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Abstract. We give necessary and sufficient conditions for an integral polynomial without linear
factors to be the characteristic polynomial of an isometry of some even, unimodular lattice of given
signature. This gives rise to Hasse principle questions, which we answer in a more general setting.
As an application, we prove a Hasse principle for signatures of knots.
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0. Introduction

In [GM 02], Gross and McMullen give necessary conditions for a monic, irreducible poly-
nomial to be the characteristic polynomial of an isometry of some even, unimodular lattice
of prescribed signature. They speculate that these conditions may be sufficient; this is
proved in [BT 20]. It turns out that the conditions of Gross and McMullen are local con-
ditions, and that (in the case of an irreducible polynomial) a local-global principle holds.

More generally, if F 2 ZŒX� is a monic polynomial without linear factors, the con-
ditions of Gross and McMullen are still necessary. Moreover, they are also sufficient
everywhere locally (see Theorem 25.6). However, when F is reducible, the local-global
principle no longer holds in general, as shown by the following example.

Example. Let F be the polynomial

.X6 CX5 CX4 CX3 CX2 CX C 1/2.X6 �X5 CX4 �X3 CX2 �X C 1/2;

and let L be an even, unimodular, positive definite lattice of rank 24. The lattice L has
an isometry with characteristic polynomial F everywhere locally, but not globally (see
Example 25.16). In particular, the Leech lattice has no isometry with characteristic poly-
nomial F , in spite of having such an isometry everywhere locally.

More generally, let p be a prime number with p � 3 .mod 4/ and set F D ˆ2pˆ
2
2p ,

where ˆm denotes the cyclotomic polynomial of the m-th roots of unity (the example
above is the case p D 7); there exists an even, unimodular, positive definite lattice having
an isometry with characteristic polynomial F if and only if p � 3 .mod 8/. On the other
hand, all even, unimodular and positive definite lattices of rank deg.F / have such an
isometry locally everywhere.

Several other examples are given in §25, both in the definite and indefinite cases.
One of the aims of this paper is to give necessary and sufficient conditions for the

local-global principle (also called Hasse principle) to hold, and hence for the existence
of an even, unimodular lattice of given signature having an isometry with characteristic
polynomial F ; this is done in Theorem 25.11.

We consider a more general setting: isometries of lattices over rings of integers of
global fields of characteristic 6D 2with respect to a finite set of places. The local conditions
on the polynomial then also depend on the field and on the finite set of places – in the case
of unimodular, even lattices over the integers, they are given by the Gross–McMullen
conditions, and the same question for rings of integers of arbitrary number fields is treated
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by Kirschmer [K 19]. We do not attempt to work out the local conditions in general: we
assume that they are satisfied, and give the obstruction to the local-global principle.

Even more generally, in §13 we construct an “obstruction group” – a finite abelian
group which gives rise to the obstruction group to the Hasse principle in several concrete
situations.

To explain the results of the paper, let us come back to the original question: we have
a monic polynomial F 2 ZŒX� without linear factors, we choose a pair of integers r; s > 0

and we would like to know whether there exists an even, unimodular lattice of signature
.r; s/ having an isometry with characteristic polynomial F . It is easy to see that all even,
unimodular lattices with the same signature become isomorphic over Q. This leads to
an easier question: let F 2 QŒX� be a monic polynomial and let q be a non-degenerate
quadratic form over Q; under what conditions does q have an isometry with characteristic
polynomial F ? This question was raised, for arbitrary ground fields of characteristic not 2,
by Milnor [M 69], and an answer is given in [B 15] in the case of global fields; instead of
just fixing the characteristic polynomial, the point of view of [B 15] is to fix a module over
the group ring of the infinite cyclic group. As seen in [B 15], the crucial case is the one
of a semisimple and self-dual module (the minimal polynomial is a product of distinct,
symmetric irreducible polynomials – recall that a monic polynomial f 2 KŒX� of even
degree is said to be symmetric if f .X/ D Xdeg.f /f .X�1/).

We start by studying this “rational” question, and then come back to the “integral” one.
Assume that K is a global field, and that the irreducible factors of F are symmetric and
of even degree. If q is a quadratic form over K, we say that the rational Hasse principle
holds for q and F if q has a semisimple isometry with characteristic polynomial F if and
only if such an isometry exists everywhere locally. Theorem 17.4 gives a necessary and
sufficient condition for this to hold, in terms of an obstruction group (see §14).

Let I be the set of irreducible factors of F . We show that the rational Hasse principle
always holds if for all f 2 I , the extensions KŒX�=.f / are pairwise independent over K
(see Corollary 18.3). We also obtain an “odd degree descent” result (see Theorem 20.1):

Theorem. A quadratic form has an isometry with characteristic polynomial F if and
only if such an isometry exists over a finite extension of K of odd degree.

We next come to the “integral” questions, defining an integral obstruction group (see
§21), which contains the rational one as a subgroup. The Hasse principle result is given
in Theorem 23.4. Note that both the rational and integral Hasse principles are proved in a
more general setting than the one outlined in this introduction.

The applications to the initial question are as follows. Let F be as above, with
F 2 ZŒX�. The integral obstruction group defined in §21 only depends on F ; we denote it
by XF . Set deg.F /D 2n, and let .r; s/ be a pair of integers, r; s> 0, such that r C sD 2n.
The following conditions (C1) and (C2) are necessary for the existence of an even, uni-
modular lattice with signature .r; s/ having an isometry with characteristic polynomial F
(see Lemma 25.3):

(C1) The integers jF.1/j, jF.�1/j and .�1/nF.1/F.�1/ are all squares.
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Let m.F / be the number of roots z of F with jzj > 1 (counted with multiplicity).

(C2) r � s .mod 8/, r > m.F /, s > m.F /, and m.F / � r � s .mod 2/:

Assume that conditions (C1) and (C2) hold. We define a finite set of linear forms
on XF , and prove that there exists an even, unimodular lattice with signature .r; s/ having
a semisimple isometry with characteristic polynomial F if and only if one of these linear
forms is zero (see Theorem 25.11).

Several examples are given in §25.

Example. Let f1.X/D X10CX9�X7�X6�X5�X4�X3CXC1, and f2 D ˆ14.
Set F D f1f 22 . Set L3;19 D .�E8/˚ .�E8/˚H ˚H ˚H , where E8 is the E8-lattice
and H the hyperbolic lattice. It is shown in Examples 25.8 and 25.20 that L3;19 has an
isometry with characteristic polynomial F .

Example. Let p and q be distinct prime numbers such that p � q � 3 .mod 4/. Let
n;m; t 2 Z with n;m; t > 2 and m 6D t , and set

f1 D p̂nqm ; f2 D p̂nqt ; and F D f1f2:

There exists a positive definite, even, unimodular lattice having an isometry with charac-
teristic polynomial F if and only if .p

q
/ D 1 (see Examples 25.9 and 25.14).

With F and .r; s/ as above, we ask a more precise question.

Question. Let t 2 SOr;s.R/ be a semisimple isometry with characteristic polynomial F .
Does t preserve an even, unimodular lattice?

Still assuming that the “local conditions” (C1) and (C2) hold, we define a linear form
XF ! Z=2 and we show that the answer to the above question is affirmative if and only
if this form is trivial (see Theorem 27.4). In particular, we have (see Theorem 27.5)

Theorem. If XF D 0, then all semisimple elements of SOr;s.R/ with characteristic
polynomial F preserve an even, unimodular lattice.

Finally, we give an application to knot theory. Let � 2 ZŒX� be a symmetric poly-
nomial with �.1/ D 1, and let r; s > 0 be integers with r C s D deg.�/. The results of
this paper can be used to decide for which pair .r; s/ there exists a knot with Alexan-
der polynomial � and signature .r; s/; for simplicity, we assume here that � is monic,
�.�1/ D ˙1 and � is a product of distinct irreducible and symmetric polynomials (see
§30). We have (see Corollary 30.4)

Theorem. Assume that conditions (C1) and (C2) hold for � and .r; s/, and suppose that
X� D 0. Then there exists a knot with Alexander polynomial � and signature .r; s/.

This is no longer the case in general if X� 6D 0. In §31, we discuss in detail the case
where � is the polynomial

�u;v D
.Xuv � 1/.X � 1/

.Xu � 1/.Xv � 1/
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where u;v > 1 are relatively prime odd integers. Using properties of cyclotomic fields, one
can explicitly determine the obstruction group X� and the homomorphisms associated
to the local data. For instance, we have (see Example 31.8)

Example. Let p and q be distinct prime numbers with p � q � 3 .mod 4/, let e > 1

be an integer, and set � D �pe ;q . There exists a knot with Alexander polynomial � and
signature .r; s/ if and only if r � s .mod 8/ and

� .p
q
/ D �1, or

� .p
q
/ D 1 and jr � sj 6 2n � 4.e � 1/.

1. The equivariant Witt group

Let K be a field, and let A be a K-algebra with a K-linear involution � W A! A. All
A-modules are supposed to be finite-dimensional over K.

Bilinear forms compatible with a module structure

LetM be an A-module, and let b WM �M !K be a non-degenerate symmetric bilinear
form. We say that .M; b/ is an A-bilinear form if

b.ax; y/ D b.x; �.a/y/

for all a 2 A and all x; y 2 M . If G is a group and A D KŒG�, and � W KŒG�! KŒG�

is the K-linear involution sending g 2 G to g�1, then this becomes b.gx; gy/ D b.x; y/
for all g 2 G and x; y 2M .

Let V be a finite-dimensional K-vector space, and let q W V � V ! K be a non-
degenerate symmetric bilinear form. We say that M and .V; q/ are compatible if there
exists aK-linear isomorphism ' WM ! V such that the bilinear form b' WM �M ! K

defined by b'.x; y/ D q.'.x/; '.y// is an A-bilinear form.

Example 1.1. Take for A the group ring KŒ��, where � is the infinite cyclic group, and
for � the canonical involution of KŒ��; let 
 be a generator of � . If b is a bilinear form
compatible with a module M , then 
 acts as an isometry of b. Conversely, an isometry
of a bilinear form b W V � V ! K endows V with a structure of A-module compatible
with b.

Theorem 1.2. Let M and q W V � V ! K be as above, and assume that M and .V; q/
are compatible. Let M s be the semisimplification of M . There exists a non-degenerate
symmetric bilinear form q on M s with the following two properties:

(a) q0 is compatible with the A-module structure of M s .

(b) q0 is isomorphic to q.

Proof. See [S 18, Theorem 4.2.1].
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Example 1.3. LetA, 
 and .V;b/ be as in Example 1.1. We say that a polynomial in kŒX�
is square-free if it is the product of distinct irreducible polynomials in kŒX�. Let f 2 kŒX�.
The following properties are equivalent:

(a) .V; b/ has an isometry with characteristic polynomial f .

(b) .V; b/ has an isometry with characteristic polynomial f and square-free minimal
polynomial.

It is clear that (b) implies (a); the implication (a))(b) follows from Theorem 1.2.

Let AM be the image of A in End.M/; if M is compatible with a non-degenerate
bilinear form, then the kernel of the map A! AM is stable by � , and the algebra AM
carries the induced involution � W AM ! AM .

Definition 1.4. We say that anA-moduleM is self-dual if the kernel of the mapA!AM
is stable by � .

If char.K/ 6D 2, the notions of symmetric bilinear form and quadratic form coincide;
we then use the term A-quadratic form instead of A-bilinear form.

The equivariant Witt group

We denote by WA.K/ the Witt group of A-bilinear forms (see [BT 20, Definition 3.3]).
If M is a simple A-module, let WA.K;M/ be the subgroup of WA.K/ generated by

the classes of the .A; �/-bilinear forms .M; q/. We have

WA.K/ D
M
M

WA.K;M/;

where M ranges over the isomorphism classes of simple A-modules (see [BT 20, Theo-
rem 3.12]).

More generally, if M is a semisimple A-module, set WA.K;M/ D
L
S WA.K; S/,

where S ranges over the isomorphism classes of simple A-modules arising in a direct
sum decomposition of M .

Example 1.5. Let A D KŒ�� be as in Example 1.1. If .M; b/ is an A-bilinear form, we
associate to it anA-bilinear form .M s; b0/ as in Theorem 1.2. Assuming that char.K/ 6D 2,
this is also done in Milnor’s paper [M 69, §3]. It follows from [M 69, Lemma 3.1 and
Theorems 3.2 and 3.3] that the classes of .M; b/ and .M s; b0/ in WA.K/ are equal.

2. Lattices

Let O be an integral domain, and let K be its field of fractions; let ƒ be an O-algebra,
and let � W ƒ ! ƒ be an O-linear involution. Set ƒK D ƒ ˝O K. Let M be a ƒK-
module. A ƒ-lattice is a ƒ-submodule L of M which is a projective O-module and
satisfies KL DM .
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Let .M; b/ be a ƒK-bilinear form; if L is a ƒ-lattice, then so is its dual

L] D ¹x 2M j b.x; L/ � Oº:

We say that L is unimodular if L] D L.

3. Bounded modules, semisimplification and reduction mod �

We keep the notation of the previous section, and assume that O is a discrete valuation
ring; let � be a uniformizer, and let k D O=�O be the residue field. Set ƒk D ƒ˝O k.
We say that a ƒK-module is bounded if it contains a ƒ-lattice.

LetM be a boundedƒK-module, and letL�M be aƒ-lattice; the quotientL=�L is
aƒk-module. The isomorphism classes of the simpleƒk-modules occurring as quotients
in a Jordan–Hölder filtration of L=�L are independent of the choice of the ƒ-lattice L
in M ; this is a generalization of the Brauer–Nesbitt theorem (see [S 18, Theorem 2.2.1]).
The direct sum of these modules is called the semisimplification of L=�L; by the above
quoted result it is independent of the choice of L. It will be called the reduction mod �
of M , and will be denoted by M.k/; this ƒk-module is defined up to a non-canonical
isomorphism.

The involution � Wƒ!ƒ induces an involutionƒk!ƒk , which we still denote by � .
Recall that a ƒk-module N is said to be self-dual if the kernel of the homomorphism
ƒk ! End.N / is stable by the involution � ; the image of ƒk ! End.N / is denoted
by .ƒk/N . Set �.N / D .ƒk/N ; if N is self-dual, then � induces an involution �N W
�.N /! �.N /.

4. The residue map

We keep the notation of the previous section. We say that aƒK-bilinear form is bounded if
it is defined on a bounded module, and we denote by W b

ƒK
.K/ the subgroup of WƒK .K/

generated by the classes of bounded forms.
Let .M; b/ be aƒK-bilinear form, and let L be a lattice inM ; we say that L is almost

unimodular if �L] � L � L], where � is a uniformizer. Every bounded ƒK-bilinear
form contains an almost unimodular lattice (see [BT 20, Theorem 4.3 (i)]). Recall also
from [BT 20, Theorem 4.3] the following result.

Theorem 4.1. The map

@ W W b
ƒK
.K/! Wƒk .k/; ŒM; b� 7! ŒL]=L�;

where L is an almost unimodular lattice contained in M , is a homomorphism. Moreover,
a ƒK-bilinear form contains a unimodular lattice if and only if it is bounded and the
image of its Witt class by @ is zero.
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We call @.ŒM; b�/ the discriminant form of the almost unimodular lattice L.
Let .V;q/ be a quadratic form overK, and let ı 2Wƒk .k/. We say that .V;q/ contains

an almost unimodular ƒ-lattice with discriminant form ı if there exists an isomorphism
' WM ! V such that .M; b'/ contains an almost unimodularƒ-lattice with discriminant
form ı.

5. Lattices and discriminant forms

We keep the notation of §2; moreover we assume that K is a global field, and O is the
ring of integers of K with respect to a finite non-empty set † of places of K (containing
the infinite places whenK is a number field). Let V† be the set of places ofK that are not
in †.

We denote by VK the set of all places of K; if v 2 VK , let Kv be the completion of
K at v, let Ov be the ring of integers of Kv , let kv be the residue field, and set ƒv D
ƒ˝O Ov .

Let .M; b/ be a ƒK-bilinear form; if L is a lattice of M and v 2 VK , set M v D

M ˝K Kv and Lv D L˝O Ov .

Definition 5.1. We say that a ƒ-lattice L is almost unimodular if the lattice Lv is almost
unimodular for all v 2 V†. The discriminant form of an almost unimodular ƒ-lattice
L is by definition the collection ı.L/ D .ıv/ of elements of Wƒkv .kv/ where ıv is the
discriminant form of Lv .

Note that ıv D 0 for almost all v 2 VK .

Proposition 5.2. An almost unimodular lattice is unimodular if and only if its discrimi-
nant form is trivial.

Proof. This follows from Theorem 4.1.

6. Local-global problems

We keep the notation of the previous section. Let .V; q/ be a quadratic form over K; for
all places v 2 V†, let us fix ı D .ıv/, with ıv 2 W�.kv/ such that ıv D 0 for almost all v.
We say that .V; q/ contains an almost unimodular ƒ-lattice with discriminant form ı if
there exists an isomorphism ' WM ! V such that .M;b'/ contains an almost unimodular
ƒ-lattice with discriminant form ı.

We consider the following local and global conditions:

(L1) For all v 2 VK , the quadratic form .V; q/˝K Kv is compatible with the module
M ˝K Kv .

(L2)ı For all v 2 V†, the quadratic form .V; q/˝K Kv contains an almost unimodular
ƒv-lattice with discriminant form ıv .
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(G1) The quadratic form .V; q/ is compatible with the module M .

(G2)ı The quadratic form .V; q/ contains an almost unimodular ƒ-lattice with discrimi-
nant form ı.

For all v 2 VK , set

M v
DM ˝K Kv and V v D V ˝K Kv:

Proposition 6.1. The following are equivalent:

(i) For all v 2 V†, there exists an isomorphism 'v WM
v ! V v such that

@v.ŒM
v; b'v �/ D ıv:

(ii) Conditions (L1) and .L2/ı hold.

Proof. This is clear.

Proposition 6.2. The following are equivalent:

(i) There exists an isomorphism ' WM ! V such that for all v 2 V†, we have

@v.ŒM; b' �/ D ıv:

(ii) Conditions (G1) and .G2/ı hold.

Proof. We have (ii))(i) by definition. Condition (i) implies that for all v 2 V†, there
exists a ƒv-lattice Lv in M v with discriminant form ıv . Set

L D ¹x 2M j x 2 Lv for all v 2 VKºI

then L is an almost unimodular lattice of .M; b'/ with discriminant form ı, hence (ii)
holds.

7. Stable factors, orthogonal decomposition and transfer

We keep the notation of Section 1; in particular, K is a field, A is a K-algebra with
a K-linear involution � W A ! A, and M is an A-module. We also assume that M is
semisimple. Note that by [BT 20, Theorem 3.12], a bilinear form compatible withM is in
the same Witt class as a bilinear form on a semisimple module.

The module M decomposes into the direct sum of isotypic submodules, M 'L
N MN , whereN ranges over the simple factors ofM . If b is an A-bilinear form onM ,

and ifN is a self-dual simple factor ofM , then the restriction of b toMN is an orthogonal
direct factor of b, and it is compatible with the module MN . If N a simple factor of M
that is not self-dual, thenM has a simple factor N 0 with N 0 6D N such that the restriction
of b toMN ˚MN 0 is an orthogonal direct factor of b, and is compatible with the module
MN ˚MN 0 . Summarizing, we get the following well-known result:
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Proposition 7.1. Let b be an A-bilinear form on M . We have an orthogonal sum decom-
position

b '
�M
N

bN

�
˚

�M
N;N 0

bN;N 0

�
;

where in the first sum, N ranges over the self-dual simple factors of M , and bN is com-
patible with the module MN ; in the second sum, N ranges over the simple factors of M
that are not self-dual, and bN;N 0 is compatible with the module MN ˚MN 0 . Moreover,
the form bN;N 0 is metabolic.

Recall that AM is the image of A in End.M/, and that we are assuming that the
kernel of the map A! AM is stable by � ; the algebra AM carries the induced involution
� W AM ! AM .

Assume in addition thatAM is a product of commutative fields, finite extensions ofK.
Some of these are stable under � , others come in pairs, exchanged by � .

We associate to the module M a set AM of � -stable commutative K-algebras, as
follows. The set AM consists of the � -stable fields AN , where N is a self-dual simple
factor of M , and of the products of two fields interchanged by � associated to the simple
factors of M that are not self-dual.

