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Propagation of polarization sets for systems of MHD type

Rayhana Darwich

Abstract. Polarization sets were introduced by Dencker (1982) as a refinement of wavefront sets
to the vector-valued case. He also clarified the propagation of polarization sets when the character-
istic variety of the pseudodifferential system under study consists of two hypersurfaces intersecting
tangentially (1992), or transversally (1995). In this paper, we consider the case of more than two
intersecting characteristic hypersurfaces that are intersecting transversally (and we give a note on
the tangential case).

Mainly, we consider two types of systems which we name “systems of generalized transverse
type” and “systems of MHD type”, and we show that we can get a result for the propagation of
polarization set similar to Dencker’s result for systems of transversal type. Furthermore, we give an
application to the MHD equations.

1. Introduction

In [10], Hörmander defined the wavefront set of a distribution u, denoted by WF.u/, which
is a refinement of the singular support of a distribution. The wavefront sets does not only
show the location of singularity, but also the direction in which the singularity occurs.
Concerning the propagation of the wavefront sets, many results were given. For example,
in [10], Hörmander gave the result for the propagation of the wavefront set for pseudodif-
ferential operator P of real principal type, where he stated that the wavefront set of u; the
solution of Pu D f , is invariant under the bicharacteristic flow given that f is smooth.
Moreover, in [5], Dencker studied the propagation of singularities for pseudodifferential
operator P on a smooth manifold X , having characteristics of variable multiplicity. He
considered the characteristic set to be union of hypersurfaces Sj , j D 1; : : : ; r0 tangent atTr0
jD1 Sj . Under some assumptions he proved that the wavefront set of the solution of the

considered pseudodifferential operator is invariant under the union of the Hamilton flows
on Sj , j D 1; : : : ; r0, given that Pu is smooth on X .

In [11], Hörmander defined locally the wavefront set of distributional sections u in
D 0.X IE/, where E ! X is a vector bundle over the smooth manifold X . He defined
the wavefront set of u locally as

S
WF.uj / where .u1; : : : ; uN / are the components of

u with respect to a local trivialization of E. However, this definition does not specify
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in which components u is singular, that is why Dencker defined in [2] the polarization
set for vector-valued distribution u which we will denote by Pol.u/. The polarization
set also shows the location and the direction of the singularity as the wavefront set, but it
additionally shows the most singular components of a distribution. Hence, the polarization
set of a distribution is a refinement of the wavefront set, and the projection of Pol.u/ n 0
on the cotangent bundle T �X gives the wavefront set of u. Similarly, theH r -polarization
set, Polr .u/, is defined as a refinement of the H r -wavefront set, where the H r -wavefront
set of a distribution u; denoted by WFr .u/, shows the location and direction where the
distribution is not in the Sobolev space H r .X/.

In [2], Dencker defined systems of pseudodifferential operators of real principal type;
note that the definition of systems of pseudodifferential operators of real principal type
differs from the case of scalar pseudodifferential operators of real principal type, and he
defined Hamilton orbits for systems of real principal type which are certain line bundles,
and then he proved that the polarization set of a solution u of systems of real principal
type P will be union of Hamilton orbits, given that Pu is smooth. In [8], Gérard pointed
out that the above result also holds for H r -polarization sets.

Moreover, in [6], Dencker considered pseudodifferential system having its character-
istic set is union of two non-radial hypersurfaces intersecting tangentially at an involutive
manifold of exactly order k0 � 1. He also assumed that the principal symbol vanishes of
first order on the two-dimensional kernel at the intersection, and he assumed a Levi type
of condition. Then, he defined systems satisfying these conditions to be systems of uniax-
ial type. Outside the intersection of the hypersurfaces the system will be of real principal
type, hence the propagation result of the polarization set is already known there. In this
article, Dencker has also proved a propagation result of the polarization set at the inter-
section. In [7], Dencker considered pseudodifferential system having its characteristic set
is union of two non-radial hypersurfaces intersecting transversally at an involutive mani-
fold of codimension 2. He also assumed that the principal symbol vanishes of first order
on the two-dimensional kernel at the intersection. Systems satisfying these conditions are
systems of transversal type. In this article, Dencker has proved a propagation result of the
polarization set at the intersection. Outside the intersection the system is of real principal
type.

We worked on extending Dencker’s result stated above to pseudodifferential systems
having their characteristic sets is union of several non-radial hypersurfaces intersecting
transversally at an involutive manifold of codimension 2; not necessary just two hypersur-
faces as in the case of systems of transversal type and systems of uniaxial type. Note that
even if we assumed that the hypersurfaces are intersecting tangentially of exactly order
k0� 1 instead of intersecting transversally, we get a similar result, and for the proof we use
the same weight and metric introduced by Dencker in [5] for the symbol classes S.#;g/ of
the Weyl calculus. We have considered two cases for that: the first case is the case where
we have r0 non-radial hypersurfaces intersecting transversally at a manifold†2, and every
two hypersurfaces does not intersect outside†2, and we assumed that the r0th-differential
of the determinant of the principal symbol is different than zero at the intersection, and
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the i th-differential of the determinant of the principal symbol vanishes at the intersec-
tion for i < r0. Moreover, we assumed that the dimension of the kernel of the principal
symbol to be r0 at the intersection, and we assumed a condition similar to the Levi type
condition considered in [6]. We called systems satisfying the above conditions systems of
generalized transverse type, and we proved that we have a similar propagation result of
the polarization set as that for systems of transversal type. The second case, is the case
where we also have r0 non-radial hypersurfaces intersecting transversally at a manifold
†2, every two hypersurfaces does not intersect outside †2, and a condition similar to the
Levi type condition considered in [6], but here we assumed that the .r0C 1/th-differential
of the determinant of the principal symbol is different than zero at the intersection, and
the i th-differential of the determinant of the principal symbol vanishes at the intersection
for i < r0 C 1. Moreover, we assumed that the dimension of the kernel of the principal
symbol to be r0 C 1 at the intersection. We also assumed some additional conditions that
we did not assume in the case of systems of generalized transverse type. We defined sys-
tems satisfying these conditions to be systems of MHD type. We named them systems of
MHD type because we have first noticed such systems when we considered the linearized
ideal MHD equations. Thus we will have a section in which we study the propagation of
polarization sets for the linearized ideal MHD equations.

In our work, we will assume that we have P 2 ‰mphg.X/ an N �N system of classical
pseudodifferential operators on a smooth manifold X of order m. Let p D �.P / be the
principal symbol, detp the determinant of p, and † D .detp/�1.0/ the characteristics of
P . We consider † to be union of several hypersurfaces non-radial in the covariable � that
are intersecting transversally at an involutive manifold †2. Now, we state our main theo-
rem in this paper regarding the propagation of polarization sets for systems of generalized
transverse type, and systems of MHD type, but its proof will be postponed to Sections 3,
and 4 to prove it for systems of generalized transverse type, and systems of MHD type
respectively. Let

r�u .�/ D sup¹r 2 R W u 2 H r at �º; � 2 T �X n 0

be the regularity function. The H r -polarization set, where H r is the usual Sobolev space
is defined as follows.

Definition 1.1. For u 2 D 0.X;CN /, the H r -polarization set is given by

Polr .u/ D
\

NB � .T
�X n 0/ �CN ;

where NB D ker �.B/, and the intersection is taken over those 1 �N systems B 2 ‰0phg
such that Bu 2 H r .

Theorem 1.2. Let P 2 ‰mphg be an N � N system of generalized transverse type (or of
MHD type) at �0 2 †2, and let A 2 ‰0phg be an N �N system such that the dimension of
the fiber of NA \NP is equal to 1 at �0, and MA D �1.NA \NP n 0/ is a hypersurface
near �0, where �1 W T �X � CN ! T �X is the projection along the fibers. Assume that
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u 2 D 0.X;CN / satisfies min.r�Pu C m � 1; r
�
Au/ > r at �0. Then, Polr .u/ is a union of

C1 line bundles in NA \NP over bicharacteristics of MA D �1.NA \NP n 0/ near �0.

The plan of this paper is as follows: in Section 2, we mention previous results on
the propagation of polarization sets. More precisely, we will state Dencker’s propagation
result for systems of real principal type which was proven in [2], and Dencker’s propaga-
tion result for systems of uniaxial type that was proven in [6]. Also, we state Dencker’s
result for the propagation of polarization sets for systems of transversal type; see [7]. Note
that in [6,7], Dencker proved several results for the propagation of polarization sets under
different conditions. Here we just mention the result which is similar to the result in our
main theorem. In Sections 3 and 4, we define systems of generalized transverse type, and
systems of MHD type, and we prove Theorem 1.2 for both types of systems. In Section 5,
we give an application for the results in [9], and for the propagation of polarization sets for
systems of MHD type, so we divide it into two subsections. First, we give the set of equa-
tions describing the ideal MHD, and we linearize it. In Section 5.1, we write the linearized
ideal MHD equations in the form of a wave equation, and we give the characteristic vari-
ety of this wave equation which was calculated in [16] under some assumptions. Then, we
calculate the transport equation under these assumptions as an application to Hansen’s and
Röhrig’s results in [9]. In Section 5.2, we return to the linearized ideal MHD equations,
and we calculate the eigenvalues and their multiplicities which are not constant. Then,
we study the propagation of polarization sets, where we observe different cases, some in
which our system is of real principal type, some in which our system is of uniaxial type,
and one where our system is of MHD type.

2. Previous results

In this section, we state some previous results regarding the propagation of polarization
sets. More precisely, we state the results for systems of real principal type, systems of
uniaxial type, and systems of transversal type proven in [2, 6, 7], respectively. First, we
will state the definition of the wavefront set, the H r -wavefront set, and the polarization
set. For the H r -polarization set, see Definition 1.1.

As mentioned in the introduction, the definition of the wavefront set was first given by
Hörmander in [10].

Definition 2.1. If u 2 D 0.X/, we have

WF.u/ D
\

CharA;

where the intersection is taken over all properly supported pseudodifferential operators
A 2 ‰0.X/ such that Au 2 C1.X/, and CharA denotes the characteristic set of A given
by

CharA D
®
.x; �/ 2 T �.X/ n 0I a.x; �/ D 0

¯
:

Here a is the principal symbol of A.
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Similarly, theH r -wavefront set was defined by Gérard in [8] using the Sobolev space.

Definition 2.2. If u 2 D 0.X/ we have

WFr .u/ D
\

CharA;

where the intersection is taken over all properly supported pseudodifferential operators
A 2 ‰0.X/ such that Au 2 H r

loc.X/.

In [2], Dencker generalized the notion of wavefront set to polarization set when we
have vector-valued distribution.

Definition 2.3. For u 2 D 0.X;CN /, the polarization set of u is given by

Pol.u/ D
\

NB � .T
�X n 0/ �CN ;

where NB D ker �.B/, and the intersection is taken over those 1 �N systems B 2 ‰0phg
such that Bu 2 C1.

2.1. Systems of real principal type

First, we want to state Dencker’s result regarding the propagation of polarization sets for
systems of real principal type. For the definition of real principal type, we will differentiate
between two cases, the scalar case, and the case of system of pseudodifferential operators.

Definition 2.4. We say that P 2 ‰m.X/ is of real principal type if the principal symbol
�.P / D p is real and the Hamilton field Hp D

P
@�jp@xj � @xjp@�j is non-vanishing,

and does not have the radial direction
P
�j @�j when p D 0.

