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The cubic Dirac operator on compact quotients of the
oscillator group

Ines Kath and Margarita Kraus

Abstract. We study Kostant’s cubic Dirac operator D1=3 on locally symmetric Lorentzian mani-
folds of the form �nOsc1, where Osc1 is the four-dimensional oscillator group and � � Osc1 is a
cocompact lattice. These quotients are the only four-dimensional, compact Lorentzian G-homoge-
neous spaces for a solvable but non-abelian Lie group G. We determine the spectrum of D1=3.
We also give an explicit decomposition of the regular representation of Osc1 on L2-sections of the
spinor bundle into irreducible subrepresentations and we determine the eigenspaces of D1=3.

1. Introduction
This paper is a contribution to the spectral theory of the cubic Dirac operator on com-
pact locally symmetric Lorentzian manifolds. The cubic Dirac operator was introduced
by Kostant [13] as a purely algebraic object on reductive spaces endowed with a natur-
ally reductive metric. However, it can be also considered as a geometric Dirac operator
D1=3 belonging to a family of Dirac operators Dt . These operators are induced by metric
connections with skew torsion [1, 10]. For t D 1=2, the corresponding connection is the
Levi-Civita connection. The square of the cubic Dirac operator satisfies a simple formula.
Actually it is equal to minus the Casimir operator up to terms of order zero [13]. In the
special case, where the naturally reductive space is just a quotient of a Lie group G by
a discrete subgroup � , the metric is induced by a bi-invariant metric on G. In this case,
the metric connection rt is characterised by its torsion T t , which equals T t .X; Y / D
.2t � 1/ŒX; Y � for all left-invariant vector fields X and Y on G.

The spectrum of geometric Dirac operators on pseudo-Riemannian manifolds has been
calculated for some specific examples. For the Dirac operator D D D1=2 associated with
the Levi-Civita connection, the point spectrum of the pseudo-Riemannian torus T p;q has
been computed, see [4] for T 1;2 and [15] for the general case. Kunstmann [14] studied the
spectrum for pseudo-Riemannian spheres. In the case of even dimension of the manifold
or even index of the metric, he computed the point spectrum and proved that the imaginary
axis belongs to the continuous spectrum and that the residual spectrum is empty. Reincke
[23] explicitly computed the full spectrum of D on Rp;q , the flat torus T p;q and products
of the form T 1;1 � F , where F is an arbitrary compact, even-dimensional Riemannian
spin manifold.
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Here we will consider the Dirac operator on four-dimensional compact homogeneous
spaces G=� , where G is a solvable Lie group endowed with a bi-invariant Lorentzian
metric and � is a (cocompact) lattice in G. More exactly, G will be the four-dimensional
oscillator group.

Homogeneous spaces of the form G=� for solvable G not only serve as examples of
compact homogeneous Lorentzian manifolds but also play a central role in their classi-
fication. Indeed, Baues and Globke [3] proved the following result. Let M D G=H be a
compact homogeneous pseudo-Riemannian manifold, and let G be connected and solv-
able. Then H is a lattice in G and the pseudo-Riemannian metric on M pulls back to a
bi-invariant metric on G. In the Lorentzian case Lie groups G of this type admitting a bi-
invariant metric were classified by Medina [18]. They are products of an abelian group by
a so-called oscillator group, which is a certain semi-direct product of a Heisenberg group
by the real line. Combining these results of Baues and Globke and Medina, one obtains
a classification of all solvable Lie groups G for which there exist compact Lorentzian
G-homogeneous spaces. This classification in the Lorentzian case can already be found
in [25]. If we restrict ourselves to four-dimensional manifolds, we now see that the group
G is isomorphic either to the abelian group R4 or to the four-dimensional oscillator group
Osc1. Thus M is a flat Lorentzian torus or a quotient of Osc1 by a lattice and the metric
on M is induced by the bi-invariant metric on Osc1.

Let us explain the four-dimensional oscillator group Osc1 in more detail. This group is
a semi-direct product of the 3-dimensional Heisenberg group H by the real line R, where
R acts trivially on the centre Z.H/ of H and by rotation on H=Z.H/. In particular, it
is solvable. As mentioned above, it admits an essentially unique bi-invariant Lorentzian
metric. This metric is a particular case of a plane wave metric. More details can be found
in Section 3.3.

The Lie algebra osc1 of Osc1 is spanned by a basis X; Y; Z; T where Z spans the
centre and the remaining basis elements satisfy the relations ŒX; Y � D Z, ŒT; X� D Y ,
ŒT; Y � D �X . This Lie algebra is strongly related to the one-dimensional quantum har-
monic oscillator. Actually, the Lie algebra spanned by the differential operators Q WD x,
P WD �id=dx, i id, and iH D i.P 2 CQ2/=2 is isomorphic to osc1.

The oscillator group contains lattices. Each lattice L in Osc1 gives rise to a compact
locally symmetric Lorentzian manifold LnOsc1. Notice that for a lattice from now on
we take the quotient of the left action and therefore write the subgroup on the left. The
problem of classifying lattices in Osc1 was first considered by Medina and Revoy [19].
Note, however, that the result in [19] is not correct due to a wrong description of the auto-
morphism group of an oscillator group. Lattices of Osc1 (as subgroups) were classified
up to automorphisms of Osc1 by Fischer [6] and up to inner automorphisms of Osc1 by
Fischer and Kath [7]. Here we will not consider arbitrary lattices but we will concentrate
on basic lattices. See Section 4 for a justification of this assumption.

Let X be a quotient of Osc1 by a basic lattice L. We fix a spin structure on X and
consider the spinor bundle †. We use the canonical indefinite inner product on smooth
sections of †.X/ to define a Krein space L2.†.X//. Then the cubic Dirac operator is
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defined on L2.†.X// and iD1=3 W L2.†.X//! L2.†.X// is essentially selfadjoint (as
an operator on a Krein space). Our aim is to determine the spectrum of this operator.

The scalar curvature of X D LnOsc1 is zero. This implies that the zero order terms
in the formula for the square of D1=3 vanish. So .D1=3/2 D ��, where � denotes the
Casimir operator on L2.†.X//. To determine the point spectrum of D1=3, we will con-
sider L2.†.X// as a representation of Osc1. We provide an explicit decomposition of
L2.†.X// into a (discrete) direct sum of irreducible subrepresentations with finite mul-
tiplicities, see Theorem 5.2. The cubic Dirac operator preserves each summand and its
square �� acts on it by scalar multiplication. So we first determine the eigenvalues
of ��. For this we use results from [7]. We consider a finite cover zX of X such that
the pullback of the spin structure of X to zX becomes trivial. We proceed by decomposing
L2.†. zX// D L2. zX/˝� according to [7] and then we determine the space of sections
that are invariant under all deck transformations of the cover zX ! X . This indeed allows
us to determine the point spectrum of ��, see Theorem 6.1. In order to determine the
point spectrum of D1=3, we finally show that all square roots of eigenvalues of �� are
eigenvalues of D1=3. Using the decomposition of L2.†.X//, we can also prove that the
entire spectrum ofD1=3 is all of C. From general properties of Dirac operators, it follows,
moreover, that the residual spectrum is empty.

In summary, we obtain: Let L� Osc1 be a basic lattice andX WD LnOsc1 be the quo-
tient space. We endow Osc1 with its bi-invariant metric and fix a spin structure on X . Let
Dt W L2.†.X//! L2.†.X// be the Dirac operator with respect to the metric connection
with torsion T t D .2t � 1/Œ� ; �� on osc1. In particular, D1=3 is the cubic Dirac operator.
Then:

• The spectrum of Dt is equal to C, see Section 6.6.

• The residual spectrum of Dt is empty, see Section 6.6.

• The point spectrum of D1=3 will be explicitly determined. It depends on the spin
structure. It is discrete and contains only real and purely imaginary numbers, see Sec-
tion 6.2.

• The eigenspaces of D1=3 are determined explicitly, see Section 6.2.

• The point spectrum of Dt is computed in terms of the eigenvalues of D1=3, see Sec-
tion 6.6.

For arbitrary lattices, it is no longer true that the point spectrum is always discrete. In
Section 6.5, we give examples of shifted lattices for which the point spectrum of D1=3 on
the quotient has accumulation points.

2. Basic notions

2.1. Invariant connections on Lie groups

In this short subsection, we want to recall some basic facts on connections on Lie groups.
Let G be a simply-connected Lie group endowed with a bi-invariant semi-Riemannian
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metric h� ; �iG . Let g denote the Lie algebra of G. The metric h� ; �iG on G corresponds to
an ad.g/-invariant scalar product h� ; �i on g. As a Lie group, G is endowed with a canon-
ical left-invariant connection r0, for which all left-invariant vector fields are parallel. On
.G; h� ; �iG/, this connection is also known as Ambrose–Singer connection, i.e., the unique
metric connection on G whose torsion and curvature are parallel.

We use r0 to define a one-parameter family of connections rt by

r
t
XY D r

0
XY C t ŒX; Y � D t ŒX; Y �

for left-invariant vector fields X; Y . These connections are metric since h� ; �i is ad.g/-
invariant. The torsion of rt equals T t .X;Y /D .2t � 1/ŒX;Y � for all left-invariant vector
fields on G. The ad.g/-invariance of h� ; �i implies that the tensor hT t .� ; �/; �iG is skew-
symmetric and that all connections rt define the same divergence operator on vector
fields. For t D 1=2, rt is torsion-free and metric. Thus it is the Levi-Civita connection of
h� ; �iG .

Let us explain the relation between the connection rt of G and the canonical con-
nections of G understood as a reductive homogeneous space K=H for K WD G � G and
H WD �G � G �G. Let k and h denote the Lie algebras of K and H , respectively. Then

mt WD
®�
.t � 1/v; tv

�
j v 2 g

¯
� k; t 2 R

is a one-parameter family of Ad.H/-invariant complements of h in k. Each of the decom-
positions k D h˚mt defines a canonical connection on G D K=H in the sense of Wang.
This canonical connection coincides with the left-invariant connection rt of the Lie group
G introduced above. For more information, see [2, Section 5.2].

2.2. Spin structures on quotients of Lie groups

Here we gather some facts on spin structures on quotients of Lie groups by discrete
subgroups. Let G be a simply-connected Lie group endowed with a bi-invariant semi-
Riemannian metric h� ; �iG , an orientation and a time orientation. As above, let g denote
the Lie algebra of G and h� ; �i the induced scalar product on g.