The elements of AM are called simple � -stable algebras associated to M . These can
be of three types:

Type (0): A field E stable by � , and the restriction of � to E is the identity.

Type (1): A field E stable by � , and the restriction of � to E is not the identity; E is then
a quadratic extension of the fixed field of � in E.

Type (2): A product of two fields exchanged by � .

Proposition 7.1 implies that every bilinear form b compatible with M decomposes
as an orthogonal sum b ' b.0/˚ b.1/˚ b.2/, corresponding to the factors of type 0, 1
and 2. Moreover, by Proposition 7.1 the class of b.2/ in WA.K/ is zero.

Example 7.2. LetADKŒ�� as in Example 1.1, and let 
 be a generator of � . In this case,
the simple � -stable factors are of the shape KŒX�=.f /, where f 2 KŒX� is as follows:

Type (0): f .X/ D X C 1 or X � 1.

Type (1): f 2 KŒX� is monic, irreducible, symmetric, of even degree [recall that an even
degree polynomial f is symmetric if f .X/ D Xdeg.f /f .X�1/].

Type (2): f D gg� for some irreducible, monic polynomial g 2 KŒX� with non-zero
constant term, and g�.X/ D g.0/�1Xdeg.g/g.X�1/ such that g 6D g�.

We say that f is a polynomial of type (0), (1) or (2).
LetE be a simple � -stable factor as above, and letN be an isotypic factor of the direct

sum decomposition of M with AN D E. We denote by 
N the image of the generator 

by the map A! AN . If b is a bilinear form compatible with N , the endomorphism 
N
is an isometry of b with minimal polynomial f and characteristic polynomial f n, where
n D dimE .N /.
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Example 7.3. Let A and .V; q/ be as in Example 1.1. Let f D hh0, where h 2 KŒX�
is a product of polynomials of type 0 and 1, and h0 2 KŒX� is a product of polynomials
of type 2. The quadratic form .V; q/ has an isometry with characteristic polynomial f
if and only if .V; q/ is the orthogonal sum of a quadratic form having an isometry with
characteristic polynomial h, and of a hyperbolic form of dimension deg.h0/.

Transfer

Assume now that AM has only one element, an involution invariant field E; note that M
is a finite-dimensional E-vector space. Let ` W E!K be a non-trivialK-linear map such
that `.�.x// D `.x/ for all x 2 E. The following is well-known:

Proposition 7.4. A bilinear form b is compatible with M if and only if there exists a
non-degenerate hermitian form h W M �M ! E on the E-vector space M such that
b D ` ı h.

8. Signatures

We keep the notation of the previous section, with K D R. If .M; b/ is an A-quadratic
form, we define a signature for each self-dual simple factor of M . Moreover, the signa-
tures determine .M; b/ up to an isomorphism of A-quadratic forms.

If .M;b/ is as above, and ifN is a simple self-dual factor ofM , we set AN D E; note
that E D C, and that � W E ! E is complex conjugation. By Proposition 7.4, there exists
a non-degenerate hermitian form h W N � N ! E such that b D ` ı h. Let .rN ; sN / D
.2r 0N ; 2s

0
N /, where .r 0N ; s

0
N / is the signature of the hermitian form h. The following is

immediate:

Proposition 8.1. Let .M; b/ be an A-quadratic form, and let .r; s/ be the signature of b.
Then

r � s D
X
N

.rN � sN /

where N runs over the self-dual simple factors of M . Conversely, all pairs .rN ; sN / with
rN ; sN 6 2 dimE .MN / and r � s D

P
N .rN � sN / are realized by an A-form .M; b/

such that the signature of b is .r; s/.

Notation 8.2. The difference r � s is called the index of b, denoted by �.b/. Similarly,
for each self-dual simple factor N of M , we denote by �N .b/ D rN � sN the index of b
at N .

Note that Proposition 8.1 implies that �.b/ D
P
N �N .b/, where N runs over the

self-dual simple factors of M .
It is easy to see that the signatures characterize the A-quadratic form up to isomor-

phism. We have
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Proposition 8.3. Two A-quadratic forms on M are isomorphic if and only if their signa-
tures coincide for each self-dual simple factor of M .

Proof. By Proposition 7.1 an A-quadratic form on M is determined by its restriction to
the modules MN , where N runs over the self-dual simple factors of M . On the other
hand, it is easy to see that an A-quadratic form .MN ; bN / is determined by the hermitian
form h WMN �MN ! E with bN D ` ı h.

The following corollary is an immediate consequence of Proposition 8.3:

Corollary 8.4. Let .M; b/ and .M; b0/ be two A-quadratic forms. Then

.M; b/ ' .M; b0/ ” �N .b/ D �N .b
0/ for each self-dual simple factor N of M .

Example 8.5. We keep the notation of Example 1.1, with A D RŒ��. Let .M; b/ be an
A-quadratic form; the action of a generator of � on M is an isometry of the quadratic
form b. The simple, self-dual factors of M are of the shape RŒX�=P , where P 2 RŒX� is
an irreducible, symmetric polynomial of degree 2; hence each such polynomial P gives
rise to a signature of .M; b/ at P .

Example 8.6. The above results lead to a generalization of [GM 02, Theorem 2.4]. We
keep the notation of Examples 1.1 and 8.5 with A D RŒ��. Let .r; s/ be the signature of
the quadratic form b. By the above construction, to all semisimple elements of SOr;s.R/
we associate a signature (and an index) at the irreducible, symmetric factors of its charac-
teristic polynomial. Moreover, Proposition 8.3 shows that two such elements of SOr;s.R/
are conjugate if and only if these signatures coincide.

If t 2 SOr;s.R/ is semisimple and if P is an irreducible, symmetric factor of the char-
acteristic polynomial of t , we denote by �P .t/ the corresponding index. By Corollary 8.4,
two semisimple isometries t; t 0 2 SOr;s.R/with characteristic polynomial f are conjugate
if and only if �P .t/ D �P .t

0/ for each irreducible, symmetric factor P of f .

9. Simple modules and reduction

We keep the notation of §7. In particular, M is a semisimple A-module, and if N is
a simple factor of M , then AN is a commutative field. Assume moreover that K is a
global field, and let O be a ring of integers with respect to a finite set † of places of K,
containing the infinite places if K is a number field. Let ƒ be an O-algebra; assume that
A D ƒ˝O K, and that ƒ is stable by the involution � W A! A.

Recall that we denote by VK the set of places of K, by V† the set of places of K
that are not in †, and by Kv the completion of K at v; let Ov be the ring of integers
of Kv , let �v 2 Ov be a uniformizer, and let kv D Ov=�vOv be the residue field. Set
M v D M ˝K Kv and ƒv D ƒ˝O Ov . As in §3, we denote by M v.kv/ the reduction
mod �v of M v .
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Proposition 9.1. Suppose that M is a simple A-module, and let E D AM be the image
of A in End.M/. If w 2 VE , denote by Ow the ring of integers of Ew , and by �w its
residue field. Let v 2 V†. The simple components of M v.kv/ are isomorphic to �w for
some w 2 VE above v.

Proof. Let OEv be the maximal order of Ev , and note that OEv is a ƒv-lattice in
M v D Ev . The simple components of OEv=�vOEv are the residue fields of the rings
of integers of Ew for all places w 2 VE above v. This completes the proof of the propo-
sition.

Example 9.2. Assume that ƒ D OŒ��, hence A D ƒ˝O K D KŒ��. With the notation
of Example 7.2, let f 2OŒX� be of type 1, letE DKŒX�=.f / and letM D ŒKŒX�=.f /�n

for some integer n > 1. The homomorphismOv! kv induces pv WOvŒX�! kvŒX�. The
simple components of M v.kv/ are isomorphic to kvŒX�=.P /, where P 2 kvŒX� is an
irreducible factor of the polynomial pv.f / 2 kvŒX�. Indeed, ŒOvŒX�=.f /�n is a lattice in
M v D ŒKvŒX�=.f /�

n, hence the simple components of the reduction mod �v of M v are
of the shape kvŒX�=.P / with P 2 kvŒX� as above.

10. Twisting groups

We start by recalling some notions and facts from [BT 20, §5]. Assume that K is a field
of characteristic 6D 2.

If F is a commutative semisimple K-algebra of finite rank, and E a K-algebra that is
free of rank 2 over F , we denote by � W E ! E the involution fixing F , and we set

T .E; �/ D F �=NE=F .E�/:

There is an exact sequence

1! T .E; �/
ˇ
! Br.F /

res
�! Br.E/;

where res WBr.F /!Br.E/ is the base change map (see [BT 20, Lemma 5.3]). Let d 2F �

be such thatE DF.
p
d/; then ˇ.�/ is the class of the quaternion algebra .�;d/ in Br.F /.

If E is a local field, then we have a natural commutative diagram

1 // T .E; �/

�

��

// Br.F /

inv
��

// Br.E/

inv
��

0 // Z=2Z
1=2

// Q=Z 2 // Q=Z

(10.1)

in which the vertical map � W T .E; �/! Z=2Z is an isomorphism.
Assume now that E is a global field. Let S be the set of places w of F such that

E ˝F Fw is a field. Then we have (see [BT 20, Theorem 5.7])
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Theorem 10.1. The sequence

1! T .E; �/!
M
w2S

T .Ew ; �/

P
�w

���! Z=2Z! 0

is exact.

Let v be a place of K, and let w be a place of F above v. Recall that the following
diagram commutes:

Br.Fw/

cor
��

invw // Q=Z

id
��

Br.Kv/
invv // Q=Z

(10.2)

11. Residue maps

We keep the notation of §10. Assume that K is a non-archimedean local field of charac-
teristic 6D 2, thatE is a finite field extension ofK with a non-trivial involution � W E! E

and that F is the fixed field of � . Let ` W E ! K be a non-trivial K-linear map such
that `.�.x// D `.x/ for all x 2 E. Let O be the ring of integers of K, and let k be its
residue field. Let OE be the ring of integers of E, and let mE be its maximal ideal; set
�E D OE=mE .

If n > 1 is an integer, we define a map

tn W T .E; �/! W b
E .K/

as follows. For � 2 T .E; �/, denote by hn;� the n-dimensional diagonal hermitian form
h�;1; : : : ; 1i overE with respect to the involution � , and set qn;� D `.hn;�/; we obtain an
element Œqn;�� 2 W b

E .K/. Recall that we have a homomorphism @ W W b
E .K/! W�E .k/.

Proposition 11.1. For all integers n > 1,

(a) if E=F is inert, then
@ ı tn W T .E; �/! W�E .k/

is a bijection;

(b) if E=F is ramified and char.k/ 6D 2, then @ ı tn is injective, and its image consists of
the classes of forms of dimension nŒ�E W k� mod 2;

(c) if E=F is ramified and char.k/ D 2, then @ ı tn is constant.

Proof. Let ı be the valuation of the different ideal DE=K ; in other words, we have
DE=K D m

ı
E .

(a) Let � W �E! �E be the involution induced by � . SinceE=F is inert, this involution
is non-trivial. The group W�E .k/ is isomorphic to the Witt group W.�E ; �/ of hermitian
forms over .�E ; �/. Note that since k is a finite field, the group W.�E ; �/ is of order 2.
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Let �E be a generator of mE , and note that the class of �E is the unique non-trivial
element of T .E; �/. By [BT 20, Corollary 6.2 and Proposition 6.3], we see that if ı is
even, then @ ı tn.1/D 0 and @ ı tn.�E / 6D 0; if ı and n are both odd, then @ ı tn.�E /D 0
and @ ı tn.1/ 6D 0; if ı is odd and n is even, then @ ı tn.1/D 0 and @ ı tn.�E / 6D 0. Hence
@ ı tn is bijective.

(b) follows from [BT 20, Proposition 6.6].
(c) follows from [BT 20, Proposition 6.7].

The following special case will be useful.

Lemma 11.2. Assume that E=K is unramified. Then @ ı tn.1/ D 0 in W�E .k/ for all
integers n > 1.

Proof. The hypothesis implies that the valuation of the different ideal DE=K is zero, and
that E=F is inert; hence Proposition 11.1 yields the desired result.

12. Hermitian forms and Hasse–Witt invariants

Assume that K is a field of characteristic 6D 2. The aim of this section is to give some
results relating the invariants of hermitian forms and those of the quadratic forms obtained
from them via transfer. Recall that every quadratic form q over K can be diagonalized, in
other words there exist a1; : : : ; an 2K� such that q ' ha1; : : : ; ani. The determinant of q
is by definition the product a1 : : : an, denoted by det.q/; it is an element ofK�=K�2. Let
us denote by Br.K/ the Brauer group of K, considered as an additive abelian group, and
let Br2.K/ be the subgroup of elements of order � 2 of Br.K/. The Hasse–Witt invariant
of q is by definition w2.q/ D

P
i<j .ai ; aj / 2 Br2.k/, where .ai ; aj / is the class of the

quaternion algebra over K determined by ai ; aj .
LetE be a finite extension ofK, and let � WE!E be a non-trivialK-linear involution

ofE; letF be the fixed field of � , and let d 2F � be such thatEDF.
p
d/. Let ` WE!K

be a non-trivial K-linear map such that `.x/ D `.�.x// for all x 2 E.
For all a 2 F �, let Da be the determinant of the quadratic form F � F ! K defined

by .x; y/ 7! `F .axy/, where `F is the restriction of ` to F .

Lemma 12.1. For all a 2 F �, we have

Da D NF=K.a/D1:

Proof. Let La W F ! HomK.F;K/ be defined by La.x/.y/D `F .axy/ for all x;y 2 F ,
and letma W F ! F be multiplication by a; we have La D L1 ıma. Since det.La/DDa
and det.ma/ D NF=K.a/, the lemma follows.

If h WM �M ! E is a non-degenerate hermitian form, composing with ` gives rise
to a quadratic form `.h/ WM �M ! K defined by `.h/.x; y/ D `.h.x; y//.

Proposition 12.2. Let h W M �M ! E be a non-degenerate hermitian form, and let
n D dim.M/. The determinant of the quadratic form `.h/ is NF=K.�d/n.
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Proof. It suffices to prove the proposition when nD 1. Let � 2 F � be such that h.x;y/D
�x�.y/. Since `.�.x/D `.x/ for all x 2E, we have `.

p
d/D 0, hence `.h/ is the orthog-

onal sum of two quadratic forms defined on the K-vector space F , namely .x; y/ 7!
`F .�xy/ and .x; y/ 7! `F .�d�xy/, where `F is the restriction of ` to F . The determi-
nant of `.h/ is the product of the determinants of these two forms. Lemma 12.1 implies
that these determinants are NF=K.�/D1 and NF=K.�d/NF=K.�/D1; this completes the
proof of the proposition.

Notation 12.3. For all � 2 F � and all integers n > 1, let hn;� be the n-dimensional
diagonal hermitian form hn;� D h�; 1; : : : ; 1i over E, and set qn;� D `.hn;�/.

Proposition 12.4. Let � 2 F � and let n > 1 be an integer. We have

w2.qn;�/ D w2.qn;1/C corF=K.�; d/ in Br2.K/.

To prove this proposition, we recall a theorem of Arason. If k is a field of characteristic
6D 2, we denote by I.k/ the ideal of even-dimensional forms of the Witt ring W.k/, and
by e2 W I 2.k/! Br2.k/ the homomorphism sending a 2-fold Pfister form hha; bii to the
class of the quaternion algebra .�a;�b/ (see for instance [AEJ 84]).

Theorem 12.5 (Arason). Let s W F !K be a non-trivial linear form. IfQ 2 I 2.F /, then
s.Q/ 2 I 2.K/, and

e2.s.Q// D corF=K.e2.Q// in Br2.K/.

Proof. See [AEJ 84, Theorem 1.21] or [Ar 75, Satz 4.1 and Satz 4.18].

Corollary 12.6. If Q 2 I 2.F /, then

w2.s.Q// D corF=K.w2.Q// in Br2.K/.

Proof. [L 05, Proposition 3.20] implies that for Q 2 I 2.F /, either w2.Q/ D e2.Q/ or
w2.Q/ D e2.Q/ C .�1; �1/. In the first case, there is nothing to prove; assume that
w2.Q/D e2.Q/C .�1;�1/. We have e2.Q/D corF=K.e2.Q// by Theorem 12.5. Since
w2.Q/ D e2.Q/C .�1;�1/, we have

corF=K.w2.Q// D corF=K.e2.Q//C .�1; .�1/ŒF WK�/

D corF=K.e2.Q//ŒF W K�.�1;�1/:

On the other hand, w2.s.Q// D e2.s.Q// C ŒF W k�.�1: � 1/ (see [L 05, Proposition
3.20]), and this implies that w2.s.Q// D corF=K.w2.Q//, as claimed.

For all n 2 N, set Dn D NF=K.�d/n; Proposition 12.2 implies that

det.qn;�/ D Dn for all � 2 F �.

Proof of Proposition 12.4. Assume first that n D 1, and let s W F ! K be the restric-
tion of ` W E ! K to F . Note that `.h1;1/ D s.h2;�2d i/, and `.h1;�/ D s.h2;�2�d i/.
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Set q1 D h2;�2d i, q2 D h2;�2�d i, and Q D q1 C q2. We have w2.Q/ D w2.q1/C

w2.q2/C .det.q1/; det.q2// D .�; d/C .�1; d/, hence

corF=K.w2.Q// D corF=K.�; d/C .�1;NF=K.�d//:

On the other hand, w2.s.Q// D w2.s.q1//C w2.s.q2//C .det.s.q1//; det.s.q2///. By
Proposition 12.2, we have det.s.q1// D det.s.q2// D NF=K.�d/, hence

w2.s.Q// D w2.s.q1//C w2.s.q2//C .�1;NF=K.�d//:

By Corollary 12.6, we have w2.s.Q// D corF=K.w2.Q//, therefore w2.s.q1// C

w2.s.q2// D corF=K.�; d/. Since q1;1 D `.h1;1/ D s.q1/ and q1;� D `.h1;�/ D s.q2/,
this proves the proposition when n D 1.

Assume now that n > 2. We have

w2.qn;�/ D w2.q1;�/C .D1;Dn�1/C w2.qn�1;1/;

w2.qn;1/ D w2.q1;1/C .D1;Dn�1/C w2.qn�1;1/:

By the one-dimensional case, w2.q1;�/ D w2.q1;1/C corF=K.�; d/, hence

w2.qn;�/ D w2.qn;1/C corF=K.�; d/;

as claimed.

Local fields

Assume that K is a local field.

Lemma 12.7. Two hermitian forms over E having the same dimension and determinant
are isomorphic.

Proof. See for instance [Sch 85, §10.1.6, (ii)].

Proposition 12.8. Let � 2 F �, let h be an n-dimensional hermitian form of determinant
� over E, and set q D `.h/. We have

w2.q/ D w2.qn;1/C corF=K.�; d/ in Br2.K/.

Proof. If K is a non-archimedean local field, then by Lemma 12.7 the hermitian form h

is isomorphic to the diagonal form hn;� D h�; 1; : : : ; 1i, hence the statement follows from
Proposition 12.4.

Assume now that K D R; then F D K D R, and E D C, hence d D �1. We have
h D h�1; : : : ; �ni D h�1i ˚ � � � ˚ h�ni with �i 2 R. Note that det.`.h�i i/ D 1 for all i ;
hence

w2.q/ D
X
i2I

w2.`.h�i i// and w2.qn;1/ D
X
i2I

w2.`.h1i//:

We have `.�i /D h1; 1i if �i > 0, and `.�i /D h�1;�1i if �i < 0; note thatw2.h1; 1i/
D 0 and w2.h�1; �1i/ D 1. This implies that w2.q/ D w2.qn;1/ if and only if �i is
negative for an even number of i 2 I . On the other hand, corF v=Kv .�;d/D 0 if and only if
�i is negative for an even number of i 2 I ; this concludes the proof of the proposition.
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13. Obstruction

The aim of this section is to describe an obstruction group in a general situation. The
group depends on a finite set I , a set V , and, for all i; j 2 I , a subset Vi;j of V ; in the
applications, the vanishing of the group detects the validity of the local-global principle
(also called Hasse principle).

To obtain a necessary and sufficient condition for the Hasse principle to hold, we need
additional data; in the applications, it is provided by local solutions. For all v 2 V , we
choose a set Cv having certain properties (see below for details); this set corresponds to
the local data.

