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Outer forms of type A2 with infinite genus

Sergey V. Tikhonov

Abstract. LetG be an absolutely almost simple algebraic group over a fieldK. The genus genK.G/
of G is the set of K-isomorphism classes of K-forms G0 of G that have the same K-isomorphism
classes of maximal K-tori as G. We construct an example of outer forms of type A2 with infinite
genus.

1. Introduction

Let K be a field and Ksep its separable closure. Two absolutely almost simple algebraic
K-groupsG1 andG2 are said to have the sameK-isomorphism classes of maximalK-tori
if every maximal K-torus of G1 is K-isomorphic to some maximal K-torus of G2, and
vice versa. An algebraic K-group G0 is called a K-form of an algebraic K-group G if G
and G0 are isomorphic over Ksep.

Definition 1.1 ([2, Def. 6.1]). Let G be an absolutely almost simple algebraic group over
a field K. The genus genK.G/ of G is the set of K-isomorphism classes of K-forms G0

of G that have the same K-isomorphism classes of maximal K-tori as G.

The genus is trivial in some special cases and it is conjectured to be finite whenever
the field K is finitely generated of “good” characteristic (see details in [6, §8]).

In a similar way one can define the genus of a division algebra.

Definition 1.2. The genus gen.D/ of a finite-dimensional central division algebra D over
a field K is defined as the set of classes ŒD 0� 2 Br.K/, where D 0 is a central division K-
algebra having the same maximal subfields as D .

If D is a finite-dimensional central division K-algebra, then it is well known that
any maximal K-torus of the corresponding algebraic group G D SL1;D is of the form
RE=K.Gm/\G (where RE=K.Gm/ is the Weil restriction of the 1-dimensional split torus
Gm) for some maximal separable subfield E of D . Thus the results on genus of divi-
sion algebras from [4, 10] rephrased in the language of algebraic groups say that for any
prime p, there exist fields (with infinite transcendence degree over the prime subfield)
over which there are inner forms of type Ap�1 with infinite genus. An example of groups
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of type G2 with infinite genus is obtained in [1, Rem. 3.6 (b)]. In the present paper, we
construct such an example for outer forms of type A2.

Let F=K be a quadratic separable field extension and � the non-trivial K-automor-
phism of F . An involution on an F -algebra R is called an F=K-involution if its restriction
to F is � . An isomorphism of F -algebras with involution

f W .R; �/! .R0; � 0/

is an F -algebra isomorphism f W R! R0 such that � 0 ı f D f ı � . Let also E=F be a
field extension such that E has an automorphism  of order 2 such that  jF D � (i.e.,
E has an F=K-involution). Then �E denotes the involution on R ˝F E defined by the
formula �E .r ˝ e/ WD �.r/˝  .e/, where r 2 R, e 2 E. In particular, if L=F is a field
extension linearly disjoint toE over F with an automorphism � of order two extending � ,
then �E is the automorphism of order two of the field EL D L˝F E which extends �.

Let A be a central division F -algebra of degree nwith an F=K-involution � . LetL=F
be a separable field extension of degree n, and let � W L! L be an automorphism of order
two such that �jF D � . An embedding of algebras with involution .L; �/ ,! .A; �/ is
by definition an injective F -homomorphism f W L! A such that � ı f D f ı �. It is
known that embeddings of maximal tori into the special unitary group SU.A; �/ can be
described in terms of embeddings of fields with involution into the central simple algebra
with involution .A; �/ [5, Prop. 2.3].

In this paper, we construct a field E and a subfield T � E such that ŒE W T � D 2

and there is an infinite set of (pairwise non-isomorphic) division E-algebras of degree 3
with E=T -involution such that a field extension L=E of degree 3 can be embedded as an
algebra with involution into one algebra of this set if and only if it can be embedded as an
algebra with involution into all other algebras from this set. Passing to the corresponding
special unitary groups, we obtain an example of outer forms of typeA2 with infinite genus.
The main result of the paper is the following theorem.

Theorem 1.3. There exists a simple simply connected algebraic group G over a (certain)
field T that is an outer form of type A2 for which the genus genT .G/ is infinite.

