+|v|)+|u|\U|( 05:102(d. 00y), dub)
s ])1+|n|+‘u|+|v|+|n|(|u\+|v|)+|u|\vl(qyb L1 (@ubidn), dyb).  (31)
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To show this, we use the deformed versions of the geodesic structure equations. Figure 8
depicts the boundary components of the moduli spaces A, B, C, D in Figure 7 that con-
tribute to our calculation.

First, keeping in mind line D of Figure 8, consider the contribution from Proposi-
tion 3.4:

u u v ,b
0=(- 1)‘ lqy1303(8u%d77 dwy) + (— 1)|7I|+| I+ ‘<QO303(8uV’ n, avy)qu)/,o)
- (_l)lul(CFo,l(auy)v Q()’z;lo,z(’?v dv7))
_ (_1)|n|+|u|+|v|+|u\|n|<qgag 1.2 By, qgii(avy))
— (=)L () L @y 1), )
+(_1)Iu\(|n|+\v|)+|u|+|v|+\n\+"+1 Vb 2(ag2(1,0vy), 0uy)

+ (—l)n—HuHmH_lvl—H /L C‘g,3;(0,1,2,3)e(1,0<>)(a”y’ n.0v).

Lemma 3.7 gives |6 5.0 1 2 3)¢(1.00) (O ¥s 1 30¥)| = [u| + 1] + [v] + 1 (mod 2), so

(_1)n+lul+|77|+|v\+1/Lqg,S;(0’1,2’3)€(1,00)(au%777avV)
— i
= 149,3:0.1,2.9)¢(1,00 (¥ 1 90))-

Using the Maurer—Cartan equation, qug = c¢ - 1, we can apply the unit property, Lem-
ma 3.13, to get

0= (=DMa7? 0 s @uy.dn. dyy)
— (DMGEE @uy). 6550 2 (0. 867))
— (=Rl 2D 8uy). 638 (807))
+ (=DM (G TP (02 (0. Bup). ByY)
+ (=DHPIGD (@ 5 (1, 9vy). Buy))

Multiply the equation by (—1)1+|’”+|"‘+‘v|+|”‘ Il to get

0= (- 1)1+|77|+|U\+|U||77|q% 03(81”/, dn, d,y)

+ (=i ml(@0,1(8uy)’ 4 oi10.2(1. 3u1))
G LA CHCORN R DR CRY)

+ (=R (g0 (2 (0. 8uy). Buy)
+ (=DM (@) (1. 9vy). dup))
+ (- 1)1+|ﬂ|+|u|+|v\+|v||n| (q@’3’(0’1’2,3)€(1 oo)(au%n’ v)’)) (32)

The summands of (32) correspond to the pictures in line D of Figure 8.
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1 2 3 4
m:w »mew 6@:@ @2@?
m:w m:w sa m:w g g
é H dyb
AANIAZ2W .
E ﬂ d,b

Fig. 8. Boundary components of the moduli spaces from Figure 7.
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Next, keeping in mind line B of Figure 8, we compute the contribution of Propo-
sition 3.2, using again the Maurer—Cartan equation, qo o = ¢+ 1, and the unit property,
Lemma 3.13:

0= a55102(dn. 0y) + (DTS @hoin. 0uy) — aTo(ad s, 200 9)
+ (=Dl @R @uy)im) + (DI R T (1. 9uy))
= 451020, 80Y) — a0 (@ 5102 (1 3vY))
(=D 1@ @uy)in) + (DI () (. 9u7)).

Pairing with 0, and using the cyclic properties of Lemmas 2.8 and 3.15 together with
the degree properties of Lemmas 2.9 and 3.7,

0 = (451021 3Y). Dub) — (@75 (@ 510,201 9u1)). Bub)
+ (=) @ @y)in). 0ub)
+ (=D)L GER (0) (0. 8u1)). Bub)
= (4551020, Boy). Bub) — (=)D (GVE G by G810, 8uy))
+ (=PRI g0 1 @ubi ). a1 ()

+ (=D G 0 5 (1. 07)). ub),
and applying Lemma 3.12 to the third summand,

= (4l 5:10.2(dN. oY), dub) — (=DM (P0G b) g8 5 (1. 807))
+ (_1)|71\+\U|+|u|(\v|+l)+l(q)’sb.zo1 1(3 b: 7,’) q-(};:l]’(av)/))
+ (=D)L G BB (0 (0, 8uY)). Bub).

To this equation with sign (—1)(7HD(l+I+D+ulvl 544 the corresponding equation
with u, v, switched and sign (—1)! H(nFDl+PI+1) 15 get

0= (_1)1+|n|+|u|+|v\+|n|\u|+\n\|v\+|u\|v\(qgagll ,(dn, 3yy), d,b)
225 0, 9 b
+ (_1)|17|+|M|+|v|-i-\71||u|+|ﬂ||v|<q1’ag1 2(d77 3uy), 0ub)
0’ b b
RGO LR CHACD RSN UX 9%)
+ (- 1)1+|ﬂ|+\u|+|v|+|n|Iu\+\u||v|< v.b (3 b), q021 ,(n 3uy))
0> » YU
+ (_l)lnl [u]+Inl lv‘(qlll’,l;zo,l,l(auh ,’), qul(avy»
+ (_])1+|77||u|+|'7|\v|+|u|\vl(q)”l{201 L(@ub:n), qg’i’(auy))
+(_l)luH-\nl\u|+|n\|v\+\u||v\+n<q0l(qu(n 3yy)). 0ub)
- (D) R B (6 5 01, 8uy). Bub). (33)

The summands of (33) correspond to the pictures in lines B and C of Figure 8.
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Lastly, keeping in mind line A of Figure 8, compute the contribution of Proposi-
tion 3.1, again using qog = c -1 and Lemma 3.13:

0=q}%,, 1 @ubidn) + (=DITPIGEE @,b.alein)
+(=D)MaZh (@ ubin)
— a0 @T 0 1 @ubim) + (DT, @Y @ub):m)
= 470 1 @ubidn) — a7l 20 1 @ubin) + (DT, (@Te(@ub): ).

Pairing with d,,b and using the cyclic properties of Lemmas 2.8 and 3.15 together with
the degree properties of Lemmas 2.9 and 3.7, we get

0 = (g7 .00 .1 ubidn). dub) — (a7 0(a) ] 2 1 (Bubin)). dub)
+ (- 1)'"‘<q1 2001 (@ 0 @b): ). Bub)
= (7000 1 @ubidn). 0ub) — (=)D (B0 @,b). g 70, | (@ubin))
(—1)'“*‘”'“”‘*“<q¥1l;21,0,1(aub;n),qlzo(avb».