The basic setting

Let I be a finite set, let � be an equivalence relation on I , and let xI be the set of equiv-
alence classes. Let C.I / be the set of maps I ! Z=2Z. Let C�.I / be the subgroup
of C.I / consisting of the maps that are constant on equivalence classes, and note that
C�.I / D C.xI /; it is a finite elementary abelian 2-group.

Let X�.I / be the quotient of C�.I / by the constant maps; equivalently, we can
regard X�.I / as the quotient of C.xI / by the constant maps.

We start by giving a useful example.

Example 13.1. This example will be used in §14 and §18. We say that two finite exten-
sions L1 and L2 of a fieldK are independent overK if the tensor product L1 ˝K L2 is a
field. LetE D

Q
i2I Ei be a product of finite field extensionsEi ofK, and let us consider

the equivalence relation � generated by the elementary equivalence

i �e j ” Ei and Ej are independent over K.

We denote by Xindep.E/ DX�.I / the quotient of C�.I / by the constant maps.

Equivalence relation on C.I /

As above, I is a finite set and � an equivalence relation on I . If i; j 2 I , let ci;j 2 C.I /
be such that ci;j .i/ D ci;j .j / D 1 and ci;j .k/ D 0 if k 6D i; j . Let .i; j / W C.I /! C.I /

be the map sending c to c C ci;j . We also denote by � the equivalence relation on C.I /
generated by the elementary equivalence

c �e c
0
” c D .i; j /.c0/ for some i; j 2 I such that i � j:

The following remark will be useful.

Lemma 13.2. Let a; b 2 C.I / be such that a � b. ThenX
i2I

c.i/a.i/ D
X
i2I

c.i/b.i/ for all c 2 C�.I /.

Proof. We can assume that b D .i; j /.a/ for some i; j 2 I with i � j . Since c 2 C�.I /,
we have c.i/ D c.j /, hence

P
k2I c.k/a.k/ D

P
k2I c.k/b.k/, as claimed.
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The sets V , Vi;j and the associated equivalence relations

Let V be a set, and for all i; j 2 I , let Vi;j be a subset of V . We take for� the equivalence
relation generated by

i � j ” Vi;j 6D ¿;

and consider the equivalence relation � on C.I / generated by

c � c0 ” c D .i; j /.c0/ for some i; j 2 I with Vi;j 6D ¿:

Let X DX�.I / be the group corresponding to the equivalence relation � defined
as above.

For all v 2 V , we define equivalence relations �v on I and C.I /, generated by

i �v j ” v 2 Vi;j ;

and
c �v c

0
” c D .i; j /.c0/ for some i; j 2 I with v 2 Vi;j :

Let V D V 0 [ V 00, and assume that for all i; j 2 I , if Vi;j 6D ¿, then Vi;j \ V 0 6D ¿.
For all v 2 V , let Av 2 Z=2Z be such that

(i) Av D 0 for almost all v 2 V , and X
v2V

Av D 0:

For all v 2 V , we consider subsets Cv of C.I / satisfying conditions (ii) and (iii) below:

(ii) For all av 2 Cv , we have X
i2I

av.i/ D Av:

(iii) If v 2 V 0, then Cv is stable by the maps .i; j / for i �v j .

Let C be the set of .av/v2V with av 2 Cv such that av D 0 for almost all v 2 V .
We now prove some results that will be useful in the following sections.
For all a 2 C and i 2 I , set

†i .a/ D
X
v2V

av.i/:

Proposition 13.3. Let a 2 C , and let i; j 2 I with i � j . Then there exists b 2 C such
that †i .b/ 6D †i .a/, †j .b/ 6D †j .a/, and †k.b/ D †k.a/ for all k 6D i; j .

Proof. Let i1; : : : ; ik 2 I be such that i D i1, j D ik , and Vis ;isC1
6D ¿ for all s D

1; : : : ; k � 1; then Vis ;isC1
\ V 0 6D ¿ for all s D 1; : : : ; k � 1.

If v 2 Vis ;isC1
\V 0, then by condition (iii) the map .is; isC1/ sends Cv to Cv . Consider

the map C ! C that is equal to .is; isC1/ on Cv , and is the identity on Cw if w 6D v.
Applying to a 2 C the maps induced by .i1; i2/; : : : ; .ik�1; ik/ successively yields b 2 C

with the required properties.
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If c 2X and a D .av/ 2 C , then by conditions (i) and (ii) the sumX
v2V

X
i2I

c.i/av.i/

is well-defined. The following result is used in §17 and §23 to give necessary and suffi-
cient conditions for some Hasse principles to hold.

Theorem 13.4. Let a D .av/ 2 C be such thatX
v2V

X
i2I

c.i/av.i/ D 0 for all c 2X.

Then there exists b D .bv/ 2 C such thatX
v2V

bv.i/ D 0 for all i 2 I .

Proof. If †i .a/ D 0 for all i 2 I , then we are done. Assume that †i0.a/ D 1. We claim
that there exists i 2 I with i 6D i0 and i � i0 such that †i .a/ D 1. In order to prove this
claim, let c 2 C.I / be such that c.i0/ D 1 and c.i/ D 0 if i 6D i0. ThenX

v2V

X
i2I

c.i/av.i/ D †i0.a/ D 1;

hence c 62X. Therefore c is not constant on equivalence classes. This implies that there
exists i1 2 I with i1 6D i0 such that i1 � i0. If†i1.a/D 1, we stop. Otherwise, let c 2C.I /
be such that c.i0/ D c.i1/ D 1 and c.i/ D 0 if i 6D i0; i1. We again haveX

v2V

X
i2I

c.i/av.i/ D †i0.a/ D 1;

hence c 62X. Therefore c is not constant on equivalence classes. This implies that there
exists i2 2 I , i2 6D i0; i1, such that either i2 � i0 or i2 � i1. Note that since i1 � i0, we
have i2 � i0 in both cases. Since I is finite and

P
v2V

P
i2I c.i/a

v.i/D 0, we eventually
get ir 2 I with ir 6D i0, ir � i0, and †ir .a/ D 1. By Proposition 13.3, there exists b 2 C

such that
†i0.b/ D †ir .b/ D 0:

Continue inductively until the theorem is proved.

Under some additional hypothesis on Cv for v 2 V 00, a necessary and sufficient con-
dition for the Hasse principle can be given by the vanishing of a homomorphism:

The homomorphism

Let us make the additional assumption that

(iv) For all v 2 V , the set Cv is a subset of a �v-equivalence class of C.I /.
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Let a 2 C . We define a homomorphism ˛ D ˛a WX! Z=2Z as follows. For all c 2X,
we set

˛.c/ D
X
v2V

X
i2I

c.i/av.i/:

Note that this is well-defined, since by conditions (i) and (ii),X
v2V

X
i2I

av.i/ D
X
v2V

Av D 0:

Proposition 13.5. The homomorphism ˛ is independent of the choice of a 2 C .

Proof. Let a D .av/; b D .bv/ 2 C , and let us show that ˛a D ˛b . Let v 2 V . Since
av; bv 2 Cv , we have av �v bv , hence av � bv . Therefore by Lemma 13.2, we haveX

i2I

c.i/av.i/ D
X
i2I

c.i/bv.i/:

This holds for all v 2 V , hence ˛a D ˛b .

Corollary 13.6. Let a 2 C , and assume that ˛a D 0. Then there exists b D .bv/ 2 C such
that X

v2V

bv.i/ D 0 for all i 2 I .

Proof. This follows from Theorem 13.4.

14. Obstruction group – the rational case

The aim of this section is to associate an “obstruction group” to certain algebras with
involution; this group will play an important role in the Hasse principle results of the
following sections.

Assume that K is a global field of characteristic 6D 2, and let I be a finite set. For
all i 2 I , let Ei be a finite degree extension of K, and let �i W Ei ! Ei be a non-trivial
involution; let Fi be the fixed field of �i , and let di 2 F �i be such that Ei D Fi .

p
di /. Set

F D
Q
i2I Fi andE D

Q
i2I Ei ; let � W E! E be the involution such that the restriction

of � to Ei is equal to �i .
We denote by VK the set of places of K.

Notation 14.1. For all i 2 I , let Vi be the set of places v 2 VK such that there exists a
place of Fi above v which is inert or ramified in Ei .

Let X DXE be the group constructed in §13 using the data I and Vi;j D Vi \ Vj ;
recall that the equivalence relation � on I is generated by the elementary equivalence

i �e j ” Vi \ Vj 6D ¿I



E. Bayer-Fluckiger 3386

C�.I / is the subgroup of C.I / consisting of the maps I ! Z=2Z that are constant on
equivalence classes; and XE is the quotient of C�.I / by the constant maps.

In the remainder of the section, we give some examples and some results that will
be used in the next sections. We start by giving some examples in which the obstruction
group is trivial.

Example 14.2. Assume that there exists a real place v of K such that for all i 2 I , there
exists a real place of Fi above v which extends to a complex place of Ei . Then XE D 0.
Indeed, v 2 Vi for all i 2 I , hence Vi \ Vj 6D¿ for all i; j 2 I . Therefore all the elements
of I are equivalent, and this implies that XE D 0.

In particular, if K D Q, and if for all i 2 I , the field Ei is a CM field (that is, Ei is
totally complex and Fi is totally real), then XE D 0.

Recall that two finite extensionsK1 andK2 ofK are independent if the tensor product
K1 ˝K K2 is a field. If K1 and K2 are subfields of a field extension � of K, then this
means that K1 and K2 are linearly disjoint.

Proposition 14.3. Assume that Ei and Ej are independent field extensions of K. Then
Vi;j 6D ¿.

Proof. Let �=K be a Galois extension containing Ei and Ej , and set G D Gal.�=L/.
Let Hi � Gi and Hj � Gj be subgroups of G such that Ei D �Hi , Ej D �Hj and
Fi D �

Gi , Fj D �Gj . Since Ei=Fi and EJ =FJ are quadratic extensions, the subgroup
Hi is of index 2 in Gi , and Hj is of index 2 in Gj . By hypothesis, Ei and Ej are linearly
disjoint over K, therefore ŒG W Hi \Hj � D ŒG W Hi �ŒG W Hj �. Note that Fi and Fj are
also linearly disjoint over K, hence ŒG W Gi \Gj � D ŒG W Gi �ŒG W Gj �. This implies that
ŒGi \Gj WHi \Hj �D 4, hence the quotient Gi \Gj =Hi \Hj is an elementary abelian
group of order 4.

The field � contains the composite fields FiFj and EiEj . By the above argument,
the extension EiEj =FiFj is biquadratic. Hence there exists a place of FiFj that is inert
in both EiFj and EjFi . Therefore there exists a place v ofK and places wi of Fi and wj
of Fj above v such that wi is inert in Ei , and wj is inert in Ej , hence v 2 Vi \ Vj ; by
definition, this implies that v 2 Vi;j .

Recall from §13, Example 13.1, the equivalence relation � on I generated by the
elementary equivalence

i �e j ” Ei and Ej are independent over K,

and recall the associated obstruction group Xindep.E/ DX�.I / (see §13). Proposi-
tion 14.3 implies that the identity C.I /! C.I / induces a surjection Xindep.E/!XE .
Hence we have

Corollary 14.4. Assume that Xindep.E/ D 0. Then XE D 0.

On the other hand, one can show that all elementary abelian 2-groups occur as XE

for some .E; �/.
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Finally, we show a result that will be used in §20 to prove an odd degree descent
property. Let K 0=K be a finite extension of odd degree. We define a homomorphism

XE !XE˝KK0

as follows. For all i 2 I , let Fi ˝K K 0 D
Q
j2I.i/ F

0
i;j , where F 0i;j is a field extension

of K 0. Set
I 0 D ¹.i; j / j i 2 I; j 2 I.i/ and the image of di in F 0i;j is not a squareº.

Let � W I 0 ! I be the map sending .i; j / to i ; this map induces a homomorphism
� 0 W C.I /! C.I 0/.

Proposition 14.5. The map � 0 W C.I /! C.I 0/ induces an injective homomorphism

� 0 WXE !XE˝KK0 :

Proof. Let us show that � 0 sends C�.I / to C�.I 0/. Let .i1; j1/; .i2; j2/ 2 I 0 be such that
.i1; j1/�e .i2; j2/; by definition, this means that V.i1;j1/;.i2;j2/ 6D¿. Let v02V.i1;j1/;.i2;j2/,
and let v 2 VK be the restriction of v0 to K. Then v 2 Vi1;i2 , hence i1 �e i2. This shows
that if c 2 C�.I /, then � 0.c/ 2 C�.I 0/, hence we have a well-defined homomorphism
C�.I /! C�.I

0/. This in turn induces a homomorphism � 0 WXE !XE˝KK0 ; and it
is clearly injective.

Finally, note that one can give a simpler description of the obstruction group of
[BLP 18] in the framework of this section (see [B 20, §2]).

15. Twisting groups and equivalence relations

In this section, we introduce some notation that will be used throughout the paper; we
also prove some results concerning equivalence relations defined on the twisting groups.

We keep the notation of §14. If v 2 VK , we denote by Kv the completion of K at v,
and set Evi D Ei ˝K Kv and F vi D Fi ˝K Kv .

Notation 15.1. For all i 2 I , let Si be the set of places w of Fi such that Ei ˝Fi .Fi /w
is a field. If w 2 Si , set Ewi D Ei ˝Fi .Fi /w , and let

�wi W T .E
w
i ; �i /! Z=2Z

be the isomorphism defined in (10.1). If v 2 VK , we denote by Svi the set of places of Si
above v. For all v 2 VK , set

T .Evi ; �i / D
Y
w2Sv

i

T .Ewi ; �i /; T .Ev; �/ D
Y
i2I

T .Evi ; �i /:

Recall that C.I / is the set of maps I ! Z=2Z. For all �v D .�wi / 2 T .E
v; �/, we

define a.�v/ 2 C.I / by setting

a.�v/.i/ D
X
w2Sv

i

�wi .�
w
i /:
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Let QC.I / be the set of maps I ! Q=Z. If �v D .�wi / 2 T .E
v; �/, let Qa.�v/ 2 QC.I /

be defined by
Qa.�v/.i/ D invv.corF v=Kv .�

v
i ; di //:

For all v 2 VK , let CT v .I / be the subset of C.I / consisting of the maps a.�v/ for
�v 2 T .Ev; �/. Similarly, denote by QCT v .I / the subset of C.I / consisting of the maps
Qa.�v/ for �v 2 T .Ev; �/.

Lemma 15.2. Let v 2 VK . Sending a.�v/ to Qa.�v/ yields a bijection CT v .I /! QCT v .I /.

Proof. Let � W Z=2Z! Q=Z be the canonical injection, and let � also denote the induced
injection C.I /! QC.I /. Let us show that Qa.�v/ D � ı a.�v/ for all �v 2 T .Ev; �/.

Recall from (10.1) that for all �v D .�wi / 2 T .E
v; �/, the injection � W Z=2Z !

Q=Z sends �wi .�
w
i / to invw.�wi ; di /. Since a.�v/.i/ D

P
w2Sv

i
�wi .�

v
i /, the injection

� W C.I / ! QC.I / sends a.�v/.i/ to
P
w2Sv

i
invw.�wi ; di /. By (10.2), this is equal toP

w2Sv
i

invv.cor.Fi;w=Kv .�
w
i ; di //, which in turn is equal to invv.corF v=Kv .�

v
i ; di //;

hence Qa.�v/ D � ı a.�v/, as claimed.

Note that C.I / is a group, and CT v .I / is a subgroup of C.I /.
Recall that for all i 2 I , we denote by Vi the set of places v 2 VK such that there exists

a place of Fi above v which is inert or ramified in Ei . Note that

v 2 Vi ” Svi 6D ¿:

Lemma 15.3. The subgroup CT v .I / of C.I / is stable by the maps .i; j / for v 2 Vi \ Vj .

Proof. Let v 2 Vi \ Vj , and let �v D .�wi / 2 T .E
v; �/. Let .C1/ W Z=2Z! Z=2Z be

the map sending n to nC 1. Let wi 2 Svi and wj 2 Svj . Set

�
wi
i D Œ.�

wi
i /�1 ı .C1/ ı �

wj
j �.�

wj
j /; �

wj
j D Œ.�

wj
j /�1 ı .C1/ ı �

wi
i �.�

wi
i /;

and �wr D �
w
r for all .r; w/ 6D .i; wi /; .j; wj /. Then �v D .�wi / 2 T .E

v; �/, and

a.�v/ D .i; j /a.�v/:

Let v 2 VK and Av 2 Z=2Z.

Notation 15.4. Let LAv be the set of �v D .�wi / 2 T .E
v; �/ such that

Av D
X
i2I

a.�v/.i/;

and let CAv be the set of a.�v/ for �v 2 LAv .
Let�v be the equivalence relation on C.I / generated by

c �v c
0
” c D .i; j /.c0/ for some i; j 2 I with v 2 Vi \ Vj :

Proposition 15.5. The set CAv is an�v-equivalence class of C.I /.
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Proof. Let us first show that CAv is stable by the maps .i; j / for v 2 Vi \ Vj . Let
�v 2 LAv . By Lemma 15.3, there exists �v 2 T .Ev; �/ such that a.�v/ D .i; j /a.�v/:
Note that this implies thatX

r2I

a.�v/.r/ D
X
r2I

a.�v/.r/ D Av;

hence �v 2 LAv .
Let us show that if �v; �v 2 LAv , then a.�v/ �v a.�v/. If a.�v/.i/ D a.�v/.i/ for

all i 2 I , there is nothing to prove. Suppose that there exists i 2 I such that a.�v/.i/ 6D
a.�v/.i/; then Svi 6D ¿ , hence v 2 Vi . By hypothesis, we haveX

r2I

a.�v/.r/ D
X
r2I

a.�v/.r/ D Av;

therefore there exists j 2 I , j 6D i , such that a.�v/.j / 6D a.�v/.j /. This implies that
v 2 Vj , hence v 2 Vi \ Vj . The map .i; j /a.�v/ differs from a.�v/ at fewer elements than
a.�v/ does. Since I is a finite set, continuing this way we see that a.�v/ �v a.�v/.

16. Local data – the rational case

We keep the notation of §15; in particular,K is a global field of characteristic 6D 2. LetM
be an A-module satisfying the hypotheses of §7 with AM D .Ei /i2I . Recall that Ei=K
is a finite field extension of K and that �.Ei / D Ei for all i 2 I . In addition, assume that
for all i 2 I , the restriction of � to Ei is non-trivial. The fixed field of this involution
is denoted by Fi ; hence Ei=Fi is a quadratic extension, and Ei D Fi .

p
d i / for some

di 2 F
�
i . Set F D

Q
i2I Fi and E D

Q
i2I Ei .

Let v 2 VK , and let q be a quadratic form over Kv which is compatible with the
module M ˝K Kv . We now associate to q and M a subset of T .Ev; �/.

We have M '
L
i2I Mi with Mi isotypic, such that Mi is a finite-dimensional Ei -

vector space. By Proposition 7.1 there exist quadratic forms qvi over Kv compatible with
Mi ˝K Kv such that q '

L
i2I q

v
i . Set ni D dimEi .Mi /. By Proposition 7.4 there exist

ni -dimensional hermitian forms hvi overEvi such that qvi ' `i .h
v
i /. Set �vi D det.hvi /, and

denote by LRv
i the set of �vi 2 T .E

v
i ; �i / obtained this way. Let �v D .�vi /, and denote

by LRv the set of �v with �vi 2LRv
i . Let CRv be the set of av D a.�v/ 2 CT v .I / with

�v 2 LRv (cf. §15). Let d D .di /, and set qn;1 D
L
i2I qni ;1:

Proposition 16.1. Let �v 2 LRv . Then

w2.q/ D w2.qn;1/C corF=K.�v; d / in Br2.Kv/:

Proof. By Proposition 12.8, we have w2.qvi / D w2.qni ;1/C corF=K.�vi ; di / in Br2.Kv/
for all i 2 I and all v 2 VK . Using [Sch 85, Chapter 2, Lemma 12.6] gives the desired
result, noting that det.qvi / D det.qni ;1/ for all i 2 I and v 2 VK .
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Set QAv D invv.w2.q/Cw2.qn;1//. Recall that for �v D .�wi / 2 T .E
v; �/, we defined

Qa.�v/ 2 QC.I / by Qa.�v/.i/D invv.corF v=Kv .�
v
i ; di //: Let QL QAv be the set of �v D .�wi / 2

T .Ev; �/ such that
QAv D

X
i2I

Qa.�v/.i/;

and let QC QA be the set of Qa.�v/ for �v 2 QL QAv .
Let � W Z=2Z ! Q=Z be the canonical injection, and let A 2 Z=2Z be such that

�.A/ D QA. Recall that LAv is the set of �v D .�vi / 2 T .E
v; �/ such that

Av D
X
i2I

a.�v/.i/;

and CAv is the set of a.�v/ for �v 2 LAv .

