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Lp improving properties and maximal estimates
for certain multilinear averaging operators

Chu-hee Cho, Jin Bong Lee and Kalachand Shuin

Abstract. In this article we focus on Lp estimates for two types of multilinear lacu-
nary maximal averages over hypersurfaces with curvature conditions. Moreover, we
give a different proof for the bilinear lacunary spherical maximal functions. To obtain
our results, we make use of the L1-improving estimates of multilinear averaging
operators. We also obtain Lp-improving estimates for certain multilinear averages
by means of the nonlinear Brascamp–Lieb inequality.

1. Introduction

Let � be a compact and smooth hypersurface contained in a unit ball Bd .0; 1/ with � non-
vanishing principal curvatures, and let ‚1; : : : ; ‚m be rotation matrices in Md;d .R/. We
assume that ¹‚j ºmjD1 is mutually linearly independent. Then, for f1; f2; : : : ; fm 2 S.Rd /,
we define

(1.1) A‚
� .F/.x/ WD

Z
�

mY
jD1

fj .x C‚jy/ d�� .y/;

where F D .f1; f2; : : : ; fm/ and d�� is the normalized surface measure on � . We also
consider another m-linear averaging operator defined by

(1.2) A†.F/.x/ WD
Z
†

mY
jD1

fj .x C yj / d�†.y/; .y1; : : : ; ym/ D y 2 Rmd ;

where† is a compact .md � 1/-dimensional smooth hypersurface contained in a unit ball
Bmd .0; 1/ with � non-vanishing principal curvatures. Note that � arising in (1.1) satisfies
1 � � � d � 1, while � in (1.2) satisfies 1 � � � md � 1. Moreover, we are interested in
the following lacunary maximal operators associated with (1.1) and (1.2):

(1.3) M‚
� .F/.x/ D sup

`2Z

ˇ̌̌ Z
�

mY
jD1

fj .x � 2
`‚jy/ d�� .y/

ˇ̌̌
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and

(1.4) M†.F/.x/ D sup
`2Z

ˇ̌̌ Z
†

mY
jD1

fj .x � 2
`yj / d�†.y/

ˇ̌̌
:

The purpose of this article is to proveLp-improving estimates of the multilinear averaging
operators defined by (1.1) and (1.2). Further, using these Lp-improving estimates, we
show Lp1 � Lp2 � � � � � Lpm ! Lp boundedness, for 1=p D

Pm
jD1 1=pj , of the multi-

(sub)linear lacunary maximal functions M‚
�

and M†.
The averaging operators given in (1.1) and (1.2), and some related maximal operators,

arise in many studies in multilinear harmonic analysis. Since Coifman and Meyer [13]
opened the path of multilinear harmonic analysis in 1975, there have been significant
developments in the area over the last few decades. Among those achievements, we men-
tion the works [24,25] of Lacey and Thiele, in which they proved Lp-boundedness of the
bilinear Hilbert transform given as

BHT˛.f; g/.x/ WD p:v:
Z 1
�1

f .x � t /g.x � ˛t/
dt
t
; ˛ 6D 0; 1:

Their seminal work settled a long standing conjecture of Calderón. Later, Lacey [23] stud-
ied Lp-boundedness of the bilinear maximal operator

M˛.f; g/.x/ WD sup
t>0

1

2t

Z t

�t

jf .x � y/g.x � ˛y/j dy; ˛ 6D 0; 1;

which is related to the bilinear Hilbert transform. One may regard the averaging opera-
tor A‚

�
as a generalization of M˛ without the supremum, because the condition ˛ 6D 0; 1

corresponds to the linear independence condition of ¹‚j º.
On the other hand, A† (given in (1.2)) is a direct analogue, for t D 1, of the spherical

averages At
Sd�1

f .x/ defined by

At
Sd�1

f .x/ WD

Z
Sd�1

f .x � ty/ d�.y/:

Therefore, we write ASmd�1.F/.x/ D A
1
Smd�1.f1 ˝ � � � ˝ fm/.x; : : : ; x/. For studies on

ASmd�1.F/, we recommend [1, 14, 31, 35] and references therein. In the literature, AtSd�1
have been extensively studied in terms of maximal operators.

Consider the (sub)linear spherical maximal operator M �
Sd�1

defined by

M �
Sd�1

f .x/ D sup
t>0

jAt
Sd�1

f .x/j WD sup
t>0

ˇ̌̌ Z
Sd�1

f .x � ty/ d�.y/
ˇ̌̌
;

where d� is the normalized surface measure on the sphere Sd�1. In 1976, Stein [36]
proved, for d � 3, that the spherical maximal operator M �Sd�1 is bounded in Lp if and
only if p > d=.d � 1/. Later, Bourgain [10] obtained Lp boundedness ofM �

S1
for p > 2.