Apply Lemma 3.12 to the last summand of the right hand side of the preceding equation
and multiply the entire equation by (—1)("”“)('“‘JF“’HDJF‘”| I to get

0= (- 1)(|77\+1)(\u|+\v|+1)+\u||U|< 201 l(a b;dn), dub)
+(_1)\n|+|u\+|v|+|v||n\( l’ab(a b), 41’1-201, (3yb: 7))
+ (=PIl @ubin). 4T (3ub)). (34)

The summands of (34) correspond to the pictures in line A of Figure 8.
In the following, we add up (32)—(34) in stages. First, consider all the summands that
involve qg ; asan interior input. By Lemmas 2.7, 2.8, and 2.10, we have

0ual? (&) = (~DIEMGTY (6. 8,y) + (—DEMIFGER ) 3,b), (35

and thus

(—nlmelnbtn (g0 (2 (0. 0uy). 3py) + (=DMP1G7D (6 5 (7. 3yy). Bup))
+ (_1)\u|+|n\ |u|+|n| |v|+|u| [v|+n (qo l(qﬂ 2(,]’ 3y7)), 0ub)
+(_1)1+|v|+\n\|u|+|n||v|+n( V’b(qu(n! 9uy)). dub)

= (~ il (g0 (2 (. 8uy). 3vy) + (~DMPIGTY (6 5 (1. 9vy). Buy)
+ (=1l '“'<q0:1<q@,2(n, v¥)), dub) — (—U‘”'(qozl(q@,z(n, duy)), dub))

= (=), 670 (qf (1. Byy)) — (DRIl g G2 (02 (. 0uy))
(by Lemma 2.16)

= (=1)"3uq"} 1 (4], @uy. ) — (=DM 13,670 | (q] ,(Buy. ).
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Second, consider the summands of (32)—(34) that are products of qZ’l; and qZ’?. X

(=)l G R B y), a1, 2 (0. B07))
+ (— ) B0 3, B). a1 2 (0, BuY))
+ (gl 1(8 bin). a5h@uy))

RGO LR CHACD I AR R )

+ (—1)‘"‘|"|+|v|lm(qg’,2;10,z(ﬂ, uy)qu,l(avV»

+ (_1)1+|77|+|u|+|v|+|n|\ul-HuI|U|<q11’!g(avb) q(l)”gl L (1, 0u7))
, * 10,2710, ’

+ (—pl e @ubi), qz”i(avy»

+ (- 1)\v|+|n\|u|+|ﬂ|\v|( yb201 L (Bubin), q (a b))

which, by the symmetry property of the inner product, equation (21), is

= (- 1)1+|7I|\u|+|n\|v\+\u\|v\(< 530, (1, 3yY), q()l(auy))
+ (=DMl 50, 2 (1 00y). 415 (Bub)))
+ (—1)”'""“'*‘”"”'*'""”‘(<q¥”i 2011 @b ). Qb5 (0u))
G L CHANN G Rt (a b))
+ (=Dl (B2 (. am, ay@uy))
+ (=D ad 5.1, 2 (0. 0uy). 415 (3uD)))
+ (=) h @b, ad (0uy))

+ (=DPNaYT,, 1 Bubi ). gL 0 (@uh))).

We proceed with an algebraic manipulation represented graphically in Figure 9. By Lem-
mas 2.7, 2.8, and 2.10, taklng the denvatlve of the Maurer—Cartan equation, we obtain
qo l(E)u)/) + (- 1)|“‘q 0(0yb) = 8uq00 = 0yc - 1, and thus the above is

= (- 1)1+|n|\u|+|n\|v\+\u\|v\( v.b 102(,7, 3yy), Oy - 1)

+ (- 1)1+|'7|\u|+\7l\|v|+|u\|v\(ql’b201 L(@ubin), By - 1)
+ (DGR 2 (7 Buy). Buc - 1)
+ () g 1 1 (Bubin). duc - 1)
(using the bilinearity of the pairing, Lemma 2.7)
= (=DM - (551,200 9up). 1)
+ DI (ol s, @bt 1)
+ (DG e qrE (. Buy). 1)
+ (=g e qrh L @ubin). 1),
(by the geodesic unit properties, Lemma 3.9 and Corollary 3.16)
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= ()G e g7 (0, uy)
+ (=D e (g2 (), 9, b)
+ (— )il gD G, Buy)
(=l g o (), 9,b),
(by (35))
= (—1)" (=uc - 3uq”2 () + (=D, c - 8,670 ().

w avc-l

d,C -

Y
<
53
<+
1

Fig. 9. Combining contributions from two boundary strata to form a product of derivatives.

In total, (32)—(34) add up to
0= (_1)1+|77|-|-\v|+|ﬂ|Ivlq%b3 0.3 (Buy.dn. 35Y)
+ (- 1)1+|n\+\u\+\v|+|n|Iu\+|n|\v|+|u|\v|< 2102(51,’, 3y7), 0ub)
+ (_1)|n|+|u|+|v\+|n|\u|+|n\|v\( l’ab 10.2(d. 3uy). Bub)
+ (- 1)1+|n\+\u\+\v|+|n|Iu\+|n|\v|+|u|\v|(q7’b’201,1(3 b: dn), dub)
+ (- 1)1+|’”+‘"‘+‘v|+|”‘""1(%’3’(0’1,2,3)6(1 ooy @Y. 1.3 7))
+ (=1 (3ua”7 1 @ @oy.m) = (DM 8,677 (0 5 Buy. )
+ (=1 (=Buc - ua 7 1 () + (=DM Mdye - gy ().

which is equivalent to (31), as required. ]

4.3. Relative potential

In (6), we defined
V(.b) = (a) 5. (=D)"1g77 ) € C().
Lemma4.8. dcy(y,b) = 0.

Proof. By definition,

dey(y.b) = (dajy 4.1(ap ) = (0.i(a} o))
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We claim that i(q% o) = 0. To see this, apply the deformed version of Proposition 2.6 to
the case / = 0:

b ,b . .
0= 2(ago-900) + (D" i(ag ) = 3¢7(1.1) + (=D)"*i(a) o)
= (—1)"*i(a},)- .
As in Section 1.3.1, define the relative potential to be the cohomology class
V(y.b) = [y (y,b)] € H*(C(1)).

Proof of Theorem 1. Let (7, b) be a pseudoisotopy from (y, b) to (', b’). We show that
(qg’o, (—1)"+1qzl’f’0) is cohomologous to (qg’o, (—1)"+1qz’f,0), by considering their dif-
ference.