Proposition 16.2. The set CRv is contained in CAv .

Proof. Let us first note that if �v 2 LRv , then Qa.�v/ belongs to QC QAv . Indeed, since
invv.corF v=Kv .�

v; d // D
P
i2I invv.corF v=Kv .�

v
i ; di //; this is a consequence of Propo-

sition 16.1; the assertion now follows from Lemma 15.2.

Corollary 16.3. The set CRv is contained in an�v-equivalence class of C.I /.

Proof. This follows from Propositions 16.2 and 15.5.

Local data – finite places

In the case of finite places, we have more precise information: as we will see, the sets
CRv and CAv coincide, and hence CRv is an�v-equivalence class.

If �v D .�vi / 2 T .E
v; �/ for some v 2 VK , set qn;�v D

L
i2I qni ;�vi

:

Proposition 16.4. Suppose that v is a finite place. Then LRv is equal to the set of
�v 2 T .Ev; �/ such that q ' qn;�v .

Proof. It is clear that if �v 2 T .Ev; �/ is such that q ' qn;�v , then �v 2 LRv . Con-
versely, let �v 2 LRv , and let hv be a hermitan form over Ev such that q ' `.hv/ and
det.hv/ D �v . By Lemma 12.7 we have hv ' hn;�v , hence q ' qn;�v .

Proposition 16.5. Suppose that v is a finite place. Let �v 2 T .Ev; �/. Then �v 2 LRv

if and only if
w2.q/ D w2.qn;1/C corF=K.�v; d / in Br2.Kv/:

Proof. One implication is Proposition 16.1. Let us show the converse. If w2.qn;�v / D
w2.qn;1/C corF=K.�v; d / in Br2.Kv/, then w2.qn;�v / D w2.q/ in Br2.Kv/: By Propo-
sition 12.2, det.qn;�v / D det.q/ in K�v =K

�2
v , so the quadratic forms q and qn;� have

the same dimension, determinant and Hasse–Witt invariant; hence they are isomorphic
over Kv . This implies that �v 2 LRv .
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Proposition 16.6. Suppose that v is a finite place. Then CRv
D CAv .

Proof. By Proposition 16.5, we have CRv
D QC QAv ; hence the statement follows from

Lemma 15.2.

Corollary 16.7. Suppose that v is a finite place. Then CRv is an �v-equivalence class
of C.I /.

Proof. This follows from Propositions 16.6 and 15.5.

Local data – real places

Suppose that v 2 VK is a real place. We say that a quadratic form q has maximal signature
at v (with respect to M ) if the signature of q at v is equal to the signature of qn;1 or
of �qn;1 at v.

Proposition 16.8. Assume that q does not have maximal signature at v, and let a 2 CRv .
Then there exist i; j 2 I with v 2 Vi \ Vj such that .i; j /a belongs to CRv .

Proof. Let �v D .�wr / 2 LRv be such that a D a.�v/. Since the signature of q at v is
not maximal, there exist i; j 2 I with v 2 Vi \ Vj and wi 2 VFi , wj 2 VFj above v
such that �wii and �wjj have opposite signs (�wii > 0 and �wjj < 0, or vice versa). For
all r 2 I and w 2 VFr above v, let �wr 2 T .E

w
r ; �/ be such that �wr D �

w
r if .w; r/ 6D

.wi ; i/; .wj ; j /, while �wii D ��
wi
i and �wjj D ��

wj
j . Then �v D .�wr / 2 CRv , and

a.�v/ D .i; j /a.�v/.

17. Local-global problem – the rational case

We keep the notation of the previous sections; in particular, M is an A-module satisfying
the hypotheses of §16, and AM D .Ei /i2I . If .V; q) is a quadratic form over K, we
consider the following local and global conditions:

(L1) For all v 2 VK , the quadratic form .V; q/ ˝K Kv is compatible with the module
M ˝K Kv .

(G1) The quadratic form .V; q) is compatible with the module M .

Proposition 17.1. Assume that condition (L1) is satisfied. Then condition (G1) holds if
and only if there exists � D .�i / 2 T .E; �/ such that � 2 LRv for all v 2 VK .

Proof. We haveM '
L
i2IMi withMi isotypic such thatMi is a finite-dimensionalEi -

vector space. If (G1) holds, then q '
L
i2I qi , where the quadratic form qi is compatible

with Mi (cf. Proposition 7.1). For all i 2 I , let hi be a hermitian form over Ei such that
qi D `i .hi /, set �i D det.hi /, and � D .�i /; then � 2 LRv for all v 2 VK .

Let us prove the converse. Let � D .�i / 2 T .E; �/ be such that � 2 LRv for all
v 2 VK , and let hi be a hermitian form of dimension ni over Ei with det.hi / D �i and
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signv.hi / D signv.h
v
i / for all real places v 2 VK ; for the existence of such a form, see

for instance [Sch 85, §10.6.9]. Let qi D `i .hi / and q0 D
L
i2I qi . The quadratic form q0

is compatible with M by construction; its dimension, signatures and determinant are the
same as those of q [this is clear for the dimension and the signatures; for the determinant,
it follows from Proposition 12.2]. By Proposition 12.8, we have

corF v=Kv .�; d/ D w2.q
0/C w2.qn;1/ in Br2.Kv/

for all v 2 VK . On the other hand, since � 2 LRv for all v 2 VK , by Proposition 16.1 we
have corF v=Kv .�;d/D w2.q/Cw2.qn;1/ in Br2.Kv/ for all v 2 VK ; thereforew2.q0/D
w2.q/ in Br2.K/. This implies that q0 ' q, hence (G1) holds.

Recall from §14 the definition of the group XE DXE;� ; recall that for all v 2 VK
and i 2 I , the set Svi consists of those places w of Fi such that Ei ˝Fi .Fi /w is a field,
and if i 2 I , we denote by Vi the set of places v 2 VK such that Svi 6D ¿. The group XE

is the one constructed in §13 using the data I and Vi;j D Vi \ Vj ; see §14 for details.
Note that XE does not depend on the module M , only on the algebra E with involu-

tion.

Theorem 17.2. (i) Assume that XE D 0, and let q be a quadratic form such that (L1)
holds. Then (G1) holds as well.

(ii) If XE 6D 0, then there exists a quadratic form satisfying (L1) but not (G1).

The proof of this theorem will be given later, after the construction of the obstruction
homomorphism.

If the obstruction group XE is not trivial, then the validity of the Hasse principle also
depends on the choice of the quadratic form.

Local data

Let q be a non-degenerate quadratic form over K, and assume that condition (L1) holds.
Recall from Section 16 that a local solution gives rise to sets LRv and CRv for all
v 2 VK .

Let CR be the set of .av/, av 2 CRv , such that av D 0 for almost all v 2 VK . Let us
show that this set is not empty.

Proposition 17.3. Assume that condition (L1) holds. Then the set CR is not empty.

Proof. Let S be the subset of VK consisting of the places v 2 VK such that Av 6D 0 and
of the infinite places; this is a finite set.

Let v 2 VK be such that v 62 S . Let �v 2LRv , and assume that there exists i 2 I such
that a.�v/.i/ 6D 0. Recall that Av D

P
r2I a.�

v/.r/. Since v 62 S , by hypothesis Av D 0;
therefore there exists j 2 I , j 6D i , with a.�v/.j / 6D 0. Note that since a.�v/.i/ 6D 0 and
a.�v/.j / 6D 0, we have Svi 6D ¿ and Svj 6D ¿, hence v 2 Vi \ Vj .

We know that v is a finite place, since v 62 S ; hence by Proposition 16.7, the map
.i; j /a.�v/ belongs to CRv . Moreover, this map vanishes at i and j . If .i; j /a.�v/ D 0,
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we stop; otherwise we continue, and after a finite number of steps we obtain the zero
element of C.I /. Since this holds for all v 2 VK such that v 62 S , the proposition is
proved.

The homomorphism and the Hasse principle

We apply the results of §13 with the sets Cv D CRv , and �v will be the equivalence
relation�v defined in Section 15.

For all v 2 VK , set QAv D invv.w2.q/Cw2.qn;1//. Let � W Z=2Z!Q=Z be the canon-
ical injection, and let Av 2 Z=2Z be such that �.Av/ D QAv . Note that q and qn;1 are
quadratic forms over K, hence QAv D 0 for almost all v 2 VK , and

P
v2VK

QAv D 0; the
same properties hold for Av , therefore condition (i) of §13 holds.

Let V 0 be the set of finite places, and V 00 be the set of infinite places of K. The
sets CRv satisfy conditions (ii)–(iv) of Section 13: indeed, condition (ii) follows from
Proposition 16.2, condition (iii) from Corollary 16.7, and (iv) from Corollary 16.3.

Let .a.�v// 2 CR. As in §13, we define a homomorphism � WXE ! Z=2Z as fol-
lows. For all c 2XE , set

�.c/ D
X
v2VK

X
i2I

c.i/a.�v/.i/:

By Proposition 13.5, the homomorphism � is independent of the choice of .a.�v// 2 CR.

Theorem 17.4. Let q be a quadratic form, and assume that condition (L1) holds. Then
condition (G1) holds if and only if � D 0.

Proof. If (G1) holds, then by Proposition 17.1 there exists � D .�i / 2 T .E; �/ such that
� 2 LRv for all v 2 VK ; then

P
v2VK

a.�/.i/ D 0 for all i 2 I , hence � D 0.
Let us prove the converse. Since � D 0, Corollary 13.6 implies that there exists b D

.bv/2CR such that
P
v2VK

bv.i/D 0 for all i 2 I . By definition, there exists .�v/2LR

such that bv D a.�v/ for all v 2 VK . Recall that a.�v/.i/D
P
w2Sv

�wi .�
w
i /; therefore for

all i 2 I , we have
P
w2VF

�wi .�
w
i / D 0. By Theorem 10.1 this implies that for all i 2 I ,

there exists �i 2 T .Ei ; �i / mapping to �wi 2 T .E
w
i ; �i / for all w 2 VF . In particular,

.�i ; di / D .�vi ; di / for all i 2 I and v 2 VK . Set � D .�i /; since �v 2 LRv for all
v 2 VK , Proposition 17.1 implies that (G1) holds.

We say that a quadratic form q has maximal signature (with respect to M ) if for all
real places v 2 VK , the signature of q at v is equal to the signature of qn;1 or of �qn;1
at v. For the proof of Theorem 17.2, we need the following proposition.

Proposition 17.5. For all distinct i; j 2 I , there exists a quadratic form q over K hav-
ing maximal signature satisfying (L1), and, for all v 2 VK , a corresponding local data
�v 2 LRv , such that for some distinct v1; v2 2 VK , we have

a.�v1/.i/ D a.�v2/.j / D 1;

a.�v/.k/ D 0 if .v; k/ 6D .v1; i/; .v2; j /:



E. Bayer-Fluckiger 3394

Lemma 17.6. Let v 2 VK be a finite place, and let Q be a quadratic form over Kv such
that dim.Q/D dim.q/ and det.Q/D NF=K.�d/. ThenQ is compatible withM ˝K Kv .

Proof. Note that qn;1 is compatible withM by construction, and its dimension and deter-
minant coincide with those of Q; if w2.Q/ D w2.qn;1/ in Br2.Kv/, then Q ' qn;1
over Kv , hence we are done. Suppose that w2.Q/ 6D w2.qn;1/, and let � be a non-trivial
element of T .Ev; �/. By Proposition 12.4, we have w2.qn;�/ 6D w2.qn;1/, and there-
fore w2.qn;�/ D w2.Q/ in Br2.Kv/. The forms qn;� and Q have the same dimension,
determinant and Hasse–Witt invariant, hence they are isomorphic over Kv . Since qn;� is
compatible with M ˝K Kv , so is Q.

Proof of Proposition 17.5. For all k 2 I , let S.k/ be the set of places v of VK such that
w2.q

v
nk ;1

/ 6D 0, and let S be the set of places v 2 VK such that either v 2 S.k/ for some
k 2 I , or the quaternion algebra .ds; dr / is not split at v for some r; s 2 I . Let v1; v2 2 VK
be two distinct finite places that are not in the finite set S .

For all k 2 I and v 2 VK , let qv
k

be a quadratic form over Kv with the following
properties: dim.qv

k
/ D dim.qn;1/; det.qv

k
/ D NFk=K.�dk/; if v is a real place, then the

signature of qv
k

is equal to the signature of qn;1 at v; and the Hasse–Witt invariants of qv
k

are as follows:

� inv.w2.q
v1
i // D inv.w2.q

v2
j // D 1=2;

� if .v; k/ 6D .v1; i/; .v2; j /, then w2.qvk/ D w2.qnk ;1/ in Br2.Kv/.

For all v 2 VK , set Qv D
L
k2I q

v
k

; the quadratic form Qv has determinant
NF=K.�d/, hence by Lemma 17.6 it is compatible with M ˝K Kv if v is a finite place.
If v is an infinite place, then Qv is isomorphic to qn;1 over Kv by construction, hence it
is compatible with M ˝K Kv .

We claim that the number of v 2 VK such that w2.Qv/ 6D 0 is even. Indeed, for all
v 2 VK and all k 2 I , we have

w2.Q
v/ D

X
k2I

w2.q
v
k/C

X
r<s

.dr ; ds/;

w2.qn;1/ D
X
k2I

w2.qnk ;1/C
X
r<s

.dr ; ds/:

If v 6D v1; v2, this implies thatw2.Qv/Dw2.qn;1/, and since qn;1 is a global form, the
number of v 2 VK such thatw2.qn;1/ 6D 0 in Br.Kv/ is even. We havew2.qv1/ 6Dw2.q

v1
n;1/

and w2.qv2/ 6D w2.q
v2
n;1/; hence the number of places v such w2.Qv/ 6D 0 is even.

Let q be a quadratic form over K such that qv ' Qv over Kv for all v 2 VK ; the
existence of such a form follows from [Sch 85, Theorem 6.6.10]. The form q has maximal
signature by construction.

For all v 2VK , let �v 2LRv be the local data corresponding to the quadratic formQv .
We claim that a.�v/ 2 CRv satisfies the required conditions. Indeed, recall that for all
v 2 VK and all k 2 I , we have

w2.q
v
k/ D w2.q

v
nk ;1

/C corF v=Kv .�
v
k ; dk/
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by Proposition 16.1. Since v1 and v2 are not in S , we have w2.q
v1
ni ;1

/ D w2.q
v2
nj ;1

/ D 0,
hence

inv.corF v=Kv .�
v1 ; di // D inv.corF v=Kv .�

v2
j ; dj // D 1=2;

in other words, Qa.�v1/.i/ D Qa.�v2/.j / D 1: By Lemma 15.2, this implies that

a.�v1/.i/ D a.�v2/.j / D 1:

If .v; k/ 6D .v1; i/; .v2; j /, then w2.qvk/ D w2.q
v
1 .k//, hence the same argument shows

that Qa.�v/.k/ D 0, and therefore by Lemma 15.2, we have a.�v/.k/ D 0.

Proof of Theorem 17.2. If XE D 0, then by Theorem 17.4 the Hasse principle holds for
any quadratic form q.

To prove the converse, assume that XE 6D 0; we claim that there exists a quadratic
form q satisfying (L1) but not (G1). Let c 2XE be non-trivial, and let i; j 2 I be such
that c.i/ 6D c.j /. With q and a 2 CR as in Proposition 17.5, we have

�.c/ D
X
v2VK

X
i2I

c.i/a.�v/.i/ D c.i/C c.j /;

hence �.c/ 6D 0; by Theorem 17.4 condition (G1) does not hold.

Example 17.7. Let A D KŒ�� as in Example 7.2, and assume that all the simple � -
stable factors in AM are of type (1). In other words, we have AM D .Ei /i2I with Ei D
KŒX�=.fi /, where fi 2 KŒX� are monic, irreducible, symmetric polynomials of even
degree, and M D

L
i2I Mi , with Mi D ŒKŒX�=.fi /�

ni for some integers ni > 1. Let q
be a quadratic form over K; then q is compatible with M if and only if q has an isometry
with minimal polynomial g D

Q
i2I fi and characteristic polynomial f D

Q
i2I f

ni
i ;

hence Theorem 17.4 gives a necessary and sufficient condition for the Hasse principle
to hold for the existence of an isometry with minimal polynomial g and characteristic
polynomial f .

Example 17.8. With the notation of Example 17.7, assume that K D Q, and that the
polynomials fi are cyclotomic polynomials for all i 2 I . Then Ei D Q=.fi / is a cyclo-
tomic field for all i 2 I , hence a CM field; by Example 14.2 this implies that XE D 0.
By Theorem 17.2, the Hasse principle holds for the existence of an isometry with minimal
polynomial g and characteristic polynomial f ; if q is a quadratic form having an isome-
try with minimal polynomial g and characteristic polynomial f locally everywhere, then
such an isometry exists over Q as well.

18. Independent extensions

Recall that two finite extensions K1 and K2 of K are independent over K if the tensor
productK1˝K K2 is a field. In this section, we show that the local-global principle of §17
always holds if the extensions Ei=K are pairwise independent over K.
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We keep the notation of §17. Recall from Example 13.1 the equivalence relation �
on I generated by the elementary equivalence

i �e j ” Ei and Ej are independent over K,

and recall that Xindep.E/ DX�.I / is the associated obstruction group.

Theorem 18.1. Assume that Xindep.E/ D 0 and condition (L1) holds. Then condition
(G1) holds as well.

Proof. By Corollary 14.4 the hypothesis implies that XE D 0; therefore Theorem 17.2 (i)
gives the required result.

Corollary 18.2. Assume that there exists i 2 I such that for all j 2 I with j 6D i the
extensionsEi andEj are independent overK. If condition (L1) is satisfied, then condition
(G1) also holds.

Proof. This follows immediately from Theorem 18.1, since the hypothesis implies that
Xindep.E/ D 0.

The following corollary is an immediate consequence:

Corollary 18.3. Assume that the extensionsEi=K are pairwise independent overK, and
condition (L1) holds. Then condition (G1) holds as well.

Example 18.4. Let f D
Q
i2I f

ni
i and g D

Q
i2I fi be as in Example 17.7, with Ei D

KŒX�=.fi /. Assume that Xindep.E/ D 0, and let q be a quadratic form over K. Then the
Hasse principle holds: if q has an isometry with minimal polynomial g and characteristic
polynomial f locally everywhere, then such an isometry exists over K. In particular, this
is the case if the extensions Ei=K are pairwise independent over K.

19. Local conditions

We keep the notation of §17. Recall that .V; q/ is a quadratic form, M is an A-module
satisfying the hypotheses of §16, and AM D .Ei /i2I ; moreover Ei=Fi is a quadratic
extension for all i 2 I , and di 2 F �i is such that Ei D Fi .

p
di /.

The aim of this section is to give a necessary and sufficient condition for M ˝K Kv
and .V; q/˝K Kv to be compatible for all v 2 VK , in other words, for condition (L1) to
hold. This complements the Hasse principle results of §17 and will also be used in §20.
Since in §20 we need this result for several fields, we use the notation with subscript K:

.L1/K For all v 2 VK , the quadratic form .V; q/˝K Kv is compatible with the module
M ˝K Kv .

The validity of .L1/K will be detected by three conditions, called the determinant
condition, the hyperbolicity condition and the signature condition,

Determinant condition:

.det/K det.q/ D
Y
i2I

NEi=K.�di /
ni in K�=K�2.
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Remark 19.1. Note that by Proposition 12.2, condition .det/K is necessary for .V;q/ and
M to be compatible for any field K.

Hyperbolicity condition:

.hyp/K If v 2 VK is such that Ev D F v � F v , then .V; q/˝K Kv is hyperbolic.

Signature condition: If v 2 VK is a real place, we denote by .rv; sv/ the signature of
.V; q/˝K Kv , by .�i /v the number of real places of Fi above v that extend to complex
places of Ei , and set �v D dim.M/ � 2

P
i2I ni .�i /v .

Proposition 19.2. Let v 2 VK be a real place. Then .V; q/ ˝K Kv is compatible with
M ˝K Kv if and only if rv > �v , sv > �v , and rv � sv � �v .mod 2/.