Definition 2.5 (Case of system of pseudodifferential operators). An N �N system P of
pseudodifferential operators on X with principal symbol p.x; �/ is of real principal type
at .y; �/ 2 T �X n 0 if there exists an N �N symbol Qp.x; �/ such that

Qp.x; �/p.x; �/ D q.x; �/ � IdN (2.1)

in a neighborhood of .y; �/ where q.x; �/ is a scalar symbol of real principal type and IdN
is the identity in CN .

Assume P.x;D/ to be an N �N system of classical pseudodifferential operators on
an n-dimensional smooth manifold X of order m. The symbol of P is an asymptotic sum
of homogeneous terms: p.x; �/Cpm�1.x; �/Cpm�2.x; �/C � � �where p is the principal
symbol of P and pj is homogeneous of degree j . Assume P to be of real principal type,
thus there exists an N � N symbol Qp, and a scalar symbol q of real principal type such
that (2.1) is satisfied. Let

† D
®
.x; �/ W detp.x; �/ D 0

¯
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be the characteristic set of P . To state the result of the propagation of polarization set
given by Dencker in [2], we have to introduce first the connection he defined, and give the
definition of the Hamilton orbit. Let

DPw D Hqw C
1

2
¹ Qp; pºw C i Qppsm�1w;

where w is C1 function on T �X n 0 with values in CN , ¹; º is the Poisson bracket, that
is ¹ Qp; pº D H Qpp, and psm�1 is the subprincipal symbol of P defined by

psm�1 D pm�1 � .2i/
�1
X

@xj @�jp:

DP is a connection on NP over †, that is, if w 2 kerp at one point of a bicharacteristic
of †, then DPw 2 kerp along the bicharacteristic if and only if w 2 kerp there. Hence,
each parallel section (that is w such that DPw D 0) is uniquely determined by one point.
DP depends on the choice of Qp and q, however Dencker showed that different choices of
Qp and q only change the solution of DPw D 0 in NP by a scalar factor. This motivated

him to define the following.

Definition 2.6 (Hamilton Orbit). A Hamilton orbit of a system P of real principal type is
a line bundle L � NP j , where  is an integral curve of the Hamilton field of †, and L is
spanned by C1 section w satisfying DPw D 0.

Theorem 2.7 (Dencker’s propagation result). Let P be an N � N system of pseudodif-
ferential operators on a manifold X , and let u 2 D 0.X;CN /. Assume that P is of real
principal type at .y; �/ 2 †, and that .y; �/ … WF.Pu/. Then, over a neighborhood of
.y; �/ in †, Pol.u/ is a union of Hamilton orbits of P .

In [8], Gérard stated that we have similar propagation result for the H r -polarization
sets for systems of real principal type.

Theorem 2.8. LetP be anN �N system of pseudodifferential operators on a manifoldX
of orderm, and let u 2D 0.X;CN /. Assume that P is of real principal type at .y; �/ 2 †,
and that .y; �/ … WFr .Pu/. Then over a neighborhood of .y; �/ 2 †, PolrCm�1.u/ is a
union of Hamilton orbits of P .

2.2. Systems of uniaxial type

Let P 2 ‰mphg.X/ be an N � N system of classical pseudodifferential operators on a
smooth manifold X . Let p be the principal symbol of P . Let † D .det p/�1.0/ be the
characteristics of P , and let

†2 D
®
.x; �/ 2 † W d.detp/ D 0 at .x; �/

¯
;

and †1 D † n†2. Assume that we have

† D S1 [ S2; where S1 and S2 are non-radial hypersurfaces tangent at

†2 D S1 \ S2 of exactly order k0 � 1; (2.2)
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microlocally near �0 2 †2. This means that the Hamilton field of Sj does not have the
radial direction h�; @�i, and it means also that the k0th jets of S1 and S2 coincide on †2,
but no .k0 C 1/th jet does. Note that we have P is of real principal type at †1, since
d.det p/ ¤ 0 there; see Definition 2.5. (2.2) gives us that †2 has to be a manifold of
codimension � 2. We assume that

†2 is an involutive manifold of codimension d0 � 2: (2.3)

Moreover, we assume that

the (complex) dimension of the fiber of Np is equal to 2 at †2 (2.4)

and
d2.detp/ ¤ 0 at †2; (2.5)

that is, p vanishes of first order on the kernel. We want to consider the limits of NP j†1
when we approach †2, so let

N
j
P D NP jSj n†2 ; (2.6)

T†2† WD T†2S1 D T†2S2 (note here† is not a manifold), and @†1 WD T†2†=T†2. Here
@†1 is the normal bundle of †2 in S1 which is equal to the normal bundle of †2 in S2.
Let i0 W†2! @†1 denotes the zero section of @†1. By the tubular neighborhood theorem
we know that there exists a diffeomorphism ˆ from some neighborhood U � Sj of †2
to a neighborhood U0 � @†1 of the zero section of @†1, and ˆ identifies †2 itself with
the zero section. Actually, the tubular neighborhood theorem says that if N � M is a
submanifold and M and N both have empty boundary, and

VN WD .TM jN /=TN ! N;

is the normal bundle of the submanifold N �M , then there is a diffeomorphism ˆ from
some neighborhood U �M of N to a neighborhood U0 � VN of the zero-section in the
total space of its normal bundle, and ˆ identifies N itself with the zero-section.

Before giving the definition of systems of uniaxial type, we need to give the definition
of the limit polarizations.

Definition 2.9. For j D 1; 2, we define the limit polarizations

@N
j
P D

®
.�; �; z/ 2 @†1 �CN

W � ¤ 0 and z D lim
k!1

zk
¯
;

where zk 2 kerp.�k/ and �k 2 Sj n†2 satisfy .� � �k/=j� � �kj ! �=j�j when k!1.

@N
j
P is conical in � and �, and homogeneous in the fiber, but it may have (complex)

dimension > 1 at .�; �/. We assume that the fiber of

@N 1
P \ @N

2
P D ¹0º over @†1 n .†2 � 0/: (2.7)

This condition means that no element in NP j†2 can be the limit of polarization vectors on
both characteristic surfaces, along the same direction. Dencker showed that (2.7) implies
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that @N j
P is a complex line bundle over @†1 n .†2 � 0/, if we assume (2.2)–(2.5). Now,

we give the definition of systems of uniaxial type.

Definition 2.10. The system P is of uniaxial type at �0 2†2, if (2.2)–(2.5) and (2.7) hold
microlocally near �0.

If P 2 ‰mphg is of uniaxial type and Pu 2 H r near � 2 †1, then we already know the
result as Gérard stated in [8] that PolrCm�1.u/ is a union of Hamilton orbits in NP near
� because P is of real principal type at †1. Now, we want to give Dencker’s result for
the propagation of the polarization set when we approach †2. Here S1 and S2 are tangent
at †2, so their Hamilton fields are parallel on †2. Since †2 is involutive, the Hamilton
fields are tangent to †2. Therefore, † and †2 are foliated by the bicharacteristics of †.
Also, Dencker proved that @†1 n .†2 � 0/ is foliated by limit bicharacteristics, which
are liftings of bicharacteristics in †2, and that @N 1

P [ @N
2
P is foliated by limit Hamilton

orbits, which are liftings of limits of Hamilton orbits, and are unique line bundles over
limit bicharacteristics. The following theorem is Theorem 8.11 in [6].

Theorem 2.11. Let P 2 ‰mphg be an N � N system of uniaxial type at �0 2 †2, and
let A 2 ‰0phg be a 1 � N system such that the dimension of the fiber of NA \ NP is
equal to 1 at �0. Assume that u 2 D 0.X;CN / satisfies min.r�Pu Cm � 1; r

�
Au/ > r at �0.

Then, Polr .u/ is a union of C1 line bundles in NA \NP over bicharacteristics of † in
MA D �1.NA \NP n 0/ near �0, where �1 W T �X n 0 � CN ! T �X is the projection
along the fibers.

Moreover, in [6], Dencker showed under what assumptions we get Polr .u/ is union of
limits of Hamilton orbits in NA \NP near �0 2 †2.

2.3. Systems of transversal type

Finally, we want to state Dencker’s result regarding the propagation of polarization sets
for systems of transversal type; see [7]. Let P 2 ‰mphg be an N � N system of classical
pseudodifferential operators on a smooth manifold X , p D �.P / be the principal symbol,
and † D .detp/�1.0/ be the characteristics of P . Let

†2 D
®
.x; �/ 2 † W d.detp/ D 0 at .x; �/

¯
;

and†1 D † n†2. For systems of transversal type we have† is a union of two non-radial
hypersurfaces intersecting transversally at †2. More precisely, the systems of transversal
type is defined as the following.

Definition 2.12. The system P is of transversal type at �0 2 †2 if

†2 is a non-radial involutive manifold of codimension 2;

detp D e � q; where e¤0 and q is real valued with Hessian having rank 2
and positivity 1;

dim kerp D 2 on †2;

microlocally near �0.
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Similar to the case of systems of uniaxial type, if P 2 ‰mphg is of transversal type and
Pu 2 H r near � 2 †1, then P is of real principal type at �. Let N

j
P be as in (2.6). In [7],

Dencker modified slightly the definition of limit polarizations.

Definition 2.13. For j D 1; 2, the limit polarizations is defined by

@N
j
P D

®
.�; z/ 2 †2 �CN

W z D lim
k!1

zk
¯
;

where zk 2 kerp.�k/ and Sj n†2 3 �k ! �.

@N
j
P is conical in � and linear in the fibers. Dencker showed that @N j

P is a C1 line
bundle over †2, j D 1; 2, and that

@N 1
P \ @N

2
P D ¹0º over †2:

Here, S1 and S2 are transversal at †2, so their Hamilton fields are non-parallel on †2.
Since †2 is involutive of codimension 2, the Hamilton fields of Sj are tangent to †2
and generate the two-dimensional foliation of †2. Moreover, @N j

P is foliated by limit
Hamilton orbits which are limits of Hamilton orbits in N

j
P , and are unique line bundles

over bicharacteristics in Sj at†2 for j D 1; 2. The following theorem is [7, Theorem 7.1].

Theorem 2.14. Let P 2 ‰mphg be anN �N system of transversal type at �0 2 †2, and let
A 2 ‰0phg be a 1�N system such that the dimension of the fiber of NA \NP is equal to 1
at �0, andMAD�1.NA \NP n 0/ is a hypersurface near �0. Assume that u2D 0.X;CN /

such that Pu 2H r�mC1 and Au 2H r at �0. Then Polr .u/ is a union of (limit) Hamilton
orbits in NA \NP . Here �1 W T �X �CN ! T �X is the projection along the fibers.

Note that in this caseMADSj for some j , and NA \NP is a union of (limit) Hamilton
orbits.

3. Propagation of polarization sets for systems of generalized
transverse type

In this section, we generalize Dencker’s result stated in Section 2.3 by considering the
system to have its characteristic set is union of r0 hypersurfaces intersecting transversally
at an involutive manifold of codimension 2, with r0 � 2. Let P 2 ‰mphg.X/ be an N �N
system of classical pseudodifferential operators on a smooth manifold X . Let p D �.P /
be the principal symbol and†D .detp/�1.0/ the characteristic set. Assume microlocally
near .x0; �0/ 2 † that

† D

r0[
jD1

Sj ; r0 � 2; where Sj are non-radial hypersurfaces

intersecting transversally at †2 D
r0\
jD1

Sj ; (3.1)

†2 is an involutive manifold of codimension 2; (3.2)
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and assume that every two hypersurfaces does not intersect outside †2, that is

Si \ Sj D †2; for i ¤ j: (3.3)

Moreover, assume that

the dimension of the fiber of NP is equal to r0 at †2 (3.4)

and
d i .detp/ D 0 for i < r0 and d r0.detp/ ¤ 0 at †2: (3.5)

We want to consider the limits of NP j†1 when we approach †2, so let

T†2† WD

r0[
jD1

T†2Sj

(note that † is not a manifold), and @†1 WD T†2†=T†2. Before giving the definition of
systems of generalized transverse type, we need to give the definition of the limit polar-
izations.