Those restricted boundedness of M �Sd�1 can be improved if one considers the lacunary
spherical maximal operator

MSd�1f .x/ WD sup
j2Z

ˇ̌
A2

j

Sd�1f .x/
ˇ̌
:
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Calderón [11] provedLp estimates of the operatorMSd�1 for 1 < p �1 and d � 2. After
that, Seeger and Wright [34] showed Lp estimates of general lacunary maximal operators
M� for 1 < p � 1, when the Fourier transform of the surface measure � of � satisfies
j O�.�/j . j�j�", for any " > 0. There are also Lp-Lq estimates for p � q (we call these
Lp-improving estimates) of the spherical average A1Sd�1 [29, 37].

Lacey [22] used the Lp-improving estimates of spherical averages to prove sparse
domination of the corresponding lacunary and full spherical maximal functions. It is
well known that sparse domination of an operator implies vector valued boundedness
and weighted boundedness of that operator with respect to Muckenhoupt Ap weights,
see [27, 30]. This idea has been extensively used to obtain sparse domination of sev-
eral linear and sub-linear operators in the field of harmonic analysis, see [3]. The idea
of Lacey [22], together with Lp-improving estimates of certain bilinear averaging oper-
ators, can be used to study sparse domination of maximal operators associated with the
bilinear operators. We recommend [9,32,33] and references therein, which contain results
of bilinear spherical maximal operators, bilinear maximal triangle averaging operators and
bilinear product-type spherical maximal operators, respectively.

Recently, Christ and Zhou [12] studied Lp1 �Lp2 ! Lp (with 1=p1 C 1=p2 D 1=p)
boundedness of bi-(sub)linear lacunary maximal functions defined on a class of singular
curves, which might be understood in the sense of both (1.3) and (1.4):

M.f1; f2/.x/ WD sup
`2Z
jB2`.f1; f2/.x/j D sup

`2Z

ˇ̌̌ Z
R1

2Y
jD1

fj .x � 2
`j .t//�.t/ dt

ˇ̌̌
;

where  D .1;2/W .�1;1/!R2 and �2C10 ..�1;1//. In consequence, they have proved
Lp1 �Lp2!Lp estimates for 1<p1;p2�1, 1=p1C 1=p2D 1=p, of the bi-(sub)linear
lacunary spherical maximal operator MS2d�1 , for dimension d D 1:

MS1.f1; f2/.x/ WD sup
`2Z
jA2

`

S1.f1; f2/.x/j D sup
`2Z

ˇ̌̌ Z
S1

Y
jD1;2

fj .x � 2
`yj / d�.y/

ˇ̌̌
;

where d�.y/ is the normalized surface measure on the circle S1. For d � 2, the complete
.Lp1 � Lp2 ! Lp/-estimate of the operator MS2d�1 was not known. However, there
are some partial results of the operator MS2d�1 in [9, 32], and very recently, Borges and
Foster [8] have obtained almost sharp results including some endpoint estimates. In this
paper, we give a different proof of the same .Lp1 � Lp2 ! Lp/-estimate for MS2d�1 .

There is another important bi-(sub)linear maximal function

M�

S2d�1
.f1; f2/.x/ WD sup

t>0

jAt
S2d�1

.f1; f2/.x/j;

which is known as bilinear spherical maximal function. The study of this operator started
in [2]. Later, in [21], Jeong and Lee proved almost complete Lp1 � Lp2 ! Lp estimates
for 1=p1 C 1=p2 D 1=p, p1; p2 > 1 and p > d=.2d � 1/ when d � 2. The result was
extended to d D 1 by Chirst and Zhou [12]. It would be interesting to study Lp1 �Lp2 !
Lp boundedness of M�

†, where† is a compact smooth hypersurface with � non-vanishing
principal curvatures .� � 2d � 1/. For some specific hypersurfaces, the optimal (except
few border line cases) Lp1 � Lp2 ! Lp boundedness is known, see [26].
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However, for general hypersurfaces with non-vanishing Gaussian curvature, the esti-
mate L2.Rd / � L2.Rd / ! L1.Rd / is only known for d � 4, see [15]. It would be
interesting to study Lp1 � Lp2 ! Lp estimates of such full maximal averages for p � 1
in all dimensions and their multilinear analogues. However, multilinear estimates for
m-linear full maximal operators withm� 3 have not been pursued, whileL2 � � � � �L2!
L2=m bounds for lacunary maximal operators were studied by Grafakos, He, Honzík and
Park [17]. In this paper, we focus on Lp1 � � � � � Lpm ! Lp bounds for the lacunary
maximal functions for 1=p D 1=p1C � � � C 1=pm and p < 2=m. It will be our future goal
to study m-linear estimates for the full maximal functions for m � 3.

We first state L1-improving and quasi-Banach estimates of the m-linear averaging
operators A‚

�
and A†. Note that the following two propositions are derived by simple

Fourier analysis and multilinear interpolation, and we will give a proof of the propositions
for self-containedness.