Proof. This is straightforward, using for instance the arguments of the proof of [B 15,
Proposition 8.1].

The signature condition is as follows:

.sign/K If v 2 VK is a real place, we have

rv > �v , sv > �v , and rv � sv � �v .mod 2/.

Proposition 19.3. The following are equivalent:

(a) Condition .L1/K holds.

(b) Conditions .det/K , .hyp/K and .sign/K hold.

Proof. Let us show that (a))(b). Condition .L1/K implies .det/K by Proposition 12.2,
.hyp/K by Proposition 7.1, and .sign/K by Proposition 19.2. Conversely, let us show that
(b))(a). Let v 2 VK . If v is a real place, then Proposition 19.2 shows that .V; q/˝K Kv
is compatible with M ˝K Kv . Assume now that v is a finite place. If Ev D F v � F v ,
then by .hyp/K the form .V; q/˝K Kv is hyperbolic, and by Proposition 7.1 it is compat-
ible with M ˝K Kv . Suppose that Ev 6D F v � F v; then T .Ev; �/ is non-trivial. For all
� 2 T .Ev; �/, we have det.qn;�/D det.q/ by Proposition 12.2 and .det/K , and by Propo-
sition 12.4 we can choose � 2 T .Ev; �/ so that ww.qn;�/ D w2.q ˝K Kv/ in Br.Kv/.
Therefore .V; q/˝K Kv is compatible with M ˝K Kv , and hence .L1/K holds.

Example 19.4. Assume that M and E are as in Example 17.7; recall that Ei D
KŒX�=.fi / andMi D ŒKŒX�=.fi /�

ni with fi 2KŒX� irreducible, symmetric polynomials
of even degree. Set f D

Q
i2I f

ni
i . In this case, the local conditions can be reformulated

as follows:

.det/K det.q/ D f .1/f .�1/ in K�=K�2.

We say that a polynomial is hyperbolic if it is a product of irreducible polynomials of
type (2) (see Example 7.2), and we can write

.hyp/K If v 2 VK is such that f 2KvŒX� is hyperbolic, then .V; q/˝K Kv is hyperbolic.
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If v 2 VK is a real place, we denote by mv.f / the number of roots z of f 2 KvŒX�
with jzjv > 1 (counted with multiplicity), and we can restate

.sign/K If v 2 VK is a real place, we have

rv > mv.f /, sv > mv.f /, and rv � sv � mv.f / .mod 2/.

Set g D
Q
i2I fi . We recover a result of [B 15, Theorem 12.1]: the quadratic form

.V; q/˝K Kv has an isometry with characteristic polynomial f and minimal polynomial
g for all v 2 VK if and only if the above three conditions hold.

20. Odd degree descent

We keep the notation of the previous sections. The aim of this section is to prove an “odd
degree descent” result:

Theorem 20.1. If K 0 is a finite extension of K of odd degree such that .V; q/˝K K 0 is
compatible with M ˝K K 0, then .V; q/ is compatible with M .

We start with a lemma:

Lemma 20.2. Let K 0=K be a finite extension of odd degree. Then

.L1/K0 H) .L1/K :

Proof. It is clear that .det/K0 ) .det/K , .hyp/K0 ) .hyp/K and .sign/K0 ) .sign/K . By
Proposition 19.3, this implies that .L1/K0 ) .L1/K :

Proof of Theorem 20.1. By hypothesis, condition .L1/K0 holds; let

�K0 WXE˝KK0 ! Z=2Z

be the associated homomorphism of §17. Recall that �K0 is independent of the chosen
local data. By Lemma 20.2, condition .L1/K holds. Let

�K.c/ D
X
v2VK

X
i2I

c.i/a.�v/.i/

be the associated homomorphism. For all v 2 VK , let us choose a place w of K 0 over v.
Let us take the extension aw of av D a.�v/ to F v ˝Kv K

0
w to define �K0 .

If ŒK 0w W Kv� is odd, then

invv.corF v
i
=Kv .a

v
i ; di // D invw.corF v

i
˝KvK

0
w=K

0
w
.awi ; di //:

If ŒK 0w W Kv� is even, then

invw.corF v
i
˝KvK

0
w=K

0
w
.awi ; di // D 0:
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Since K 0 is an odd degree extension of K, the degree ŒK 0w W Kv� is odd for an odd
number of places w of K 0 over v. Hence

invv.corF v
i
=Kv .a

v
i ; di // D

X
wjv

invw.corF v
i
˝KvK

0
w=K

0
w
.awi ; di //:

Recall from §14 that we have an injective homomorphism

� 0 WXE !XE˝KK0

(see Proposition 14.5). Let c 2XE , and let c0 D � 0.c/; in other words, with the notation
of §14, we have c0.i;j /D c.i/. Let av

0

i;j be the image of avi inF 0i;j ˝K0 K 0v0 ; then (av
0

i;j ) is a
local data overK 0. Denote by di;j the image of di in F 0i;j . Note that Fi ˝K K 0˝K0 K 0w '

F vi ˝Kv K
0
w .

By hypothesis, condition .G1/K0 holds, hence by Theorem 17.4 we have �K0 D 0.
Therefore �K0.c0/ D 0, and this implies thatX

v02VK0

X
.i;j /2I 0

c0.i; j / invv0.cor
F v

0

i;j
=K0
v0
.av

0

i;j ; di;j // D 0:

By the above observations, we haveX
v02VK0

X
.i;j /2I 0

c0.i; j / invv0.cor
F v

0

i;j
=K0
v0
.av

0

i;j ; di;j //

D

X
v02VK0

X
i2I

c.i/
X
j2S.i/

invv0.cor
F v

0

i;j
=K0
v0
.av

0

i;j ; di;j //

D

X
v02VK0

X
i2I

c.i/ invv0.corF v
i
˝KvK

0
v0=K

0
v0
.av

0

i ; di //

D

X
v2VK

X
i2I

c.i/ invv.corF v=Kv .a
v
i ; di //:

Hence �K.c/ D 0, and this implies that �K D 0; therefore by Theorem 17.4 the
quadratic form .V; q/ is compatible with M .

21. Obstruction group – the integral case

As in the previous sections, K is a global field; let O be a ring of integers of K with
respect to a finite, non-empty set † of places of K, containing the infinite places if K is
a number field. Let V† be the set of places of K that are not in †. If v 2 V†, we denote
by Ov the ring of integers of Kv , and by kv its residue field. Let ƒ be an O-algebra,
and let � W ƒ! ƒ be an O-linear involution; set A D ƒK D ƒ˝O K. If v 2 V†, set
ƒKv D ƒ˝O Kv and ƒkv D ƒ˝O kv .

Let .Mi /i2I be a finite set ofA-modules, letM D
L
i2IMi , and letƒM be the image

of ƒ in End.M/. We assume that the kernel of the homomorphism ƒ! ƒM is stable by
the involution � , and we also denote by � W ƒM ! ƒM the induced involution.



E. Bayer-Fluckiger 3400

The aim of this section is to define a group XƒM ;.Mi /i2I that will be useful in §23.
In general, this group depends on .Mi /i2I and on ƒM . However, in our main case of
interest, namely when ƒ D OŒ��, it only depends on ƒM .

The group XƒM ;.Mi /i2I is defined using the general framework of §13 using the
set I and for all i; j 2 I , the subsets Vi;j of V† defined as follows.

Notation 21.1. For all i; j 2 I , we denote by Vi;j the set of places of v 2 V† such that
v 2 Vi \ Vj and there exists a self-dual ƒkv -module appearing in the reductions mod �v
of both M v

i and M v
j .

Example 21.2. Assume thatƒDOŒ��, hence ADƒ˝O K DKŒ��. We keep the nota-
tion of Example 17.7, and assume that fi 2 OŒX� for all i 2 I . The homomorphism
Ov ! kv induces pv W OvŒX�! kvŒX�. For all i; j 2 I , the set Vi;j defined above is the
set of places v 2 V† such that v 2 Vi \ Vj and the polynomials pv.fi / and pv.fj / have
a common irreducible and symmetric factor; this follows from Example 9.2.

Assume now that the A-module M and its decomposition M D
L
i2I Mi are as in

§16, with AM D
Q
i2I Ei and Mi ' E

ni
i for all i 2 I ; set XƒM ;.Mi /i2I DXƒM ;M .

Recall that Si is the set of placesw of Fi that are inert or ramified inEi , and if v 2 VK ,
then Svi is the set of places w 2 Si above v.

Notation 21.3. If wi 2 Si , we denote by Owi the ring of integers of Ewii , and by �wi its
residue field.

Recall that if N is a self-dual ƒkv -module, we denote by �N W �.N / ! �.N / the
induced involution of �.N / D .ƒkv /N .

Proposition 21.4. Let v 2 V†, and let i; j 2 I . Assume that v 2 Vi;j . Then there exists a
simple, self-dual ƒkv -module N and places wi 2 Svi , wj 2 Svj such that

(i) the ƒkv -modules �wi , �wj and N are isomorphic,

(ii) the fields with involution .�wi ; �i / and .�wj ; �j / are isomorphic to .�.N /; �N /.

Proof. (i) follows from Proposition 9.1. To prove (ii), note that .ƒkv /�wi ' �wi and
.ƒkv /�wj ' �wj . Since all the involutions are induced by � , this implies (ii).

Proposition 21.5. XE is a subgroup of XƒM ;M .

Proof. Let us denote by � the equivalence relation on I generated by

i � j ” Vi;j 6D ¿;

and by� the equivalence relation generated by

i � j ” Vi \ Vj 6D ¿:

We have Vi;j � Vi \ Vj for all i; j 2 I , hence i � j ) i � j . Since XƒM ;M is
defined by the equivalence relation � and XE by�, this implies that XE is a subgroup
of XƒM ;M .
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22. Local data and residue maps

We keep the notation of §21; in particular, M D
L
i2I Mi is a module with Mi ' E

ni
i

for all i 2 I .
Let v 2 V†. If wi 2 Svi and �wii 2 T .E

wi
i ; �i /, we obtain a bounded Ewii -quadratic

form ..E
wi
i /ni ; q

ni ;�
wi
i

/ (see §11). Set Mwi
i D Mi ˝Ei E

wi
i . Choosing an isomorphism

Mi ! E
ni
i , we obtain a bounded A-form on Mwi

i , denoted by .Mwi
i ; q

�
wi
i

/.
Recall from §4 that we have a homomorphism

@v W W
b
ƒKv

.Kv/! Wƒkv .kv/:

Let �v D .�wii /. Set

@v.�
wi
i / D @vŒ.M

wi
i ; q

�
wi
i

/�; @v.�
v
i / D

M
wi2S

v
i

@v.�
wi
i /; @v.�

v/ D
M
i2I

@v.�
v
i /:

Proposition 22.1. Let v 2 V†, and let �v;�v 2LRv be such that a.�v/D .i; j /.a.�v//
for some i; j 2 I with v 2 Vi;j . Then @v.�v/ D @v.�v/.

Proof. Since v 2 Vi;j , by Proposition 21.4 there exists a simple, self-dualƒkv -moduleN
and placeswi 2VFi ,wj 2VFj such that theƒkv -modules �wi , �wj andN are isomorphic,
and the fields with involution .�wi ; �i / and .�wj ; �j / are isomorphic to .�.N /; �N /.

Set
Q D .@v.�

wi
i //˚ .@v.�

wj
j //˚ .�@v.�

wi
i //˚ .�@v.�

wj
j //:

We claim thatQD 0 inWƒkv .kv/; note thatQ belongs to the subgroupWƒkv .kv;N /
of Wƒkv .kv/, and Wƒkv .kv; N / ' W�.N/.kv/.

Let us first assume that wi and wj are inert in Ewii , respectively Ewjj . In this case,
the involution �N is non-trivial. By Proposition 11.1 (a), we know that @v W T .E

wi
i ; �i /!

W�.N/.kv/ and @v WT .E
wj
j ;�j /!W�.N/.kv/ are bijective. Therefore @v.�

wi
i / 6D @v.�

wi
i /

and @v.�
wi
i / 6D @v.�

wj
j /. This implies that two of the four elements @v.�

wi
i /, @v.�

wj
j /,

@v.�
wi
i /, @v.�

wj
j / are trivial, and two are non-trivial. Since W�.N/.kv/ is of order 2, this

implies that the class of Q is trivial in W�.N/.kv/, hence in Wƒkv .kv/.
Assume now that wi and wj are ramified in Ewii , respectively Ewjj , and that char.kv/

6D 2. In this case, �N is the identity, andW�.N/.kv/'W.kv/. Proposition 11.1 (b) implies
that @v W T .E

wi
i ; �i /! W�.N/.kv/ and @v W T .E

wj
j ; �j /! W�.N/.kv/ are injective, and

their images consist of the classes of forms of dimension� Œ�.N / W kv�mod 2. The injec-
tivity part of the statement implies that @v.�

wi
i / 6D @v.�

wi
i / and @v.�

wj
j / 6D @v.�

wj
j /. The

forms @v.�
wi
i /; @v.�

wj
j /; @v.�

wi
i /; @v.�

wj
j / all have the same dimension mod 2; there-

fore det.@v.�
wi
i // 6D det.@v.�

wi
i // and det.@v.�

wj
j // 6D det.@v.�

wj
j //. Hence the forms

@v.�
wi
i / ˚ @v.�

wj
j / and @v.�

wi
i / ˚ @v.�

wj
j / have the same dimension mod 2 and the

same determinant, therefore they are equal in W.kv/. This implies that Q D 0 in W.kv/.
Finally, assume that wi and wj are ramified in Ewii , respectively Ewjj , and that

char.kv/ D 2. Proposition 11.1 (c) implies that @v W T .E
wi
i ; �i / ! W�.N/.kv/ and
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@v W T .E
wi
i ; �i /! W�.N/.kv/ are constant, hence @v.�

wi
i / D @v.�

wi
i / and @v.�

wj
j / D

@v.�
wj
j /. Since W�.N/.kv/ is of order 2, this implies that Q D 0 in W�.N/.kv/, hence

in Wƒkv .kv/.
This holds for any pair wi , wj with the above properties, therefore the form

.@v.�
v
i //˚ .@v.�

v
j //˚ .�@v.�

v
i //˚ .�@v.�

v
j //

is trivial in Wƒkv .kv/; this completes the proof of the proposition.

Notation 22.2. For all v 2 V†, let us fix ı D .ıv/ with ıv 2 Wƒkv .kv/ such that ıv D 0
for almost all v. Let Lv

ı
be the set of �v 2 LRv such that @v.�v/ D ıv , and let Cv

ı
be the

set of a.�v/ 2 C.I / such that �v 2 Lv
ı
.

Let �v be the equivalence relation on C.I / generated by

c �v c
0
” c D .i; j /.c0/ for some i; j 2 I with v 2 Vi;j :

Corollary 22.3. Let v 2 V† and let a.�v/; a.�v/ 2 CRv be such that a.�v/ �v a.�v/.
If a.�v/ 2 Cv

ı
, then a.�v/ 2 Cv

ı
.

Proof. It suffices to show that if a.�v/ D .i; j /.a.�v// for some i; j 2 I with v 2 Vi;j ,
then a.�v/ 2 Cv

ı
; this follows from Proposition 22.1.

Proposition 22.4. Let v 2 V†. Then the set Cv
ı

is a �v-equivalence class of C.I /.

Proof. Let us prove that if an element of C.I / is�v-equivalent to an element of Cv
ı

, then
it is in Cv

ı
. By Proposition 16.7, this element belongs to CRv , and Corollary 22.3 implies

that it is in Cv
ı

.
Let a.�v/, a.�v/ 2 Cv

ı
, and let us show that a.�v/ �v a.�v/. Let J � I be the set of

i 2 I such that a.�v/.i/ 6D a.�v/.i/. SinceX
r2I

a.�v/.r/ D
X
r2I

a.�v/.r/ D Av;

the set J has an even number of elements.
Suppose first that v is non-dyadic. This implies that if i 2 J , then @v.�vi / 6D @v.�

v
i /.

We have a.�v/, a.�v/ 2 Cv
ı

by hypothesis, hence @v.�v/ D @v.�v/, and therefore there
exists j 2 J such that @v.WƒKv .Kv; M

v
i // and @v.WƒKv .Kv; M

v
j // have a non-zero

intersection, and hence v 2 Vi;j . The map .i; j /a.�v/ differs from a.�v/ in fewer
elements than a.�v/ does. Since I is a finite set, continuing this way we see that
a.�v/ �v a.�

v/.
Assume now that v is dyadic, and let J 0 be the set of J such that @v.�vi / D @v.�

v
i /.

Since @v.�v/ D @v.�
v/, the set J 0 also has an even number of elements. Let us write

J D J 0 [ J 00; then J 00 has an even number of elements. If i; j 2 J 0, then v 2 Vi;j . The
map .i; j /a.�v/ differs from a.�v/ in fewer elements than a.�v/ does. After applying
.i; j / for all j; j 2 J 0 with i 6D j , we may assume that J 0 is empty. Now we have J D J 00,
and the same argument as in the non-dyadic case shows that a.�v/ �v a.�v/.
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23. Local-global problem – the integral case

We keep the notation of the previous sections.
Let q be a quadratic form over K. For all v 2 V†, let us fix ı D .ıv/ with

ıv 2 Wƒkv .kv/ such that ıv D 0 for almost all v. Recall the following terminology
from §6:

We say that the local conditions are satisfied if conditions (L1) and .L2/ı below hold:

(L1) For all v 2 VK , the quadratic form .V; q/˝K Kv is compatible with the module
M v DM ˝K Kv

.L2/ı For all v 2 V†, the quadratic form .V; q/˝K Kv contains an almost unimodular
ƒv-lattice with discriminant form ıv .

We say that the global conditions are satisfied if conditions (G1) and .G2/ı below
hold:

(G1) The quadratic form .V; q/ is compatible with the module M .

.G2/ı The quadratic form .V; q/ contains an almost unimodular ƒ-lattice with discrim-
inant form ı.

Proposition 23.1. Assume that the local conditions are satisfied. Then the global condi-
tions hold if and only if there exists � D .�i / 2 T .E; �/ such that � 2 Lv

ı
for all v 2 VK .

Proof. If (G1) holds, then by Proposition 17.1 here exists � D .�i / 2 T .E; �/ such that
� 2 LRv or all v 2 VK . Condition .G2/ı implies that one can choose � such that � 2 Lv

ı

for all v 2 V†.
To prove the converse, let �D .�i / 2 T .E; �/ be such that � 2 Lv

ı
for all v 2 V†. By

Proposition 17.1, this implies that (G1) holds. Moreover, since � 2 Lv
ı

for all v 2 V†, we
have @v.�/ D ıv for all v 2 V†, hence condition .G2/ı is also satisfied.

Recall that the equivalence relation �v on C.I / is generated by

c �v c
0
” c D .i; j /.c0/ for some i; j 2 I with v 2 Vi;j :

Let Cı be the set of all .av/, av 2 Cv
ı

, such that av D 0 for almost all v 2 V†.

Proposition 23.2. Assume that the local conditions are satisfied. Then there exists
.�v/ 2 Lı such that .a.�v// 2 Cı .

Proof. Let S be the subset of VK consisting of the dyadic places, the infinite places, the
places that are ramified in Ei=K for some i 2 I , the places v 2 VK such that w2.q/ 6D
w2.qn;1/ in Br2.kv/, and the places v 2 V† for which ıv 6D 0. Let us show that if v 62 S ,
then there exists �v 2 Lv

ı
such that a.�v/ D 0.

Let v 2 VK be such that v 62 S , and let i 2 I . If Svi D ¿, then T .Evi ; �i / D 0, hence
there is nothing to prove. Assume that Svi 6D ¿; recall that for all w 2 Svi we have an
isomorphism

�wi W T .E
w
i ; �i /! Z=2Z;
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and for all �v D .�wi / 2 T .E
v; �/, we have

a.�v/.i/ D
X
w2Sv

i

�wi .�
w
i /:

For all i 2 I such that Svi 6D¿ and for allw 2 Svi , let �wi D 1 in T .Ewi ; �i /. We claim
that a.�vi / 2 Cv

ı
and a.�v/ D 0. It is clear that a.�v/.i/ D 0 for all i 2 I ; it remains to

show that .�vi / 2 Lv
ı
.

