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Multidimensional Borg–Levinson uniqueness and stability
results for the Robin Laplacian with unbounded potential

Mourad Choulli, Abdelmalek Metidji, and Éric Soccorsi

Abstract. This article deals with the uniqueness and stability issues in the inverse problem of deter-
mining the unbounded potential of the Schrödinger operator in a bounded domain of Rn, n � 3,
endowed with Robin boundary condition, from knowledge of its boundary spectral data. These data
are defined by the pairs formed by the eigenvalues and either partial or full Dirichlet measurement
of the eigenfunctions on the boundary of the domain.

1. Introduction

In the present article, � is a C 1;1 bounded domain of Rn, n � 3, with boundary � , and
we equip the two spaces H WD L2.�/ and V WD H 1.�/ with their usual scalar product.
Put p WD 2n=.nC 2/ and let p� WD 2n=.n � 2/ be its conjugate number, in such a way
that V is continuously embedded in Lp

�

.�/.
To simplify notations, we denote throughout this text by h�; �i the duality pairing

between an arbitrary Banach space and its dual.

1.1. The Robin Laplacian

Let s 2 .n � 1;1/. For ˛ 2 Ls.�;R/ and q 2 Ln=2.�;R/, we consider the sesquilinear
form a W V � V ! C, defined by

a.u; v/ WD

Z
�

ru � r Nvdx C

Z
�

qu Nvdx C a0.u; v/; u; v 2 V;

where
a0.u; v/ WD

Z
�

˛u Nvds.x/; u; v 2 V:

It is proved in the appendix that a0 is continuous. On the other hand, we know from
[9, Lemma 1.1] that ˇ̌̌̌ Z

�

qu Nvdx

ˇ̌̌̌
� c�



q


Ln=2.�/



u


V



v


V
;
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where c� > 0 is a constant depending only on �. In consequence, a is continuous.
Throughout the entire text, we assume that ˛ � �c for some constant c 2 .0;n�2/ almost
everywhere on � , where n denotes the norm of the (bounded) trace operator u 2 V 7!
uj� 2 L

2.�/. Set

Q.�;@/ WD
®
q 2 L�.�;R/I kqkL�.�/ � @

¯
; � � n=2; @ > 0:

Then, arguing as in the derivation of [19, Lemma A2], we obtain that

kqu2kL1.�/ � "kuk
2
V C C"kuk

2
H ; q 2 Q.n=2;@/; u 2 V; " > 0; (1.1)

for some constant C" > 0 depending only of n, �, @ and ". Further, we get by applying
(1.1) with " D � WD .1 � cn2/=2 that

a.u; u/C ��kuk2H � �kuk
2
V ; u 2 V; (1.2)

where �� > 0 is a constant which depends only on n, �, c and @.
Then the bounded operator A W V ! V � defined by

hAu; vi D a.u; v/; u; v 2 V;

is self-adjoint and coercive according to (1.2).

1.2. Boundary spectral data

With reference to [16, Theorem 2.37], the spectrum of A consists of its eigenvalues �k ,
k 2 N WD ¹1; 2; : : :º, arranged in non-decreasing order and repeated with the (finite) mul-
tiplicity,

�1 < �1 � �2 � � � � � �k � � � � ; and such that lim
k!1

�k !1:

Moreover, there exists an orthonormal basis ¹�k ; k 2 Nº of H , made of eigenfunctions
�k 2 V of A, satisfying

a.�k ; v/ D �k.�k ; v/; v 2 V; k 2 N;

where .�; �/ is the usual scalar product in H . For the sake of shortness, we write

 k WD �k j� ; k 2 N:

Recall that for u 2 V , we have �u 2 H�1.�/, the space dual to H 1
0 .�/, but that

it is not guaranteed that �u lie in V � (which is strictly embedded in H�1.�/). Let us
introduce

W WD ¹u 2 V I �u 2 V �º:

Endowed with its natural norm

kukW D kukV C k�ukV � ; u 2 W;
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is a Banach space. Next, for ' 2 H 1=2.�/, we set

P' WD ¹v 2 V I vj� D 'º;

and we equip the space H 1=2.�/ with its graph norm

k'kH1=2.�/ D min
®
kvkV I v 2 P'

¯
:

Now, for u 2 W fixed, we put

ˆu.v/ WD h�u; vi C .ru;rv/; v 2 V;

apply the Cauchy–Schwarz inequality, and get that

jˆu.v/j � k�ukV �kvkV C kukV kvkV � kukW kvkV : (1.3)

Moreover, since C10 .�/ is dense in H 1
0 .�/, it is easy to see that H 1

0 .�/ � kerˆu and
consequently thatˆu.v/ depends only on vj� . This enables us to define the normal deriva-
tive of u, denoted by @�u, as the unique vector in H�1=2.�/ satisfying

h@�u; 'i D ˆu.v/; v 2 P' is arbitrary:

As a consequence we have
k@�ukH�1=2.�/ � kukW ;

by (1.3), and the following generalized Green formula:

h�u; vi C .ru;rv/ D h@�u; vj�i; u 2 W; v 2 V: (1.4)

Pick f 2 V � and � 2 C, and let u 2 V satisfy

a.u; v/C �.u; v/ D hf; vi; v 2 V: (1.5)

Using that C10 .�/ � V , we obtain thatZ
�

ru � r Nvdx C

Z
�

qu Nvdx C �

Z
�

u Nvdx D hf; vi; v 2 C10 .�/;

which yields ��uC quC �u D f in D0.�/. Thus, bearing in mind that qu 2 V �, we
have u 2 W , and the generalized Green formula (1.4) provides

h@�uC ˛uj� ; vj�i D 0; v 2 V:

Since v 2 V 7! vj� 2 H
1=2.�/ is surjective, the above line reads @�u C ˛uj� D 0 in

H�1=2.�/, showing that (1.5) is the variational formulation of the following boundary
value problem (BVP):�

��C q C �
�
u D f in �; @�uC ˛uj� D 0 on �:
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As we notice from (A.1) with v D 1 that ˛u 2 L1.�/ satisfies the estimate

k˛ukL1.�/ � c0k˛kLs.�/kukV ;

where c0 is a positive constant depending only on s and�, we see that the Robin boundary
condition @�uC ˛uj� D 0 holds in L1.�/, and hence a.e. on � .

Further, taking f D 0 and � D �k for all k 2 N, we find that �k 2 W satisfies

.��C q � �k/�k D 0 in �; @��k C ˛�k j� D 0 on �: (1.6)

1.3. Statement of the results

We stick to the notations of the previous sections, that is to say that we still denote by �k ,
�k and  k , k � N, the k-th eigenvalue, eigenfunction and corresponding Dirichlet trace,
respectively, of the operator A, and we write z�k (resp., z�k , z k) instead of �k (resp., �k ,
 k) when the potential Qq is substituted for q. Our first result is as follows.

Theorem 1.1. Let q and Qq be inLr .�;R/, where r D n=2 when n� 4 and r > n=2 when
n D 3, and let ` 2 N. Then, the conditions

�k D z�k for all k � ` and  k D z k on � for all k � 1; (1.7)

yield that q D Qq in �.

The claim of Theorem 1.1 was first established for smooth bounded potentials, in the
peculiar case where `D 1, by Nachman, Sylvester and Uhlmann in [17]. In the same con-
text (of smooth bounded potentials), their result was extended to ` � 1 through a heuristic
approach in [21].