Note that the field T constructed in the proof of this theorem is infinitely generated.
Below we use the following notation: Alg3.F=K/ is the set of isomorphism classes

of central division F -algebras of degree 3 with F=K involution; Ext3.F=K/ is the set
of isomorphism classes of field extensions of F of degree 3 with F=K-involution. The
3-torsion of the Brauer group Br.F / is denoted by 3 Br.F /. For a field extension E=F
and a central simple F -algebra A, AE denotes the tensor product A˝F E and resE=F W
Br.F /! Br.E/ denotes the restriction homomorphism. The restriction of resE=F to the
subgroup 3Br.F / will also be denoted by resE=F . For a central simple F -algebra A, Aop

denotes the opposite algebra and Am denotes A˝F � � � ˝F A (m times). For a quadratic
form q over K and a field extension E=K, qE denotes the quadratic form obtained by
extension of scalars from K to E. Recall that a field extension E=F is called regular if
E=F is separable and F is algebraically closed in E.
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2. Preliminary results

We start with the following.

Lemma 2.1. Let n be a positive integer, F a field of characteristic not dividing 2n, F=K
a quadratic field extension, � the non-trivial K-automorphism of F , A a central simple
F -algebra of degree n, and L=F a cyclic field extension of degree n. Then there exists a
regular field extension M=F and a subfield T �M such that ŒM W T � D 2 and

(1) M D TF and the non-trivial T -automorphism of M extends � ;

(2) the composite ML splits AM ;

(3) the homomorphism resM=F W Br.F /! Br.M/ is injective.

Proof. Let F.x/ be a purely transcendental extension of F of transcendence degree 1. Let
also � be a generator of the Galois group Gal.L.x/=F.x// and

C WD A
op
F.x/
˝F.x/

�
L.x/=F.x/; �; x

�
;

where .L.x/=F.x/; �; x/ is a cyclic F.x/-algebra of degree n. Let also E be the function
field of the Severi–Brauer variety of C . Note that the kernel of the restriction homomor-
phism resE=F .x/ W Br.F.x//! Br.E/ is generated by ŒC � (see, e.g., [8, Cor. 13.16]).

Let B be a central simple F -algebra of exponent bigger than 1. Assume that B is split
byE, then ŒBF.x/�D ŒC

i � for some 1� i � n. If i < n, then the F.x/-algebra C i ramifies
at the discrete valuation (trivial on F ) of F.x/ defined by the polynomial x, but BF.x/ is
unramified at this valuation, hence ŒBF.x/� ¤ ŒC

i �. Since the exponent of BF.x/ is bigger
than 1, then

ŒBF.x/� ¤ ŒC
n� D

�
F.x/

�
:

Thus BF.x/ is not split by E, i.e., the homomorphism resE=F W Br.F /! Br.E/ is injec-
tive.

Since E splits C , then

ŒAE � D
��
L.x/=F.x/; �; x

�
E

�
D
�
.EL=E; �0; x/

�
;

where �0 is the generator of Gal.EL=E/. Thus EL splits AE .
Note that E=F is a regular extension of F.x/. For the following construction of the

transfer of a regular field extension, we refer to [7, p. 220].
Let � also denotes the K.x/-automorphism of F.x/ extending the automorphism �

of F . The automorphism � of F.x/ can be extended to an isomorphism (which we also
denote by � ) of E and another regular extension of F.x/ denoted by E� . Thus the fol-
lowing diagram commutes:

F
� � //

�

��

F.x/
� � //

�

��

E

�

��
F
� � // F.x/ �

� // E� :

(2.1)



S. V. Tikhonov 808

Let M D EE� be the free composite over F of E and E� . This free composite is
F -isomorphic to the function field of the Severi–Brauer variety of the E� .y/-algebra

A
op
E� .y/

˝E� .y/

�
E�L.y/=E� .y/;  

0; y
�
;

where y is transcendental over E� (we replace x by y since the composite is free) and
 0 is the generator of the Galois group Gal.E�L.y/=E� .y//. The field M is a regular
extension of F . The isomorphisms

� W E ! E� and ��1 W E� ! E

have a unique extension to an automorphism x� of M of order two. Let T WD TF=K.E/ be
the transfer of E with respect to the ground field descent F � K, i.e., T is the subfield of
M of elements fixed under the action of x� . Note that the composite TF coincides withM ,
ŒM W T � D 2, and x� extends � .