Proposition 1.1. Let A‚
� .F/ be given as in (1.1) and let � be a compact smooth hyper-

surface contained in Bd .0; 1/ with � � d � 1 nonvanishing principal curvatures. Let
‚ D ¹‚j º

m
jD1 be a family of mutually linearly independent rotation matrices. Let also

V
ij
� D ¹z D .z1; : : : ; zm/ 2 Œ0; 1�

m W zi D zj D .� C 1/=.� C 2/; zl D 0; l 6D i; j º and let
conv.V�/ be its convex hull. Then, for .1=p1; : : : ; 1=pm/ 2 conv.V�/, we have

kA‚
� .F/kLp.Rd / .

mY
jD1

kfj kLpj .Rd /;

whenever 1 � 1
p
�

2.�C1/
�C2

D
Pm
jD1

1
pj
�

Proposition 1.2. Let d � 2 and let A†.F/ be an average given by (1.2) over a compact
smooth hypersurface † with � nonvanishing principal curvatures, with .m � 1/d < � �
md � 1. Then, for 1 � pj � 2, j D 1; 2; : : : ; m and mC1

2
�
Pm
jD1

1
pj
< 2dC�

2d
, the fol-

lowing L1-improving estimates hold:

(1.5) kA†.F/kL1.Rd / .
mY
jD1

kfj kLpj .Rd /:

Moreover, for mC1
2
�

1
p
D
Pm
jD1

1
pj
< 2dC�

2d
, we have

(1.6) kA†.F/kLp.Rd / .
mY
jD1

kfj kLpj .Rd /:

Let 1 � p; p1; : : : ; pm <1 with 1=p D 1=p1 C � � � C 1=pm. Then, for f1; : : : ; fm with
supp. yfj / � Anj WD ¹�j 2 Rd W 2nj�1 � j�j j � 2njC1º, nj 2 Z, j D 1; : : : ; m, we have

(1.7) kA†.F/kLp.Rd / . 2�ıjnj
mY
jD1

kfj kLpj .Rd /;

where ı D ı.p; �;m; d/ > 0 and jnj D
qPm

jD1 n
2
j .
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When p > 1, one can obtain differentLp-improving estimates for A‚
�

under a specific
choice of ¹‚j º and � . In this case, we do not need any curvature condition on � and only
the dimension of surfaces matters. Let �k be a k-dimensional C 2 surface in Rd . We
choose mutually linearly independent ¹‚j º. Moreover, we assume that for any choice of
¹jiº

`
iD1, with 2 � ` � k C 1 � m, the family ¹‚j º satisfies

dim
�
span1�i�`.¹‚ji .y

0; 0/ 2 Rd W y0 2 Rkº/
�
� min¹k � 1C `; dº;(1.8)

dim
� \̀
iD1

¹‚ji .y
0; 0/ 2 Rd W y0 2 Rkº

�
� k C 1 � `:(1.9)

The assumption (1.9) yields that the dimension of intersection of any subset ¹‚ji º
kC1
iD1 of

¹‚j º
m
jD1 is equal to zero. The following theorem is one of our main results.

Theorem 1.3. Let m � d � 2 and let �k be a k-dimensional C 2 surface in Bd .0; 1/.
Suppose that ¹‚j º satisfies (1.8) and (1.9), and k is given so that

m � d C k

m
�
d � k � 1

d
k;(1.10)

m � 1

m
�
.d � k/k

d
�(1.11)

Then A‚
�k

is of strong-type .m; : : : ; m; d=.d � k//. That is, we have

kA‚
�k
.F/kLd=.d�k/.Rd / .

mY
jD1

kfj kLm.Rd /:

In our proof of Theorem 1.3, we mainly use the nonlinear Brascamp–Lieb inequality
proved in [5]. We give details on the inequality and the proof of Theorem 1.3 in Section 3.

In Theorem 1.3, one can usem� d to check that (1.10) and (1.11) are equivalent when
d D 2k C 1. Precisely, (1.10) implies (1.11) when d � 2k C 1, and (1.11) implies (1.10)
when d � 2kC 1. Moreover, if we assume kD d � 1, then we only need (1.9) to guarantee
the following result.

Corollary 1.4. Let m � d � 2, let �d�1 be a C 2 hypersurface, and let ¹‚j º be mutually
linearly independent that satisfy (1.9). Then A‚

�d�1
is of strong-type .m; : : : ; m; d/.

One can find similar results in Theorem 1.2 of [20], which yields restricted strong-
type .m; : : : ; m; m/ and .m dC1

d
; : : : ; m dC1

d
; d C 1/ estimates for A‚

�d�1
when �d�1

is a sphere. Note that in [20], the authors consider m � d cases with linearly indepen-
dent ¹‚j º, so it cannot be directly compared to Corollary 1.4 in which m � d and (1.9)
are considered. WhenmD d , however, Corollary 1.4 with �d�1D Sd�1gives strong-type
.m; : : : ; m;m/ estimates.

