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Abstract. We define Ratner–Marklof–Strömbergsson measures (following Marklof and Ström-
bergsson (2014)). These are probability measures supported on cut-and-project sets in Rd .d � 2/
which are invariant and ergodic for the action of the groups ASLd .R/ or SLd .R/. We classify the
measures that can arise in terms of algebraic groups and homogeneous dynamics. Using the classifi-
cation, we prove analogues of results of Siegel, Weil and Rogers about a Siegel summation formula
and identities and bounds involving higher moments. We deduce results about asymptotics, with
error estimates, of point-counting and patch-counting for typical cut-and-project sets.
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1. Introduction

A cut-and-project set is a discrete subset of Rd obtained by the following construction.
Fix a direct sum decomposition Rn D Rd ˚ Rm, where the two summands are denoted
respectively Vphys; Vint, so that

Rn D Vphys ˚ Vint;

and the corresponding projections are

�phys W R
n
! Vphys; �int W R

n
! Vint:

Also fix a lattice L� Rn and a windowW � Vint; then the corresponding cut-and-project
set ƒ D ƒ.L; W / is given by

ƒ.L; W / WD �phys.L \ �
�1
int .W //: (1.1)
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We sometimes allow L to be a grid, i.e., the image of a lattice under a translation in Rn,
and sometimes require ƒ to be irreducible, a notion we define in §2. Cut-and-project sets
are prototypical aperiodic sets exhibiting long-term-order, and are sometimes referred to
as model sets or quasicrystals. Beginning with work of Meyer [30] in connection to Pisot
numbers, they have been intensively studied from various points of view. See [1] and the
references therein.

Given a cut-and-project set, a natural operation is to take the closure (with respect
to a natural topology) of its orbit under translations. This yields a dynamical system for
the translation group and has been studied by many authors under different names. In
recent years several investigators have become interested in the orbit-closures under the
group SLd .R/ (respectively ASLd .R/), which is the group of orientation- and volume-
preserving linear (resp., affine) transformations of Rd . In particular, in the important
paper [26], motivated by problems in mathematical physics, Marklof and Strömbergsson
introduced a class of natural probability measures on these orbit-closures. The goal of this
paper is to classify and analyze such measures, and derive consequences for the statistics
and large scale geometry of cut-and-project sets.

1.1. Classification of Ratner–Marklof–Strömbergsson measures

We say that a cut-and-project set is irreducible if it arises from the above construction,
where the data satisfies the assumptions (D), (I) and (Reg) given in §2.1. Informally
speaking, (D) and (I) imply that the set cannot be presented as a finite union of sets whose
construction involves smaller groups in the cut-and-project construction, and (Reg) is a
regularity assumption on the window setW . We denote by C .Rd / the space of closed sub-
sets of Rd , equipped with the Chabauty–Fell topology. This is a compact metric topology
whose definition is recalled in §2.2, and which is also referred to in the quasicrystals liter-
ature as the local rubber topology or the natural topology. Since the groups ASLd .R/ and
SLd .R/ act on Rd , they also act on C .Rd /. We say that a Borel probability measure �
on C .Rd / is a Ratner–Marklof–Strömbergsson measure, or RMS measure for short, if it
is invariant and ergodic under SLd .R/ and gives full measure to the set of irreducible
cut-and-project sets. We call it affine if it is also invariant under ASLd .R/, and linear
otherwise (i.e., if it is invariant under SLd .R/ but not under ASLd .R/).

A construction of RMS measures was given in [26], as follows. Let Yn denote the
space of grids of covolume 1 in Rn, equipped with the Chabauty–Fell topology, or equiv-
alently with the topology it inherits from its identification with the homogeneous space
ASLn.R/=ASLn.Z/. Similarly, let Xn denote the space of lattices of covolume 1 in Rn,
which is identified with the homogeneous space SLn.R/=SLn.Z/. Fix the data d;m;Vphys

' Rd ; Vint ' Rm; �phys; �int, as well as a setW � Vint, and choose L randomly according
to a probability measure N� on Yn. This data determines a cut-and-project set ƒ, which is
random since L is. The resulting probability measure � on cut-and-project sets can thus
be written as the pushforward of N� under the map L 7! ƒ.W;L/, and is easily seen to
be invariant and ergodic under SLd .R/ or ASLd .R/ if the same is true for N�. One natural
choice for N� is the so-called Haar–Siegel measure, which is the unique Borel probability



Classification and statistics of cut-and-project sets 3577

measure invariant under the group ASLn.R/. Another is the Haar–Siegel measure on Xn

(i.e., the unique SLn.R/-invariant measure). It is also possible to consider other measures
on Yn which are ASLd .R/- or SLd .R/-invariant. As observed in [26], a fundamental
result of Ratner [38] makes it possible to give a precise description of such measures
on Yn. They correspond to certain algebraic groups which are subgroups of ASLn.R/
and contain ASLd .R/ (or SLd .R/).

Our first result is a classification of such measures. We refer to §2 and §3 for more
precise statements, and for definitions of the terminology.

Theorem 1.1. Let � be an RMS measure on C .Rd /. Then, up to rescaling, there are fixed
m and W � Rm such that � is the pushforward via the map

Yn ! C .Rd /; L 7! ƒ.L; W /;

of a measure N� on Yn, where n D d Cm, W satisfies (Reg), the measure N� is supported
on a closed orbit HL1 � Yn for a connected real algebraic group H � ASLn.R/ and
L1 2 Yn. There is an integer k � d , a real number field K and a K-algebraic group G
such that the Levi subgroup of H arises via restriction of scalars from G and K, and one
of the following holds for G:

� G D SLk .as a K-group/ and n D k � deg.K=Q/:

� G D Sp2k .as a K-group/, and d D 2, n D 2k � deg.K=Q/.

Furthermore, in the linear .resp. affine/ case � is invariant under none of .resp., all of /
the translations by nonzero elements of Vphys.

Here the group Sp2k is the group preserving the standard symplectic form in 2k vari-
ables; we caution the reader that this group is sometimes denoted by Spk in the literature.
As we will see in Proposition 3.3, any choice of K and G satisfying the description in
Theorem 1.1 gives rise to an affine and a linear RMS measure. We note that the vertex
sets of the famous Ammann–Beenker and Penrose tilings, which are well-known to have
representations as cut-and-project constructions, are associated with the real quadratic
fields K DQ.

p
2/ and K DQ.

p
5/, respectively, with d D 2 and G D SL2; see also §5.

Theorem 1.1 is actually a combination of two separate results. The first extends work
of Marklof and Strömbergsson [26]. They introduced the pushforward N� 7! � described
above, where N� is a homogeneous measure on Yn, and noted that the measures N� could
be classified using Ratner’s work. Our contribution in this regard (see Theorem 3.1) is
to give a full list of the measures N� which can arise. The second result, contained in our
Theorem 4.1, is that this construction is the only way to obtain RMS measures according
to our definition (which is given in terms of Vphys rather than Yn).

1.2. Formulae of Siegel–Weil and Rogers

In geometry of numbers, computations with the Haar–Siegel probability measure on Xn

are greatly simplified by the Siegel summation formula [44], according to which for



R. Rühr, Y. Smilansky, B. Weiss 3578

f 2 Cc.Rn/,Z
Xn

yf .L/ dm.L/ D

Z
Rn
f .x/ dvol.x/; where yf .L/ D

X
v2LX¹0º

f .v/: (1.2)

Here m is the Haar–Siegel probability measure on Xn, and vol is the Lebesgue measure
on Rn. The analogous formula for RMS measures was proved in [26]. Namely,1 suppose
� is an RMS measure, and for each ƒ 2 supp�, and for f 2 Cc.Rd /, set

yf .ƒ/ WD

´P
v2ƒX¹0º f .v/ if � is linear,P
v2ƒ f .v/ if � is affine.

(1.3)

We will refer to yf as the Siegel–Veech transform of f . Then it is shown in [26, 27] that
for an explicitly computable constant c > 0, for any f 2 Cc.Rd / one hasZ

yf .ƒ/ d�.ƒ/ D c

Z
Rd
f .x/ dvol.x/: (1.4)

A first step in the proof of (1.4) is to show that yf is integrable, i.e., belongs toL1.�/. As a
corollary of Theorem 1.1, and using reduction theory for lattices in algebraic groups, we
strengthen this and obtain the precise integrability exponent of the Siegel–Veech trans-
form, as follows:

Theorem 1.2. Let � be an RMS measure, let G and K be as in Theorem 1.1, let r WD
rankK.G/ denote the K-rank of G, and define

q� WD

´
r C 1 if � is linear;

r C 2 if � is affine.
(1.5)

Then for any f 2 Cc.Rd / and any p < q� we have yf 2 Lp.�/. Moreover, if the win-
dow W contains a neighborhood of the origin in Vint, there are f 2 Cc.Rd / for which
yf … Lq�.�/.

The proof involves integrating some characters over a Siegel set for a homogeneous
subspace of Xn. The special case for which KDQ; GD SLk and the measure � is linear
was carried out in [11, Lemma 3.10]. Note that

rankK.G/ D

´
k � 1 if G D SLk ;

k if G D Sp2k :
(1.6)

We will say that the RMS measure � is of higher rank when q� � 3; in light of the
above this happens unless d D 2, G D SL2, and � is linear. It follows immediately from
Theorem 1.2 that yf 2 L1.�/, and in the higher-rank case, that yf 2 L2.�/.

The proof of (1.4) given in [26] follows a strategy of Veech [49], and relies on a
difficult result of Shah [43]. Following Weil [51], we will re-prove the result with a more

1Our notations differ slightly from those of [26], but the result as stated here can be easily shown
to be equivalent to the one in [26].
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elementary argument. Combined with Theorem 1.2, the argument gives a strengthening
of (1.4).

Given p 2N, write
Lp
1 Rd DRdp , and for a compactly supported function f on Rdp ,

define

yfp .ƒ/ WD

´P
v1;:::;vp2ƒX¹0º

f .v1; : : : ; vp/ if � is linear;P
v1;:::;vp2ƒ

f .v1; : : : ; vp/ if � is affine.
(1.7)

Theorem 1.3. Let � be an RMS measure, and suppose p < q� where q� is as in (1.5).
Then there is a countable collection ¹�e W e 2 Eº of Borel measures on Rdp such that
� WD

P
�e is locally finite, and for every f 2 L1.�/ we haveZ

yfp d� D

Z
Rdp

f d� <1:

The measures �e are H -c&p-algebraic, for the group H appearing in Theorem 3.1 .see
Definition 7.3/.

This result is inspired by several results of Rogers for lattices; see e.g. [39, Thm. 4].
Loosely speaking, c&p-algebraic measures are images of algebraically defined measures
on Rnp under a natural map associated with the cut-and-project construction.

Theorems 1.2 and 1.3 will be deduced from their more general counterparts The-
orems 6.2 and 7.1, which deal with the homogeneous subspace HL1 � Yn arising in
Theorem 1.1.

1.3. Rogers-type bound on the second moment

A fundamental problem in geometry of numbers is to control the higher moments of
random variables associated with the Haar–Siegel measure on the space Xn. In particular,
regarding the second moment, the following important estimate was proved in [39–41]:
for the Haar–Siegel measure m on Xn, n � 3, there is a constant C > 0 such that for any
function f 2 Cc.Rn/ taking values in Œ0; 1� we haveZ

Xn

ˇ̌̌̌
yf .x/ �

Z
Xn

yf dm

ˇ̌̌̌2
dm.x/ � C

Z
Rn
f dvol;

where yf is as in (1.2). We will prove an analogous result for RMS measures of higher
rank.

Theorem 1.4. Let � be an RMS measure of higher rank. For p D 2 let � be the measure
as in Theorem 1.3. In the notation of Theorem 1.1, assume that

G D SLk ; or � is affine. (1.8)

Then there is C > 0 such that for any Borel function f W Rd ! Œ0; 1� belonging to L1.�/
we have Z

C .Rd /

ˇ̌̌̌
yf .x/ �

Z
C .Rd /

yf d�

ˇ̌̌̌2
d�.x/ � C

Z
Rd
f dvol: (1.9)
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The case in which (1.8) fails, that is,� is linear and GD Sp2k , and in which in addition
K DQ, is treated in [20], where a similar bound is obtained. The symplectic case with K
a proper field extension of Q is more involved, and we hope to investigate it further in
future work.

There have been several recent papers proving an estimate like (1.9) for homogeneous
measures associated with various algebraic groups. See [22] and references therein. The
alert reader will have noted that, even though the measure � is the pushforward of a
measure supported on a homogeneous spaceHL1, we prove the bound (1.9) for functions
defined on C .Rd / rather than on HL1. Indeed, while we expect such a stronger result to
be true, it requires a more careful analysis than the one needed for our application.

1.4. The Schmidt theorem for cut-and-project sets, and patch-counting

It is well-known that every irreducible cut-and-project set ƒ has a density

D.ƒ/ WD lim
T!1

# .ƒ \ B.0; T //
vol.B.0; T //

D
vol.W /

covol.L/
; (1.10)

where ƒ D ƒ.L; W /, vol.W / is the volume of W , and covol.L/ is the covolume of L

(for two proofs, which are valid for a larger class of nice sets in place of B.0; T /, see
[32] and [26, §3], and see references therein). In particular, the limit exists and is positive.
Following Schmidt [41], we would like to strengthen this result and allow counting in
even more general shapes, and with a bound on the rate of convergence. We say that a
collection ¹�T W T 2 RCº of Borel subsets of Rd is an unbounded ordered family if

� 0 � T1 � T2) �T1 � �T2 I

� for all T > 0, vol.�T / <1;

� vol.�T /!1 as T !1; and

� for all large enough V > 0 there is T such that vol.�T / D V .

Theorem 1.5. Let � be an RMS measure of higher rank such that (1.8) holds. Then for
every " > 0, for every unbounded ordered family ¹�T º, for �-a.e. cut-and-project set ƒ,

# .�T \ƒ/ D D.ƒ/ � vol.�T /CO.vol.�T /1=2C"/: (1.11)

This result is a direct analogue of Schmidt’s result for lattices, and its proof fol-
lows [41]. In the special case �T D B.0; T /, we obtain an estimate for the rate of
convergence in (1.10), valid for �-a.e. cut-and-project set. For related work see [18].
Note that for B.0; T /, and for lattices, Götze [14] has conjectured that an error estimate
O.vol.B.0; T //

1
2�

1
2d
C"/ should hold.

Even for�T D B.0; T /, one cannot expect (1.11) to hold for all cut-and-project sets;
in fact, a Baire category argument as in [18, §9] can be used to show that for any error
function E.T / with E.T / D o.T d / there are cut-and-project sets for which, along a
subsequence Tn !1,

j# .B.0; Tn/ \ƒ/ �D.ƒ/ � vol.B.0; Tn//j � E.Tn/:
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Thus, it is an interesting open problem to obtain error estimates like (1.11) for explicit cut-
and-project sets. Note that for explicit cut-and-project sets which can also be described
via substitution tilings, such as the vertex set of a Penrose tiling, there has been a lot of
work in this direction: see [45] and references therein.

We now discuss patch counting, which is a refinement which makes sense for cut-and-
project sets but not for lattices. For any discrete set ƒ � Rd , any point x 2 ƒ and any
R > 0, we refer to the set

Pƒ;R.x/ WD B.0;R/ \ .ƒ � x/

as the R-patch of ƒ at x. Two points x1; x2 2 ƒ are said to be R-patch equivalent if
Pƒ;R.x1/ D Pƒ;R.x2/. It is well-known that any cut-and-project set ƒ is of finite local
complexity, which means that for any R > 0,

# ¹Pƒ;R.x/ W x 2 ƒº <1:

Furthermore, it is known that whenever P0DPƒ;R.x0/ for some x0 2ƒ and someR>0,
the density or absolute frequency

D.ƒ;P0/ D lim
T!1

# ¹x 2 ƒ \ B.0; T / W Pƒ;R.x/ D P0º

vol.B.0; T //
(1.12)

exists; in fact, the set in the numerator of (1.12) is itself a cut-and-project set [1, Cor. 7.3].
Our analysis makes it possible to obtain an analogue of Theorem 1.5 for counting patches:

Theorem 1.6. Let � be an RMS measure of higher rank for which (1.8) holds. For any
ı > 0, set �0 WD ı

mC2ı
, where m D dim Vint. Suppose the window W � Vint in the cut-

and-project construction satisfies dimB.@W /�m� ı, where dimB denotes the upper box
dimension .see §10). Then for every unbounded ordered family ¹�T º in Rd , for �-a.e.
ƒ, for any patch P0 D Pƒ;R.x0/, and any � 2 .0; �0/, we have

# ¹x 2 �T \ƒ W Pƒ;R.x/ D P0º D D.ƒ;P0/ vol.�T /CO.vol.�T /1�� /: (1.13)

For additional results on effective error terms for patch-counting in cut-and-project
sets, see [17].

2. Basics

2.1. Cut-and-project sets

In the literature, different authors impose slightly different assumptions on the data in the
cut-and-project construction. For related discussions, see [1,26,31]. Here are the assump-
tions which will be relevant in this paper:

(D) �int.L/ is dense in Vint.

(I) �physjL is injective.
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(Reg) The window W is Borel measurable, bounded, has nonempty interior, and its
boundary @W has zero Lebesgue measure on Vint.

We will say that the construction is irreducible if (D), (I) and (Reg) hold.
In the literature, a more general cut-and-project scheme is discussed, in which the

groups Vphys ' Rd ; Vint ' Rm may be replaced with general locally compact abelian
groups. Note that if (D) fails, we can replace Vint with �int.L/, which is a proper subgroup
of Vint, while if (I) fails, we can replace Vint with Vint=.L \ ker�phys/. In both cases one
can obtain the same set using smaller groups. Note that when (D) fails, the group �int.L/

might be disconnected, and in that case, using (Reg) we see that only finitely many of its
connected components will intersect W , and ƒ.L; W / will have a description as a finite
union of cut-and-projects sets with an internal space of smaller dimension.

Regarding the regularity assumptions on W , note that if no regularity assumptions
are imposed, one can let ƒ be an arbitrary subset of �phys.L/ by letting W be equal to
�int.L\ �

�1
phys.ƒ//. Also, the assumption that W is bounded (respectively, has nonempty

interior) implies that ƒ is uniformly discrete (respectively, relatively dense).
Finally, note that it is notW that plays a role in (1.1), but rather ��1int .W /. In particular,

if convenient, one can replace the space Vint with any space V 0int which is complementary
to Vphys, and with the obvious notations, replace W with W 0 WD � 0int.�

�1
int .W //. Put oth-

erwise, it would have been more natural to think of W as being a subset of the quotient
space Rn=Vphys. We refrain from doing so to avoid conflict with established conventions.

2.2. Chabauty–Fell topology

Let C .Rd / denote the collection of all closed subsets of Rd . Equip C .Rd / with the
topology induced by the following metric, which we will call the Chabauty–Fell metric:
for Y0; Y1 2 C .Rd /, d.Y0; Y1/ is the infimum of all " 2 .0; 1/ for which, for both i D 0; 1;

Yi \ B.0; "
�1/ is contained in the "-neighborhood of Y1�i ;

and d.Y0; Y1/ D 1 if there is no such ". It is known that with this metric, C .Rd / is a
compact metric space. In this paper, closures of collections in C .Rd / and continuity of
maps with image in C .Rd / will always refer to this topology, and all measures will be
regular measures on the Borel � -algebra induced by this topology. In the quasicrystals
literature, this topology is often referred to as the local rubber topology or the natural
topology .

We note that there are many topologies on the set of closed subsets C .X/ of a topo-
logical space X . The Chabauty–Fell metric was introduced by Chabauty [8] for X D Rd

as well as for X a locally compact second countable group, and by Fell [13] for general
spaces X , particularly spaces arising in functional analysis. See also [25], where the con-
nection to the Hausdorff metric is elucidated via stereographic projection. Many of the
different topologies in the literature coincide on C .Rd /. Two notable exceptions are the
Hausdorff topology, which is defined on the collection of nonempty closed subsets of X ,
and the weak-* topology of Borel measures on Rd , studied in [28,49], satisfying a certain
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growth condition and restricted to point processes. See [2] for a comprehensive discussion
of topologies on C .X/.

We will need the following fact, which is well-known to experts, but for which we
could not find a reference (see [28, §5.3] for a related discussion):

Proposition 2.1. Suppose W is Borel measurable and bounded. Then the map

‰ W Yn ! C .Rd /; ‰.L/ WD ƒ.L; W /; (2.1)

is a Borel map, and is continuous at any L for which �int.L/ \ @W D ;:

Proof. We first prove the second assertion, that is, we assume that �int.L/\ @W D ; and
suppose by contradiction that Lj ! L in Yn but ‰.Lj / ¹ ƒ WD ‰.L/: By passing to
a subsequence and using the definition of the Chabauty–Fell metric on C .Rd /, we can
assume that there is " > 0 such that for all j , one of the following holds:

(a) There is v 2 ƒ with kvk � "�1 such that for all j , ‰.Lj / does not contain a point
within distance " of v.

(b) There are vj 2 ‰.Lj / such that vj ! v, where kvk � "�1 and v … ƒ.

In case (a), there is u 2L such that v D �phys.u/ and �int.u/ 2W . By assumption �int.u/

is in the interior of W . Since Lj ! L, there are uj 2 Lj such that uj ! u and for large
enough j , �int.uj / 2W and hence vj D �phys.uj / 2‰.Lj /. Clearly vj ! v and we have
a contradiction.

