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Generalized Minkowski weights and Chow rings of
T -varieties

Ana Botero

Abstract. We give a combinatorial characterization of Fulton’s operational Chow cohomology
groups of a complete, Q-factorial, rational T -variety of complexity one in terms of so called gen-
eralized Minkowski weights in the contraction-free case. We also describe the intersection product
with Cartier invariant divisors in terms of the combinatorial data. In particular this provides a new
way of computing top intersection numbers of invariant Cartier divisors combinatorially.

Introduction
Any algebraic variety X has Chow “homology” groups A�.X/ D

L
k Ak.X/ and Chow

“cohomology” groupsA�.X/D
L
k A

k.X/. The latter are the operational groups defined
in [8, Chapter 17]. These cohomology groups have a natural graded ring structure, written
with a cup product “[”, and A�.X/ is a module over A�.X/, written with a cap product
“\”. If X is complete, composing with the degree homomorphism from A0.X/ to Z one
has a a Kroenecker duality homomorphism

Ak.X/ �! Hom
�
Ak.X/;Z

�
; z 7�!

�
a 7! deg.z \ a/

�
:

In general, this map is not an isomorphism.
However, we will see that for a large class of T -varieties of complexity one, the Kroe-

necker duality homomorphism is indeed an isomorphism, at least after tensoring with Q.
This will follow from Poincaré duality and a combinatorial property related to the T -
variety called shellability (see Proposition 3.5).

We now briefly recall the definition and combinatorial characterization of T -varieties.
We refer to [2–4, 16] for further details on general T -varieties, and to [12, 14, 15] for the
case of complexity one.

A T -variety is a normal algebraic variety X defined over an algebraically closed field
of characteristic zero with an effective action of an algebraic torus T . The complexity
of a T -variety is defined as dimX � dim T . Hence T -varieties of complexity zero cor-
respond exactly to toric varieties. As for toric varieties, one can encode T -varieties of
arbitrary complexity in terms of some combinatorial data. For this, one uses the language
of p-divisors and divisorial fans (see Section 1 for details). In the case of complexity
one, one even has a simpler description in terms of so called fansy divisors. This case is
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in some ways close to the case of toric varieties. For example, one has a characteriza-
tion of invariant Cartier divisors in terms of so called divisorial Cartier support functions
(see Section 2.1). These are collections of piecewise-affine functions defined on the slices
of the divisorial fan sharing the same recession function. Such a characterization is not
known in higher complexity. This is one of the reasons why we decided to restrict to the
complexity-one case in the present article.

In order to state our results, let X be a complete, rational T -variety of complexity one
with divisorial fan � and recession fan †. We can think of � as a collection of complete
rational polyhedral complexes .�p/p2P1 , all having recession fan †, and �p ¤ † only for
finitely many p 2 P1. The �p are called the slices of � . Let P be the set of points such
that �p ¤ †. We assume that jP j � 2.

It has been shown in [15] that the Chow groups Ak.X/ are generated by invariant
subvarieties corresponding to elements in the complexes �p for p 2 P , and in†. Roughly,
polyhedra in the �p correspond to vertical cycles, cones in † correspond to horizontal
cycles, and one has to keep track of which subvarieties are contracted along the map
r W zX ! X (see Section 1 for the definition of the map r). Relations are given by the
divisors of invariant rational functions on subvarieties of dimension k C 1. This gives an
explicit presentation of the Chow groups Ak.X/ by an exact sequence (see Theorem 3.6).

It now follows from the Kroenecker duality map, that one can associate to a given
Chow cohomology class a certain function on the set of polyhedra of the �p’s and the
set of cones in †. We call these functions generalized Minkowski weights (see Defini-
tion 4.1). The name is inspired by [10], where the authors study the operational Chow
cohomology rings of complete toric varieties and show that they can be identified with
so called Minkowski weights, which are certain functions on the set of cones of the fan
defining the toric variety. This association is bijective whenever the Kroenecker duality
map is an isomorphism.

We say that X is contraction-free if zX ' X . In this case, and under some other mild
assumptions, the Chow cohomology groups are generated in codimension one, and a
Stanley–Reisner type presentation of the Chow groups is given in [14, Theorem 4]. We use
this description together with Poincaré duality to show that in this case, the Kroenecker
duality map is an isomorphism after tensoring with Q.

The above is summarized in the following theorem, which is our first main result.

Theorem 4.4. Let X be a complete rational T -variety of complexity one. Then there is a
tropicalization map

tropWAk.X/ �!Mk.X/

between the Chow cohomology groups Ak.X/ and the group of k-codimensional general-
ized Minkowski weightsMk.X/. If X is projective, Q-factorial and contraction-free, then
the induced tropicalization map

tropWAk.X/Q �!Mk.X/Q;

where Mk.X/Q denotes Q-valued generalized Minkowski weights, is a bijection.
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Let us comment on the above assumptions. Q-factoriality is needed for Poincaré
duality to hold and, as the authors in [14] remark, their contraction-free assumption is
necessary for their result, as they are using that Ak.X/ is generated by divisors, a fact
which is no longer true in the non-contraction-free case. This is why we need to impose
all of these conditions in the above theorem. We however expect that the Kronecker duality
map is still an isomorphism also in the not necessarily contraction-free case.

For the rest of the introduction, assume that X is projective, Q-factorial and contrac-
tion-free. The ring structure on A�.X/Q makes the group of generalized Minkowski
weights M�.X/Q D

L
kMk.X/Q into a commutative ring. The second main result of

this article is a combinatorial description of the intersection pairing between Chow coho-
mology classes and T -invariant Cartier divisors.

Before we state our result, as was mentioned above, a T -Cartier divisor on X cor-
responds to a divisorial Cartier support function h on � (Definition 2.5). We denote by
CaSF.�/ the set of divisorial Cartier support functions on � . In Section 5 we define in the
contraction-free case an intersection pairing

CaSF.�/ �Mk.X/ �!MkC1.X/; .h; c/ 7�! h � c: (0.1)

We can think of this pairing as an analogue of the so called corner locus of a tropical cycle
in tropical geometry. Our second main result states that this pairing is compatible with the
isomorphism trop of above and hence recovers the algebraic intersection product.

Theorem 5.6. Assume that X is projective, Q-factorial and contraction-free. Let h 2
CaSF.�/ and let Dh its associated Cartier divisor. Set ŒDh� 2 A1.X/Q for its corre-
sponding cohomology class. Then for any z 2 Ak.X/Q we have

trop
�
ŒDh� [ z

�
D h � trop.z/

as generalized Minkowski weights in MkC1.X/Q.

We expect that the pairing (0.1) generalizes to the non-contraction-free case such that
Theorem 5.6 continues to hold. This will be part of a future project.

Now, to any invariant Cartier divisor Dh we associate a measure �h on a real vector
space Tot.�/ by means of the pairing (0.1) (see Definition 6.1). It is supported on the
vertices of the polyhedral complexes �p and the rays of†. Moreover, �h is positive ifDh
is nef.

For any integer ` and any p 2 P we denote by �p.`/ and by †.`/ the set of `-
dimensional polyhedra in �p and the set of `-dimensional cones in †, respectively.

As an application of Theorem 5.6 we obtain a way to compute the top intersection
number of Dh as an integral with respect to the measure �h.

Corollary 6.2. Assume that X is projective, Q-factorial and contraction-free and let
dim.X/ D n C 1. Let Dh be an invariant Cartier divisor associated to a Cartier divi-
sorial support function h with recession function rec.h/D Nh, and let �h be the associated
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measure. Then

DnC1
h
D

Z
Tot.�/

�h�h D
X
p2P

X
F 2�p.0/

�h.vF /�h.F /
X
�2†.1/

� Nh.v� /�h.�/;

where for F 2 �p.0/, vF D F , and for � 2†.1/, v� denotes the primitive vector spanning
the ray � .

This article is a first step towards a convex-geometrical description of the intersection
theory of nef b-divisors (b stands for birational) on complexity-one T -varieties in the spirit
of [7]. Indeed, we expect that nef b-divisors on such a T -variety can be characterized in
terms of some “concave” functions on the divisorial fan. We then expect to associate a
Monge–Ampère type measure to such a function, as a weak limit of measures of the form
�h from above. We plan to pursue these ideas in the future.