Definition 3.1. For j D 1; : : : ; r0, we define the limit polarizations

@N
j
P D

®
.�; �; z/ 2 @†1 �CN

W � ¤ 0 and z D lim
k!1

zk
¯
;

where zk 2 kerp.�k/ and �k 2 Sj n†2 satisfy .� � �k/=j� � �kj ! �=j�j when k!1.

@N
j
P is conical in � and �, and homogeneous in the fiber. We will assume that the fiber

of
@N 1

P \ � � � \ @N
r0
P D ¹0º over @†1 n .†2 � 0/: (3.6)

This condition means that no element in NP j†2 can be the limit of polarization vectors on
all characteristic surfaces along the same direction.

Definition 3.2. The system P is of generalized transverse type at �0 2 †2, if (3.1)–(3.6)
hold microlocally near �0.

Proposition 3.3. Let P 2 ‰1phg be an N � N system of generalized transverse type at
�0 2 †2. Then by choosing suitable symplectic coordinates, we may assume that X D
R �Rn�1, �0 D .0I .0; : : : ; 1//, and

Sj D
®
.t; xI �; �/ 2 T �.R �Rn�1/ W � C ǰ .t; x; �/ D 0

¯
; j D 1; : : : ; r0; (3.7)

microlocally near �0. Here ǰ are real and homogeneous of degree 1 in �; with ˇ1 � 0,
satisfies in a conical neighborhood of �0

cj� 0j � j ǰ j � C j�
0
j; j D 2; : : : ; r0; 0 < c < C; (3.8)

where .�; � 0; � 00/ 2 R �R �Rn�2, which gives †2 D ¹� D 0; � 0 D 0º. By conjugating P
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with an elliptic, scalar Fourier integral operators, and multiplying with elliptic N � N
systems of order 0, we may assume that

P Š

�
F 0

0 E

�
mod C1;

microlocally near �0, where E 2 ‰1phg is an elliptic .N � r0/ � .N � r0/ system and

F Š Idr0 Dt CK.t; x;Dx/ mod C1: (3.9)

Here,
K.t; x;Dx/ 2 C1.R; ‰1phg/

is an r0 � r0 system, such that k D �.K/ has 0, ˇ2; : : : ; ˇr0 as eigenvalues.

Proof. We will prove it in a way similar to how Dencker proved the normal form for
systems of uniaxial type. Since the result is local, we may assume X D Rn. Because †2
is involutive, we may choose symplectic, homogeneous coordinates .x; �/ 2 T �Rn near
�0 2 †2, so that �0 D .0I .0; : : : ; 1// and

†2 D
®
.x; �/ 2 T �Rn W � 0 D 0

¯
;

where � D .� 0; � 00/ 2 R2 �Rn�2. We may also assume

S1 D
®
.x; �/ 2 T �Rn W �1 D 0

¯
;

near �0. Now, we rename x1 D t , x2 D x0, and .x3; : : : ; xn/D x00. Since Sj is intersecting
transversally with S1 at †2, we obtain

Sj D
®
.t; xI �; �/ 2 T �.R �Rn�1/ W � C ǰ .t; x; �/ D 0

¯
;

with ǰ real and homogeneous of degree 1 in �, ˇ1 � 0, and

cj� 0j � j ǰ � ˇkj � C j�
0
j; j ¤ k;

in a conical neighborhood of �0. By taking k D 1, we obtain (3.8) in a conical neigh-
borhood of �0. Using that dim NP D r0 at †2, we can find an N � N elliptic matrix b
homogeneous of degree 0 in the � variables which maps Imp to ¹z 2CN I zj D 0; j � r0º

over †2 near �0, and we can choose an N �N matrix a homogeneous of degree 0 in the
� variables such that a�1 maps kerp onto ¹z 2 CN I zj D 0; j > r0º over †2 near �0.
Then we have

bpa D

�
s11 s12
s21 e

�
(3.10)

such that e is an .N � r0/ � .N � r0/ matrix which is elliptic at �0, and s11, s12, s21,
vanish on †2 near �0.
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Now, we choose N �N systems of pseudodifferential operators A and B with princi-
pal symbols a, and b respectively. Then

BPA D

�
S11 S12
S21 E

�
where its principal symbol is given by (3.10). As E is a system of order 1 which is elliptic
at †2, choose J to be its microlocal parametrix of order �1. Multiply BPA from the left
with

B1 D

�
Idr0 �S12J

0 IdN�r0

�
:

Multiply also B1BPA from the right by

A1 D

�
Idr0 0

�JS21 IdN�r0

�
:

Hence, we get

P Š

�
F 0

0 E

�
mod C1;

microlocally near �0, where E 2 ‰1phg is an elliptic .N � r0/ � .N � r0/ system. If f is
the principal symbol for F , then conditions (3.5) and (3.7) imply

detf D c�
r0Y
iD2

.� C ˇi /; 0 ¤ c 2 S�1;

thus @r0� .det f / D det.@�f / ¤ 0 at †2. By [6, Theorem A.3], and homogeneity, we may
find homogeneous system C0 2 S

0 such that

f D C0
�
� Idr0 Ck.t; x; �/

�
;

where detC0 ¤ 0 at †2. By multiplication with an elliptic system, we may assume C0 �
Idr0 . Thus, det f D �

Qr0
iD2.� C ǰ /, which implies that k.t; x; �/ has the eigenvalues 0,

ˇ2; : : : ; ˇr0 . If f0 2 S0 is the term homogeneous of degree 0 in the expansion of F , then
[6, Theorem A.4], and homogeneity give

f0 D B�1f C B0;

where B0 2 C1.R; S0/ is independent of � , and B�1 2 S�1. By multiplying f with an
operator with symbol Idr0 �B�1, we may assume B�1 � 0. By induction over lower order
terms we obtain (3.9).

We want to introduce symbol classes adapted to the functions ǰ defined in (3.8) for
j D 2; : : : ; r0. Let

#.�/ D h� 0i; (3.11)
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where h� 0i D .1C j� 0j2/1=2, thus # � 1C j ǰ j. Consider the metric

g.dx; d�/ D jdxj2 C jd� 0j2h� 0i�2 C jd� 00j2h�i�2; (3.12)

and h2 D sup g=g� D h� 0i�2. We get that g is � temperate, and ǰ 2 S.#; g/. Check
[13, Chapter XVIII] to know more about the symbol classes S.#; g/ of the Weyl calculus.
Moreover, using Taylor’s formula we can write

ǰ D aj �
0; (3.13)

with aj 2 S0 is homogeneous of degree 0 in � .

Proposition 3.4. Let
P D Idr0 Dt CK.t; x;Dx/ (3.14)

be an r0 � r0 system with K 2 C1.R; ‰1phg/, such that the eigenvalues of k D �.K/ are
0, ˇ2; : : : ; ˇr0 , with ǰ as in (3.8), that is ǰ ¤ 0. Then P is of generalized transverse type
if and only if k 2 C1.R; S.#; g//.

Proof. First, let k D .kij /1�i;j�r0 . Let

˛ D .˛1; : : : ; ˛r0/ 2 C1.R; S1/;

with ˛i D .ki1; : : : ; kir0/ for i D 1; : : : ; r0 homogeneous of degree 1 in � . By homogeneity,

k 2 C1
�
R; S.#; g/

�
, ˛ D O. ǰ /;

for every j D 2; : : : ; r0.
Assume that ˛ D O. ǰ / and .�; �/ 2 @†1, � ¤ 0. Choose † n†2 3 �l ! � such that

.� � �l /j� � �l j
�1 ! �=j�j, l !1. Let us define

 ijs .�; �/ WD lim
�l!�

kij

ˇs
.�l / for s 2 ¹2; : : : ; r0º and 1 � i; j � r0: (3.15)

Since ˛ D O. ǰ / does not depend on � , so the above definition is independent of the
choice of �l . We get

@N 1
P .�; �/ D ker

��
 ijs .�; �/

�
1�i;j�r0

�
; 8s 2 ¹2; : : : ; r0º;

where . ijs .�; �//1�i;j�r0 denote the matrix with entries  ijs .�; �/ for 1 � i; j � r0.

@N s
P .�; �/ D ker

�
� Idr0 C

�
 ijs .�; �/

�
1�i;j�r0

�
for s 2 ¹2; : : : ; r0º:

It is easy to see that the condition (3.6) is satisfied.
On the other hand, assume that ˛ ¤ O. ǰ / at � 2 †2. Then, there exists a sequence

�l D .tl ; xl I 0; �l /! �, such thatˇ̌
˛.�l /

ˇ̌
> l

ˇ̌
ǰ .�l /

ˇ̌
; 8l 2 N:
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It is no restriction to assume that ¹.� � �l /j� � �l j�1º has a limit 0¤ � 2 @†1j� as l!1,
and that

"i;j D lim
l!1

kij .�l /=
ˇ̌
˛.�l /

ˇ̌
exists:

Since ǰ .�l /=j˛.�l /j ! 0, we get that

@N s
P .�; �/ � ker

�
."i;j /1�i;j�r0

�
for s D 1; : : : ; r0:

Now, we want to show that ker.."i;j /1�i;j�r0/ ¤ ¹0º. Since, we have det k D 0, we get
det.."i;j /1�i;j�r0/ D 0. Hence, we get that the rank of ."i;j /1�i;j�r0 is less than or equal
to r0 � 1, which gives in turn that dim ker.."i;j /1�i;j�r0/ is greater than or equal to 1.

We will introduce two spaces that we are going to use. These spaces were also given
by Dencker in [7] and he showed the relation between these two spaces by a lemma that
we will also state. Let H r;s be the space of u 2 � 0 (here u depends on t and x) satisfying

kuk2r;s D .2�/
�n

Z ˇ̌
Ou.�; �/

ˇ̌2˝
.�; �/

˛2r ˝
.�; � 0/

˛2s
d�d� <1: (3.16)

We say that u 2 H r;s at � 2 T �Rn n 0, that is, � … WFr;s.u/, if u D u1 C u2, where
u1 2 H

r;s and � …WF.u2/.
Similarly, when we have u depends only on x then the norm becomes

kuk2r;s D .2�/
�n

Z ˇ̌
Ou.�/

ˇ̌2
h�i2rh� 0i2sd� <1:

We have S0 � S.1; g/. Note that the spaces H r;s is a particular case of the spaces Bp;k
introduced by Hörmander; check [12], where p D 2 and k.�; �/ D h�; �irh�; � 0is .

Proposition 3.5. Assume that P is an r0 � r0 system of pseudodifferential operators of
order 1 on Rn, on the form (3.14), with K 2 C1.R;Op.S.#; g/// near �0 2 †2. Let
u 2 � 0.Rn;Cr0/ and assume Pu 2H r;s at �0. Then, for every ı > 0, and N 2 N, we can
find cı and Cı;N > 0 and vı 2 H r;sC1 at �0, such that uı D u � vı satisfiesˇ̌

Ouı.�; �/
ˇ̌
� Cı;N

˝
.�; �/

˛�N
; when j� j > cı

�
h�iı C h� 0i

�
: (3.17)

Proof. Follow the proof of [7, Proposition A.1].