In view of stating our stability results, we denote by `1 (resp. `2) the Banach (resp.,
Hilbert) space of bounded (resp. squared summable) sequences of complex numbers .zk/,
equipped with the norm

.zk/

`1 WD sup

k�1

ˇ̌
zk
ˇ̌�

resp.,


.zk/

`2 WD �X

k�1

ˇ̌
zk
ˇ̌2�1=2�

;

and let
`2
�
L2.�/

�
WD
®
.wk/ 2 L

2.�/N such that
�
kwkkL2.�/

�
2 `2

¯
be endowed with its natural norm

.wk/

`2.L2.�// WD 

�kwkkL2.�/�

`2 :
Theorem 1.2. Fix @ 2 .0;1/ and let .q; Qq/ 2 Q.r; @/2, where r D n=2 when n � 4
and r > n=2 when n D 3, satisfy q � Qq 2 L2.�/. Assume that .�k � z�k/ 2 `1 fulfills
k.�k � z�k/k`1 � @ and that . k � z k/ 2 `2.L2.�//. Then, we have

kq � QqkH�1.�/ � C
�

.�k � z�k/

`1 C 

. k � z k/

`2.L2.�//�2.1�2ˇ/=.3.nC2//; (1.8)

where ˇ WD max.0; n.2 � r/=.2r// and C is a positive constant depending only on n, �,
@ and c.
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We now collect several comments on the results of Theorem 1.2 in the following.

Remark 1.1.
(i) It is worth noticing that we have ˇ D 0 when n � 4, whereas ˇ 2 Œ0; 1=2/ when

n D 3. Moreover, in the latter case we see that ˇ converges to 1=2 (resp., 0) as
r approaches 3=2 (resp., 2) from above (resp., below).

(ii) We have q � Qq 2 L2.�/ for all .q; Qq/ 2 Q.n=2; @/2, provided that n � 4.
Nevertheless, this is no longer true when n D 3, even if .q; Qq/ is taken in
Q.r; @/2 with r 2 .n=2; 2/. Hence the additional requirement of Theorem 1.2
that q � Qq 2 L2.�/ in the three-dimensional case.

(iii) When q � Qq 2 L1.�/, we have

.�k � z�k/ 2 `
1 and



.�k � z�k/

`1 � kq � QqkL1.�/;
by the min-max principle. Thus, Theorem 1.2 remains valid by replacing the
condition k.�k � z�k/k`1 � @ by the stronger assumption kq � QqkL1.�/ � @.

(iv) Assume that j˛.x/j>0 for a.e. x2� . Then, the statement of Theorem 1.1 re-
mains valid upon replacing the condition  kD z k by @��kD@� z�k for all k�1,
in (1.7). Moreover, if 1=˛2L1.�/, then we may substitute k. k� z k/k`2.L2.�//
by k.@��k � @� z�k/k`2.L2.�// on the right-hand side of (1.8) in Theorem 1.2.

To the best of our knowledge, there is no comparable stability result available in
the mathematical literature for Robin boundary conditions, even when the potentials are
assumed to be bounded. Nevertheless, it should be pointed out that the variable coefficients
case was recently addressed by [3] in the framework of Dirichlet boundary conditions.

Further downsizing the data needed for retrieving the unknown potential, we seek a
stability inequality requesting a local Dirichlet boundary measurement of the eigenfunc-
tions only, i.e., boundary observation of the  k’s and z k’s that is performed on a strict
subset of � . For this purpose we assume that � is connected and we consider a C 1;1-
connected neighborhood�0 of � in x�, a fixed nonempty open subset �� of � , and for all
# 2 .0;1/ we introduce the function ‰# W Œ0;1/! R as

‰#.t/ WD

8̂̂<̂
:̂
0 if t D 0

j ln t j�# if t 2 .0; 1=e/

t if t 2 Œ1=e;1/:

(1.9)

Then, the corresponding local stability estimate can be stated as follows.

Theorem 1.3. For @ 2 .0;1/ fixed, let .q; Qq/ 2 Q.n;@/2 satisfy q D Qq on �0. Assume
that ˛ 2 C 0;1.�/, and suppose that .�k � z�k/ 2 `1 and that .kt. k � z k// 2 `

2.L2.�//

for some t > 4=nC 1, with

.�k � z�k/

`1 � @; 

�kt. k � z k/
�


`2.L2.�//

� @:

Then there exist two constants C > 0 and # > 0, both of them depending only on n, �,
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�0, ��, @, c and k˛kC 0;1.�/, such that we have:

kq � QqkH�1.�/ � C‰#
�

.�k � z�k/

`1 C 

�k�tC2=n. k � z k/

�


`2.H1.��//

�
: (1.10)

Finally, we briefly comment on Theorem 1.3.

Remark 1.2.
(i) Bearing in mind that the k-th eigenvalue, k � 1, of the unperturbed Dirichlet

Laplacian (i.e. the operatorA associated with qD 0 in� and ˛D 0 on �) scales
like k2=n when k becomes large, see e.g. [8, Theorem III.36 and Remark III.37],
we obtain by combining the min-max principle with (1.1), that for all q 2
Q.n;@/,

C�1k2=n � 1C j�kj � Ck
2=n; k � 1; (1.11)

where C 2 .1;1/ is a constant depending only on n, �, c and @. In light
of Lemma 2.6 below, establishing the H 2-regularity of the eigenfunctions �k ,
k � 1, of A, and the energy estimate (2.30), it follows from (1.11) that

.k�tC2=n k/ 2 `
2
�
H 1.�/

�
:

Therefore, we have k.k�tC2=n. k � z k//k`2.H1.��// < 1 on the right-hand
side of (1.10).

(ii) Assume that ˛ 2 C 1.�/ and its inverse 1=˛ 2 L1.��/. Then, the statement of
Theorem 1.3 remains valid upon replacing k.k�tC2=n. k � z k//k`2.H1.��// by
k.k�tC2=n.@��k � @� z�k//k`2.H1.��// in (1.10).

1.4. A short bibliography of the existing literature

The first published uniqueness result for the multidimensional Borg–Levinson problem
can be found in [17]. The breakthrough idea of the authors of this article was to relate the
inverse spectral problem under analysis to the one of determining the bounded potential
by the corresponding elliptic Dirichlet-to-Neumann map. This can be understood from
the fact that, the Schwartz kernel of the elliptic Dirichlet-to-Neumann operator can be, at
least heuristically, fully expressed in terms of the eigenvalues and the normal derivatives of
the eigenfunctions. Later on, [13] proved that the result of [17], which assumes complete
knowledge of the boundary spectral data, remains valid when finitely many of them remain
unknown.

The stability issue for multidimensional Borg–Levinson type problems was first exam-
ined in [1]. The authors proceed by relating the spectral data to the corresponding hyper-
bolic Dirichlet-to-Neumann operator, which stably determines the bounded electric poten-
tial. We refer the reader to [4–6] for alternative inverse stability results based on this
approach.

In all the aforementioned results, the number of unknown spectral data is at most finite
(that is to say that the data are either complete or incomplete). Nevertheless, it was proved
in [11] that asymptotic knowledge of the boundary spectral data is enough to Hölder sta-
bly retrieve the bounded potential. This result was improved in [14, 22] by removing all
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quantitative information on the eigenfunctions of the stability inequality, at the expense of
an additional summability condition on their boundary measurements. The same approach
was adapted to magnetic Laplacians in [2].