To compute the first component, apply Stokes’ theorem (Proposition 2.2) to
f = px o €Vg. This gives

Qg,o - Qg’o = _d((pX)*&g,o)-

We now compare the difference in the second component. Use the analog of Proposi-
tion 2.20 for the deformed G—,o operator:

~y.b ~~,5 ~N,I; Lk~
0 = dq\il 0 + %«qg(ng,o» - (pl)*l q ,0
_7.p . . =7.b i*a7
=da% o+ 3¢ 1,8 1) = (p)si*ap o = d&27 ) — (p1)i*Gj -

Pushing the expression along pt : I — pt and using Lemma 4.6, we have
/ i’y
f ;

On the other hand, by Stokes’ theorem, we have

-5.b 57-b b b 'y b
/quzl,o = (_1)‘(171’0‘(@{1,0 - qzl,o) = (_l)n-’_l(qzl,o - qz1,0)~

LR SE!

Pt (Pr)«i™dy o = Ptu(pr)«i*Gy o = (—1)" ptui ™ (px)«dj 0

~i((px)+d} 0)-

So,
b b . ~y
(_l)n—H(qZLo - qZLo = _1((PX)*C$%,0)‘
In total, we have

V(' b) = W(y.b) = [~dc ((px)«dy 4. 0)] = 0. =

Lemma 4.9. Assume b is separated and write |, 1 b = f. Then the relative potential is
related to 1via

WV = 23y, 0), Yu e W,
I = 35 £ -3(0,1), VseS.

Consequently,

0 W =3[9y, 0))) and 95V = 3 f - 3([(0. D).
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Proof. To prove the first identity, note that the separatedness assumption implies that
Oy f L b = 0. Therefore, by Lemmas 2.16 and 2.8 and the Maurer—Cartan equation,

8uY (r.0) = (@), (Buy). (1" 1070 1 Buy)) + (0. (=1 (gl 5. Bub))
= (4}, (Bup). (—1)"+1q&1,1(am> + (0. (=1 e - (1,8,b))
= (a5, @Buy). D" a2 (Buy))
= 3(Du7.0).

To prove the second identity, compute

05y (y.b) = (0, (=1)" " (ql5. 0:5)) = (=) (0, ¢ - (1, db))

_ (_1\n+1 (1)
= (-1 (o,c (—1) axj;b)

=0y f - (0,—c) = s f - 20, 1). -

4.4. Enhanced superpotential

We begin by giving a full account of the conditions imposed on the map P discussed in
Section 1.3.3. There is a natural map of complexes /f(X, L) — C(i) given by n — (7,0).
Denote by a : q *(X, L;R) - H*(C(1)) the induced map on cohomology. Consider the
commutative diagram of long exact sequences,

" (C(l))\ /H e
Rw[—n —1]
(36)
A*(X,L;: 0w) —2 H*(X: Qw)
[1] [
Yo ip
Owl-n]

where a is injective by the five lemma. Observe that for this diagram to commute, we
need the map x to be given at the chain level by r + (0, —r). There is a canonical chain

map C(i) — Rw/Qw given by (1,§) > [—£]. Let
P H*(C(i)) » Rw/Qw

denote the induced map on cohomology. Let ¢ : Ry — Rw / Qw denote the quotient map,
and let g : Cokeri — Ry / Qw be the induced map. We obtain the following diagram with
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exact rows and columns:

0 0

0—— Rw/Qw ———— Rw/OQw ——————0

q P
0 — Cokeri — >~ H*(C(i)) — = Keri 0 (37)
a a 14

0 — Cokerig —2— H*(X, L; Ow) —2— Kerig — 0

We choose
P : H*(C(i)) — Cokeri,

a left inverse to the map X the diagram (37) satisfying two conditions. The first condition
is

GoP =P (38)

Note that if [L] # 0, then g is an isomorphism, so this determines P completely. Con-
dition (38) and the exactness of diagram (37) imply that there exists a unique Pg :
H*(X,L; Ow) — Cokerig such that the following diagram commutes:

Cokeri «+—2—— H*(C(i))

a[ Tu 39
P

Cokerig «—— H*(X,L; Qw)
The second condition is that there exists Pr : Vit *(X, L;R) — Cokerig such that
Pop=Pr®ldg. (40)
Recall the exact sequence (10). Denote by y : Cokerir — H *(X, L;R) the induced map.
Lemma 4.10. Pg o yg =Idand Pr oy =1d.

Proof. By the exactness of diagram (37), the map a is injective. So, to prove Pg o yg =
Id, it suffices to prove that @ o Pg o yg = a. By commutativity of diagrams (39) and (37),
we obtain

aoPgoyg=Poaoyg=PoXxoa=a.

To see Pr o y = Id, observe that yg = y ® Idg. ]
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Lemma 4.11. Let! : ﬁ*(X, L;R) — Cokerig satisfy [ o y = 1d. There exists a unique
choice of P : H*(C(i)) — Coker1i satisfying conditions (38) and (40) such that | = Pg.
Moreover, Ker P = a(Ker Pp).

Proof. Letlg =1 ®Idg. Then /g o yg = Id, so the splitting lemma implies that
H*(X.L: Qw) ~Imjo & Kerlp. polkeriy : Kerlg = H*(X: Q).

Diagram (37) gives w 0 a = pg, so it follows that 7 o a|keri,, : Kerlg = H*(X:0).
Thus,
7T|a(KerlQ) : a(KerlQ) = H*(X; Q)

and the splitting lemma implies that
H*(C(i)) ~ Imx & a(Kerlp).

Take P to be the unique left inverse of x such that Ker P = a(Kerlgp). Diagram (37) and
the above splittings imply condition (38) and /o = Pg. Condition (40) follows. ]

Remark 4.12. As mentioned, if [L] # O then P is uniquely determined. If [L] = 0,
Lemma 4.11 shows that P is uniquely determined by Pg : ﬁ*(X, L;R) - R[-n —1].
Geometrically, we can interpret Pr as integration over a homology class V €
Hy,11(X, L; R). Considering the boundary map 0 : H,+1(X, L; R) — H,(L;R), the
condition Pg o y = Id corresponds to 0V = [L].

In Section 1.3.3, we defined the enhanced superpotential by  := P W and we defined
the superpotential 2 by
q(2) =q(2), D(Q)=0. (41)

Lemma 4.13. The enhanced superpotential Q satisfies §(Q) = P (V). In particular, Q2
is independent of the choice of P.

Proof. By (38) we have §(Q) = g o P(¥) = P(W). Since the map P is canonical, the
conditions (41) are independent of the choice of P. [

Following [32], we write
Q= (~1)"a"7,. (42)

Lemma 4.14. We have Q2 = Q — DQ.
Proof. We verify the two conditions defining 2. First, Lemma 4.13 gives
(@) = P(¥) = q(Q - DQ).