In case (b), we let uj 2 Lj be such that vj D �phys.uj /. Then the images of vj
under both projections �phys; �int are bounded sequences, and hence the sequence .uj /
is also bounded. Passing to a subsequence and using the fact that Lj !L we can assume
uj ! u for some u 2 L. Since �int.uj / 2 W for each j , �int.u/ 2 W and hence, by our
assumption, �int.u/ belongs to the interior ofW , and in particular toW . This implies that
v D �phys.u/ 2 ƒ, a contradiction.

We now prove that ‰ is a Borel measurable map. For this it is enough to show that
‰�1.B/ is measurable in Yn whenever B D B.ƒ; "/ is the "-ball with respect to the
Chabauty–Fell metric centered at ƒ D ‰.L/ 2 C .Rd /. Let

F1 WD ¹x 2 L W �phys.x/ 2 B.0; "
�1/; �int.x/ 2 W º;

F2 WD ƒ \ B.0; "
�1
C "/:

Then the definition of the Chabauty–Fell metric gives that L0 belongs to ‰�1.B/ if and
only if for any u1 2 F1, there is u01 2 L0 with �int.u

0
1/ 2 W and k�phys.u1/ � �phys.u

0
1/k

< ", and additionally, for any u01 2 L0 with �int.u
0
1/ 2 W and k�phys.u

0
1/k < "

�1 there is
v 2 F2 with k�phys.u

0
1/ � vk < ". Since lattices are countable and F1; F2 are finite, and

W � Vint is Borel measurable, this shows that ‰�1.B/ is described by countably many
measurable conditions.

We use this to obtain a useful continuity property for measures. Given a topological
space X , we denote by Prob.X/ the space of regular Borel probability measures. We
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equip Prob.X/ with the weak-* topology. Any Borel map f W X ! Y induces a map
f� W Prob.X/! Prob.Y / defined by f�� D � ı f �1.

Corollary 2.2. Let ‰ be as in (2.1). Then any N� 2 Prob.Yn/ for which

N�.¹L 2 Yn W �int.L/ \ @W ¤ ;º/ D 0 (2.2)

is a continuity point for ‰�. In particular, this holds if N� is invariant under translations
by elements of Vint ' Rm and @W has zero Lebesgue measure.

Proof. Suppose N�j ! N� in Prob.Yn/, and let �j ; � denote respectively the pushforwards
‰� N�j ; ‰� N�. To establish continuity of ‰� we need to show �j ! �. Since N�j ! N�, we
have

R
g d N�j !

R
g d N� for any g 2 Cc.Yn/. By the Portmanteau theorem this also holds

for any g which is bounded, compactly supported, and for which the set of discontinuity
points has N�-measure zero. Let f be a continuous function on C .Rd / and let Nf D f ı‰.
Then Nf is continuous at N�-a.e. point, by Proposition 2.1. The Portmanteau theorem then
ensures that Z

C .Rd /
f d�j D

Z
Yn

Nf d N�j !

Z
Yn

Nf d N� D

Z
C .Rd /

f d�:

That is, �j ! �, as required.
For the last assertion, assuming that N� is invariant under translations by elements

of Vint, we need to show that (2.2) is satisfied. Letting 1@W , mVint denote respectively the
indicator of @W and Lebesgue measure on Vint, and letting B � Vint be a measurable set
of finite and positive measure, by Fubini we have

N�.¹L 2 Yn W �int.L/ \ @W ¤ ;º/

D

Z �
1

mVint.B/

Z
B

1@W ı �int.LC x/ dmVint.x/

�
d N�.L/:

It therefore suffices to show that for any L,

mVint.¹x 2 Vint W �int.LC x/ \ @W ¤ ;º/ D 0I

and indeed, this follows immediately from the countability of L and the assumption that
mVint.@W / D 0.

2.3. Ratner’s theorems

Ratner’s measure classification and orbit-closure theorems [38] are fundamental results in
homogeneous dynamics. We recall them here, in the special cases which will be important
for us. A Borel probability measure � on Yn (respectively, Xn) is called homogeneous if
there is x0 in Yn (respectively, Xn) and a closed subgroup H of ASLn.R/ (respectively,
SLn.R/) such that the H -action preserves �, the orbit Hx0 is closed and equal to supp �,
and Hx0 WD ¹h 2 H W hx0 D x0º is a lattice in H . When we want to stress the role of H
we will say that � is H -homogeneous.
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Recall that ASLn.R/ (respectively, ASLn.Z/) denotes the group of affine transforma-
tions of Rn whose derivative has determinant 1 (respectively, and which map the integer
lattice Zn to itself); moreover, Yn is identified with ASLn.R/=ASLn.Z/ via the map
which identifies the coset represented by the affine map ' with the grid '.Zn/. Simi-
larly, we have an identification of Xn with SLn.R/= SLn.Z/. We view the elements of
ASLn.R/ concretely as pairs .g; v/, where g 2 SLn.R/ and x 2 Rn determine the map
x 7! gxC v. In what follows, two subgroups of ASLn.R/ play an important role, namely
SLd .R/ and ASLd .R/, which we will denote alternatively by F , and embed concretely
in ASLn.R/ in the upper left corner. That is, for F D SLd .R/, g 2 F is identified with��

g 0d;m
0m;d Idm

�
; 0n

�
; (2.3)

and for F D ASLd .R/, .g; v/ 2 F is identified with��
g 0d;m

0m;d Idm

�
;

�
v

0m

��
: (2.4)

Here Idm; 0k;`; 0k denote respectively the identity matrix of size m �m, the zero matrix
of size k � `, and the zero vector in Rk . We will refer to the embeddings of SLd .R/ and
ASLd .R/ in ASLn.R/, given by (2.3) and (2.4), as the top-left corner embeddings.

The following is a special case of Ratner’s result.

Theorem 2.3 (Ratner). Let 2� d � n, and let F be either ASLd .R/ or SLd .R/ .with the
top-left corner embedding in ASLn.R//. Then any F -invariant ergodic measure � on Yn
is H -homogeneous, where H is a closed connected subgroup of ASLn.R/ containing F .
Every orbit-closure Fx is equal to supp � for some homogeneous measure �. The same
conclusion holds for Xn and F D SLd .R/.

The following additional results were obtained in [42, 48]:

Theorem 2.4 (Shah, Tomanov). Let �;H be as in Theorem 2.3, and let x0 D g0Zn in Yn
or Xn be such that supp � D Hx0. Let H0 be the smallest algebraic subgroup of ASLn
which is defined over Q and contains g�10 Fg0. The solvable radical of H0 is equal to the
unipotent radical of H0, and letting HDg0H0g�10 ,H is equal to the connected component
of the identity in HR.

We will need a result of Shah which relies on Ratner’s work (once more this is a
special case of a more general result).

Theorem 2.5 ([43]). Let F be either ASLd .R/ or SLd .R/ as above, let ¹gtº
be a one-parameter diagonalizable subgroup of SLd .R/, and let U D ¹g 2 F W
limt!1 g�tggt ! eº be the corresponding expanding horospherical subgroup. Let
� � U be a relatively compact open subset of U and let mU be the restriction of Haar
measure to U , normalized so that mU .�/ D 1. Then for every x0 2 Yn, letting � be the
homogeneous measure such that supp � D Fx0, we haveZ

�

.gtu/�ıx0 dmU .u/ ���!t!1
�;
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where ıx0 is the Dirac measure at x0 and the convergence is weak-* convergence in
Prob.Yn/.

2.4. Number fields, geometric embeddings, and restriction of scalars

For more details on the material in this subsection we refer the reader to [10, 33, 35, 51].
Let K be a number field of degree D D deg.K=Q/, and let O D OK be its ring of

integers. Let �1; : : : ; �r ; �rC1; �rC1; : : : ; �rCs; �rCs be the field embeddings of K in C
where r C 2s D D, �1; : : : ; �r are real embeddings and �rC1; : : : ; �rCs are complex
(nonreal) embeddings. An order in K is a subring of O which is of rank D as an additive
group. The geometric embedding or Minkowski embedding of an order � is the set

¹.�1.x/; : : : ; �r .x/; �rC1.x/; : : : ; �rCs.x// W x 2 �º:

It is a lattice in RD 'Rr �Cs :Note that the geometric embedding depends on the choice
of ordering of the field embeddings, and on representatives of each pair of complex conju-
gate embeddings. Thus, when we speak of ‘the’ geometric embeddings we will consider
this data as fixed.

An algebraic group G defined over K (or K-algebraic group) is a variety defined
over K such that the multiplication and inversion maps G � G ! G, G ! G are K-
morphisms. A K-homomorphism of algebraic groups is a group homomorphism which
is a K-morphism of algebraic varieties. We will work only with linear algebraic groups,
which means that they are affine varieties, i.e., for some N , they are subsets of affine
space AN satisfying a system of polynomial equations in N variables. We will omit the
word ‘linear’ in the rest of the paper. A typical example of a K-algebraic group is a
Zariski closed matrix group, that is, a subgroup of the matrix group SLm.C/ for some m
described by polynomial equations in the matrix entries, with coefficients in K. If Gi are
K-algebraic groups realized as subgroups of SLmi .C/ for i D 1; 2, and ' W G1 ! G2 is
a K-homomorphism, then there is a map O' W SLm1.C/! SLm2.C/ which is polynomial
in the matrix entries, with coefficients in K, such that O'jG1 D '. For any field L � C
containing K, we will denote by GL the collection of L-points of G. It is a subgroup of
SLm.L/ if G is realized as a subgroup of SLm.C/.

We will do the same for rings L D Z or L D O. In this case the group GL depends
on the concrete realization of G as a matrix group but the commensurability class of GL
is independent of the choices (recall that two subgroups �1; �2 of some ambient group G
are commensurable if Œ�i W �1 \ �2� <1 for i D 1; 2). By a real algebraic group we
will mean a subgroup of finite index in GR for some K-algebraic group G, where K � R.

The restriction of scalars ResK=Q is a functor from the category of K-algebraic groups
to Q-algebraic groups. Given an algebraic group G defined over K, there is an algebraic
group H D ResK=Q.G/ defined over Q such that HQ is naturally identified with GK. For
any K-homomorphism ' WG1!G2 of K-algebraic groups we have a Q-homomorphism
ResK=Q.'/ W ResK=Q.G1/! ResK=Q.G2/. Given a matrix representation of G there is a
corresponding matrix representation of ResK=Q.G/, defined as follows. We can realize K
(as a ring) as a subalgebra of the Q-algebra of D �D matrices with entries in Q, and
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this leads to a corresponding identification of SLm.K/ with a subgroup of SLmD.Q/.
A different choice of basis will produce an SLmD.Q/-conjugate group. Now suppose
G � SLm.C/ is the solution set of polynomial equations P1; : : : ; P` in the matrix entries,
with coefficients in K. Let OP1; : : : ; OP` be the matrix valued polynomials where each K-
coefficient is replaced by its MatD�D.Q/ representative, and each variable (previously a
matrix coefficient of SLm.C/) is an MatD�D.C/-block of SLmD.C/. These polynomials,
together with the (linear) polynomials that ensure that eachD �D block is an element of
the Q-algebra K, have coefficients in Q, and ResK=Q.G/ is their solution set.

The R-points of H D ResK=Q.G/ can be represented concretely as

�1GR � � � � �
�rGR �

�rC1GC � � � � �
�rCsGC; (2.5)

where �jG is the algebraic group defined by applying the field embedding �j to the poly-
nomials in the matrix entries, with coefficients in K, defining G. Here, for a C-algebraic
group M, MC is a shorthand notation for the C-points of M, thought of as an R-group
via the isomorphism C Š R2. More explicitly, a polynomial equation involving m2 com-
plex matrix entries zij D aij C ibij , where i; j 2 ¹1; : : : ; mº, is replaced with the same
polynomial in the matrix algebra of 2 � 2 real matrices, with each appearance of zij
replaced by A.ij / WD

� aij bij
�bij aij

�
2 Mat2�2.R/, and with the 2m2 additional equations

.A.ij //12 D �.A
.ij //21; .A

.ij //11 D .A
.ij //22: Furthermore, denoting by NQ the algebraic

closure of Q, there is a conjugation of SLmD. NQ/ by an element with coefficients in the
Galois closure of K such that H. NQ/ is embedded in SLmD. NQ/ in block form with r C s
blocks, where each block contains one of the factors in (2.5).

Similarly, for a K-morphism ' W G1 ! G2, the restriction to the factor �jGR in (2.5)
of the Q-morphism ResK=Q.'/ W ResK=Q.G1/ ! ResK=Q.G2/ is the map 'j obtained
from ' by applying the field embedding �j to its coefficients. Thus, after writing both
ResK=Q.G1/ and ResK=Q.G2/ in product form as in (2.5), we have

ResK=Q.'/.g1; : : : ; grCs/ D .'1.g1/; : : : ; 'rCs.grCs//: (2.6)

We now note a connection between restriction of scalars, geometric embeddings of
lattices, and the action on Xn. Suppose that O D OK and � is an order in O, and let L

be the geometric embedding of � in RD . For m 2 N set n D Dm and let

L0 D c �L˚ � � � ˚L„ ƒ‚ …
m copies

;

where we choose the dilation factor c so that L0 2Xn, and we choose the ordering of the
indices so that

L0 WD c¹.�1.x/; : : : ; �rCs.x// W x 2 �
m
º: (2.7)

Now suppose G is an algebraic K-group without K-characters, ' W G ! SLm is a K-
morphism, and H WD ResK=Q.G/. Since ' is a K-morphism, there is a finite-index sub-
group of GO whose image under ' is contained in SLm.O/, and hence preserves Om.
This implies that a finite index subgroup of HZ preserves L0. Since HZ is a lattice in
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H WD HR (see [4, §13]), we find thatHL0 is a closed orbit in Xn which is the support of
an H -homogeneous measure.

3. Classification of invariant measures

Recall from the introduction that an affine (respectively, linear) RMS measure � is a
probability measure on C .Rd /which gives full measure to the collection of all irreducible
cut-and-project sets, and is invariant and ergodic under F , where

F WD

´
SLd .R/ if � is linear;

ASLd .R/ if � is affine;
(3.1)

is the stabilizer group of �. In this section we will give some more background on RMS
measures, and two assertions (Theorems 3.1 and 4.1) which together imply Theorem 1.1.
The careful reader will have noticed that we gave here a seemingly weaker definition
of an affine RMS measure compared to the introduction, by requiring it to be ergodic
under ASLd .R/ instead of SLd .R/. However, these two definitions are equivalent by the
Howe–Moore ergodicity theorem (see [9]).

3.1. RMS measures – background and basic strategy

In order to motivate the definition of an RMS measure, we recall some crucial observa-
tions of [26]. Let F be as in (3.1). Let Rn D Vphys ˚ Vint; �phys; �int;L; W be the data
involved in a cut-and-project construction.

The observations of [26] are the following:

� From the fact that �phys intertwines the action of F on Rn (via the top-left corner
embedding in ASLn.R/) and on Rd , for the map ‰ defined in (2.1), one obtains the
equivariance property

‰ ı g D g ı‰ (3.2)

for all g 2 F ; in other words, gƒ.L; W / D ƒ.gL; W /:

� In particular, if we fix the data Rn D Vphys ˚ Vint; W , then the map ‰� W Prob.Yn/!
Prob.C .Rd // considered in Corollary 2.2 maps F -invariant measures to F -invariant
measures.

� Due to Ratner’s work described in §2.3, ergodic F -invariant measures on Yn can be
described in detail, in terms of certain real algebraic subgroups of ASLn.R/.

� Theorem 2.5 and other results from homogeneous dynamics can then be harnessed as
a powerful tool for deriving information about cut-and-project sets.

In order to analyze measures on Yn, a basic strategy is to work first with the simpler
space Xn. Let

M WD ASLn.R/; � WD ASLn.Z/:
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Recall that Yn is identified with M=� , and under this identification a closed orbit HL is
identified with Hg� D gH1� , where g 2 M is such that L D gZn and H1 D g�1Hg.
Also let

M WD SLn.R/; � WD SLn.Z/:

We think of M concretely as the stabilizer of the origin in the action of M on Rn. Recall
also that Xn is identified with M=� . Let

� WM !M; � W Yn !Xn (3.3)

denote respectively the natural quotient map and the induced map on the quotients (which
is well-defined since �.�/ D �). The map � is a Q-morphism, and the map � is realized
concretely by mapping a grid L to the underlying lattice L�L obtained by translating L

so that it has a point at the origin. It has the equivariance property

�.gL/ D �.g/�.L/ (where g 2M , L 2 Yn): (3.4)

Every fiber of � is a torus and thus � is a proper map.
We summarize the spaces and maps we use in the following diagram:

Yn DM=�

Xn DM=� C .Rd /

‰�

Extending the terminology in the introduction, a homogeneous measure N� on Yn will
be called affine if it is ASLd .R/-invariant, and linear if it is SLd .R/-invariant but not
ASLd .R/-invariant. Here ASLd .R/ and SLd .R/ are embedded in M via the top-left
corner embeddings (2.4) and (2.3).

3.2. The homogeneous measures arising from the F -action on Yn

In this section we state a more precise version of Theorem 1.1. Suppose k0 is a sub-
field of C. We say that a k0-algebraic group H is k0-almost simple if any normal
k0-subgroup H0 satisfies dim H0 D dim H or dim H0 D 0. In this case we will also say
that a subgroup of finite index of Hk0 is k0-almost simple.

Theorem 3.1. Let N� be an F -invariant ergodic measure on Yn, and letH and L1 denote
respectively the subgroup of M and the point in Yn involved in Theorem 2.3; i.e., N� is
H -invariant and supported on the closed orbitHL1. Let g1 2M be such that L1D g1Zn

and letH1 WD g�11 Hg1. Assume also that L1 satisfies conditions (D) and (I). ThenH; H1
and L1 are described as follows:

(i) In the linear case, H1 is semisimple and Q-almost simple. In this case write
H 0 WDH1. In the affine case, we can writeH1 as a semidirect productH 0 Ë Rn where
H 0 is semisimple and Q-almost simple, and Rn denotes the full group of translations
of Rn.
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(ii) The groupH 0 in (i) is the connected component of the identity in the group of R-points
of ResK=Q.G/, where K is a real number field and G is a K-group which is K-
isomorphic to either SLk or Sp2k , for some k � d . In the case GD SLk we have nD
k deg.K=Q/, and there is a subspace V of Rn of dimension k containing g�11 Vphys

which is H 0-invariant and such that the action of H 0 on V gives the group SL.V /.
The case GD Sp2k only arises when d D 2, and in that case nD 2k deg.K=Q/, and
there is a subspace V of Rn of dimension 2k equipped with a symplectic form !0 such
that V is H 0-invariant, the action of H 0 on V gives the symplectic group Sp.V; !0/,
and V contains g�11 Vphys as a symplectic subspace.

The proof will involve a reduction to the space Xn of lattices. We introduce some
notation and give some preparatory statements.

As in §3.1, let M D ASLn.R/; � D ASLn.Z/; Yn DM=� , so that the closed orbit
HL1 is identified with Hg1� D g1H1� . By Theorem 2.3, �H1 WD H1 \ � is a lat-
tice in H1, and N� is the pushforward of the unique H1-invariant probability measure on
H1=�H1 under the map h�H1 7! g1h� . By Theorem 2.4,H1 is the connected component
of the identity in the group of real points of a Q-algebraic group. In particular, there are
at most countably many possibilities for H1.

Also let M D SLn.R/; � D SLn.Z/; Xn D M=� as above, and let �; � be the
maps in (3.3). The orbit �.Hg1�/ D Hg1� D g1H1� is closed, where H1 D �.H1/,
g1 D �.g1/ and H D �.H/ contains �.F / ' SLd .R/.

We say that property (irred) holds if there is no proper Q-rational subspace of Rn that
isH1-invariant (for the linear action by matrix multiplication). Note that by Theorem 2.4,
H1 is the connected component of the identity in the group of real points of the smallest
Q-subgroup of SLn containing g�11 SLd .R/g1, and thus (irred) is equivalent to requiring
that there is no proper Q-rational subspace of Rn that is g�11 SLd .R/g1-invariant.

We now state an analogue of Theorem 3.1 for the action on Xn.

Lemma 3.2. Assume .irred/ holds. Then H1 is the connected component of the identity
of the group of real points of a semisimple Q-algebraic group H, satisfying the properties
listed in statement (ii) of Theorem 3.1 . for the group H 0/.

Lemma 3.2 is the main result of this section, and its proof will be given below in §3.3
and §3.4.

Proof of Theorem 3.1 assuming Lemma 3.2. Let QH be the smallest Q-subgroup of ASLn
containing g�11 SLd .R/g1, so that by Theorem 2.4, we have H1 D . QHR/

ı. Similarly, let
H be the smallest Q-subgroup of SLn containing g�11 SLd .R/g1. We extend � to a pro-
jection map of algebraic groups defined over Q, mapping Q-subgroups to Q-subgroups
[3, Cor I.1.4]. Then it follows from minimality of H and QH that �. QH/ D H.

As we will see in Lemma 3.4, under the assumptions of Theorem 3.1, condition
(irred) holds. In particular, the conclusion of Lemma 3.2 applies. Hence H is semisimple.