In all the articles cited above in this section, the unknown potential is supposed to
be bounded. The unique determination of unbounded potentials by either complete or
incomplete boundary spectral data is discussed in [18, 19], whereas the stability issue for
the same problem, but in the variable coefficients case, is examined in [3]. As for the
treatment of the inverse problem of determining the unbounded potential from asymptotic
knowledge of the spectral data, we refer the reader to [7] for the uniqueness issue, and to
[15] for the stability issue.

All the above mentioned results were obtained for multidimensional Laplace opera-
tors endowed with Dirichlet boundary conditions, except for [17] which proved that full
knowledge of the boundary spectral data of the Robin Laplacian uniquely determines
the unknown electric potential, and for [2] where the case of Neumann Laplacians is
examined. But, apart from the claim, based on a heuristic approach, of [21], that incom-
plete knowledge of the spectral data of the multidimensional Robin Laplacian uniquely
determines the unknown bounded potential, it seems that, even for a bounded unknown
potential q, there is no reconstruction result of q by incomplete spectral data, available
in the mathematical literature for such operators. In the present article we prove not only
unique identification by incomplete spectral data, but also stable determination by either
full or local boundary spectral data, of the singular potential of the multidimensional
Robin Laplacian.

1.5. Outline

The remaining part of this paper is structured as follows. In Section 2 we gather several
technical results which are needed by the proof of the three main results of this article.
Then we proceed with the proof of Theorems 1.1, 1.2 and 1.3 in Section 3.

2. Preliminaries

In this section we collect several preliminary results that are needed by the proof of the
main results of this article. We start by noticing, upon applying (1.2) with u D �k , k � 1,
that

�k > ��
�; k � 1: (2.1)

2.1. Resolvent estimates

By [16, Corollary 2.39], the operator A � � W V ! V � has a bounded inverse whenever
� 2 �.A/ WD C n �.A/, the resolvent set of A. Furthermore, for all f 2 V � we have

.A � �/�1f D
X
k�1

hf; �ki

�k � �
�k ; (2.2)

where the series converges in V .
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For further use, we now establish that the resolvent .A � �/�1 may be regarded as a
bounded operator fromH into the spaceK WD ¹u 2H I Au 2H º endowed with the norm

kukK WD kukH C kAukH ; u 2 K:

Lemma 2.1. For all � 2 �.A/, the operator .A � �/�1 is bounded from H into K. Fur-
thermore, we have �

A � �
��1�

A � �
�
u D u; u 2 K; (2.3)�

A � �
��
A � �

��1
f D f; f 2 H: (2.4)

Proof. Put u WD .A � �/�1f where f 2 H is fixed. Then, we have

.u; �k/ D .f; �k/=.�k � �/

for all k � 1, from (2.2), whence

Au D
X
k�1

�k

�k � �

�
f; �k

�
�k ; (2.5)

according to [16, Theorem 2.37], the series being convergent in V �. Moreover, sinceX
k�1

�2
k

j�k � �j2

ˇ̌
.f; �k/

ˇ̌2
�


��k=.�k � �/�

2`1kf k2H <1;

by the Parseval theorem, the right-hand side on (2.5) lies inH . Therefore, we haveAu2H
and

kAukH �


��k=.�k � �/�

`1kf kH ;

and consequently u 2 K and

kukK �


�.1C �k/=.�k � �/�

`1kf kH :

Next, we pick u2K and set f D.A��/u. Then, we have ..A��/u; �k/D.�k��/.u; �k/
for all k � 1, by [16, Theorem 2.37], and hence

.A � �/�1f D
X
k�1

�
.A � �/u; �k

�
�k � �

�k D
X
k�1

.u; �k/�k :

This establishes that .A � �/�1f D u, which yields (2.3). Finally, since (2.4) follows
readily from (2.5), the proof of the lemma is complete.

Proposition 2.1. Let q 2 Q.n=2;@/ and let � 2 �.A/. Then, for all f 2 V �, the following
estimate 

.A � �/�1f 



V
� C



�.�k C ��/=.�k � �/�

`1kf kV � (2.6)

holds with C D ��1=2k.AC ��/�1kB.V �;V /, where B.V �; V / denotes the space of linear
bounded operators from V � to V . Moreover, in the special case where f 2 H , we have

.A � �/�1f 



H
�


�1=.�k � �/�

`1kf kH : (2.7)
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Proof. Since (2.7) follows directly from (2.2) and the Parseval formula, it is enough to
prove (2.6). To this purpose we set u WD .A� �/�1f and notice from the obvious identity
�uD .q � �/u� f 2 V � that u 2W . Therefore, by applying (1.4) with v D u, we infer
from the coercivity estimate (1.2) that

�kuk2V �
˝
.AC ��/u; u

˛
V �;V

: (2.8)

Let us assume for a while that f 2 H . Then, with reference to (2.5), we have

.AC ��/u D
X
k�1

�k C �
�

�k � �
.f; �k/�k ;

where the series converges in H . It follows from this, (2.2) and (2.8) that

�kuk2V �
X
k�1

�k C �
�

j�k � �j2

ˇ̌
.f; �k/

ˇ̌2
�


�.�k C ��/=.�k � �/�

2`1X

k�1

ˇ̌
.f; �k/

ˇ̌2
�k C ��

: (2.9)

Further, taking into account that

X
k�1

ˇ̌
.f; �k/

ˇ̌2
�k C ��

D


.AC ��/�1f 

2

H
;

according to (2.2) and the Parseval formula, and then using that

.AC ��/�1f 


H
�


.AC ��/�1



B.V �;V /
kf kV � ;

we infer from (2.9) that

kukV � �
�1=2



.AC ��/�1


B.V �;V /



�.�k C ��/=.�k � �/�

`1kf kV � : (2.10)

Finally, keeping in mind that u D .A � �/�1f and that .A � �/�1 2 B.V �; V /, (2.6)
follows readily from (2.10) by density of H in V �.

As a byproduct of Proposition 2.1, we have the following.

Corollary 2.1. Let q 2 Q.n=2;@/. Then, for all � 2 Œ1;C1/ we have

�A � .� C i/2��1f 


H
� .2�/�1kf kH ; f 2 H: (2.11)

Moreover, for all � � �� DW 1C .max.0; 2 � ��//1=2, we have

�A � .� C i/2��1f 


V
� C.� C ��/kf kV � ; f 2 V �; (2.12)

where C is the same constant as in (2.6).
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Proof. As (2.11) is a straightforward consequence of (2.7), we shall only prove (2.12). To
do that, we refer to (2.6) and notice that

�k C �
�ˇ̌

�k � .� C i/2
ˇ̌ D �k C �

���
�k � .�2 � 1/

�2
C 4�2

�1=2 � 2‚.�k/; k � 1; (2.13)

where we have set ‚.t/ WD .t C ��/=.jt � .�2 � 1/j C 2�/ for all t 2 Œ���;1/. Further,
taking into account that ‚ is a decreasing function on Œ�2 � 1;1/, provided that � � ��,
we easily get that

sup
t2Œ���;C1/

‚.t/ �
�2 � 1C ��

2�
�
� C ��

2
;

which along with (2.6) and (2.13), yields (2.12).