Second,
D(Q—-D(Q)=DQL—-DQ =0. [
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Remark 4.15. In [32] we defined
OGWyg k([vi,], - .-+ [¥i;]) := the coefficient of T8 in 3,1.1 ---8,1.[ 8§Q|s=0’,j —o0. (43)

By Lemma 4.14 and the condition ¢(2) = (), this definition coincides with the def-
inition (13) in the current paper. However, the analog of (43) for OGW, with Q instead
of Q, is true only if [L] = 0.

Denote by p : Ry — Cokeri the quotient map, and let f = [, b.

Lemma 4.16. Lets € S.
@) 9sQ = p@sf -c).
(b) 0,2 =051 -c.

Proof. By Lemma 4.9,

952 = P(s f 5[0, D)) = PO, =35 f -¢) = P(R(p@ds f - ¢))) = p(ds f - ¢).

Lemma 4.14 and the Maurer—Cartan equation (3) give

9,2 = 0,(@ — DY) = 0,8 = (—1)"(¢}5.dsb) = (~1)"(c - 1,0,b) = ¢ - a(/ b)
L
=0dsf -c. |

Remark 4.17. Recall from Definition 1.1 that a bounding chain b is called point-like if S
is one-dimensional and f = || 1, b is a coordinate function on §. In light of Lemma 4.16,
we will now argue that, generically, all open Gromov—Witten invariants can be obtained
from point-like bounding chains. Indeed, consider a general bounding chain b with S of
arbitrary dimension. For generic f, the point O € S is regular. So, after a formal change
of coordinates, we may assume that f is one of the coordinate functions on S. Then
Lemma 4.16 shows that the superpotentials © and € depend only on f and not on the
other coordinate functions. Replacing S with the one-dimensional subspace on which the
other coordinate functions vanish, and replacing » with its restriction to this subspace,
we obtain a point-like bounding chain. The superpotentials £ and Q associated with this
point-like bounding chain contain the same information as the superpotentials associated
to the original b.

Let U C H*(X;R) be a subspace, and let (yw, b) be a bounding pair over W :=
o~ Y(U) c H*(X, L). Recall that in Section 1.3.7 we define I', := y(1). By abuse of
notation, denote by d, : Ry — Ry the derivation corresponding to I',.

Proposition 4.18. Suppose [L] = 0 and b is separated. Then

0,Q=—0,f-0,Q, VseSs.
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Proof. Let y, € A* (X, L; R) be a representative of I',. It follows from the definition of
Iy that in H*(C(i)), we have [(yo,0)] = [(0,—1)]. By Lemma 4.9 we then have

9;Q = P(3;W) = P35 f -3[(0, D]) = =P (@5 f - :[(yo,0)]) = =P (35 f - 8 ¥)
— 0, f 002 .

Proof of Theorem 6. By assumption, ds f = 1. Therefore Proposition 4.18 gives 9;Q =
—06%2. Since [L] = 0 and thus Cokeri = Ry, this immediately implies the required
equality of invariants. ]

4.5. Enhanced axioms

The following axioms for the invariants OGW are useful in combination with the open
WDVV equations for carrying out recursive computations (see Section 6). Similar axioms
for the invariants OGW were proved in [32]. In the following, we assume that the subspace
wcH *(X, L;R) and the bounding pair (yw, b) are as in Theorem 8 or Theorem 9. In
particular, writing W; C W for the degree i homogeneous part, by [32, Lemma 5.11],
there is a natural inclusion

W, — H?(X,L:R).

So, for A € W, and 8 € Hy(X, L;Z), the pairing fﬂ A 1s well defined.

Proposition 4.19. The invariants OGW of (X, L) satisfy the following axioms. Let
AjeWforj=1,...1

(a) (Degree) OGWg i (A1,..., A7) = 0 unless

I
n=3+4uB)+k+2 =kn+) |4l (44)
j=1

(b) (Unit / Fundamental class)

_1? (ﬂ,k,l) = (ﬂO’lﬂl)a
OGWg x (1, Ay..... Aj—1) = Pr(41), (B.k,1) = (Bo.,0,2), (45)

0, otherwise.
(c) (Zero)
-1, k,)=(,1)and A, =1,
OGWg, k(A1,.... A;) = { Pr(A41 ~ A43), (k1) =(0,2), (46)
0, otherwise.

(d) (Divisor) If |A;| = 2, then

OGWﬂ,k(Al,...,Al) =/3Al -OGWﬂ,k(Al,...,Al_l). A7
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Proof. When [L] # 0, all values of OGW that are defined coincide with the values of
OGW and Pg = 0. So, the axioms proved for OGW in [32] imply the axioms for OGW.
Thus, we may assume that [L] = 0 and, as mentioned in Remark 4.15, we can compute
the invariants OGW by taking derivatives of €. We first prove the unit axiom (45) in
detail. By assumption, the unit element of the cohomology 1 € H *(X, L; R) belongs
to W and we denote by d; the corresponding directional derivative. It is shown in [32]
that 9, = —TPos. It follows from Lemma 2.14 that qugf’g = TPoyy . Thus

01W(yw.b) = 01[(ahly. —)] = T [(yw. )] = TP (a(Tw) — x(s)).
So, diagram (39) implies
7hQ =3PV =PdW=TFP(Paw)) - P(x(s) = TP (Po(Tw) — ).

The unit axiom follows by taking derivatives and using (40). The remaining axioms follow
by a similar combination of the arguments in [32] with Lemmas 2.15,2.17 and 2.18. =

5. Relative quantum cohomology and open WDVV

5.1. Preliminaries

Throughout Section 5, we operate under assumptions (A.1) and (A.2). Recalling the defi-
nition of Pr from (40), we take

W' = Ker(Pr|w) € W. (48)

Lemma 4.10 implies that W = W’ @ Im y and p|w- : W' — U is injective. Denote by
Kk : W — W the projection to W’ along Im y and by «* : Qw — Qw the induced homo-
morphism. Define yy € dwA*(X, L; Ow) by ywr = k*yw. Since p|w- is injective,
there exists a closed yy € Jy A*(X; Qu) such that [yy] = T'y € U ® Qu and

Lemma 5.1. Forny,...,n € A*(X; Qw), we have

[p* (a7 (n1s o)) = lagy (m1s-.om)] € H*(X; Qw).
Proof. By (49), we have

P (@ (s o)) = a4 Y (nsm) = agly ().