Let U be the unipotent radical of QH. Then U� ker� , and since ker� \ QH is a unipotent
normal subgroup, UD ker� \ QH. This means that in the affine map determined by h 2H1
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on Rn, �.h/ is the linear part, and U D UR acts on Rn by translations. This implies the
equality

span ¹u.x/ � x W x 2 Rn; u 2 U º D span ¹u.0/ W u 2 U º; (3.5)

and we denote the subspace of Rn appearing in (3.5) by V0. Clearly, V0 are the real points
of a Q-subspace of Cn since U is defined over Q.

Since H1 normalizes U , V0 is H1-invariant, and since H1 D �.H1/ is the group of
linear parts of elements ofH1,H1 also preserves V0. By (irred) we must have V0D ¹0º or
V0 DRn. If V0 D ¹0º then U D ¹0º. If V0 DRn then U contains translations in n linearly
independent directions and hence U ' Rn is the entire group of translations of Rn. This
gives the description of the translational part ofH1, in assertion (i). Assertion (ii) follows
from Lemma 3.2.

The next proposition shows that all the cases described in Theorem 3.1 do arise:

Proposition 3.3. For any k � d � 2 and any real number field K, there are R-algebraic
groups H and H 0 in M , and L1 D g1Zn 2 Yn, where n D k deg.K=Q/ and g1 2 M ,
such that the following hold:

� H 0 is defined over Q, and is Q-isogenous to ResK=Q.G/, where G is K-isomorphic
to SLk .

� H is either equal to H 0 .linear case/ or to H 0 Ë Rn .affine case/.

� The orbit HL1 is closed and supports an H -homogeneous probability measure �. The
pushforward ‰�� is an RMS measure.

The same statement is true with d D 2; n D 2k deg.K=Q/, and with G being K-isomor-
phic to Sp2k for some k � 2.

Proof. The proof amounts to reversing the steps in the preceding discussion. For concrete-
ness, we give it for GD SLk . LetD WD deg.K=Q/, n WDDk andG WD SLn.R/. The stan-
dard action ' of GK on Kk gives rise to a Q-embedding ResK=Q.'/ W ResK=Q.G/! SLn.
Let H1 denote the connected component of the identity in the group of R-points in
ResK=Q.G/. Similarly to (2.3) and (2.4), we refer to

g 7!

�
g 0d;n�d

0n�d;d Idn�d

�
(3.6)

as the top-left corner embedding of SLd .R/ inM . By the explicit description of restriction
of scalars in §2.4, there is g1 2M such that H WD g1H1g�11 contains the top-left corner
embedding of SLd .R/ in M , and up to scaling, g1Zn is the geometric embedding of Ok

as in (2.7), where O is the ring of integers in K. In particular, the orbitHg1Zn is a closed
orbit supporting an H -homogeneous measure in Xn.

Recall that there is an embedding of M in M and of Xn in Yn (respectively as the
stabilizer of the origin in the standard action on Rn, and as the set of lattices in the space of
grids). We letH 0 denote the image ofH1 under this embedding, and in the linear case we
setH WDH 0 and letHL0 be the image ofHg1Zn under this embedding, and let � be the
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H -homogeneous measure onHL1. Because the action of SLd .R/ is ergodic with respect
to �, we can find g1 such that for L1 D g1Zn we have SLd .R/L1 DHL1 DHL0. It is
not hard to check that with these choices, the desired conclusions hold. The proof in the
affine case is similar, taking H D H 0 Ë Rn and ��1.Hg1Zn/.

3.3. Preparations for the proof of Lemma 3.2

Recall that L1 D �.L1/. A vector space V � Rn is called L1-rational if V \ L1 is a
lattice in V . In other words, a subspace V is L1-rational if it is of the form g1W for some
rational subspace W � Rn, i.e., a subspace spanned by vectors with rational entries.

Lemma 3.4. The following implications hold.

(a) (D)) Vphys is not contained in a proper L1-rational subspace.

(b) (I)) Vint contains no nontrivial L1-rational subspace.

(c) (I) and (D)) .irred/.

Variants of statements (a) and (b) are given in [36], but we give a complete proof for
the convenience of the reader.

Proof. We will prove all three statements by contradiction. Suppose that (a) fails, so that
there is a proper L1-rational subspace W containing Vphys. Let W ? be an L1-rational
complement of W . Since W ? is L1-rational, L1 is mapped to a lattice in W ? under the
projection Rn ! W ?, and hence the projection of L1 to W ? is discrete. On the other
hand, Rn ! W ? factors through Vint since Vphys � W , and by (D) the image of L1 is
dense in Vint. Thus, the projection of L1 is dense in W ?, a contradiction.

Now suppose that (b) fails, and Vint contains a nontrivial L1-rational subspace W .
Then Vint, which is the kernel of the map Rn!Vphys, containsW \L1, which by assump-
tion is nontrivial. This contradicts (I).

Now suppose (D) and (I) hold but (irred) fails, so that there is a proper H1-invariant
Q-rational subspaceW . From (b) we know that g1W is not contained in Vint. Hence some
u 2 g1W can be written as

u D up C ui ; up 2 Vphys X ¹0º; ui 2 Vint:

Since SLd .R/ �H D g1H1g�11 , g1W is also SLd .R/-invariant. Since SLd .R/ acts triv-
ially on Vint, for any g 2 SLd .R/ we have

gu � u D gup � up 2 Vphys:

We can find g 2 SLd .R/ such that gup ¤ up , and hence g1W \ Vphys is nontrivial. Since
SLd .R/ acts irreducibly on Vphys, Vphys � g1W . This contradicts the conclusion of (a).

Theorem 3.5 (Morris). Let n � d � 2, and let S be a connected real algebraic group
which is R-almost simple, and contains the image of SLd .R/ under the top-left corner
embedding .see (3.6)/. Then there are k � d; ` � d and g 2 SLn.R/ such that gSg�1
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is the image of either SLk.R/ or Sp2`.R/ under the top-left corner embedding, and the
latter can only occur when d D 2.

In this statement, by the ‘top-left corner embedding of Sp2k.R/’, we mean the image
under (3.6), that is, the elements of SL2k.R/ stabilizing a nondegenerate alternating bilin-
ear form on R2k . As is well-known, such a form can be taken to be defined by

!.Exi ; Eyj / D �!. Eyj ; Exi / D ıij ; !.Exi ; Exj / D !. Eyi ; Eyj / D 0

for some basis Ex1; : : : ; Exk ; Ey1; : : : ; Eyk of R2k .
This result was proved by Dave Morris in 2014, in connection with prior work of one

of the authors and Solomon. Namely, the result appeared in an initial arXiV version [46]
(in a slightly different form) but eventually did not appear in the published version [47].

For any k � d , we will refer to the image of SLk.R/ under the top-left corner embed-
ding in (3.6) (replacing d with k in that embedding) as the top-left copy of SLk.R/.
Clearly, with respect to the decomposition

Rn D Rk ˚Rn�k ; (3.7)

the top-left copy of SLk.R/ acts via its standard action on the first summand, and the
second summand is the set of vectors fixed by the action.

Let k be maximal such that S contains an SLn.R/-conjugate of the top-left copy of
SLk.R/. To make the ideas more transparent we separate the proof into cases according
to whether k � 3 (the easier case) or k D 2. The proofs in these cases are not independent
– readers interested in the case k D 2 are encouraged to first read the proof for k � 3.

Proof of Theorem 3.5 in case k � 3. We recall the following result of Mostow [34]: If
G1 � � � � � Gr � SLn.R/ are connected reductive real algebraic groups, then there is
x 2 SLn.R/ such that x�1Gix is self-adjoint for every i . That is, if g 2 x�1Gix, then the
transpose of g is also in x�1Gix.

Replacing S by a conjugate, we may assume that S contains the top-left embedding
of SLk.R/, which we denote by F . By Mostow’s theorem, there is x 2 SLn.R/ such that
x�1Fx and x�1Sx are self-adjoint. Let V be the .n � k/-dimensional subspace of Rn

which is pointwise fixed by F . Since SOn.R/ acts transitively on the set of subspaces of
any given dimension, there is some h 2 SOn.R/ such that xh.V / D V . After replacing
x with xh, we may assume that x�1Fx fixes pointwise the second summand in the split-
ting (3.7), and x�1Fx and x�1Sx are self-adjoint (because this property is not affected
by conjugation by an element of SOn.R/). We conclude that x�1Fx D F . Thus, we may
assume that S is self-adjoint and contains F . We will assume that S ¤ F and derive a
contradiction to the maximality of k. Since F   S are connected, their Lie algebras f; s

satisfy dim f < dim s.
For 1 � i; j � n, let ei;j be the elementary matrix with 1 in the .i; j / entry, and all

other entries 0. Write

sln.R/ D f ˚ z˚X1 ˚ � � � ˚Xk ˚ Y1 ˚ � � � ˚ Yk ; (3.8)

where
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� sln.R/ and f are the Lie algebras of SLn.R/ and F , respectively,

� z is the subspace of sln.R/ fixed pointwise by Ad.F /, where Ad W SLn.R/ !
Aut.sln.R// is the adjoint representation,

� Xi is the linear span of ¹ ei;j W k C 1 � j � n º,

� Yj is the linear span of ¹ ei;j W k C 1 � i � n º.

Now we denote by A the group of diagonal matrices in F with positive entries. We write
an element a 2 A as

a D diag
�
a1; a2; : : : ; ak�1; .a1a2 � � � ak�1/

�1; 1; : : : ; 1
�
; (3.9)

and denote by �i the characters a 7! ai , where ak WD .a1 � � � ak�1/
�1. Since k � 3,

the characters �i ; ��1i are distinct for i D 1; : : : ; k, and the subspaces X1; : : : ; Xk and
Y1; : : : ; Yk are the corresponding weight spaces, that is,

� Xi D ¹x 2 sln.R/ W Ad.a/.x/ D �i .a/x for all a 2 Aº,

� Yj D ¹x 2 sln.R/ W Ad.a/.x/ D ��1j .a/x for all a 2 Aº.

We will repeatedly use the fact that if l is an Ad.A/-invariant subspace of sln.R/, and
v 2 l has a nontrivial projection onto some weight space, then this projection is contained
in l.

Since A � S , s is invariant under Ad.A/. Since S is R-almost simple and dim f <

dim s, s cannot be contained in f ˚ z, and hence s projects nontrivially to some Xi or Yj .
In fact, since S is self-adjoint, it must project nontrivially to both Xi and Yi , for some i .
Since Xi is a weight space of Ad.A/, we find that Xi \ s is nontrivial. Conjugating by an
element of Ik � SOn�k.R/, we may assume that s contains the matrix ei;kC1. Applying
an appropriate element of Ad.SOk.R// shows that ek;kC1 2 s. Then, since S is self-
adjoint, s also contains ekC1;k . Therefore, s contains the Lie subalgebra generated by f ,
ek;kC1, and ekC1;k , which is the Lie subalgebra of F 0, the top-left copy of SLkC1.R/.
Thus S contains F 0, contradicting the maximality of k, and completing the proof in case
k � 3.

Proof of Theorem 3.5 in case k D 2. In this case we also have d D 2. Arguing as in the
case k � 3we may assume that S properly contains F , the top-left copy of SL2.R/, and is
self-adjoint. Let ` be maximal such that S contains a copy of H WD F1 � � � � � F`, where
each Fr is isomorphic to SL2.R/ and there is an H -invariant direct sum decomposition
Rn D V1 ˚ � � � ˚ V` ˚ V0, where the spaces V1; : : : ; V` are two-dimensional, and each
Fr acts linearly on Vr and trivially on

L
s¤r Vs . By assumption ` � 1, and there is a

conjugation taking H into a top-left copy of SLt .R/, where t D 2` � 2. We replace H
and S by their images under this conjugation (retaining the same names H and S ). By
Mostow’s theorem we can assume that H and S are both self-adjoint.

Our first goal is to show that

S is also contained in the top-left copy of SLt .R/: (3.10)



Classification and statistics of cut-and-project sets 3595

Indeed, in analogy with (3.8), consider the decomposition

sln.R/ D l˚ z˚m; where m D X1 ˚ � � � ˚Xt ˚ Y1 ˚ � � � ˚ Yt ;

and

� l is the Lie algebra of the top-left SLt .R/,

� z is the Lie algebra of the centralizer of the top-left SLt .R/,

� Xi is the linear span of ¹ei;j W t C 1 � j � nº,

� Yj is the linear span of ¹ei;j W t C 1 � i � nº.

With this notation, our claim (3.10) is that s � l.
We note that

s does not contain a nonzero element in any Xi or any Yi : (3.11)

Indeed, if v 2 .s \ Xi / X ¹0º, we could re-index to assume i D 1, and conjugate by an
element of It � SOn�t .R/ and rescale to assume v D e1;tC1. Since s is self-adjoint, we
also have etC1;1 2 s. Since f1; etC1;1 and e1;tC1 generate a Lie algebra isomorphic to
sl3.R/, this gives a contradiction to the choice of k and proves (3.11).

If s 6� l, using the fact that s is simple and the Lie algebras l; z commute, we see
that the projection of s onto m is nontrivial; indeed, if s � l˚ z then the kernel of the
projection of s to z contains f and by simplicity is equal to s.

LetA0 be the intersection ofH with the diagonal subgroup and let a0 be its Lie algebra.
For each odd index i < t , the spaces Xi ˚ YiC1 and XiC1 ˚ Yi are weight spaces for
Ad.A0/, and hence there is some i such that s \ .Xi ˚ YiC1 [ XiC1 ˚ Yi / contains a
nonzero element u. Re-indexing, conjugating and rescaling as in the proof of (3.11), we
can assume u D e1;tC1 C

P
j�tC1 aj ej;2; where the aj are not all zero. By a further

conjugation by an element of It � SOn�t .R/ that fixes e1;tC1, we can also assume that
aj D 0 for j > t C 2, that is, we can write

u D e1;tC1 C aetC1;2 C betC2;2 with .a; b/ ¤ .0; 0/:

Using brackets to denote the commutator Œx; y� D xy � yx , we compute

w WD Œu; Œu; e2;1�� D Œe1;tC1 C aetC1;2 C betC2;2;�e2;tC1 C aetC1;1 C betC2;1�

D a.e1;1 C e2;2 � 2etC1;tC1/ � 2betC2;tC1

and
Œw; u� D 3ae1;tC1 � 3a

2etC1;2 � 3abetC2;2;

so that
6aetC1;1 D Œw; u�C 3au 2 s:

It follows from (3.11) that a D 0, and thus s contains �1
2b
w D etC2;tC1. Since s is self-

adjoint, it also contains etC1;tC2, and since these two vectors generate a copy of sl2.R/
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which is contained in z, and acts on Rn by the standard two-dimensional representation,
we have a contradiction to the definition of `. This proves (3.10).

Since S properly contains F , we have ` > 1. We will now show that s is the Lie
algebra sp.2`;R/ of the top-left corner embedding of Sp2`.R/. We will begin with the
case ` D 2 as it will make the argument more transparent. That is, up to a conjugation in
SLn.R/, we want to show that

s D h˚ s1;3 ˚ s1;4 ˚ s2;3 ˚ s2;4; (3.12)

where h Š sl.2;R/˚ sl.2;R/ � s is the Lie algebra of H , and

s1;3 WD span.e1;3 � e4;2/; s1;4 WD span.e1;4 C e3;2/;

s2;3 WD span.e2;3 C e4;1/; s2;4 WD span.e2;4 � e3;1/:
(3.13)

To this end, let

l1;3 WD span.e1;3; e4;2/; l1;4 WD span.e1;4; e3;2/;

l2;3 WD span.e2;3; e4;1/; l2;4 WD span.e2;4; e3;1/
(3.14)

be the weight spaces for the action of Ad.A0/ which are not in h. Let

s0i;j WD li;j \ s;

where the indices .i; j / range over ¹1; 2º � ¹3; 4º. Our goal is to show that

for all i; j; s0i;j D si;j : (3.15)

We first show that
for all i; j; dim.s0i;j / D 1: (3.16)

To this end, note that the ad-action of the off-diagonal elements of h permutes the
spaces li;j transitively. For example,

l1;3 D Œe1;2; l2;3�; l1;3 D Œe4;3; l1;4�;

and so on. Since e1;2; e2;1; e3;4; e4;3 2 s, this ad-action also permutes the intersec-
tions s0i;j , and thus they all have the same dimension. If this dimension is 0 then s D h,
contradicting the fact that s is simple, and if this dimension is 2, then s D sl.4;R/,
contradicting the definition of k. We have shown (3.16).

We now claim that

s01;3 is either s1;3 D span.e1;3 � e4;2/ or span.e1;3 C e4;2/: (3.17)

To see this, let u D ae1;3 C be4;2 2 s01;3 X ¹0º. By (3.11), a; b are both nonzero. Since s

is self-adjoint, v WD ae3;1 C be2;4 2 s and hence v 2 s02;4. Also we have

w WD Œe2;1; Œe3;4; u�� D Œe2;1;�ae1;4 C be3;2� D �ae2;4 � be3;1 2 s:



Classification and statistics of cut-and-project sets 3597

Since w and v are both nonzero elements of s02;4, by (3.16) they are scalar multiples of
each other and thus there is c ¤ 0 such that w D cv. This forces �a D cb and �b D ca
and so c D ˙1, proving (3.17).

Using the ad-action as before we see that in order to obtain (3.15), it suffices to show
that after a conjugation, we have s01;3D s1;3. Suppose that s01;3D span.e1;3C e4;2/. Then

s01;4 D span.Œe3;4; e1;3 C e4;2�/ D span.e1;4 � e3;2/;

and we can apply a permutation matrix swapping the indices 3, 4 to obtain

s01;3 D span.e1;3 � e4;2/ D s1;3:

We have shown (3.15), completing the proof in case ` D 2.
Note that for ` D 2 we have only applied one conjugation, namely the one swap-

ping the indices 3, 4. Thus, by induction on `, we see that after a conjugation, we have
the following. For i 2 ¹1; : : : ; ` � 1º, let SL.i/4 .R/ be the copy of SL4.R/ embedded
in SLn.R/ in a 4 � 4 block corresponding to indices 2i � 1; 2i; 2i C 1; 2i C 2. Let
H .i/ D Fi � FiC1 � SL.i/4 .R/ be the corresponding diagonal copies of SL2.R/, and let
s.i/ be the intersection of s with the Lie algebra of SL.i/4 .R/. Then s.i/ is the obvious
embedding of sp.4;R/ (namely, the embedding given for i D 1 by (3.12) and (3.13)).
The Lie algebras s.i/ generate sp.2`;R/ (namely, the Lie algebra of the top-left Sp2`.R/).
This implies that H contains Sp2`.R/. Since Sp2`.R/ is a maximal subgroup among the
connected Lie subgroups of SL2`.R/ (see [19]), we must have S D Sp2`.R/.

3.4. Proof of Lemma 3.2

Since � is proper, we have

Hg1� D �.Hg1�/ D �.Fg1�/ D SLd .R/g1�:

Since H1 D g�11 Hg1, by Theorem 2.4, H1 is the connected component of the identity in
the group of real points of a Q-algebraic group H. From now on we replace F with its
image under � , i.e., denote F D SLd .R/. We also write

F 0 WD g�11 Fg1; so that F 0� D H1�:

We need to show that H admits the description given in the statement. We divide the
proof into several steps.

Step 1: H is semisimple. Let U be the radical of H. By Theorem 2.4, it is defined over Q
and unipotent, U D UıR is the unipotent radical ofH 1, and U is connected [3, 11.21]. Let
V U be the subspace of Rn fixed by U . Since UQ � U is Zariski dense in U (see [3, Cor.
18.3]), we have

V U D ¹z 2 Rn W uz D z for all u 2 UQº:

Thus V U is defined over Q.
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Furthermore, since every unipotent subgroup can be put in an upper triangular form,
V U ¤¹0º, and is a proper subspace of Rn unlessU is trivial. SinceU is normal inH 1, the
space V U is H1-invariant, and thus by assumption (irred), V U is not a proper subspace
of Rn. It follows that U is trivial, and hence H1 is semisimple. Therefore so is H.

For a group M and normal subgroups M1; : : : ;Mk , their product is the subgroupY
Mi WD ¹m1 � � �mk W mi 2Mi ; i D 1; : : : ; kº:

Note that
Q
Mi is also normal and does not depend on the ordering of the Mi . Let k0

be one of the fields Q or R. Recall that an almost direct product is the image of a direct
product under a homomorphism with finite kernel (that is, isogenous to a direct product).
A semisimple k0-group is an almost direct product of its k0-almost simple normal sub-
groups, and such a decomposition is unique up to permuting the k0-almost simple factors.

We write H in two ways: as an almost direct product of its R-almost simple factors Si ,
and as an almost direct product of its Q-almost simple factors Tj , and let Si and Tj
denote respectively the connected component of the identity in the group of R-points
of Si and Tj . Since every Tj can be further decomposed into R-almost simple factors,
and since these decompositions are unique, the decomposition of H into the Si refines
the decomposition of H into the Tj . In other words, there is a partition of the Si into
subsets such that each Tj is a product of the Si in one subset of the partition. Then H1
is the product of the Si . For h 2 H1, we can write h D h1 � � � ht , where hi 2 Si , and if
h D h01 � � � h

0
t is another such presentation, then for each i , h0ih

�1
i belongs to the finite

center of H1.