Let � � G be a discrete subgroup and consider the quotient �nG. The metric, the
orientation and the time orientation on G induce a metric, an orientation and a time ori-
entation on the quotient. The tangent bundle of �nG is trivial. Let � W G ! �nG denote
the projection, then

�nG � g �! T .�nG/; .�g;X/ 7�! d�dLg.X/

is an isomorphism of vector bundles. Consequently, the bundle of oriented and time-
oriented orthonormal frames on �nG equals

PSOC.�nG/ D �nG � SOC.g/;

where SOC.g/ denotes the identity component of SO.g/ WD SO.g; h� ; �i/. The spin struc-
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tures on �nG are classified by H 1.�nG;Z2/, see [4, Satz 2.6.] or [8]. Since

H 1.�nG;Z2/ D Hom
�
H1.�nG/;Z2

�
D Hom

�
�1.�nG/;Z2

�
D Hom.�;Z2/;

we obtain a one-to-one correspondence between isomorphism classes of spin structures on
�nG and homomorphisms " W � ! Z2 D Z=2Z, see [8, Section 2.2] for the more general
case of a covering map. The spin structure corresponding to " equals

P "SpinC.�nG/ WD G ��;" SpinC.g/ WD �n
�
G � SpinC.g/

�
;

where the action of � on G � SpinC.g/ is given by

 � .g; ˛/ D
�
g; .�1/"./˛

�
;

see [4, Folgerung 2.3] or [9, Proposition 1.4.2]. Let �g denote the spinor representation
of SpinC.g/. We obtain

†.�nG/ D G ��;" �g

for the spinor bundle associated with P "
SpinC

.�nG/. We identify vector fields on �nG with
functions X W G! g that are invariant under left translation by � and we identify smooth
sections of†.�nG/with smooth functions WG!�g that are invariant under the action
of � , that is

 .g/ D .�1/"./ .g/ (2.1)

for all  2 � .

2.3. The cubic Dirac operator

Every connection rt on G induces a connection on †.�nG/, which we will also denote
by rt . Consider a smooth section  W G ! �g of †.�nG/, see (2.1). Let X 2 g be a
left-invariant vector field on G. Then X can also be considered as a vector field on �nG.
Let “�” denote the Clifford multiplication. Then rtX D X. / � .t=2/.X/ �  , where

.X/ D �
X
a<b

˝
X; Œea; eb�

˛
eaeb

[20, p. 164]. Here and in the following, ¹ea j a D 1; : : : ; nº denotes a basis of g and
¹ea j a D 1; : : : ; nº its dual basis with respect to h� ; �i. These elements of g can also be
understood as vector fields on �nG or, equivalently, as constant maps G ! g, g 7! ea

and G ! g, g 7! ea.
The Dirac operator corresponding to rt is equal to

Dt
D

X
ea � rtea :

If we apply this to a smooth section  of the spinor bundle, we obtain

Dt D
X

ea � ea. / �
3t

2
y �  ; (2.2)
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for
y D �

X
a<b<c

˝
Œea; eb�; ec

˛
eaebec

where eaebec is understood as an element of the Clifford algebra [1, equation (5)]. If we
use multiplication of spinors by alternating differential forms instead of multiplication by
elements of the Clifford algebra, we obtain

.X/ �  D T 0.X; �; �/ �  ; y �  D T 0 �  ; (2.3)

where T 0 is the torsion of r0.
For t D 1=3 we obtain the cubic Dirac operator D1=3. The square of this operator is

related to the Casimir operator � D
P
eae

a 2 U.g/ with respect to h� ; �i by

.D1=3/2 D �� �
1

24
tr ad.�/ D ��C

1

24

X
a;b

˝
Œea; eb�; Œe

a; eb�
˛
D ��C

1

6
Scal;

see [13]. Here Scal denotes the scalar curvature of h� ; �iG on �nG.

2.4. Krein spaces

As we will see in the next subsection, the natural scalar product on the spinor bundle of a
Lorentzian spin manifold is indefinite. So sections of the spinor bundle do not constitute a
Hilbert space in a natural way. Therefore we will work in Krein spaces as it is done in [4].
For a general theory of such spaces see [5, 16].

Let K be a complex vector space and h� ; �i a possibly indefinite inner product on K.
We define symmetric operators and selfadjoint operators on K in the same way as in the
definite case.

Definition 2.1. A Krein space .K; h� ; �i/ consists of a complex vector space K and an
indefinite inner product h� ; �i onK such that there exists a selfadjoint linear map J W K!
K with the following properties:

(1) .� ; �/ WD h� ; J �i is a positive definite inner product that makes K a Hilbert space,

(2) J 2 D id.

A linear map J that satisfies this condition is called a fundamental symmetry.

On K, we consider the strong topology. It is defined to be the norm topology of the
Hilbert space .K; .� ; �//, where .� ; �/D h� ; J �i for any fundamental symmetry J . Although,
in general, the linear map J is not uniquely determined by .K; h� ; �i/, the strong topology
is well defined, i.e., independent of J .

IfA is a closed linear operator with a dense domain, then spec.A/ denotes the spectrum
of A and specp.A/, specc.A/, and specr .A/ denote the discrete, continuous, and residual
spectra, respectively. If A is a closable operator, then we mean by the spectrum of A
always the spectrum of its closure.
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Fact 2.2 ([16]). If A is a closed selfadjoint operator on a Krein space, then the complex
conjugate of spec.A/ satisfies

(1) specr .A/ � specp.A/,

(2) specp.A/ � specp.A/ [ specr .A/,

(3) specc.A/ � specc.A/.

2.5. Dirac operators on Krein spaces

On Riemannian spin manifolds, there exists a scalar product on the spinor bundle such
that the Dirac operator is essentially selfadjoint. On pseudo-Riemannian manifolds this is
not the case. Therefore let us first recall some basic facts on inner products on the space of
spinor fields on a pseudo-Riemannian manifold. Since we are interested in Dirac operators
on Lorentzian manifolds, we restrict the explanations to the case where the metric of the
manifold has Lorentzian signature. Moreover, we will concentrate on the case where the
manifold is a quotient of a Lie group G by a discrete subgroup � although most of the
results could be stated as well for general Lorentzian manifolds.

Then, on the spinor module �g, there exists a scalar product h� ; �i� of split signature
such that

hX � u; vi� D hu;X � vi� (2.4)

for all X 2 g, where “�” denotes the Clifford multiplication. This scalar product is unique
up to multiplication by a real number different from zero. It defines a scalar product on
the bundle †.�nG/, which we also denote by h� ; �i�. We choose a time-oriented left-
invariant vector field � on G with h�; �iG D �1. This vector field defines a vector field on
the quotient �nG, which we also denote by �. We use � to define a map

J� W †.�nG/ �! †.�nG/; u 7�! � � u

and a positive definite scalar product .� ; �/�;� WD h�; J�.�/i�. It satisfies

.� � u; v/�;� D .u; � � v/�;� ; .X � u; v/�;� D �.u;X � v/�;� ; X 2 �
?:

The stabiliser of a timelike vector is a maximal compact subgroup of the Lorentz group.
Therefore the vector field � defines a reduction of the frame bundle of �nG to a maximal
compact subgroup of the Lorentz group. The scalar product .� ; �/�;� is invariant under this
subgroup.

The volume form of the metric h� ; �iG induces a measure � on �nG, which is invariant
under G. We define inner products on the space of compactly supported smooth sections
of †.�nG/ by

h'; i WD

Z
�nG

h'; i�d�; .';  /� WD

Z
�nG

.';  /�;�d� D h'; J� ı  i:

The first one is indefinite, the second one is positive definite.
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We can identify spinors with smooth functions with values in �g satisfying (2.1). If
we identify, in addition, .�g; .� ; �/�;�/ with the standard unitary space by choosing an
orthonormal basis, then the scalar product .� ; �/� on smooth sections of †.�nG/ becomes
the standard L2-product on functions (with several components).

We defineL2
�
.†.�nG// as the completion of the space of compactly supported smooth

sections in †.�nG/ with respect to the norm induced by .� ; �/� .
We want to compare the spaces L2

�
.†.�nG// for different choices of �. Let r� be the

left-invariant Riemannian metric on G defined by reversing the sign of .� ; �/G in direction
of �. More exactly,

r�.s� CX; t� C Y / D st C hX; Y iG

for X;Y in the orthogonal complement of � with respect to h� ; �iG . Let �1 and �2 be time-
oriented left-invariant vector fields with h�1; �1i D h�2; �2i D �1. Since r�1 and r�2 are
left-invariant, they are quasi-isometric, i.e., there exists a constant C > 0 such that

1
C
r�1.X;X/ � r�2.X;X/ � Cr�1.X;X/

for all X 2 TG. Of course, also the metrics induced by r�1 and r�2 on �nG are quasi-
isometric. This implies that the spaces L2

�1
.†.�nG// and L2

�2
.†.�nG// are the same

in the following sense. They coincide as vector spaces (whose elements are equival-
ence classes of Cauchy series in the space of compactly supported smooth sections of
†.�nG/), and the identity I W L2

�1
.†.�nG//! L2

�2
.†.�nG// is a bounded isomorph-

ism with bounded inverse [23, Theorem 3.8].
Let us fix � as above and put K WD L2.†.�nG// WD L2

�
.†.�nG// as a vector space.

The map J� can be extended to K, and we can define an indefinite inner product h� ; �i D
.� ; J� �/. Then .K; h� ; �i/ is a Krein space [4, Satz 3.16]. Its definition is independent of �.
For any time-oriented left-invariant vector field � 0 the map J� 0 is a fundamental symmetry
in the sense of Definition 2.1.

Now we consider the Dirac operator Dt defined by (2.2) in the case where h� ; �iG is
Lorentzian. We can think ofDt as an operator onK. Then iDt WK!K is essentially sel-
fadjoint. This can be seen as follows. We have noticed that rt defines the same divergence
operator as the Levi-Civita connection r1=2. Furthermore, the Riemannian metric r� on
�nG that is obtained by reversing the sign in direction of a time-oriented left-invariant
vector field � is complete. Indeed, r� is left-invariant on G, hence .G; r�/ is a homogen-
eous Riemannian manifold and therefore complete. Hence .�nG; r�/ is also complete.
Now the assertion follows from [4, Satz 3.19].