By definition, yw and yw, and consequently qgv;’ n1,...,m) and qgv}’/ n1,...,m), are
differential form valued formal functions on W that agree when restricted to W’ C W.
Since W = W’ @ Im y, it is enough to consider dependence of [qgv}’ "1, ...,m)] on

T, = y(1) € H*(X. L). Since [0oyw] = 0. = I's € Ker(p), there is n € A*(X:R)
such that doyw = dn. By Lemma 2.13, we have

oy (s om) = ayly  @oyw.mis o) = dagly (s -.om). (50)
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Moreover,
doayy (m1,--.m) = a1 @oywr, i, ..., 1) = 0. (51)

Thus, [dea) (71, ... 1] = [9oa4") (1. ..., m)], and therefore [a3} (11, ..., m)] =
lagy (-] -

Throughout Section 5, we write
Vi=n""U® Qw) C C(i). (52)
Lemma 5.2. Forallu € W we have 3,3(V) C V.

Proof. 1t suffices to show that 7(9,2(V)) C U ® Qw. Indeed, let v € V and let (1, £) €
C(i) with [(n, §)] = v. By Lemma 5.1, we calculate

7(3,3(v)) = [Bua g’y (M) = [ag’s (1, uyw)] = [0" a5 (0, duyw)]
= p*((v) *u p(u)). (53)

Assumption (A.1) implies that
p* () *u p(w)) € U ® Qw. (54)

The lemma follows by combining (53) and (54). ]

5.2. Relative quantum product

Recall that in Section 1.3.8 we defined QW = 0w ®a,. A and
C(i) :== (C()/x(sRw)) ®gy Ow. QHy(X,L):=W & Ow.

As noted, there is a natural isomorphism H *(X,AL; Q w)~ H* (6 (1)). In particular, we
can think of QHy (X, L) as a subspace of H*(C(1)).

For n € C(i) an/gi r € Ry,wehavel(n+ x(s-r)) =3(n) —c-x(s-r). Thus, 1induces
amapi: C(i) — C().
Lemma 5.3. The map 1 inherits the properties of 1. Specifically,
(@) 3is a chain map and is invariant under gauge equivalence,
(b) 3,30 3,3 is chain homotopic to (—1)*11V13,30 8,3 for allu,v € QHy (X, L).

Proof. Statement (a) follows from Lemmas 4.4 and 4.7. Statement (b) follows from The-
orem 5. ]

Denote by 3 the map induced by 3 on cohomology.

Lemma 5.4. 3,3(QHy (X, L)) C QHy (X, L) forallu € QHy (X, L).
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Proof. Recall that Im x = Ker . Thus, we have the following commutative diagram:

h

H*(C(1) H*(C(i)/x(sRw))

H*(X: Ow)

By Lemma 5.2, we have

@HEHU ® Qw)) = (@I (h(V)) = h(@u)(V)) Ch(V) =77 (U ® Qw).
Tensoring with Q w, we get the required result. |

Keeping in mind Lemma 5.4, define

n:QHy(X,L)® QHy(X,L) — QHy(X,L) by nu,v) = 0,3(v).
Lemma 5.5.
B v) = [0, 00 0)] + (=1 (Budua”F o — 83,0677 ) - To.

Proof. By assumption (A.2), we have 0, (fL b) = 0. Again by assumption (A.2), we have
[0uyw] = u, [0yyYw] = v. So, by Lemmas 2.10 and 2.8 and the Maurer—Cartan equation,

3,077y = a? Boyw) + <qzvz’ dub) = a”% L Dyyw) + ¢ - (1,b)
= q_1,1 (Ovyw) = a3 P (v).
Consequently,
Bua” D)) = @7} L () = a7 L (@uv) = 0uda”T o — 05,0070 .
Therefore, B(u, v) is given at the chain level by
3ui(v) = (alfs Buyw. v). (=1 18,077 (v))
= (ap (u.0), ()" (040,677 — 02,0075 3)).

It follows from the definition of T, that in H*(C(i)), and therefore in H*(C (1)), we
have [(yo,0)] = [(0, —1)]. The desired formula follows. |

Lemma 5.6. (a) Forvector fieldsu,ve QHy (X, L), we have d(u,v)=(—1)*Pla@, v).
(b) The map 1 has degree zero, that is, |2(u,v)| = |u| + |v|.

Proof. Forany f € Q w, by definition of the graded Lie bracket,
00y f — (_1)|u| |vlavauf = a[u,v]f-
On the other hand, since the canonical connection on affine space is symmetric, we have

Bpyo f — (=DM o f = B f.
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Thus 0,0y f — 03,» f is graded symmetric in u, v. Taking f = qzv{’,bb, and using also
Lemma 2.16, we see that the right-hand side in Lemma 5.5 is graded symmetric in u, v,
which implies part (a). Keeping in mind the shifted grading of R[—n — 1] in the definition
of C(i), part (b) follows from Lemmas 2.15 and 2.9. |

Lemma 5.7. For vector fields u, v, w, we have D(1(u, v), w) = N(u, D(v, w)).
Proof. By Lemmas 5.6 and 5.3,
B0, v). w) = (=PI, . ) = (DTG, 3030, v)
= (=D PRI, 58, 50)) = (=DP1*19,3(8,3(v))

= (=DM, n(w, v) = B, BV, w)). .

Proof of Theorem 7. Graded commutativity and associativity are given by Lem-
mas 5.6(a) and 5.7, respectively. Invariance under gauge equivalence follows from
Lemma 5.3 (a). [

5.3. Open WDVV

In the following, we make some calculations that will be useful in the proof of Theorem 3.
As in Section 1.3.5, we abbreviate

(DZq)UEQU, S_ZZS_Z(yw,b)ERw.

Lemma 5.8. Let r € Cokeri.
(@ 3(x(r)) = —c-x(r),
(b) 0,3(x(r)) = —0yc-X(r) forue WesS.

Proof. Letr’ € Ry be arepresentative of the class of r in Cokeri. Then
1% () = 3(x(r") = [(0,c - r")] = x(=cr’) = F(=p(cr')) = —c - %(r),

where the last equality uses the fact that ¢ € Qw when [L] # 0 (see Theorem 2), and
holds trivially when [L] = 0. Consequently, d,,3(X(r)) = —dyc - X(r). [

Lemma 5.9. 7(¥(yw, b)) = p*(VOy).

Proof. Recall from Section 1.2.6 that VOy = [q%] € H*(X; Qu). So, it follows from
Lemma 5.1 that

P*Voy = [p*ap ] = lags] = 7(¥(yw,b)). n
Lemma 5.10. Forl € Iy, we have p*(3;®) = [y ay's A dryu.