Step 2: F 0 is contained in one of the Si , and H is Q-almost simple. The second asser-
tion follows from the first one. Indeed, by re-indexing, let S1 and T1 denote respectively
the connected component of the identity in the real points of the R- and Q-simple factors
containing F 0. Then S1 � T1 and T1 does not properly contain the real points of any Q-
subgroup containing S1, and by the last assertion of Theorem 2.4 we find that H1 D T1:

Turning to the first assertion, let Z.H1/ denote the center of H1, for each i let S 0i be
the quotient group H1=.Z.H1/ �

Q
j¤i Sj /, and let F 0i denote the image of the projection

of F 0 to S 0i . Let

H2 WD
Y
i2I

Si ; where I WD ¹i W F 0i is nontrivialº:

Note that i0 2 I if and only if for any subset F 0 � F 0 which generates a dense subgroup,
there is f 0 2 F 0 which can be written as a product of elements f 0i in Si , where f 0i0 is not
central in Si0 . Clearly F 0 �H2, and our goal is to show thatH2 is equal to one of the Si ,
or in other words that # I D 1. Also, for i 2 I, F 0i is isogenous to SLd .R/.

Recall that a representation of a group H on a vector space V is isotypic if V is the
direct sum of k 2 N isomorphic irreducible representations for H , where k is referred
to as the multiplicity. We will also use the term H -isotypic if we want to make the
dependence on H explicit. A linear representation of a semisimple group has a unique
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presentation as a direct sum of isotypic representations (up to permuting factors). Let
V 0phys WD g

�1
1 .Vphys/ and V 0int WD g

�1
1 .Vint/. Then the decomposition Rn D V 0phys ˚ V

0
int, is

the decomposition of Rn into F 0-isotypic representations, and the action of F 0 on V 0phys is
irreducible. In particular, the multiplicity of the representation on V 0phys is equal to 1.

Let V1 ˚ � � � ˚ Vt be a decomposition of Rn into H2-isotypic representations. Since
F 0�H2, each V` isF 0-invariant, and decomposes further into isotypic representations for
F 0. Since V 0phys is an isotypical component of F 0 of multiplicity 1, V 0phys is contained in one
of the V`. By renumbering we can assume V 0phys � V1. Since F 0 acts on V 0phys irreducibly,
the action of H2 on V1 is irreducible, and the H2-isotypic component associated to V1
has multiplicity 1. Since F 0 acts trivially on V 0int, which is a complementary subspace to
V 0phys, the action of F 0 on each V` is trivial for ` D 2; : : : ; t , that is,

F 0 �

t\
`D2

ker.H2jV`/: (3.18)

The right-hand side of (3.18) is a normal subgroup ofH2, and thus a product
Q
i2J Si for

some J � I. By the assumption that F 0i is nontrivial for each i 2 I, we must have J D I,
that is, the group on the right-hand side of (3.18) must coincide with H2. This means that
for ` � 2, the V` are trivial representations for H2, and hence of Si for each i 2 I.

Let F 0 denote the elements of F 0 whose eigenvalues on V 0phys are all real, distinct from
each other, and not equal to 1. Since these conditions are invariant under conjugation and
F 0 is simple, F 0 generates a dense subgroup of F 0. Write f 0 as a product of elements f 0i ,
where f 0i 2 Si . Then the elements f 0i commute with each other and with f 0. Thus each f 0i
fixes the eigenspaces for f 0 and hence each f 0i preserves the eigenspace decomposition
of the action of f 0 on Rn. In particular, f 0i preserves V 0phys for each i 2 I.

Re-indexing if necessary we can assume that 1 2 I, and suppose towards a contradic-
tion that there is i0 2 I X ¹1º. There is f 0 2 F 0 such that, when writing f 0 as a product
of elements f 0i 2 Si , f

0
1 acts on V 0phys with infinite order (this property does not depend on

the presentation of f as a product of the f 0i ). Then the action of f 01 on V 0phys preserves an
eigenspace V 0, with d 0 WD dimV 0 < d D dimV 0phys. Since the action of Si0 commutes with
the action of f 01 , the space V 0 is preserved by Si0 , and hence by f 0i0 . The group generated
by all such elements f 0i0 is isogenous to F 0i0 and hence to SLd .R/. Thus, it has no non-
trivial representations on any d 0-dimensional real vector space, for d 0 < d . This implies
that the action of Si0 on V 0 has an infinite kernel, but since Si0 is simple, the action of Si0
on V 0 must also be trivial.

So the space
V 00 WD spanS1.V 0/ � spanS1.V 0phys/ � V1

is acted on trivially by Si0 for any i0 2 I X ¹1º. In particular, V 00 is H2-invariant. By the
irreducibility of the H2-action on V1, this means that V1 D V 00, and therefore Si0 acts
trivially on V1. It follows that F 0i0 acts trivially on V1 for each i0 2 I X ¹1º. Since Si0 acts
trivially on V` for all i0 2 I and all ` � 2, we see that in any decomposition of f 0 2 F 0,
all the elements f 0i for i � 2 act trivially on Rn. That is, I D ¹1º.
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Step 3: Restriction of scalars, in explicit form. Since H is Q-almost simple, it is
obtained by restriction of scalars from an absolutely almost simple algebraic group
defined over a number field K – see [5, 6.21] for a proof. We will re-prove this result
in our setup, obtaining more information about the embedding of H1 in SLn.R/.

Using Step 2 and re-indexing, let S1 D .S1/ıR be the connected component of the
identity in the R-almost simple group containing F 0, and set G WD S1; G WD S1. It follows
from [5, §2.15b] that G is Zariski connected, which implies via [3, Cor. 18.3] that G is
Zariski dense in G. From Theorem 3.5, we only have two possibilities for G, and its
Zariski closure is a conjugate of either SLk or Sp2`. Hence GR is a conjugate of SLk.R/
or Sp2`.R/. In particular, G is actually C-almost simple. Since H is defined over Q, the
C-almost simple factors of H are defined over a finite extension of Q; this is well-known
(see e.g. [5, §2.15b]) but we were unable to find a suitable reference, so we sketch the
argument. The group H has a maximal torus which is defined over Q and split over a
finite extension L of Q by [3, §8, §18]. For each root ˛, the group G˛ , which is the
centralizer of the connected component of the identity in ker ˛, is defined over L (see
[3, proof of Thm. 18.7]). The groups G˛ generate H [3, §14] and each C-almost simple
factor either contains G˛ , or intersects it trivially. Thus, any C-almost simple factor S can
be described as the elements commuting with all the G˛ not contained in S. In particular,
the C-almost simple factors are defined over L.

Replacing L if necessary with its Galois extension, suppose that L is the smallest
Galois extension of Q such that all C-almost simple factors of H are defined over L.
Let Gal.L=Q/ denote the Galois group of L, which we can think of explicitly as the
group of field automorphisms of L. If V � An is an affine variety defined over L then for
any � 2 Gal.L=Q/ there is a new affine variety, which we will denote by �V, obtained
by acting on the coefficients of the defining polynomial equations, and � acts on the
points of Ln by acting separately on each component. The assignments V 7! �V and
� W L! L are compatible in the sense that for x 2 Ln, x 2 VL if and only if �.x/ 2 �VL.
Moreover, if V is defined over L, then it is defined over Q if and only if �VD V for every
� 2 Gal.L=Q/; this follows from the more general fact (see [3, §AG12–AG14]) that if L0

is a number field then V is defined over L0 if and only if for any � 2 Gal. NQ=Q/ such that
� jL0 D Id we have �V D V, where NQ denotes the algebraic closure of Q.

LetD denote the number of C-almost simple factors of H, or equivalently, the number
of L-almost simple factors of H. The action of Gal.L=Q/ permutes these factors, and this
permutation action is transitive since H is Q-almost simple. Thus, the subgroup

� WD ¹� 2 Gal.L=Q/ W �G D Gº

is of index D in Gal.L=Q/, and the C-almost simple factors are the (distinct) images
of G by elements �1; : : : ; �D 2 Gal.L=Q/, where the �i are coset representatives of
Gal.L=Q/=�.

Let
K WD ¹x 2 L W 8� 2 �; �.x/ D xº:
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Complex conjugation z 7! Nz induces an automorphism of L belonging to � since G is
defined over R, hence we see that K�R. By the Galois correspondence, deg.K=Q/DD
and

� D ¹� 2 Gal.L=Q/ W 8x 2 K; �.x/ D xº:

We claim that G is defined over K, and G is not defined over any proper subfield of K.
Indeed, if � 2 Gal. NQ=Q/ satisfies � jK D Id, then � jL 2 � and hence �G D G. Fur-
thermore, if G were defined over a proper subfield K0   K, then its stability group �0

would be of indexD0 <D and therefore the collection ¹�G W � 2 Gal.L=Q/º would have
cardinality D0.

We will show that H is isomorphic (as a Q-algebraic group) to ResK=Q.G/. Moreover,
we will show that the given inclusion H ,! SLn is, up to a conjugation in SLn.R \ NQ/,
the matrix presentation described in §2.4. By Theorem 3.5, G is, up to a conjugation
in SLn.R/, either the top-left copy of SLk.R/ or the top-left copy of Sp2k.R/ for some
k � 2 (and the latter can only arise when d D 2). In the remainder of the proof we will
refer to these two cases as the SLk case and the Sp2k case.

We know that G is conjugate in SLn.R/ to the top-left copy of SLk.R/ (in the SLk
case) or Sp2k.R/ (in the Sp2k case). Therefore there is aG-invariant subspace V �Rn, of
dimension k (in the SLk case) and 2k (in the Sp2k case) and a complementary subspace V0
such that Rn D V ˚ V0, the action of G on V is irreducible, and V0 is the subspace of
G-fixed vectors in Rn. We claim that we can recover V explicitly as

V D span ¹gx � x W g 2 G; x 2 Rnº: (3.19)

Indeed, denote the right-hand side of (3.19) by W . We clearly have W � V , and for the
reverse inclusion, it is enough to show that W is G-invariant. To see this, let g0; g 2 G
and x 2 Rn. Then

g0.gx � x/ D g0gg
�1
0 g0x � g0x D g

0x0 � x0;

where g0 WD g0gg�10 and x0 WD g0x: This shows that the generators of W are mapped to
W by any g0 2 G.

From (3.19) and since G is defined over K�R, we deduce that V DVR for a subspace
V � An defined over K. Clearly V0 D .V0/R for a subspace V0 which is also defined
over K. Arguing as in (3.19), but using F 0 in place of G and V 0phys in place of V , we have
V 0phys D span ¹f 0x � x W f 0 2 F 0; x 2 Rnº, and therefore V 0phys � V .

We can think of V NQ as a NQ-linear subspace of NQn, and can discuss the action
of Gal. NQ=Q/ as before. We find that .Gi / NQ preserves the decomposition NQn D

�iV NQ ˚ .
�iV0/ NQ. We claim that

NQn
D

DM
iD1

�iV NQ: (3.20)

To see this, let W denote the vector subspace of An spanned by
S
i
�iV. Since it is

Gal. NQ=Q/-invariant, it is defined over Q. Since V 0phys D g�11 Vphys and Zn D g�11 L1,
Lemma 3.4 implies that V 0phys is not contained in any proper rational subspace of Rn.
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This implies that WR D Rn and thus W D An. The groups Gi commute, and �iV is
a Gi -isotypic component of multiplicity 1. For each pair of distinct i; j , each g 2 Gi

defines an intertwining operator for the action of Gj , and thus by Schur’s lemma (see
e.g. [23, Cor. 4.9]), the action of Gi on �jV factors through an abelian group. Since
Gi is simple, this means that each Gi acts trivially on �jV for j ¤ i . In particular,
�iV \

P
j¤i

�jV D ¹0º, and we have shown (3.20).
It follows from (3.20) that Rn is the space of R-points of ResK=Q.V/. Write D D

r C 2s as in §2.4. Since dim �iV D dim �jV for every i ¤ j , we see that H1 is realized
explicitly in r C s blocks. For real embeddings �i , i D 1; : : : ; r , we find that the dimension
(over R) of �iVR is k (in the SLk case) and 2k (in the Sp2k case), and for �rCj , j D
1; : : : ; s, which are nonconjugate complex embeddings of K we have that the dimension
(over R) of �rCjVC is 2k (in the SLk case) and 4k (in the Sp2k case). Putting this together
we see that nDDk (in the SLk case) and nD 2Dk (in the Sp2k case), and the embedding
ofH1 in SLn.R/ is the one given in (2.6), where ' W SLk! SLk is the identity map (in the
SLk case), and ' W Sp2k! SL2k is the natural embedding (in the Sp2k case). In particular,
we have proved that HD ResK=Q.G/, with the explicit form of restriction of scalars given
in §2.4.

Step 4: G as a K-group. It remains to identify the K-isomorphism type of G. We proved
in Step 3 that K � R, the decomposition Rn D V ˚ V0 into G-invariant subspaces is
defined over K, and there is a conjugation in SLn.R/ sending G to the top-left corner
embedding of SLk.R/ or of Sp2k.R/ (as defined after the statement of Theorem 3.5). We
now show that as a K-group, G is K-isomorphic to either SLk or Sp2k .

Consider first the SLk case. Let W˚W0 D Ck ˚Cn�k (whose real points we used
in (3.7)), and note that both subspaces are defined over K. Since V;V0 are K-subspaces,
we can find g 2 SLn.K/ such that gV D W, gV0 D W0, and hence G0 D gGg�1 is
contained in the top-left corner embedding of SLk . In particular, the groups G and G0 are
K-isomorphic, and G0R is R-isomorphic to the top-left SLk.R/. Let G00 D SL.W/D SLk
(top-left corner embedding) considered as a K-group. Then G00R is also R-isomorphic to
SLk.R/, and thus G0 and G00 have the same dimension (as algebraic varieties). Since
G0K D gGKg

�1 �G00, there is a K-embedding G ,!G00, and since these groups have the
same dimension and are Zariski connected, G and G00 are K-isomorphic.

Now consider the Sp2k case. We have shown that dimV D 2k is even, and we adjust
the definitions W˚W0 D C2k ˚ Cn�2k . We let again g 2 SLn.K/ be the conjugating
element sending G to G0 D gGg�1 � SL.W/. Then G0R is R-isomorphic to Sp2k.R/,
that is, there is a nondegenerate alternating bilinear form ! on WR such that G0R is the
group of all R-linear transformations of W preserving !. Note that ! is R-bilinear and
takes values in R. We claim that there is a form !0 which is defined over K on W (that
is, takes values in K when evaluated on elements of WK), so that G0R is contained in the
group of R-linear transformations of W preserving !0. Once the claim is proved, we will
know that there is a K-embedding G ,! Sp.W; !0/ (the group of linear transformations
of W preserving !0) which will be an isomorphism by dimension considerations as in the
preceding case, thus proving that G is K-isomorphic to Sp.W; !0/ Š Sp2k .
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To prove the claim, consider the collection
V2
.W�/ of alternating bilinear forms

on W. This collection is a linear space, and the nondegenerate forms form a Zariski open
subset (since nondegeneracy is equivalent to the nonvanishing of the determinant of the
Gram matrix of the form). Since G0 is a K-group, the subspace

V2
.W�/G0 of G0-invariant

forms is a K-subspace, which is nonempty since its collection of R-points contains !.
Since K-points are Zariski dense in K-subspaces, we find that there are nondegenerate
symplectic K-forms which are G0-invariant.

Finally, the proof of Theorem 3.5 shows that in the symplectic case, the space
gV 0phys Š R2 is spanned by two vectors Ex; Ey satisfying !.Ex; Ey/ D 1; that is, gV 0phys is
a symplectic subspace for !. (We recall at this point that V 0phys D g

�1
1 Vphys � V , g is the

conjugation mapping V to W , and ! is the real symplectic form on W induced by the
isomorphism of G0R ' Sp2k.R/ from Theorem 3.5.)

Write ! as a linear combination of forms !0 which are defined over K and G0-
invariant. Since !.Ex; Ey/¤ 0, there has to be some !0 2 .

V2
.W�/G0/K for which !0.Ex; Ey/

¤ 0. This shows that V 0phys is a symplectic subspace of V under the form induced by!0.

Remark 3.6. In the symplectic case, Step 4 also shows that there is a symplectic form on
the entire space Rn that is preserved by the entire groupH1. Indeed, the form !0, which is
symplectic and defined over K, can be ‘pushed’ using the field embeddings �i to induce
symplectic forms on the spaces �iV. We will not be using this fact and we leave the details
to the reader.

4. An intrinsic description of the measures arising via ‰�

The following result shows that all RMS measures arise via the map ‰�. For a given
constant c > 0, we denote by �c W C .Rd / ! C .Rd / the map induced by the dilation
by c, that is, �c.F / D ¹cx W x 2 F º:

Theorem 4.1. Let F be as in (3.1) and embedded inG via the top-left corner embedding.
For any ergodic F -invariant Borel probability measure � on C .Rd / which assigns full
measure to irreducible cut-and-project sets, there is an irreducible cut-and-project con-
struction with Rn D Vphys ˚ Vint; �phys; �int; W and with ‰ as in (2.1), a constant c > 0,
and an F -invariant ergodic homogeneous measure N� on Yn such that � D �c�‰� N�. For
�-a.e. ƒ we have

c D

�
vol.W /
D.ƒ/

�1=n
; (4.1)

where D.ƒ/ is the density of ƒ as defined in (1.10).

We will split the proof into the linear and affine cases.

Proof of Theorem 4.1, affine case. Suppose � is ASLd .R/-invariant and F D ASLd .R/,
and let ¹gtº be a one-parameter diagonalizable subgroup of SLd .R/� F . By the Mautner
phenomenon (see [9]), the action of ¹gtº on .C .Rd /;�/ is ergodic. Thus, by the Birkhoff
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pointwise ergodic theorem, there is a subset X0 � C .Rd / of full �-measure such that for
all ƒ 2 X0 we have

1

T

Z T

0

.gt /�ıƒ dt ����!
T!1

�:

Since the function ƒ 7! D.ƒ/ is measurable and invariant, we can further assume that
the value of D.ƒ/ is the same for each ƒ 2 X0.

Let U; �; mU be as in Theorem 2.5. Then by Fubini’s theorem, and since � is U -
invariant, we have

1 D �.X0/ D
1

mU .�/

Z
�

�.u�1X0/ dmU .u/

D

Z �
1

mU .�/

Z
�

1X0.uƒ/ dmU .u/
�
d�.ƒ/;

where 1X0 is the indicator function of X0. Thus the inner integral on the right-hand side
is equal to 1 on a subset of full measure; i.e., there is X1 � C .Rd / of full measure such
that for everyƒ 2 X1 we have uƒ 2 X0 formU -a.e. u 2�: This implies that forƒ 2 X1
we have

1

T

Z T

0

Z
�

.gtu/�ıƒ dmU .u/ dt ����!
T!1

�: (4.2)

Letƒ 2X1 be an irreducible cut-and-project set, that is,ƒD‰.L/, where L is a grid and
‰ is defined using data d;m; n; Vphys; Vint; W satisfying (D), (I), (Reg). We can simulta-
neously rescale L, the window W , and the metric on Vphys by the same positive scalar, in
order to assume that L 2 Yn. Namely, set c1 WD covol.L/�1=n, so that L1 WD c1L 2 Yn
satisfies

ƒ D ƒ.L; W / D
1

c1
ƒ.L1; c1W /:

Now solving for c D 1=c1 in (1.10) gives (4.1).
Define a sequence of measures �T on Yn by

�T WD
1

T

Z T

0

Z
�

.gtu/�ıL dmU .u/ dt:

That is, the measures �T are defined by the same averaging as in (4.2), but for the action
on Yn rather than on C .Rd /. By (3.2), their pushforwards under ‰ are the measures
appearing on the left-hand side of (4.2). By Theorem 2.5 we have �T ! N� as T !1 for
some homogeneous measure N� on Yn. By Theorem 3.1(i), N� is invariant under translation
by any element of Rn, and in particular any element of Vint. Hence, by Corollary 2.2, N� is
a continuity point of the map ‰�. By (4.2), ‰��T ! � and by continuity, � D ‰� N�.

For the case in which � is SLd .R/-invariant but not ASLd .R/-invariant, we will need
the following result:
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Lemma 4.2. With the notation of Theorem 3.1, let

H 01 WD g1H
0g�11

.so that H 01 D H in the linear case and H 01 is a Levi subgroup of H in the affine case/,
and let v be a nonzero vector in L1. Then the orbit of v under the linear action of H 01 is
an open dense subset of Rn.

Proof. Write v D g1u for u 2 Zn X ¹0º. It suffices to show that the orbit H 0u is open
and dense in Rn. The linear action of H 0 on Rn factors through the group H1 so we may
replace H 0 with H1.

The action of SLk.R/ on Rk has the property that the orbit of every nonzero vector
is dense. The same is true for the action of Sp2k.R/ on R2k (since any vector can be
completed to a symplectic basis), for the action of SLk.C/ on Ck ' R2k , and for the
action of Sp2k.C/ on C2k ' R4k . By Step 3 of the proof of Lemma 3.2, H1 is the
product of groups Gi , and we have a direct product Rn D

LrCs
iD1 Vi , with the following

properties:

� For i D 1; : : : ; r we have a real field embedding �i , and Vi D �.V/R; for i D r C 1; : : : ;
r C s we have representatives �i of pairs of complex embeddings, and Vi D �.V/C .