2.6. The right regular representation

Let .G; h� ; �iG/ be as above and let � be a cocompact discrete subgroup of G. The right
regular representation � of G on L2.�nG/ is the unitary representation given by�

�.g/.'/
�
.x/ D '.xg/: (2.5)

It is a classical result that .�; L2.�nG// is a discrete direct sum of irreducible unitary
representations of G with finite multiplicities, see e.g. [24].
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Let F be an automorphism of G. For a representation .�; V / of G we define a repres-
entation

F �.�; V / WD .� ı F; V /: (2.6)

Then
L2.�nG/

�
��! F �

�
L2.F.�/nG/

�
; f 7�! f ı F �1 (2.7)

is an equivalence of representations.
Recall that a smooth section of the spinor bundle †.�nG/ is identified with a smooth

�-invariant function ' W G ! �g. In this way we can also define an action of G on
L2.†.�nG// by (2.5).

3. The oscillator group and its Lie algebra

3.1. The oscillator group

The 4-dimensional oscillator group is a semi-direct product of the 3-dimensional Heis-
enberg group H by the real line. Usually, the Heisenberg group H is defined as the set
H D C �R with multiplication given by

.�1; z1/ � .�2; z2/ D
�
�1 C �2; z1 C z2 C

1
2
!.�1; �2/

�
;

where !.�1; �2/ WD =.�1�2/. Hence in explicit terms, the oscillator group is understood as
the set Osc1 D H �R with multiplication defined by

.�1; z1; t1/ � .�2; z2; t2/ D
�
�1 C e

it1�2; z1 C z2 C
1
2
!.�1; e

it1�2/; t1 C t2
�
:

If we identify Osc1ŠR4 as sets, then the Lebesgue measure is left- and right-invariant
with respect to multiplication in Osc1.

Let us consider the automorphisms of this group. For � 2 C, let C� W Osc1! Osc1 be
the conjugation by .�; 0; 0/. Then

C� W .�; z; t/ 7�!
�
� C � � eit�; z C 1

2
!.�C �; � � eit�/; t

�
:

Furthermore, we define an automorphism Tu of Osc1 for u 2 R by

Tu W .�; z; t/ 7�! .�; z C ut; t/: (3.1)

Finally, consider an R-linear isomorphism S of C such that S.i�/D �iS.�/ for an element
� 2 ¹1;�1º and for all � 2 C. Then � D sgn.detS/ and also

FS W .�; z; t/ 7�!
�
S�; det.S/z; �t

�
(3.2)

is an automorphism of Osc1. Each automorphism F of Osc1 is of the form

F D Tu ı C� ı FS
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for suitable u 2 R, � 2 C and S 2 GL.2;R/ as considered above [6]. Besides C� also FS
is an inner automorphism if S 2 SO.2;R/.

In some of our computations we will use a slightly different multiplication rule for the
oscillator group. It looks more complicated than the usual one but it will make the compu-
tations easier. We use the well known fact that the Heisenberg group H is isomorphic to
the setH.1/ of elementsM.x;y;z/ parametrized by x;y; z 2R with group multiplication

M.x; y; z/M.x0; y0; z0/ DM.x C x0; y C y0; z C z0 C xy0/:

We define an action l of R on H.1/ by

l.t/
�
M.x; y; z/

�
DM

�
x cos t � y sin t; x sin t C y cos t; z C xy

2

�
cos.2t/ � 1

�
C

x2�y2

4
sin.2t/

�
and consider the semi-direct product

OscM1 WD H.1/ Ìl R: (3.3)

The image of an element t 2 R under the identification of R with the second factor of G
in (3.3) is denoted by .t/. It is easy to check that

� W Osc1 �! OscM1 ; .x C iy; z; t/ 7�!M
�
� y; x; z � 1

2
xy
�
.t/ (3.4)

is an isomorphism. Again we can identify OscM1 Š R4. Then � preserves the Lebesgue
measure.

3.2. The oscillator algebra

The Lie algebra osc1 of the four-dimensional oscillator group is spanned by elements
Z;X; Y; T , whose non-vanishing commutators are

ŒT; X� D Y; ŒT; Y � D �X; ŒX; Y � D Z:

The following result about the centre of the universal enveloping algebra of g is known,
see [21]. We give a short self-contained proof.

Proposition 3.1. The centre Z.U.g// of the universal enveloping algebra U.g/ of g is
generated by �0 WD X2 C Y 2 C 2ZT and Z 2 g.

Proof. Obviously, �0 belongs to Z.U.g//. By the Poincaré–Birkhoff–Witt theorem, the
symmetrisation map

sym W S.g/g �! Z
�
U.g/

�
(3.5)

induces an isomorphism S.g/g Š gr.Z.U.g///. Hence it suffices to show that S.g/g is
generated by the centre of g and the preimage of �0 under sym. Obviously, it suffices to
show this for any Sk.g/g.



The cubic Dirac operator on compact quotients of the oscillator group 995

Instead of g, we consider its complexification gC . The vectors Z;T , NC WD X C iY ,
N� WD X � iY constitute a basis of gC . Their non-vanishing Lie brackets are

ŒT;NC� D �iNC; ŒT;N�� D iN�; ŒNC; N�� D �2iZ:

In this new basis, we have�0DNCN�C2ZTCiZ. Hence�S WDNCN�C2ZT 2S.g/g

is a preimage of �0 under sym. Let ! be in S.g/g and assume that ! is homogeneous.
Then ! D

P
k;l N

k
Cpk;l .Z;T /N

l
�, where pk;l is a homogeneous polynomial in Z and T .

Since
ad.T /

�
N k
Cp.Z; T /N

l
�

�
D i.l � k/N k

Cp.Z; T /N
l
�;

we obtain ! D
Pn
kD0N

k
Cpk.Z; T /N

k
� if ! is invariant. Moreover, in this case

ad.NC/
�
N k
Cp.Z; T /N

k
�

�
D iN kC1

C

@

@T
p.Z; T /N k

� � 2ikN
k
CZp.Z; T /N

k�1
�

yields @
@T
pn.Z; T / D 0, thus pn.Z; T / D anZmn for some mn 2 N. Now we consider

!0 WD ! � an�
n
SZ

mn . Then !0 is in S.g/g and of the form !0 D
Pn�1
kD0N

k
Cp
0
k
.Z;T /N k

� .
We proceed inductively and obtain

! D an�
n
SZ

mn C an�1�
n�1
S Zmn�1 C � � � C a0Z

m0 :

Remark 3.2. The symmetrisation map (3.5) is not a homomorphism. For the sake of
completeness let us determine Duflo’s factor for g although we will not use it in the present
paper. See [20] for a general introduction to this subject. For � D zZC nCNCC n�N�C
tT , we have

ad.�/ D

0BB@
0 2in� �2inC 0

0 �i t 0 inC
0 0 it �in�
0 0 0 0

1CCA
with respect to the basis Z;NC; N�; T . This gives J.�/ D det.j.ad.�/// D j.�i t/j.i t/,
where

j.z/ D
sinh z=2
z=2

:

Hence Duflo’s factor equals

J 1=2.�/ D
sinh.i t=2/
i t=2

D
sin.t=2/
t=2

:

3.3. The bi-invariant metric and the cubic Dirac operator

On Osc1, there exists a 2-parameter family of bi-invariant metrics. The metrics are defined
by the ad-invariant scalar products on osc1 given by span¹X; Y º ? span¹Z; T º, and

hX;Xi D hY; Y i D r; hX; Y i D hZ;Zi D 0; hT; T i D s; hZ; T i D r
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for r > 0 and s 2 R. It is well known that there is only one bi-invariant Lorentzian metric
on Osc1 up to isometric Lie group isomorphisms [19]. The above defined family of metrics
arises as the orbit of such a metric under the action of the automorphism group of Osc1.
The Casimir operator corresponding to the metric with parameters r > 0 and s 2 R is
equal to 1

r
.�0 � sZ

2/, where �0 2 Z.U.g// is as defined in Proposition 3.1.
Each isometric isomorphism .G; h� ; �iG/! .G; h� ; �i0G/ defines an isomorphism of the

associated spinor bundles. By equation (2.2), this isomorphism commutes with the cubic
Dirac operator. In particular, the spectrum ofDt is independent of the choice of the metric
in this 2-parameter family. We make it as simple as possible and set r D 1 and s D 0, i.e.,

hX;Xi D hY; Y i D hZ; T i D 1; hX; Y i D hZ;Zi D hT; T i D 0:

The Casimir operator � of this metric equals

� D �0 D X
2
C Y 2 C 2ZT:

The dual basis of e1 D Z, e2 D X , e3 D Y , e4 D T is e1 D T , e2 D X , e3 D Y , e4 D Z.
Hence the scalar curvature Scalt of rt induced on G vanishes since

Scalt D .t � t2/
X
a;b

˝
Œea; eb�; Œe

a; eb�
˛
D 0:

In particular, this yields .D1=3/2 D �� for the square of the cubic Dirac operator.
Now we examine the actual Dirac operator D1=3 according to (2.2). The element y

corresponding to the torsion T 0 by (2.3) is equal to

y D �
X
a<b<c

˝
Œea; eb�; ec

˛
eaebec D �

˝
ŒX; Y �; T

˛
XYZ D �XYZ:

Thus we obtain

D1=3 D X �X. /C Y � Y. /CZ � T . /C T �Z. /C 1
2
XYZ �  :

Let � D C4 denote the spinor module of the metric Lie algebra osc1. We can choose a
basis u1; : : : ; u4 of� such that the Clifford multiplication byZ;X;Y and T is given with
respect to this basis by

Z D

�
A 0

0 A

�
; T D

�
B 0

0 B

�
; X D

�
0 C

C 0

�
; Y D

�
0 iC

�iC 0

�
;

where

A D

�
0 0
p
2 0

�
; B D

�
0 �

p
2

0 0

�
; C D

�
�i 0

0 i

�
:

In particular,

y D �XYZ D �i

�
A 0

0 �A

�
: (3.6)
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According to Section 2.5, there is an indefinite scalar product h� ; �i� on� satisfying (2.4)
and this scalar product is uniquely defined up to a constant. We fix it by hu1; u2i� D
hu3; u4i� D 1, and hui ; uj i� D 0 for all other indices.

We choose the timelike left-invariant vector field � D 1p
2
.Z � T / in order to define a

definite spin.3/-invariant scalar product: .u; v/� WD hu; � � vi�. The vectors u1; : : : ; u4
constitute an orthonormal basis with respect to .� ; �/�.