The algebra AM is split by ML since AE is split by EL.
Finally, the diagram (2.1) induces the following commutative diagram for the corre-

sponding Brauer groups:

Br.F / res //

Š

��

Br
�
F.x/

� res //

Š

��

Br.E/

Š

��
Br.F / res // Br

�
F.x/

� res // Br.E� /
res // Br.M/:

The injectivity of resE=F implies the injectivity of resE�=F . Moreover, resM=E� is injective
by the same arguments as for resE=F , we just replace the ground field F by E� . Hence
the homomorphism resM=F is also injective.

We also need the following.

Lemma 2.2. Let F be a field of characteristic ¤ 2; 3; F=K a quadratic field extension,
� the non-trivial K-automorphism of F , and L=F a field extension of degree 3 with
an automorphism � of order two such that �jF D � . Then there exists a field extension
F.L/=F and a subfield K.L/ � F.L/ such that ŒF .L/ W K.L/� D 2 and

(1) F.L/ D K.L/F and the non-trivial K.L/-automorphism of F.L/, denoted by
�F.L/, extends � ;

(2) ŒF .L/ W F � � 2;

(3) the composite F.L/L is a cyclic extension of F.L/ of degree 3;

(4) the homomorphism resF.L/=F W 3Br.F /! 3Br.F.L// is injective.

Proof. If the extension L=F is cyclic, then one can take F.L/ WD F , K.L/ WD K, and
�F.L/ WD � .

Assume that the extension L=F is not cyclic. Let N be the normal closure of the
extension L�=K, where L� � L is the subfield of elements fixed by �. Then F 6� N and
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NF is the normal closure of the extension L=F . Thus we have the following diagram of
field extensions:

N L

L�

2 2

F

3

K

3 2

Let H be the Sylow 3-subgroup of the Galois group Gal.N=K/. Then NH , the fixed
field of H , is an extension of K of degree 2 and N=NH is a cyclic extension of degree 3.
Hence NF is a cyclic extension of NHF of degree 3 and ŒNHF W F � D 2. Let K.L/ WD
NH and F.L/ WD K.L/F . Since F 6� N , then ŒF .L/ W K.L/� D 2 and the field F.L/
has a K.L/-automorphism of order two extending � . Note that F.L/L D NF , hence
F.L/L=F.L/ is a cyclic extension of degree 3. Finally, since ŒF .L/ W F � D 2, then the
homomorphism resF.L/=F W 3Br.F /! 3Br.F.L// is injective.

Remark 2.3. In the notations of Lemma 2.2, for any field extension L0 of F of degree 3,
F.L/ andL0 are linearly disjoint over F . Moreover, ifL0 has an automorphism �0 of order
2 extending � , then the composite F.L/L0 has the automorphism �0

F.L/
which extends

the automorphisms �0 and �F.L/.

Lemma 2.4. Let F be a field of characteristic ¤ 2; 3; F=K a quadratic field extension,
� the non-trivial K-automorphism of F , A a central simple F -algebra of degree 3 with
an F=K-involution � , and L=F a field extension of degree 3 with an automorphism �

of order two such that �jF D � . Then there exists a field extension F.K;L;A/=F and a
subfield K.L;A/ � F.K;L;A/ such that ŒF.K;L;A/ W K.L;A/� D 2 and

(1) F.K;L;A/ D K.L;A/F and the non-trivial K.L;A/-automorphism of F.K;L;A/, de-
noted by �F.K;L;A/

, extends � ;

(2) the homomorphism resF.K;L;A/=F W 3Br.F /! 3Br.F.K;L;A// is injective;

(3) for any field extension L0 of F of degree 3, F.K;L;A/ and L0 are linearly disjoint
over F ;

(4) there is an embedding .F.K;L;A/L;�F.K;L;A/
/ ,! .AF.K;L;A/

; �F.K;L;A/
/ of algebras

with involution.