To study further how Theorem 1.2 of [20] and Corollary 1.4 are related, we introduce
a quantity D which is given, for each .p1; : : : ; pm; p/-estimate, by

D.p1; : : : ; pmIp/ WD
� 1
p1
C � � � C

1

pm

�
�
1

p
�
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One can measure the extent ofLp-improving by means of the difference D. Then we have

D.m; : : : ; mIm/ D
m � 1

m
; D

�
m
d C 1

d
; : : : ; m

d C 1

d
I d C 1

�
D
d � 1

d C 1
,

where m � d . On the other hand, Corollary 1.4 yields

D.m; : : : ; mI d/ D
d � 1

d
; m � d:

Thus, Corollary 1.4 yields wider range ofLp-improving than .m dC1
d
; : : : ;m dC1

d
;d C 1/-

estimate of Theorem 1.2 in [20] under a certain choice of ¹‚j º. We also note that the
difference .d � 1/=.d C 1/ is the best possible for linear spherical averages, since ASd�1

satisfies L.dC1/=d .Rd /! Ld .Rd / boundedness. Even for L1-improving estimates in
Proposition 1.1, we obtain D.p1; : : : ; pmI 1/ D .d � 1/=.d C 1/. Hence, one can say
that the number .d � 1/=d only occurs for multilinear averaging operators with certain
transversality of ¹‚j º. Moreover, we only assume that a surface � is of class C 2 without
any curvature condition, and it would be very interesting to study boundedness of maximal
operators associated with A‚

�k
.

By making use of the quasi-Banach space estimates, Propositions 1.1 and 1.2 together
with Sobolev regularity estimates, we obtain multilinear estimates for the lacunary maxi-
mal operators M‚

�
and M†.

Theorem 1.5. Let 1 � pıi � 1 and let
Pm
iD1 1=p

ı
i D 1=pı, with pı � 1 for d � 2.

Suppose that A‚
�

satisfies the following Sobolev regularity estimates:

(1.12) kA‚
� .F/kLpı .Rd / . 2�"jnj

mY
jD1

kfj k
L
pı
j .Rd /

;

where f1; : : : ;fm with supp. yfj /�Anj WD ¹�j 2Rd W2nj�1 � j�j j � 2njC1º, j D 1; : : : ;m,
and " D ".p; �; m; d/ > 0. Then the lacunary maximal function M‚

�
maps Lp1.Rd / �

� � � �Lpm.Rd /! Lp.Rd / for .1=p1; : : : ; 1=pm/ 2 conv.Vı� /[ ¹.0; : : : ; 0/º and 1=p D
1=p1 C � � � C 1=pm, where conv.Vı� / denotes an interior of the convex hull of conv.V�/
and the origin. In particular, if one considers a lacunary maximal operator associated
with Sd�1, then the range of p becomes p > .d C 1/=.2d/.

Observe that the multilinear averaging operator (1.1) is an analogous multilinear aver-
aging operator to the bilinear operator B� considered by Greenleaf et al. [19]:

B� .f; g/.x/ D

Z
S1
f .x � y/g.x � �y/ d�.y/;

where � denotes a counter-clockwise rotation. Therefore, Theorem 1.5 (when m D 2)
yields boundedness of the lacunary maximal function corresponding to the averaging oper-
ator B� under the assumption on the Sobolev regularity estimates (1.12). Thus, one only
need to show (1.12), but it is not accomplished in this paper.

On the other hand, one can actually obtain Sobolev regularity estimates for A†, as
in (1.7) of Proposition 1.2. Thus, another main result of this paper is the following lacunary
maximal estimates for A†.
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Theorem 1.6. Let

mC 1

2
�
1

p
D

mX
jD1

1

pj
<
2d C �

2d
for 1 � pj � 2 and � > .m � 1/d .

Then the lacunary maximal operator M† maps Lp1.Rd / � � � � � Lpm.Rd /! Lp.Rd /.

The .Lp1 � � � � � Lpm ! Lp/-estimates of Theorem 1.6 are easily extended to 1 �
pj �1 via multilinear interpolation, since M† is bounded from L1 � � � � �L1 to L1.

Remark 1.7. What we will prove in Sections 4 and 5 is that multi-linear estimates of
lacunary maximal operators will be derived from L1-improving estimates and Sobolev
regularity estimates of corresponding averaging operators. Specifically, if one obtains
Lp
ı
1 � � � � � Lp

ı
m ! L1 estimates of averaging operators with

Pm
jD11=p

ı
j > 1, then one

also obtains Lp
ı
1 � � � � � Lp

ı
m ! Lp

ı;1 estimates of the lacunary maximal operators forPm
jD11=p

ı
j D 1=p

ı together with certain polynomial growth, which is Lemma 4.2. The
polynomial growth of Lemma 4.2 will be handled by interpolation with an exponential
decay estimates of Lemma 4.3, which is originated by the Sobolev regularity estimates
of averaging operators. As a result, we obtain Lp1 � � � � � Lpm ! Lp estimates forPm
jD1 1=pj D 1=p, with p1; : : : ; pm � 1 and p > pı.

As a simple application of Remark 1.7, we obtain the following result.

Remark 1.8. Theorem 1.6 also yields the following boundedness of the bilinear lacunary
spherical maximal function MS2d�1 . Let d � 1, 1 < p1;p2 �1 and 1=p1C 1=p2D 1=p.
Then

(1.13) kMS2d�1.f1; f2/kLp . kf1kLp1 kf2kLp2 :

Note that we make use of the L1 �L1! L1=2 estimates of A1S2d�1 given by [20] and the
machinery of Section 4 to obtain (1.13) for p > 1=2. This estimate is already given in [8]
and we give a different proof at the end of this paper.