3.4. Unitary representations of the oscillator group

The irreducible unitary representations of osc1 can be determined by applying a gener-
alised version of Kirillov’s orbit method. An explicit description of these representations
can be found in [12, Section 4.3], where the oscillator Lie algebra is called diamond Lie
algebra. Let us recall this description. Note that the case c < 0 in item (iii) does not appear
in [12]. The infinite-dimensional representations will be given only on the Lie algebra
level.

Every irreducible unitary representation of the oscillator group is equivalent to one of
the following representations, see also [7]:

(i) Cd WD .�d ;C/, �d .�; z; t/ D e2�idt , d 2 R,

(ii) ��a WD .� WD �
�
a ; L

2.S1//, a > 0, � 2 R=Z Š Œ0; 1/ where � is given by

��.Z/.'/ D 0;

��.X C iY /.'/ D 2�iae
�it';

��.X � iY /.'/ D 2�iae
it';

��.T /.'/ D '
0
C i�'

for ' D '.t/ 2 C1.S1/ � L2.S1/. The orthonormal system �n WD e
int , n 2 Z

satisfies

��.X C iY /.�n/ D 2�ia�n�1;

��.X � iY /.�n/ D 2�ia�nC1;

��.T /.�n/ D i.nC �/�n:

(iii) For c > 0, d 2 R, we consider the Hilbert space

Fc.C/ WD

²
' W C ! C holomorphic

ˇ̌̌ Z
C

ˇ̌
'.�/

ˇ̌2
e��cj�j

2

cd� <1

³
with scalar product

h'1; '2i D

Z
C
'1.�/'2.�/e

��cj�j2cd� (3.7)
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for '1; '2 2 Fc.C/. Then the representation � WD �c;d on Fc.C/ is given by

��.Z/.'/ D 2�ic';

��.X C iY /.'/ D 2�c�';

��.X � iY /.'/ D �2@';

��.T /.'/ D 2�id' � i�@':

The functions  n WD
.
p
�c�/n
p
nŠ

, n � 0, constitute a complete orthonormal system
of Fc.C/ and we have

��.Z/. n/ D 2�ic n; ��.T /. n/ D .2�d � n/i n

and, for AC WD ��.X C iY / and A� WD ��.X � iY /,

AC. n/ D 2
p
�c.nC 1/ nC1; n � 0; (3.8)

A�. 0/ D 0; A�. n/ D �2
p
�cn n�1; n � 1: (3.9)

Furthermore, for c < 0, d 2 R, we consider

Fc.C/ WD

²
' W C ! C anti-holomorphic

ˇ̌̌ Z
C

ˇ̌
'.�/

ˇ̌2
e�cj�j

2

jcjd� <1

³
with scalar product given by (3.7) with c replaced by �c, now for '1; '2 2
Fc.C/. The representation � WD �c;d on Fc.C/ is given by

��.Z/.'/ D 2�ic';

��.X C iY /.'/ D �2x@';

��.X � iY /.'/ D �2�cx�';

��.T /.'/ D 2�id' C ix� x@':

Here, the functions  n WD
.
p
�jcjx�/n
p
nŠ

, n � 0, constitute a complete orthonormal
system and we have

��.Z/. n/ D 2�ic n; ��.T /. n/ D .2�d C n/i n:

Now, (3.8) and (3.9) hold for AC WD ��.X � iY / and A� WD ��.X C iY /. We
will use the notation Fc;d WD .�c;d ;Fc.C// for all c 6D 0 and d 2 R.

Let F be an automorphism of Osc1. In (2.6), we defined the pullback of a representation of
G by F . Table 1 shows (the equivalence class of) F �.�;V / for the case that V is one of the
irreducible unitary representations of osc1 and F is one of the (outer) automorphisms Tu
or FS introduced in Section 3.1 by (3.1) and (3.2). Note that C� as an inner automorphism
does not change .�; V /.
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F F �Cd F ���a F �Fc;d

Tu Cd ��a Fc;dCuc

FS C�d ���
jdetS j1=2a

Fdet.S/c;�d

Table 1. Action of outer automorphisms.

4. Straight and basic lattices

In Section 6 we will study the spectrum of the cubic Dirac operator on compact quo-
tients of the oscillator group. More exactly, we consider quotients of Osc1 by discrete
uniform subgroups of Osc1. We will call such subgroups lattices. This is justified by the
fact that the group Osc1 is solvable and therefore a quotient by a discrete subgroup is
of finite measure (for the measure inherited from Haar measure on Osc1) if and only if
it is compact. The lattices of the oscillator group are known. They were classified up to
automorphisms of Osc1 by Fischer [6]. Since here we are interested in the spectrum of
the quotient and therefore in the right regular representation, we need a classification up
to inner automorphisms, which can be found in [7].

To avoid too much technical effort, we will concentrate on straight lattices, where a
lattice in Osc1 is called straight if it is generated by a lattice in H and an element ı of
the centre of Osc1. It can be shown that each lattice in Osc1 contains a sublattice of finite
index which is a straight, see [6, Section 8]. In other words, each lattice in Osc1 is virtually
straight.

Moreover, we will assume that the lattice is unshifted and normalised in the sense
of [7]. Let us recall these notions. For a lattice L � Osc1, the projection of L \ H to
H=Z.H/ Š R2 is a lattice in R2 (see [17, Theorem 4] or [22, proof of Theorem 2.21]).
ThenL�Osc1 is called normalised if this projection has covolume one with respect to the
standard metric of R2. This can also be expressed as follows: L is normalised if and only
if the commutator subgroup ŒL \H;L \H� � Z.H/ is generated by .0; 1; 0/ 2 Osc1.
A normalised straight lattice is called unshifted if ı can be chosen in the R-factor of
Osc1 D H Ì R, i.e., ı D .0; 0; 2��/. This leads us to the following definition.

Definition 4.1. A lattice of Osc1 is called a basic lattice if it is normalised and generated
by a lattice in the Heisenberg group and an element .0; 0; 2��/ 2 R � H Ì R.

The additional assumptions to be normalised and unshifted are justified by the fact
that each straight lattice can be normalised and shifted by (outer) automorphisms of Osc1.
More exactly, the following holds. Let Mstrt denote the set of all isomorphism classes
of straight lattices of Osc1 with respect to inner automorphisms of Osc1 and let B �

Mstrt be the set of isomorphism classes of basic lattices. For a basic lattice L, we define
� D �.L/ 2 N>0 by L D hL \H , ı D .0; 0; 2��/i, see Definition 4.1. Furthermore, we
define a number r D r.L/ 2N>0 byL\Z.H/DZ � .0;1=r;0/. This number is indeed an
integer and has the following meaning. Since L is normalised, ŒL \H;L \H� � Z.H/
is generated by .0; 1; 0/ 2 Osc1 as above explained. On the other hand, H \L is a lattice
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in H . Thus it is isomorphic to a discrete Heisenberg group

H r
1 .Z/ D h˛; ˇ;  j ˛ˇ˛

�1ˇ�1 D  r ; ˛ D ˛; ˇ D ˇi

for some unique r 2 N>0, which coincides with r as chosen before.

Proposition 4.2. The map

B �R>0 �R=Z �!Mstrt

.L; a; s/ 7�! FS
�
Tu.L/

�
; u D

s

2��r
; S D a � I2

is a bijection. Here I2 denotes the identity on R2 and Tu and FS are the automorphisms
of Osc1 defined by (3.1) and (3.2), respectively.

Proof. The assertion follows from [7, Theorem 4.12]. Indeed, the property to be straight
is invariant under automorphisms. Therefore we can restrict the bijections in [7, The-
orem 4.12] to straight lattices. In the notation of [7], we thus obtain bijections from
.M0 \Mstrt/ �R=Z D B �R=Z to M1 \Mstrt and from .M1 \Mstrt/ �R>0 to Mstrt.
It remains to check that the composition of these bijections has the form asserted in the
proposition. Let L be a basic lattice. Then we have q D 1 and xı D yı D 0 in item (1)
in [7, Definition 4.8], which implies v D w D 0 and therefore s0 D 1. The assertion fol-
lows.

The computation of the spectrum relies on the decomposition of the right regular
representation into irreducible subrepresentations. Once this decomposition is known for
basic lattices, the decomposition for arbitrary lattices can be derived using Proposition 4.2.
Indeed, according to Table 1, the decomposition of L2.FS .Tu.L//nOsc1/ can be com-
puted from that of L2.LnOsc1/. That is why we focus on basic lattices here.

Proposition 4.3 ([7, Remark 5.3]). A basic lattice is isomorphic via an inner automorph-
ism of Osc1 to a lattice generated by

l1 WD
�
1p
�
; 0; 0

�
; l2 WD

�
�

�
p
�
C i
p
�; 0; 0

�
; l3 WD

�
0; 1
r
; 0
�
; l4 WD .0; 0; 2��/;

for some �; � 2 R, � > 0 and r; � 2 N>0.

We will denote this lattice by Lr .�; �; �/. In [7], it is denoted by Lr .2��; �; �; 0; 0/,
but here we do not need the last two parameters since we only consider straight lattices.

Remark 4.4. The lattices Lr .�;�; �/ and Lr 0.�0; �0; �0/ differ by an inner automorphism
of Osc1 if and only if r D r 0, � D �0 and .�; �/ and .�0; �0/ are on the same orbit of the
SL.2;Z/-action on the Poincaré half plane [7, Theorem 4.15].

Now let L be a basic lattice. By Proposition 4.3 we may assume that L D Lr .�; �; �/
in the following. Let us rewrite the first two generators using the matrix

T�;� WD

 p
� �

p
�

0 1p
�

!
:
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Identifying C Š R2 and using the standard basis e1; e2 of R2, we obtain

l1 D .T
�1
�;�e1; 0; 0/; l2 D .T

�1
�;�e2; 0; 0/:

As an abstract group, the lattice L is isomorphic to the direct product of the discrete
Heisenberg groupH r

1 .Z/D hl1; l2; l3 j l1l2l
�1
1 l�12 D l

r
3 ; l1l3 D l3l1; l3l2 D l2l3i and Z.

We fix a spin structure on X D LnOsc1. As explained in Section 2, it is determined
by a homomorphism " W L! .Z2;C/. We will use the notation

"i WD ".li /; i D 1; : : : ; 4

and write " D ."1; : : : ; "4/. Note that a map " W L! Z2 is a homomorphism if and only
if r"3 D 0. Let again � D C4 denote the spinor module of the metric Lie algebra osc1.