Let H r;s
� be the Banach space of u 2 � 0, satisfying�

kuk�r;s
�2
D .2�/�n

Z ˇ̌
Ou.�; �/

ˇ̌2
h�i2rh� 0i2sd�d� <1:

If we have u depends only on x then the norm becomes�
kuk�r;s

�2
D .2�/�n

Z ˇ̌
Ou.�/

ˇ̌2
h�i2rh� 0i2sd� <1:

Hence, kuk�r;s D kukr;s when u depends only on x.
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If u 2 H�r;s then we get ujtD� 2 H r;s for almost all �, by Fubini’s theorem. If u 2 � 0

satisfies (3.17), then

kuk�r�ıs�;s � Cr;s
�
kukr;s C 1

�
� C 0r;s

�
kuk�rCısC;s C 1

�
; 8r; s 2 R;

where s˙ D max.˙s; 0/. Hence, we lose only O.ı/ derivatives when taking restriction to
¹t D rº, for almost all r .

Definition 3.6. Let u 2 � 0.Rn/, and assume � ¤ 0 in WF.u/. We say that u 2 H r;s
� at

.t0; x0; �0/, that is, .t0; x0; �0/ … WFr;s� .u/, if there exists �.t; x; �/ 2 C1.R; S01;0/ such
that �.t; x;Dx/u 2 H

r;s
� and lim�!1j�.t0; x0; ��0/j ¤ 0.

We have
.t0; x0; �0/ …WFr;s� .u/) .x0; �0/ …WFr;s.u�/; (3.18)

for almost all � close to t0, where u�DujtD�. If �¤0 in WF.u/, then from [3, Lemma 2.3],
we get that

�0.WFr;0/.u/ DWFr;0� .u/;

where �0.t; xI �; �/D .t; x; �/. The following lemma gives the result for the more general
wavefront sets.

Lemma 3.7. Assume that u 2 � 0.Rn/ satisfies (3.17). Then Au satisfies (3.17), for any
A 2 C1.R; ‰m

ı;0
/ 8m and 8ı > 0. We also obtain

WFr�ıs�;s� .u/ � �0
�

WFr;s.u/
�
�WFrCısC;s� .u/;

where s˙ D max.˙s; 0/ and �0.t; xI �; �/ D .t; x; �/. Since u 2 C1 in ��10 .†2/ n†2 by
(3.17), we find

�0
�

WFr�ıs�;s� .u/
�
�WFr;s.u/ � �0

�
WFrCısC;s� .u/

�
on †2; (3.19)

where �0.t; x; �/ D .t; xI 0; �/.

Proof. See [7, Lemma A.3].

Note that H r D H r;0 is the usual Sobolev space. Changing the notation, let x1 D t ,
x0 D x2, then x D .x1; x0; x00/ 2 R �R �Rn�2. Introduce the symbol classes

S r;s D S.h�irh�s; g/

where h�2 D 1C j�1j2 C j� 0j2 and h�i are weights for the metric g defined by

gx;�.dx; d�/ D jdxj
2
C jd�j2h2:

Let ‰r;s D Op S r;s be the corresponding pseudodifferential operators, which maps H r;s

into L2. Returning to the old notation where using t instead of x1, and assume that P 2
C1.R;Op.S.#; g/// be as in (3.14), we get P 2 ‰0;1.
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In order to prove the main theorem, we need to study the regularity of a Cauchy prob-
lem that we will state. Consider the following N �N system

Q D q IdN C
r0�1X
iD0

Qi :

Here q is a scalar operator with symbol

q.t; xI �; �/ D �

r0Y
jD2

.� C ǰ /; (3.20)

where ǰ 2 S.#; g/ is homogeneous and satisfies (3.8). We will assume

Qi D

iX
kD0

Aii�kD
k
t ;

with Ai
k0
2 OpS.#k

0

; g/. We are going to study the following Cauchy Problem:

Qu D f;

Dk
t ujtD0 D uk ; for k D 0; : : : ; r0 � 1:

(3.21)

We are going to assume that the � ¤ 0 in WF.u/. Hence, the restrictions are well defined.

Proposition 3.8. Assume that u 2 D 0.Rn;CN / satisfies (3.21), and � ¤ 0 in WF.u/. If
uk 2H

r;s�k at .x0; �0/ for k D 0; : : : ; r0 � 1, f 2H r;s�r0C1
� at .t; x0; �0/ for 0 � t � t0,

and � 00 D 0, then u 2 H r;s
� at .t0; x0; �0/.

Proof. By conjugating with an elliptic, scalar operator with symbol in S.h�ir#s; g/, we
may assume that r D s D 0. We will reduce to a first order symmetric system. Let vk D
�k�1Dk�1

t u for k D 1; : : : ; r0, where � 2 Op S.#�1; g/ has symbol #�1. Hence, vk D
�Dtvk�1 for k D 2; : : : ; r0. Then V D t.v1; : : : ; vr0/ 2D 0.Rn;Cr0N /, � ¤ 0 in WF.V /,
and V satisfies

PV D F; V jtD0 D V0: (3.22)

Here P D Idr0N Dt CK, F D .0; : : : ; 0; �r0�1f /, V0 D .u0; �u1; : : : ; �r0�1ur0�1/, and
K 2 OpS.#; g/ has principal symbol k D .kij /1�i;j�r0 such that

ki iC1 D �# IdN for 1 � i � r0 � 1;

kr0j D
X

ˇi1 � � �ˇir0�jC1#
j�r0 IdN for 2 � j � r0;

kij D 0 elsewhere;

(3.23)

where the sum in (3.23) is such that 2 � i1 � j and ik�1 C 1 � ik � j C k � 1 for
2 � k � r0 � j C 1.

We find V0 2H 0;0DL2 at .x0; �0/ and F 2H 0;0
� at .t; x0; �0/ for 0� t � t0. Thus the

result follows from the next proposition, which we will state after the following lemma.
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Lemma 3.9. When the above assumptions are satisfied we getZ "

0

kV k.t/dt � C"1=2
�Z "

0

kDtV CKV k.t/dt C kV k.0/

�
for V 2 C10 .R

nC1;Cr0N /, if " > 0 is sufficiently small. Here k:k.t/ denotes the L2 norm
in the x variables, depending on t .

Proof. We are going to prove it in a similar way as the proof of Lemma 5.2 in [4]. As k is
diagonalizable in S.1; g/, we get that k D

Pr0
jD1 ǰ�j , with ˇ1 D 0, where �j .t; x; �/ 2

S.1;g/ is the projection on the eigenvectors corresponding to the eigenvalues ǰ along the
others when � 0 ¤ 0. k is symmetrizable with symmetrizer M D

P
��j �j , that is M > 0

andMk is symmetric. Note that k is symmetrizable means there exists symmetricN �N
system M.t; x; �/ 2 S.1; g/ such that 0 < c �M and Mk � .Mk/� 2 S.1; g/. If we put
kV k.t/ to be the L2 norm in the x-variables, depending on t , and we put

kV k2M .t/ D hMV; V i D

Z ˝
MV.t; x/; V .t; x/

˛
dx

then

c �
kV k2M .t/

kV k2.t/
� C: (3.24)

If DtV CKV D F , we obtain

@tkV k
2
M .t/ D

˝�
@tM � i.MK �K

�M/
�
V; V

˛
.t/C hMF;V i.t/C hMV;F i.t/

� C
�
kV k2M .t/C kF k

2
M .t/

�
:

By Grönwall’s inequality we get, for bounded t ,

kV k2M .t/ � C

�
kV k2M .0/C

Z t

0

kF k2M .s/ds

�
;

so (3.24) and integration gives the result.

Proposition 3.10. Let P D Dt IdN CK where K 2 Op S.#; g/ has symbol which is
diagonalizable in S.1; g/ with eigenvalues 0; ˇ2; : : : ; ˇr0 mod S.1; g/, and ǰ 2 C1 is
homogeneous, satisfying (3.8) for j D 2; : : : ; r0. Assume that V 2D 0.Rn;CN /, � ¤ 0 in
WF.V / and V satisfies (3.22). If V0 2L2 at .x0; �0/, F 2H

0;0
� at .t;x0; �0/ for 0� t � t0,

and � 00 D 0, then V 2 H 0;0
� at .t0; x0; �0/.

The condition on k means that there exists a basis of eigenvectors ¹vj º 2 S.1; g/, with
eigenvalues 0, ˇ2; : : : ; ˇr0 mod S.1; g/.

The above proposition is similar to [6, Proposition 7.2]. To prove [6, Proposition 7.2],
Dencker used the parametrix constructed in [5] forP DDt IdN CK, whereK2OpS.#;g/
has principal symbol k satisfying the conditions in [6, Proposition 7.2], with # and g are
given as in [6, (3.8) and (3.9)], respectively, and he used the microlocal uniqueness; see [5].
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In our case, case of generalized transverse type, we are using different weight and metric,
but we can still construct a parametrix for the N0 � N0 matrix, where K 2 Op S.#; g/
has principal symbol k satisfying the conditions in Proposition 3.10, and we can prove
microlocal uniqueness as in [5]. The steps are similar to that in [5], except some details
are changed. Thus, we will not write about the construction of the parametrix and the
microlocal uniqueness and we invite the readers to check [5].

Proof of Proposition 3.10. The argument is all the same as in the proof of [6, Proposi-
tion 7.2], except that to get U 2 C1.R;D 0.Rn�1;CN // \ L2, we need to prove [4,
(5.6)] for our case, which we proved in Lemma 3.9. For the parametrix and the microlocal
uniqueness part we have mentioned above that it can be proven in our case in a similar
way.

Note that here Sj are transversal at†2, so their Hamilton fields are non-parallel on†2.
That is why we considered in the main theorem, Theorem 1.2, that MA is a hypersurface
near �0, so one can consider MA D Sj for some j . Now, we will prove Theorem 1.2 for
the case of systems of generalized transverse type.

Proof. By multiplication and conjugation with elliptic, scalar pseudodifferential opera-
tors, we may assume that m D 1 and r D 0, and using the normal form we can assume
that N D r0, and P is of the form in Proposition 3.4. By using [6, Theorem A.4] for
all the terms in the expansion of A, we obtain that A 2 C1.R; ‰0phg/. As the dimen-
sion of the fiber of NA \ NP is 1 at �0 2 †2, and the dimension of the fiber of NP
is r0 at †2, we get rank �.A/ D r0 � 1 at †2. Hence, we can conjugate by suitable
elliptic systems in C1.R; ‰0phg/ to get that Au Š .u1; : : : ; ur0�1; 0/ 2 H

" in a con-
ical neighborhood U of �0, for some " > 0. Then, we find �1.Pol0.u// D WF0.ur0/
in U . By shrinking U and decreasing ", we may assume Pu 2 H " in U . Remember
that we have P 2 ‰0;1, hence we get Qu D tP coPu 2 H ";�r0C1 there, where tP co is
the adjugate matrix of P . Let Q D .qij /

r0
i;jD1, and P D .Pij /

r0
i;jD1. Since qr0i are in

C1.R;Op S.#r0�1; g// for i D 1; : : : ; r0 � 1, we find that qr0r0ur0 2 H
";�r0C1 in U .

Similarly, we find that Pr0r0ur0 2H
";�1, which in turns givesDk�1

t Pr0r0ur0 2H
";�k for

k D 1; : : : ; r0 � 1. We want to prove that ur0 2 H
0 at .t; x0I 0; �0/ 2 U \†2 for t < t0,

implies ur0 2 H
0 at .t0; x0I 0; �0/ D �0.