Remark 1.9. It is known that M† satisfies .L2 � � � � � L2 ! L2=m/-estimates for cer-
tain �, see [17]. One can check that even for the worst indices, our Theorem 1.6 is better
than the .L2 � � � � � L2 ! L2=m/-estimates in the sense that Theorem 1.6 holds for Lp

spaces with lower indices, since 2=m > 2=.mC 1/ > 2d=.2d C �/. When � � .m� 1/d ,
we do not know anything yet.

Notations and definitions

• For a cube Q or a ball B in Rd , we define CQ and CB whose sidelength and radius
are C times those of Q and B with the same centers, respectively. For a measurable
set E, we denote by meas.E/ the measure of E.

• Choose a Schwartz class function � such that supp.y�/ � B.0; 2/ and y�.�/ D 1 for
� 2 B.0; 1/. Also consider y .�/ D y�.�/� y�.2�/ so that supp. y / � ¹2�1 < j�j < 2º.
By introducing the symbols y�`.�/ D y�.2�`�/ and y `.�/ D y .2�`�/, we define the
frequency projection operators:

(1.14) yP<`f .�/ D yf .�/ y�`.�/ and yP`f .�/ D yf .�/ y `.�/:
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2. Proofs of Propositions 1.1 and 1.2

2.1. Proof of Proposition 1.1

The proof of Proposition 1.1 follows from the following lemma and a standard technique
from [18, 20].

Lemma 2.1. The operator A‚
�

is bounded from Lp1.Rd / � � � � � Lpm.Rd / to L1.Rd /
for .1=p1; : : : ; 1=pm/ 2 conv.V�/. In particular, if � D d � 1, then one example of A‚

�

is the spherical averaging operator A‚
Sd�1

.

Let p D kC2
2.kC1/

and .1=p1; : : : ; 1=pm/ 2 conv.V�/. We begin with

kA‚
� .F/k

p

Lp.Rd /
D

Z
Rd

ˇ̌̌ Z
�

mY
jD1

fj .x C‚jy/ d�.y/
ˇ̌̌p

dx:

Decompose Rd into countable union of unit cubes Qn D nC Œ0; 1/d , n 2 Zd . Using the
compactness of � , we have

(2.1) kA‚
� .F/k

p

Lp.Rd /
D

X
n2Zd

Z
Qn

ˇ̌̌ Z
�

mY
jD1

fj .x C‚jy/ d�.y/
ˇ̌̌p

dx:

Now we apply Hölder’s inequality to obtainZ
Qn

ˇ̌̌ Z
�

mY
jD1

fj .x C‚jy/ d�.y/
ˇ̌̌p

dx(2.2)

.
�Z
Qn

Z
�

ˇ̌̌ mY
jD1

fj .x C‚jy/
ˇ̌̌
d�.y/ dx

�p
:

Since x 2 Qn and y 2 supp.�/, we have the following equality:

(2.3) fj .x C‚jy/ D .fj 1 zQn
/.x C‚jy/;

where zQ denotes a cube whose sidelength is 3 times that of Q with the same center. With
the help of (2.3) and Lemma 2.1, we have�Z

Qn

Z
�

ˇ̌̌ mY
jD1

fj .x C‚jy/
ˇ̌̌
d�.y/ dx

�p
(2.4)

D

�Z
Qn

Z
�

ˇ̌̌ mY
jD1

.fj 1 zQn
/.x C‚jy/

ˇ̌̌
d�.y/ dx

�p
.
� mY
jD1

k.fj 1 zQn
/kLpj .Rd /

�p
D

mY
jD1

kfj 1 zQn
k
p

L
pj .Rd /

whenever .1=p1; : : : ; 1=pm/ is in conv.V�/.
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By (2.1), (2.2) and (2.4), we have

(2.5) kA‚
� .F/k

p

Lp.Rd /
.
X

n2Zd

mY
jD1

kfj 1 zQn
k
p

L
pj .Rd /

:

We make use of Hölder’s inequality on (2.5) to obtain

kA‚
� .F/k

p

Lp.Rd /
.

mY
jD1

�X
n2Zd

kfj 1 zQn
k
pj

L
pj .Rd /

�p=pj
:

Note that ¹ zQnºn2Zd is a finitely overlapping cover of Rd . Therefore, we have

kA‚
� .F/kLp.Rd / .

mY
jD1

kfj kLpj .Rd /;

where
1

p
D

mX
jD1

1

pj
and

� 1
p1

, � � � ,
1

pm

�
2 conv.V�/:

Thus, by showing Lemma 2.1, we complete the proof of Proposition 1.1.