We first show that .�vi / 2 LRv . Since v 62 S , we have w2.q/ D w2.qn;1/ in
Br2.Kv/. The quadratic form q is compatible with the module M ˝K Kv by hypothesis,
hence det.q/ D NF=K.�d/ in K�v =K

�2
v (see Proposition 12.2). Since also det.qn;1/ D

NF=K.�d/, the quadratic forms q and qn;1 have the same dimension, determinant and
Hasse–Witt invariant over Kv , therefore they are isomorphic over Kv; this implies that
.�vi / 2 LRv .

Since v 62 S , it is unramified in Ei ; hence Lemma 11.2 implies @v.1/ D @v.�v/ D 0;
as ıv D 0 for v 62 S , we have .�vi / 2 Lv

ı
.

Necessary and sufficient conditions

Let V 0 be the set of finite places of K.

Proposition 23.3. Let .a.�v//; .a.�v// 2 Cı , and let c 2XƒM ;M . ThenX
v2V 0

X
i2I

c.i/a.�v/.i/ D
X
v2V 0

X
i2I

c.i/a.�v/.i/:

Proof. This follows from Corollary 22.4 and Proposition 13.5.

Let
� WXƒM ;M ! Z=2Z

be the homomorphism defined by

�.c/ D
X
v2V 0

X
i2I

c.i/a.�v/.i/

for some .a.�v// 2 Cı . By Proposition 23.3, the homomorphism � is independent of the
choice of .a.�v// 2 Cı .

Let V 00 be the set of infinite places of K, and let C.V 00/ be the set of .a.�v// with
v 2 V 00 and a.�v/ 2 Cv . Note that since V 00 is finite, the set C.V 00/ is also finite. If
V 00 D ¿, we set C.V 00/ D 0.

For all a 2 C.V 00/ with a D .a.�v//, we define a homomorphism

�a WXƒM ;M ! Z=2Z

by setting
�a.c/ D

X
v2V 00

X
i2I

c.i/a.�v/.i/:
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Theorem 23.4. Assume that the local conditions hold. Then the global conditions are
satisfied if and only if there exists a 2 C.V 00/ such that � C �a D 0.

Proof. Assume that the global conditions are satisfied. Then by Proposition 23.1 there
exists �D .�i / 2 T .E; �/ such that � 2Lv

ı
for all v 2 VK . We have

P
v2VK

a.�/.i/D 0

for all i 2 I . Set a D .a.�v// for v 2 V 00; then � C �a D 0.
Let us prove the converse. Since the local conditions hold, Proposition 23.2 implies

that there exists .�v/ 2Lı such that .a.�v// 2 Cı . By hypothesis, there exists a 2 C.V 00/

such that � C �a D 0. Therefore Theorem 13.4 implies that there exists b D .bv/ 2 Cı
such that

P
v2VK

bv.i/ D 0. By definition, there exists .�v/ 2 Lı such that bv D a.�v/
for all v 2 VK . Recall that a.�v/.i/ D

P
w2Sv

�wi .�
w
i /; therefore for all i 2 I , we haveP

w2VF
�wi .�

w
i / D 0. By Theorem 10.1 this implies that for all i 2 I , there exists �i 2

T .Ei ; �i /mapping to �wi 2 T .E
w
i ; �i / for all w 2 VF . Set �D .�i /; we have � 2Lv

ı
for

all v 2 VK , hence by Proposition 23.1 the global conditions hold.

Example 23.5. Suppose thatƒD OŒ��, and let f and g be as in Example 21.2. Assume
that for all v 2 V†, the quadratic form q contains a unimodularOv-lattice having an isom-
etry with minimal polynomial g and characteristic polynomial f ; Theorem 23.4 gives a
necessary and sufficient condition for such a lattice to exists globally.

Recall that a quadratic form q has maximal signature if for all real places v 2 VK , the
signature of q at v is equal to the signature of q1;n or of �q1;n at v.

Lemma 23.6. Assume that q has maximal signature. Then C.V 00/ has at most one ele-
ment.

Proof. If V 00 does not contain any real places, there is nothing to prove. Let v be a real
place ofK, and let .rv; sv/ be the signature of q at v. Let us assume that the signature of q
at v is equal to the signature of q1;n; the argument is the same if it is equal to the signature
of �q1;n. For all i 2 I , let .rvni ;1; s

v
ni ;1

/ be the signature of qni ;1 and let .rn;1; sn;1/ be the
signature of qn;1. By hypothesis, we have sv D svn;1. In all splittings of q overKv into the
orthogonal sum of quadratic forms qvi over Kv with signature .rvi ; s

v
i / compatible with

the moduleMi ˝K Kv , we have svi > svni ;1 for all i 2 I . Note that svn;1 D
P
i2I s

v
ni ;1

and
sv D

P
ki2I s

v
i ; therefore svi D s

v
ni ;1

for all i 2 I , and this implies that the local solution
is unique. This holds for all real places v 2 VK , hence C.V 00/ has at most one element.

Assume that q has maximal signature and the local conditions hold; let a 2 C.V 00/,
and set �0 D � C �a. The following is an immediate consequence of Theorem 23.4:

Corollary 23.7. Assume that q has maximal signature and the local conditions hold.
Then the global conditions hold if and only if �0 D 0.

Theorem 23.8. The Hasse principle holds for all quadratic forms q and all ı D .ıv/ if
and only if XƒM ;M D 0.

Proof. If XƒM ;M D 0, then Theorem 23.4 implies that the Hasse principle holds for
any q and ı. To prove the converse, assume that XƒM ;M 6D 0; we claim that there exists
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a quadratic form q and ı D .ıv/ satisfying (L1) and .L2/ı but not (G1) and .G2/ı . Let
c 2XƒM ;M be a non-trivial element, and let i; j 2 I be such that c.i/ 6D c.j /. Let the
quadratic form q and a 2 CR be as in Proposition 17.5, and set ıv D @vŒq� for all v 2 V†.
Since q is a global form, ıv D 0 for almost all v 2 V†. By construction, q and ı satisfy
conditions (L1) and .L2/ı . Moreover, the form q has maximal signature. We have

�0.c/ D
X
v2VK

X
i2I

c.i/a.�v/.i/ D c.i/C c.j /;

hence �0.c/ 6D 0; Corollary 23.7 implies that the global conditions are not satisfied.

24. The integral case – Hasse principle with additional conditions

Given integers r; s > 0 and a polynomial f 2 ZŒX�, does there exist an even, unimodular
lattice of signature .r; s/, and having an isometry with characteristic polynomial f ? This
is one of the motivating questions of the paper. We can be more ambitious, and fix an ele-
ment of SOr;s.R/ with characteristic polynomial f ; does it stabilize an even, unimodular
lattice?

The above question leads to a modified local-global problem: we impose the local
behaviour at the real places. As in the previous section, we fix a moduleM and a quadratic
form .V; q/. Moreover, for all real places v 2 VK we also fix an A˝K Kv-quadratic form
.M ˝K Kv; bv/.

Example 24.1. Let A D KŒ��, f 2 KŒX� and M be as in Example 17.7. Fixing an
A˝K Kv-quadratic form .M ˝K Kv; bv/ for all real places v 2 VK amounts to fixing a
signature for all irreducible, symmetric factors of f 2 KvŒX�, as in §8 (cf. Example 8.5).

We consider the following modified local and global conditions. Condition (L1) is
unchanged:

(L1) For all v 2 VK , the quadratic form .V; q/ ˝K Kv is compatible with the module
M v DM ˝K Kv .

We have the new condition (L1)bv :

(L1)bv For all real places v 2 VK , there exists an isomorphism

'v W V ˝K Kv !M ˝K Kv

such that .M ˝K Kv; b'v / ' .M ˝K Kv; bv/.

We also fix ı D .ıv/ with ıv 2 Wƒkv .kv/ such that ıv D 0 for almost all v, and we have
the (unchanged) condition

.L2/ı For all v 2 V†, the quadratic form .V; q/˝K Kv contains an almost unimodular
ƒv-lattice with discriminant form ıv .
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We say that the local conditions (L)bv ;ı are satisfied if the three conditions (L1),
(L1)bv and .L2/ı hold.

We say that the global conditions (G)bv ;ı are satisfied if there exists an isomorphism
of vector spaces ' W V !M such that

� .M; b'/ is an A-quadratic form;

� for all real places v 2 VK , we have .M ˝K Kv; b'/ ' .M ˝K Kv; bv/;

� for all v 2 V†, we have @v.M ˝K Kv; b'v / D ıv .

(In particular, conditions (G1) and (G2)ı of the previous section hold).
Assume that the local conditions (L)bv ;ı are satisfied. The obstruction group XAM ;M

is as in §23, and so is the homomorphism � WXAM ;M ! Z=2Z; indeed, this homomor-
phism only depends on the finite places of K.

If v 2 VK is a real place, then condition (L1)bv determines the local data �v uniquely;
therefore C.V 00/ has exactly one element, namely a D .a.�v//. We define the homomor-
phism �a as in §23. Setting �0 D � C �a, we obtain a homomorphism

�0 WXAM ;M ! Z=2Z:

Theorem 24.2. Assume that the local conditions (L)bv ;ı hold. Then the global conditions
(G)bv ;ı are satisfied if and only if �0 D 0.

To prove this theorem, we need an analog of Proposition 23.1. Let us denote by Lv
bv ;ı

the subset of Lv
ı

in which the components �v for v real are determined by .M ˝K Kv;bv/.

Proposition 24.3. Assume that the local conditions (L)bv ;ı are satisfied. Then the global
conditions (G)bv ;ı hold if and only if there exists �D .�i / 2 T .E;�/ such that � 2Lv

bv ;ı

for all v 2 VK .

Proof. If the global conditions (G)bv ;ı hold, then by Proposition 17.1 there exists � D
.�i / 2 T .E; �/ such that � 2 LRv for all v 2 VK . Moreover, the conditions imply that
one can choose � such that � 2 Lv

bv ;ı
for all v 2 VK .

To prove the converse, let �D .�i /2 T .E;�/ be such that �2Lv
bv ;ı

for all v 2VK . By
Proposition 17.1, this implies that (G1) holds. Moreover, since � 2 Lv

bv ;ı
for all v 2 VK ,

we have @v.M ˝K Kv; b'v /D ıv for all v 2 V†, and .M ˝K Kv; b'/' .M ˝K Kv; bv/
for all real places v 2 VK , hence the global conditions (G)bv ;ı hold.

Proof of Theorem 24.2. The proof goes along the lines of the one of Theorem 23.4, apply-
ing Proposition 24.3 instead of Proposition 23.1.

25. Lattices over Z

Let f 2ZŒX� be a monic, symmetric polynomial without linear factors; we start by recall-
ing from [GM 02] some necessary conditions for the existence of an even, unimodular
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lattice to have an isometry with characteristic polynomial f . We then apply the results of
§23 to give sufficient conditions as well. Set 2n D deg.f /.

Definition 25.1. We say that f satisfies condition (C1) if the integers jf .1/j, jf .�1/j
and .�1/nf .1/f .�1/ are all squares.

Let m.f / be the number of roots z of f with jzj > 1 (counted with multiplicity).

Definition 25.2. Let .r; s/ be a pair of non-negative integers. We say that condition (C2)
holds if r C s D 2n, r � s .mod 8/, r > m.f /, s > m.f /, and m.f / � r � s .mod 2/.

The following lemma is well-known (see for instance [GM 02]).

Lemma 25.3. Assume that there exists an even, unimodular lattice with signature .r; s/
having an isometry with characteristic polynomial f . Then conditions (C1) and (C2)
hold.

Proof. It is clear that r C s D 2n, and the property r � s .mod 8/ is well-known (see
for instance [S 77, Chapitre V, Théorème 2]). For the last part of condition (C2), see
[B 15, Corollary 8.2] (in the case where f is separable, this is also proved in [GM 02,
Corollary 2.3]). It is well-known that .�1/nf .1/f .�1/ is a square; see for instance
[B 15, Corollary 5.2]. The fact that jf .1/j and jf .�1/j are squares is proved in [GM 02,
Theorem 6.1] (the hypothesis that f is separable is not needed in the proof).

Let
f D

Y
i2I

f
ni
i and g D

Y
i2I

fi

where fi 2ZŒX� are distinct irreducible, symmetric polynomials of even degree. SetEi D
QŒX�=.fi / D Q.�i /, and let �i W Ei ! Ei be the Q-linear involution sending �i to ��1i ;
let Fi be the fixed field of Ei .

The following is essentially contained in [BT 20].

Theorem 25.4. Assume that condition (C1) holds. Then for each prime number p there
exists an even, unimodular Zp-lattice having an isometry with characteristic polyno-
mial f and minimal polynomial g.

Proof. Let E0;i be an extension of degree ni of Fi , linearly disjoint from Ei . Set QEi D
Ei ˝E0;i ; then the characteristic polynomial of multiplication by �i on QEi is f nii , and its
minimal polynomial is fi . Set QE D

Q
i2I
QEi , QE0 D

Q
i2I
QE0;i , and let T W QE! QE be the

linear transformation acting on QEi by multiplication with �i ; the characteristic polynomial
of T is f , and its minimal polynomial is g. The argument of [BT 20, proof of Theorem A]
shows that for every prime number p there exists a quadratic form on QE ˝Qp containing
an even, unimodular Zp-lattice stable by T .

The following lemma is well-known:

Lemma 25.5. (i) Let .r; s/ be a pair of non-negative integers with r � s .mod 8/. Then
there exists an even, unimodular lattice of signature .r; s/.

(ii) Two even, unimodular lattices of the same signature become isomorphic over Q.
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Proof. (i) Let m D .r � s/=8; the orthogonal sum of m copies of the E8-lattice with s
hyperbolic planes has the required property.

(ii) Let q be a quadratic form over Q containing an even, unimodular lattice of signa-
ture .r; s/. Then the dimension of q is r C s, its signature is .r; s/ and its determinant is
.�1/s . The Hasse–Witt invariant of q at a prime 6D 2 is trivial (see for instance [O’M 73,
§92:1]), and at infinity it is 0 if s � 0 or 1 .mod 4/, and 1 if s � 2 or 3 .mod 4/. By
reciprocity, this also determines the Hasse–Witt invariant of q at the prime 2 (one can also
prove this directly: see for instance [BT 20, Proposition 8.3]). Therefore the dimension,
determinant, signatures and Hasse–Witt invariant of q are uniquely determined by .r; s/;
hence q is unique up to isomorphism.

Notation. If .r; s/ is a pair of integers with r; s > 0 and r � s .mod 8/, let .V; qr;s/ be
a quadratic form containing an even, unimodular lattice of signature .r; s/; such a form
exists by Lemma 25.5 (i) and is unique up to isomorphism by Lemma 25.5 (ii).

Let ƒ D ZŒ��, where � is the infinite cyclic group, and set A D QŒ��; let us denote
by � the involution of ƒ and A sending 
 to 
�1 for all 
 2 � . Set Mi D ŒQŒX�=.fi /�ni
andM D

L
i2I Mi . Let .V; q/ be a quadratic form over Q. Recall from §23 the local and

global conditions (L1), .L2/ı and (G1), .G2/ı , and note that (for ƒ and M as above, and
for ı D 0) they can be reformulated as follows:

(L1) For all v 2 VQ, the quadratic form .V; q/ ˝Q Qv has an isometry with minimal
polynomial g and characteristic polynomial f .

(G1) The quadratic form .V; q/ has an isometry with minimal polynomial g and charac-
teristic polynomial f .

(L2) For all finite places v 2 VQ, the quadratic form .V; q/˝Q Qv has an isometry with
minimal polynomial g and characteristic polynomial f that stabilizes a unimodular
lattice of V ˝Q Qv .

(G2) The quadratic form .V; q/ has an isometry with minimal polynomial g and charac-
teristic polynomial f that stabilizes a unimodular lattice of V .

Theorem 25.6. Assume that conditions (C1) and (C2) hold. Then the local conditions
(L1) and (L2) are satisfied for the quadratic form qr;s .

Proof. Since (C1) holds, Theorem 25.4 implies that for each prime number p there exists
an even, unimodular Zp-lattice having an isometry with characteristic polynomial f and
minimal polynomial g; we denote by qp the quadratic form over Qp obtained from this
lattice by extension of scalars. If p 6D 2, this is the diagonal form h1; : : : ; .�1/si (see for
instance [O’M 73, §92:1]); if p D 2, it is an orthogonal sum of hyperbolic planes (see
[BT 20, Proposition 8.3]). This implies that qp ' qr;s ˝Q Qp for all prime numbers p.
In particular, the quadratic form qr;s has an isometry with characteristic polynomial f
and minimal polynomial g over Qp for every prime number p. This implies that the local
condition (L1) holds for every prime number p. Moreover, since qr;s ˝Q Qp contains a
unimodular Zp-lattice stable by this isometry, the local condition .L2/ı holds for ı D 0.
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On the other hand, condition (C2) implies that qr;s ˝Q R has an isometry with characteris-
tic polynomial f and minimal polynomial g over R (cf. [B 15, Corollary 8.2]). Therefore
the local conditions hold for the quadratic form qr;s .

Proposition 25.7. The following properties are equivalent:

(i) There exists an even, unimodular lattice of signature .r; s/ having an isometry with
characteristic polynomial f and minimal polynomial g.

(ii) The global conditions .G1/ and .G2/ are fulfilled for .V; qr;s/.

Proof. Let us prove that (i) implies (ii). The base change to Q of the lattice is isomorphic
to .V; qr;s/ by Lemma 25.5 (ii); hence .V; qr;s/ has an isometry with characteristic poly-
nomial f and minimal polynomial g, and it contains a unimodular lattice stable by this
isometry. This implies that the global conditions .G1/ and .G2/ı are fulfilled for .V; qr;s/
and ı D 0, and therefore (ii) holds.

Conversely, assume that (ii) holds. Let t W V ! V be an isometry of qr;s with charac-
teristic polynomial f and minimal polynomial g, and such that .V; qr;s/˝Q Qp contains
a unimodular Zp-lattice Lp with t .Lp/ D Lp for all prime numbers p. For p D 2, let us
choose L2 to be even; we claim that this is possible by [BT 20, Theorem 8.1]. Indeed,
condition (i) of that theorem is satisfied, since .V; qr;s/˝Q Q2 contains a unimodular Z2-
lattice; condition (ii) follows from the fact that .V; qr;s/˝Q Q2 is an orthogonal sum of
hyperbolic planes; and condition (iii) holds by a result of Zassenhaus (see for instance
[BT 20, Theorem 8.5]), since jf .�1/j is a square. Let

L D ¹x 2 V j x 2 Lp for all pº:

The lattice L is even, unimodular, and t .L/ D L; hence L has an isometry with charac-
teristic polynomial f and minimal polynomial g.

Recall from §21 the construction of the group XƒM ;M . By Example 21.2 the sets
Vi;j consist of the prime numbers p 2 Vi \ Vj such that fi mod p and fj mod p have
a common irreducible, symmetric factor. Hence the group XƒM ;M only depends on the
polynomial g, and will be denoted by Xg .

We next give some examples of groups Xg . For all integers d > 1, recall that ˆd
denotes the d -th cyclotomic polynomial.

Example 25.8. Let f1.X/ D X10 C X9 � X7 � X6 � X5 � X4 � X3 C X C 1, and
f2 D ˆ14. Set f D f1f 22 and g D f1f2.

The resultant of f1 and f2 is 169, and the polynomials f1 mod 13 and f2 mod 13
have the irreducible, symmetric common factor X2 C 7X C 1 2 F13ŒX�. Moreover, we
have 13 2 V1 \ V2. Therefore V1;2 D ¹13º and Xg D 0.

Example 25.9. Let p and q be distinct prime numbers such that p � q � 3 .mod 4/. Let
n;m; t 2 Z with n;m; t > 1 and m 6D t , and set

f1 D p̂nqm ; f2 D p̂nqt ; and f D g D f1f2:
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If .p
q
/ D 1, then V1;2 D ¹qº and Xg D 0.

If .p
q
/ D �1, then V1;2 D ¿ and Xg ' Z=2Z.

Example 25.10. Let p be a prime number with p � 3 .mod 4/, and set f1 D p̂ , f2 D
ˆ2p , g D f1f2, and f D f 21 f

2
2 .

If p � 3 .mod 8/, then V1;2 D ¹2º and Xg D 0.
If p � 7 .mod 8/, then V1;2 D ¿ and Xg ' Z=2Z.

More generally, the group Xg can be determined for any product of cyclotomic poly-
nomials ˆd with d > 3 (recall that the polynomials we consider here do not have any
linear factors, hence ˆ1 and ˆ2 are excluded); see §31 for more details and examples.