� For i D 1; : : : ; r we haveGi D �i .G/R and for i D r C 1; : : : ; s we haveGi D �i .G/C .

� In the SLk case (resp., the Sp2k case), V1 is isomorphic to Rk (resp., R2k) with the
standard action.

� The action ofGi on Vi is obtained from the action ofG1 on V1 by applying �i . In partic-
ular, for real embeddings it is isomorphic to the standard action of SLk.R/ or Sp2k.R/,
and for complex embeddings it is isomorphic to the standard action of SLk.C/ or
Sp2k.C/.

Thus, it is enough to show that for any u 2 Zn X ¹0º, and for any field embedding �j
of K, the projection uj of u to the factor corresponding to �j is nonzero.

Suppose to the contrary that uj D 0 for some j , and let a 2 SLn.R/ be a diagonaliz-
able matrix such that a acts on the `-th factor of Rn corresponding to the field embedding
�` as a scalar matrix �` � Id, where the �` are positive real scalars satisfying

�j > 1; �i < 1 for i ¤ j;
Y
`

�` D 1:

That is, a belongs to the centralizer ofH 0 in SLn.R/, and aiu! 0 as i!1. This implies
by Mahler’s compactness criterion that the sequence aiZn is divergent (eventually escapes
every compact subset of Xn). In particular, the orbit of the identity coset SLn.Z/ under
the centralizer ofH 0 is not compact. From this, via the implication 3) 2 in [12, Lemma
5.1], we see thatH 0 is contained in a proper Q-parabolic subgroup of SLn.R/, and hence
(see e.g. [4, §11.14]) leaves invariant a proper Q-subspace of Rn. This is a contradiction
to (irred).
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Proof of Theorem 4.1, linear case. We repeat the argument given for the affine case. The
only complication is in establishing

�T ! N� implies ‰��T ! ‰� N�;

as in the last paragraph of the proof. In the proof for the affine case, this was obtained
from Corollary 2.2, which shows that N� is a continuity point for the map ‰�, using the
fact that N� is invariant under translations by elements of Vint: In the linear situation N� no
longer has this continuity property.

To overcome this difficulty we argue as follows. We note that if

N�.¹L 2 Yn W �int.L/ \ @W ¤ ;º/ D 0 (4.3)

then Corollary 2.2 can still be applied to show that N� is a continuity point for ‰�. Thus,
we can assume from now on that (4.3) fails. Since supp N� D HL1; this implies that the
Haar measure mH of H satisfies

mH .¹h 2 H W �int.hL1/ \ @W ¤ ;º/ > 0: (4.4)

Since L1 is countable, there must be some v 2 L1 such that

mH .¹h 2 H W �int.hv/ 2 @W º/ > 0: (4.5)

By Lemma 4.2, there is a unique element v1 2 Rn which is fixed by H (namely
v1 D g1.0/), and for any v ¤ v1, the orbit of v under the action of H is an open dense
subset of Rn. In particular, if v ¤ v1 then the map h 7! hv sends mH to an absolutely
continuous measure on Rn, and for such v (4.5) cannot hold by (Reg).

Thus, we must have v D v1. In this case hv D v and �int.hv/ 2 @W for all h 2 H .
By examining the proof of Proposition 2.1, we see that the map

H ! C .Rd /; h 7! ‰.hL1/;

is still continuous at any point outside a set of zero measure; namely, the set of h for
which there is v ¤ v1 such that �int.hv/ 2 @W . Furthermore, the measure N� and the
measures �T are all supported on the orbit HL1. Thus, we can apply the argument prov-
ing Corollary 2.2 to see that the restriction of‰� to measures supported on the orbitHL1

is continuous. This is sufficient to conclude that ‰��T ! ‰� N� as T !1.

Remark 4.3. Theorem 4.1 remains valid when one considers other topologies (and poten-
tially, Borel structures) on C .Rd /, as is done for example in [28, 49]. Thus, in the ter-
minology of [49], the theorem is valid if N� is a Siegel measure giving full measure to
cut-and-project sets. Indeed, the only properties of the topology on C .Rd / used in the
proof are the validity of Corollary 2.2 (in the affine case) and Proposition 2.1, and the
arguments deriving Corollary 2.2 (in the linear case). These topological ingredients are
easily seen to hold for the vague topology used in [28,49]. For example, for the analogue
of Proposition 2.1, see [28, Lemma 5.14].
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5. Some consequences of the classification

With Theorem 3.1 in hand it is easy to obtain explicit descriptions of RMS measures
in low dimensions. Recall that we refer to the unique ASLn.R/-invariant probability
measure on Yn and the unique SLn.R/-invariant probability measure on Xn as the Haar–
Siegel measures.

Corollary 5.1. With the notation above, suppose that dimVphys > dimVint. Then the only
affine RMS measure is the one for which N� is the Haar–Siegel measure on Yn, and the
only linear RMS measure is the one for which N� is the Haar–Siegel measure on Xn.

This re-proves a result stated without proof in [26, Prop. 2.1].

Proof of Corollary 5.1. In our classification result, there is k 2 ¹d; : : : ; nº and D D
deg.K=Q/ such that n D Dk in the SLk case and n D 2Dk in the Sp2k case. Since

k � d D dimVphys > dimVint D n � d � n � k; (5.1)

we obtain k > .D � 1/k in the SLk case and k > .2D � 1/k in the Sp2k case. This is
only possible if D D 1 and we are in the SLk case. That is, the only possible case is
H 0 D SLn.R/, and this gives the required result.

We extend Corollary 5.1 to the case of equality:

Corollary 5.2. With the above notation, suppose that � is not one of the Haar–Siegel
measures mentioned in Corollary 5.1, and suppose dimVphysD dimVint. Then either d D 2
and H 0 D Sp4.R/, or d � 2 and there is a real quadratic field K such that H 0 is .the
group of real points of / ResK=Q.SLd /.

Proof. If the strict inequality in (5.1) becomes nonstrict, it is also possible that H 0 D
ResK=Q.SLd / and K is a real quadratic field, or K D Q; d D 2 and H 0 D Sp4.R/.

As shown by Pleasants [36], an example of a cut-and-project set associated with a real
quadratic field as in Corollary 5.2 is the vertex set of an Ammann–Beenker tiling, in which
case the associated field is KDQ.

p
2/. Similarly, as discussed in [26, §2.2], the Penrose

tiling vertex set can be described as a finite union of cut-and-project sets associated with
the real quadratic field Q.

p
5/.

We record the following trivial but useful fact.

Proposition 5.3. For any affine RMS measure �, one can assume the windowW contains
the origin in its interior.

Proof. Let W be the window in the construction of the RMS measure �. By (Reg), let
x0 2 Vint be a point in the interior of W . By Theorem 3.1 (i), the measure N� is invariant
under translations by the full group Rn of translations, and in particular by the translation
by x0. So we can replace any L 2 Yn by L � x0 without affecting the measure N�. But
clearly for x0 2 Vint we have

ƒ.L; W / D ƒ.L � x0; W � x0/:
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So the measure � can be obtained from N� by using the window W � x0, which contains
the origin in its interior.

Recall that we have an inclusion

� W SLn.R/! ASLn.R/; �.g/ D .g; 0n/;

i.e., �.SLn.R// is the stabilizer of the origin in the affine action of ASLn.R/ on Rn.
This induces an inclusion N� W Xn ! Yn, and these maps form right inverses to the maps
appearing in (3.3):

� ı � D IdSLn.R/; � ı N� D IdXn
:

In the linear case, we can use these maps to understand the measures N� on Yn appearing
in Theorem 3.1 in terms of measures on Xn:

Proposition 5.4. Let F D SLd .R/, embedded in ASLn.R/ via (2.3), and let N� be a
measure on Yn projecting to a linear RMS measure on C .Rd /; i.e., N� is F -invariant
and ergodic, and not invariant under ASLd .R/. Let H; L1 be as in Theorem 3.1. Let
F WD �.F /. Then one of the following holds:

(i) We have supp N� � N�.Xn/ and �jsupp N� is a homeomorphism which maps N� to an F -
invariant ergodic measure on Xn. In this case H is contained in G WD �.SLn.R//,
i.e., H D � ı �.H/.

(ii) We have N�.N�.Xn//D 0, and there areD1;D2 2 N such that �jsupp N� is a closed map
of degree D1, and for every L 2 supp N� there is a lattice L0 2 Xn, depending only
on �.L/, such that L0 contains �.L/ with index ŒL0 W �.L/� D D2, and such that L

is a translate of �.L/ by an element of L0.

Proof. The set N�.Xn/ � Yn of lattices is clearly F -invariant, so by ergodicity is either
null or conull for the measure N�. If it is conull then N�.Xn/ is a closed subset of full
measure, i.e., supp N� � N�.Xn/: Since N� is a right inverse for � , we know that �jsupp N� is a
homeomorphism. Furthermore, since we have a containment of orbits

HL1 D supp N� � N�.Xn/ D GZn D GL1;

and the groups H;G are connected analytic submanifolds of G, we have a containment
of groups H � G. This proves (i).

Now suppose N�.N�.Xn//D 0; and letH; L1 be as in the statement of Theorem 3.1, so
that supp N�DHL1. Let Tn WD ��1.�.L1// be the orbit of L1 under translations. Since
we are in the linear case, H is transverse to the group of translations Rn which moves
along the fibers of � , and since HL1 does not accumulate on itself and Tn is compact,
the intersection� WD Tn \HL1 is a finite set. Then by (3.4), for any LD hL1 2 supp N�
we have

h� D ��1.�.L// \HL1;

and thus the map �jsupp N� has fibers of a constant cardinality D1 WD j�j.
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Now denote

�1 WD ¹h 2 H W hL1 D L1º; �2 WD ¹h 2 H W h� D �º:

By equivariance we have �1 � �2 and the index of the inclusion is D1 since �2 acts
transitively on �. The bijection

Rn=�.L1/! Tn; x mod �.L1/ 7! x CL1;

endows Tn with the structure of a real torus, whose identity element corresponds to L1.
In these coordinates �2 acts by affine maps of Tn, but �1 acts by toral automorphisms,
since it preserves L1. Thus, � is a finite invariant set for the action of an irreducible
lattice in a group acting L1-irreducibly on Rn, and thus by [16] consists of torsion points
in Tn. That is, there is q 2 N such that they belong to the image of 1

q
� L1 in Tn. By

equivariance the same statement holds, with the same q, for hL1 in place of L1. Thus,
the second assertion holds if we let L0 D 1

q
�L; D2 D q

n.

Example 5.5. It is possible that in case (ii) we have supp N� \ N�.Xn/ ¤ ;: For example,
take n D 3, d D 2, and let f be the translation f .x/ WD x C 1

2
e3; where e3 is the unit

vector in the third axis. Let H be the conjugate of SL3.R/ by f and let L1 D f .Z3/:
Then F � H and HL1 is a closed homogeneous orbit. Since L1 … N�.X3/, the corre-
sponding homogeneous measure does not satisfy (i). But one can check that the lattice
spanZ.e1; 2e2; 12e3/ is contained in HL1, that is, HL1 \ N�.X3/ ¤ ;:

6. Integrability of the Siegel–Veech transform

In this section we prove Theorem 1.2. Let � be an RMS measure and let N�, H1, L1 D

g1Zn be as in Theorem 3.1. Recall that the function yf defined in (1.3) is defined on
supp�. Also let � W ASLn.R/! SLn.R/; � W Yn ! Xn, H1 D �.H1/ be as in §3.2.
Let �1 WD H1 \ ASLn.Z/ and �1 WD H1 \ SLn.Z/ be the Z-points of H1 and H1, and
let X1 WD H1=�1 and X1 WD H1=�1. We will use the results of §3.2 to lift yf to a func-
tion on X1, and show that it is dominated by the pullback of a function on X1. For the
arithmetic homogeneous space X1 we will develop the analogue of the Siegel summation
formula and its properties. Specifically, we will describe a Siegel set S � H1, which is
an easily described subset projecting onto X1, and estimate the rate of decay of the Haar
measure of the subset of S covering the ‘thin part’ of X1.

6.1. Reduction theory for some arithmetic homogeneous spaces

We begin our discussion of Siegel sets. For more details on the terminology and statements
given below, see [4, Chaps. 11–13].

Let H be a semisimple Q-algebraic group, let P be a minimal Q-parabolic subgroup,
and letH DHR. Then P D PR has a decomposition P DMAN (almost direct product),
where
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� A is the group of R-points of a maximal Q-split torus A of P;

� N is the unipotent radical of P ;

� M is the connected component of the identity in the group of R-points of M, a maximal
Q-anisotropic Q-subgroup of the centralizer of A in P.

Furthermore, H D KP for a maximal compact subgroup K of H .
As in §2.4, we think of H as concretely embedded in SLn0.R/ for some n0 2N, where

we take this embedding to be defined over Q for the standard Q-structure on SLn0.R/. Let
a and n denote respectively the Lie algebras of A and N , let ˆ � a� denote the Q-roots
of H and choose an order on ˆ for which n is generated by the positive root-spaces.

Every element of H can be written in the form

h D kman .k 2 K; m 2M; a 2 A; n 2 N/; (6.1)

and one can express the Haar volume element dh of H in these coordinates in the form

dh D dk dmdn �0.a/da; (6.2)

where dk; dm; dn; da denote respectively the volume elements corresponding to the
Haar measures on the (unimodular) groups K;M;N;A, and

�0.a/ D jdet.Ad.a/jn/j D exp.2�.X//; (6.3)

where a D exp.X/ and � is the character on a given by � D 1
2

P
˛2ˆC c˛˛; for ˆC the

positive roots in ˆ, and c˛ D dim h˛ . We note that this formula for Haar measure is
well-defined despite the fact that the decomposition (6.1) is not unique.

Let � � ˆC be a basis of simple Q-roots. For fixed t 2 R, let

At WD ¹exp.X/ W X 2 a; 8� 2 �; �.X/ � tº; (6.4)

and for a compact neighborhood ! �MN of the identity, let

St;! WD KAt!:

These sets are referred to as Siegel sets, and by a fundamental result, a finite union of trans-
lates of Siegel sets contains a fundamental domain for the action of an arithmetic group;
that is, there is a finite subset F0 � HQ and there are t; ! such that St;!F0 projects onto
H=�H , where �H D HZ; equivalently H D St;!F0�H : The sets St;!F0 do not repre-
sent �H -cosets uniquely, in fact the map St;!F0 ! H=�H is far from being injective.
Nevertheless formulas (6.1) and (6.3) make it possible to make explicit computations with
the restriction of Haar measure to St;!F0, and in particular to show that Siegel sets have
finite Haar measure.

An important observation is that the set
S
a2At

a!a�1 is bounded, because of the
definition ofM and N and because of the compactness of !. This means that a Siegel set
is contained in a set of the form !0At , where !0 is a bounded subset of H .
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6.2. The integrability exponent of an auxiliary function on Xn

We will specialize the discussion in §6.1 to the specific choices of H=�H that arise in
our application. Let H be as above, let St;! be a Siegel set and let F0 � HQ be a finite
subset for which St;!F0�H D H . Given functions '1; '2 defined on H , we will write
'1 � '2 if there is a constant c such that for all x 2 St;!F0 we have '1.x/ � c'2.x/.
The constant c is called the implicit constant. We will also write '1 � '2 if '1� '2 and
'2 � '1. In general these relations on functions depend on the choice of Siegel set (i.e.,
the choice of t ) and the choice of the finite set F0, but in the case we will be interested in,
when '1; '2 are actually lifts of functions defined onH=�H , this notion does not depend
on choices.

We now define an auxiliary function, and compute its integrability exponent. Given
a nonzero discrete subgroup L0 � Rn (not necessarily of rank n), we denote by
covol.L0/ the volume of a fundamental domain for L0 in spanR.L

0/ (with respect to
Lebesgue measure on spanR.L

0/, normalized using the standard inner product on Rn).
For g 2 SLn.R/ and L D gZn 2Xn, define

Ǫ .g/ D ˛.L/ WD max ¹covol.L0/�1 W L0 � L; L0 ¤ ¹0ºº: (6.5)

Recall that X1 D H1=�1 is embedded in Xn as the closed orbit X1 D H1Zn, and so we
can consider the restrictions of ˛ and Ǫ to X1 and to H1.

Proposition 6.1. In the two cases G Š SLk , G Š Sp2k , let p < r0 WD rankK.G/ C 1
.see (1.6)/. Then

˛ 2 Lp.�/ X Lr0.�/; (6.6)

where � is the H1-invariant probability measure on X1.

Proof. Let �i D �i .L/; i D 1; : : : ; n, be the successive minima of a lattice L, and let
i0 D i0.L/ be the index for which �i0.L/ � 1 < �i0C1.L/. Then it is easy to see using
Minkowski’s second theorem (see e.g. [7, §VIII.2]) that (as functions on Xn)

˛.L/ � .�1 � � ��i0.L/.L//
�1: (6.7)

As a consequence, for any C � SLn.R/ bounded, we have

8u 2 C; ˛.uL/ � ˛.L/

(with the implicit constant depending on C ).
Let T denote the diagonal subgroup of SLn.R/, let T D TıR and let t be the Lie

algebra of T . In what follows we will replace T by its conjugate in SLn.Q/, where the
conjugate will be conveniently chosen with respect to H1 and its subgroups. The reader
should note that the statements to follow about T are not affected by such conjugations
in SLn.Q/.
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It is easy to check that for the lattice Zn and for a D exp.diag.X1; : : : ; Xn// 2 T , we
have �i .aZn/ D eXj.i/ where i 7! j.i/ is a permutation giving Xj.1/ � � � � � Xj.n/, and
hence

Ǫ .a/ D ˛.aZn/ � exp
�
�

X
Xi<0

Xi

�
: (6.8)

Furthermore, for an element f0 2 SLn.Q/we have �i .af0Zn/� eXj.i/ , where the implicit
constants depend on f0, and thus Ǫ .a/ � Ǫ .af0/.

Recall the notationD D deg.K=Q/ from Theorem 3.1. We first prove the proposition
under the assumptionD D 1. That is, we have K DQ; H1 D SLk.R/ and n D k in case
G Š SLk , and n D 2k; H1 D Sp2k.R/ in case G Š Sp2k . Now consider a Siegel set for
H DH1, and supposeAt is the corresponding subset of the maximal Q-split torus ofH1.
Since T is a maximal Q-split torus of SLn.R/, by [3, Thm. 15.14], applying a conjugation
in SLn.Q/ we can assume that A � T and the order on the roots ˆ is consistent with the
standard order on the group of characters on t; that is, At � Tt 0 for some t 0, as can
be observed by an elementary computation (see [4, Ex. 11.15] for a description of A
in the symplectic case). In particular, for a D exp.diag.Xj // 2 At we have exp.Xj /�
exp.XjC1/ for j D 1; : : : ; n � 1. Then from (6.8), for a 2 At and f0 2 F0, where F0 is
a finite subset of .H1/Q, we have

Ǫ .af0/ � max
1�j�n�1

exp.� ǰ .X//; (6.9)

where

ǰ .X/ WD

jX
iD1

Xi ; X D diag.X`/: (6.10)

Since a Siegel set St;! is contained in a set of the form !0At , where !0 is a compact
subset of H , this implies that

Ǫ .kmanf0/� max
1�j�n�1

exp.� ǰ .X//:

We will first show the following:

(i) For any j , and any X 2 a for which exp.X/ 2 At , we have .2� � r0 ǰ /.X/� 1:

(ii) The number r0 is the largest number for which the conclusion of (i) remains valid.

For ` D 1; : : : ; n � 1 let �` denote the simple roots on t, that is,

�` W t! R; �`.diag.X1; : : : ; Xn// WD X`C1 �X`: (6.11)

In order to show (i), since the �` are bounded above on At , it suffices to show that if we
write 2� D

P
a`�` and ǰ D

P
b
.j /

`
�`, then r0b

.j /

`
� a`. In order to show (ii) it suffices

to check that there are some j; ` for which equality holds, i.e., r0b
.j /

`
D a`. This can be

checked using the tables of [6, pp. 265–270, Plates I & III] (note that the restrictions of
the ǰ to A are the fundamental weights in both cases). Namely, for G D SLk we have

a` D `.k � `/; r0 b
.j /

`
D

´
`.k � j / if ` < j;

j.k � `/ if ` � j;
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and we have the desired inequality, with equality when ` D j . If G D Sp2k we have

a` D

´
`.2k � `C 1/ if ` < k;

k.k C 1/=2 if ` D k;
r0 b

.j /

`
D

8̂̂<̂
:̂
`.k C 1/ if ` < j;

j.k C 1/ if j � ` < k;

j.k C 1/=2 if ` D k;

and again the inequality holds, with equality when ` D j D k.
Now to see that ˛ 2 Lp.�/, since a Siegel set is contained in !0At with !0 bounded,

and by (6.2), it suffices to prove that for f0 2 F0 we have
R
At
Ǫp.af0/�0.a/ da < 1.