Proposition 2.2. Let q 2 Q.n=2;@/. Then, there exists a constant C > 0, depending only
on n, �, c and @, such that for all � 2 Œ0; 1� and all f 2 Lp� .�/, we have

�A � .� C i/2��1f 



Lp
�
� .�/
� C��1C2�kf kLp� .�/; � 2 Œ��;1/; (2.14)

where p� WD 2n=.nC 2�/ and p�� WD 2n=.n � 2�/ is the conjugate integer to p� .

Proof. In light of (2.12) and the identity p1 D p, we have for all f 2 Lp1.�/,

�A � .� C i/2��1f 


L
p�1 .�/

� C�kf kLp1 .�/; � 2 Œ��;1/; (2.15)

by the Sobolev embedding theorem, where C is a positive constant depending only on n,
�, c and @. Further, bearing in mind thatH D Lp0.�/ and that p�0 D p0 D 2, we rewrite
(2.11) as

�A � .� C i/2��1f 



L
p�0 .�/

� .2�/�1kf kLp0 .�/; � 2 Œ1;1/; (2.16)

whenever f 2 Lp0.�/. Therefore, since .1 � �/=p0 C �=p1 D 1=p� for all � 2 Œ0; 1�,
we deduce from (2.15)–(2.16) upon interpolating between Lp0.�/ and Lp1.�/ with the
aid of the Riesz–Thorin theorem (see, e.g. [20, Theorem IX.17]), that

�A � .� C i/2��1f 



Lp
�
� .�/
� .C�/� .2��1/1��kf kLp� .�/

� 2.1C C/��1C2�kf kLp� .�/;

whenever � 2 Œ��;1/. Finally, we obtain (2.14) from this by renaming the constant
2.1C C/ as C in the above line.

2.2. Asymptotic spectral analysis

Set H WD H 2.�/ if n ¤ 4 and put H WD H 2C".�/ for some arbitrary " > 0, if n D 4.
We notice that H � L1.�/ and that the embedding is continuous, provided that n D 3 or
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nD 4, while H is continuously embedded inL2n=.n�4/.�/when n > 4. The main purpose
for bringing H into the analysis here is the following useful property: f u 2 H whenever
f 2 Lmax.2;n=2/.�/ and u 2 H.

Next we introduce the subspace

h WD ¹g D @�G C ˛Gj� I G 2 Hº

of L2.�/, equipped with its natural quotient norm

kgkh WD min
®
kGkHI G 2 Pg

¯
; g 2 h;

where
Pg WD

®
G 2 HI @�G C ˛Gj� D g

¯
; g 2 h;

and we consider the non homogenous BVP:

.��C q � �/u D 0 in �; @�uC ˛uj� D g on �: (2.17)

We first examine the well-posedness of (2.17).

Lemma 2.2. Let � 2 �.A/ and let g 2 h. Then, the function

u�.g/ WD .A � �/
�1.� � q C �/G CG (2.18)

is independent of G 2 Pg. Moreover, u�.g/ 2 K \W is the unique solution to (2.17) and
is expressed as

u�.g/ D
X
k�1

.g;  k/

�k � �
�k (2.19)

in H . Here .�; �/ stands for the usual scalar product in L2.�/, not to be mistaken with the
scalar product in H which is denoted by the same symbol.

Proof. SinceG 2H, it is clear that .�� qC �/G 2H . Thus, the right-hand side of (2.18)
lies in W and it is obviously a solution to the BVP (2.17). Moreover, � being taken in the
resolvent set of A, this solution is unique.

Further, for allG1 andG2 in Pg, it is easy to check that @�.G1 �G2/C ˛.G1 �G2/D 0
on � and that .A � �/�1.� � q C �/.G1 � G2/ D �.G1 � G2/ in �. Therefore, the
function u�.g/ given by (2.18), is independent of G 2 Pg.

We turn now to showing (2.19). To do that we apply the generalized Green formula
(1.4) with u D u�.g/ and v D �k , k � 1. We obtain˝

�u�.g/; �k
˛
C
�
ru�.g/jr�k

�
D
˝
@�u�.g/;  k

˛
;

which may be equivalently rewritten as�
.q � �/u�.g/; �k

�
C
�
ru�.g/;r�k

�
D
˝
g � ˛u�.g/j� ;  k

˛
: (2.20)
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Doing the same with uD �k and v D u�.g/, and taking the conjugate of both sides of the
obtained equality, we find that�

u�.g/; .q � �k/�k
�
C
�
ru�.g/;r�k

�
D �

˝
u�.g/j� ; ˛ k

˛
:

Bearing in mind that q and ˛ are real-valued, and that �k 2 R, this entails that�
.q � �k/u�.g/; �k

�
C
�
ru�.g/;r�k

�
D �

˝
˛u�.g/j� ;  k

˛
: (2.21)

Now, taking the difference of (2.20) with (2.21), we end up getting that

.�k � �/
�
u�.g/; �k

�
D hg; ki D .g;  k/:

This and the basic identity
u�.g/ D

X
k�1

.u; �k/�k

yield (2.19).

The series on the right-hand side of (2.19) converges only in H and thus we cannot
deduce an expression of the trace u�.g/j� in terms of �k and  k , k � 1, directly from
(2.19). To circumvent this difficulty we establish the following lemma:

Lemma 2.3. Let g 2 h. Then, for all � and � in �.A/, we have

u�.g/j� � u�.g/j� D .� � �/
X
k�1

.g;  k/

.�k � �/.�k � �/
 k ; (2.22)

and the series converges in H 1=2.�/.

Proof. Notice that
.��C q � �/.u� � u�/ D .� � �/u�

in� and that @�.u� � u�/C ˛.u� � u�/j� D 0 on � , where, for shortness sake, we write
u� D u�.g/ and u� D u�.g/. Thus, we have

u� � u� D .� � �/.A � �/
�1u� D .� � �/

X
k�1

.u�; �k/

�k � �
�k :

On the other hand, since

.u�; �k/ D
.g;  k/

�k � �
; k � 1;

from (2.19), we obtain that

u� � u� D .� � �/
X
k�1

.g;  k/

.�k � �/.�k � �/
�k ; (2.23)
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where the series converges in K. As a consequence we have

.A � �/
X
k�1

.g;  k/

.�k � �/.�k � �/
�k D

X
k�1

.g;  k/

.�k � �/.�k � �/
.A � �/�k

D

X
k�1

.g;  k/

�k � �
�k ;

the series being convergent in H , whenceX
k�1

.g;  k/

.�k � �/.�k � �/
�k D .A � �/

�1
X
k�1

.g;  k/

�k � �
�k ;

according to (2.3).
It follows from this and (2.23) that

u� � u� D .� � �/.A � �/
�1
X
k�1

.g;  k/

�k � �
�k ;

where the series on the right-hand side of (2.23) converges in V . As a consequence we
have

u�j� � u�j� D .� � �/
X
k�1

.g;  k/

.�k � �/.�k � �/
 k ; (2.24)

the series being convergent in H 1=2.�/.

Next, we establish the following a priori estimate for the solution to (2.17).