Thus assume that ur0 2 H
0 at .t; x0I 0; �0/ 2 U \†2 when t < t0. We may assume

that ı � 1, then Lemma 3.7 gives that ur0 , Pr0r0ur0 , Dk�1
t Pr0r0ur0 for k D 2; : : : ; r0 � 1

and qr0r0ur0 satisfies (3.17). Then � ¤ 0 in WF.ur0/, and assuming that .r0 � 1/ı � "
in (3.17), we find that Pr0r0ur0 2 H

0;�1
� , Dk�1

t Pr0r0ur0 2 H
0;�k
� for k D 1; : : : ; r0 � 1

and qr0r0ur0 2 H
0;�r0C1
� in �0.U \†2/, and ur0 2 H

0
� at .t; x0; �0/ 2 �0.U \†2/ for

t < t0. Since Pr0r0 ŠDt mod C1.R;OpS.#; g//, we get Pr0r0ur0 ŠDtur0 2H
0;�1
�

which implies, usingDk�1
t Pr0r0ur0 2H

0;�k
� , thatDk

t ur0 2H
0;�k
� for k D 1; : : : ; r0 � 1.

This gives

.Dk
t ur0/jtDr 2 H

0;�k
� at .x0; �0/; for k D 0; : : : ; r0 � 1;
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for almost all r < t0, close to t0. Proposition 3.8 (with N D 1 and Q D qr0r0 ) gives
ur0 2 H

0
� at .t0; x0; �0/, and Lemma 3.7 gives ur0 2 H

0 at .t0; x0I 0; �0/.

4. Propagation of polarization sets for systems of MHD type

In this section, we define systems of MHD type which are also systems having their
characteristic sets are union of r0 hypersurfaces intersecting transversally at an invo-
lutive manifold of codimension 2 and r0 � 2. However, they satisfy some assumptions
different than that in case of systems of generalized transverse type. We named them sys-
tems of MHD type because we first noticed these types of systems when we considered
studying the propagation of polarization sets of the linearized ideal MHD equations. Let
P 2 ‰mphg.X/ be an N � N system of classical pseudodifferential operators of order m
on a smooth manifold X . Let p D �.P / be the principal symbol of P , det p the deter-
minant of p and † D .detp/�1.0/ the characteristic set of P . Assume microlocally near
�0 D .x0; �0/ 2 †, that (3.1)–(3.3); which we will restate below, are satisfied. That is, we
have microlocally near �0 D .x0; �0/ 2 †

† D

r0[
jD1

Sj ; r0 � 2; where Sj are non-radial hypersurfaces

intersecting transversally at †2 D
r0\
jD1

Sj ; (4.1)

†2 is an involutive manifold of codimension 2; (4.2)

and every two hypersurfaces does not intersect outside †2, that is

Si \ Sj D †2; for i ¤ j: (4.3)

Also, assume that

d j .detp/ D 0 for j � r0 and d r0C1.detp/ ¤ 0 at †2; (4.4)

the dimension of the fiber of NP is equal to r0 C 1 at †2; (4.5)

d.detp/ D 0 and d2.detp/ ¤ 0 at Si0 n†2; for only one i0 2 ¹1; : : : ; r0º; (4.6)

d.detp/ ¤ 0 at Sj n†2 for each j 2 ¹1; : : : ; r0º; such that j ¤ i0: (4.7)

Moreover, assume that tP co the adjugate matrix of P can be written as

tP co
D RL1 C L2; (4.8)

with R being a scalar pseudodifferential operator of order m, with �.R/ vanishing on Si0
to the first order. L1, and L2 are N � N system of pseudodifferential operators of order
m.N � 2/, and m.N � 3/ respectively. Assume also that

�.L1/p D f IdN ; (4.9)
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with†D ¹f D 0º, and df ¤ 0 at Si n†2 for i D ¹1; : : : ; r0º. We are using same notation
as the previous section.

In fact, the condition that every two hypersurfaces does not intersect outside †2 gives
us that †2 is of codimension 2 in case of systems of generalized transverse type and in
case of systems of MHD type. However, this is not true in general in the case where the
hypersurfaces intersect tangentially as the case of systems of uniaxial type in [6].

Definition 4.1. The system P is of MHD type at �0 2 †2, if (4.1)–(4.9), and (3.6) hold
microlocally near �0.

Note that for systems of generalized transverse type, in proving the main theorem we
dealt with Q D tP coP D detp Idr0 where P was r0 � r0 matrix having eigenvalues 0,
ˇ2; : : : ; ˇr0 . Thus, we choose q in (3.20) to be detp which is equal to �

Qr0
jD2.� C ǰ / in

that case. However, when we have a system satisfying (4.1)–(4.7), one can see in the fol-
lowing proposition that P can be written as .r0C 1/� .r0C 1/matrix having eigenvalues
0; ˇ2; : : : ; ˇr0 where we have outside the intersection, †2, 0 is double eigenvalue, and the
rest are simple. Thus, if we want to follow the same procedure done for systems of gen-
eralized transverse type to prove the main theorem and take Q D tP coP D detp Idr0C1,
we have to choose q D detp D �2

Qr0
jD2.� C ǰ / in (3.20), and by that we get in Propo-

sition 3.10 a matrix which is not diagonalizable. Hence, we cannot get the result about the
regularity of the solution of the Cauchy problem in the same way we did for systems of
generalized transverse type. That is why we considered additionally the conditions (4.8)
and (4.9) for systems of MHD type, so we can in the proof of the main theorem deal with
Q D LP D f Idr0C1, where L D L1 C L2, instead of Q D tP coP , and here f will be
equal to �

Qr0
jD2.� C ǰ /.

We want to write systems of MHD in a normal form.

Proposition 4.2. Let P 2 ‰1phg be an N � N system of MHD type at �0 2 †2. Then
by choosing suitable symplectic coordinates, we may assume that X D R � Rn�1, �0 D
.0I .0; : : : ; 1//, and

Sj D
®
.t; xI �; �/ 2 T �.R �Rn�1/ W � C ǰ .t; x; �/ D 0

¯
; j D 1; : : : ; r0; (4.10)

microlocally near �0. Here ǰ are real and homogeneous of degree 1 in �; with ˇ1 � 0,
satisfies in a conical neighborhood of �0

cj� 0j � j ǰ j � C j�
0
j; j D 2; : : : ; r0; 0 < c < C; (4.11)

where .�; � 0; � 00/ 2 R � R � Rn�2, which gives †2 D ¹� D 0; � 0 D 0º. By conjugating
P with elliptic, scalar Fourier integral operators, and multiplying with elliptic N � N
systems of order 0, we may assume that

P Š

�
F 0

0 E

�
mod C1;

microlocally near �0, where E 2 ‰1phg is an elliptic .N � r0 � 1/ � .N � r0 � 1/ system,
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and
F Š Idr0C1Dt CK.t; x;Dx/ mod C1: (4.12)

Here K.t; x;Dx/ 2 C1.R; ‰1phg/ is an .r0 C 1/ � .r0 C 1/ system, and the eigenvalues
of k.t; x; �/; the principal symbol of K.t; x;Dx/, are 0 (double), ˇ2; : : : ; ˇr0 .

Proof. In a similar way as in the proof of Proposition 3.3, we get (4.10), (4.11), and

P Š

�
F 0

0 E

�
mod C1;

microlocally near �0, where E 2 ‰1phg is an elliptic .N � r0 � 1/ � .N � r0 � 1/ system.
If f is the principal symbol for F , then conditions (4.6), (4.7), and (4.10) imply

detf D c�2
r0Y
iD2

.� C ˇi /; 0 ¤ c 2 S�1;

thus @r0C1� .detf / D det.@�f / ¤ 0 at †2. Same as before we get (4.12).

We use the same weight and metric introduced in the previous section; see (3.11) and
(3.12). Thus, we have ǰ 2 S.#; g/.

Proposition 4.3. Let
P D Idr0C1Dt CK.t; x;Dx/ (4.13)

be an .r0 C 1/ � .r0 C 1/ system with K 2 C1.R; ‰1phg/, such that the eigenvalues of
k D �.K/ are 0 (double), ˇ2; : : : ; ˇr0 , with ǰ as in (4.11), that is ǰ ¤ 0. Then P
satisfies (3.6) if and only if k 2 C1.R; S.#; g//.

Proof. Same proof as in Proposition 3.4, just we replace r0 by r0 C 1 when needed.

Proposition 4.4. Assume that P is an .r0 C 1/ � .r0 C 1/ system of pseudodifferential
operators of order 1 on Rn, on the form (4.13), with K is in C1.R;Op.S.#; g/// near
�0 2†2, and k.t; x; �/ has the eigenvalues 0 (double), ˇ1; : : : ;ˇr0 . Let u 2 � 0.Rn;Cr0C1/

and assume Pu 2 H r;s at �0. Then, for every ı > 0, and N 2 N, we can find cı and
Cı;N > 0 and vı 2 H r;sC1 at �0, such that uı D u � vı satisfiesˇ̌

Ouı.�; �/
ˇ̌
� Cı;N

˝
.�; �/

˛�N
; when j� j > cı

�
h�iı C h� 0i

�
: (4.14)

Proof. Same proof as for Proposition 3.5, with replacing r0 by r0 C 1 when needed.

Now, we are ready to prove Theorem 1.2 for systems of MHD type.

Proof of Theorem 1.2. Note that as MA D �1.NA \ NP n 0/ is a hypersurface near �0,
we have MA D Sj for some j . By multiplication and conjugation with elliptic, scalar
pseudodifferential operators we may assume that m D 1 and r D 0, and using the normal
form we can assume that N D r0 C 1, and P is of the form in Proposition 4.3. By using
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[6, Theorem A.4] for all the terms in the expansion ofA, we obtain thatA 2 C1.R;‰0phg/.
As the dimension of the fiber of NA \NP is 1 at �0 2 †2, and the dimension of the fiber
of NP is r0 C 1 at†2, we get rank�.A/D r0 at†2. Hence, we can conjugate by suitable
elliptic systems in C1.R; ‰0phg/ to get that Au Š t.u1; : : : ; ur0 ; 0/ 2 H

" in a conical
neighborhood U of �0, for some " > 0. Then, we find �1.Pol0.u// DWF0.ur0C1/ in U .
By shrinkingU and decreasing ", we may assumePu 2H " inU . Remember that we have
P 2 ‰0;1. Let L D L1 C L2, where L1 and L2 are given in (4.8), and let Q D LP . We
haveQuDLPu2H ";�r0C1 there. LetQD .qij /

r0C1
i;jD1, andP D .Pij /

r0C1
i;jD1. By (4.8) and

(4.9) we have qij are in C1.R;OpS.#r0�1; g// for i ¤ j , we find that qr0C1r0C1ur0C1 2
H ";�r0C1 in U . Similarly, we find that Pr0C1r0C1ur0C1 2 H

";�1, which in turns gives
Dk�1
t Pr0C1r0C1ur0C1 2H

";�k for k D 1; : : : ; r0 � 1. We want to prove that ur0C1 2H
0

at .t; x0I 0; �0/ 2 U \†2 for t < t0, implies ur0C1 2 H
0 at .t0; x0I 0; �0/ D �0.