Finally, in [5, 6] the authors study equivariant operational K-theory and Grothendieck
transformations from bivariant operational K-theory to Chow. These results are later used
in [18], where the author describes the operational K-theory of complete toric varieties in
terms of so called Grothendieck weights (a K-theoretic analog of the Minkowski weights)
and gives a product formula in terms of these weights. It would be interesting to try
to characterize the operational K-theory of complete T -varieties of complexity one in
terms of some generalized Grothendieck weights, a K-theoretic analog of the generalized
Minkowski weights introduced in the present article.

Outline of the paper

In Section 1 we recall some basic facts of T -varieties and the combinatorial framework to
describe them. In particular, we recall the definitions of p-divisors and of divisorial fans. In
Section 2 we restrict to the complexity one case and we describe the invariant subvarieties
induced by the polyhedra in the slices of the divisorial fan. It turns out that these invariant
subvarieties generate the pseudoeffective cone of the T -variety and we give a list of its
generators (Theorem 2.3). For this we mainly follow [15]. Then we recall the classification
of T -invariant Cartier divisors in terms of Cartier divisorial support functions, following
the work in [4, 16].

In Section 3 we recall the definition of the Chow homology and cohomology groups
of an algebraic variety. In Section 3.1 we show that the Kroenecker duality map is an iso-
morphism for projective, rational, Q-factorial, contraction-free T -varieties after tensoring
with Q (see Proposition 3.5). Then, following [15], we give in the general, not necessarily
contraction-free case, an explicit presentation of Ak.X/ in terms of an exact sequence. In
Section 4 we prove our first main result. We give the definition of the groups of generalized
Minkowski weights and we show that they can be identified with the Chow cohomology
groups in the projective, Q-factorial, contraction-free case. This yields Theorem 4.4.

In Section 5, we prove our second main result. We restrict to the Q-factorial, con-
traction free case and define an intersection pairing between Cartier divisorial support
functions and generalized Minkowski weights. We show that this pairing is compatible
with the tropicalization isomorphism from Theorem 4.4. This gives Theorem 5.6.
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In Section 6 we associate a measure �h to any Cartier divisorial support function
h using the intersection pairing. As an application of Theorem 5.6 we obtain a way of
computing top intersection numbers of invariant Cartier divisors in terms of this measure.
We get Corollary 6.2. We end the article with an example (see Example 6.3).

Conventions. We denote by k an algebraically closed field of characteristic 0. A variety
means an integral, separated scheme of finite type over k. Varieties are assumed to be
reduced and irreducible. A subvariety is a closed subscheme which is a variety.

1. Preliminaries on T -varieties

We use standard notation from toric geometry. LetN be a lattice of dimension n,M DN_

its dual lattice and T D Spec.N /' .k�/n the n-dimensional torus. For any ring R we put
NR D N ˝Z R and MR DM ˝Z R.

Definition 1.1. A T -variety is a normal variety X together with an effective algebraic
torus action T �X ! X . Its complexity is defined as dimX � n.

Thus T -varieties of complexity zero correspond to toric varieties.
We recall the general framework for describing T -varieties of any complexity. For

details we refer to [2–4].
We use notations and basic facts regarding convex cones and polyhedra from [17]. In

particular, for any polyhedron ƒ 2 NQ, its recession cone rec.ƒ/ is the set of direction
vectors of all rays contained in ƒ

rec.ƒ/ WD ¹v 2 NQW v Cƒ � ƒº:

Fix a polyhedral cone � � NQ. Consider the semigroup (under Minkowski addition)

PolCQ.N; �/ D
®
ƒ � NQWƒ is a polyhedron with rec.ƒ/ D �

¯
:

We also allow ; 2 PolCQ.N; �/.
Let Y be a normal variety. We denote by CaDiv.Y / the group of Cartier divisors on Y

and by CaDivQ.Y / the group of Q-Cartier divisors on Y . A polyhedral divisor on .Y;N /
is a formal sum

D D
X
Z

ƒZ �Z;

forƒZ 2 PolCQ.N;�/ andZ 2CaDivQ.Y /, such that only finitely manyƒZ differ from � .
For a polyhedral divisor D consider the evaluation

D.u/ D
X

Z s. t.ƒZ¤;

minhƒZ ; uiZ 2 CaDivQ.Y /

for u 2 �_ \M . This is a finite sum.
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The polyhedral divisor D on .Y;N / is called a p-divisor if D.u/ is semiample for all
u 2 �_ \M , as well as big for u 2 relint.�_/ \M .

To a p-divisor D one associates a sheaf of rings

OY .D/ D
M

u2�_\M

OY
�
D.u/

�
:

Then X D Spec �.Y;OY .D// is an affine T -variety of complexity dim Y . Also the rel-
ative spectrum zX D SpecY OY .D/ is a T -variety of complexity dim Y and there is an
equivariant map r W zX ! X . The variety X is said the be contraction-free if zX D X .

Altman and Hausen show that any affine T -variety arises from a p-divisor in this way
[2, Theorem 3.4].

Given two p-divisors D and D 0 on .Y;N / we write D 0 �D if each coefficient of D 0

is contained in the corresponding coefficient of D . In this case, we have a map

X.D 0/! X.D/;

and D 0 is said to be a face of D if this map is an open embedding.
The intersection D \D 0 of two polyhedral divisors is the polyhedral divisorX

Z

.ƒZ \ƒ
0
Z/ �Z:

Definition 1.2. A divisorial fan � is a finite set of p-divisors on .Y; N / such that the
intersection of any two p-divisors of � is a face of both and � is closed under taking
intersections.

We denote by X.�/ the scheme obtained by gluing the affine T -varieties X.D/ and
X.D 0/ along the open subvarieties X.D \D 0/ for each D , D 0 2 � . As in the toric case,
X.�/ turns out to be a T -variety of complexity dimY .

Analogously, define the variety zX.�/ by gluing the affine T -varieties zX.D/ and
zX.D 0/ along the open subvarieties zX.D \D 0/ for each D , D 0 2 � .

We have an induced proper birational morphism

r W zX.�/ �! X.�/

and X.�/ is said to be contraction-free if r D id. The set

†.�/ D
®

rec.D/ j D 2 �
¯

is the recession fan of � , where rec.D/ stands for the common recession cone of the
coefficients of D .

Altmann, Hausen and Süss show that any T -variety arises from a divisorial fan in this
way [3, Theorem 5.6].

The degree of a p-divisor D , denoted deg.D/, is the Minkowski sum
P
Z ƒZ of its

coefficients.
We now specialize to the case where Y is a smooth projective curve.
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Definition 1.3. A marked fansy divisor on Y is a formal sum

„ D
X
p2Y

„P ˝ Œp�;

together with a complete fan † in NQ and a subset K � † such that

(1) for all p 2 Y , the coefficient„p is a complete polyhedral subdivision of NQ with
rec.„p/ D ¹rec.ƒp/ j ƒp 2 „pº D †.

(2) for a cone � 2 K of full dimension, the element D� D
P
p D�

p ˝ Œp� is a p-
divisor, where D�

p denotes the unique polyhedron in „p whose recession cone is
equal to � .

(3) for a full-dimensional cone � 2 K and a face � � � we have that � 2 K if and
only if deg.D� / \ � ¤ ;.

(4) if � is a face of � then � 2 K implies that � 2 K.

The elements of K � † are called marked cones.

It is shown in [12, Proposition 1.6] that any complete T -variety of complexity one
corresponds to a marked fansy divisor. Given a divisorial fan � one associates a marked
fansy divisor „.�/ by taking the polyhedral subdivisions �p given by � and letting K
consist of all cones � 2 † such that there exists D 2 � with rec.D/D � and such that no
coefficient of D equals ;. The variety zX is given as a marked fansy divisor by the same
subdivisions as for X but with K D ;. Thus the cones in K capture the information of
which orbits are identified via the contraction map r .

Intuitively, one can think of a T -variety of complexity one in the following way. For
a point p 2 Y , the fiber over p corresponds to a union of toric varieties corresponding to
the polyhedral subdivision �p . The polyhedral subdivision at a general fiber is†D rec.�/
and hence the generic fiber is the toric variety corresponding to †.

2. Subvarieties of T -varieties of complexity one

Let X be a .n C 1/-dimensional complete, rational T -variety of complexity one with
divisorial fan � over Y D P1, recession fan † in NQ and subset K � †. Assume that K
is a proper subset of †, i.e., K ¤ †.

For p 2 P1 we write �p for the corresponding complete polyhedral subdivision ofNQ.
Let P be the set of points of P1 such that �p ¤ †. P is a finite set. We assume that P has
size at least two.