Lemma 2.4. Let q 2 Q.n=2; @/. Then, there exist two constants �C � �� and C > 0,
depending only on n, �, @ and c, such that for all � 2 .�1;��C� and all g 2 h, the
solution u�.g/ to (2.17) satisfies the estimate

j�j1=2


u�.g/

H C 

u�.g/

V � CkgkL2.�/: (2.25)

Proof. Fix � 2 �.A/\ .�1; 0/. We apply the generalized Green formula (1.4) with u D
v WD u�, where we write u� instead of u�.g/. We get that

j�jku�k
2
H C kru�k

2
H � kqu

2
�kL1.�/ � .˛u�; u�/C .g; u�/: (2.26)

Next, " being fixed in .0;C1/, we combine (1.1) with (2.26) and obtain

j�jku�k
2
H Ckru�k

2
H � "ku�k

2
V CC"ku�k

2
H C cn2ku�k

2
V CnkgkL2.�/ku�kV ; (2.27)

where C" is a positive constant depending only on n, �, @ and ". Taking " D � D

.1 � cn2/=2 in (2.27) then yields�
j�j � 1 � C�

�
ku�k

2
H C �



u�

2V � nkgkL2.�/ku�kV :
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As a consequence we have

j�jku�k
2
H C ku�k

2
V �

2n2

�2
kgk2

L2.�/
;

whenever j�j � .1C C�/=.1 � �=4/, and (2.25) follows readily from this.

Armed with Lemma 2.4 we can examine the dependence of (the trace of) the solution
to the BVP (2.17) with respect to q. More precisely, we shall establish that the influence of
the potential on u�.g/ is, in some sense, dimmed as the spectral parameter � goes to �1.

Lemma 2.5. Let q and Qq be in Q.n=2;@/. Then, for all g 2 h, we have

lim
�D<�!�1



u�.g/j� � Qu�.g/j�

H1=2.�/
D 0: (2.28)

Proof. Let � 2 .�1;��C�, where �C is the same as in Lemma 2.4. We use the same
notation as in the proof of Lemma 2.4 and write u� (resp., Qu�) instead of u�.g/ (resp.,
Qu�.g/). Since

.��C q � �/.u� � Qu�/ D . Qq � q/ Qu� in �

and
@�.u� � Qu�/C ˛.u� � Qu�/j� D 0 on �;

we have
u� � Qu� D .A � �/

�1
�
. Qq � q/ Qu�

�
;

whence
ku� � Qu�kV � C



�.�k C ��/=.�k � �/�

`1

. Qq � q/ Qu�

V � ; (2.29)

by (2.6), where C is a positive constant which is independent of �.
We are left with the task of estimating k. Qq � q/ Qu�kV � . For this purpose, we notice

from Qq � q 2 Ln=2.�/ and from Qu� 2 Lp
�

.�/ that . Qq � q/ Qu� 2 Lp.�/. Thus, bearing in
mind that the embedding V � Lp

�

.�/ is continuous, we infer from Hölder’s inequality
that 

. Qq � q/ Qu�

V � � kQq � qkLn=2.�/k Qu�kLp� .�/ � 2@k Qu�kV :
In light of (2.25), this entails that

. Qq � q/ Qu�

V � � CkgkL2.�/;
for some constant C depending only on n,�, @ and c. From this, (2.29) and the continuity
of the trace operator w 2 V 7! wj� 2 H

1=2.�/, we obtain that

ku�j� � Qu�j�kH1=2.�/ � C


�.�k C ��/=.�k � �/�

`1kgkL2.�/;

where C is independent of �. Now (2.28) follows immediately from this upon sending
� to �1 on both sides of the above inequality.
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2.3. H 2-regularity of the eigenfunctions

For all q 2 Ln=2.�/, we have �k 2 V , k � 1, but it is no guaranteed in general that
�k 2 H

2.�/. Nevertheless, we shall establish that the regularity of the eigenfunctions of
A can be upgraded to H 2, provided that the potential q is taken in Ln.�/.

Lemma 2.6. Let q 2 Q.n;@/ and assume that ˛ 2 C 0;1.�/. Then, for all k 2N, we have
�k 2 H

2.�/ and the estimate

k�kkH2.�/ � C
�
1C j�kj

�
; (2.30)

where C is a positive constant depending on n, � and @ and k˛kC 0;1.�/.

Proof. Let us start by noticing from (1.2) that

k�kkV � �
�1=2.�k C �

�/1=2; k � 1: (2.31)

On the other hand we have q�k 2 H for all k 2 N, and the estimate

kq�kkH � kqkLn.�/k�kkLp� .�/ � C0k�kkV ; (2.32)

where C0 is a positive constant depending only on n, �, c and @.
Next, bearing in mind that ˛�k j� 2H 1=2.�/, we pick �0

k
2H 2.�/ such that @��0k D

˛�k j� . Evidently, we have

��.�k C �
0
k/ D .�k � q/�k ���

0
k in � and @�.�k C �

0
k/ D 0 on �:

Since .�k � q/�k ���0k 2 H , [23, Theorem 3.17] then yields that �k C �0k 2 H
2.�/.

As a consequence we have �k D .�k C �0k/ � �
0
k
2 H 2.�/ and

k�kkH2.�/ � C1
�

.�k � q/�k

H C k�kkV �

for some constant C1 > 0 which depends only on n, � and k˛kC 0;1.�/, by [23, Lemma
3.181] (see also [12, Theorem 2.3.3.6]). Putting this together with (2.31)–(2.32), we obtain
(2.30).

3. Proof of Theorems 1.1, 1.2 and 1.3

3.1. Proof of Theorem 1.1

We use the same notations as in the previous sections. Namely, we denote by zA is the
operator generated in H by a where Qq is substituted for q, and we write u� (resp., Qu�)
instead of u�.g/ (resp., Qu�.g/). Let � 2 C nR and pick � in �.A/\ �. zA/. Depending on
whether ` D 1 or ` � 2, we have either

u�j� � u�j� D Qu�j� � Qu�j�
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or

u�j� � u�j� � .� � �/

`�1X
kD1

.g;  k/

.�k � �/.�k � �/
 k

D Qu�j� � Qu�j� � .� � �/

`�1X
kD1

.g;  k/

.z�k � �/.z�k � �/
 k ;

by virtue of (2.22). Sending<� to �1 in these two identities, where<� denotes the real
part of �, we get with the help of (2.28) that

u�j� � Qu�j� D R
`
�; (3.1)

where

R`� D R
`
�.g/ WD

8<: 0 if ` D 1;P`�1
kD1

.z�k��k/.g; k/

.�k��/.
z�k��/

 k if ` � 2:

Notice for further use that there exists �� > 0 such that the estimateˇ̌
.R`�; h/

ˇ̌
�

C`

j�j2
kgkL2.�/khkL2.�/; j�j � ��; g; h 2 h; (3.2)

holds for some constant C` D C`.q; Qq/ which is independent of �.
Let us now consider two functionsG 2H andH 2H, that will be made precise below,

and put u WD .A � �/�1.� � q C �/G CG, g WD @�G C ˛Gj� and h WD @�H C ˛Hj� .
Then, bearing in mind that @�uC uj� D g, the Green formula yields thatZ

�

u Nhds.x/ D

Z
�

g xHds.x/C

Z
�

.u� xH ��u xH/dx: (3.3)

Further, taking into account that �u D .q � �/u in �, we see that

u� xH ��u xH D u.� � q C �/ xH

D
�
.A � �/�1.� � q C �/G CG

�
.� � q C �/ xH:

Thus, assuming that .�C �/G D .�C �/H D 0, the above identity reduces to

u� xH ��u xH D �
�
� .A � �/�1qG CG

�
q xH;

and (3.3) then readsZ
�

u Nhds.x/ D

Z
�

g xHds.x/ �

Z
�

�
� .A � �/�1qG CG

�
q xHdx: (3.4)

This being said, we set �� WD .� C i/2 for some fixed � 2 Œ1;C1/, pick two vectors
! and � in Sn�1, and we consider the special case where

G.x/ D e�� ;!.x/ WD e
i
p
��!�x ; xH.x/ D e�� ;�� .x/ WD e

�i
p
��� �x :
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Next, we put

S.�� ; !; �/ WD

Z
�

u�.g/ Nhds.x/; zS.�� ; !; �/ WD

Z
�

Qu�.g/ Nhds.x/;

in such a way that
S.�� ; !; �/ � zS.�; !; �/ D

˝
R`�� .g/; h

˛
: (3.5)

Then, taking into account that

g.x/ D .i
p
��! � � C ˛/e

i
p
��!�x ; Nh.x/ D .�i

p
��� � � C ˛/e

�i
p
��� �x ;

we have kgkL2.�/khkL2.�/ � C�2 for some positive constant C which is independent of
!, � and � , and we infer from (3.2) and (3.5) that

lim
�!1

sup
!;�2Sn�1

�
S.�� ; !; �/ � zS.�� ; !; �/

�
D 0: (3.6)

On the other hand, (3.4) reads

S.�� ; !; �/ D S0.�� ; !; �/C

Z
�

.i
p
��! � � C ˛/e

�i
p
�� .��!/�xds.x/; (3.7)

where

S0.�� ; !; �/ WD

Z
�

.A � �� /
�1.qe�� ;!/qe�� ;��dx �

Z
�

qe�i
p
�� .��!/�xdx: (3.8)

Now, we fix � in Rn, pick � 2 Sn�1 such that � � � D 0, and for all � 2 .j�j=2;C1/ we
set

!� WD
�
1 � j�j2=.4�2/

�1=2
� � �=.2�/;

�� WD
�
1 � j�j2=.4�2/

�1=2
�C �=.2�/

(3.9)

in such a way that
lim

�!C1

p
�� .�� � !� / D �: (3.10)

Evidently, we have

ke�� ;!� kL1.�/ � ke
jxj
kL1.�/; ke�� ;��� kL1.�/ � ke

jxj
kL1.�/: (3.11)

Next, with reference to the notations ˇ D max.0; n.2� r/=.2r// and p� D 2n=.nC 2�/,
� 2 Œ0; 1�, of Theorem 1.2 and Proposition 2.2, respectively, we see that ˇ D 0 and hence
that pˇ D p0 D 2, when n � 4, whereas pˇ D r 2 .3=2; 2/, when n D 3. Thus, we have
pˇ � r whenever n � 3, and consequently q 2 Lpˇ .�/. It follows from this and (3.11)
that qe�� ;!� and qe�� ;��� lie in Lpˇ .�/ and satisfy the estimate

kqe�� ;!� kLpˇ .�/ C kqe�� ;��� kLpˇ .�/ � CkqkLr .�/; � 2
�
j�j=2;1

�
; (3.12)
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for some positive constant C D C.n; �/ depending only on n and �. Moreover, for all
� � max.j�j=2; ��/, we haveˇ̌̌̌ Z

�

.A � �� /
�1.qe�� ;!� /qe�� ;���dx

ˇ̌̌̌
�


.A � �� /�1.qe�� ;!� /




L
p�
ˇ .�/



qe�� ;���



L
pˇ .�/

� C��1C2ˇ


qe�� ;!�




L
pˇ .�/



qe�� ;���



L
pˇ .�/

; (3.13)

by (2.14), where C > 0 is independent of � . Since ˇ 2 Œ0; 1=2/ from its very definition,
we infer from (3.12)–(3.13) that

lim
�!1

ˇ̌̌̌ Z
�

.A � �� /
�1.qe�� ;!� /qe�� ;���dx

ˇ̌̌̌
D 0; (3.14)

which together with (3.8)–(3.10) yields that

lim
�!1

�
S0.�� ; !� ; �� /

�
D �

Z
�

qe�i��x ; � 2 Rn:

From this and the identity

lim
�!1

�
S0.�� ; !� ; �� / � zS0.�� ; !� ; �� /

�
D lim
�!1

�
S.�� ; !� ; �� / � zS.�� ; !� ; �� /

�
D 0;

arising from (3.6)–(3.7), it then follows thatZ
�

.q � Qq/e�i��xdx D 0; � 2 Rn:

Otherwise stated, the Fourier transform of .q � Qq/��, where �� is the characteristic func-
tion of �, is identically zero in S0.Rn/. By the injectivity of the Fourier transformation,
this entails that q D Qq in �.

3.2. Proof of Theorem 1.2

Pick ! and � be in Sn�1, and let � 2 C nR. We use the same notations as in the proof of
Theorem 1.1. Namely, for all x 2 � , we write

g.x/ D g�.x/ D .i
p
�! � � C ˛/ei

p
�!�x ;

Nh.x/ D Nh�.x/ D .�i
p
�� � � C ˛/e�i

p
�� �x

and we recall that S.�; !; �/ D
R
�
u�.g/ Nhds.x/. Next, for all � 2 �.A/ \ �. zA/ we set

T .�; �/ D T .�; �; !; �/ WD S.�; !; �/ � S.�; !; �/

D

Z
�

�
u�.g/ � u�.g/

�
Nhds.x/: (3.15)
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By Lemma 2.3, we have

T .�; �/ D .� � �/
X
k�1

dk

.�k � �/.�k � �/
; dk WD .g;  k/. k ; h/;

and hence
T .�; �/ � zT .�; �/ D U.�; �/C V.�; �/; (3.16)

where

U.�; �/ WD
X
k�1

� � �

�k � �

dk � Qdk

�k � �
; (3.17)

V.�; �/ WD
X
k�1

�
� � �

.�k � �/.�k � �/
�

� � �

.z�k � �/.z�k � �/

�
Qdk : (3.18)

Notice that for all k 2 N, we have

dk � Qdk D .g;  k � z k/. k ; h/C .g; z k/. k � z k ; h/;

which immediately entails that

jdk � Qdkj

j�k � �j
�

�
j.gj k/j

j�k � �j
khkL2.�/ C �k.�/

j. z kjh/j

jz�k � �j
kgkL2.�/

�
k k � z kkL2.�/; (3.19)

where �k.�/ WD jz�k ��j=j�k ��j. Further, since 0� �k.�/� 1C j�k � z�kj=j�k ��j and
.�k � z�k/ 2 `

1 by assumption, with k.�k � z�k/k`1 � @, it is apparent that .�k.�// 2 `1

and that 

��k.�/�

`1 � �.�/ WD 1C @

j=�j
;

where =� denotes the imaginary part of �. Thus, applying the Cauchy–Schwarz inequality
in (3.19) and Parseval’s theorem to the representation formula (2.19) in Lemma 2.2, we
get that

NX
kD1

jdk � Qdkj

j�k � �j
�M.�/



. k � z k/

`2.L2.�//; N 2 N; (3.20)

where
M.�/ WD khkL2.�/



u�.g/

H C �.�/kgkL2.�/

 Qu�.h/

H : (3.21)