Using the preceding discussion, if we let at denote the cone in a with At D exp.at /
(whereAt is as in (6.4)), and use the fact that da is the pushforward under the exponential
map of dX , we haveZ

At

Ǫ
p.af0/�0.a/ da�

Z
at

max
j

exp.�p ǰ .X// � exp.2�.X// dX

D

Z
at

max
j

exp
��

p

r0
.2� � r0 ǰ /C

�
1 �

p

r0

�
2�

�
.X/

�
dX

.i/
�

Z
at

expŒ2�.X/�1�p=r0 dX <1;

where the integral is finite as the integrand is the exponential of a linear functional which
is strictly decreasing along the cone at . The same computation and (ii) show that we have
the corresponding lower bound

R
At
Ǫ r0.af0/�0.a/ da�

R
at

exp.�.X// dX , where � is a
linear functional which is constant along a face of at . We have shown (6.6) for D D 1.

Now supposeD > 1. Our strategy will be to show that we can repeat the computations
used for the case D D 1, with the only difference being that in some of the formulas, the
characters � and ǰ are multiplied by a factor ofD. Write G1 WD �1GR, let V be as in the
statement of Theorem 3.1, a K-subspace of Rn. Let

t WD

´
k if G Š SLk ;

2k if G Š Sp2k ;
(6.12)

so that dim V D t . Let A1 denote a maximal K-split torus in G, and let a1 denote its
Lie algebra. Then, with respect to a suitable basis of VK, we can write elements of a1
as matrices diag.X1; : : : ; Xt /, where

P
Xi D 0 when G Š SLk and XiCk D �Xi when

G Š Sp2k .
Let B WDResK=Q.A1/, and let A denote a maximal Q-split torus inH1. The dimension

of A1 is the number of independent one-parameter multiplicative K-subgroups (mor-
phisms K� ! A1), and, applying restriction of scalars, each such one-parameter group
gives rise to a one-parameter Q-subgroup Q�! B. This implies that B contains a Q-split
torus of dimension equal to dim A1. Since the Q-rank of H is the same as the K-rank of G
(see [5, §6.21 (i)]), the dimensions of these groups coincide. Since all maximal Q-split
tori in H are conjugate in HQ, we can assume that A � B; and by conjugating SLn.R/
by an element of SLn.Q/, we can also assume that A � T and the order on the roots ˆ
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is consistent with the order on the roots of t. We claim that after these conjugations, the
elements of A D AıR are of the form

diag
�
Xj.1/; : : : ; Xj.1/„ ƒ‚ …

D times

; : : : ; Xj.t/; : : : ; Xj.t/„ ƒ‚ …
D times

�
; (6.13)

where diag.X1; : : : ; Xt / ranges over the elements of a1 in the above-chosen basis, and
i 7! j.i/ is a permutation guaranteeing

exp.Xj.1//� � � � � exp.Xj.t//:

We first assume the validity of (6.13), and conclude the proof of the case D > 1.
We will use (6.13) to compare characters on A1 with characters on A. First, comparing
the character � appearing in (6.3) for the two groups H1; G1, we see that each real field
embedding �i ; i � r , contributes one dimension to the dimension of a root space, and
each pair �i ; N�i , i > r , of conjugate nonreal embeddings contributes two dimensions.
Alternatively: in G1 the root spaces are one-dimensional and defined over K, since G1 is
K-split. The root spaces in H1 are obtained from the root spaces in G1 by applying the
restriction of scalars operation to each one individually. This implies that the character
� for H1 is obtained from the corresponding character for G1 by multiplication by D.
Similarly, it is clear from (6.13) that the characters ǰ appearing in (6.10) for H1 are
obtained from the same characters ǰ for G1, multiplied by D. Thus, the computations
guaranteeing (6.6) for D D 1 imply the same property for general D.

It remains to prove (6.13). Recall that B D ResK=Q.A1/, which we wish to describe
explicitly using the discussion in §2.4. For Ey 2 Kt we define

a1. Ey/ WD diag.y1; : : : ; yt / 2 A1.K/I

that is, these are matrices acting on V which are diagonal with respect to a K-basis of V ,
and the yi satisfy y1 C � � � C yt D 0 for G Š SLk and yi D �y2k�iC1 for G Š Sp2k .
Each y 2 K has a representative which is a matrix in MatD�D.Q/. If we take y 2 Q
then the corresponding representative matrix is the scalar matrix y � IdD . The elements
of B can be considered as t � t matrices, whose entries are elements of MatD�D . In
particular, for Ey 2 Qt , we get matrices a2. Ey/ 2 Matn�n.Q/ which are simultaneously
diagonalizable, with each yi appearing as an eigenvalueD times. That is, up to permuting
the coordinates, the matrices a2. Ey/ are as in (6.13), withXi 2Q. The map a1. Ey/ 7! a2. Ey/

is a polynomially defined group homomorphism. Letting A2 denote the Zariski closure
of ¹a2. Ey/ W Ey 2 Qt ; a1. Ey/ 2 A1º, we see that A2 is a torus in B whose group of real
points, .A2/R, satisfies the description (6.13), and with dim A2 D dim A1 D dim A. Also,
A2 is Q-split since the maps a2. Ey/ 7! yi are Q-characters. Thus, A2 is a maximal Q-
split torus of H, and by the uniqueness of the maximal Q-split torus in the torus B (see
[4, Prop. 10.6]), we must have A D A2. (See also the related discussion in [35, Example,
p. 54], giving an explicit description of a maximal Q-anisotropic torus in B as a product
of norm-tori.)
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6.3. An upper bound for the Siegel transform

We will now prove a result implying Theorem 1.2. For a function F on Rn, a measure N�
on Yn, and L 2 Yn, in analogy with (1.3) we denote

bF .L/ D ´Px2LX¹0º F.x/ if N� is linear;P
x2L F.x/ if N� is affine.

(6.14)

Theorem 6.2. Let N� be the H -homogeneous measure on Yn as in Theorem 3.1, and let
q D q N� be as in (1.5). Then for any F 2 Cc.Rn/ and any p < q we have bF 2 Lp. N�/.
Moreover, there are F 2 Cc.Rn/ for which bF … Lq. N�/.

We will prove Theorem 6.2 separately in the linear and affine cases. In the linear case,
we will first show, using Proposition 5.4, that the Siegel–Veech transform (6.14) can be
bounded in terms of a Siegel transform of a function on Xn. The latter can be bounded in
terms of the function ˛ considered in §6.2.

Proof of Theorem 6.2, linear case. Suppose that N� satisfies (i) of Proposition 5.4, i.e., N�
is supported on �.Xn/. Then we can assume that the cut-and-project scheme involves
lattices in Xn, rather than grids. Moreover, H D � ı �.H/; g1 D g1; H1 D � ı �.H1/,

and the function bF is a Siegel–Veech transform of a Riemann integrable function on Rn,
for a homogeneous subspace of Xn. It is known that the function ˛ defined in (6.5)
describes the growth rate of the Siegel transforms of functions on Xn. Namely (see [11,
Lemma 3.1] or [21, Lemma 5.1]), for any Riemann integrable function F on Rn, and any
L 2Xn, we have bF .L/� ˛.L/. Furthermore, if F is the indicator of a ball around the
origin then bF .L/� ˛.L/. Thus, the conclusion of Theorem 6.2 in this case follows from
Proposition 6.1.

Now assume that case (ii) of Proposition 5.4 holds. We cannot use Proposition 6.1
since bF is a function on Yn. To remedy this, we define for each L 2 HL1 the lattice
L0 D L0.�.L// appearing in assertion (ii) of Proposition 5.4, and setbF .�.L// WD X

x2L0.�.L//X¹0º

F.x/:

Then the bounds given in Proposition 5.4 imply that bF .L/� bF .�.L//; with a reverse
inequality bF .�.L//� bF .L/ for positive F . Since bF is the Siegel–Veech transform of a
function on Rn with respect to a measure on Xn, we can apply Proposition 6.1 to conclude
the proof in this case as well.

For the affine case, we will need the following additional interpretation of the func-
tion ˛ defined in (6.5).

Proposition 6.3. Let L 2 Xn, let Tn
L
D Tn D ��1.L/ Š Rn=L be the quotient torus,

equipped with its invariant measure element dL. Then for any ball B � Rn and any
p > 1 we have Z

Tn
jB \Ljp dL � ˛.L/p�1; (6.15)

where the implicit constants depend on the dimension n, on p, and on the radius of B .
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Proof. Let �1; : : : ; �n be the Minkowski successive minima of L. Using Korkine–Zolo-
tarev reduction, let v1; : : : ; vn be a basis for L satisfying kvik � �i (where the implicit
constants are allowed to depend on the dimension n), and let ui WD vi=kvik. For a vector Es
of positive numbers s1; : : : ; sn define

PEs WD
°X

aiui W jai j � si=2
±
:

Setting Ev0 D .kv1k; : : : ;kvnk/, we see that PEv0 D ¹
P
bivi W jbi j � 1=2º is a fundamental

parallelepiped for L, and we can identify Tn with this parallelepiped via the bijection

PEv0 ! Tn; x 7! Lx WD LC x;

which sends the Lebesgue measure on PEv0 to the Haar measure dvol on Tn.
Now set

Pr WD PEr where Er D .r; : : : ; r/:

We can translate B so that it is centered at the origin without affecting the integral
in (6.15), and since there is a lower bound on the angles between the vi , there are r1 �
R � r2 such that Pr1 � B � Pr2 . Thus, we can replace B with PR. Furthermore, the
lower bound on the angles between the ui implies

dvol.x/ � dx1 � � � dxn; where x D
X

xiui :

Writing each vector y 2 Rn in the form y D
P
i ciui , and reducing each ci modulo

kvik � Z, it is easy to verify that for x 2 PEv0 we have:

� if R=2 < jxi j < .kvik �R/=2 for some i , then PR \Lx D ;;

� if jxi j � R=2 or jxi j � .kvik �R/=2 for all i , then jPR \Lxj �
Q
kvik<R

.R=kvik/.

Since Y
kvik<R

R

kvik
�

Y
�i .L/<1

1

�i .L/

(6.7)
� ˛.L/;

we obtainZ
Tn
jB \Ljp dL �

Z
PEv0

jPR \Lxj
p dvol.x/ � ˛.L/p � vol.¹x 2 PEv0 W jxi j � R=2º/

� ˛.L/p �
Y
kvik�R

kvik �
Y
kvik>R

R � ˛.L/p �
Y

�i .L/<1

�i .L/
(6.7)
� ˛.L/p�1:

Proof of Theorem 6.2, affine case. By decomposing F into its positive and negative
parts, we see that it suffices to prove bF 2 Lp.�/ when F is the indicator of a ball in Rn.
By Theorem 3.1 we know that in the affine case, the translation group Rn is contained
in H1, which implies that we can decompose the measure N� asZ

X1
'.L/ d N�.L/ D

Z
X1

Z
Tn

L

'.Lx/ dvol.x/ d�.L/; 8' 2 L1.X1; N�/:

Now the statement follows from Propositions 6.1 and 6.3. The case of equality p D q�
follows similarly, taking for F the indicator of a ball in Rn.
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Proof of Theorem 1.2. Let f 2Cc.Rd / and let Of be as in (1.3). Let� be an RMS measure
on C .Rd / associated with a cut-and-project scheme involving grids in Yn, a decomposi-
tion Rn D Vphys ˚ Vint, and a window W � Vint. Let 1W be the indicator function of W
and let N� be an H -homogeneous measure, supported on the orbit HL1 � Yn such that
� D ‰� N� (where we have replaced � by its image under a rescaling map to simplify
notation).

Define
F W Rn ! R; F .x/ D 1W .�int.x// � f .�phys.x//; (6.16)

and define bF via (6.14). Then it is clear from the definition of‰ and (1.3) that yf .‰.L//DbF .L/ provided L satisfies (I), and, in the linear case, provided all nonzero vectors of L

project to nonzero vectors in Vphys; the last assumption is equivalent to requiring that

L … N WD ¹L0 2 HL1 W L
0
\ Vint 6� ¹0ºº:

The condition that L satisfies (I) is valid for N�-a.e. L by definition of an RMS measure.
We claim further that in the linear case N�.N /D 0. Indeed, since N� is induced by the Haar
measure of H , otherwise we would have some fixed v 2 L1 X ¹0º such that HN ;v WD

¹h 2 H W hv 2 Vintº has positive Haar measure. Recall that for analytic varieties V1;V2,
with V1 connected, if V1 \ V2 has positive measure with respect to the smooth measure
on V1, then V1 � V2. Since HN ;v is an analytic subvariety in H , if it has positive
measure with respect to the Haar measure on H , it must coincide with H . This con-
tradicts Lemma 4.2. This contradiction shows that N�-almost surely we have bf ı‰ D bF .
Since �D ‰� N�, the first assertion that yf 2 Lp.�/ for p < q� now follows from the first
assertion of Theorem 6.2.

For the second assertion, let f be a nonnegative continuous function whose support
contains a ball around the origin. Since we have assumed that W contains a ball around
the origin in Vint, the support of the function F also contains a ball around the origin
in Rn, so yf is bounded below by the Siegel–Veech transform of the indicator of a ball
in Rn, and we have that such functions do not belong to Lq�. N�/.

7. Integral formulas for the Siegel–Veech transform

In this section we will prove Theorem 1.3. We begin with its special case p D 1, i.e.,
with a derivation of (1.4). This will illustrate the method of Weil [51] which we will
use. Note that (1.4) was first proved by Marklof and Strömbergsson [26] following an
argument of Veech [49]. Their argument does not rely on an integrability bound such as
our Theorem 1.2, and instead uses the result of Shah [43, Theorem 2.5].

7.1. A derivation of a ‘Siegel summation formula’

Given f 2 Cc.Rd /, define F via (6.16), and define bF .L/ via (6.14). We can bound F
pointwise from above by a compactly supported continuous function on Rn, and hence,
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by Theorem 6.2, bF 2 L1. N�/. Therefore f 7!
R

X1
bF d N� is a positive linear functional

on Cc.Rd /. By the Riesz representation theorem, there is some Radon Borel measure �
on Rd such that

R
X1
bF d N�D RRd f d�. From the equivariance relation (3.2), � is invariant

under ASLd .R/ in the affine case and under SLd .R/ in the linear case. Lebesgue measure
is the unique (up to scaling) ASLd .R/-invariant Radon Borel measure on Rd , and for
SLd .R/, the only additional invariant measure is ı0, the Dirac mass at the origin. Thus,
there are constants c1; c2 such that

� D

´
c1vol if N� is affine;

c1volC c2ı0 if N� is linear.
(7.1)

As we have seen in the proof of Theorem 1.2, bF D yf ı‰ holds N�-a.e. Since � D ‰� N�,
this implies that Z

C .Rd /

yf d� D

Z
X1

bF d N� D Z
Rd
f d�:

In combination with (7.1), this establishes (1.4) in the affine case, and givesZ
C .Rd /

yf d� D c1

Z
Rd
f dvolC c2f .0/; 8f 2 Cc.Rd /; (7.2)

in the linear case. It remains to show that c2 D 0.
Let Br D B.0; r/ be the ball in Rd centered at the origin, let f 2 Cc.Rd / satisfy

1B1 � f � 1B2 , and let fr D f .x=r/. Thus, as r ! 0, the functions fr have smaller and
smaller support around the origin. By (1.3) and discreteness of ƒ we see that yfr .ƒ/! 0

as r ! 0 for any ƒ. The functions fr vanish outside the ball B2r , and for r � 1, the
functions yfr are dominated by yf1. Therefore

0 D lim
r!0

Z
C .Rd /

yfr d�
(7.2)
D lim

r!0

�
c1

Z
Rd
fr dvolC c2 � 1

�
D c2:

7.2. A formula following Siegel–Weil–Rogers

In this section we state and prove a generalization of Theorem 1.3. Let the notation be
as in §3.1, so that N� is an H -homogeneous measure on Yn. Let p 2 N and let Rnp D
Rn ˚ � � � ˚Rn„ ƒ‚ …

p copies

. For f 2 Cc.Rnp/ and L 2 Yn, define

yfp .L/ WD

´P
v1;:::;vp2LX¹0º f .v1; : : : ; vp/ if N� is linear;P
v1;:::;vp2L f .v1; : : : ; vp/ if N� is affine.

(7.3)

Let J � ASL.np;R/ be a real algebraic group and let � be a locally finite Borel measure
on Rnp . We say that � is J -algebraic if J preserves � and has an orbit of full � -measure
(in this case � can be described in terms of the Haar measure of J : see [37, statement and
proof of Lemma 1.4]).
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Theorem 7.1. Let p 2 N and assume that p < q N� where q N� is as in (1.5). Then there
is a countable collection ¹N�e W e 2 Eº of H -algebraic Borel measures on Rnp such that
N� WD

P
N�e is locally finite and for every f 2 L1. N�/ we haveZ

Yn

yfp d N� D

Z
Rnp

f d N�: (7.4)

As we will see in the proof, in the affine (resp. linear) case, the indexing set E is
naturally identified with the set of �H1 -orbits in the set of p-tuples of (nonzero) vectors
in Zn.

We will need a by-now standard result of Weil, which is a generalization of the
Siegel summation formula and is proved via an argument similar to the one used in §7.1.
Let G1 � G2 be unimodular locally compact groups, let �2 � G2 be a lattice in G2
and let mG2=�2 denote the unique G2-invariant Borel probability measure on G2=�2.
Since G1; G2 are unimodular, there is a unique (up to scaling) locally finite G2-invariant
measure on G2=G1, which we denote by mG2=G1 (see e.g. [37, Chap. I]). Define �1 WD
�2 \ G1, and for any  2 �2, denote its coset �1 2 �2=�1 by Œ�. With this notation,
Weil showed the following:

Proposition 7.2 ([50]). Assume that �1 is a lattice in G1. Then we can rescale mG2=G1
so that the following holds. For any F 2 L1.G2=G1; mG2=G1/, define

zF .g�2/ WD
X

Œ�2�2=�1

F.g/: (7.5)

Then zF 2 L1.G2=�2; mG2=�2/ andZ
G2=�2

zF dmG2=�2 D

Z
G2=G1

F dmG2=G1 :

Proof of Theorem 7.1. Consider the map which sends f 2 Cc.Rnp/ to
R
yfp d N�. This is

well-defined by Theorem 6.2, and defines a positive linear functional on Cc.Rnp/. Thus,
by the Riesz representation theorem, there is a locally finite measure N� on Rnp such that

8f 2 Cc.R
np/;

Z
Yn

yfp d N� D

Z
Rnp

f d N�: (7.6)

Our goal will be to present N� as a countable linear combination of H -algebraic measures.
Note that since Cc.Rnp/ is a dense linear subspace of L1. N�/ for any locally finite
measure N� , it suffices to prove (7.4) for functions in Cc.Rnp/.

Let H; g1; L1 D g1Zn; H1 D g�11 Hg1; �H1 D H1 \ ASLn.Z/ be as in §3.2, so
that �H1 is a lattice in H1 and N� is an H -homogeneous measure supported on HL1 Š

H1=�H1 . In the affine (respectively linear) case, let Znp denote the countable collection
of ordered p-tuples of vectors in Zn (respectively, in Zn X ¹0º). Let E denote the collec-
tion of �H1 -orbits in Znp . For each e 2 E, define the restriction of the sum (7.3) to the
orbits HL1 � Yn and to the orbit e by

yfp e.hL1/ WD
X

.x1;:::;xp/2e

f .hg1x1; : : : ; hg1xp/; (7.7)
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so that on HL1 we have
yfp D

X
e2E

yfp e: (7.8)

If f is a nonnegative function then yfp e �
yfp everywhere on HL1, and in particular

yfp e 2 L
1. N�/. Thus, the assignment sending f 2 Cc.Rnp/ toZ

f d N�e WD

Z
yfp e d N� (7.9)

is a positive linear functional and hence, via the Riesz representation theorem, defines the
locally finite Borel measure N�e on Rnp . By (7.8),

P
e2E N�e D N�: It remains to show that

each N�e is H -algebraic.
For each e 2 E, choose a representative p-tuple Exe D .x1; : : : ; xp/ 2 e and let

G1;e WD ¹h 2 H1 W hxi D xi ; i D 1; : : : ; pº:

We will apply Proposition 7.2 with G2 D H1; �2 D �H1 ; G1 D G1;e; �1 D �2 \ G1,
and with F.h1G1/ WD f .g1h1 Exe/. Comparing (7.5) and (7.7) we see that these choices
imply that zF .h1�2/ D yfp e.hL1/ for h D g1h1g�11 2 H . We will see below that �1 is a
lattice in G1. Assuming this, we apply Proposition 7.2 to obtainZ

Rnp
f d N�e D

Z
Yn

yfp e d N� D

Z
G2=�2

zF dmG2=�2

D

Z
G2=G1

f .g1h1 Exe/ dmG2=G1.h1G1/:

This shows that N�e is the pushforward of mG2=G1 under the map

G2=G1 ! Rnp; h1G1 7! g1h1 Exe:

In particular, since H D g1H1g�11 , N�e is H -algebraic.
It remains to show that �1 is a lattice inG1. To see this, note thatG2 is a real algebraic

group defined over Q, and G1 is the stabilizer in G2 of a finite collection of vectors
in Zn. Thus, G1 is also defined over Q. By the theorem of Borel and Harish-Chandra
(see [4, §13]), if G1 has no nontrivial characters then �1 D G1 \ ASLn.Z/ is a lattice
in G1. Moreover, a real algebraic group generated by unipotents has no characters. Thus,
to conclude the proof of the claim, it suffices to show that G1 is generated by unipotents.
We verify this by dividing into the various cases arising in Theorem 3.1.