Proof. Let F.L/, K.L/ and �F.L/ be as in Lemma 2.2. Let also M and T be fields
obtained by applying Lemma 2.1 for the quadratic field extension F.L/=K.L/, the F.L/-
algebra AF.L/, the cyclic field extension F.L/L=F.L/ of degree 3. Then by Lemmas
2.1 and 2.2, the homomorphism resM=F W 3Br.F /! 3Br.M/ is injective; for any field
extension L0 of F of degree 3, M and L0 are linearly disjoint over F and the composite
ML splits AM . Thus there is an M -embedding " WML ,! AM of M -algebras.
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Note that AM has the M=T -involution �M which extends � and ML has the auto-
morphism �M of order two extending �. By [5, Proposition 3.1], there exists an M=T -
involution ı on AM such that " W .ML;�M / ,! .AM ; ı/ is an embedding of algebras with
involution.

Let �.ı/ and �.�M / be the 3-fold Pfister forms of involutions ı and �M respectively
(see [3, §19.B]). Let T .�.ı// and T .�.�M // be the function fields of �.ı/ and �.�M /
respectively. Then the quadratic forms �.ı/T.�.ı// and �.�M /T.�.�M // are isotropic and
hence hyperbolic since they are Pfister forms.

LetK.L;A/ be the free composite over T of the fields T .�.ı// and T .�.�M //. Let also
F.K;L;A/ WDK.L;A/F . Since F 6�K.L;A/, then ŒF.K;L;A/ WK.L;A/�D 2 and F.K;L;A/ has
a K.L;A/-automorphism �F.K;L;A/

of order 2 extending � . Note that the algebraic closure
of F in F.K;L;A/ is F.L/ and ŒF .L/ W F � is either 1 or 2. Therefore, F.K;L;A/ and L0 are
linearly disjoint over F for any field extension L0 of F of degree 3.

The extensions T .�.ı//=T and T .�.�M //=T are composition of a purely transcen-
dental extension with a quadratic extension, hence the homomorphism

resF.K;L;A/=M W 3Br.M/! 3Br.F.K;L;A//

is injective. Hence resF.K;L;A/=F W 3Br.F /! 3Br.F.K;L;A// is also injective.
The quadratic forms �.ı/K.L;A/

and �.�M/K.L;A/
are hyperbolic. Then by [3, Th. 19.6],

the involutions ıF.K;L;A/
and �F.K;L;A/

on AF.K;L;A/
are conjugate. This means that there is

an isomorphism � W .AF.K;L;A/
; ıF.K;L;A/

/! .AF.K;L;A/
; �F.K;L;A/

/ of algebras with invo-
lution.

Moreover, the embedding " W .ML;�M/,!.AM; ı/ of algebras with involution induces
an embedding .F.K;L;A/L; �F.K;L;A/

/ ,! .AF.K;L;A/
; ıF.K;L;A/

/ of algebras with involu-
tion. Indeed, F.K;L;A/L DML˝M F.K;L;A/. Let

"F.K;L;A/
WML˝M F.K;L;A/ �! AF.K;L;A/

be an F.K;L;A/-embedding defined by the formula "F.K;L;A/
.m˝ a/ WD ".m/˝ a, where

m 2ML, a 2 F.K;L;A/. Then

"F.K;L;A/

�
�F.K;L;A/

.m˝ a/
�
D "F.K;L;A/

�
�M .m/˝ �F.K;L;A/

.a/
�

D "
�
�M .m/

�
˝ �F.K;L;A/

.a/

D ı
�
".m/

�
˝ �F.K;L;A/

.a/

D ıF.K;L;A/

�
".m/˝ a

�
D ıF.K;L;A/

�
"F.K;L;A/

.m˝ a/
�
:

Thus "F.K;L;A/
is an embedding of algebras with involutions. Then � ı "F.K;L;A/

is an em-
bedding .F.K;L;A/L; �F.K;L;A/

/ ,! .AF.K;L;A/
; �F.K;L;A/

/ of algebras with involution.