Notation 2.1. We use standard notation in toric and tropical geometry. For a cone � 2 †
we set N� D N \ span.�/ and N.�/D N=N� . For any integer k � 0 we denote by†.k/
the set of cones of † of dimension k. Also for a polyhedral subdivision �p we denote by
�p.k/ the set of k-dimensional polyhedra in �p . If � 2†.k/ is a cone. Then for every cone
� 2 †.k C 1/ with � � � we denote by v�;� the lattice normal vector of � relative to � .
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This is the image in N.�/ of the unique generator of N�=N� that points in the direction
of � . If k D 0 we also write v� for v¹0º;� .

For F 2 �p denote byNF;R the linear space spanned by all x � y for x;y 2 � . Further,
denote by NF D NF;R \ N the induced sublattice and by N.F / the quotient N=NF . If
F 2 �p.k/ then for every G 2 �p.k C 1/ denote by vF;G the lattice normal vector of G
relative to F . This is the image in N.F / of the unique generator of NG=NF that points in
the direction of G.

Be aware that the notation vF for F 2 �p is given below in Notation 2.2.

On zX we have various subvarieties arising from the combinatorial structure. We briefly
recall the description of these here from [15, Section 3] (see also [11]).

• For p 2 P1 and a polyhedron F 2 �p , there is a T -orbit orb.p; F / � zX of dimension
codim.F /. The closure of this orbit in zX is denoted Zp;F . It is an invariant subva-
riety of an irreducible component of the fiber. The irreducible component is a toric
variety corresponding to the fan †.p;F / � N.F /Q consisting of all polyhedral in �p
containing F . The corresponding character lattice is M.F / D N.F /_.

• Let � be the generic point of P1. For any cone � 2 † we have a T -orbit orb.�; �/ of
dimension codim.�/C 1. The closure of this orbit in zX is denoted by B� . Then B�
dominates P1 with general fiber given by the subvariety of X† corresponding to � .
B� is itself a T -variety of complexity one (see proof of [15, Theorem 4.1]). Hence,
B� corresponds to a divisorial fan �.�/. Over each p 2 P1, the polyhedral complexes
�.�/p � N.�/Q consist of all polyhedra in �p with recession cone containing � . The
recession fan of �.�/ is the star †.�/. For example, for � 2 †.1/, B� is a horizontal
divisor in the sense of [14].

On X , some of the subvarieties are contracted, namely those B� where � is in K. In this
case, r.B� / is contracted to a subvariety of one dimension less. We denote by W� the
corresponding orbit closure r.B� / in X . Then dim.W� / D codim.�/.

Denote also by the same symbols Zp;F and B� the subvarieties r.Zp;F / and r.B� /
for � … K, respectively.

Let us introduce a bit more notation.

Notation 2.2. Let F 2 Sp with rec.F / D � . Then from the description of the invariant
subvariety B� given above, it follows that the image of F in �.�/p is zero-dimensional.
We denote this image by vF . It is an element inN.�/Q. Let �.F / be the smallest positive
integer in N.�/ such that �.F /vF is a lattice point.

If � 2 K we consider the index

s� D
�

Stab
�
r.Zp;F /

�
WStab.Zp;F /

�
(note that since the map r is equivariant, any t 2 T in the stabilizer of Zp;F will be in the
stabilizer of its image).

For any integer k� 0 let Effk.X/�Nk.X/ be the pseudoeffective cone ofX inside the
group of k-cycles modulo numerical equivalence. The following is [15, Proposition 3.5].
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Theorem 2.3. For k � 0, the pseudoeffective cone Effk.X/ of X is rational polyhedral,
generated by classes of invariant subvarieties. Moreover, a list of generators is provided
by the following classes.

• B� with � 2 †.n � k C 1/, � … K,

• Zp;F with p 2 P1, F 2 �p.n � k/, rec.F / … K,

• W� with � 2 †.n � k/, � 2 K.

Remark 2.4. Note that in the theorem above, subvarieties of the formZp;F with rec.F /2
K do not appear. Indeed, for a cone � 2 K, one can show that r�.Zp;F / is numerically
equivalent to .srec.F /=�.F // �Wrec.F / for any p 2 P1 and any F with rec.F / D � (see
[15, Lemma 3.4]). Hence all such classes Zp;F are proportional and we need only to
remember the representative Wrec.F /.

2.1. T -Cartier divisors

We now briefly describe T -invariant Cartier divisors on X in terms of divisorial support
functions on � . For details we refer to [4, Section 7] and [16].

First, recall that given a piecewise affine function f on a polyhedral subdivision �p of
NQ with recession fan †, its recession function rec.f / is the piecewise linear function on
† defined by

rec.f /W j†j �! R; u 7�! lim
�!1

f .v0 C �u/ � f .v0/

�
:

Definition 2.5. A divisorial support function on � is a collection h D .hp/p2P1 of con-
tinuous, piecewise affine functions hpW j�pj ! Q such that

(1) hp has integral slope and integral translation on every polyhedron in the polyhedral
complex �p of NQ. In other words, for any F 2 �p , we have

hpjF .u/ D hmF ; ui C `F

with .mF ; `F / 2M � Z.

(2) All hp have the same recession function rec.h/.

(3) The set of points p 2 P1 such that rec.h/ ¤ hp is finite.

The set of all divisorial support functions on � is denoted by SF.�/.

To any divisor D on P1 we can associate a divisorial support function SF.D/ by
SF.D/p � coeffp D. Also, for any u 2 M we define its corresponding support function
SF.u/p � u.

Definition 2.6. A divisorial support function h 2 SF.�/ is called principal if hD SF.u/C
SF.D/ for some u 2 M and some principal divisor D on P1. It is called Cartier if its
restriction to any affine T -invariant open subset is principal. We denote by CaSF.�/ the
set of divisorial Cartier support functions. It is a free abelian group.
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From the description of invariant subvarieties given above we see that there are two
classes of T -invariant prime Weil divisors on X . The vertical invariant prime divisors
arising as the closure of a family of n-dimensional T -orbits. These are parametrized
by pairs .p; v/ of points p 2 P1 and vertices v of the polyhedral subdivision �p . And
then there are the horizontal invariant prime divisors arising as the closure of a family of
.n � 1/-dimensional T -orbits. These are parametrized by rays � of †.

To a given divisorial support function hD .hp/p2P1 , one associates a T -invariant Weil
divisor

Dh D �
X
�2†.1/

h.v� /B� �
X
.p;v/
v2Sp.0/

�.v/hp.v/Zp;v; (2.1)

where one omits the prime divisors contracted by r . The following is Proposition 3.10
of [16].

Proposition 2.7. The map
h 7�! Dh

induces an isomorphism of free abelian groups CaSF.�/ ' T -Ca.X/.

Example 2.8. If h D SF.u/ for u 2M then

Dh D
X
�2†.1/

hu; v� iB� �
X
.p;v/
v2Sp.0/

�.v/hu; viZp;v:

Let p ¤1 be any point in P1. If h D SF.Œp� � Œ1�/ then

Dh D
X

v2S1.0/

��.v/Z1;v C
X

v2Sp.0/

�.v/Zp;v:

Consider the Picard group Pic.X/ consisting of all Cartier divisors onX modulo linear
equivalence. If h is principal then Dh is 0 in Pic.X/. Furthermore, if we consider the
equivalence relation on CaSF.�/ given by h � h0 if and only if h � h0 is principal then
it follows as a particular case of [16, Corollary 3.15] that the map h 7! Dh induces an
isomorphism �

CaSF.�/= �
�
' Pic.X/:

Example 2.9. It follows from Example 2.8 that all special fibers (with corresponding
multiplicities) are linearly equivalent.

Remark 2.10. It follows from Theorem 2.3 above that the Picard group Pic.X/ is gener-
ated by classes Zp;v , for v 2 Sp.0/, and B� , for � 2 †.1/, � … K since the divisor class
corresponding to a contracted ray can be written as a combination of the other classes (see
also [16, Corollary 3.17]).

We end this section with the following important definition.
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Definition 2.11 (Restriction to subvarieties). Let h 2 CaSF.�/.
For � 2 † consider the embedding �WB� ,! zX of the corresponding subvariety. Recall

that B� is itself a rational complete T -variety of complexity one with divisorial fan �.�/.
Then ��Dh is an invariant Cartier divisor on B� corresponding to a divisorial Cartier sup-
port function on CaSF.S.�//. We denote this function by h.�/.

Similarly, for a point p 2 P1 and F 2 Sp such that Zp;F is an invariant subvariety
of a toric subvariety j WX†.p;F / ,! zX , we consider the pullback of j �Dh. This gives a
toric Cartier divisor and hence a virtual support function on†.p;F /, which we denote by
hp;F .