We first reduce to the case that G1 is a subgroup of SLn.R/. In the linear case we
simply identify G2 with its isomorphic image �.G2/, where � W ASLn.R/! SLn.R/ is
the projection in (3.3), and thus we can assumeG1 � SLn.R/. In the affine case, since the
property of being generated by unipotents is invariant under conjugations in ASLn.R/,
we may conjugate by a translation to assume that one of the vectors in Exe is the zero
vector, so that G1 � SLn.R/. Thus, in both cases we may assume that G2 D H1 is the
group of real points of ResK=Q.G/, and G1 is the stabilizer in G2 of the finite collection
x1; : : : ; xp , where these are vectors in the standard representation on Rn.



Classification and statistics of cut-and-project sets 3621

Suppose first that GDSLk . Then, in the notation of (2.5),G2D �1GR � � � � �
�rCsGR,

where for i D 1; : : : ; i (respectively, for i D r C 1; : : : ; r C s) the group �iGR is isomor-
phic to SLk.R/ (respectively to SLk.C/ as a real algebraic group). Furthermore, as in
§2.4, there is a decomposition

Rn D V1 ˚ � � � ˚ VrCs;

where Vi Š Rk (resp., Vi Š R2k) for i D 1; : : : ; r (resp., for i D r C 1; : : : ; r C s),
and such that the action of G2 on Rn is the product of the standard action of each �iGR

on Vi . Let Pi W Rn ! Vi be the projection with respect to this direct sum decomposition.
Then the stabilizer in G2 of x1; : : : ; xp is the direct product of the stabilizer, in �iGR,
of Pi .x1/; : : : ; Pi .xp/. So it suffices to show that each of these stabilizers is generated
by unipotents. In other words, we are reduced to the well-known fact that for the stan-
dard action of SLk.R/ on Rk , and for the standard action of SLk.C/ on R2k ' Ck , the
stabilizer of a finite collection of vectors is generated by unipotents.

Now suppose that GD Sp2k , and let F DR or F DC. Then by a similar argument, we
are reduced to the statement that for the standard action of Sp2k.F/ on F2k , the stabilizer
of a finite collection of vectors is generated by unipotents. This can be shown as follows.
Let ! be the symplectic form preserved by Sp2k , let V D span.x1; : : : ; xp/ � F2k , and
let

Q WD ¹g 2 Sp2k.F/ W 8v 2 V; gv D vº:

We need to show that Q is generated by unipotents. We can write V D V0 ˚ V1, where
V0 D ker.!jV / is Lagrangian, and V1 is symplectic. Let 2`D dimV1, where ` � k. Since
any element ofQ fixes V1 pointwise, it leaves V ?1 invariant, and it also fixes the subspace
V0 � V

?
1 pointwise. Thus, Q is isomorphic to

¹g 2 Sp.V ?1 / W 8v 2 V0; gv D vº � Sp.V ?1 / Š Sp2m.F/;

wherem WD k � `. This means we can reduce the problem to the case in which V1 D ¹0º,
i.e., !.xi ; xj / D 0 for all i; j . We can apply a symplectic version of the Gram–Schmidt
orthogonalization procedure to assume that x1; y1; : : : ; xp; yp; xpC1; ypC1; : : : ; xm; ym is
a symplectic basis and V0 D span.x1; : : : ; xp/. Let

V2 WD span.xpC1; ypC1; : : : ; xm; ym/ and V3 WD V0 ˚ V2:

Then V2 is symplectic and the subgroup of Q leaving V2 invariant is isomorphic to
Sp2m�2p.F/, hence generated by unipotents. Also, for i D 1; : : : ; p, by considering the
identity

!.gyi ; xj / D !.gyi ; gxj / D !.yi ; xj / .j D 1; : : : ; p/

one sees that any g 2 Q must map the yi to vectors in yi C V3. This implies that Q is
generated by symplectic matrices leaving V2 invariant, and transvections mapping yi to
elements of yi C V3. In particular, Q is generated by unipotents.
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Definition 7.3. Given a real algebraic group J � ASLn.R/, we will say that a locally
finite measure � on Rdp is J -c&p-algebraic if there is a J -algebraic measure N� on Rnp

such that for every f 2 Cc.Rdp/ we haveZ
Rdp

f d� D

Z
Rnp

F d N�;

where F W Rnp ! R is defined by

F.x1; : : : ; xp/ WD

´
f .�phys.x1/; : : : ; �phys.xp// if 8i; �int.xi / 2 W;

0 otherwise.
(7.10)

We will say � is c&p-algebraic if it is J -c&p-algebraic for some J .

It is easy to check that for p D 1, the measure � in Definition 7.3 is the pushforward
under �phys of the restriction of N� to ��1int .W /. For general p, define projections

p�phys W R
np
! Rdp; p�phys.x1; : : : ; xp/ WD .�phys.x1/; : : : ; �phys.xp//;

p�int W R
np
! Rmp; p�int.x1; : : : ; xp/ WD .�int.x1/; : : : ; �int.xp//:

Then the measures �; N� satisfy

� D p�phys�. N� j� /; where � WD p��1int

�
W � � � � �W„ ƒ‚ …

p copies

�
: (7.11)

Proof of Theorem 1.3. By Theorem 4.1, after a rescaling of Rd , there is a homogeneous
measure N� on Yn such that � D ‰� N�. Suppose h 2 H is such that �physjhL1 is injective,
and in the linear case, assume also that hL1 \ Vint � ¹0º. Since � is an RMS measure,
and in the linear case, arguing as in the proof of Theorem 1.2 using Lemma 4.2, we see
that this holds for a.e. h 2 H . For such h, letting ƒh WD ‰.hL1/, we can rewrite the
function yfp defined in (1.7) more succinctly in the form

yfp .ƒh/ D
X

.x1;:::;xp/2L
p
1

F.hx1; : : : ; hxp/;

where F is as in (7.10). Thus, Theorem 1.3 is reduced to Theorem 7.1.

Remark 7.4. The assignment e 7! N�e implicit in the proof of Theorem 1.3 is not injective,
nor is it finite-to-one. To see this, take p D 1 and consider the RMS measure correspond-
ing to the Haar–Siegel measure on Xn. Then H1 D SLn.R/; �H1 D SLn.Z/, and there
are countably many �H1 -orbits on Zn, where two integer vectors belong to the same orbit
if and only if the greatest common divisor of their coefficients is the same. On the other
hand, as the proof of formula (1.4) shows, there are two c&p-algebraic measures, namely
Lebesgue measure on Rd and the Dirac measure at 0. The Dirac measure is associated
with the orbit of 0 2 Zn, and all the other orbits of nonzero vectors in Zn give rise to
multiples of Lebesgue measure on Rd .

Nevertheless, we will continue using the symbol E for both the collection of �H1 -
orbits in Znp , and the indexing set for the countable collection of measures arising in
Theorem 1.3. This should cause at most mild confusion.
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8. The Rogers inequality on moments

In this section we will prove Theorem 1.4. We will need more information about the
measures �e appearing in Theorem 1.3, in case p D 2. We begin our discussion with
some properties that are valid for all p � d . Some of the results of §8.1 will be given in
greater generality than required for our counting results. They are likely to be of use in
understanding higher moments for RMS measures.

8.1. Normalizing the measures

For any k, denote the normalized Lebesgue measure on Rk by vol.k/. Some of the c&p-
algebraic measures � on Rdp which arise in Theorem 1.3 are the globally supported
Lebesgue measures on Rdp , i.e., multiples of vol.dp/. Indeed, such a measure arises if in
Definition 7.3 we take N� equal to a multiple of Lebesgue measure on Rnp . These measures
give a main term in the counting problem we will consider in §10. We write �1 / �2 if
�1; �2 are proportional, we recall the measures ¹�eº defined in the proofs of Theorems 1.3
and 7.1, and we set

Emain
WD ¹e 2 E W �e / vol.dp/º; �main WD

X
e2Emain

�e:

We define constants c�;p by the condition

�main D c�;p vol.dp/:

The next result identifies the normalizing constants c�;p . Recall from Theorem 4.1
that an RMS measure � is of the form � D �c� N� where N� is a homogeneous measure
on Yn, c is the constant of (4.1), and �-a.e. ƒ is of the form ƒ D ƒ.L; W / for a grid L

with covol.L/ D cn. We denote this almost sure value of covol.L/ by covol.�/. Recall
also that the functionƒ 7!D.ƒ/ defined in (1.10) is measurable and invariant, and hence
is a.e. constant, and denote its almost sure value by D.�/.

Proposition 8.1. For any RMS measure � D �c�‰� N� satisfying (1.8) .i.e., G D SLk or
� is affine/, we have

c�;1 D D.�/ D
vol.m/.W /
covol.�/

; (8.1)

and for p 2 N satisfying p < q� and p � d we have

c�;p D c
p
�;1: (8.2)

Note that the normalizing constant c�;1 discussed here is the same as the constant
denoted by c1 in (7.2) and by c in (1.4).

With the identification R`p Š M`;p.R/ in mind, we say that a subspace V � R`p is
an annihilator subspace if it is the common annihilator of a collection of vectors in Rp;
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that is, there is a collection Ann � Rp such that

V D Z.Ann/

WD

°
.v1; : : : ; vp/ 2 R`p W 8i; vi 2 R` &8.a1; : : : ; ap/ 2 Ann;

X
aivi D 0

±
:

Note that the meaning of Z.Ann/ depends on the choice of the ambient space R` contain-
ing the vectors vi ; when confusion may arise we will specify the ambient space explicitly.

Suppose ` 2 N and .v1; : : : ; vp/ is a p-tuple in R`p . In the linear case, let

Ann.v1; : : : ; vp/ WD
°
.a1; : : : ; ap/ 2 Rp W

X
aivi D 0

±
;

and in the affine case, let

Ann.v1; : : : ; vp/ WD
°
.a1; : : : ; ap�1/ 2 Rp�1 W

X
ai .vi � vp/ D 0

±
:

Let
L.v1; : : : ; vp/ WD Z.Ann.v1; : : : ; vp//;

an annihilator subspace in R`p , say that v1; : : : ; vp are independent if Ann.v1; : : : ; vp/
D ¹0º, and let

rank.v1; : : : ; vp/ WD

´
p � dim Ann.v1; : : : ; vp/ if � is linear;

p � 1 � dim Ann.v1; : : : ; vp/ if � is affine:

Note that in the linear case, this is the usual relation between the rank of a matrix and the
dimension of its kernel. The dimension of L.v1; : : : ; vp/ is equal to ` rank.v1; : : : ; vp/.

We recall some notation from §2.4 and from Step 3 of the proof of Lemma 3.2. Let
K be a real number field of degree D D r C 2s, with �1; : : : ; �r being distinct real
embeddings, and �rC1; : : : ; �s denoting representatives of conjugate pairs of nonreal
embeddings. Let G be isomorphic to either SLk.R/ or Sp2k.R/, and let HD ResK=Q.G/:
Let V be a K-vector space of dimension t , where t is as in (6.12), and denote Vj D �jVR,
that is, Vj Š Rt if j D 1; : : : ; r and Vj Š Ct Š R2t if j D r C 1; : : : ; s. These vector
spaces are chosen so that V is equipped with the standard action of G, and taking into
account the isomorphism

Rn Š .ResK=Q.V//R D V1 ˚ � � � ˚ VrCs : (8.3)

Let �j� WRn! Vj be the corresponding projections. In the notation (2.5), let �j WHR!
�jGR, so that the action of HR factors through the action of each �jGR on Vj . We can
assume without loss of generality (see §2.1) that V2 ˚ � � � ˚ VrCs � Vint and �phys D

�phys ı
�1� .

Lemma 8.2. Suppose � is an RMS measure of higher rank, and let G be the group
appearing in Theorem 1.1. Let p < q�, let Exe D .x1; : : : ; xp/ 2 e, where e 2 E is as
defined before (7.7), and let vi WD �1�.xi /, i D 1; : : : ; p. Assume that

rank.v1; : : : ; vp/ �

´
d if G D SLk ;

1 if G D Sp2k :
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Let N� WD N�e be the algebraic measure on Rnp as in (7.9) and let � be a c&p-algebraic
measure obtained from N� as in Definition 7.3. Then � is .up to proportionality/ the
Lebesgue measure on some annihilator subspace of Rdp: This subspace is equal to Rdp

if and only if v1; : : : ; vp are independent.

Proof. Let N� be as in Definition 7.3. As in the proof of Theorem 7.1, we find that
H.x1; : : : ; xp/ is a dense subset of full measure in supp N� . We will split the proof accord-
ing to the various cases arising in Theorem 3.1.

Case 1: � is linear, G D SLk . In this case, our proof will also show that supp N� is a sum
of annihilator subspaces, one in each Vj ; in fact, we first establish this statement.

The action of H on Rn factors into a product of actions of each �jGR on Vj . That is,
H acts on vji WD

�j�.xi /; i D 1; : : : ; p, via its mapping to �jGR, i.e., via the standard
action of SLk.R/ or SLk.C/ on Rk or Ck . It follows from (1.5) and (1.6) that p < q�D k.
Therefore for each j , the rank Rj of ¹vji W i D 1; : : : ; pº is less than k. For the standard
action, �jGR is transitive on linearly independentRj -tuples. From this, by choosing a lin-
early independent subsetBj � ¹v

j
1 ; : : : ; v

j
p º of cardinalityRj and expressing any vji …Bj

as a linear combination of elements of Bj , one sees that if .u1; : : : ; up/; .w1; : : : ; wp/ are
two p-tuples in Vj then

there is h 2 �jGR such that h.w1; : : : ; wp/ D .u1; : : : ; up/

” Ann.w1; : : : ; wp/ D Ann.u1; : : : ; up/: (8.4)

This implies that �jGR.v
j
1 ; : : : ; v

j
p / is open and dense in L.vj1 ; : : : ; v

j
p /, and hence

H.x1; : : : ; xp/ is open and dense in

LrCs1 WD

rCsM
jD1

L.v
j
1 ; : : : ; v

j
p /:

We have shown that supp N� D LrCs1 and that N� is a multiple of the Lebesgue measure
on LrCs1 .

Since �phys D �phys ı
�1� , we have
p�phys.L

rCs
1 / D p�phys.L.v1; : : : ; vp//:

To simplify notation, write H 1 WD �1GR Š SLk.R/, and vi WD v1i 2 V1. Let

Ann1 WD Ann.v1; : : : ; vp/:

We have
p�phys.L.v1; : : : ; vp// D Z.Ann1/; (8.5)

seen as an annihilator subspace of Rdp . Indeed, the inclusion � follows from linearity
of �phys. For the opposite inclusion, recall that we have an inclusion Vphys ,! V1, and this
induces an inclusion � W Rdp ,! Rnp: We clearly have

� .Z.Ann1// � L.v1; : : : ; vp/;

which implies the inclusion � in (8.5).
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Replacing xi with elements of xiCVphys does not affect the condition .x1; : : : ;xp/2 � ,
where � is as in (7.11). This shows that

supp � D p�phys.L
rCs
1 / D p�phys

�
L.v1; : : : ; vp/

�
is an annihilator subspace, and � is a multiple of Lebesgue measure on this subspace.
Moreover, the subspace is proper if and only if Ann1 ¤ ¹0º, or equivalently, v1; : : : ; vp
are dependent.

Case 2: � is linear, G D Sp2k , d D 2: The action of H splits as a Cartesian product of
actions of the groups �jGR on the spaces Vj for j D 1; : : : ; r C s. As in Case 1, we will
focus on the action on the first summand V1, where H acts via H 1 WD �1GR Š Sp2k.R/.
We denote by ! the symplectic form on V1 preserved byH 1. Let L WD H.x1; : : : ; xp/ D
supp N� , where N� is the unique (up to scaling)H -invariant measure with support L, and let
L1 WD L \ V1 D

�1�.L/ D H 1.v1; : : : ; vp/, where vi WD �1�.xi /; i D 1; : : : ; p.
Let F Š SL2.R/ be as in (3.1). Then F � H 1, and hence � is F -invariant. Write

V 1int WD Vint \ V1 D V
?

phys;

and abusing notation slightly, let �phys;�int denote the restrictions of these mappings to V1,
so they are the projections associated with the decomposition V1 D Vphys ˚ V

1
int: Define

R WD rank.v1; : : : ;vp/, and defineR0 as the maximal rank of ¹�phys.hv1/; : : : ;�phys.hvp/º,
as h ranges over elements of H 1. Thus, 0 � R0 � R � 1.

If R0 D 0 this means that �phys.hvi / D 0 for all h 2 H and all i , and then � is the
Dirac measure at 0, and there is nothing to prove. Now supposeR0DRD 1. SinceRD 1,
there is some vi such that �phys.vi / ¤ 0, and there are coefficients aj , j ¤ i , such that
vj D aj vi . This implies that for all h, �phys.hvj / D aj�phys.hvi /, that is,

supp � � p�phys.L/ � L
0
WD ¹.u1; : : : ; up/ 2 R2p W 8j ¤ i; uj D ajuiº:

Moreover, since F acts transitively on nonzero vectors in Vphys, and � is F -invariant,
we actually have equality and � is a multiple of Lebesgue measure on the annihilator
subspace L0, and L0 is a proper subspace of R2p , unless p D 1.

Case 3: � is affine. The affine case can be reduced to the linear case. Note that the defi-
nition of the annihilator Ann.v1; : : : ; vp/ in the affine case is such that it does not change
under the diagonal action of the group of translations, and that the group of translations
in H is the full group Rn, so that x1; : : : ; xp can be moved so that xp D 0. Moreover, by
Proposition 5.3, we can assume that 0 2W . We leave the details to the diligent reader.

Let
Erest

WD E XEmain; �rest WD
X

e2Erest

�e: (8.6)

The preceding discussion gives a description of the measures �e with e 2 Erest:

Corollary 8.3. Under the conditions of Lemma 8.2, any measure �e; e2Erest, is Lebesgue
measure on a proper subspace of Rdp .
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Proof of Proposition 8.1. Let Br denote the Euclidean ball of radius r around the origin
in Rd , let 1Br be its indicator function, and let b1Br be the function obtained from the
summation formula (1.3), so that

D.ƒ/ D lim
r!1

b1Br .ƒ/
vol.d/.Br /

:

Applying (1.4) we find that for any r > 0,Z
C .Rd /

b1Br
vol.d/.Br /

d� D
c�;1

vol.d/.Br /

Z
Rd

1Br dvol D c�;1: (8.7)

Suppose ƒ D ƒ.L; W /. We claim that for r � 1,

b1Br .ƒ/� vol.d/.Br /˛.L/; (8.8)

where ƒ D ƒ.L; W / and L D �.L/, and where the implicit constant depends on d; n
andW . Indeed, we can replaceW with a larger convex set containing it, so that b1Br .ƒ/ is
bounded from above by # .K \L/, where K WD Br �W . It is known (see [15, Chap. 2,
§9.4] or [52, Prop. 2.9]) that for any dimension n, for any bounded convex setK 0 and any
lattice L0 � Rn, if K 0 \L0 is not contained in a proper affine subspace of Rn, then

# .K 0 \L0/ � nŠ
vol.K 0/

covol.L0/
C n:

For any L we let x0 be a translation vector such that LC x0 D L, set

V WD span.L \ .K C x0//; ` WD dimV; L0 WD L \ V; K 0 WD V \ .K C x0/;

and apply this estimate in V Š R` with ` � n. For r � 1 we have vol.`/.K 0/� rd and
covol.L0/� �1.L/ � � ��`.L/: Thus

# .K \L/ D # .K 0 \L0/� `Š
rd

�1.L/ � � ��`.L/
C `� vol.d/.Br /˛.L/;

establishing (8.8) and proving the claim. Therefore, using Proposition 6.1 and the domi-
nated convergence theorem, we are justified in taking a limit r !1 inside the integral
(8.7), finding that c�;1 D D.�/. Combining this with (1.10) gives (8.1). See [26, proof of
Thm. 1.5] for a different proof of (8.1).

Now to prove (8.2), letQr andQp
r denote the unit cube of sidelength r in Rd and Rdp

respectively, let 1Qr and 1Qpr be the indicator functions, and define pb1Qpr via (1.7). Then
we have

pb1Qpr .ƒ/ D #
ąp

.Qr \ƒ/;

that is, the number of p-tuples of elements ofƒ in the p-fold Cartesian productQp
r : This

implies that for �-a.e. ƒ,

lim
r!1

pb1Qpr .ƒ/
rdp

D

�
lim
r!1

# .Qr \ƒ/

vol.d/.Qr /

�p
D D.ƒ/p D c

p
�;1: (8.9)
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By Theorem 1.3 we have

c�;p D
1

rdp

Z
Rdp

1Qpr d�main D
1

rdp

�Z
Rdp

1Qpr d� �
Z

Rdp
1Qpr d�rest

�
D

Z pb1Qpr .ƒ/
rdp

d� �
1

rdp

X
e2Erest

Z
Rdp

1Qpr d�e: (8.10)

Repeating the argument establishing (8.8), we find

pb1Qr .ƒ/� .vol.d/.Qr //p˛.L/p;

and thus the integrable function ˛p dominates the integral in the second line of (8.10),
independently of r . Moreover, since they differ by a constant, ˛p also dominates the
series in the second line of (8.10). Using (8.9), the first integral gives cp�;1, and thus it
remains to show that

lim
r!1

1

rdp

Z
Rdp

1Qpr d�e D 0 for every e 2 Erest: (8.11)

From (1.8) and Corollary 8.3 we deduce that �e is (up to proportionality) equal to
Lebesgue measure on a subspace V 0 � Rdp , and we have V 0 ¤ Rdp since e 2 Erest.
This implies (8.11).