Assume now that conditions (C1) and (C2) hold; by Theorem 25.6 the local conditions
(L1) and .L2/ı are then satisfied for the quadratic form qr;s and ı D 0. Hence C0 is not
empty (where C0 is the set Cı for ı D 0).

Recall from §23 that V 0 is the set of finite primes, and V 00 the set of infinite primes;
in our case, V 0 is the set of valuations vp , where p is a prime number, and V 00 D ¹v1º,
where v1 is the unique infinite place. Since C0 is not empty, we define as in §23 a homo-
morphism � WXg ! Z=2Z; this homomorphism does not depend on the choice of the
local data a 2 C0 (see Proposition 23.3).

Moreover, for all a 2 C.V 00/, we have a homomorphism �a WXg ! Z=2Z (see §23);
note that C.V 00/ is a finite set, hence we obtain a finite number of such homomorphisms.

Theorem 25.11. Assume that conditions (C1) and (C2) hold. Then the following proper-
ties are equivalent:

(i) There exists an even, unimodular lattice of signature .r; s/ having an isometry with
characteristic polynomial f and minimal polynomial g.

(ii) There exists a 2 C.V 00/ such that � C �a D 0.

Proof. Since conditions (C1) and (C2) hold, the local conditions (L1) and .L2/ı are sat-
isfied for the quadratic form qr;s and ı D 0 (see Theorem 25.6); therefore we can apply
Theorem 23.4, and find that (ii) is equivalent to

(ii0) The global conditions .G1/ and .G2/ı are fulfilled for .V; qr;s/ and ı D 0.

By Proposition 25.7, (ii0) and (i) are equivalent. This completes the proof of the theo-
rem.

If moreover the quadratic form .V; qr;s/ has maximal signature, we can define the
homomorphism �0 WXg ! Z=2Z and apply Corollary 23.7. Note that .V; qr;s/ has max-
imal signature if and only if s D m.f / or r D m.f /. Hence we obtain the following

Corollary 25.12. Assume that conditions (C1) and (C2) hold, and that s D m.f / or
r D m.f /. Then there exists an even, unimodular lattice of signature .r; s/ having an
isometry with characteristic polynomial f and minimal polynomial g if and only if �0D 0.

Proof. This follows from Theorem 25.11 and Corollary 23.7.
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Corollary 25.13. Assume that f satisfies condition (C1), and that Xg D 0. Then for
each pair .r; s/ of integers such that condition (C2) holds there exists an even, unimodular
lattice with signature .r; s/ having an isometry with characteristic polynomial f and
minimal polynomial g.

Proof. This follows from Theorem 25.11.

Example 25.14. Let f1D p̂nqm , f2D p̂nqt , and f D gD f1f2 be as in Example 25.9.
We have f .1/ D f .�1/ D 1 and m.f / D 0. Therefore conditions (C1) and (C2) are
satisfied for all pairs .r; s/ of integers with r; s > 0 such that r � s .mod 8/ and r C
s D deg.f /. Since deg.f / is divisible by 8, the choice r D deg.f / and s D 0 satisfies
conditions (C1) and (C2).

If .p
q
/ D 1, then Xg D 0 (see Example 25.9). Therefore by Corollary 25.13, for all

pairs .r; s/ as above, there exists an even, unimodular lattice with signature .r; s/ having an
isometry with characteristic polynomial f (and minimal polynomial gD f ). In particular,
there exists a definite even, unimodular lattice with this property.

If .p
q
/ D �1, then Xg ' Z=2Z (see Example 25.9). Since conditions (C1) and (C2)

are satisfied (for a choice of .r; s/ as above), the local conditions are satisfied, and we
have C0 6D ¿.

We denote by vp the finite place of Q corresponding to the prime number p, and by v1
the unique real place. Let us choose a 2 C.V 0/ as follows: av.i/D 0 for all i 2 I D ¹1; 2º
if v 6D vp , and avp .1/ D avp .2/ D 1.

Let c W I ! Z=2Z represent the unique non-trivial element of Xg : we can take c such
that c.1/ D 1 and c.2/ D 0; we have �.c/ D 1.

Let .r; s/ D .deg.f /; 0/. Then C.V 00/ has only one element, namely the identically
zero one, a D 0, hence �a.c/ D 0. This implies that � C �a 6D 0; therefore by Theorem
25.11 (or Corollary 25.12) there does not exist any definite, even, unimodular lattice hav-
ing an isometry with characteristic polynomial f .

The method of Example 25.14 can be used to decide which products of cyclotomic
polynomialsˆd (with d > 3) occur as characteristic polynomials of isometries of definite
even, unimodular lattices; this completes the results of [B 84].

Example 25.15. With the notation of Example 25.14, set p D 3, q D 7, n D m D 1 and
t D 2. We have

f1 D ˆ21; f2 D ˆ147; and f D g D f1f2:

Since . 3
7 / D �1, we have Xg ' Z=2Z (see Example 25.9). We have also seen (see

Example 25.14) that conditions (C1) and (C2) are satisfied for all pairs of integers .r; s/
with r; s > 0 such that r � s .mod 8/ and r C s D deg.f / D 96.

This gives rise to 25 possible pairs .r; s/. We have already seen that the signatures
.96; 0/ and .0; 96/ are impossible (see Example 25.14). Assume that .r; s/ D .92; 4/.

The homomorphism � WXg ! Z=2Z is already computed in Example 25.14: namely,
if c W I ! Z=2Z represents the unique non-trivial element of Xg , we have �.c/ D 1.
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The homomorphism �a depends on the choice of a 2 C.V 00/ D Cv1 . There are two
possibilities: a.1/D a.2/D 0 and a0.1/D a0.2/D 1. Hence �C �a 6D 0, but �C �a0 D 0;
by Theorem 25.11, this implies that there exists an even, unimodular lattice of signature
.92; 4/ having an isometry with characteristic polynomial f .

It is easy to check that all the other signatures .r; s/, with the exception of .96; 0/
and .0; 96/, occur as signatures of even, unimodular lattices having an isometry with
characteristic polynomial f ; this also follows from Proposition 25.18 below.

We now give some details concerning the counter-example to the Hasse principle of
the introduction:

Example 25.16. Let f1 D p̂ , f2 D ˆ2p , g D f1f2, and f D f 21 f
2
2 be as in Ex-

ample 25.10. We have f .1/ D f .�1/ D p2, hence condition (C1) holds.
Let p D 7, and note that f is the polynomial

.X6 CX5 CX4 CX3 CX2 CX C 1/2.X6 �X5 CX4 �X3 CX2 �X C 1/2

of the introduction. We have m.f / D 0, deg.f / D 24, and condition (C2) holds for
.r; s/D .24; 0/. This implies that the local conditions are satisfied for q24;0 and ı D 0. We
denote by v2 the finite place of Q corresponding to the prime number 2, and by v1 the
unique real place. Let us choose a 2 C.V 0/ as follows: av.i/ D 0 for all i 2 I D ¹1; 2º if
v 6D v2, and av2.1/ D av2.2/ D 1.

By Example 25.10, we know that Xg ' Z=2Z. Let c W I ! Z=2Z represent the
unique non-trivial element of Xg : we can take c such that c.1/D 1 and c.2/D 0; we have
�.c/D 1. On the other hand, C.V 00/ has only one element, aD 0, hence �a D 0. Therefore
� C �a 6D 0, and by Corollary 25.12 this implies that there does not exist any positive
definite, unimodular and even lattice having an isometry with characteristic polynomial f .

It is well-known that there exist exactly 24 isomorphism classes of even, unimodular,
positive definite lattices of rank 24, including the Leech lattice, and that they are isomor-
phic over Z` for all prime numbers `. The above argument shows that none of them has
an isometry with characteristic polynomial f , and they all have such an isometry locally
everywhere.

The following examples involve indefinite forms. Let .r; s/ be a pair of integers with
r; s > 1 such that r � s .mod 8/, and let Lr;s be an even, unimodular lattice of signature
.r; s/; it is well-known that such a lattice is unique up to isomorphism (see for instance
[S 77, Chapitre V, Théorème 5]).

Recall that a Salem polynomial is a monic, irreducible and symmetric polynomial in
Z[X] with exactly two roots outside the unit circle, both real and positive.

Example 25.17. Let f1.X/ D X6 � 3X5 �X4 C 5X3 �X2 � 3X C 1 and f2 D ˆ12;
set f D g D f1f2. This example is taken from [GM 02, Proposition 5.2], where it is
shown that f does not arise as the characteristic polynomial of an isometry of L9;1.

With the point of view of the present paper, this can be shown as follows. The polyno-
mials f1 and f2 are relatively prime, hence V1;2 D ¿, and this implies that Xg ' Z=2Z.



E. Bayer-Fluckiger 3414

We have f .1/ D �1, f .�1/ D 1, andm.f / D 1; hence conditions (C1) and (C2) are
fulfilled with .r; s/D .9; 1/ or .1; 9/, and with .r; s/D .5; 5/. Let c W I ! Z=2Z represent
the unique non-trivial element of Xg ; let us choose c so that c.1/ D 1 and c.2/ D 0. It
is easy to check that the homomorphism � WXg ! Z=2Z associated to the finite places
satisfies �.c/ D 1.

Let .r; s/ D .9; 1/ or .1; 9/. In this case, the set Cv1 has a unique element, namely
a D 0; hence �a D 0, and � C �a 6D 0. Therefore by Theorem 25.11, f does not arise as
the characteristic polynomial of an isometry of L9;1 or L1;9.

Assume now that .r; s/ D .5; 5/. In this case, we can choose a such that �a 6D 0 and
�C �a D 0. Therefore by Theorem 25.11, the lattice L5;5 has an isometry with character-
istic polynomial f .

Proposition 25.18. Let f D f
n1
1 f

n2
2 and let .r; s/ be a pair of non-negative integers

such that .r; s/ is not a maximal signature for f . Set g D f1f2. If conditions (C 1) and
(C2) hold, then Lr;s has an isometry with characteristic polynomial f and minimal poly-
nomial g.

Proof. If Xg D 0, then this follows from Corollary 25.13. Assume that Xg 6D 0; hence
Xg ' Z=2Z. Let I D ¹0; 1º, and let c W I ! Z=2Z represent the unique non-trivial
element of Xg ; choose c so that c.1/ D 1 and c.2/ D 0. Note that Cv1 D CRv1 . We
claim that there exists a 2CRv1 such that �C �a D 0. Let b 2CRv1 . If b.1/D �.c/, set
aD b. If b.1/ 6D �.c/, set aD .1; 2/b; by Proposition 16.8, we have a 2 CRv1 . We have
.� C �a/.c/ D �.c/C a.1/c.1/ D 0, hence � C �a D 0. By Theorem 25.11, this implies
thatLr;s has an isometry with characteristic polynomial f and minimal polynomial g.

Proposition 25.19. Let f D f1f2 where f1 is a Salem polynomial and f2 is a power of
a cyclotomic polynomial ˆd with d > 3. Let .r; s/ be a pair of integers with r; s > 3, and
assume that conditions (C1) and (C2) hold. Set g D f1ˆd . Then Lr;s has an isometry
with characteristic polynomial f and minimal polynomial g.

Proof. This follows from Proposition 25.18, since for r; s > 3, the signature .r; s/ is not
maximal for f .

The following example might be interesting in the perspective of constructing
automorphisms of K3 surfaces with given entropy (cf. McMullen [McM 02, McM 11,
McM 16]).

Example 25.20. As in Example 25.8, let f1.X/D X10 CX9 �X7 �X6 �X5 �X4 �
X3 CX C 1 and f2 D ˆ14. Set f D f1f 22 and g D f1f2.

Note that f1 is a Salem polynomial, som.f1/D 1. We have f .1/D�1, f .�1/D 49,
m.f / D 1. Therefore conditions (C1) and (C2) hold for all pairs .r; s/ of integers with
r; s > 1 such that r � s .mod 8/ and r C s D deg.f / D 22.

We have seen that Xg D 0 (see Example 25.8). By Theorem 25.11 this implies that for
all pairs .r; s/ as above, the lattice Lr;s has an isometry with characteristic polynomial f
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and minimal polynomial g. For instance, the signature .r; s/ D .3; 19/ is possible (the
other possible signatures are .19; 3/, .15; 7/, .11; 11/ and .7; 15//.

26. Milnor signatures and Milnor indices

In 1968, Milnor defined a signature invariant for knot cobordism (see [M 68, §5]). The
aim of this section is to relate this invariant to the one defined in §8 (see Example 8.6).

First, a question of terminology: the word “signature” has two possible meanings,
namely a pair .r; s/ or the difference r � s. The convention of the present paper is to call
the pair .r; s/ the signature, whereas in knot theory the difference r � s is used. To avoid
confusion, we call the difference r � s the index (see Notation 8.2).

Let .V; q/ be a non-degenerate quadratic form over R, let t W V ! V be an isometry
of q, and let f 2 RŒX� the characteristic polynomial of t . To each irreducible, symmetric
factor P of f , Milnor associates an index �P (see [M 68, §5]), as follows. Let VP .t/ be the
P .t/-primary subspace of V , consisting of all v 2 V with P .t/N v D 0 for N large. The
Milnor index �P .t/ is by definition the index of the restriction of q to the subspace VP .t/.

We define the Milnor signature at P as the signature of the restriction of q to VP .t/.
If the minimal polynomial of t is square-free, these indices and signatures are the same as
those defined in §8 (see Example 8.6).

More generally, we associate to t W V ! V an isometry t 0 W V ! V of q with character-
istic polynomial f and square-free minimal polynomial (see [M 69, §3]). It follows from
[M 69, Theorem 3.3] that �P .t

0/ D �P .t/ for all irreducible, symmetric factors P of f .

27. Lattices and Milnor indices

We keep the notation of §25. Let f 2 ZŒX� be a monic, symmetric polynomial of
degree 2n without linear factors satisfying condition (C1); let r; s > 0 be integers such
that condition (C2) holds for f and .r; s/.

Theorem 25.11 gives a necessary and sufficient condition for the existence of an even,
unimodular lattice of signature .r; s/ having an isometry with characteristic polynomial f
and square-free minimal polynomial. In this section, we ask a more precise question:

Question. Let t 2 SOr;s.R/ be a semisimple isometry with characteristic polynomial F .
Does t preserve an even, unimodular lattice?

Theorem 27.4 below gives a necessary and sufficient condition for this to hold. We
consider this as a Hasse principle problem; Condition (C1) implies that the local con-
ditions hold at the finite places. Condition (C2) ensures the existence of a semisimple
element of SOr;s.R/ with characteristic polynomial f ; fixing such an element t deter-
mines the local data at R. This is also the point of view of §24, the results of which will
be applied here.

Let us write f D
Q
i2I f

ni
i , where fi 2 ZŒX� are distinct monic, irreducible, sym-

metric polynomials of even degree. Set 2n D deg.f /, and g D
Q
i2I fi . For all i 2 I , let

Mi D ŒQŒX�=.fi /�ni , and set M D
L
i2I Mi .
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Recall that V 0 is the set of finite places of Q, and V 00 D ¹v1º, where v1 is the unique
infinite place of Q.

We start by introducing some notation.

Notation 27.1. Let IrrR.f / be the set of irreducible, symmetric factors of f 2 RŒX�. If
P 2 IrrR.f /, let nP > 0 be the integer such that P nP is the power of P dividing f .

We denote by Mil.f / the set of maps � W IrrR.f /! 2Z such that the image of P 2

IrrR.f / belongs to the set ¹�2nP ; : : : ; 2nP º. Let Milr;s.f / be the subset of � 2 Mil.f /
such that X

P2IrrR.f /

�P D r � s:

Definition 27.2. An element of Mil.f / is called a Milnor index.

Recall from the previous sections that the following sets are in bijective correspon-
dance:

(a) Conjugacy classes of semisimple elements of SOr;s.R/ with characteristic polyno-
mial f .

(b) Isomorphism classes of RŒ��-quadratic forms on M ˝Q R of signature .r; s/.

(c) Milr;s.f /.

To a semisimple isometry t 2 SOr;s.R/ with characteristic polynomial f , the above
bijection associates an RŒ��-quadratic form b.t/ on the module M ˝Q R. With the nota-
tion of §24 we have

Proposition 27.3. Let t 2 SOr;s.R/ be a semisimple isometry with characteristic polyno-
mial f . The following properties are equivalent:

(i) The isometry t preserves an even, unimodular lattice.

(ii) The global condition .G/b.t/;0 is fulfilled for .V; qr;s/.

Proof. By Proposition 25.7, the existence of an even, unimodular lattice having an isom-
etry with characteristic polynomial f and square-free minimal polynomial implies condi-
tions (G1) and (G2)0. Since t 2 SOr;s.R/ preserves the lattice, .G/b.t/;0 holds; therefore
(i) implies (ii). Conversely, let us show that (ii) implies (i). By Proposition 25.7, there
exists an even, unimodular lattice having an isometry with characteristic polynomial f
and square-free minimal polynomial; condition .G/b.t/;0 implies that it is preserved by
t 2 SOr;s.R/.

As in §25, we obtain a homomorphism

� WXg ! Z=2Z;

defined in terms of finite places, that is, C.V 0/. Moreover, to all elements a 2 C.V 00/, we
associate a homomorphism

�a WXg ! Z=2Z:



Isometries of lattices and Hasse principles 3417

Recall from §16 that an RŒ��-quadratic form on M ˝Q R gives rise to an element
�v1 2 LRv1 , and hence also to a.�v1/ 2 C.V 00/. The above bijection allows us to
associate

� to t 2 SOr;s.R/ an element at 2 C.V 00/;

� to � 2 Milr;s.f / an element a� 2 C.V 00/.

Theorem 27.4. Let t 2 SOr;s.R/ be a semisimple isometry with characteristic polyno-
mial f . The following are equivalent:

(a) The isometry t preserves an even, unimodular lattice.

(b) � C �at D 0.

Proof. By Proposition 27.3, property (a) holds if and only if the global condition .G/b.t/;0
is fulfilled for .V; qr;s/. On the other hand, this is equivalent to (b) by Theorem 24.2.

Corollary 27.5. If Xg D 0, then all semisimple elements of SOr;s.R/ with characteris-
tic polynomial f preserve an even, unimodular lattice.

Proof. This is an immediate consequence of Theorem 27.4.

Note that this is a generalization of Theorem 1.3 of [GM 02]; indeed, if f is irre-
ducible, then Xg D 0.

If L is a lattice of signature .r; s/ having an isometry t with characteristic polyno-
mial f and minimal polynomial g, then t extends to a semisimple element of SOr;s.R/,
and this element gives rise to an element of Milr;s.f /; this element will be called the
Milnor index of the pair .L; t/.

The following results are reformulations of Theorem 27.4 and Corollary 27.5.

Theorem 27.6. Let � 2 Milr;s.f /. The following are equivalent:

(a) There exists an even, unimodular lattice having an isometry with characteristic poly-
nomial f and Milnor index � .

(b) � C �a� D 0.

Corollary 27.7. Assume that Xg D 0. Then every � 2 Milr;s.f / occurs as the Milnor
index of an even, unimodular lattice with an isometry of characteristic polynomial f .

As shown by the following example, if Xg 6D 0, then Theorem 27.6 allows us to
determine which Milnor indices occur.

Example 27.8. As in Example 25.15, let

f1 D ˆ21; f2 D ˆ147; and f D g D f1f2:

We have already seen that conditions (C1) and (C2) are satisfied for all pairs of inte-
gers .r; s/ with r; s > 0 such that r � s .mod 8/ and r C s D deg.f / D 96, and that
Xg ' Z=2Z; let c 2Xg be the only non-trivial element.
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The homomorphism � WXg ! Z=2Z satisfies �.c/ D 1. The homomorphism �a
depends on the choice of a 2 C.V 00/D Cv1 . There are two possibilities: a.1/D a.2/D 0
and a0.1/ D a0.2/ D 1. Hence � C �a 6D 0 and � C �a0 D 0.

By Theorem 27.6, there exists an even, unimodular lattice having an isometry with
characteristic polynomial f and Milnor index � if and only if a� D a0.