Proof. By definition of the gradient, we have

p*(0;®) = p*(VO,I})x = (p* VP, T)x.
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Moreover,
| 4t Ao = e(¥ . b). T
The claimed equality follows from Lemma 5.9. ]
Recall the definitions of W’ and V from (48) and (52) respectively.
Lemma 5.11. Imx @ a(W' ® Qw) = V.

Proof. Since P : H*(C(i)) — Coker1i splits the short exact sequence

0 — Cokeri > H*(C(i)) 5 Keri — 0,

we obtain
Ker P @ Imx = H*(C(@i)). (55)

Thus, since Imx C V, it suffices to show that V N Ker P = a(W’' @ Qw).
By Lemma 4.11, we have Ker P = a(Ker Pg). Thus,

VNKerP =7 (U ® Qw) Na(Ker Pp).
On the other hand,
W' ® Qw = pg' (U ® Qw) N Ker Po.
Diagram (36) gives m o a = pg. So, for v = a(w), we have
wepél(U(X)QW) — po(w)eUROw < moa(w) eU ® Ow
= ven '(U® Ow).
Therefore, V N Ker P = a(W’ ® Qw) and the lemma follows. |

Recall from Section 1.3.5that A; e U, j € Iy, and I'j € W', j € I, are bases such
that p(I';) = Aj. Write ¥ :=a([';) € H*(C(i)) for j € Iys,and Y := a(T'w).

Lemma 5.12. Letu €¢ W and v € W & S, let vw be the projection of v to W, and let
u = p(u) and v = p(vw). We have

043(0, 1) = 56(8,,8,452) + Z P*aﬁaga](b ,glm Y.
mGIW/
lely

Proof. By Lemmas 5.2 and 5.11, we obtain a unique decomposition

0,30, V) =X(r)+ > r"Ym. reRw. 1’/ € Qw. (56)

meIW/
To compute r, recall that P o X = Id and Y}, € Ker P. By Lemma 4.9, we have

r=P(x(r)) = P(3,30,Y)) = P(0,0,¥) = 3,0, PV = 0,0, Q.



J. P. Solomon, S. B. Tukachinsky

3564

To find r™, take [ € Iy and compute

(@30, Ax ={ Y rmn(Tm),Al>X= N M AmA)x =Y g

mely, melyy mely,,

On the other hand,
(@30 0)), Ar)y = / 900l (T(0,)) A dyyy = / 90ualls A vy
X X

= 8v8u/ qléw A a])/U
0
(by Lemma 5.10)
= 3v3up*(31<b) = p*(aﬁa,;alq)).

So,
> rMgm = p* (95050, D).

mel w’
Multiplying by the inverse matrix (g”!), we get

=) " (05029, 9) - g,

lely

Proof of Theorem 3. We deduce the result from Theorem 5, as follows. By Lemmas 5.12

and 5.8, we compute

auz(ava(awr))=aua(x(avawg‘z)+ 3 P*aﬁaﬁ,alq)'glm'Tm)

mGIW/,ZGIU

= 03(X(0,0, Q) + Y (D) WIHRIHADM 55550, ® - g - 9,3(T)

mEIW/,IEIU
= ¥ (—0uC - 0,0, Q)
+ Z (_1)(\v|+|w|+|A1|)|M\p*az_)3u_)81<D

mGIW/,ZGIU

.glm(;c(aua,,,s‘z)Jr > p*0a0md®- gt

iEIW/,jGIU

)

_ x(—auc DSt 3 (CEERHADN 55 gl -auams_z)

mely,lely

+ > ()R HADR 05555, - gt p* D0 d; D - g7 - T

m,i€ly,l,jely

= ¥(<duc- 0@+ Y (~)IHADIAy b G gl p*o5050,0)

mEIW/,IEIU

+ Y () EADR 55550, - g p* 00 D - g7 - Y

myi€ly s, l,jely
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Since g/ = (—1)l!llmlgm! and gt™ = 0 unless |m| = |I| (mod 2), we continue

- (—1)'”"wlx(—auc DB+ Y Qg -p*amau-,aﬁcb)
lEIW/,mGIU
+ (_1)(|v\+\w\)|u| Z 0*05050; P - glm P* 070D - gt (57)

m,i€ly,l,jely

Similarly,

03(0,3(0, Y))
= )_c(—avc . 8u3w§_2 + Z (_1)(\u|+\w|+\A1\)Ivlp*aﬁawalq) . glm . 8v3m§_2)

mely,lely
Y (A g, 8,0 g *050,0, g7 -

myi€ly,l,jely

- (_1)|v'<‘"'+'wl>x(—auaws‘z Buet > pagdpd @ g amavfz)
mEIW/,IEIU
+ (_l)lv\(|u|+|w|) Z 0*03030,P - glm - p* 0050, - FeA ¢ P (58)

myi€ly,l,jely

By Theorem 5, quantities (57) and (58) are equal after multiplying one by (—1)!*l To
get the open WDV'V equation (14), apply P. ]

Remark 5.13. From (57) we can obtain the standard WDV'V equation for closed genus
zero Gromov—Witten invariants by applying 7 and pairing via {, )x with T.

Proof of Corollary 1.6. Use Lemma 4.16 as follows. If [L] = 0, then ¢ = 9, and the
equations follow. If [L] # 0, then ¢ = 0;Q. Let z : Ry /Qw — Rw be the unique right
inverse of g such that D o z = 0. In particular, Z(S_Z) = Q. Observe that if u € W, then for
all g € Ry /Qw we have 0,(z(g)) = z(9,g). The desired equation then follows from
applying z to (14). ]

6. Computations for projective space

The objective of this section is to describe a recursive process for the computation of our
invariants for (X, L) = (CP",RP") with n odd. As in Section 1.3.10, take w = wgs the
Fubini-Study form, J = Jy the standard complex structure, and I1 = H, (X, L;Z). Equip
(X, L) with a relative spin structure. Thus, Theorem 8 holds, and we have a bounding pair
(y,b) over W = H*(X,L:R) with b point-like. Abbreviate I'; = [w/] € H*(X,L;R)and
I = [w/] € H*(X;R). Observe that [L] = 0 € H,(X; Z). So, together with T's = y(1),
the classes I'; form a basis of H*(X, L;R). Denote by t; € R[[W]] the coordinates on W
corresponding to I'; for j = 0,...,n,¢.Lets € S be the coordinate on S with fL b=s.
Identify H,(X, L;Z) with Z so that the non-negative integers correspond to classes
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B € Ha(X, L;Z) with w(B) > 0. By Lemma 4.11, choose P : H*(C(i)) — Cokeri to
be the unique left inverse to X satisfying conditions (38) and (40) such that Pr(I';) = 0
for j = 0,...,n. Thus, by definition (48) we have W’ = Span{T; Y=o

Lemma 6.1. The relative spin structure on (X, L) can be chosen so that OGW 5 = 2.