Proof of Lemma 2.1. Let a be a symbol satisfying ja.�/j . .1C j�j/�� for some � > 0.
Then, for m D 1, it is well known [29, 37] that Ta.f / D .a yf /L is bounded from Lp.Rd /
to Lp

0

.Rd / for 1=p C 1=p0 D 1, p 2 Œ1; 2�, and 1=p � 1=2 � 1
2
. �
�C1

/. Let � be a hyper-
surface with � nonvanishing principal curvatures. For the bilinear case m D 2, by change
of variables, we have

kA‚
� .f; g/k1 �

Z
Rd

Z
�

jf .x C‚1y/g.x C‚2y/j d�.y/ dx

D

Z
Rd

jf .x/j

Z
�

jg.x C .‚2 �‚1/y/j d�.y/ dx � kf kpkgkp;

where the last inequality follows from Hölder’s inequality and 1=p D .� C 1/=.� C 2/.
Thus, for the m-linear case, it follows that

kA‚
� .F/k1 �

Z
Rd

Z
�

ˇ̌̌ mY
jD1

fj .x C‚jy/
ˇ̌̌
d�.y/ dx

�

Z
Rd

Z
�

jf1.x C‚1y/f2.x C‚2y/j d�.y/ dx �
Y

3�j�m

kfj k1

� kf1kpkf2kp
Y

3�j�m

kfj k1;

where 1=p D .� C 1/=.� C 2/. Similarly, interchanging the role of the functions and
invoking multilinear interpolation we get the desired estimate.



C. Cho, J. B. Lee and K. Shuin 10

2.2. Proof of Proposition 1.2

2.2.1. L1-improving estimates (1.5). By translation x ! x C ym, we reduce the L1-
norm of A† into L1-norm of the following .m � 1/-linear operator:

(2.6)
Z
†

m�1Y
jD1

jfj .x C ym � yj /j d�†.y/:

By using the Fourier transform, we rewrite (2.6) as

(2.7)
Z

R.m�1/d

e2�ix�.�1C���C�m�1/ dy�†.� 0;��1 � � � � � �m�1/
m�1Y
jD1

j yfj j.�j / d� 0;

where � 0 D .�1; : : : ; �m�1/ 2 R.m�1/d .
Since the hypersurface † has � nonvanishing principal curvatures, using the result of

Littman [28], we get jdy�†.�/j . .1C j�j/��=2 for � 2 Rmd . This implies that the symbol
of (2.7) satisfies

jdy�†.� 0;��1 � � � � � �m�1/j . .1C j� 0j/��=2:

By applying Hölder’s inequality to the expression (2.7), we deduce that it is bounded
above by� Z

R.m�1/d

m�1Y
jD1

jj yfj j.�j /j
p0 d� 0

�1=p0
�

� Z
R.m�1/d

.1C j� 0j/��p=2 d� 0
�1=p

;

and the last term is finite if p > 2d.m � 1/=�. Thus, for 2d.m � 1/=� < p < 2, we haveˇ̌̌ Z
†

m�1Y
jD1

f .x C ym � yj / d�†.y/
ˇ̌̌

.
m�1Y
jD1

kj yfj jkLp0 .Rd /:

Together with the L1-norm of fm, for 2d.m � 1/=� < p � 2, we have

(2.8) kA†.F/kL1.Rd / .
m�1Y
jD1

kfj kLp.Rd / � kfmkL1.Rd /:

The symmetry of estimates (2.8) and multilinear interpolation yield that

(2.9) kA†.F/kL1.Rd / .
mY
jD1

kfj kLpj .Rd /;

where mC1
2
�
Pm
jD1

1
pj
< 2dC�

2d
and 1 � pj � 2.

2.2.2. Quasi-Banach space estimates (1.6). Since we obtain L1-improving estimates
for A†, one can apply the argument of Section 2.1 to show that A† satisfies a Hölder-type
multilinear estimates onLp.Rd / for 1=pD

Pm
jD11=pj , with pj in (2.9). That is, we have

kA†.F/kLp.Rd / .
mY
jD1

kfj kLpj .Rd /;
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where mC1
2
�
Pm
jD1

1
pj
< 2dC�

2d
and 1 � pj � 2. This proves the quasi-Banach space

estimates.

2.2.3. Smoothing estimates (1.7). For the Sobolev regularity estimates, note that A† is
written in terms of Fourier multipliers:

A†.F/.x/ D
Z

Rmd

e2�ix�.�1C���C�m/ dy�†.E� /
mY
jD1

yfj .�j / dE�:

Moreover, we consider f1; : : : ; fm whose Fourier transforms are supported in the sets
¹� 2 Rd W 2nj�1 � j�j � 2njC1º, with positive integers nj , j D 1; : : : ; m, respectively.
Since dy�† satisfies the following limited decay condition,

(2.10) j@˛dy�†.E� /j . .1C jE� j/��=2 for any multi-indices ˛;

we are going to make use of one of main results of [16] initial estimates.