3. Chow groups
For any normal, irreducible algebraic variety Y over k, the Chow group Aq.Y / of Y is
defined to be Zq.Y /=Rq.Y /, where Zq.Y / is the free abelian group generated by all
q-dimensional closed subvarieties of X , and Rq.X/ is the subgroup generated by divi-
sors Œdiv.f /� of non-zero rational functions f on .q C 1/-dimensional subvarieties W
of Y . When an algebraic group � acts on Y one can form the �-invariant Chow group
A�q .Y / D Z

�
q .Y /=R

�
q .Y /, with Z�q .Y / the free abelian group generated by �-invariant

closed subvarieties of Y , and R�q .Y / the subgroup generated by all divisors of eigenfunc-
tions on �-invariant .qC 1/-dimensional subvarieties. Recall that a function f in R.W /�

is said to be an eigenfunction if g � f D �.g/f for all g 2 � , for some character � D �f
on � . The following useful result is [9, Theorem 1].

Theorem 3.1. If a connected solvable algebraic group � acts on Y , then the canonical
homomorphism A�

k
.Y /! Ak.Y / is an isomorphism.

We obtain the following corollary.

Corollary 3.2. Let X be a complete rational T -variety of complexity one. Then the Chow
groups Ak.X/ are generated by the classes described in Theorem 2.3.

In order to have a complete combinatorial description of the Chow groups Ak.X/ of
a complete rational T -variety of complexity one needs to find the relations between these
generators. This will be done in Theorem 3.6 in the following section.

Before, we recall the general definition of Fulton’s operational Chow cohomology
groups of any normal, irreducible algebraic variety Y as above.

Let A�.Y / D
L
q Aq.Y /. The Chow groups Aq.Y / are called Chow “homology”

groups, since they are covariant with respect to proper maps. In order to have a natural
intersection product, one considers the Chow “cohomology” groups Aq.Y / (see [8, Chap-
ter 17]). They satisfy the following expected functorial properties.

(1) One has “cup products” Ap.Y /˝ Aq.Y /! ApCq.Y /, a˝ b 7! a [ b, making
A�.Y / D

L
q A

q.Y / into a graded associative ring.

(2) There are contravariant graded ring maps f �WA�.Y /!A�.Y 0/ for arbitrary mor-
phisms f WY 0 ! Y .
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(3) One has “cap products” Aq.Y /˝ Am.Y /! Am�q.Y /, c ˝ z 7! c \ z, making
A�.Y / into an A�.Y /-module and satisfying the usual projection formula.

(4) When Y is non-singular of dimension n, then the “Poincaré duality map”Aq.Y /!
An�q.Y /, c 7! c \ ŒY � is an isomorphism, and the ring structure on A�.Y / is that
determined by the intersection products of cycles of Y .

(5) Vector bundles on Y have Chern classes in A�.Y /.

Remark 3.3. The Poincaré duality map is still an isomorphism if one assumes some mild
singularities (e.g., Q-factorial), and after tensoring with Q (see [13, Section 3]).

An element in Aq.Y / determines, by the cap product, a homomorphism from Aq.Y /

to A0.Y /; and if Y is complete, one can compose with the degree map from A0.Y / to Z
and one has a natural “Kroenecker duality” homomorphism

Aq.Y / �! Hom
�
Aq.Y /;Z

�
; z 7�!

�
a 7! deg.z \ a/

�
: (3.1)

As was mentioned in the introduction, this map is in general not an isomorphism. We
will see in the next section that for projective, Q-factorial, rational, contraction-free T -
varieties of complexity one, this map is indeed an isomorphism after tensoring with Q
(Proposition 3.5).

3.1. The Chow group of a complexity-one T -variety

Let X be a .n C 1/-dimensional complete, rational T -variety of complexity one with
divisorial fan � over Y D P1, recession fan † in NQ and subset K � †. Assume that K
is a proper subset of †, i.e., K ¤ †. We say that a cone � 2 † is contracted if � 2 K.

As before, for p 2 P1 we write �p for the corresponding complete polyhedral subdi-
vision of NQ. Let P be the set of points of P1 such that �p ¤ †. P is a finite set and we
assume that P has size at least two.

For an integer k � 0 we define the following sets.

Vk D
®
F 2 �p.n � k/; p 2 P such that rec.F / … K

¯
;

Rk D
®
� 2 †.n � k C 1/; � … K

¯
;

Tk D
®
� 2 †.n � k/; � 2 K

¯
:

Remark 3.4. We always have Tn D ;. If X D zX is contraction free, then for all k, we
have TK D ;.

We begin by showing that when X is a projective, Q-factorial, rational, contraction-
free T -variety of complexity one, then the Kroenecker duality map is in fact an isomor-
phism after tensoring with Q.

Proposition 3.5. Let X be a projective, Q-factorial, rational, contraction-free T -variety
of complexity one. After tensoring with Q, the Kroenecker duality map

Aq.X/Q �! Hom
�
Aq.X/Q;Q

�
; z 7�!

�
a 7! deg.z \ a/

�
(3.2)

is an isomorphism.
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Proof. By Poincaré duality Aq.X/Q ' An�q.X/Q (see Remark 3.3) it suffices to show
that the induced pairing

An�q.X/Q � Aq.X/Q �! Q

is perfect. By [14, Theorem 4], we have the following Stanley–Reisner type description of
the homology groups:

A�.X/Q D
QŒx! j ! 2 Rn t Vn�

J
;

where J is generated by the linear forms with integer coefficients
P
n!x! such that

the corresponding invariant divisor
P
!2Vn

n!Z! C
P
!2Rn

n!B! is principal, together
with the square-free monomials

Q
!2RntVn

x! such that the intersection
T
!2Vn

Z! \T
!2Rn

B! is empty. In particular, square-free monomials not contained in J are of the
form

xF D
Y

�2rec.F /.1/

x� �
Y

v2F.0/

xv

for some F 2 �p (see [14, Lemma 4.3]).
As a key fact to prove this result the authors define a technical combinatorial prop-

erty called “shellability” [14, Definition 3.8]. The authors show in [14, Proposition 3.11]
that the divisorial fans of projective, Q-factorial, contraction-free rational T -varieties of
complexity one are shellable, which allows them to prove the above representation.

Now, in order to show the proposition, it thus suffices to show that the pairing�
QŒx! j ! 2 Rn t Vn�

J

�
n�q

�

�
QŒx! j ! 2 Rn t Vn�

J

�
q

�! Q; (3.3)

where .�/` denotes the `’th graded piece, is perfect. Let b 2 .QŒx! j!2RntVn�
J

/n�q be non-
zero. Without lost of generality, we can assume that b D xF for F 2 �p . Let G 2 �p.n/

be a maximal polyhedron containing F and set

xF 0 D
Y

�2rec.G/.1/nrec.F /.1/

x� �
Y

v2G.0/nF.0/

xv:

Since �p is simplicial we have

xF 0 2

�
QŒx! j ! 2 Rn t Vn�

J

�
q

and xF � xF 0 D xG ¤ 0:

Hence the pairing in (3.3) is perfect, which is what we wanted to show.

We now consider a more general complete, rational (not necessarily contraction-free)
T -variety of complexity one. In this case, the Chow homology groups are not longer
generated by divisors (see [14] for an example). Nevertheless, in [15, Theorem 4.1], the
author gives a nice representation in terms of generators and relations.
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Theorem 3.6. For a rational, complete T -variety X of complexity one, there is for any
0 � k � dim.X/ an exact sequenceM

F 2VkC1

M.F /
M

�2RkC1

�
M.�/˚ ZP =Z

� M
�2TkC1

M.�/

�! ZVk ˚ ZRk ˚ ZTk �! Ak.X/ �! 0; (3.4)

where the maps are given in the following way.
Let F 2 VkC1. Then we can choose a point p 2 p such that Zp;F corresponds to

a .k C 1/-dimensional invariant subvariety of a toric subvariety with character lattice
M.F /. Then m 2M.F / gets sent toX

G2Sp.n�k/

F�G; rec.G/…K

hm; vF;GiZp;G C
X

G2Sp.n�k/

F�G; rec.G/2K

hm; vF;Gi
srec.G/

�.G/
Wrec.G/;

where vF;G is defined in Notation 2.1.
Let � 2RkC1. Then B� corresponds to a .kC 1/-dimensional T -variety of complexity

one. Then on the one hand side, a character m 2M.�/ is mapped toX
F 2Vk

rec.F /D�

�.vF /hm; vF iZp;F C
X
�2Rk
���

hm; v�;� iB�

where v�;� is defined in Notation 2.1 and vF in Notation 2.2. On the other hand, a gener-
ator of Zp=Z corresponds to a divisor Œp� � Œ1�. This is mapped toX

F 2Sp.n�k/

rec.F /D�

�.vF /Zp;F �
X

F 2S1.n�k/
rec.F /D�

�.vF /Z1;F : (3.5)

Finally, if � 2 TkC1, then every cone � 2 † containing � is also contracted. In partic-
ular, such a .n � k/-dimensional cone � lies in Tk . Then m 2M.�/ gets mapped toX

�2†.n�k/
���

hm; v�;� iW� :

Proof. This is [15, Theorem 4.1].