Proof. For any space, denote by pt the map from it to a point. Recall Remark 4.15. Since
y edwA*(X,L; Qw) and b € Kw A*(L; Rw), Lemmas 2.8 and 2.11, and Proposi-
tion 2.1 (c), imply that the coefficient of T'! in —97Q|s=;; =0 is

@262 70) 2y z0 =(026°100) =t =0 = (a7 (35), dsb)
= (=)™ pt, ((evbo)«((evb1)*d:b) A d5b)
= (= 1)! e e (Gb A (evbo)x((evby)*d5h)
= Pt ((evbo) *,b A ((evby)*3;b)). (59)

LetY = L x L\ Aandlet Z = (evbg x evby) "1 (Y) C M2 ,0(1). Itis easy to see that
g = (evbg xevby)|z:Z =Y

is a covering map. Indeed, the fiber of g over a point (x1, x2) € Y can be identified
with the pair of oriented lines in R P” passing through x; and x,. We claim that for an
appropriate choice of relative Pin structure, the degree of g is —2. Indeed, the two points
in the preimage of a point in Y are conjugate disks of degree 1 with two marked points.
Proposition 5.1 of [28] shows that the covering transformation that interchanges these two
disks is orientation-preserving, so the degree is £2. Finally, Lemma 2.10 of [28] shows
that one can choose the relative spin structure on L so as to make the degree —2.

Fori =1,2,let p; : L x L — L be the projections. Since Y C L x L and Z C M5,9(1)
are open dense subsets, using the fact that b is point-like, we obtain

Pt ((evbo)*0sb A (evb1)*dsb) = /Zg*(((pl)*asb A (p2)*05b)ly)

2
_ [Y (p1)*3sb A (p2)*35b = —2 / ("0 A (p2) Db = —z( fL asb) Y

Lx

Combining this calculation with (59) we obtain the desired result. [ ]

Proof of Theorem 10. Use the axioms of GW given in [22, Section 2] and [24, Chapter 7],
and the axioms of OGW given in Proposition 4.19. As in Remark 4.15, the invariants
OGW are given by derivatives of Q. Note that, with the identification H,(C P";Z) ~ Z,

we have
A n+1 4
ws(B) = 5~ - f (mod ).

As shown in [32, Lemma 5.11], the natural map H?*(X,L;R) - H*(X, L:;R) is an
isomorphism. So, the pairing of I'y = [w] € H* (X, L;R) with p e 1 = Hy(X,L;Z) ~ 7

is well defined and the result is
/ F] = f w = ﬂ/Z
B B
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We use this implicitly each time we invoke the divisor axiom (47) in the following argu-
ment.

The value OGW, » = 2 is computed in Lemma 6.1. Equating the coefficients of 7!
in (16) with v = F%, w = I'1, and using the zero axiom (46), yields

(=1ws© GWo(An_t. Ar. Aut) - OGW 11 (Tupr) = 0,

SO
OGWl’l(F%) =0.

Equating the coefficients of T2 in (16) with v = I';, w = T, evaluated at s = ;=0
yields

(=D=M GW, (A1, Ay, Ap) - OGWo,1(Tg) — OGW (I T) - OGW 2 = 0,
so by the zero axiom (46), the divisor axiom (47), and Lemma 6.1,
—_— n+3
OGWy,0(I'y) = (=1) = (60)

For convenience, we use [X](F) to denote the coefficient of X in the power series F.
To prove recursion (a), apply 0¥y = 9%, -+-9;, to (15) withv =T, _1,w =Ty, u =T},,
evaluate at s = ¢; = 0, and consider the coefficients of Th. Using the zero axiom for GW,
we can single out instances of Wﬂ and compute

[TP)(0% 07 (99 0 P - 0 04 Q) |s=1,=0) = OGWg & (Tj,.... T,)

n N
n+1DB -
+ Y D (=D T GW4(AL Aj—1, Ary A) OGW g, 4 (Tyi, Ty, ),

@ (B)+p1=p =0
Lul,=1

[TP1(9% 07 (94052 - 3500 Q) |s=r, —0)

Z kY ——

= (k ) OGWﬁl skl (Fls Fj]_lv FI] ) OGWﬂz’k2+1(rj2, 1_‘12)7
Bi+pB2=p
ky1+kr=k
LHul,=1

[TP)(0% 07 (3,00 P - 9 0v Q) |s=t,=0) = OGWp & (T, —1, Tjp11, Ty, ..., Tj)

n N
(n+DHB EE—
+ Y D (=) T GW4(AL A Ary A) OGW g, i (T—i, Ty -1, Tn),

@ (B)+p1=p =0
Lul,=1

[TP1( 07 (35052 - 98 Q)51 —0)

kY ——
= Z (k )OGWﬂl,kl(Fl»F.iz»FI])OGWﬁz,sz(F/l1,F12).

Bi+B2=8
k1+ko=k
Lul,=1

Substituting the expressions in (15) gives the required recursion.
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Recursion (b) follows from applying d50; = 8];_281-1 -+ 0;, to (16) with v = Iy,
w = I';, evaluating at s = ¢; = 0, and considering the coefficients of TA+1. We find that

[T (05207 (0009 @ - 9 05Q)|s=1) =0)

n
- ¥ X
w(ﬂ)+/31 =g+1i=0
Lul,=1

[TAH1)(05720, (92Q - 0,00 Q) |s=r,=0) = OGWg & ([, .....T;,) OGW,0(T'1. Tn)

k—2\ —— _
+ Z ( k ) OGWﬂz,k2+2(Flz) OGWg, k, (T1, T, I'py),
Bi+Bo=p+1° !

ANp, Ap, Ay) OGWg, o1 (Th—i, Try),

(T4 207 (30,2 - 350 2)l5=r,=0)

k-2
= Z ( )OGWﬂl k1+1(Fl,F11)OGWﬂ2 k2+l(Fn7F12)

1
Bi1+B2=B+1
1<B1=<B
k1+kr=k—2
Lul=1

By the computation (60) and the divisor axiom (47),

1

OGWg i (T, .., )OGW] o(T1, Ty E GWg (L, ..., T).

This recovers the second recursion. [

Proof of Corollary 1.9. By Theorem 6 invariants with interior constraints in I, are com-
putable in terms of invariants with interior constraints of the form I'; = [w/]. Further, by
the unit (45) and divisor (47) axioms, we may assume that |I';| > 2. It follows from the
degree axiom (44) that for any S there are only finitely many values of k, [ for which there
may be non-zero invariants with constraints of the above type. Thus, we give a process
for computing Wﬂ,k (I'i;» ..., I';) which is inductive on (B, k, [) with respect to the
lexicographical order on ng .