Let r; s > 0 be integers such that r � s .mod 8/ and r C s D deg.f / D 96. Since
nP D 2 for all P 2 IrrR.f /, the set Milr;s.f / consists of the maps

� W IrrR.f /! ¹�2; 2º with
X

P2IrrR.f /

�P D r � s:

The Milnor index map � is determined by the two maps

�1 W IrrR.f1/! ¹�2; 2º and �2 W IrrR.f2/! ¹�2; 2º:

For i D 1; 2, let Ni be the number of P 2 IrrR.fi / such that �i .P / D �2. Since
r � s .mod 8/ and r C s D 96� 0 .mod 8/, we have s � 0 .mod 4/. Therefore N1 CN2
is even, hence N1 � N2 .mod 2/.

We have a� D a if N1 is even, and a� D a0 if N1 is odd. Set

N.�/ D N1 .mod 2/:

In summary, we obtain:
There exists an even, unimodular lattice having an isometry with characteristic poly-

nomial f and Milnor index � if and only if N.�/ D 1.

28. Knots

A knot is a smooth, oriented submanifold of S3, homeomorphic to S1. One of the classical
knot invariants is the Alexander polynomial, another is the signature.

The results of the previous sections can be applied to decide for which pair .r; s/
there exists a knot with Alexander polynomial � and signature .r; s/. For simplicity, we
restrict to monic polynomials� such that�.�1/ D ˙1; these polynomials will be called
unramified. Moreover, we assume that � is a product of distinct irreducible, symmetric
polynomials. The general case will be treated elsewhere.

Still assuming that� is unramified and square-free, we deal with a more precise ques-
tion. To each irreducible, symmetric factor P of� 2RŒX�, one associates a Milnor signa-
ture �P D .2;0/ or .0;2/. Given� and �P as above, we give a necessary and sufficient cri-
terion for the existence of a knot with Alexander polynomial� and Milnor signatures �P .

As usual in knot theory, the results are expressed in terms of the index r � s rather
than the signature .r; s/, and the Milnor indices �P rather than the Milnor signatures �P .

For background information on the various notions of knot signatures (that is, indices),
see the survey paper of Ghys and Ranicki [GR 16], explaining the history of the topic and
its connection to other aspects of geometry and topology; see also the more recent survey
of Anthony Conway [C 19].
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We start by recalling some facts on Seifert forms, and then come back to the applica-
tions to knot theory.

29. Seifert forms

A Seifert form is by definition a Z-bilinear form A W L � L ! Z, where L is a free
Z-module of finite rank such that the skew-symmetric form I W L �L! Z given by

I.x; y/ D A.x; y/ �A.y; x/

has determinant 1. The symmetric form Q W L �L! Z defined by

Q.x; y/ D A.x; y/CA.y; x/

is called the quadratic form associated to the Seifert form A.
The index (or signature) of A is by definition the index (or signature) of the quadratic

form Q (see Trotter [T 62, Proposition 5.1], or Murasugi [Mu 65]).
The Alexander polynomial of A, denoted by �A, is by definition the determinant of

the form L �L! ZŒX� given by

.x; y/ 7! A.x; y/X �A.y; x/:

Note that �A.1/ D 1, �A.0/ D det.A/, and �A.�1/ D det.Q/.
We say that a polynomial � 2 ZŒX� is unramified if � is monic, �.1/ D 1, and

�.�1/ D ˙1. In what follows, we only consider Seifert forms with unramified Alexan-
der polynomials. Note that this implies that det.A/ D 1 and det.Q/ D ˙1; in particular,
Q is a unimodular lattice. Let T WL!L be defined by A.T .x/; y/DA.y; x/. We have
Q.T .x/; T .y// D Q.x; y/ for all x; y 2 L, in other words, T is an isometry of Q. Note
that the characteristic polynomial of T is equal to �A.

Assume in addition that �A is a product of distinct irreducible, symmetric polynomi-
als of ZŒX�.

For all irreducible, symmetric factors P 2RŒX� of�A, we define a Milnor index (and
Milnor signature) of .Q; T / as in [M 68, §5]; see also §26. These will be called Milnor
indices (and signatures) of A.

Given a pair .Q; T / consisting of a unimodular lattice Q and an isometry T of char-
acteristic polynomial�, we recover a Seifert form A with Q.x; y/DA.x; y/CA.y; x/

for all x; y 2 L (see for instance Levine [Le 69, §9] for a similar argument).
Recall from Notation 27.1 that IrrR.�A/ is the set of irreducible, symmetric factors

of �A 2 RŒX�. Since �A is square-free, we have nP D 1 for all P in IrrR.�A/. More-
over, recall that we denote by Mil.�A/ the set of maps � W IrrR.�A/! ¹�2; 2º, and by
Milr;s.�A/ the subset of Mil.�A/ such that

P
P2IrrR.�A/

�P D r � s.
Hence we have the following

Proposition 29.1. Let r; s > 0 be integers, and let� 2 ZŒX� be an unramified polynomial
that is a product of distinct irreducible, symmetric polynomials of ZŒX�. Let � 2Milr;s.�/.
The following are equivalent:
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(a) There exists a Seifert form with Alexander polynomial � and Milnor index � .

(b) There exists an even, unimodular lattice L having an isometry t of characteristic
polynomial � such that the Milnor index of .L; t/ is � .

In particular, there exists a Seifert form with Alexander polynomial� and index r � s
if and only if there exists an even, unimodular lattice of index r � s having an isometry
with characteristic polynomial �.

30. Knots and Seifert forms

We keep the notation of Sections 28 and 29. To every knot† in S3, we associate a Seifert
form A† (see for instance [K 87, Chapter VII], [Lick 97, Definition 6.4], [Liv 93, Chap-
ter 6, §1]). It is well-known that the Alexander polynomial of A† is an invariant of the
knot; the same is true for the index (see Trotter [T 62, Proposition 5.1]) and the Milnor
indices (see Milnor [M 68, §5]).

The following result of Seifert shows that all Seifert forms are realized by knots
(see [Se 34]).

Theorem 30.1. Let A be a Seifert form. Then there exists a knot † in S3 such that A is
the Seifert form of †.

Combining this result with Theorem 29.1, we obtain the following

Proposition 30.2. Let r; s > 0 be integers, and let� 2 ZŒX� be an unramified polynomial
that is a product of distinct irreducible, symmetric polynomials of ZŒX�. Let � 2Milr;s.�/.
The following are equivalent:

(a) There exists a knot with Alexander polynomial � and Milnor index � .

(b) There exists an even, unimodular lattice L having an isometry t of characteristic
polynomial � such that the Milnor index of .L; t/ is � .

In particular, there exists a knot with Alexander polynomial � and index r � s if and
only if there exists an even, unimodular lattice of index r � s having an isometry with
characteristic polynomial �. Using this result, we can apply Theorem 27.6 to answer the
questions of §28.

We start by recalling some definitions from §25 and §27. Let � 2 ZŒX� be an unram-
ified polynomial as above, and set 2n D deg.�/.

Conditions (C1) and (C2)

Recall from §25 that the local conditions for the existence of an even, unimodular lattice
of signature .r; s/ and characteristic polynomial � can be translated into two conditions
(C1) and (C2). We now recall these conditions in our situation.

� Since � is unramified, condition (C1) becomes: �.�1/ D .�1/n.
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Recall that m.�/ is the number of roots z of � with jzj > 1.

� Let .r; s/ be a pair of non-negative integers. Condition (C2) holds if r C s D 2n,
r � s .mod 8/, r > m.�/, s > m.�/, and m.�/ � r � s .mod 2/.

It follows from Lemma 25.3 that conditions (C1) and (C2) are necessary for the exis-
tence of a knot with Alexander polynomial � and index r � s.

Example 30.3. Assume moreover that� is a product of cyclotomic polynomials �m with
m � 3. Thenm.�/ D 0, hence if r C s D 2n; r � s .mod 8/, then condition (C2) holds.

The obstruction group

Recall from §21 and §25 the definition of the “obstruction group” X�. Let I be the
set of irreducible factors of �. For all f; g 2 I , let Vf;g be the set of prime numbers
p 2 Vf \ Vg such that f and g have a common irreducible, symmetric factor mod p.
Consider the equivalence relation on I generated by the elementary equivalence

f �e g ” Vf;g 6D ¿;

and let xI be the set of equivalence classes; the group X� is the quotient of C.xI / by the
constant maps.

By Corollary 27.7, we have

Corollary 30.4. Assume that conditions (C1) and (C2) hold. If X� D 0, then for all
� 2 Milr;s.f / there exists a knot with Milnor index � . In particular, there exists a knot
with index r � s.

If X� 6D 0, then we obtain a necessary and sufficient condition for � 2 Milr;s.f /
to be the Milnor index of a knot (cf. Theorem 27.6). The aim of the next section is to
illustrate this by some examples.

31. Alexander polynomials of torus knots and indices

Let u; v > 1 be odd integers, and assume that u and v are prime to each other. Set

�u;v D
.Xuv � 1/.X � 1/

.Xu � 1/.Xv � 1/
:

It is well-known that �u;v is the Alexander polynomial of the .u; v/-torus knot; the
indices of torus knots have been studied in many papers (see for instance [Bo 11, BO 10,
C 10, GLM 81, HM 68], [K 87, Chapter XII], [Ke 79, KM 94, Lith 79, Liv 18, Mat 77,
Mu 06]).

The aim of this section is to determine which indices occur for knots with Alexander
polynomial �u;v .
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The polynomial �u;v is a product of cyclotomic polynomials

�u;v D
Y

ˆ˛ˇ

where the product is over the set of all pairs .˛;ˇ/ for which ˛ is a factor of u, ˇ is a factor
of v, and both are greater than 1 (see for instance [Liv 18, Lemma 2.1]). Set deg.�u;v/ D
2n, and note that n is even and �u;v.1/ D �u;v.�1/ D 1; hence condition (C1) holds.

Let .r; s/ be a pair of non-negative integers such that

r C s D 2n and r � s .mod 8/:

By Example 30.3, condition (C2) holds for �u;v and .r; s/. In order to apply the
Hasse principle results of §25 and §27, the next step is to determine the obstruction
group X�u;v .

The group X�u;v

If f and g are monic polynomials in ZŒX�, let Vf;g be the set of prime numbers p such that
f .mod p/ and g .mod p/ have a common irreducible and symmetric factor in FpŒX�. Let
I be the set of irreducible factors of�u;v , and recall that the definition of the group X�u;v

involves the equivalence relation on I generated by the elementary equivalence

f �e g ” Vf;g 6D ¿:

Therefore in order to determine the group X�u;v , we need to decide when Vf;g 6D ¿ for
two cyclotomic polynomials f and g. We start with a lemma:

Lemma 31.1. Let m and m0 be odd integers with m > 3 and m0 > m. Let p be a prime
number. The cyclotomic polynomials ˆm and ˆm0 have a common factor mod p if and
only if m0 D mpe for some integer e > 1.

Proof. The resultant of the cyclotomic polynomials ˆm and ˆm0 is divisible by p if and
only if m0 D mpe for some integer e > 1 (see for instance [Ap 70, Theorem 4]). By a
well-known property of the resultant, this is equivalent for ˆm and ˆm0 having a com-
mon factor mod p.

We need a criterion for the existence of symmetric irreducible factors mod p; this will
be done in the following proposition, relying on well-known properties of cyclotomic
polynomials and cyclotomic fields. For all integersm > 2, let �m be a primitive m-th root
of unity, and let Q.�m/ be the corresponding cyclotomic field.

Proposition 31.2. Let m > 3 be an odd integer, and let p be an odd prime number. The
following properties are equivalent:

(a) The polynomial ˆm has a symmetric irreducible factor mod p.

(b) The prime ideals above p in Q.�m C ��1m / are inert in Q.�m/.
(c) The subgroup of .Z=mZ/� generated by p contains �1.
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Proof. The equivalence (a),(b) is well-known: see for instance [W 97, Proposi-
tion 2.14]. Let us show that (a),(c). Let A be the group .Z=mZ/� written additively,
let mp W A! A be multiplication by p, and let � W A! A be the map sending a to �a.
Both (a) and (c) are equivalent to

(d) There exists an orbit of mp stable by �.

This concludes the proof of the proposition.

Proposition 31.2 and Lemma 31.1 suffice to determine the obstruction group of a prod-
uct of cyclotomic polynomials, in particular the group X�u;v . A full description would
be rather heavy, so we only give some simple special cases and examples. The first remark
is that if moreoverm is a prime andm� 3 .mod 4/, property (c) of Proposition 31.2 takes
a very simple form.

Corollary 31.3. Let m be a prime number with m � 3 .mod 4/, and let p be an odd
prime number. Then

ˆm has a symmetric irreducible factor mod p ”
�
p
m

�
D �1.

Proof. Indeed, it is easy to see that the subgroup of .Z=mZ/� generated by p contains�1
if and only if p is not a square modm, in other words, . p

m
/D �1. Therefore the corollary

follows from Proposition 31.2.

Example 31.4. Let p and q be distinct odd prime numbers with q � 3 .mod 4/. Let e > 1

be an integer, and set � D �pe ;q . Then

X� D 0 if
�
p
q

�
D �1, and X� ' .Z=2Z/e�1 if

�
p
q

�
D 1.

Indeed, let I be the set of irreducible factors of�; the set I consists of the cyclotomic
polynomials p̂kq for 16 k 6 e. If .p

q
/D�1, then by Corollary 31.3 and Lemma 31.1 all

these polynomials have common symmetric, irreducible factors mod p, hence Vf;g D ¹pº
for all f; g 2 I . Therefore all the polynomials are equivalent, and the set xI of equivalence
classes has one element; C.xI / modulo the constant maps is trivial, hence X� D 0.

On the other hand, if .p
q
/ D 1, then by the above results Vf;g D ¿ for all f; g 2 I .

All the polynomials are in different equivalence classes, hence xI has e elements, C.xI / '
.Z=2Z/e , and X� ' .Z=2Z/e�1.

Example 31.5. Let p, p1 and p2 be distinct prime numbers with p � p1 � p2 �

3 .mod 4/, and set � D �p;p1p2 . Since p1 and p2 play symmetric roles and .p2
p1
/ D

�.p1
p2
/, we may assume that .p1

p2
/ D 1. We have

X� ' .Z=2Z/2 ”
�
p2
p

�
D 1;

X� ' Z=2Z ”
�
p2
p

�
D �1:

In particular, X� cannot be trivial.
Indeed, let I be the set of irreducible factors of�; the set I consists of the cyclotomic

polynomials p̂p1 , p̂p2 and p̂p1p2 . The first two are not equivalent (see Lemma 31.1).
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Note that since .p1
p2
/ D 1, the polynomials p̂p2 and p̂p1p2 are not equivalent; this fol-

lows from Proposition 31.2. Hence xI has at least two elements, and therefore X� 6D 0.
On the other hand, since .p2

p1
/ D �1, Proposition 31.2 shows that p̂p1 and p̂p1p2 are

equivalent if and only if .p2
p
/ D �1:

We already know that if X�u;v D 0, then all signatures .r; s/ as above (hence all
indices r � s) are possible, as also are all Milnor indices (see Corollary 30.4). If however
X�u;v 6D 0, then we need further information, in particular the homomorphism �.

The homomorphism � WX�u;v ! Z=2Z

Recall that V 0 is the set of finite places of Q, that is, the set of prime numbers, and
� WX�u;v ! Z=2Z is defined in terms of the local data associated to V 0. Since �u;v is a
product of cyclotomic polynomials, � can be described explicitly as follows.

As above, we denote by I the set of irreducible factors of�u;v . If f 2 I with f Dˆm
and if p is a prime number, set

ı
p

f
D

8̂<̂
:
1 if p divides m, p � 3 .mod 4/, and ˆm has a symmetric

irreducible factor mod p,

0 otherwise.

For all prime numbers p, let ap W I ! Z=2Z be defined by ap.f / D ıp
f

.

Proposition 31.6. The homomorphism � WX�u;v ! Z=2Z is given by

�.c/ D
X
p2V 0

X
f 2I

c.f /ap.f /:

Proof. For all f 2 I , setEf DQŒX�=.f / and let �f WEf !Ef be the involution induced
by X 7! X�1; note that Ef is a cyclotomic field, and �f is complex conjugation. Let Ff
be the fixed field of �f . Let df be the discriminant of Ef , and let pep.f / be the power
of p dividing df . Then ep.f / � ı

p

f
.mod 2/ (see for instance [W 97, Propositions 2.1

and 2.7]).
Since f D ˆm for some integer m that is not a prime power, no finite places of

Ff ramify in Ef (see for instance [W 97, Proposition 2.15 (b)]). Moreover, the prime
ideals of Ff above p are inert in Ef if and only if ˆm has a symmetric irreducible
factor mod p (see Proposition 31.2). Hence Corollary 6.2 and Proposition 6.4 of [BT 20]
imply that we can take ap.f /D ıp

f
. The proposition now follows from the definition of

� WX�u;v ! Z=2Z in §23, where it is also shown that the homomorphism is independent
of the choice of local data.

Milnor indices and the homomorphism �� WX�u;v ! Z=2Z

Let � 2Milr;s.�u;v/; the homomorphism �� WX�u;v!Z=2Z is as follows. For all f 2 I ,
let n.f / be the number of P 2 Irr.R/ dividing f such that �.P /D�2. Let a� W I!Z=2Z
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be defined by a� .f / D n.f / .mod 2/. Then �� WX�u;v ! Z=2Z is by definition

�� .c/ D
X
f 2I

c.f /a� .f /:

A necessary and sufficient criterion

Applying Theorem 27.6, we get

Theorem 31.7. Let � 2Milr;s.�u;v/. There exists a knot with Alexander polynomial�u;v
and Milnor index � if and only if � C �� D 0.

Proof. This is an immediate consequence of Theorem 27.6, noting that the local condi-
tions always hold.

We illustrate this result by the following example:

Example 31.8. We keep the notation of Example 31.4; in particular, p and q are distinct
odd prime numbers with q � 3 .mod 4/, e > 1 is an integer, and � D �pe ;q .

� If .p
q
/D�1, then X� D 0. This implies that all � 2Milr;s.�/ occur as Milnor indices

of knots. An integer � is the index of a knot with Alexander polynomial � if and only
if � � 0 .mod 8/, and j�j 6 2n (see Example 31.4 and Corollary 30.4).

� If .p
q
/ D 1, then X� ' .Z=2Z/e�1 (see Example 31.4). Let � 2 Milr;s.�/. In order

to decide whether � occurs as the Milnor index of a knot, we determine the homomor-
phisms � and �� .

Recall that I is the set of irreductible factors of �, and I consists of the cyclotomic
polynomials p̂kq for 1 6 k 6 e.

Still assuming .p
q
/ D 1, the result depends on the congruence class of p mod 4:

� Assume first that p � 3 .mod 4/, and note that . q
p
/ D �.p

q
/ D �1.

If f 2 I , we have ıq
f
D 1 and ı`

f
D 0 for all prime numbers ` 6D q.

For all prime numbers `, let a` WI!Z=2Z be defined by a`.f /Dı`
f

, hence aq.f /D1
and a`.f / D 0 if ` 6D q. The associated homomorphism � WX� ! Z=2Z is given by

�.c/ D
X
`2V 0

X
f 2I

c.f /a`.f / D
X
f 2I

c.f /:

On the other hand, we have

�� .c/ D
X
f 2I

c.f /a� .f /:

Therefore
� C �� D 0 ” a� .f / D 1 for all f 2 I .

By definition, this means that n.f / is odd for all f 2 I , in other words, each f 2 I
is divisible by an odd number of P 2 Irr.R/ with �.P / D �2. In summary:
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An element � 2 Milr;s.�/ occurs as the Milnor index of a knot if and only if for all
f 2 I , the number of P 2 Irr.R/ dividing f such that �.P / D �2 is odd.

In particular, an integer � is the index of a knot with Alexander polynomial � if and
only if � � 0 .mod 8/, and j�j 6 2n � 4.e � 1/.

� Assume now that p � 1 .mod 4/, and note that . q
p
/D .p

q
/D 1. In this case, ı`

f
D 0

for all prime numbers ` and for all f 2 I . This implies that �.c/ D 0 for all c 2X�.
Recall that �� WX� ! Z=2Z is given by

�� .c/ D
X
f 2I

c.f /a� .f /:

Therefore
� C �� D 0 ” a� .f / D 0 for all f 2 I .

This means that n.f / is even for all f 2 I , in other words, each f 2 I is divisible by
an even number of P 2 Irr.R/ with �.P /D�2. This imposes a condition on the possible
Milnor indices. However, this does not gives rise to additional conditions on the index; an
integer � is the index of a knot with Alexander polynomial � if and only if � � 0 .mod 8/
and j�j 6 2n.
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