Thus assume that ur0C1 2H
0 at .t; x0I0; �0/ 2 U \†2 when t < t0. We may assume

that ı � 1, then Lemma 3.7 gives that ur0C1, Pr0C1r0C1ur0C1, Dk�1
t Pr0C1r0C1ur0C1 for

k D 2; : : : ; r0 � 1 and qr0C1r0C1ur0C1 satisfies (4.14). Then � ¤ 0 in WF.ur0C1/, and
assuming that .r0 � 1/ı � " in (4.14), we find that

Pr0C1r0C1ur0C1 2 H
0;�1
� ; Dk�1

t Pr0C1r0C1ur0C1 2 H
0;�k
� for k D 1; : : : ; r0 � 1

and qr0C1r0C1ur0C12H
0;�r0C1
� in �0.U\†2/, and ur0C12H

0
� at .t; x0; �0/2�0.U\†2/

for t < t0. Since Pr0C1r0C1 Š Dt mod C1.R;OpS.#; g//, we get Pr0C1r0C1ur0C1 Š
Dtur0C1 2 H

0;�1
� which implies using Dk�1

t Pr0C1r0C1ur0C1 2 H
0;�k
� that Dk

t ur0C1 2

H
0;�k
� for k D 1; : : : ; r0 � 1. This gives

.Dk
t ur0C1/jtDr 2 H

0;�k
� at .x0; �0/; for k D 0; : : : ; r0 � 1

for almost all r < t0, close to t0. Proposition 3.8 (with N D 1 and Q D qr0C1r0C1) gives
ur0C1 2 H

0
� at .t0; x0; �0/, and Lemma 3.7 gives ur0C1 2 H

0 at .t0; x0I 0; �0/.

5. Application

Magnetohydrodynamics, or MHD couples Maxwell’s equations with hydrodynamics to
describe the behavior of electrically conducting fluids under the influence of electromag-
netic fields. In this section, we want to consider the simplest form of MHD, which is the
Ideal MHD to study the propagation of polarization set of the solution of the linearized
ideal MHD equations. Ideal MHD, assumes that the fluid has so little resistivity that it can
be treated as a perfect conductor. See [16] to know more about MHD equations.

We will show, under some assumptions, that the linearized ideal MHD equations is of
real principal type. As we mentioned before, systems of real principal type were defined
by Dencker; see [2], who studied the propagation of their solutions, and showed that the
propagation of polarization sets is governed by a certain connection on sections of the
kernel subbundle, kerp2 where p2 is the principal symbol of the system. In [9], Hansen
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and Röhrig merged the theory of real principal type systems with the calculus of Fourier
integral operators and constructed a Fourier integral solution for system of real princi-
pal type, and derived a transport equation for the principal symbol of this solution (note
that disregarding half densities this transport equation is the connection introduced by
Dencker).

We will divide this section into two subsections: first, we introduce the ideal MHD
equations and its linearization. In Section 5.1, we write the linearized ideal MHD equa-
tions in the form of a wave equation Pˇ D 0 where ˇ is the displacement vector and P is
a second order 3 � 3 system; see [16, Lecture 20], and we show that under some assump-
tions, the characteristic variety of P is disjoint union of the Shear Alfvén wave, the slow
magnetosonic wave and the fast magnetosonic wave; see [16, Lecture 24]. Moreover, we
show that, under the considered assumptions, P is of real principal type and we calculate
the transport equation on †; the characteristic set of P , as an application to the result
in [9]. In Section 5.2, we return to the linearized ideal MHD equations, and we study the
propagation of polarization sets. It turns out that we can consider different cases, some
in which we have our system is of real principal type, some in which our system is of
uniaxial type, and we have a case where our system is of MHD type.

The set of equations describing the ideal MHD are8̂̂̂̂
<̂
ˆ̂̂:
@t�C u � r�C � divu D 0;

�.@tuC u � ru/Crp CH � curlH D 0;

@tH � r � .u �H/ D 0;

@tp C u � rp C p divu D 0;

(5.1)

where �, p 2 R denotes the density and the pressure respectively. u 2 R3 is the fluid
velocity, H 2 R3 is the magnetic field, and  is the adiabatic index, see [16, Lecture 20].
Assuming a stationary equilibrium the linearized equations of (5.1) about .�;H; p/ is:

@t P� D �� div Pu � Pu � r�; (5.2a)

�@t Pu D �r Pp �H � curl PH � PH � curlH; (5.2b)

@t PH D r � . Pu �H/; (5.2c)

@t Pp D �p div Pu � Pu � rp; (5.2d)

where .�; H; p/ are the values in the equilibrium state (that is the solutions of the Ideal
MHD equations when @=@tD0, and as we assumed stationary equilibrium we have uD0).
Note that we used that

rp CH � curlH D 0; (5.3)

which we get from the stationary equilibrium assumption, and Pu can be written as

Pu D
@ˇ

@t
; (5.4)

where ˇ is the displacement.
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5.1. The ideal MHD wave equation and the transport equation

We can write the linearized ideal MHD equations (5.2) in the form of a wave equation;
see [16, Lecture 20]. Substituting (5.4) in (5.2a), (5.2c), and (5.2d) respectively, and inte-
grating with respect to t we get

P� D �� divˇ � ˇ � r�; (5.5a)
PH D r � .ˇ �H/; (5.5b)

Pp D �p divˇ � ˇ � rp: (5.5c)

Replace now (5.5b), (5.5c), and (5.4) in (5.2b) to get

�
@2ˇ

@t2
D r.p divˇ/Cr.ˇ � rp/

C
�
r �

�
r � .ˇ �H/

��
�H C .r �H/ �

�
r � .ˇ �H/

�
: (5.6)

Equation (5.6) is the ideal MHD wave equation. Consider from now on P where

Pˇ D ��
@2ˇ

@t2
C r.p divˇ/Cr.ˇ � rp/C

�
r �

�
r � .ˇ �H/

��
�H

C .r �H/ �
�
r � .ˇ �H/

�
D 0:

Now, we want to give the characteristic variety of P under some assumptions; for this part
we refer to [16, Lectures 23 and 24].

Lemma 5.1. Assume c2 D p=� > 0, 0 < jH j2 ¤ �c2, � �H ¤ 0, and � �H ¤ 0. The
characteristic variety of P is disjoint union of the Shear Alfvén wave, the slow magne-
tosonic wave, and the fast magnetosonic wave characteristic varieties ¹q1 D 0º, ¹q2 D 0º,
and ¹q3 D 0º respectively, where8̂̂<̂

:̂
q1 D ��

2 � .H � �/2;

q2 D �
�
�2 � c2s .x; �/

�
;

q3 D �
�
�2 � c2

f
.x; �/

�
;

with

c2f .x; �/ WD
1

2

�
.c2 C h2/�2 C

p
.c2 � h2/2�4 C 4b2c2�2

�
;

c2s .x; �/ WD
1

2

�
.c2 C h2/�2 �

p
.c2 � h2/2�4 C 4b2c2�2

�
;

where c2 D p=� > 0, and h2 D jH j2=� are considered to be the sound speed and the
Alfvén speed respectively, and b2 D j� �H j2=�.

Proof. We have

p2ˇ D ��
2ˇ � p�.� � ˇ/ �

�
� �

�
� � .ˇ �H/

��
�H; (5.7)
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with p2 is the principal symbol of P . Considering v D H=
p
�, equation (5.7) can be

written as

�
�
�2 � .� � v/2

�
ˇ D �

�
.c2 C h2/.� � ˇ/ � .v � ˇ/.� � v/

�
� � �v.� � ˇ/.� � v/: (5.8)

Without loss of generality, let v D jH j=
p
� Oez , � D �? Oex C �k Oez with �2 D �2

?
C �2
k

, and
ˇ D ˇx Oex C ˇy Oey C ˇz Oez with Oex , Oey , and Oez are unit vectors that points in the direction
of the x-axis, y-axis, and z-axis respectively. Substituting this in equation (5.8), we find

x-component: ��2ˇx D �c2�k�?ˇz C �.h2�2 C c2�2?/ˇx ; (5.9a)

y-component: ��2ˇy D �h2�2kˇy ; (5.9b)

z-component: ��2ˇz D �.c2�k�?/ˇx C �c2�2kˇz : (5.9c)

Notice that the y-component decouples from the x- and z-components. This immediately
gives the shear Alfvén wave:

��2 D �h2�2
k
:

The characteristic equation for the coupled x- and z-component is

�2�4 � �2�2�2.c2 C h2/C �2c2h2�2
k
�2 D 0: (5.10)

Hence, we get

��2 D
�

2

�
.c2 C h2/�2 ˙

q
.c2 � h2/�4 C 4c2h2�2

?
�2
�
:

Still we want to prove that ¹q1 D 0º, ¹q2 D 0º, and ¹q3 D 0º are disjoint. Dividing (5.10)
by �2, it can be written as

.�2 � h2�2
k
/.�2 � c2�2/ � �2h2�2?:

ConsiderR.X/D .X2 � h2�2
k
/.X2 � c2�2/�X2h2�2

?
, ¹R� 0º D Œc2s ; c

2
f
� andR.X/� 0

for X 2 Œmin.h2�2
k
; c2�2/;max.h2�2

k
; c2�2/�. Thus,

c2f � max.h2�2
k
; c2�2/ � h2�2

k
;

c2s � min.h2�2
k
; c2�2/ � h2�2

k
:

As h2�2
k
¤ 0, we have R.h2�2

k
/ D �h2�2

k
c2�2 � 0. Hence, c2s < h

2�2
k
< c2

f
.

Suppose that the conditions of Lemma 5.1 are satisfied. Now, we are interested in
calculating the transport equation as in [9]. The full symbol of P is p2Cp1Cp0, with p2
is the principal symbol of P homogeneous of degree 2, and p1 and p0 are homogeneous
terms of degree 1 and 0 respectively. One can check that the principal symbol of P is

p2 D
�
��2 � .H � �/2

�
Id3�.p C jH j2/� ˝ � C .H � �/.� ˝H CH ˝ �/; (5.11)
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and

p1 D i.rp/˝ � C i� ˝ .rp/C i
�
r.H � �/ �H C .H � �/ divH

�
Id3

C
i

2

�
� ˝rjH j2

�
C i

�
rjH j2 ˝ �

�
� 2i.H � r/.H ˝ �/

� i
�
r.H � �/

�
˝H � i.H � �/.r ˝H/ � i.r �H/.� ˝H/:

Using (5.3), we get

p1 D i.rp/˝ � C i� ˝ .rp/ � i.rp/˝ �

C i
�
r.H � �/ �H C .H � �/ divH

�
Id3C

i

2

�
� ˝rjH j2

�
C
i

2

�
rjH j2 ˝ �

�
� i.H � r/.H ˝ �/

� i
�
r.H � �/

�
˝H � i.H � �/.r ˝H/ � i.r �H/.� ˝H/: (5.12)

One can check (5.11), (5.12), and the calculations given below by using “Mathematica”
for example.

Let �1, �2, and �3 be disjoint conic neighborhoods of ¹q1D 0º, ¹q2D 0º, and ¹q3D 0º
respectively. Set q D q1 in �1, q D q2 in �2, and q D q3 in �3.

Proposition 5.2. P is of real principal type with respect to the Hamilton field Hq of
† D ¹q D 0º.

Proof. We have q1, q2, and q3 are scalar real principal type. Let

w2 WD jH j2� ˝ � C j�j2H ˝H � .H � �/.H ˝ � C � ˝H/:

In �1 we take

Qp2 D Id3C
q1

q2q3

�
p C jH j2

�
� ˝ � �

q1

q2q3

�
.H � �/.� ˝H CH ˝ �/

�
C
.H � �/2w2

q2q3

to get Qp2p2 D q1 Id3. In �2 we take

Qp2 D
q2

q1
Id3C

1

q3

�
p C jH j2

�
� ˝ � �

1

q3

�
.H � �/.� ˝H CH ˝ �/

�
C
.H � �/2w2

q1q3

to get Qp2p2 D q2 Id3. In �3 we take

Qp2 D
q3

q1
Id3C

1

q2

�
p C jH j2

�
� ˝ � �

1

q2

�
.H � �/.� ˝H CH ˝ �/

�
C
.H � �/2w2

q1q2

to get Qp2p2 D q3 Id3.
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Remarks. Now, we write p2 and Qp2 in terms of �1, �2, and �3, the orthogonal projectors
with �1 C �2 C �3 D 1, and we give the values of some terms on the characteristic set†.