Theorem 2.2 (Theorem 1.1 in [16]). Let m be a positive number such that m � 2 and
1 < q < 2m=.m � 1/. Set Mq to be a positive integer satisfying

Mq >
m.m � 1/d

2m � .m � 1/q
�

Suppose that m 2 Lq.Rmd / \ CMq .Rmd / with

k@˛mkL1.Rmd / � D0 for j˛j �Mq :

Then we have

kTm.f1; : : : ; fm/kL2=m.Rd / . D
1�.m�1/q=.2m/
0 kmk

.m�1/q=.2m/

Lq.Rmd /

mY
jD1

kfj kL2.Rd /:

Note that Tm.f1; : : : ; fm/ is a multilinear operator whose Fourier multiplier is m.
Then, by putting (2.10) into Theorem 2.2, we have

m.�/ D dy�.�/
mY
jD1

y nj .�j /; D0 ' 1; km.�/kLq.Rmd / . 2�jnj�=2 2jnjmd=q :

Since q 2 .1; 2m=.m � 1//, for f1; : : : ; fm, whose Fourier transforms are supported in
Anj D ¹�j 2 Rd W 2nj�1 � j�j j � 2njC1º, we have

(2.11) kA†.F/kL2=m.Rd / . 2�jnj.�=2�.m�1/d=2/
mY
jD1

kfj kL2.Rd /:

Note that, for 1 � p; p1; : : : ; pm � 1 with 1=p D 1=p1 C � � � C 1=pm, we have trivial
estimates

(2.12) kA†.F/kLp.Rd / .
mY
jD1

kfj kLpj .Rd /:
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By interpolating (2.11) and (2.12), for any 1 � p; p1; : : : ; pm <1 with 1=p D 1=p1 C
� � � C 1=pm, there is a ı D ı.p; �;m; d/ > 0 such that

kA†.F/kLp.Rd / . 2�ıjnj
mY
jD1

kfj kLpj .Rd /;

when yfj is supported in Anj for j D 1; : : : ; m. This proves (1.7).

3. A nonlinear Brascamp–Lieb inequality approach to Lp-improving
estimates for A‚

�

3.1. Nonlinear Brascamp–Lieb inequality

Let fj be nonnegative integrable functions, let Lj WRd ! Rdj be linear surjections, and
let cj 2 Œ0; 1� for j D 1; : : : ;m. We also identify a finite-dimensional Hilbert spaceH and
a Euclidean space Rn, for instance, we letH D Rd andHj D Rdj . Then we can consider
the linear Brascamp–Lieb inequality

(3.1)
Z

Rd

mY
jD1

.fj .Ljx//
cj dx � BL.L; c/

mY
jD1

� Z
Rdj

fj .xj / dxj
�cj
;

where L D .H; ¹Hj º1�j�m; ¹Lj º1�j�m/, c D .c1; : : : ; cm/, and BL.L; c/ is the smallest
such constant. Here, we call .L; c/ a Brascamp–Lieb datum, and BL.L; c/ a Brascamp–
Lieb constant. There have been studies on nonlinear generalizations of the Brascamp–
Lieb inequality. Bennett, Carbery and Wright [7] showed that (3.1) holds for dj D d � 1
and cj D 1=.m � 1/ when the Lj ’s are smooth submersions supported in a sufficiently
small neighborhood. They also proved that the Lj ’s could be C 3 mappings under certain
transversality conditions on the submersions. Later, Bennett and Bez [4] extended the
results of [7] to general dj and C 1;ˇ mappings. Recently, Bennett, Bez, Buschenhenke,
Cowling, and Flock [5] proved the following nonlinear Brascamp–Lieb inequality.

Theorem 3.1 (Theorem 1.1 in [5]). Let .L; c/ be a Brascamp–Lieb datum. Suppose that
Bj WRd ! Rdj are C 2 submersions in a neighborhood of a point x0 and dBj .x0/ D Lj ,
j D 1; 2; : : : ; m. Then, for each " > 0, there exists a neighborhood U of x0 such thatZ

U

mY
jD1

.fj .Bj .x///
cj dx � .1C "/BL.L; c/

mY
jD1

� Z
Rdj

fj .xj / dxj
�cj
:

Although Theorem 3.1 is stated with C 2 submersions, the proof of [5] guarantees that
the theorem still holds if one takes C 1C� submersions for any � > 0. It is known [6] that
BL.L; c/ is finite if and only if the following conditions hold:

dim.V / �
mX
jD1

cj dim.LjV / for all subspaces V of Rd ;(3.2)

d D

mX
jD1

cjdj :(3.3)
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These conditions are called the transversality condition and the scaling condition, respec-
tively. We also present necessary conditions for finiteness of BL.L; c/:

m\
jD1

ker.Lj / D ¹0º;
mX
jD1

cj � 1:

But, it is not simple to check (3.2) for a given Brascamp–Lieb datum. The following
lemma may be useful in such verification. First, we say a proper subspace Vc of Rd is a
critical subspace if it satisfies

dim.Vc/ D
mX
jD1

cj dim.LjVc/:

For a given subspace Vc , we split the Brascamp–Lieb datum into two parts, .LVc ; c/ and
.LV ?c ; c/, as follows:

LVc D .Vc ; ¹LjVcº1�j�m; ¹Lj;Vc º1�j�m/;
LV ?c D .H=Vc ; ¹Hj =.LjVc/º1�j�m; ¹Lj;H=Vc º1�j�m/;

where H=Vc D V ?c and

Lj;Vc W Vc ! LjVc ;

Lj;H=Vc W H=Vc ! Hj =.LjVc/:

In this paper, we choose H D Rd �Rk and Hj D Rd .