Remark 4.5. If "1 and "2 are different, we may assume that "1 D 0 and "2 D 1 by chan-
ging � and � if necessary. Indeed, let be given the lattice L D Lr .�; �; �/ and a spin
structure defined by " D ."1; : : : ; "4/. We define �0 and �0 by �0 C i�0 D �.�C i�/�1

and consider L0 WD Lr .�; �0; �0/. In particular, we have

l1 D .T
�1
�;�e1; 0; 0/; l2 D .T

�1
�;�e2; 0; 0/; l 01 D .T

�1
�0;�0e1; 0; 0/; l 02 D .T

�1
�0;�0e2; 0; 0/:

Let S 2 SO.2/ be the multiplication by .� � i�/=j� � i�j on R2 Š C. Then

T �1�0;�0 D ST
�1
�;� �

�
0 �1

1 0

�
:

Let FS W Osc1 ! Osc1 denote the inner automorphism defined by S according to (3.2).
Then FS .l2/D l 01, FS .l1/D .l 02/

�1 and FS .lj /D l 0j for j D 3;4. In particular, FS induces
an isometry from LnOsc1 to L0nOsc1. If we pull back the spin structure on LnOsc1
defined by " by the inverse of this isometry, we obtain the spin structure on L0nOsc1
defined by "0 D ."2; "1; "3; "4/. In particular, the spectra ofD1=3 on LnOsc1 with respect
to " and on L0nOsc1 with respect to "0 coincide.

5. The right regular representation for basic lattices

5.1. Strategy

Let L be a basic lattice of Osc1. We consider X WD LnOsc1. The aim of this subsection
is to decompose the representation L2.†.X// of Osc1 into irreducible components. We
want to apply the results of [7] for the decomposition of the right regular representation
on L2-functions. In [7], the decomposition of L2.LnOsc1/ is determined for arbitrary
lattices, where first the computation is reduced to the case of unshifted and normalised
lattices and then explicit formulas are given in this case. In particular, [7, Proposition 7.2]
describes the decomposition for basic lattices. In order to apply these results, we consider
a finite covering of X such that the lifted spin structure becomes trivial.
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More exactly, we consider the covering zX D L0nOsc1 of X , where L0 is the subgroup
of L generated by l21 ; : : : ; l

2
4 . Since L is a basic lattice, this subgroup is normal. We

obtain that X D In zX , where I � Iso. zX/ is the finite group generated by the actions of
l1; : : : ; l4 on zX . The spin structure on X lifts to a spin structure on zX , which is now
the trivial one since 2"j D 0, j D 1; : : : ; 4. Therefore the associated spinor bundle of zX
equals zX � � and sections in this bundle can be identified with functions from Osc1 to
� that are invariant under left translation by elements of the lattice L0. To recover the
sections in the spinor bundle of X from these sections we have to find those sections in
zX �� that are invariant under the action of the group I of deck transformations, where

this action is defined as follows. Let ' D f ˝ u 2 C1. zX/˝� be a (local) section. Then
l:' D l�f ˝ .�1/".l/uD .�1/".l/l�f ˝ u, where l� denotes the left translation by l 2L.
Thus we can identify

L2
�
†.X/

�
D L2

�
†. zX/

�I
D
�
L2. zX/˝�

�I
D L2. zX/I ˝�; (5.1)

where an element Œl � 2 I induced by l 2 L acts on L2. zX/ by

Œl �:f D .�1/".l/l�f: (5.2)

Consequently, we can obtain a decomposition of L2.†.X// into irreducible subspaces in
the following way. Since l� commutes with �.g/ for all g 2 G, we may first decompose
L2. zX/ and then determine the invaraints of I . More exactly, we proceed as follows. First
we decompose L2. zX/ according to [7]. Then, for each isotypic component, we determine
the subspace of sections that are invariant under the action of l1; : : : ; l4 by (5.2). Finally,
tensoring by � gives the result.

As said above, the explicit formulas in [7] for the decomposition work under the
assumption that the lattice is normalised. However, note, that our new lattice L0 gener-
ated by

l21 WD .2T
�1
�;�e1; 0; 0/; l22 WD .2T

�1
�;�e2; 0; 0/; l23 WD

�
0;
2

r
; 0
�
; l24 WD .0; 0; 4��/;

is not normalised. Indeed, the projection of L0 \H toH=Z.H/Š R2 is generated by the
projections of l21 and l22 . Thus it has covolume 4. Therefore we apply the automorphism
FS for S D 1

2
� id to Osc1. We have FS .�; z; t/ D .12�;

1
4
z; t/. This yields FS .l21 / D l1,

FS .l
2
2 / D l2, FS .l23 / D .0;

1
2r
; 0/, FS .l24 / D .0; 0; 4��/ D l

2
4 . Hence FS .L0/ is the basic

lattice Lr 0.�0; �; �/ for r 0 D 2r and �0 D 2�. Thus the formulas in [7] apply to FS .L0/.

Proposition 5.1. We have

L2
�
†.X/

�
Š F �S

�
L2
�
FS .L

0/nOsc1
�FS .I /�

˝�; (5.3)

where F �S is understood as the pullback of a representation as defined by (2.6) and FS .I /
is the finite group of isometries of FS .L0/n Osc1 generated by ŒFS .l1/�; : : : ; ŒFS .l4/�,
where ŒFS .lj /� acts onL2.FS .L0/nOsc1/ by ŒFs.lj /�:f D.�1/"jF.lj /�f for jD1; : : : ;4.
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Proof. We have seen above that L2.†.X//D L2. zX/I ˝�D L2.L0nOsc1/I ˝�. Now
the assertion follows from (2.7) and the fact that the equivalence f 7! f ı F �1S maps
L2.L0nOsc1/I to L2.FS .L0/nOsc1/FS .I /.

5.2. The decomposition of L2.†.X//

As explained in Section 3.3 we have to describe the decomposition ofL2.†.X// into irre-
ducible subrepresentations up to equivalence. We will use the representations introduced
in Section 3.4. To formulate the result we need the following notations.

Let .k; l/
�;�
WD
�
�k2 C 1

�
.��k C l/2

� 1
2 D

T �1�;�.l; k/>;
and

˛.�; �; a/ WD #
®
.k; l/ 2 Z2 j

.k; l/
�;�
D a

¯
;

˛0.�; �; a/ WD #
®
.k; l/ 2 Z2 j

.k; l/
�;�
D a; k even, l even

¯
D ˛.�; �; a=2/;

˛1.�; �; a/ WD #
®
.k; l/ 2 Z2 j

.k; l/
�;�
D a; k even, l odd

¯
;

˛2.�; �; a/ WD #
®
.k; l/ 2 Z2 j

.k; l/
�;�
D a; k odd, l odd

¯
:

(5.4)

Moreover,
A.�; �/ WD

®
a 2 R>0 j ˛.�; �; a/ 6D 0

¯
:

Theorem 5.2. On X D Lr .�; �; �/nOsc1 we consider the spin structure given by " D
."1; : : : ; "4/, where we assume ."1; "2/ D .0; 1/ if "1 6D "2. Then we have L2.†.X// D
4H0 ˚ 4H1 with

H0 Š

M
n2Z

mC .n/C n
4��
˚

M
a2A.�;�/

2��1M
KD0

m� .a;K/�
K=.2�/

a=2
; (5.5)

H1 Š

M
m2Z 6D0

M
n2Z

mF .m; n/F rm
2 ;

n
4��
; (5.6)

where

mC .n/ D

´
1; if " D .0; 0; 0; n/ 2 Z42;

0; else;
(5.7)

m� .a;K/ D

8̂̂̂̂
<̂
ˆ̂̂:
˛0.�; �; a/; if " D .0; 0; 0;K/ 2 Z42;

˛1.�; �; a/; if " D .0; 1; 0;K/ 2 Z42;

˛2.�; �; a/; if " D .1; 1; 0;K/ 2 Z42;

0; else;

(5.8)

mF .m; n/ D

´
rjmj
2
; if ."3; "4/ D .m; n/ 2 Z22;

0; else:
(5.9)
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Proof. We proceed according to the strategy outlined in Section 5.1. By Proposition 5.1,
we have to determine the decomposition ofF �S .L

2.FS .L
0/nOsc1/FS .I //, whereFS .�;z; t/

D .1
2
�; 1
4
z; t/ and L0 is the lattice generated by l21 ; : : : ; l

2
4 . It turns out that calculations

on OscM1 are easier than on Osc1. Therefore we transform the lattice FS .L/ by the iso-
morphism � W Osc1 ! OscM1 defined in (3.4). We obtain

1 WD � ı FS .l1/ DM
�
0; 1

2
p
�
; 0
�
;

2 WD � ı FS .l2/ DM
�
�

p
�

2
;� �

2
p
�
; 1
8
�
�
;

3 WD � ı FS .l3/ DM
�
0; 0; 1

4r

�
DM

�
0; 0; 1

2r 0

�
;

4 WD � ı FS .l4/ D .2��/ D .��
0/;

where r 0 D 2r and �0 D 2�. We denote the lattices .� ı FS /.L/ and .� ı FS /.L0/ by �
and � 0, respectively.

The push-forward of a representation .�; V / of Osc1 is a representation .��1/�.�; V /
D .� ı ��1; V / of OscM1 . In the following, we will identify these representations with
each other and omit .��1/� in the notation. In particular, we identify the representation

L2
�
FS .L

0/nOsc1
�FS .I /

D L2
�
FS .L

0/nOsc1
�FS .L/

with L2.� 0nOscM1 /
� .