• The principal symbol of P calculated before can be written as

p2 D q1�1 C q2�2 C q3�3;

where

�1 D Id3C
w2

.H � �/2 � jH j2j�j2
;

�2 D
1

�c2s .x; �/ � �c
2
f
.x; �/

��
p C jH j2

�
� ˝ � � .H � �/.� ˝H CH ˝ �/

C
.H � �/2w2

�c2s .x; �/ � .H � �/
2

�
;

and

�3 D
1

�c2
f
.x; �/ � �c2s .x; �/

��
p C jH j2

�
� ˝ � � .H � �/.� ˝H CH ˝ �/

C
.H � �/2w2

�c2
f
.x; �/ � .H � �/2

�
;

with �1; �2 and �3 are orthogonal projectors and �1 C �2 C �3 D Id3.

• In �1,
Qp2 D �1 C

q1

q2
�2 C

q1

q3
�3;

and set � D �1.
In �2,

Qp2 D �2 C
q2

q1
�1 C

q2

q3
�3;

and set � D �2.
In �3,

Qp2 D �3 C
q3

q1
�1 C

q3

q2
�2;

and set � D �3.
On †, Qp2 D � , p2� D 0 D �p2, and p2a D 0 if and only if a D �a.

In what follows, let X D R � R3, ƒ � T �X n 0 be a closed Lagrangian subman-
ifold of the characteristic set of P , and let �1=2ƒ denote the half-density bundle of ƒ.
S�C1.ƒ; .�

1=2
ƒ /3/ is the space of symbols of the space of Lagrangian distributions I�.X;

ƒI .�
1=2
X /3/; see [14, Section 25.1] to read more about Lagrangian distributions.

From [9], we know that there is a first order differential operator TP;Hq onƒ, uniquely
determined by P and Hq which maps a a 3-vector of half densities with p2a D 0 to 3-
vector of half densities where

TP;Hqa D LHqaC
1

2
¹ Qp2; p2ºaC i Qp2p

sa:
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Here

ps D p1 �
1

2i

X
j

@2p2

@xj @�j
; (5.13)

is the subprincipal symbol of P , LHq is the Lie derivative with respect to Hq , and ¹:º is
the Poisson bracket.

Lemma 5.3. Qp2ps� D 0 on †.

Proof. Differentiating p2 we get

3X
jD1

@2p2

@xj @�j
D �2

�
r.H � �/ �H C .H � �/ divH

�
Id3�

�
rp Cr

�
jH j2

��
˝ �

� � ˝
�
rp CrjH j2

�
C .divH CH � r/.� ˝H CH ˝ �/

C
�
r.H � �/

�
˝H C .H � �/

�
r ˝H C .r ˝H/|

�
CH ˝

�
r.H � �/

�
:

Therefore, the subprincipal symbol is given as follows:

2ips D .� ˝rp � rp ˝ �/C divH.� ˝H �H ˝ �/

C .H � �/
�
� .r ˝H/| C .r ˝H/

�
C .H � r/.H ˝ � � � ˝H/

C
��
r.H � �/

�
˝H �H ˝r.H � �/

�
C 2.rp ˝ � � � ˝rp/:

We have
2i Qp2p

s� D 2i�ps� on †:

Using that 2ips is a 3 � 3 skew-symmetric matrix with zero entries on the diagonal, and
� is a symmetric matrix we get that 2i�ps� is a 3� 3 skew-symmetric matrix. Therefore
to prove that it vanishes, it suffices to show that its rank is < 2. Since � is projection we
have rank� D trace� . Calculating the trace of � we get that rank � D 1 and hence we
proved the lemma.

Lemma 5.4. Letƒ � † be a conic Lagrangian submanifold. Let a 2 S�C1.ƒ; .�1=2ƒ /3/.
Then, ¹ Qp2; p2º�a D �2.H�/a on †.

Proof. We will prove the result for � D �1 and the same argument applies for �2 and
�3. We have in a conic neighborhood of ¹q1 D 0º, p2 D q1�1 C q2�2 C q3�3, and Qp2 D
�1 C

q1
q2
�2 C

q1
q3
�3. Using that �2 D � , and ¹q1; q1º D 0 we get

¹ Qp2; p2º�1a D ¹�1; q1º�1aC q2¹�1; �2º�1aC q3¹�1; �3º�1aC �2¹q1; �2º�1a

C
q3

q2
�2¹q1; �3º�1aC

q2

q3
�3¹q1; �2º�1aC �3¹q1; �3º�1a:

Using that H�j D H�2j D .H�j /�j C �j .H�j / for j D 2; 3, we get �j ¹q1; �j º�1a D
¹q1; �j º�1a for j D 2; 3, and using 0 D H.�2�3/ D �2.H�3/ C .H�2/�3 and 0 D
H.�3�2/ D �3.H�2/C .H�3/�2 we get �2¹q1; �3º�1a D �3¹q1; �2º�1a D 0.
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Using �2 D Id3��1 � �3, ¹�1; Id3º D ¹q1; Id3º D 0 and ¹�1; �1º D 0 we get

¹ Qp2; p2º�1a D �2.H�1/�1aC .q3 � q2/¹�1; �3º�1a:

Now, we want to prove that ¹�1; �3º�1a D 0. We have

@�i�1 D @�i�
2
1 D �1@�i�1 C @�i�1�1;

and similarly @xi�1 D @xi�
2
1 D �1@xi�1 C @xi�1�1. Also, 0 D @�i .�1�3/ D �1@�i�3 C

@�i�1�3. Hence, �1@�i�3 D �@�i�1�3. Similarly, we have �1@xi�3 D �@xi�1�3. Com-
bining these together we get

¹�1; �3º�1a D �1¹�1; �3º�1a:

We have

�1¹�1; �3º�1a D

3X
iD1

�1.@�i�1@xi�3 � @xi�1@�i�3/�1a:

Moreover,

�1@�i�1@xi�3�1a D �1@�i�1.�3@xi�3 C @xi�3�3/�1a D �1.@�i�1�3/@xi�3�1a

D ��1@�i�3.@xi�3�1/a�1.@�i�3�3/@xi�1a

D �1.@�i�3 � �3@�i�3/@xi�1a D �1@�i�3@xi�1a:

Using that �1a D a on †, we get �1@�i�1@xi�3�1a D �1@�i�3@xi�1�1a. Therefore,

�1¹�1; �3º�1a D

3X
iD1

�1.@�i�3@xi�1 � @xi�1@�i�3/�1a:

We have @�i�3@xi�1 � @xi�1@�i�3 is a 3 � 3 skew-symmetric matrix with the entries in
the diagonal equal to zero. So same as before we get �1¹�1; �3º�1a D 0 as the rank of
�1 equal to 1. Hence, the lemma is proved.

Proposition 5.5. Letƒ�† be a conic Lagrangian submanifold. Let a2S�C1.ƒ;.�1=2ƒ /3/

with p2a D 0. Then
TP;Ha D LHa � .H�/a on ƒ:

5.2. Propagation of polarization sets for the linearized ideal MHD equations

Note that (5.2) is hyperbolic symmetric with symmetrizer

S D

0BBBBBBBBBBB@

p 0 0 0 0 0 0 ��

0 � 0 0 0 0 0 0

0 0 � 0 0 0 0 0

0 0 0 � 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

�� 0 0 0 0 0 0 1C�2

p

1CCCCCCCCCCCA
: (5.14)
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The principal symbol of (5.2) is8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

� P�C �.� � Pu/ D 0;

� PuC ��1 Pp� C ��1H � .� � PH/ D 0;

� PH C .� � Pu/H � .H � �/ Pu D 0;

� Pp C p.� � Pu/ D 0:

(5.15)

We use here the notation �D .�1; �2; �3/ for the spatial frequencies and �D j�jy�, PukD y� � Pu,
Pu? D Pu � Puky� D �y� � .y� � Pu/.

We write (5.15) in the general form � PUCA.U;�/ PUD0with parametersUD.�;H;p/,
and PU D . P�; Pu; PH; Pp/.

We have the following result.

Lemma 5.6. Assume that c2 D p=� > 0. The eigenvalues of A.U; �/ are8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�0 D �4 D 0;

�˙1 D ˙cs.y�/j�j;

�˙2 D ˙.� �H/=
p
�;

�˙3 D ˙cf .y�/j�j;

with y� D �=j�j and

c2f .
y�/ WD

1

2

�
.c2 C h2/C

p
.c2 � h2/2 C 4b2c2

�
; (5.16)

c2s .
y�/ WD

1

2

�
.c2 C h2/ �

p
.c2 � h2/2 C 4b2c2

�
; (5.17)

where h2 D jH j2=�, b2 D jy� �H j2=�.
Moreover, if we assume that 0 < jH j2 ¤ �c2, then we have

(i) When � �H ¤ 0 and � �H ¤ 0: �0 D �4 is double eigenvalue of A.U; �/, and
the eigenvalues �˙1, �˙2 and �˙3 are simple eigenvalues of A.U; �/.

(ii) When � �H D 0, � ¤ 0: �˙3 are simple eigenvalues, while �0 D �˙1 D �˙2 D
�4 is a multiple eigenvalue.

(iii) When � � H D 0, � ¤ 0: when jH j2 < �c2 (resp. jH j2 > �c2), �˙3 (resp.
�˙1) are simple; �C2 ¤ ��2 are double, equal to �˙1 (resp. �˙3) depending
on � �H , �0 is double equal to �4.

The proof of this lemma is very similar to the explanation given in [15, Appendix A]
except here we have the additional eigenvalue �4 D 0. Also, here we will not state all the
eigenspaces as in [15].
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Proof. Let PU D . P�; Pu; PH; Pp/. The eigenvalue equation A.U; �/ PU D � PU reads8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

� P� D � Puk;

�� Puk D Pp CH? � PH?;

�� Pu? D �Hk PH?;

� PH? D PukH? �Hk Pu?;

� PHk D 0;

� Pp D p Puk:

On ¹ P� D 0; Pu D 0; PH? D 0; Pp D 0º D E0.�/, A is equal to � D 0. From now on we work
on E?0 D ¹ PHk D 0º which is invariant by A.

Consider v D H=
p
�, Pv D PH=

p
�, P̨ D Pp=�, ˛ D p=�, and P� D P�=�. The character-

istic system reads: 8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

� P� D Puk;

� Puk D P̨ C v? � Pv?;

� Pu? D �vk Pv?;

� Pv? D Pukv? � vk Pu?;

� P̨ D ˛ Puk:

Take a basis of �? such that v? D .b; 0/ and let a D vk. In such a basis, the matrix of the
system is

� � zA WD

0BBBBBBBBB@

� �1 0 0 0 0 0

0 � 0 0 �b 0 �1

0 0 � 0 a 0 0

0 0 0 � 0 a 0

0 �b a 0 � 0 0

0 0 0 a 0 � 0

0 �˛ 0 0 0 0 �

1CCCCCCCCCA
: (5.18)

The characteristic roots satisfy

�.�2 � a2/
�
.�2 � a2/.�2 � c2/ � �2b2

�
D 0:

Thus either

� D 0 or

�2 D a2 or

�2 D c2f .
y�/ D

1

2

�
c2 C h2 C

p
.c2 � h2/2 C 4b2c2

�
or

�2 D c2s .
y�/ D

1

2

�
c2 C h2 �

p
.c2 � h2/2 C 4b2c2

�
;

with h2 D a2 C b2 D jH j2=�.
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As in Lemma 5.1, if we consider R.X/ D .X � a2/.X � c2/ � b2X , ¹R � 0º D
Œc2s .
y�/; c2

f
.y�/�, and R.X/ � 0 for X 2 Œmin.a2; c2/;max.a2; c2/�. Thus,

c2f .
y�/ � max.a2; c2/ � a2;

c2s .
y�/ � min.a2; c2/ � a2:

At the case v? ¤ 0 that is w D y� � v ¤ 0: we have the basis such that (5.18) holds is
smooth in �. In this basis, w D .0; b/, b D jv?j > 0. Since R.c2/ D �b2c2 < 0 there
holds c2s .y�/ < c

2 < c2
f
.y�/. Suppose that a ¤ 0. Then R.a2/ D �a2c2 < 0 and c2s .y�/ <

a2 < c2
f
.y�/. Moreover, c2s .y�/c

2
f
.y�/ D a2c2 and c2s .y�/ > 0. However, when a D 0, we get

c2s .
y�/ D 0, but c2

f
.y�/ > c2 > 0.