Remark 8.4. One can also work in Rnp rather than Rdp , and define analogous normaliza-
tion constants Nc N�;p by the formula N�main D Nc N�;p vol.np/ : Then one can show that Nc N�;p D 1
for all p < q�. We will not need the values of these constants and leave the proofs to the
interested reader.

8.2. More details for p D 2

We will need to describe the measure �rest in the case p D 2.

Proposition 8.5. Let � be an RMS measure such that (1.8) holds. Let p D 2, and let
Erest; �rest be as in (8.6). Then there is a partition Erest D Erest

1 t Erest
2 , and constants

¹ae W e 2 Erest
2 º; ¹be W e 2 Erest

1 º; ¹ce W e 2 Erestº, such that the following hold:

(1) For all f 2 Cc.R2d /, we haveZ
R2d

f d�rest D
X

e2Erest
1

ce

Z
Rd
f .x; bex/ dvol.d/.x/

C

X
e2Erest

2

ce

Z
Rd
f .aex; x/ dvol.d/.x/: (8.12)

(2) ce > 0 for all e 2 Erest and
P

e2Erest ce <1:

(3) jaej � 1 for all e 2 Erest
2 and jbej � 1 for all e 2 Erest

1 :
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Proof. Lemma 8.2 is applicable in view of (1.8); indeed, when G D SLk , we have p D
2 � d , and when G D Sp2k and � is affine, we have rank.v1; v2/ � 1. Therefore, for
each e 2 Erest, there is an annihilator subspace Ve   Rdp such that �e is proportional to
Lebesgue measure on Ve. Repeating the argument of §7.1 we can see that �e is not the
Dirac mass at the origin. In other words Ve has positive dimension. Since p D 2, this
means we can find ˛; ˇ, not both zero, such that Ve D Z.˛; ˇ/. We can rescale so that
max.j˛j; jˇj/ D max.˛; ˇ/ D 1 and we define

Erest
1 WD ¹e 2 Erest

W ˇ D 1º; Erest
2 WD Erest

XErest
1 :

If we set be D �˛ for e 2 Erest
1 and ae D �ˇ for e 2 Erest

2 , then the bounds in (3) hold
and we have

Ve D

´
¹.x; bex/ W x 2 Rd º for e 2 Erest

1 ;

¹.aex; x/ W x 2 Rd º for e 2 Erest
2 :

We now define ce by the formula

8f 2 Cc.R
2d /;

Z
R2d

f d�e D

´
ce

R
Rd f .aex; x/ dvol.d/.x/ for e 2 Erest

1 ;

ce

R
Rd f .x; bex/ dvol.d/.x/ for e 2 Erest

2 :

Then clearly (8.12) holds, and ce > 0 for all e 2 Erest.
It remains to show

P
ce <1. Let 1B be the indicator of a ball in R2d centered at the

origin. Then there is a positive number � which bounds from below all the numbers in²Z
Rd

1B.ax; x/ dvol.d/.x/ W jaj � 1
³
[

²Z
Rd

1B.x; bx/ dvol.d/.x/ W jbj � 1
³
:

Since �rest is a locally finite measure, we have
R

R2d 1B d�rest <1. But (8.12) implies that
�
P

e2Erest ce �
R

R2d 1B d�rest: Therefore
P

e2Erest ce <1.

Proof of Theorem 1.4. Given f W Rd ! Œ0; 1� as in Theorem 1.4, define

' W R2d ! Œ0; 1� by '.x; y/ WD f .x/f .y/:

Clearly .
R

Rd f dvol.d//2 D
R

R2d ' dvol.2d/, and it follows easily from (1.3) and (1.7)
that

2b'.ƒ/ D yf .ƒ/2: (8.13)

Using (8.13), Theorem 1.3 with p D 2, (1.4), and (8.2) we see thatZ
C .Rd /

ˇ̌̌̌
yf .ƒ/ �

Z
C .Rd /

yf d�

ˇ̌̌̌2
d�.ƒ/

D

Z
C .Rd /

yf 2 d� �

�Z
C .Rd /

yf .ƒ/ d�

�2
D

Z
R2d

' d� �

�
c�;1

Z
Rd
f dvol.d/

�2
D c�;2

Z
R2d

' dvol.2d/ C
Z

R2d
' d�rest � c

2
�;1

�Z
Rd
f dvol.d/

�2
D

Z
R2d

' d�rest:

(8.14)
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It remains to show that Z
R2d

' d�rest �

Z
Rd
f dvol.d/; (8.15)

where the implicit constant is allowed to depend on �. And indeed, by Proposition 8.5,Z
R2d

' d�rest

(8.12)
D

X
e2Erest

1

ce

Z
Rd
f .aex/f .x/ dvol.x/C

X
e2Erest

2

ce

Z
Rd
f .x/f .bex/ dvol.x/

f�1

�

X
e2Erest

1

ce

Z
Rd
f .x/ dvol.x/C

X
e2Erest

2

ce

Z
Rd
f .x/ dvol.x/

D

� X
e2Erest

ce

� Z
Rd
f dvol.d/:

9. From bounds on correlations to a.e. effective counting

In this section we present two results which we will use for counting. The first is due to
Schmidt [41] but we recast it in a slightly more general form (see also [22, Thm. 2.9]). To
simplify notation, for measurable S � Rn, we will write VS WD vol.n/.S/.

Theorem 9.1. Let n 2 N and let � be a probability measure on C .Rn/. Let � 2 Œ1; 2/,
let ˆ D ¹B˛ W ˛ 2 RCº be an unbounded ordered family of Borel subsets of Rn, and let
 W RC ! RC. Suppose the following hypotheses are satisfied:

(a) The measure � is supported on discrete sets, and for each f 2 L1.Rn;vol/, a Siegel–
Veech transform as in (1.3) satisfies yf 2 L2.�/: Furthermore, there are positive a; b
such that for any function f W Rn ! Œ0; 1� with f 2 L1.Rn; vol/, we haveZ

yf d� D a

Z
Rn
f dvol (9.1)

and

Var�. yf / WD
Z ˇ̌̌̌
yf �

Z
yf d�

ˇ̌̌̌2
d� � b

�Z
Rn
f dvol

��
: (9.2)

(b) The function  is nondecreasing, and
R1
0

1
 .x/

dx <1:

Then for �-a.e. ƒ, for every S 2 ˆ we have

# .S \ƒ/ D aVS CO
�
V
�=2
S .logVS / .logVS /1=2

�
as VS !1: (9.3)

Note that we allow defining yf as in either one of the linear or affine cases of (1.3),
as long as the conditions in (a) are satisfied. For definiteness we will use the affine case,
namely yf D

P
v2ƒ f .v/, so that c1S .ƒ/D jS \ƒj for any subset S � Rn with indicator

function 1S . In the linear case we may have c1S .ƒ/ D jS \ƒj � 1 or c1S .ƒ/ D jS \ƒj
(depending on whether or not S contains 0), and the reader will have no difficulty adjust-
ing the proof in this case.
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Proof of Theorem 1.5 assuming Theorem 9.1. With � D 1 and  .t/ D t1C", (9.3)
becomes

# .S \ƒ/ D aVS CO.V
1=2
S .logVS /3=2C"/ as VS !1;

which implies (1.11). The hypotheses of Theorem 9.1 hold in the higher rank case by
(1.4) and Theorem 1.4.

Before giving the proof of Theorem 9.1 we will state the following more general
result.

Theorem 9.2. Let d;m;n2N with nD d Cm, let� be a probability measure on C .Rn/,
let � 2 Œ0; 1/; � 2 Œ1; 2/, let  W RC ! RC, let ˆ D ¹B˛ W ˛ 2 RCº be an unbounded
ordered family of Borel subsets of Rd , and let ¹W˛ W ˛ 2 RCº be a collection of subsets
of Rm. Suppose that (a) and (b) of Theorem 9.1 are satisfied, and in addition:

(c) For any N 2 N there is ˛ such that vol.d/.B˛/ D N .

(d) Each W˛ can be partitioned as a disjoint union W˛ D
FL˛
`D1

C˛.`/, where L˛ �
.vol.d/.B˛//�, and where w˛ WD vol.m/.C˛.`// is the same for all ` D 1; : : : ; L˛ ,
and is of order� .vol.d/.B˛//��.

Denote N̂ WD ¹B˛ �W˛ W ˛ 2RCº and for S 2 N̂ , set VS WD vol.n/.S/. Then for �-a.e.ƒ,
for every S 2 N̂ we have

# .S \ƒ/ D aVS CO.V
�.1��/=2C�
S .logVS / .logVS /1=2/ as VS !1: (9.4)

Note that for � D 1 and  .t/ D t1C", (9.4) becomes

# .S \ƒ/ D aVS CO.V
.1C�/=2
S .logVS /3=2C"/: (9.5)

Theorems 9.1 and 9.2 both follow from ideas developed by Schmidt [41]. We begin
with Theorem 9.1, for which we need the following lemmas.

By the definition of an unbounded ordered family, we can assume that for each V > 0
there is � 2 ˆ such that vol.�/ D V . For each N 2 N, let SN 2 ˆ with vol.SN / D N
and let �N WD 1SN denote its indicator function. Given two integers N1 < N2, let

N1�N2 WD �N2 � �N1 :

Since the SN are nested, we have N1�N2 D 1SN2XSN1 :

Lemma 9.3 (cf. [41, Lemma 2]). Let T 2 N and letKT be the set of all pairs of integers
N1, N2 satisfying 0 � N1 < N2 � 2T , N1 D u2t , N2 D .uC 1/2t for some integers u
and t � 0. Then there exists c > 0 such thatX

.N1;N2/2KT

Var�.1N1�N2/ � c.T C 1/2�T : (9.6)

Proof. Indeed, (9.2) yields Var�.1N1�N2/ � b.N2 � N1/� . Each value of N2 � N1 D 2t

for 0 � t � T occurs 2T�t times, henceX
.N1;N2/2KT

.N2 �N1/
�
D

X
0�t�T

2TC.��1/t � .T C 1/2�T :
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Lemma 9.4 (cf. [41, Lemma 3]). For all T 2 N there exists a subset BadT � supp� of
measure

�.BadT / � c .T log 2 � 1/�1 (9.7)

such that
.c�N .ƒ/ � aN/2 � T .T C 1/2�T .T log 2 � 1/ (9.8)

for every N � 2T and all ƒ 2 supp� X BadT .

Proof. Let BadT be the set of ƒ 2 supp� for which it is not true thatX
.N1;N2/2KT

.1N1�N2.ƒ/ � a.N2 �N1//2 � .T C 1/2�T .T log 2 � 1/: (9.9)

Then the bound (9.7) follows from Lemma 9.3 by Markov’s inequality. Assume N � 2T

and ƒ 2 supp� X BadT . The interval Œ0; N / can be expressed as a union of intervals of
the type ŒN1; N2/, where .N1; N2/ 2 IN � KT and jIN j � T . Therefore, 2�N .ƒ/ � aN
D
P
.1N1�N2.ƒ/ � a.N2 � N1//, where the sum is over .N1; N2/ 2 IN . Applying the

Cauchy–Schwarz inequality to the square of this sum together with the bound from (9.9)
we obtain (9.8).

Proof of Theorem 9.1. Let BadT be the sets from Lemma 9.4. Since  �1 is integrable
and monotone, we find by Borel–Cantelli and (9.7) that for �-a.e.ƒ there is Tƒ such that
for any T � Tƒ,ƒ 62 BadT . Assume nowN �Nƒ D 2

Tƒ and let T be the unique integer
for which 2T�1 � N < 2T . By Lemma 9.4,

.c�N .ƒ/� aN/2 � T .T C 1/2�T .T log 2� 1/ D O
�
N �.logN/2 .logN/

�
: (9.10)

Given arbitrary S 2 ˆ, let N be such that N � VS < N C 1, and let SN ; SNC1 2 ˆ with
SN � S � SNC1 and vol.SN / D N; vol.SNC1/ D N C 1: Then

# .SN \ƒ/ � a.N C 1/ � # .S \ƒ/ � aVS � # .SNC1 \ƒ/ � aN: (9.11)

From (9.10), the left-hand side of (9.11) is O.N �=2.logN/ .logN/1=2/ and the right-
hand side is O..N C 1/�=2 log.N C 1/ .logN C 1/1=2/, and these quantities are of the
same order O.V �=2S .log VS / .log VS /1=2/. A similar upper bound for aVS � # .S \ƒ/
is proved analogously.

We turn to the proof of Theorem 9.2. Note that the collection N̂ is not ordered;
nevertheless one can apply similar arguments to each ` separately, before applying Borel–
Cantelli. We turn to the details.

Proof of Theorem 9.2. Given N , using assumption (c), for each N there is ˛ D ˛.N /

such that vol.d/.B˛/ D N . It follows that vol.n/.B˛ �W˛/ D NL˛w˛ � N . We let �`N
be the characteristic function of B˛ � C˛.`/, which is of volume Nw˛ � N 1��. We will
take N1�

`
N2

to be the characteristic function of .B˛.N1/ X B˛.N2// � C˛.N/.`/. Note that
the dependence of the function N1�

`
N2

on N is suppressed from the notation.
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The argument proving Lemma 9.3 therefore yields (9.6), with � replaced by �0 WD
�.1 � �/, i.e., X

`

X
.N1;N2/2KT

Var�.
1
N1�

`
N2
/ � cL˛.T C 1/2

�0T : (9.12)

For S D B˛.N/ �W˛.N/, N � 2T , by the definition of 1
N1�

`
N2
.ƒ/ and the Cauchy–

Schwarz inequality, we have

.# .S \ƒ/ � aVS /2 D
�X
`

#..B˛ � C˛.`// \ƒ/ � a vol.n/.B˛ � C˛.`//
�2

D

�X
`

�c
�`N .ƒ/ � aNw˛

��2
D

�X
`

X
.N1;N2/2IN

�1
N1�

`
N2
.ƒ/ � a.N2 �N1/w˛

��2
� TL˛

X
`

X
.N1;N2/2KT

�1
N1�

`
N2
.ƒ/ � a.N2 �N1/w˛

�2
:

As in the proof of Lemma 9.4, we denote by BadT the points ƒ not satisfying the
boundX

`

X
.N1;N2/2KT

�1
N1�

`
N2
.ƒ/ � a.N2 �N1/w˛

�2
� L˛.T C 1/2

�0T .T log 2 � 1/:

Then applying (9.12) we get �.BadT / � c0 .T log 2 � 1/�1, so that by Borel–Cantelli,
a.e. ƒ belongs to at most finitely many sets BadT . Also for ƒ 62 BadT , we have

j# .S \ƒ/ � aVS j2 � L2˛T .T C 1/2
�0T .T log 2 � 1/;

which replaces (9.8), and we proceed as before.

10. Counting patches à la Schmidt

In this section we prove Theorem 1.6. We recall some notation and terminology from the
introduction and the statement of the theorem. For a cut-and-project setƒ � Rd , x 2 Rd

and R > 0, Pƒ;R.x/ D B.0;R/ \ .ƒ � x/ is called the R-patch of ƒ at x, and

D.ƒ;P0/ D lim
T!1

# ¹x 2 ƒ \ B.0; T / W Pƒ;R.x/ D P0º

vol.B.0; T //

is called the frequency of P0. Suppose ƒ arises from a cut-and-project construction with
associated dimensions n D d Cm and window W � Rm, and is chosen according to an
RMS measure � of higher rank. The upper box dimension of W0 � Rm is

dimB.W0/ WD lim sup
r!0

logN.W0; r/
� log r

; (10.1)
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where N.W0; r/ is the minimal number of balls of radius r needed to cover W0. Set

�0 WD
m

mC 2ı
(10.2)

where ı D m � dimB.@W / > 0: Our goal is to show that for any � 2 .�0; 1/, any
unbounded ordered family ¹B˛ W ˛ 2 Rº, for �-a.e. ƒ, for any patch P0 D Pƒ;R.x0/,

# ¹x 2 B˛ \ƒ W Pƒ;R.x/ D P0º

D D.ƒ;P0/ vol.B˛/CO.vol.B˛/.1C�/=2/ as vol.B˛/!1; (10.3)

where the implicit constant depends on ";W;ƒ;P0. Note that (10.3) implies (1.13).
The strategy we will use is similar to that of [18, proof of Cor. 4.1].

Proof of Theorem 1.6. For every K 2 N and ` 2 Zm define the box

QK.`/ D

�
`1

K
;
`1 C 1

K

�
� � � � �

�
`m

K
;
`m C 1

K

�
:

It is well-known (see e.g. [29, Chap. 5]) that in (10.1), we are free to replaceN.W; r/ with
the minimal number of cubesQK.`/ needed to coverW , whereK D b1=rc:We consider
cut-and-project sets of the form ƒ D ƒ.W;L/ with L 2 Yn. Here W � Rm is fixed
and satisfies dimB.W / < m, and ƒ is chosen at random, according to a homogeneous
measure N� on Yn. Let � be an R-patch equivalence class in ƒ, that is,

� D ¹x 2 ƒ W Pƒ;R.x/ D P0º

for some R > 0 and some P0 D Pƒ;R.x0/. By a well-known observation (see [1,
Cor. 7.3]), � is itself a cut-and-project set, and in fact arises from the same lattice via
a smaller window, i.e., there is W� � W such that

� D ƒ.W�;L/:

In particular, for irreducible cut-and-project sets (which is a property satisfied by
N�-a.e. L), we have

D.ƒ;P0/ D D.�/ D
vol.W�/
vol.W /

D.ƒ/: (10.4)

In addition, it is shown in [24, §2] thatW� is the intersection of finitely many translations
of W and its complement. Since @W� � F C @W for some finite F � Rm, we deduce
that dimB.@W�/ � dimB.@W /.

Let � 2 .�0; 1/, and let � > 0 be small enough that

max
�
1C �0

2
C �; 1 �

�0.ı � �/

m

�
<
1C �

2
: (10.5)

Such an � exists in light of (10.2). Given ˛, we letK˛ 2N be such that vol.B˛/�0 �Km˛ .
Define

A.1/˛ WD
[

QK˛ .`/�W�

QK˛ .`/; A.2/˛ WD
[

QK˛ .`/\W�¤;

QK˛ .`/;
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and let L 2 supp N� satisfy (D) and (I). Since A.1/˛ � W� � A
.2/
˛ , the associated cut-and-

project sets
ƒ.i/˛ WD ƒ.A

.i/
˛ ;L/ .i D 1; 2/

satisfy, for all ˛,

# .ƒ.1/˛ \ B˛/ � # .� \ B˛/ � # .ƒ.2/˛ \ B˛/;

D.ƒ.1/˛ / � D.�/ � D.ƒ.2/˛ /:

Moreover, by (10.4),

D.ƒ.2/˛ / �D.ƒ.1/˛ / D
D.ƒ/

vol.W /
.vol.A.2/˛ / � vol.A.1/˛ //: (10.6)

Using the triangle inequality we have

j# .� \ B˛/ �D.�/ vol.B˛/j � max
iD1;2

j# .ƒ.i/˛ \ B˛/ �D.�/ vol.B˛/j

� max
iD1;2

j# .ƒ.i/˛ \ B˛/ �D.ƒ
.i/
˛ / vol.B˛/j C .D.ƒ.2/˛ / �D.ƒ.1/˛ // vol.B˛/: (10.7)

We bound separately the two summands on the right-hand side of (10.7). For the first sum-
mand we use the case (9.5) of Theorem 9.2 with W˛ D A

.i/
˛ and C˛.`/ D QK˛ .`/. Note

that assumption (d) is satisfied by our choice of K˛ , with implicit constants depending
on P0. We deduce, for N�-a.e. L, that ƒ.i/˛ D ƒ.A

.i/
˛ ;L/ satisfies

j# .ƒ.i/˛ \ B˛/ �D.ƒ
.i/
˛ / vol.B˛/j � c1.vol.B˛/.1C�0/=2 .log vol.B˛//3=2C"/;

where c1, as well as the constants appearing in the following inequalities, depend only on
N̂ D ¹B˛ � A

.i/
˛ º and on L.

For the second summand, recall that dimB.@W�/ �m� ı. This implies that the num-
ber of ` 2 Zn with QK˛ .`/ \ @W� ¤ ; is� K

m�ıC�
˛ . Therefore

vol.A.2/˛ X A
.1/
˛ / D

X
QK˛ .`/\@W�¤;

vol.QK˛ .`//� Km�ıC�˛ K�m˛ D K�ıC�˛ :

This implies via (10.6) that

.D.ƒ.2/˛ / �D.ƒ.1/˛ // vol.B˛/ D
D.ƒ/ vol.B˛/

vol.W /
.vol.A.2/˛ / � vol.A.1/˛ //

� vol.B˛/K�ıC�˛ � vol.B˛/1�
�0.ı��/

m :

Plugging these two estimates into (10.7), and using (10.5) and the fact that
.log.vol.B˛///3=2C" � vol.B˛/� for large enough vol.B˛/, we find that for N�-a.e. L,ˇ̌

# .� \ B˛/ �D.�/ vol.B˛/
ˇ̌
� vol.B˛/

1C�
2 ;

with implicit constants depending on �, L and ". This shows (10.3) and completes the
proof.
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