It is natural to use the push-forwards of the irreducible representations of Osc1 as
models for the irreducible representations of OscM1 . Then the irreducible unitary repres-
entations of OscM1 are .��1/�Cd , .��1/���a and .��1/�Fc;d . According to the above
remark we simply write Cd , ��a and Fc;d instead of .��1/�Cd , .��1/���a and .��1/�Fc;d .
Our task now is to describe explicitly the irreducible subrepresentations of the right regular
representation L2.� 0nOscM1 / of OscM1 . Here we can use the results of [7]. The represent-
ation L2.� 0nOscM1 / is equivalent to H 00 ˚H 01, where the subrepresentations H 00 and H 01
are given as follows:

H 00 Š
M
n2Z

C n
2��0
˚

M
a2A.�;�/

�0�1M
KD0

˛.�; �; a/�K=�
0

a ;

H 01 Š
M
m2Z 6D0

jmjr 0 �
M
n2Z

Fr 0m; n
2��0

:

The subspaces of H 00 and H 01 corresponding to the irreducible submoduls ofL2.� 0nOscM1 /
in the above formulas are explicitly given as follows. For a function f W OscM1 ! C, we
will denote by f .x; y; z; t/ the image of M.x; y; z/.t/ under f . Then the representation
H 00 is the direct sum of subspaces

span
®
'n.x; y; z; t/ WD 'n.t/ WD e

2�idt
¯
Š Cd
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for d D n
2��0

andM
k;l2N

k.k;l/k�;�Da

span
®
�kl;n.x; y; z; t/ D exp

�
2�i.x; y/T �1�;�.l; k/

>
�
'n.t/ j n 2 K C �

0Z
¯

Š ˛.�; �; a/�K=�
0

a

for a 2 A.�; �/ and K D 0; : : : ; �0 � 1.
Next we want to describe the decomposition of H 01. For m 2 Z6D0 and n 2 Z, we

consider the subspace

Wm;n WD span
®
�m;n;k j k 2 Zr 0jmj D Z=r 0jmjZ

¯
for

�m;n;k.x; y; z; t/ WD e
2�ir 0mzeint=�

0
X

j2 k
r 0m
CZ

e��r
0jmj.xCj

p
�/2e�ir

0jm.j�C2
p
�y/:

We denote by AC the ladder operator X C sgn.m/iY . Then H 01 decomposes into the
direct sum of subspaces

Wm;n ˚ AC.Wm;n/˚ A
2
C.Wm;n/˚ : : : Š jmjr

0
� Fr 0m; n

2��0

for m 2 Z 6D0 and n 2 Z.
In order to obtain L2.� 0nOscM1 /

� , we determine the elements in the isotypic com-
ponents of

L2.� 0nOscM1 / Š H 00 ˚H 01

that are invariant under 1; : : : ; 4. We compute

1 �M.x; y; z/.t/ DM
�
x; y C 1

2
p
�
; z
�
.t/;

2 �M.x; y; z/.t/ DM
�
x �

p
�

2
; y � �

2
p
�
; z C 1

8
� �

p
�

2
y
�
.t/;

3 �M.x; y; z/.t/ DM
�
x; y; z C

1

2r 0

�
.t/;

4 �M.x; y; z/.t/ DM.x; y; z/.t C ��
0/;

where we used that �0 is even. Thus, the action defined by (5.2) is now given by

j :'n D .�1/
"j 'n; j D 1; 2; 3; 4:'n D .�1/

nC"4'n (5.10)

and
1:�

k
l;n D .�1/

kC"1�kl;n; 2:�
l
k;n D .�1/

lC"2�kl;n;

3:�
k
l;n D .�1/

"3�kl;n; 4:�
k
l;n D .�1/

nC"4�kl;n:
(5.11)
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Furthermore,

1:�m;n;k D .�1/
kC"1�m;n;k ; 2:�m;n;k D .�1/

"2�m;n;kCrm;

3:�m;n;k D .�1/
mC"3�m;n;k ; 4:�m;n;k D .�1/

nC"4�m;n;k :
(5.12)

Indeed, the formula for 2:�m;n;k follows from the following observation. For k 2 Zr 0jmj,
we have

.�2 �m;n;k/.x; y; z; t/

D e2�ir
0m.zC

�
8 �

p
�
2 y/eint=�

0
X

j2 k
r 0m
CZ

e��r
0jmj.x�

p
�
2 Cj

p
�/2e�ir

0jm.j�C2
p
�y��/

D e2�ir
0mzeint=�

0
X

j2 k
r 0m
CZ

e��r
0jmj.xC.j� 12 /

p
�/2e�ir

0m.
�
4 �
p
�y/e�ir

0jm.j�C2
p
�y��/

D e2�ir
0mzeint=�

0
X

j2 k
r 0m
CZ

e��r
0jmj.xC.j� 12 /

p
�/2e�ir

0.j� 12 /m..j�
1
2 /�C2

p
�y/

D e2�ir
0mzeint=�

0
X

j2 k
r 0m
CZC 1

2

e��r
0jmj.xCj

p
�/2e�ir

0jm.j�C2
p
�y/

D �
m;n; Qk

with Qk WD k C 1
2
r 0jmj mod r 0jmj.

Consequently, L2.� 0nOscM1 /
� decomposes into .H 00/

� ˚ .H 01/
� , where the subrep-

resentations .H 00/
� and .H 01/

� are given by

.H 00/
�
Š

M
n2Z

mC .n/C n
2��0
˚

M
a2A.�;�/

�0�1M
KD0

m� .a;K/�
K=�0

a ;

.H 01/
�
Š

M
m2Z 6D0

M
n2Z

mF .m; n/Fr 0m; n
2��0

;

where mC .n/, m� .a; K/ and mF .m; n/ are given by (5.7), (5.8) and (5.9), respectively.
Indeed, the formula for mC .n/ follows from (5.10) and the one for m� .a;K/ from (5.11).
Finally, mF .m; n/ is obtained from (5.12), where we used that "3 D 0 if r is odd.

In order to obtain L2.†.X//, we have to pull back .H 00/
� ˚ .H 01/

� by FS and to
tensor the result by �, i.e., to multiply by 4. By Table 1 we have

F �SC n
2��0
D C n

2��0
; F �S �K=�

0

a D �
K=�0

a=2
; F �SFr 0m; n

2��0
D F r 0m

4 ;
n

2��0
:

Finally, we replace r 0 by 2r and �0 by 2� and obtain the assertion.

Remark 5.3. Actually, the proof shows more than we claimed in the theorem. It gives an
explicit decomposition of the representation and not only an equivalence.
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Example 5.4. Let us considerX DLr .�;�;�/nOsc1 endowed with the trivial spin struc-
ture, i.e., "1 D � � � D "4 D 0. Then L2.†.X// Š L2.X/ ˝ C4. Indeed, Theorem 5.2
implies

mC .n/ D

´
1; if n is even,

0; else,

m� .a;K/ D

´
˛.�; �; a=2/; if K is even;

0; else;

mF .m; n/ D

´
rjmj
2
; if m and n are even;

0; else,

which coincides with the known formulas for the decomposition ofL2.Lr .�;�;�/nOsc1/,
see [7].

Example 5.5. In the case, where r is even and "3 D 1, we have mC .n/D 0 for all n 2 Z,
m� .a;K/ D 0 for all a and K, and

mF .m; n/ D

´
rjmj
2
; if m is odd and "4 D n 2 Z2;

0; else:

6. The spectrum

In this section, we compute the spectrum of (the closure of) the cubic Dirac operatorD1=3

on X D LnOsc1 for any basic lattice L of Osc1. We obtain that spec.D1=3/ consists only
of the point spectrum and the continuous spectrum, which we will compute in Sections
6.2 and 6.3, respectively. It will turn out that spec.D1=3/ D C. Finally we determine the
spectrum of the Dirac operators Dt for all other t .

6.1. The spectrum of ��

The operator .D1=3/2 acts as �� in the first factor of the tensor product in (5.3) and
trivially on the second one. On each irreducible representation, � acts by a scalar. Hence,
Theorem 5.2 allows us to compute the spectrum of�� on quotients of the oscillator group
by basic lattices.

If Lr .�; �; �/ is a basic lattice, the volume of X D Lr .�; �; �/nOsc1 only depends
on the quotient of � by r . For given r; � 2 N>0 we have

ˇ WD
�r

�
D

2�2

vol.X/
:

Furthermore, we define the set

Aj .�; �/ WD
®
�2a2 j a 2 R>0; j̨ .�; �; a/ 6D 0

¯
; j D 0; 1; 2:
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where we have used the numbers j̨ .�; �; a/ introduced in (5.4). The following theorem
describes the spectrum of �� in dependence of the spin structure on X . Recall that we
consider only the case ."1; "2/ D .0; 1/ if "1 6D "2, see Remark 4.5.

Theorem 6.1. LetLDLr .�;�;�/ be a basic lattice and " WL!Z2 be a homomorphism.
Then the spectrum of .D1=3/2 D�� on the spinor bundle ofX DLnOsc1 corresponding
to " is given in Table 2.

."1; "2/
."3; "4 C �/

.0; 0/ .0; 1/ .1; 0/ .1; 1/

.0; 0/ A0.�; �/ [ 4ˇZ A0.�; �/ [ 2ˇZ 2ˇZ ˇ.2ZC 1/

.0; 1/ A1.�; �/ [ 4ˇZ A1.�; �/ [ 2ˇZ 6D0 2ˇZ ˇ.2ZC 1/

.1; 1/ A2.�; �/ [ 4ˇZ A2.�; �/ [ 2ˇZ 6D0 2ˇZ ˇ.2ZC 1/

Table 2. Spectrum of ��.

Proof. The Casimir operator of a representation � with respect to h�; �i equals

�� D
�
��.X/

�2
C
�
��.Y /

�2
C 2

�
��.Z/

��
��.T /

�
:

A straight forward computation yields�Cd D 0,���a D�4�
2a2,�Fc;d D�2�c.4�d C

1/ for c > 0 and�Fc;d D�2�c.4�d � 1/ for c < 0. Therefore,�F rm
2 ; n

4��
D�ˇm.nC �/

for m > 0 and �F rm
2 ; n

4��
D �ˇm.n � �/ for m < 0.

A representation of the form Cd for some d appears in L2.†.X// if and only if
"1 D "2 D "3 D 0 by (5.7). A representation of the form �

K=.2�/

a=2
appears if and only

if m� .a;K/ 6D 0. Furthermore, m� .a;K/ 6D 0 for some K if and only if "3 D 0 and

˛0.�; �; a/ 6D 0; if ."1; "2/ D .0; 0/;

˛1.�; �; a/ 6D 0; if ."1; "2/ D .0; 1/;

˛2.�; �; a/ 6D 0; if ."1; "2/ D .1; 1/:

Suppose that ."3; "4 C �/ D .0; 0/. Then mF .m; n/ 6D 0 if and only if m 6D 0 is even
and nC � is also even. Thus the representations of the form Fc;d contribute the set 4ˇZ
to the spectrum of ��. Next suppose that ."3; "4 C �/ D .0; 1/. Then mF .m; n/ 6D 0 if
and only if m 6D 0 is even and nC � is odd. In this case we get the contribution 2ˇZ 6D0.
Now assume that ."3; "4 C �/ D .1; 0/. Then mF .m; n/ 6D 0 if and only if m is odd and
nC � is even. This gives the contribution 2ˇZ. Finally assume that ."3; "4 C �/ D .1; 1/.
Then mF .m; n/ 6D 0 if and only if m and nC � are odd. In this case the representations
of the form Fc;d contribute the set ˇ � .2ZC 1/.