When a ¤ 0, and b D 0, the eigenvalues of zA are ˙c (simple), 0 (simple), and ˙h
(double). Assume that c2 ¤ h2. Note that when b D 0, then jaj D h and

when c2 > h2 W cf .y�/ D c; cs.y�/ D h;

when c2 < h2 W cf .y�/ D h; cs.y�/ D c:

Let Q be a pseudodifferential operator of order 1, such that Q PU D 0 be the system
of the linearized ideal MHD equations, and q D �.Q/ be its principal symbol. We have
det q D �2.�2 � c2s .y�/j�j

2/.�2 � c2
f
.y�/j�j2/.�2 � .� �H/2=�/.

Proposition 5.7. When we have † is disjoint union of the hypersurfaces

S1 D ¹q1 D � D 0º; S2 D ¹q2 D � � cs.y�/j�j D 0º; S3 D ¹q3 D � C cs.y�/j�j D 0º;

S4 D ¹q4 D � � .� �H/=
p
� D 0º; S5 D ¹q5 D � C .� �H/=

p
� D 0º;

S6 D ¹q6 D � � cf .y�/j�j D 0º; S7 D ¹q7 D � C cf .y�/j�j D 0ºI

that is when we are outside the intersection of any of these hypersurfaces, then Q is of
real principal type. Note that we have this case when � �H ¤ 0, and � �H ¤ 0.

Proof. Let �1; : : : ; �7 be the disjoint conic neighborhoods of S1; : : : ; S7, respectively.
Let tqco be the adjugate matrix (transpose of the cofactor matrix) of q. We can check

by using “Mathematica” for example that tqco can be written as

tqco
D �M; (5.19)

with M being an 8 � 8 matrix.
In �1, we choose

Qq D

�
1=

7Y
iD2

qj

�
M;

so we get
Qqq D � Id8 :
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In �j , for j D 2; : : : ; 7 we choose

Qq D

�
1=

�
q21

7Y
iD2
i¤j

qi

��
tqco;

so we get
Qqq D qj Id8 :

As qj for j D 1; : : : ; 7 are of real principal type we get the result.

Remember that from Lemma 5.6, we know that c2
f
.y�/ ¤ c2s .

y�/ and that c2
f
.y�/ ¤ 0.

Proposition 5.8. If � ¤ 0, and �2 ¤ c2
f
.y�/j�j2, or if � ¤ 0 and �2 ¤ c2s .y�/j�j

2, then our
system is of uniaxial type at †2.

Proof.

First case. If � ¤ 0, and �2 ¤ c2
f
.y�/j�j2, we have † is union of two hypersurfaces

S1 D
®
� � cs.y�/j�j D 0

¯
t
®
� C cs.y�/j�j D 0

¯
;

S2 D
®
� � .� �H/=

p
� D 0

¯
t
®
� C .� �H/=

p
� D 0

¯
intersecting at

†2 D
®
� D j�jjH j=

p
�; � �H D 0; jH j2 < �c2; � ¤ 0

¯
t
®
� D �j�jjH j=

p
�; � �H D 0; jH j2 < �c2; � ¤ 0

¯
:

Second case. If � ¤ 0, and �2 ¤ c2s .y�/j�j
2, we have † is union of two hypersurfaces

S1 D
®
� � cf .y�/j�j D 0º t ¹� C cf .y�/j�j D 0

¯
;

S2 D
®
� � .� �H/=

p
� D 0º t ¹� C .� �H/=

p
� D 0

¯
intersecting at

†2 D
®
� D j�jjH j=

p
�; � �H D 0; jH j2 > �c2; � ¤ 0

¯
t
®
� D �j�jjH j=

p
�; � �H D 0; jH j2 > �c2; � ¤ 0

¯
:

In the first and in the second case we have: S1 and S2 are tangent of order 1 at †2,
the codimension of †2 is three, the (complex) dimension of NQ is equal to 2 at †2,
d2.det q/ ¤ 0 at †2, and d i .det q/ D 0 at †2 for i < 2. Hence, the conditions (2.2)–
(2.5) are satisfied. It remains only to prove (2.7). In [6], Dencker mentioned that by [6,
proposition 3.2], we only have to verify

@�q W ker q 7! Im q at †2
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when � 2 T†2†, since the order of tangency of S1 and S2 is 1. T†2† is characterized as
those � 2 T†2X such that @2�.det q/ D 0. Thus T†2† is spanned by

D1 D �2@�1 � �1@�2 ; D2 D �3@�1 � �1@�3 ; D3 D �2@�3 � �3@�2 ;

D4 D H2@�1 �H1@�2 ; D5 D H1@�3 �H3@�1 ; D6 D H2@�3 �H3@�2 ;

D7 D @t ; D8D�1�@�Cj�j
2@�1 ; D9D�2�@�Cj�j

2@�2 ; D10D�3�@�Cj�j
2@�3 ;

D11 D �H1@�C.� �H/@�1 ; D12D�H2@�C.� �H/@�2 ; D13D�H3@�C.� �H/@�3 :

We can check that if t.�1; : : : ; �8/ 2 ker q at †2, then we find

Dj q
t.�1; : : : ; �8/ D

t.0; : : : ; 0/; j D 1; : : : ; 13; (5.20)

so, (2.7) is satisfied. For D7 we clearly have D7q t� D 0. We will show how one can get
(5.20) for the other Dj , in particular we show the proof for D1, and one can prove it for
the other Dj in a similar way. Let � 2 ker q at †2 so we have8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

˙
jH jj�j
p
�
�1 C ��1�2 C ��2�3 C ��3�4D0;

˙
jH jj�j
p
�
�2��

�1.H3�3CH2�2/�5C�
�1�1H2�6C�

�1�1H3�7C�
�1�1�8D0;

˙
jH jj�j
p
�
�3C�

�1�2H1�5��
�1.H3�3CH1�1/�6C�

�1�2H3�7C�
�1�2�8D0;

˙
jH jj�j
p
�
�4C�

�1�3H1�5C�
�1�3H2�6��

�1.H2�2CH1�1/�7C�
�1�3�8D0;

� .H2�2 CH3�3/�2 C �2H1�3 C �3H1�4 ˙
jH jj�j
p
�
�5D0;

�1H2�2 � .H1�1 CH3�3/�3 C �3H2�4 ˙
jH jj�j
p
�
�6D0;

�1H3�2 C �2H3�3 � .H1�1 CH2�2/�4 ˙
jH jj�j
p
�
�7D0;

p�1�2 C p�2�3 C p�3�4 ˙
jH jj�j
p
�
�8D0:

(5.21)

We have

D1q� D D1

0BBBBBBBBBBBBBBB@

��1 C ��1�2 C ��2�3 C ��3�4

��2 � �
�1.H3�3 CH2�2/�5 C �

�1�1H2�6 C �
�1�1H3�7 C �

�1�1�8

��3 C �
�1�2H1�5 � �

�1.H3�3 CH1�1/�6 C �
�1�2H3�7 C �

�1�2�8

��4 C �
�1�3H1�5 C �

�1�3H2�6 � �
�1.H2�2 CH1�1/�7 C �

�1�3�8

�.H2�2 CH3�3/�2 C �2H1�3 C �3H1�4 C ��5

�1H2�2 � .H1�1 CH3�3/�3 C �3H2�4 C ��6

�1H3�2 C �2H3�3 � .H1�1 CH2�2/�4 C ��7

p�1�2 C p�2�3 C p�3�4 C ��8

1CCCCCCCCCCCCCCCA
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D D1

0BBBBBBBBBBBBBBBBBBBBB@

��1 �
jH jj�j
p
�
�1

��2 �
jH jj�j
p
�
�2

��3 �
jH jj�j
p
�
�3

��4 �
jH jj�j
p
�
�4

��5 �
jH jj�j
p
�
�5

��6 �
jH jj�j
p
�
�6

��7 �
jH jj�j
p
�
�7

��8 �
jH jj�j
p
�
�8

1CCCCCCCCCCCCCCCCCCCCCA

D
t.0; : : : ; 0/;

for � 2 ker q at †2.

Proposition 5.9. If �2 ¤ c2
f
.y�/j�j2, and � �H ¤ 0, then our system is of MHD type at

†2.

Proof. When �2 ¤ c2
f
.y�/j�j2, then † is union of the five hypersurfaces S1 D ¹� D 0º,

S2 D ¹� � cs.y�/j�j D 0º, S3 D ¹� C cs.y�/j�j D 0º, S4 D ¹� � .� � H/=
p
� D 0º, and

S5 D ¹� C .� �H/=
p
�D 0º, intersecting at†2 D

T5
jD1 Sj D ¹� D 0; � �H D 0; � ¤ 0º.

We want to prove that our system is of MHD type at †2. We have Sj intersect transver-
sally at †2, the codimension of †2 is equal to two, (4.3) is satisfied, d6.det q/ ¤ 0, and
d i .det q/ D 0 for i < 6 at †2, and the dimension of the fiber of NQ is equal to 6 at †2.
(4.6) is satisfied for i0 D 1. Hence, still we want to check (3.6). Again, we will prove this
by proving the following

@�q W ker q 7! Im q at †2;

when � 2 T†2†. T†2† is spanned byD1 D �1@�1 C �2@�2 C �3@�3 ,D2 D �@� ,D3 D @t ,
D4D �@�1 ,D5D �@�2 ,D6D �@�3 ,D7D �@x1 ,D8D �@x2 ,D9D �@x3 ,D10 D .� �H/@x1 ,
D11 D .� �H/@x2 ,D12 D .� �H/@x3 ,D13 D .� �H/@�1 , andD14 D .� �H/@�3 (note that
we have not mentioned .� �H/@�2 as it can be written in terms of D13, D14, and D5). We
have for .�1; : : : ; �8/ 2 ker q at †2

Diq
t.�1; : : : ; �8/ D

t.0; : : : ; 0/ at †2 for i D 1; : : : ; 14:

From (5.19) we know that (4.8), and (4.9) are satisfied with R D Dt , �.L1/ D M , and
f D �.�2 � c2s .

y�/j�j2/.�2 � c2
f
.y�/j�j2/.�2 � .� �H/2=�/.

Note. As an application for systems of generalized transverse type, one can consider the
linearized isentropic MHD equations, which is 7 � 7 matrix; check [15, Appendic A]
where the first order term of the linearized isentropic MHD equations and its eigenvalues
are given, and then we can easily check the type of the system as we did in this section for
linearized ideal MHD equations.
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