For B = 0, all values are given by the zero axiom (46). For (B8, k,[) with B = 1 and
! <1, all possible values have been computed explicitly in Theorem 10. Indeed, assume
for convenience that interior constraints are written in ascending degree order. By the
degree axiom (44),

)
B=1= n—3+n+1+k+2=kn+) |Iy|
j=1
)
= 0=(k-2)(n—1)+Y (T;-2).

j=1
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Since |Tj; | > 2, equality cannot occur when k > 2. For k = 2, equality holds if and only
ifl =0,fork =1ifand only if/ = 1 and |I';;| = n + 1, and for k = 0 if and only if
l =1land Ty | =2n.

In the following, we often use the zero axiom (46) without mention to deduce the
vanishing of open Gromov—Witten invariants with 8 = 0. For this purpose it is important
that W' is closed under the cup product so that for Ay, A, € W', we have Pr(A; ~ Az)
=0.

Consider a triple (8, k, /) with [ > 2. By Theorem 10 (a) we can express the invariant
as a combination of invariants that either have degree smaller than f, or have at most the
same amount of interior constraints as the original invariant but with a smaller minimal
degree. Proceed to reduce the degree of the smallest constraint until you arrive at a divisor,
then eliminate this constraint by the divisor axiom (47). In the process, summands of
degree B do not increase the value of k. Thus, the invariant is reduced to invariants with
data of smaller lexicographical order, known by induction.

Consider a triple (8, k, /) with [ < 1. For B = 0, 1, the values have been computed
above. For § > 1, the degree axiom (44) implies that k > 2. Using Theorem 10 (b), express
the required invariant as sums of invariants that are either of smaller degree or have equal
degree and fewer boundary marked points. Either way, we get invariants with data of
smaller lexicographical order, known by induction. ]

Corollary 6.2. All the invariants of (C P",R P") are of the form m /2" withm,r € Z.

Proof. This is immediate from the recursive process, noting that the initial conditions are
integer, and the only contribution to the denominators comes from the divisor axiom, so
they consist of powers of 2. |

Appendix A. The real setting

The objective of this section is to prove Theorem 9. In particular, we operate under the
assumptions of Theorem 9 throughout the section.

For any nodal Riemann surface ¥ with boundary, denote by X be the conjugate sur-
face, as in Section 3.1. Denote by s : ¥ — X the anti-holomorphic map given by the
identity map on points. Denote by ¢ : M;41(8) — M4 (¢«B) the map induced by ¢,
namely,

Plu:T— X, 0= (wo,wi,....w)]:=[pouoys, (Y5 (wo). ¥g' (wi).....¥5" (w))
Lemma A.1. We have sgn(¢) = n (mod 2) and sgn(¢p) = n + ¢1(B) + [ (mod 2).

Proof. Since both X and M;,(B) are complex orbifolds, and therefore admit a canonical
orientation, the sign of the involution on each of them is simply half the dimension. So,

sgn(¢) =
sgn(¢) = %(Zn +2c1(B)+2l +2—6)=n+c1(B) + 1 (mod 2). |

-2n=n,

N[—=
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Lemma A.2. Let {1, ..., € A™(X) be homogeneous forms such that ¢p*{; =
(—=D)&12¢;. Then

8
pr ol (o ) = ()G B2 E g,

Proof. Denote by ev; (resp. CV?) the evaluation maps on M;y1(B) (resp. Mj41(¢«f)).
By assumption on {;, we have

I
(== 81268 @ 6 = (D Z= P evg) (A (v )
j=1
I
= (@)« ( A\ @0)9"%)
l ~
= @0 ( A\ @ o))

1
_ 7% Py s
= (evo) (/:\1 @)
(by Lemma 2.4)

_ B I
= ("D (eve) @7 ( A @99)E))
j=1
- 1
= D) A @D)F)
j=1

. 1
= (_1)sgn(¢)+5gn(¢)¢*(evg)*( /\ (evjb)*éj)
J=1
(by Lemma A.1)
= (- 1)Cl(ﬁ)+l¢* ¢*‘B(§1, o).

The desired conclusion follows by Lemma 2.15. ]

Corollary A.3. Let U = H;V“‘(X). Then U @ Qu C QHy(X) is a Frobenius subal-
gebra.

Proof. For short, write V := U ® Qy. First, V is closed under xy . Indeed, let 1, ¢ €
A*(X; Qu) be representatives of classes in V such that ¢*n = (—1)"V/2p, ¢*¢ =
(—=1)¢112¢ We have

@ (B)
Mrll= Y ahL0eierd)

BeH>(X;Z),1=0

Recall that we have chosen I1 = H,(X, L; Z)/Im(Id + ¢«), so w(B) = @ (¢«P). Thus,
Lemma A.2 implies that [n] xy [{] € V.
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Second, the bilinear form (-, -)x is non-degenerate on V. Indeed, let V' denote the
direct sum over k of the (—1)K*1-eigenspaces of ¢* acting on H*(X) ® Qu,so V @&
V' = H"*"(X) ® Q. Since the bilinear form (-, -)x is non-degenerate on H*"(X) ®
Qu, it suffices to show that V' and V' are (-, -)x-orthogonal. Let n € V and ¢ € V' be
homogeneous. In order for (n, {)x to be nonzero, we need || + |¢| = 2n. In addition,
recall that sgn(¢p) = n. Therefore, by Lemma 2.4,

0. 0x = (D pt,(p A Q) = (—DIEFE@ pe g* (A L)
= (= )IEHn 2424 o (n A0 = (=DEFF o (g A L) = — (0, O)x,

so (n,¢)x = 0. n

Proof of Theorem 9. Part (a) is given by Corollary A.3. Part (c) is given by [32, Theo-
rem 3]. It remains to verify part (b), namely, that Ker(p|geven) C H o (X, L: R). Con-
sider the long exact sequence (10). Since Ker p = Im y, it suffices to show that y(1) €
H s (X, L:R). Let ¢* act on R[—n] by the identity. This action makes i into a ¢*-
equivariant map. Indeed, for n € A*(X;R), we have

ir(d* — (=Dt | i (p*n) = (—1) ] oi)*
iR (@* () = (—1) /Ll(¢n) 1) /L<¢ i1
= (—1yrHia / i1 = ir() = ¢ (ir ().
L

By the naturality of the long exact sequence (10), we conclude that y is ¢*-equivariant,
and therefore ¢* y(1) = y(1). Since n = 3 (mod 4) and |y(1)| = n + 1, this means y(1) €
HZ"(X, L:R). (]
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