Example 6.2. As an example we consider the case � D 1;� D 0 and use the abbreviated
notation k�k WD k�k�;� , i.e., k.k; l/k2 D k2 C l2, ˛.a/ WD ˛.0; 1; a/ and A WD A.0; 1/.
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Then A D ¹a 2 R>0 j ˛.a/ 6D 0º contains exactly those a for which a2 is an integer
and the prime factors q � 3 mod 4 of a2 appear in even powers (Two Square Theorem),
see for example [11, Theorem 366]. We consider the decomposition A D A0 [A1 [A2,
where

A0 WD ¹a 2 A j a2 � 0 mod 4º D ¹
p
4;
p
8;
p
16; : : :º;

A1 WD ¹a 2 A j a2 � 1 mod 4º D ¹1;
p
5;
p
9;
p
13; : : :º;

A2 WD ¹a 2 A j a2 � 2 mod 4º D ¹
p
2;
p
10;
p
18; : : :º:

Then Aj D ¹�
2a2 j a 2 Aj º, j D 0; 1; 2. Notice that in this example the spectrum of the

spin structures ."1; "2/ D .0; 1/ and ."1; "2/ D .1; 0/ coincide.

Proposition 6.3. Let L be a basic lattice and consider a fixed spin structure correspond-
ing to a homomorphism " W L! Z2. The spectrum of .D1=3/2 D �� on X D LnOsc1 is
symmetric if and only if " restricted to L\Z.H/ is non-trivial. If spec.��/ is symmetric
and contains 0, then it equals 4�2

vol.X/ � Z. If it is symmetric but does not contain 0, then it
is equal to 2�2

vol.X/ � .2ZC 1/.

Proof. Up to some inner automorphism,L is equal to someLr .�;�;�/ for some �, r ,�;�,
which we do not know explicitly. The spin structure on Lr .�; �; �/nOsc1 corresponding
to the one onLnOsc1 under this automorphism is given by a quadruple ."1; : : : ; "4/, which
we also do not know explicitly. Only "3 can immediately determined by ". Indeed, "3 D 0,
if " restricted to L\Z.H/ is trivial and "3 D 1, if " restricted to L\Z.H/ is non-trivial.
Now it follows from Table 2 that the assertions of the proposition are equivalent to the
condition that neither A0, A1 nor A2 is contained in 2ˇZ.

Since A0 D ¹�
2k.k; l/k2�;� j .k; l/ 2 Z2; k even, l evenº, the set A0 contains the

elements �sj , j D 1; 2; 3 for

s1 WD �
.0; 2/2

�;�
; s2 WD �

.2; 0/2
�;�
; s3 WD �

.2; 2/2
�;�
:

The condition A0 � 2ˇZ would imply that s1, s2 and s3 are rational. Since s1 D 4�=�, we
get � D �q for some q 2 Q. Furthermore, we have s3 � s2 D s1.1 � 2�/, which implies
that � is rational. But then s2 D 4�.� C

�2

�
/ D 4.�2q C �2

q
/ would be irrational, which

is a contradiction.
Similarly, A1 � 2ˇZ would imply that �k.0;1/k2�;� , �k.2;1/k2�;� , and �k.2;�1/k2�;�

are rational, which as above leads to a contradiction. Finally, if we assume that A2 � 2ˇZ
we can use that �k.1; 1/k2�;� , �k.1;�1/k2�;� , and �k.1; 3/k2�;� would be rational, which
is also impossible.

6.2. Point spectrum and eigenspaces of D1=3

In this subsection we compute the point spectrum ofDt onX DLnOsc1 for basic lattices
L of Osc1. For the rest of the paper we use the convention

p
� WD i

p
j�j if � < 0.
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Proposition 6.4. LetL be a basic lattice of Osc1 and considerX WDLnOsc1. Then z 2C
belongs to the point spectrum of D1=3 if and only if z2 is in the spectrum of ��.

Proof. Let  be an eigenspinor of �� with eigenvalue �. Then  ˙ WD D1=3 ˙
p
� 

satisfy the equation D1=3 ˙ D ˙
p
� ˙. One of these two spinors has to be non-trivial.

Thus
p
� or �

p
� is an eigenvalue of D1=3. Since on even-dimensional manifolds the

point spectrum of the cubic Dirac operator is symmetric to zero, both ˙
p
� are eigenval-

ues of D1=3.

The operator D1=3 preserves every summand of the decomposition of L2.†.X// that
we obtained in Theorem 5.2. In fact, derivations act only on the first factor in (5.1) by
the right regular representation on functions and Clifford multiplication acts only on the
second one. So next we want to decompose these summands into generalised eigenspaces
of D1=3. Each summand belongs to an eigenspace of ��. Let � be the corresponding
eigenvalue. If � 6D 0 the summand decomposes into eigenspaces ofD1=3 with eigenvalues
˙
p
�. The projections to these subspaces are given by P˙

�
WD

1

2
p
�
.˙D1=3 C

p
�/. For

the summands with � D 0, we will determine the kernel of D1=3.
We will use the notation of Section 3.4 for the irreducible unitary representations of

the oscillator group. Furthermore, we consider the complete orthonormal systems of the
representation spaces introduced there. We also use the formulas for the Dirac operator
with respect to the basis .u1; : : : ; u4/ of � introduced in Section 3.3.

Let Fc;d ˝�, c > 0, be one of the summands in (5.6). Assume first that � 6D 0. Then
the eigenvalue of �� on Fc;d equals � D 2�c.4�d C 1/. Using the projections P˙ we
calculate that the subspace of eigenvectors of D1=3 with eigenvalue˙

p
� is spanned by

�˙0 D
p
2�c  0 ˝ u1 ˙ i

q
2�d C 1

2
 0 ˝ u2; (6.1)

�˙n D
p
2�c  n ˝ u1 ˙ i

q
2�d C 1

2
 n ˝ u2 C

p
n n�1 ˝ u4; n � 1; (6.2)

y�˙n D
p
nC 1 nC1 ˝ u2 �

p
2�c  n ˝ u3 � i

q
2�d C 1

2
 n ˝ u4; n � 0: (6.3)

If�D 0 on Fc;d or equivalently if 4�d C 1D 0, then kerD1=3 D imD1=3 on Fc;d . This
space is spanned by

�0 D
p
2�c  0 ˝ u1;

�n D
p
2�c  n ˝ u1 C

p
n n�1 ˝ u4; n � 1;

y�n D
p
nC 1 nC1 ˝ u2 �

p
2�c  n ˝ u3; n � 0:

Now let Fc;d ˝�, c < 0, be one of the summands in (5.6). Then the eigenvalue of ��
on Fc;d equals �D 2�c.4�d � 1/. If 4�d � 1 > 0, the subspace of eigenvectors ofD1=3

with eigenvalue˙
p
� is spanned by

�
p
2�jcj 0 ˝ u3 �

q
2�d � 1

2
 0 ˝ u4; (6.4)p

2�jcj n ˝ u1 ˙

q
2�d � 1

2
 n ˝ u2 C

p
nC 1 nC1 ˝ u4; n � 0; (6.5)
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p
n n�1 ˝ u2 �

p
2�jcj n ˝ u3 �

q
2�d � 1

2
 n ˝ u4; n � 1: (6.6)

If 4�d � 1 < 0, the subspace of eigenvectors of D1=3 with eigenvalue ˙
p
� is spanned

by

�
p
2�jcj 0 ˝ u3 ˙ i

q
1
2
� 2�d  0 ˝ u4; (6.7)p

2�jcj n ˝ u1 � i

q
1
2
� 2�d  n ˝ u2 C

p
nC 1 nC1 ˝ u4; n � 0; (6.8)

p
n n�1 ˝ u2 �

p
2�jcj n ˝ u3 ˙ i

q
1
2
� 2�d  n ˝ u4; n � 1: (6.9)

If � D 0, then we obtain that kerD1=3 D imD1=3 on Fc;d is spanned byp
2�jcj 0 ˝ u3;p
2�jcj n ˝ u1 C

p
nC 1 nC1 ˝ u4; n � 0;

p
n n�1 ˝ u2 �

p
2�jcj n ˝ u3; n � 1:

On summands of the form ��a ˝ �, a > 0, the operator �� has eigenvalue 4�2a2.
Using again the projections P˙, we see that the subspaces of eigenvectors of D1=3 with
eigenvalue˙2�a are spanned by

�n ˝ u2 � �nC1 ˝ u4; n 2 Z; (6.10)

˙ �n ˝ u1 C
ip
2�a

�
nC � C 1

2

�
�n ˝ u2 C �nC1 ˝ u3; n 2 Z: (6.11)

All summands of the form Cd are in the kernel of D1=3.
Let � 6D 0 be an eigenvalue of �� on L2.†.X// and E� be the corresponding eigen-

space. We have seen that the two projections P˙
�
WD

1

2
p
�
.˙D1=3 C

p
�/ W E� ! E� to

the generalised eigenspaces of D1=3 are non-trivial.

Proposition 6.5. For any basic lattice L and any spin structure on X there exists an
eigenvalue � 6D 0 of �� such that the projections P˙

�
are not continuous.

Proof. By Theorem 5.2, the decomposition ofL2.†.X// contains a summand of the form
Fc;d ˝ �, c > 0, for � D 2�c.4�d C 1/ 6D 0. By (6.2), the projections of the spinor

�n WD 2i

q
2�d C 1

2
 n ˝ u2 are equal to

P˙� �n D ˙
p
2�c  n ˝ u1 C i

q
2�d C 1

2
 n ˝ u2 ˙

p
n n�1 ˝ u4:

Since all �n have the same length, this shows that the projections P˙
�

are unbounded.