As a consequence we have
P
k�1 jdk �

Qdkj=j�k � �j < 1. Furthermore, taking into
account that � 2 .�1;�.�� C 1/� 7! .� � �/=.�k � �/ is bounded according to (2.1),
we apply the dominated convergence theorem to (3.17) and find that

lim
�D<�!�1

U.�; �/ D
X
k�1

dk � Qdk

�k � �
DW U.�/: (3.22)
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Moreover, we have ˇ̌
U.�/

ˇ̌
�M.�/



. k � z k/

`2.L2.�//; (3.23)

according to (3.20).
Arguing as before with V defined by (3.18) instead ofU , we obtain in a similar fashion

that

lim
�D<�!�1

V.�; �/ D
X
k�1

z�k � �k

.�k � �/.z�k � �/
Qdk DW V.�/ (3.24)

and that ˇ̌
V.�/

ˇ̌
� �.�/



.z�k � �k/

`1

 Qu�.g/

H

 Qu�.h/

H : (3.25)

Having seen this, we refer to (3.15)–(3.16) and deduce from Lemma 2.5, (3.22) and
(3.24) that Z

�

�
u�.g/ � Qu�.g/

�
Nhds.x/ D U.�/C V.�/: (3.26)

Now, taking � D �� D .� C i/2 for some fixed � 2 .j�j=2;1/ and .!; �/ D .!� ; �� /,
where !� and �� are the same as in (3.9), we combine (3.7)–(3.8) with (3.26). We obtain
that the Fourier transform Ob of b WD . Qq � q/��, reads

Ob
�
.1C i=�/�

�
D U.�� /C V.�� /CR.�� /; (3.27)

where

R.�� / WD

Z
�

. zA � �� /
�1. Qqe�� ;!� / Qqe�� ;���dx

�

Z
�

.A � �� /
�1.qe�� ;!� /qe�� ;���dx:

Moreover, for all � � max.j�j=2; ��/, we haveˇ̌
R.�� /

ˇ̌
� C��1C2ˇ ; (3.28)

by (3.12)–(3.13), where ˇ 2 Œ0; 1=2/ is defined in Theorem 1.2 and �� is the same as in
Corollary 2.1. Here and in the remaining part of this proof, C denotes a positive constant
depending only on n, �, @ and c, which may change from line to line.

On the other hand, using thatˇ̌
Ob
�
.1C i=�/�

�
� Ob.�/

ˇ̌
D

ˇ̌̌̌ Z
Rn

e�i��x.e
�
� �x � 1/b.x/dx

ˇ̌̌̌
�
j�j

�

�
sup
x2�

e.j�j=�/jxj
�
kbkL1.Rn/;

we get in a similar way to [11, equation (5.1)] thatˇ̌
Ob.�/

ˇ̌
�
ˇ̌
Ob
�
.1C i=�/�

�ˇ̌
C
cj�j

�
ecj�j=�@; � 2

�
j�j=2;1

�
;
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for some positive constant c depending only on�. Putting this together with (3.27)–(3.28)
we find that for all � � max.j�j=2; ��/,ˇ̌

Ob.�/
ˇ̌
�

C

�1�2ˇ
C
cj�j

�
ecj�j=�@ C

ˇ̌
U.�� /

ˇ̌
C
ˇ̌
V.�� /

ˇ̌
: (3.29)

To upper bound jU.�� /j C jV.�� /j on the right-hand side of (3.29), we recall from
(2.18) that

u�� .g/ D �.A � �� /
�1.qe�� ;!� /C e�� ;!�

and that
Qu�� .h/ D �.

zA � �� /
�1. Qqe�� ;��� /C e�� ;��� ;

and we combine (2.14) with (3.11) and (3.12). We get for all � � �� WD max.1; j�j=2; ��/,
that 

u�� .g/

H C 

 Qu�� .h/

H � C:
This together with the basic estimate kgkL2.�/CkhkL2.�/�C� , (3.21), (3.23) and (3.25),
yield thatˇ̌

U.�� /
ˇ̌
C
ˇ̌
V.�� /

ˇ̌
� C

�
�


. k � z k/

`2.L2.�// C 

.z�k � �k/

`1�; � 2 Œ�� ;1/:

Inserting this into (3.29), we find thatˇ̌
Ob.�/

ˇ̌
�

C

�1�2ˇ
C
cj�j

�
ecj�j=�@ C C�ı; � 2 Œ�� ;1/; (3.30)

where we have set

ı WD


. k � z k/

`2.L2.�// C 

.z�k � �k/

`1 : (3.31)

Let % 2 .0; 1/ to be made precise further. For all � 2 Œ��;1/, where �� is defined in
Corollary 2.1, it is apparent that the condition � � �� is automatically satisfied whenever
� 2 B.0; �%/ WD ¹� 2 Rn; j�j < �%º. Thus, squaring both sides of (3.30) and integrating
the obtained inequality over B.0; �%/, we get that

k Obk2
L2.B.0;�%//

� C.��2.1�2ˇ/C%n C e2c�
�.1�%/

�%.nC2/�2 C �2C%nı2/; � 2 Œ��;1/:

Then, taking % D .1 � 2ˇ/=.nC 2/ in the above line, we obtain that

k Obk2
L2.B.0;� .1�2ˇ/=.nC2///

� C.��.1�2ˇ/ C � .3nC4/=.nC2/ı2/; � 2 Œ��;1/: (3.32)

On the other hand, using that the Fourier transform is an isometry from L2.Rn/ to itself,
we have for all � 2 Œ��;1/,Z

RnnB.0;� .1�2ˇ/=.nC2//

�
1C j�j2

��1 ˇ̌ Ob.�/ˇ̌2d�
� ��2.1�2ˇ/=.nC2/kbk2

L2.Rn/
� C��2.1�2ˇ/=.nC2/;
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which together with (3.32) yields that

kbk2
H�1.Rn/

� ��2.1�2ˇ/=.nC2/ C � .3nC4/=.nC2/ı2; � 2 Œ��;1/:

Assuming that ı < .2.1 � 2ˇ/=.3nC 4//1=2 DW ı0, we get by minimizing the right-hand
side of the above estimate with respect to � 2 Œ��;1/, that

kbkH�1.Rn/ � Cı
2.1�2ˇ/=.3.nC2//;

and the desired stability inequality follows from this upon recalling that kq � QqkH�1.�/ �
kbkH�1.Rn/. Finally, we complete the proof by noticing that for all ı � ı0, we have

kq � QqkH�1.�/ � kq � QqkL2.�/ �
�
2@ı
�2.1�2ˇ/=.3.nC2//
0

�
ı2.1�2ˇ/=.3.nC2//:

3.3. Proof of Theorem 1.3

Upon possibly substituting qC��C 1 (resp., QqC��C 1) for q (resp., Qq), we shall assume
without loss of generality in the sequel, that �k � 1 (resp., z�k � 1) for all k � 1.