Remark 3.7. We make the following three remarks.

(i) Note that the surjectivity of the map follows from Theorem 2.3. The exactness
of the sequence is then a consequence of the fact that the maps are exactly given
by choosing an invariant subvariety Z of dimension k C 1, choosing a rational
function on Z and taking its divisor. We refer for details to the proof in loc. cit.

(ii) The maps describe the relations between the invariant cycles in Ak.X/. For
example, note that equation (3.5) is saying that for � 2 RkC1, any two special
fibers of B� are rationally equivalent.

(iii) Since the set P of points in P1 such that the polyhedral complex �p is different
from † is finite, Theorem 3.6 gives a finite presentation of the Chow groups.
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4. Generalized Minkowski weights

Let X be a .n C 1/-dimensional complete, rational T -variety of complexity one with
divisorial fan � over Y D P1, recession fan † in NQ and subset K � †. Assume that K
is a proper subset of †, i.e., K ¤ †.

As before, for p 2 P1 we write �p for the corresponding complete polyhedral subdi-
vision of NQ. Let P be the set of points of P1 such that �p ¤ †. P is a finite set and we
assume that P has size at least two.

For an integer k � 0 let Rk ; Vk ; Tk be the sets defined in Section 3.1. Recall that we
have a Kroenecker duality map

Ak.X/ �! Hom
�
Ak.X/;Z

�
;

which by Proposition 3.5 is an isomorphism after tensoring with Q if X is projective,
Q-factorial and contraction-free.

Then it follows from Theorem 3.6 that to an element in Ak.X/ we can associate an
integer-valued function onRk [ Vk [ Tk satisfying some properties, and that this associa-
tion is bijective whenever the Kroenecker duality map is an isomorphism. We will describe
such functions explicitly.

Definition 4.1. A weight on X of codimension k is a map

cWVk [Rk [ Tk �! Z:

It is called a generalized Minkowski weight of codimension k if it satisfies the following
three conditions.

(1) For F 2VkC1 choose a point p such thatZp;F corresponds to an invariant .kC1/-
dimensional subvariety of a toric variety with lattice of charactersM.F /. Then for
all m 2M.F /X

G2Sp.n�k/

F�G; rec.G/…K

hm; vF;Gic.G/C
X

G2Sp.n�k/

F�G; rec.G/2K

hm; vF;Gi
srec.G/

�.G/
c
�

rec.G/
�
D 0:

(2) Let � 2 RkC1. Then for all m 2M.�/X
F 2Vk

rec.F /D�

�.vF /hm; vF ic.F /C
X
�2Rk
���

hm; v�;� ic.�/ D 0: (4.1)

Assume1 2 P . Then for any point p 2 PX
F 2Sp.n�k/

rec.F /D�

�.vF /c.F / �
X

F 2S1.n�k/
rec.F /D�

�.vF /c.F / D 0: (4.2)

(3) For all � 2 TkC1 and for all m 2M.�/X
�2†.n�k/
���

hm; v�;� ic.�/ D 0:
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We denote by Wk.X/ the set of weights on X of codimension k. It is an abelian group
under the addition of functions. We denote by Mk.X/ the subgroup of generalized Min-
kowski weight of codimension k and we refer to the linear conditions (1), (2) and (3) as
balancing conditions.

Remark 4.2. The term balanced comes from tropical geometry, where it plays a funda-
mental role. Indeed, tropical cycles are always balanced and this condition is necessary
for example in order to have a well-defined tropical intersection theory.

Definition 4.3. We define a tropicalization map

tropWAk.X/ �! Wk.X/

by
z 7�! trop.z/;

where
trop.z/WVk [Rk [ Tk �! Z

is given by

 7�! z \ ŒV
 �:

Here, V
 denotes the invariant subvariety corresponding to 
 .

The following is our first main result.

Theorem 4.4. Let X be a complete rational T -variety of complexity one. Then the tropi-
calization map

tropWAk.X/ �!Mk.X/

is well-defined. IfX is projective, Q-factorial and contraction-free, then the induced trop-
icalization map

tropWAk.X/Q �!Mk.X/Q; (4.3)

where Mk.X/Q denotes Q-valued generalized Minkowski weights, is a bijection.

Proof. By the above discussion, this follows directly from Proposition 3.5 and Theo-
rem 3.6.

We will now study the restriction of weights to invariant subvarieties.

Definition 4.5. Let c 2 Wk.X/.

• For � 2 † let �WB� ,! zX the inclusion of the corresponding subvariety. Recall that
dim.B� /D codim.�/C 1. We define a weight c� onB� in the following way. Consider
the sets

Vk.�/ D
®
F 2 Sp.n � k/; p 2 P such that � � rec.F /; rec.F / … K

¯
;

Rk.�/ D
®
� 2 †.n � k C 1/; � � �; � … K

¯
;

Tk.�/ D
®
� 2 †.n � k/; � � �; � 2 K

¯
:
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Then
c� WVk.�/ [Rk.�/ [ Tk.�/ �! Z

is given by

 7�! c.
/:

The weight c� can be thought of as the restriction of c to the invariant subvariety B� .

• On the other hand, let p 2 P1 and G 2 Sp such that Zp;G is an invariant subvariety of
a toric subvariety X†.p;G/. Then if rec.G/ … K, we define cp;G as a function

cp;G W†.p;G/ D
®
F 2 Sp.n � k/; G � F

¯
�! Z

defined by
F 7�! cp;G.F /;

where cp;G.F / D c.F / if rec.F / … K. If rec.F / 2 K, then by the proof of Theorem
3.6, one can write Zp;F in Ak.X/ as an integral linear combination

Zp;F D
X



a
V
 ;

the sum being over all 
 in Vk [Rk [ Tk . Then we set

cp;G.F / D
X



a
c.
/:

Then cp;G can be thought of as the restriction of c to the invariant subvariety Fp;G .

Lemma 4.6. Let c 2Mk.X/ be a generalized Minkowski weight.

(1) For any � 2 † the restriction c� is a generalized Minkowski weight in Mk.B� /.

(2) For any point p 2 P1 and G 2 Sp such that Zp;G is an invariant subvariety of
a toric subvariety X†.p;G/, and such that rec.G/ … K, the restriction cp;G is a
Minkowski weight on the fan †.p;G/ in the sense of [10].

Proof. Let c D trop.z/ for some z 2 Ak.X/.
For .1/ we claim that

trop.��z/ D c� :

Indeed, it follows from the description of B� as a T -variety that the sequence

ZVk.�/ ˚ ZRk.�/ ˚ ZTk.�/ �! Ak.B� / �! 0

is exact. Hence, by construction, the domain of trop.��z/ 2 Mk.B� / is indeed Vk.�/ [
Rk.�/ [ Tk.�/.

Let 
 2 Vk.�/ [Rk.�/ [ Tk.�/. We have to check that

trop.��Z/.
/ D c� .
/:

But this follows from the definition of c� and the projection formula.
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For .2/ we proceed similarly. Let j WX†.p;G/ ,! zX be the inclusion of the toric sub-
variety. Then trop.j �z/ is a Minkowski weight on the fan †.p; G/ in the sense of [10].
We claim that

trop.j �Z/ D cp;G :

Indeed, we have to check that for F 2 Sp.n � k/ with G � F , we have that

trop.j �Z/.F / D cp;G.F /:

Again, this follows from the definition of cp;G and the projection formula.

5. Intersecting with Cartier divisors

Let X be a .n C 1/-dimensional complete, rational T -variety of complexity one with
divisorial fan � over Y D P1 and recession fan † in NQ. In this section we assume that
X is projective, Q-factorial and contraction free.