6.3. The residual and the continuous spectrum of D1=3

Proposition 6.6. Let L be a basic lattice of Osc1. The residual spectrum of D1=3 on
X D LnOsc1 is empty for every spin structure on X . The continuous spectrum is equal
to C n specp.D

1=3/.
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Proof. To see that there is no residual spectrum, we use the symmetry properties of the
spectrum. We already have seen in Section 2.3 that iDt is essentially selfadjoint. Hence
Fact 2.2 applies to this operator. We obtain that the residual spectrum specr .D

t / is con-
tained in the complex conjugate of � specp.D

t /. The point spectrum of specp.D
1=3/

contains only real and purely imaginary values since the spectrum of the Casimir operator
is real. Because X has even dimension, specp.D

1=3/ is symmetric to zero. In partic-
ular, the point spectrum is invariant under complex conjugation. Thus specr .D

1=3/ �

� specp.D
1=3/D specp.D

1=3/. Hence the residual spectrum is empty. We remark that the
assumptions of [4, Satz 3.20] are satisfied, see Section 2.3. Application of item (4) of this
theorem shows directly that specr .D

1=3/ is empty.
Since the residual spectrum is empty, it suffices to show that the approximate spectrum

ofD1=3 is equal to C. Take z 2C n specp.D
1=3/. We have to show that there is a sequence

of spinors . ĵ /j2N with k ĵ k D 1 and k.D1=3 � z/ ĵ k ! 0. Note first that for any
� 2 specp..D

1=3/2/ and any corresponding unit eigenspinor ‰ of .D1=3/2 the unit spinor

ˆ D
.D1=3

C z/‰
�1.D1=3

C z/‰

satisfies k.D1=3 � z/ˆk D k.D1=3 C z/‰k�1j� � z2j. Therefore it suffices to find a
sequence of unit eigenspinors ‰n of .D1=3/2 such that k.D1=3 C z/.‰n/k ! 1. Recall
that L2.†.X// contains summands equivalent to Fc;d ˝� for some c > 0, d 2 R with
� D 2�c.4�d C 1/ 6D 0, see Theorem 5.2. Therefore the existence of such a sequence
follows from the unboundedness of the projections P˙

�
in this summand.

6.4. The spectrum of D1=3

Here we want to summarise our results on the spectrum of D1=3 from the preceding sub-
sections.

Theorem 6.7. Let L � Osc1 be a basic lattice and X WD LnOsc1 be the quotient space.
We endow Osc1 with its bi-invariant metric and fix a spin structure. Then the spectrum
of the cubic Dirac operator D1=3 W L2.†.X// ! L2.†.X// is equal to C. The point
spectrum of D1=3 depends on the spin structure. It consists of 0 if the kernel of � is non-
trivial and the two roots of each of the non-zero eigenvalues of ��. The residual spectrum
is empty.

In Theorem 6.1 we computed explicitly the point spectrum of �� depending on the
spin structure. Combined with Theorem 6.7 we obtain in particular a complete description
of the point spectrum of D1=3.

6.5. A remark on the point spectrum of quotients by shifted lattices

In Sections 6.1 and 6.2 we proved that for basic lattices in Osc1 the point spectrum of the
cubic Dirac operator on the quotient space is discrete. Here we will show that there also
exist (non-basic) lattices such that the point spectrum is not discrete. A similar statement
for the wave operator has been proven in [7].
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Example 6.8. Let L D Lr .�; �; �/ be a basic lattice. We choose a real number u such
that Qu WD 2��ru is irrational and consider L0 WD Tu.L/, where Tu is the automorphism
defined in (3.1). We consider a spin structure for which "3 D 0 and "4 D �. By (2.7), the
right regular representation L2.†.L0nOsc1// is equivalent to .T �1u /�.L2.†.LnOsc1///.
Ifm 2 N>0 and n 2 Z satisfy .m; n/ D ."3; "4/ D .0; �/ 2 Z22, then F rm

2 ;
n
4��

appears as a
summand in L2.†.LnOsc1//, see Theorem 5.2. Hence, in this case, .T �1u /�.F rm

2 ;
n
4��
/D

F rm
2 ;

n
4���u

rm
2

appears as a summand inL2.†.L0nOsc1//. In particular, the point spectrum
of � on †.L0nOsc1/ contains the eigenvalue of �F rm

2 ; n
4�� �u

rm
2

, which equals �ˇm.nC
� � Qum/. Therefore specp.�/ contains the set

B WD
®
� ˇm.nC � � Qum/ j m 2 2N>0; nC � 2 2Z

¯
D
®
� 4ˇm0.n0 � Qum0/ j m0 2 N>0; n

0
2 Z

¯
:

By Dirichlet’s approximation theorem, for every N 2 N, there exists a pair .m0; n0/ 2
N � Z with 0 < m0 � N such that

jn0 � Qum0j <
1

N
:

This implies that the set ¹.n0 � Qum0/m0 j m0 2 N>0; n
0 2 Zº contains infinitely many

numbers in Œ�1; 1� since Qu is irrational. Hence, B and therefore also specp.�/ contains
an accumulation point in R.

6.6. Application: the spectrum of Dt

In this subsection we consider the Dirac operator Dt for arbitrary t 2 R. Like D1=3,
Dt respects the decomposition of L2.†.X// into irreducible summands given in The-
orem 5.2. In the following theorem, we consider again a basic lattice L. Remember, that
in Section 4 we introduced the numbers r; � 2 N>0 associated with L and used them to
define ˇ D �r=�.

Theorem 6.9. Let L � Osc1 be a basic lattice and X WD LnOsc1 be the quotient space.
We endow Osc1 with its bi-invariant metric and fix a spin structure. Then the spectrum of
the Dirac operator Dt W L2.†.X//! L2.†.X// is equal to C. The eigenvalues of Dt

on the various summands of type Fc;d ˝�, �a ˝�, and Cd ˝� are given in Table 3.

rep eigenvalues of D1=3 eigenvalues of Dt

F rm
2 ;

n
4��
˝�, m > 0 ˙

p
�, � D ˇm.nC �/

˙.�˙ ˇm�.3t � 1//
1
2

F rm
2 ;

n
4��
˝�, m < 0 ˙

p
�, � D ˇm.n � �/

�a ˝� ˙2�a ˙2�a

Cd ˝� 0 0

Table 3. Eigenvalues of Dt .

The residual spectrum of Dt is empty.
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Proof. According to (2.2) and (3.6), we have

Dt
D D1=3

C
1
2
.1 � 3t/y D D1=3

C
1
2
i.3t � 1/id˝

�
A 0

0 �A

�
: (6.12)

Let us first consider the restriction ofDt to summands of type Fc;d for c>0, 4�dC1 6D0.
According to (5.6) we put c D rm=2 and d D n=.4��/. This gives �D 2�c.4�d C 1/D
ˇm.nC �/. Recall that we already obtained eigenvectors of D1=3 in (6.1)–(6.3). To not
confuse the index used there with our n here, we will denote them by �˙j and y�˙j now.
The subspaces Vj WD span¹�Cj ; �

�
j º and yVj WD span¹y�Cj ; y�

�
j º, j � 0, are invariant under

Dt and their sum spans Fc;d . On these subspaces, Dt is given by the matrix

Dt
D

 p
�C b b

�b �.
p
�C b/

!
(6.13)

with b D ˙.3t � 1/. �c
8�dC2

/1=2 D ˙.3t � 1/ �
2
. ˇm
nC�

/1=2, where the plus sign appears on
Vj and the minus on yVj . Thus the eigenvalues given in Table 3 can be calculated. The
formulas for c < 0 and 4�d � 1 6D 0 follow in the same way using the eigenvectors given
in (6.4)–(6.9).

In the case c > 0, 4�d C 1 D 0, Fc;d also splits into two-dimensional invariant sub-
spaces ofDt . Indeed,Dt leaves invariant span¹�j ; �j º and span¹y�j ;y�j ºwith �j D j ˝ u2
and y�j D  j ˝ u4 for j � 0. It is given by

Dt
D i
p
�c

�
0 �2

3t � 1 0

�
: (6.14)

with the minus sign on span¹�j ; �j º and the plus sign on span¹y�j ; y�j º. For c < 0, 4�d �
1D 0, we obtain also a splitting into two-dimensional invariant subspaces on whichDt is
again given by (6.14).

On summands of the form ��a ˝ �, a > 0, the vectors in (6.10) and (6.11) span an
invariant subspace for every n 2 Z with Dt given by

Dt
D ˙

�
2�a s

0 2�a

�
;

where s D i
p
2
2
.3t � 1/.

On each summand of type Cd the cubic Dirac operator acts trivially. Hence equa-
tion (6.12) implies that Dt is nilpotent on this summand. Thus its only eigenvalue is 0.

There is no residual spectrum for the same reasons as for D1=3 because the point
spectrum again contains only real and purely imaginary values.

The continuous spectrum is equal to C n specp.D
t /. To see this we use the same

argument as for D1=3. We can choose c > 0 and d 2 R with �t WD 2�c.4�d C 3t/ 6D
0 such that Fc;d ˝ � appears in the decomposition of L2.†.X//. As in the proof of
Proposition 6.6 we have only to show that the two projectionsP˙t WD

1

2
p
�t
.˙Dt C

p
�t /



The cubic Dirac operator on compact quotients of the oscillator group 1015

from Fc;d ˝ � to the generalised eigenspaces of Dt with eigenvalues ˙
p
�t are not

continuous. However,
p
�tP

˙
t differs from

p
�1=3P

˙
1=3

only by a bounded operator and
the assertion follows from Proposition 6.5.

Remark 6.10. From Theorem 6.9 we derive the following statements about the depend-
ence of the point spectrum of Dt on t and thus on the torsion T t .

Let us first have a look at the spectrum of .Dt /2. Table 3 shows that for those spin
structures for which "3 D 0, the point spectrum of .D1=3/2 consists of two parts, namely
Aj .�; �/ and Bj , where Bj is one of the sets 4ˇZ, 2ˇZ, or 2ˇZ 6D0. If we now consider
an arbitrary t , then the same Aj .�; �/ also occur in the point spectrum of .Dt /2, i.e.,
these parts of the point spectrum do not depend on t . The set of the remaining eigenvalues
changes with t . The same picture arises for the point spectrum of Dt since the eigenval-
ues of Dt are the square roots of those of .Dt /2. Since Aj .�; �/ contains only positive
numbers, the part of the point spectrum that does not depend on t is located on the real
axis.

Now let the spin structure be such that its restriction to the Heisenberg group is non-
trivial, i.e., such that ."1; "2; "3/ 6D .0; 0; 0/. Then the kernel of Dt is trivial if 3t� is not
an integer. Indeed, under the assumption on ", the decomposition of L2.†.X// does not
contain summands of type Cd ˝ �. So the kernel is spanned by elements of summands
of type Fc;d ˝�. However, Table 3 shows that under our assumption on t no summand
of that kind contains non-trivial elements of the kernel.
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