Next, taking into account that q D Qq in�0, we notice that the function uk WD �k � z�k ,
k � 1, satisfies

.��C q � �k/uk D .�k � z�k/z�k in �0; @�uk C ˛uk D 0 on �: (3.33)

Let s 2 .0; 1=2/ fixed arbitrarily. It follows from [10, Theorem 1.1] (with �1 D 1=2 and �0
chosen so that .1=2 � �0/=.1C �0/ D s=4) and [10, comments in Section 1.3] that there
exist three constantsC DC.n;�0;��/ > 0, bD b.n;�0;��; s/ > 0 and 
D
.n;�0/>0,
such that for all r 2 .0; 1/ and all � 2 Œ0;C1/, we have

C
�
kukH1.�0/ C k@�ukL2.�0/

�
� rs=4kukH2.�0/ C e

br�
C�.u/; u 2 H 2.�0/; (3.34)

where we have set �0 WD @�0 and

C�.u/ WD .1C �/
�
kukH1.��/ C k@�ukL2.��/

�
C


.� � q C �/u



L2.�0/
:

Thus, in light of (2.30) and the embedding � � �0, we deduce from (3.33) upon applying
(3.34) with .�; u/ D .�k ; .uk/j�0/, k � 1, that for all r 2 .0; 1/, we have

Ck k � z kkL2.�/

� rs=4.�k C z�k/C e
br�


��
1C k˛kC 0;1.�/

�
�kk k � z kkH1.��/ C j�k �

z�kj
�
;

for some constant C > 0 depending only on n, �, �0, ��, @ and s.
From this and Weyl’s asymptotic formula (1.11), it then follows for all k � 1 and all

r 2 .0; 1/, that

Ck k � z kk
2
L2.�/

� rs=2k4=n C e2br�

�
k4=nk k � z kk

2
H1.��/

C j�k � z�kj
2
�
: (3.35)
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Here and in the remaining part of this proof,C denotes a generic positive constant depend-
ing only on n, �, �0, ��, @ and ˛, which may change from one line to another. Since
the constant C is independent of k � 1 and since

P
k�1 k

�2tC4=n < 1 as we have
2t > 1C 4=n, we find upon multiplying both sides of (3.35) by k�2t and then summing
up the result over k � 1, that

C


�k�t. k � z k/

�

2
`2.L2.�//

� rs=2 C e2br�

�

�k�tC2=n. k � z k/

�

2
`2.H1.��//

C


�k�t.�k � z�k/

�

2
`2

�
; (3.36)

uniformly in r 2 .0; 1/. Further, taking into account that .kt. k � z�k// 2 `
2.L2.�// and

k.kt. k � z�k//k`2.L2.�// � @, we have

. k � z k/

2`2.L2.�// � 

�kt. k � z�k/
�


`2.L2.�//



�k�t. k � z k/
�


`2.L2.�//

� @


�k�t. k � z k/

�


`2.L2.�//

;

by the Cauchy–Schwarz inequality, and hence

C


. k � z k/

2`2.L2.�//
� rs=4 C ebr�


�

�k�t.�k � z�k/
�


`2
C


�k�tC2=n. k � z k/

�


`2.H1.��//

�
; (3.37)

whenever r 2 .0; 1/, by (3.36). Moreover, since

�k�t.�k � z�k/
�


`2
�

�X
k�1

k�2t
�1=2

.�k � z�k/

`1

and
P
k�1 k

�2t <1 as we assumed that 2t > 1C n=2, (3.37) then provides

. k � z k/

2`2.L2.�// � C.rs=4 C ebr�
 ı�/; r 2 .0; 1/; (3.38)

where we have set

ı� WD


.�k � z�k/

`1 C 

�k�tC2=n. k � z k/

�


`2.H1.��//

:

Next, with reference to (3.31) we have

ı2 � 2
�

.�k � Q�k/

2`1 C 

. k � Q k/

2`2.L2.�//�

� 2
�
@


.�k � Q�k/

`1 C 

. k � Q k/

2`2.L2.�//�:

Moreover, since k.�k � Q�k/k`1 � ebr�
 ı� whenever r 2 .0; 1/, the above inequality com-
bined with (3.38) yield that

ı2 � C.rs=4 C ebr�
 ı�/; r 2 .0; 1/: (3.39)
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On the other hand, we have

kq � QqkH�1.�/ � Cı
2.1�2ˇ/=.3.nC2//;

from Theorem 1.2. Putting this together with (3.39), we obtain that

kq � QqkH�1.�/ � C.r
s=4
C ebr�
 ı�/

.1�2ˇ/=.3.nC2//; r 2 .0; 1/: (3.40)

Let us now examine the two cases ı� 2 .0; 1=e/ and ı� 2 Œ1=e;1/ separately. We start
with ı� 2 .0; 1=e/ and take r D j ln ı�j�1=
 2 .0; 1/ in (3.40), getting that

kq � QqkH�1.�/ � C
�
j ln ı�j�s=.4
/ C ı.bC1/�

�.1�2ˇ/=.3.nC2//
� C

�
j ln ı�j�s=.4
/ C e�.bC1/j ln ı�j�.bC1/

�.1�2ˇ/=.3.nC2//
;

where we used in the last line that ı� � 1=.ej ln ı�j/. This immediately yields

kq � QqkH�1.�/ � C j ln ı�j
�# ; ı� 2 .0; 1=e/; (3.41)

where
# WD min

�
s=.4
/;bC 1

�
.1 � 2ˇ/=

�
3.nC 2/

�
:

Next, for ı� 2 Œ1=e;1/, we get upon choosing, say, r D 1=2 in (3.40), and then taking
into account that r < 1 � eı� and .1 � 2ˇ/=.3.nC 2// � 0, that

kq � QqkH�1.�/ � C
�
.eı�/

s=4
C e2


b�1eı�
�.1�2ˇ/=.3.nC2//

� C.eı�/
.1�2ˇ/=.3.nC2//

� Cı�:

Now, with reference to (1.9), the stability estimate (1.10) follows readily from this and
(3.41).

Proof of the continuity of a0

As � is compact, Ls2.�/ is continuously embedded in Ls1.�/ whenever s1 � s2. There-
fore, we may assume without loss of generality that s 2 .n � 1; n/.

Set h.r/ WD r=.r � 2/, r 2 .2;1/. It is easy to see that the function h is decreasing and
bijective from .2n=.n � 1/; 2.n � 1/=.n � 2// onto .n � 1; n/. As a consequence, there
exists a unique p 2 .2n=.n� 1/;2.n� 1/=.n� 2// such that h.p/D s, since s 2 .n� 1;n/.
Otherwise stated, the conjugate exponent of p=2 is s, i.e., s D .p=2/�. Further, we recall
from the comments following [12, Theorem 1.4.1] that the space H 1.�/ D W 1;2.�/ is
continuously embedded into W t;p.�/, where

t D 1 � n=2C n=p 2
�
.n � 2/=

�
2.n � 1/

�
; 1=2

�
:
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And since t � 1=p > 0, the map w 2 W t;p.�/ 7! uj� 2 L
p.�/ is bounded according to

[12, Theorem 1.6.1.3]. Therefore, w 2 V 7! wj� 2 L
p.�/ is bounded as well.

Now, for all u; v 2 V , we haveZ
�

j˛jjujjvj ds.x/ �


˛juj2

1=2

L1.�/



˛jvj2

1=2
L1.�/

;

by applying the Cauchy–Schwarz inequality and then the Hölder inequality, from where
we get that Z

�

j˛jjujjvj ds.x/ � k˛kLs.�/kukLp.�/kvkLp.�/: (A.1)

Thus, bearing in mind that ja0.u; v/j �
R
�
j˛jjujjvjds.x/, we find thatˇ̌

a0.u; v/
ˇ̌
� c0k˛kLs.�/kukV kvkV ;

where c0 is a positive constant depending only on � and s.
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