The following construction of the field F.K;S;A/ is an adaptation of the construction
from [10] for algebras with involutions. We give the details below for the reader’s conve-
nience.
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Proposition 2.5. Let F be a field of characteristic ¤ 2; 3; F=K a quadratic field exten-
sion, � the non-trivial K-automorphism of F , A � Alg3.F=K/ and S � Ext3.F=K/.
Then there exists a field extension F.K;S;A/=F and a subfieldK.S;A/ � F.K;S;A/ such that
ŒF.K;S;A/ W K.S;A/� D 2 and

(1) F.K;S;A/ D K.S;A/F and the non-trivial K.S;A/-automorphism, denoted by
�F.K;S;A/ , of F.K;S;A/ extends � ;

(2) the homomorphism resF.K;S;A/=F W 3Br.F /! 3Br.F.K;S;A// is injective;

(3) for any field extension L0 of F of degree 3, F.K;L;A/ and L0 are linearly disjoint
over F ;

(4) for any A 2 A with an F=K-involution � and L 2 S with a K-automorphism �

of order 2 extending � , there is an embedding

.F.K;S;A/L; �F.K;S;A// ,! .AF.K;S;A/ ; �F.K;S;A//

of algebras with involution.

Proof. Let P WD ¹.L;D/ j L 2 S and D 2 Aº be the set of pairs. Let also < be a well-
ordering on P and let t0 D .L0;D0/ denote its least element. Set Et0 WD F.K;L0;D0/ and
T0 WD K.L0;D0/, where the fields F.K;L0;D0/ and K.L0;D0/ are constructed in Lemma 2.4.
For t D .L;D/ 2 P , set

E<t WD
[
t 0<t

Et 0 ; T
<t
WD

[
t 0<t

Tt 0 ; Tt WD T
<t
.E<tL;DE<t /

; Et WD E
<t
.T<t ;E<tL;DE<t /

;

where the fields Et and Tt are obtained by applying Lemma 2.4 to the quadratic field
extension E<t=T <t , the field extension E<tL=E<t of degree 3, the automorphism �E<t

of E<tL extending the automorphism � of L and the E<t -algebra DE<t . We also define
F.K;S;A/ WD

S
t2P Et and K.S;A/ WD

S
t2P Tt .

By Lemma 2.4,Et D TtF and ŒEt W Tt �D 2 for any t 2P . Then F.K;S;A/DK.S;A/F ,
ŒF.K;S;A/ W K.S;A/� D 2 and the non-trivial K.S;A/-automorphism of F.K;S;A/ extends � .

By Lemma 2.4 and transfinite induction, the homomorphism

resF.K;S;A/=F W 3Br.F /! 3Br.F.K;S;A//

is injective and for any field extension L0 of F of degree 3, F.K;S;A/ and L0 are linearly
disjoint over F .

Finally, let A 2 A with an F=K-involution � , L 2 S with an automorphism � of order
2 extending � and t D .L;A/. By Lemma 2.4, there is an embedding .EtL; �Et / ,!
.AEt ; �Et / of algebras with involution. Moreover, as in the proof of Lemma 2.4, this
embedding induces the embedding

.F.K;S;A/L; �F.K;S;A// ,! .AF.K;S;A/ ; �F.K;S;A//

of algebras with involution.
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Theorem 2.6. LetF be a field of characteristic¤ 2;3,F=K a quadratic field extension, �
the non-trivialK-automorphism of F ,A�Alg3.F=K/. Then there exists a field extension
FA=F and a subfield KA � FA such that ŒFA W KA� D 2 and

(1) FADKAF and the non-trivialKA-automorphism, denoted by �FA , ofFA extends �;

(2) the homomorphism resFA=F W 3Br.F /! 3Br.FA/ is injective;

(3) for any central simple F -algebra B of degree 3 with an F=K-involution � , the
algebra BFA has an FA=KA-involution �FA extending � ;

(4) if L 2 Ext3.FA=KA/ with a KA-automorphism � of order 2 extending �FA , then
there is an embedding

.L; �/ ,! .AFA ; �FA/

of algebras with involution for any A 2 A with an F=K-involution � .