As before, for p 2 P1 we write �p for the corresponding complete polyhedral subdi-
vision of NQ. Let P be the set of points of P1 such that �p ¤ †. P is a finite set and we
assume that P has size at least two.

The goal of this section is to define a pairing

CaSF.�/ �Mk.X/ �!MkC1.X/; .h; c/ 7�! h � c

and to show that it is compatible with the isomorphism (4.3) from Theorem 4.4.
We can think of this pairing as a rational analogue of the so called corner locus of a

tropical cycle in the sense of [1, Section 6].
In order to define this pairing we use the combinatorial data of � and †. Note that

since we are assuming that X is contraction free, we have that Tk.X/ D ; for any integer
k � 0.

Definition 5.1. Let hD .hp/p2P1 2 CaSF.�/ be a Cartier divisorial support function on �

with recession function rec.h/ D Nh. And let c 2Mk.X/ a generalized Minkowski weight
of codimension k. First we define a paring

CaSF.S/ �Mk.X/ �! WkC1.X/; .h; c/ 7�! h � c; (5.1)

where h � cWVkC1 [RkC1 ! Z is defined in the following way.

• Let F 2 VkC1. Choose a point p 2 P such that Zp;F corresponds to an invariant
subvariety of a toric variety. Then we set

.h � c/.F / D
X

G2Sp.n�k/
F�G

�hp;F .vF;G/c.G/;

where hp;F is the function defined in Definition 2.11.
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• Let � 2 RkC1. For any � 2 Rk containing � and for any F 2 Vk with rec.F / D �

we consider lifts of v�;� and vF in NR. We denote these lifts by the same symbols, in
order to avoid the notation becoming even heavier. Then we set

.h � c/.�/ D
X
F 2Vk

rec.F /D�

��.vF /h.vF /c.F /C
X
�2Rk
���

� Nh� .v�;� /c.�/

C Nh�

� X
F 2Vk

rec.F /D�

�.vF /vF c.F /C
X
�2Rk
���

v�;�c.�/
�
;

where for 
 2 †, Nh
 denotes a linear function on NR which agrees with Nh on 
 .

Note that since c is a generalized Minkowski weight, the pairing (5.1) is well defined,
i.e., it does not depend on the choice of lifts.

We will now proceed to show that h � c 2 WkC1.X/ satisfies the balancing conditions
(1), (2) and (3) from Definition 4.1, and is thus a generalized Minkowski weight. This will
follow from the following three important lemmas.

Lemma 5.2. Let c 2Mk.X/ and h 2 CaSF.S/. Then the following holds true.

(1) For all � 2 † we have
h.�/ � c� D .h � c/�

as weights in WkC1.B� /, where h.�/ denotes the function in Definition 2.11.

(2) Let p 2 P and G 2 Sp such that Zp;G is an invariant subvariety of a toric subva-
riety X†.p;G/. Then

hp;G � c
p;G
D .h � c/p;G

as Minkowski weights in the fan †.p; G/. Here, the intersection pairing hp;G �
cp;G is the classical one for fans, as defined in [1, Definition 3.4].

Proof. Part 2 follows from toric geometry and the compatibility of the intersection pairing
with the pullback (see e.g. [8, Chapter 17]).

For part 1 we first assume that Nhj� D 0. We have to show that for all ! 2 RkC1.�/ [
VkC1.�/ we have that �

h.�/ � c�
�
.!/ D .h � c/� .!/:

• Let F 2 VkC1.�/ and choose a point p 2 P such thatZp;F corresponds to an invariant
subvariety of a toric variety. Then

.h � c/� .F / D .h � c/.F / D
X

G2Sp.n�k/
F�G

�hp;F .vF;G/c.G/

D

X
G2Sp.n�k/
F�G

�h.�/p;F .vF;G/c
� .G/

D
�
h.�/ � c�

�
.F /:
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• Let 
 2 RkC1.�/. Then

.h � c/� .
/ D .h � c/.
/

D

X
F 2Vk

rec.F /D


��.vF /h.vF /c.F /C
X
�2Rk

��

� Nh� .v
;� /c.�/

C Nh


� X
F 2Vk

rec.F /D


�.vF /vF c.F /C
X
�2Rk

��

v
;�c.�/
�

D

X
F 2Vk.�/
rec.F /D


��.vF /h.�/.vF /c
� .F /C

X
�2Rk.�/

��

�h.�/� .v
;� /c
� .�/

C h.�/


� X
F 2Vk.�/
rec.F /D


�.vF /vF c
� .F /C

X
�2Rk.�/

��

v
;�c
� .�/

�
D
�
h.�/ � c�

�
.
/:

If Nhj� D m� ¤ 0 then we consider the divisorial support function h � m� . Then by
linearity of m� we have that for all ! 2 RkC1.�/ [ VkC1.�/

.h � c/� .!/ D
�
.h �m� / � c

��
.!/ D

�
.h �m� /.�/ � c

�
�
.!/ D

�
h.�/ � c�

�
.!/:

This finishes the proof of the lemma.

Lemma 5.3. Let h; h0 2 CaSF.�/. Then for any c 2Mk.X/ the following holds true.

(1) .hC h0/ � c D h � c C h0 � c,

(2) h � .h0 � c/ D h0 � .h � c/.

Proof. Part 1 follows easily from the definition of the pairing. We now prove part 2. As
before, we have to show that�

h � .h0 � c/
�
.!/ D

�
h0 � .h � c/

�
.!/

for any ! 2 VkC2 [RkC2.

• Let F 2 VkC2 and choose a point p 2 P such that Zp;F corresponds to an invariant
subvariety of a toric variety. We compute�

h � .h0 � c/
�
.F / D

X
G2Sp.n�k�1/

F�G

�hp;F .vF;G/.h
0
� c/.G/

D

X
G2Sp.n�k�1/

F�G

�hp;F .vF;G/
� X
H2Sp.n�k/
G�H

�h0p;G.vG;H /c.H/
�
:
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Now, for H 2Sp.n�k/, G2Sp.n�k�1/ with F �G�H we let G02Sp.n�k�1/
the unique polyhedron such that F � G0 � H . Let ˛F;H and ˇF;H be elements such
that

vG;H D ˛F;HvF;G C ˇF;HvF;G0 ; (5.2)

vG0;H D ˛F;HvF;G0 C ˇF;HvF;G : (5.3)

Using (5.2) we obtain�
h � .h0 � c/

�
.F / D

X
G2Sp.n�k�1/

F�G

�hp;F .vF;G/
� X
H2Sp.n�k/
G�H

�h0p;G.vG;H /c.H/
�

D

X
G2Sp.n�k�1/

F�G

X
H2Sp.n�k/
G�H

c.H/hp;F .vF;G/h
0
p;G.vG;H /

D

X
G2Sp.n�k�1/

F�G

X
H2Sp.n�k/
G�H

c.H/˛F;Hhp;F .vF;G/h
0
p;F .vF;G/

C

X
G2Sp.n�k�1/

F�G

X
H2Sp.n�k/
G�H

c.H/ˇF;Hhp;F .vF;G/h
0
p;F .vF;G0/

D

X
H2Sp.n�k/
F�H

c.H/˛F;H

� X
G2Sp.n�k�1/
F�G�H

hp;F .vF;G/h
0
p;F .vF;G/

�
C c.H/ˇF;H

� X
G2Sp.n�k�1/
F�G�H

hp;F .vF;G/h
0
p;F .vF;G0/

�
:

Next, we interchange the roles of G and G0 in the inner sum of the second summand
of the last expression and revert the argument. Using (5.3) we get�

h � .h0 � c/
�
.F /

D

X
H2Sp.n�k/
F�H

c.H/˛F;H

� X
G2Sp.n�k�1/
F�G�H

hp;F .vF;G/h
0
p;F .vF;G/

�
C c.H/ˇF;H

� X
G2Sp.n�k�1/
F�G�H

hp;F .vF;G0/h
0
p;F .vF;G/

�
D

X
G2Sp.n�k�1/

F�G

X
H2Sp.n�k/
G�H

c.H/h0p;F .vF;G/hp;G.˛F;HvF;G C ˇF;HvF;G0/

D

X
G2Sp.n�k�1/

F�G

X
H2Sp.n�k/
G�H

c.H/h0p;F .vF;G/hp;G.vG;H /

D
�
h0 � .h � c/

�
.F /;

which is what we wanted to show.
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• Let � 2 RkC2. By the restriction Lemma 5.2 we may assume n D 2, k D 1. Then�
h � .h0 � c/