Proof. Let F0 WD F and K0 WD K. We recursively define Fi and Ki , i 2 Z>0, to be
the fields Fi�1.Ki�1;Ext3.Fi�1=Ki�1/;resFi�1=F .A//

and Ki�1.Ext3.Fi�1=Ki�1/;resFi�1=F .A//
con-

structed by applying Proposition 2.5 to the quadratic field extension Fi�1=Ki�1, the set

resFi�1=F .A/ � Alg3.Fi�1=Ki�1/

and the set Ext3.Fi�1=Ki�1/.
Let FA WD

S
i�0 Fi and KA WD

S
i�0Ki . Hence FA D KAF and the non-trivial KA-

automorphism �FA of FA extends � . Therefore, for any central simple F -algebra B of
degree 3 with an F=K-involution � , the FA=KA-involution �FA extends � .

By induction and Proposition 2.5, resFA=F W 3Br.F /! 3Br.FA/ is injective.
Assume that A 2 A with an F=K-involution � and L 2 Ext3.FA=KA/ with an auto-

morphism � of order two extending �FA . Then there exists i � 0 and a field extension L0

of Fi of degree 3 such that LD FAL0 and �i WD �jL0 is aKi -automorphism of order two.
This means that L0 2 Ext3.Fi=Ki /. By Proposition 2.5, there is an embedding

.FiC1L
0; �i FiC1/ ,! .AFiC1 ; �FiC1/

of algebras with involution. As in the proof of Lemma 2.4, this embedding can be extended
to an embedding .L; �/ ,! .AFA ; �FA/ of algebras with involution.

3. Construction

As a corollary to Theorem 2.6, we obtain the following.

Theorem 3.1. There exists a field E and a subfield T � E with ŒE W T � D 2 such that
there is an infinite set B of pairwise non-isomorphic division E-algebras of degree 3 with
E=T -involution and such that for any field extension L=E of degree 3 with an automor-
phism � of order 2 extending the non-trivial T -automorphism ofE, there is an embedding
.L; �/ ,! .A; �/ of algebras with involution for any A 2 B with an E=T -involution � .
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Proof. Let �3 be a primitive 3th root of unity,K DQ.�3/.x;y; z/, the purely transcenden-
tal extension of the field Q.�3/ and F D K.

p
2/. Then for i > 0, the symbol F -algebras

Ai D .
xC
p
2yi

x�
p
2yi
; z/3 of degree 3 are pairwise non-isomorphic. Indeed, Ai ramifies at the

discrete valuation (trivial on Q.�3/.
p
2/.y; z/) of F D Q.�3/.

p
2/.y; z/.x/ defined by

the polynomial x C
p
2yi 2 Q.�3/.

p
2/.y; z/Œx�, but if i ¤ j , then Aj is unramified at

this valuation.
By the projection formula for the corestriction [9, Th. 3.2], we have that the corestric-

tion to K of the F -algebra Ai is similar to the split K-algebra�
NF=K

�
x C
p
2yi

x �
p
2yi

�
; z

�
3

D .1; z/3:

Then by [3, Th. 3.1 (2)], the algebra Ai has an F=K-involution.
Now we apply Theorem 2.6 for the infinite set A� Alg3.F=K/ consisting of algebras

Ai , i > 0, and set E WD FA, T WD KA, B WD resFA=F .A/.

Remark 3.2. The referee asked the following interesting question. The construction pre-
sented in the proof of the previous theorem yields algebras that are not isomorphic even
as algebras without involution. One may wonder if one can construct (infinite) families
of non-equivalent involutions supported on the same division algebra with isomorphic
maximal invariant subfields.

Now we are in a position to prove the main Theorem 1.3.

Proof. We use notation from Theorem 3.1. Let A be an algebra with E=T -involution �
from the setB . Then the special unitary groupGD SU.A; �/ is a simple simply connected
outer form of type A2 over T .

If A1 are A2 are different algebras with E=T -involutions �1 and �2 respectively from
the set B , then the algebraic groups SU.A1; �1/ and SU.A2; �2/ are not isomorphic by
[3, Th. 26.9]. Moreover, by [5, Prop. 2.3] the groups SU.A1; �1/ and SU.A2; �2/ have the
same T -isomorphism classes of maximal T -tori.

Thus, the genus genT .G/ is infinite.

Acknowledgments. The author thanks the referee for helpful suggestions.
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