��
¹0º
�
D

X
F 2V2

��.vF /h.vF /.h
0
� c/.F /C

X
�2R2

� Nh� .v� /.h
0
� c/.�/:

Let

A WD
X
F 2V2

��.vF /h.vF /.h
0
� c/.F / and B WD

X
�2R2

� Nh� .v� /.h
0
� c/.�/:

By definition of the pairing, we have

A D
X
F 2V2

��.vF /h.vF /
� X
G2Sp.1/
F�G

�h0p;F .vF;G/c.G/
�
:

We can write the above sum as a sum over all one-dimensional faces G in Sp.1/
by distinguishing whether rec.G/ D ¹0º or rec.G/ 2 †.1/. Note however that in the
former case, the terms in the sum cancel each other out since vv1;G D �vv2;G , where
v1; v2 are the vertices corresponding to a bounded edge G. Hence, we can write the
sum in A as a sum over all unbounded edges G in Sp.1/. For such a G we write vG
for its unique vertex. Then we get

A D
X

G2Sp.1/

¹0º¤rec.G/

�.vG/h
�

rec.G/
�
.vG/h

0
p;vG

.vvG ;G/c.G/: (5.4)

Now, for B , by Lemma 5.2 and the definition of the pairing, we have

B D
X
�2R2

� Nh� .v� /.h
0
� c/.�/

D

X
�2R2

� Nh� .v� /
�
h0.�/ � c�

��
¹0º
�

D

X
�2R2

Nh� .v� /
� X
G2Sp.1/

�Drec.G/

��.vG/h
0.�/.vG/c

� .G/C
X


2†.2/
��


�h0.�/
 .v�;
 /c
� .
/

�

D

X
�2R2

Nh� .v� /
� X
G2Sp.1/

�Drec.G/

��.vG/h
0.�/.vG/c.G/C

X

2†.2/
��


�h0
 .v�;
 /c.
/
�

Now, note that for � 2 R2 and for any G 2 Sp.1/ such that rec.G/ D � , we have
Nh� .v� / D hp;vG .vvG ;G/ � h.�/.vG/. Also, for G; G0 2 Sp.1/ such that rec.G/ C
rec.G0/ 2 †.2/ we have

h0rec.G/Crec.G0/.vrec.G0// D h
0
p;vG

.vvG ;G0/ � h
0
�

rec.G0/
�
.vG0/



Generalized Minkowski weights and Chow rings of T -varieties 853

Then we can write the above sum as a sum over pairs of one-dimensional faces in the
following way.

B D
X

G;G02Sp.1/

rec.G/Crec.G0/2†.2/

�
hp;vG .vvG ;G/ � h

�
rec.G/

�
.vG/

�h
�.vG/h

0
p;vG

.vvG ;G/c.G/

C
�
h0p;vG0 .vv

0
G ;G

0/ � h0
�

rec.G0/
�
.vG0/

�
c
�

rec.G/C rec.G0/
�i

D

X
G2Sp.1/

¹0º¤rec.G/

��.vG/c.G/h
�

rec.G/
�
.vG/h

0
p;vG

.vvG ;G/CZ.h; h
0/; (5.5)

where Z is symmetric in h; h0, i.e., Z.h; h0/ D Z.h0; h/.
From (5.4) and (5.5) we get�

h � .h0 � c/
��
¹0º
�
D AC B D Z.h; h0/ D Z.h0; h/:

We can now redo the above argument for .h0 � .h � c//.¹0º/ and we obtain�
h0 � .h � c/

��
¹0º
�
D Z.h0; h/ D Z.h; h0/ D

�
h � .h0 � c/

��
¹0º
�
;

which is what we wanted to show.

Lemma 5.4. Let c 2 Wk.X/ be a weight of codimension k. Then c is a generalized
Minkowski weight if and only of for all principal h 2 CaSF.�/ we have that h � c D 0.

Proof. Assume that c is a generalized Minkowski weight and let h 2 CaSF.�/ be princi-
pal. We have to show that h � c D 0. By the first part of Lemma 5.3 it suffices to show this
for the case h D SF.u/ for u 2M , and for the case h D SF.Œp� � Œ1�/, p 2 P .

The case h D SF.u/ follows easily by linearity and the definition of the pairing.
Assume now that h D SF.Œp� � Œ1�/.
Let � 2 RkC1. Then we have

h � c.�/ D
X

F 2Sp.n�k/

rec.F /D�

��.vF /c.F /C
X

F 2S1.n�k/
rec.F /D�

�.vF /c.F / D 0 (5.6)

by condition (2) of a generalized Minkowski weight.
On the other hand, for F 2 VkC1, let Qp 2 P be a point such that Z Qp;F corresponds to

an invariant subvariety of a toric variety. We may assume p D Qp. Then h � c.F / D 0 by
the definition of the pairing since hp;F D 0 in this case.

Conversely, assume that h � c D 0 for all principal h. We have to show that c satisfies
the balancing conditions of Definition 4.1.

• Let F 2 VkC1 and choose a point p 2 P such that Zp;F corresponds to an invariant
subvariety of a toric variety with lattice of characters M.F / D N.F /_. Choose a
representative Qm; of m in M . Let h D SF. Qm/C SF.Œp� � Œ1�/. We compute

0 D �.h � c/p;F
�
¹0º
�
D hp;F � c

p;F
�
¹0º
�



A. Botero 854

D

X
˛2†.p;F /.1/

hp;F .v˛/c
p;F .˛/

D

X
G2Sp.n�k/
F�G

hm; vF;Gic.G/:

Hence, c satisfies condition (1) of a generalized Minkowski weight.

• Let � 2RkC1 and letm be any element inM.�/. Choose any representative Qm 2M of
m. Consider the principal divisor hD SF. Qm/. Note that we have hj� D 0. We compute

0 D �h � c.�/ D
X
F 2Vk

rec.F /D�

�.vF /h.vF /c.F /C
X
�2Rk
���

Nh� .v�;� /c.�/

D

X
F 2Vk

rec.F /D�

�.vF /hm; vF ic.F /C
X
�2Rk
���

hm; v�;� ic.�/:

Moreover, for h D SF.Œp� � Œ1�/, then as in (5.6) we have

0 D �h � c.�/ D
X

F 2Sp.n�k/

rec.F /D�

�.vF /c.F / �
X

F 2S1.n�k/
rec.F /D�

�.vF /c.F /:

This shows that c also satisfies the balancing condition (2). Hence c is a generalized
Minkowski weight.

Proposition 5.5. Let c 2Mk.X/ and h 2 SF.�/. Then h � c 2MkC1.X/. It follows that
the pairing (5.1) induces a pairing

CaSF.�/ �Mk.X/ �!MkC1.X/; .h; c/ 7�! h � c:

Proof. Let h0 2 SF.S/ be principal. By Lemma 5.4 it suffices to show that h0 � .h � c/D 0.
By Lemma 5.3 we have

h0 � .h � c/ D h � .h0 � c/ D 0;

concluding the proof.

The next result states that the pairing in Proposition 5.5 is compatible with the tropi-
calization isomorphism (4.3) from Theorem 4.4.

Theorem 5.6 (Compatibility with tropicalization). As before we assume that X is a pro-
jective,Q-factorial, rational, contraction freeT -variety of complexity one. Let h2CaSF.�/
andDh its associated Cartier divisor. We set ŒDh� 2 A1.X/Q for its corresponding coho-
mology class. Furthermore, for z 2 Ak.X/Q we set c D trop.z/ 2 Mk.X/Q, where trop
is the isomorphism (4.3) from Theorem 4.4. Then

trop
�
ŒDh� [ z

�
D h � c

as generalized Minkowski weights in MkC1.X/Q.
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Proof. Let ! 2 RkC1 [ VkC1. We have to show that

trop
�
ŒDh� [ z

�
.!/ D h � c.!/:

• Let F 2 VkC1. Choose a point p 2 P such that Zp;F corresponds to an invariant sub-
variety of a toric variety. Recall that hp;F denotes the (toric) virtual support function
on the fan †.p; F / corresponding to the pullback of Dh to X†.p;F /. Then

ŒDh� \ ŒZp;F � D
X

G2Sp.n�k/
F�G

hp;F .vF;G/ŒZp;G �:

Hence

trop
�
ŒDh� [ z

�
.F / D deg

��
ŒDh� [ z

�
\ ŒZp;F �

�
D

X
G2Sp.n�k/
F�G

hp;F .vF;G/ deg
�
z \ ŒZp;G �

�
:

Note that by definition we have deg.z \ ŒZp;G �/D cp;F .G/. Then, using Lemma 5.2,
we obtain

trop
�
ŒDh� [ z

�
.F / D

X
G2Sp.n�k/
F�G

hp;F .vF;G/ deg
�
Z \ ŒZp;G �

�
D

X
G2Sp.n�k/
F�G

hp;F .vF;G/c
p;F .G/

D hp;F � c
p;F .F /

D .h � c/p;F .F /

D .h � c/.F /:

• Let � 2 RkC1. By definition, we have

trop
�
ŒDh� [ z

�
.�/ D deg

��
ŒDh� [ z

�
\ ŒB� �

�
:

The restriction h.�/ 2 CaSF.�.�// is the Cartier support function corresponding to
ŒDh� \ ŒB� �. Then

ŒDh�\ ŒB� �D ŒDh.�/�D�
X

�2Rk.�/

h.�/� .v�;� /ŒB� ��
X

F 2Vk.�/
recFD�

�.vF /h.�/.vF /ŒZp;F �:

Hence the weight of trop .ŒDh� [ z/ at � is

deg
��
ŒDh� [ z

�
\ ŒB� �

�
D �

X
�2Rk.�/

h.�/� .v�;� / deg
�
z \ ŒB� �

�
�

X
F 2Vk.�/
recFD�

�.vF /h.�/.vF / deg
�
z \ ŒZp;F �

�
:



A. Botero 856

On the other hand we have

deg
�
z \ ŒB� �

�
D c� .�/ and deg

�
z \ ŒZp;F �

�
D c� .F /:

Hence, using Lemma 5.2 we get

trop
�
ŒDh� [ c

�
.�/ D �

X
�2Rk.�/

h.�/� .v�;� / deg
�
z \ ŒB� �

�
�

X
F 2Vk.�/
recFD�

�.vF /h.�/.vF / deg
�
z \ ŒZp;F �

�
D �

X
�2Rk.�/

h.�/� .v�;� /c
� .�/ �

X
F 2Vk.�/
recFD�

�.vF /h.�/.vF /c
� .F /

D
�
h.�/ � c�

�
.�/

D .h � c/� .�/

D .h � c/.�/:

6. The measure associated to an invariant Cartier divisor and top
intersection numbers

Let X be a .n C 1/-dimensional complete, rational T -variety of complexity one with
divisorial fan � over Y D P1 and recession fan † in NQ. As in the last section, we
assume that X is projective, Q-factorial and contraction free.

As before, for p 2 P1 we write �p for the corresponding complete polyhedral subdivi-
sion ofNQ and P for the finite set of points of P1 such that �p ¤†. P , which is assumed
to have size at least two.

The goal of this section is to define a (discrete) Measure �h associated to a Cartier
divisorial Support function h 2 CaSF.�/ based on the combinatorial intersection pairing
(5.1) and to compute the top intersection number DnC1

h
of the corresponding invariant

divisor Dh in terms of this measure.
let ŒX� 2 AnC1.X/ denote the top Chow homology class. By Poincaré duality and

Theorem 4.4, we may consider the associated Minkowski weight cŒX� 2 M0.X/. This is
given by

cŒX�WV0 �! Z; F 7�! 1:

Definition 6.1. Let h 2 CaSF.�/. The Total space Tot.�/ of the divisorial fan � is the
real vector space

Tot.�/ WD
M
p2P

NR

M
NR:

Then to h we associate a discrete measure �h on Tot.�/ given in the following way.
Consider the codimension n generalized Minkowski weight defined inductively by

hn � cŒX� D h � .h
n�1
� cŒX�/:
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.�1; 2/

Figure 1. Fan for H2.

Then �h is the measure supported on the set

Vn [Rn;

which is in bijection with the set
F
p2P �p.0/ t

F
�2†.1/ v� .

The weights on Vn are given by

F 7�! �.vF /
�
hn � cŒX�.F /

�
I

and the weights on Rn are given by

� 7�! hn � cŒX�.�/:

Note that the measure �h is positive if Dh is nef.

We are now able to compute top intersection numbers of invariant Cartier divisors on
X in terms of their associated measures.

Corollary 6.2. Let Dh be a T -invariant Cartier divisor on X associated to h 2 CaSF.�/
and let rec.h/ D Nh be its recession function.

(1) The top intersection number DnC1
h

can be computed inductively by

hnC1 � cŒX�
�
¹0º
�
D hn � .h � cŒX�/

�
¹0º
�
:

(2) Moreover, it can be computed as an integral with respect to the measure �h

DnC1
h
D

Z
Tot.�/

�h�h D
X
p2P

X
F 2�p.0/

�h.vF /�h.F /C
X
�2†.1/

� Nh.v� /�h.�/:

Proof. The first part follows from Theorem 5.6 and the second from the definition of the
measure �h and the intersection pairing.

Example 6.3. Consider the Hirzebruch surface H2 D Proj.OP1 ˚ OP1.2//. It is a toric
variety whose corresponding fan is given in Figure 1.
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�
1
2

0 0

�0 �1

0�0 �1

†

Figure 2. Divisorial fan for H2 as a C�-surface.

h0 h1

Nh

�
1
2

0 0

�0 �1

0�0 �1

†

u2 C 1 u1 u0 u2 � 1 u0 � 1

u2 u0

Figure 3. Divisorial support function h.

We can perform a toric downgrade and consider H2 as a T -surface, where T is a one-
dimensional torus, as is done in [16, Example 2.9]. Here one considers the embedding
T ,! TH2 corresponding to the exact sequence

0 �! N

�
1
0

�
���! N ˚ Z

. 0 1 /
���! Z �! 0:

This yields the divisorial fan � D .�p/p with recession fan † depicted in the following
Figure 2.

We consider the T -invariant Cartier divisor Dh on H2 from [16, Example 3.24]. This
is a very ample divisor whose corresponding Cartier divisorial support function hD .hp/p
on � with recession function rec.h/ D Nh is given in the following Figure 3.

Here, the ui 2M are given by u0 � 0, u1W x 7! x, u2W x 7! 3x.
We denote by v0;� 12 , v0;0 the vertices in �0 and by v1;0 the vertex in �1. From (2.1)

we obtain that the Weil divisor Dh corresponding to h can be written as

Dh D 3B�0 CZ0;� 12
CZ1;0:

Here, B�0 denotes the horizontal divisor corresponding to �0 2 †.1/ and Z0;� 12 , respec-
tively Z1;0 the vertical divisors corresponding to the vertices v0;� 12 and v1;0 in �0 and
�1, respectively.
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It follows from [16, Proposition 3.31] that the self-intersection number of Dh can be
computed as

D2
h D 2 � vol.h�/;

where h� is the dual function of h, and vol is some well-defined volume function (we
refer to [16, Section 3] for details). An easy calculation using the description of h� given
in Figure 3 of loc. cit. and the definition of vol gives

D2
h D 2 � .1C 1C 3/ D 10:

We will now compute D2
h

using Proposition 6.2. First we compute c1 WD h � cŒH2�. Using
the definition of the intersection pairing in Section 5, we get that c1 is the generalized
Minkowski weight on V1 [R1 with values on V1 given by

c1.v0;� 12
/ D 1; c1.v0;0/ D 1; c1.v1;0/ D 3

and with values on R1 given by

c1.�1/ D 3; c1.�0/ D 2:

It is easy to check that c1 satisfies the balancing conditions from Definition 4.1. Indeed,
we only have to consider condition (2) (since conditions (1) and (3) are empty).

Let � D ¹0º 2 †.0/. For the first part of condition (2) (equation (4.1)) we computeX
F 2�p.0/

�.vF /vF c1.F /C
X
�2†.1/

v�c1.�/

D �c1.v0;� 12
/C c1.�1/ � c1.�0/

D �1C 3 � 2 D 0:

Now, to check the second part of condition (2) (equation (4.2)) we computeX
F 2�0.0/

�.vF /c1.F / D 2 � c1.v0;� 12
/C 1 � c1.v0;0/ D 3 D 1 � c1.v1;0/

D

X
F 2�1.0/

�.vF /c1.F /:

Hence c1 satisfies the balancing conditions from Definition 4.1.
By Proposition 6.2 we get

D2
h D

Z
Tot.�/

h�h D
X

F 2�p.0/

�h.vF /�h.F /C
X
�2†.1/

�h� .v� /�h.�/

D c1.v0;� 12
/C c1.v1;0/C 3 � c1.�0/

D 1C 3C 3 � 2 D 10;

which, as we have seen, is compatible with the results of [16].
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