Lemma 3.2 (Lemma 4.6 in [6]). Let Vc be a critical subspace. Then BL.L; c/ is finite
if and only if .LVc ; c/ and .LV ?c ; c/ satisfy (3.2) and (3.3) for any subspace V of Vc
and V ?c , respectively.

Now we will prove Theorem 1.3. We first decompose �k into a finite cover ¹�k� º for
which A�k .F/.x/ can be written as a finite summation of the following operators:

A‚

�k�
.F/.x/ D

Z
Rk

mY
jD1

fj .x C‚j .y
0; ˆ� .y

0//�� .y
0/ dy0;

where ˆ� WRk ! Rd�k is a C 2-submersion and �� is a smooth cut-off function.
To simplify our proof, we consider a more general m-linear operator T EBK . Suppose

Bj WRd �Rk ! Rd are C 2 submersions and Lj D dBj .0; 0/, with j D 1; : : : ; m. Then
T
EB
K .F/ is given by

T
EB
K .F/.x/ D

Z
Rk

mY
jD1

fj .Bj .x; y//K.y/ dy; y 2 Rk ; x 2 Rd ;

where K is a nonnegative bounded function supported in a ball B.0; "/ � Rk . Note that
A‚

�k�
.F/ is an example of T EBK for K D �� and Bj .x; y0/ D x C‚j .y0; ˆ� .y0//. Also, we

take cj D 1=pj for j D 1; : : : ;m and cmC1D 1=p0, with 1=pD 1=p1C� � �C1=pm�k=d .
Then we prove the following proposition.
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Proposition 3.3. Let p1; : : : ;pm 2 Œ1;1/ satisfy
Pm
jD1 1=pj � 1. Let 1=pD

Pm
jD1 1=pj

�k=d , with 1 � p � d=.d � k/. Suppose .L;p/ is a Brascamp–Lieb datum for

L D .Rd �Rk ; ¹Rd ºmC1jD1 ; ¹Lj º
mC1
jD1 /;

with Lj D dBj .0; 0/, j D 1; : : : ; m, LmC1 D d�Rd , and

p D
� 1
p1

, . . . , 1
pm

, 1
p0

�
:

Then we have

kT
EB
K .F/kLp.Rd / . .1C "/BL.L;p/

mY
jD1

kfj kLpj .Rd /:

Proposition 3.3 states that the Brascamp–Lieb inequality implies an Lp-improving
estimate.

Proof. Since p � 1, by making use of duality, we get

kT
EB
K .F/kLp.Rd / D sup

kgkp0�1

Z
Rd

T
EB
K .F/.x/g.x/ dx:

Now we choose g 2 Lp
0

.Rd / such that kgkLp0 .Rd / � 1. As in Section 2, we decom-
pose Rd into countable union of cubesQn."/, whereQ."/ is a cube centered at the origin
with side-length ", and Qn."/ denotes "n translation of Q."/ for n 2 Zd . Then it follows
that Z

Rd

T
EB
K .F/.x/g.x/ dx D

X
n2Zd

Z
Qn."/

Z
Rk

� mY
jD1

fj .Bj .x; y//
�
g.x/K.y/ dy dx

D

X
n2Zd

Z
Œ�"=2;"=2/d

Z
Rk

� mY
jD1

fj .Bj .x C "n; y//
�
g.x C "n/K.y/ dy dx

D

X
n2Zd

Z
Œ�"=2;"=2/d

Z
Rk

� mY
jD1

�"nŒfj �.Bj .x; y//
�
�"nŒg�.x/K.y/ dy dx;

where �"nŒf �.x/D f .xC "n/. Then we apply Theorem 3.1 to �"nŒfj �pj ; �"nŒg�p
0

, together
with the additional mapping LmC1 D d�Rd , which yieldsZ

Rd

T
EB
K .F/.x/g.x/ dx(3.4)

� .1C "/BL.L;p/
X

n2Zd

� mY
jD1

k�"nŒfj �kLpj . zQ."//

�
k�"nŒg�kLp0 . zQ."//;

whenever

dim.V / �
mX
jD1

dim.dBj .0x ; 0y/.V //
pj

C
dim. d�Rd .V //

p0
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for every subspace V of Rd �Rk , together with

k

d
C
1

p
D

mX
jD1

1

pj
�

Note that " in (3.4) is uniform in n due to Bj .xC "n; y/D Bj .x; y/C "n and also that QQ
denotes a cube whose side-length is 3 times that of Q with the same center.

We choose g so that kgkp0 � 1, so we ignore kgkLp0 . zQn/
, and that k�"nŒfj �kLpj . zQ."//D

kfj kLpj . zQn."//
. Thus, by Hölder’s inequality, we haveX

n2Zd

mY
jD1

kfj kLpj . zQn."//
.

mY
jD1

kfj kLpj . zQn."//


`
rj .Zd /

for
Pm
jD1 1=rj D 1 with 1 � rj � 1. From

Pm
jD1 1=pj � 1, one can choose rj ’s such

that 1=rj � 1=pj for each j D 1; : : : ;m, then we use the `pj ,! `rj embedding to obtainZ
Rd

T
EB
K .F/.x/g.x/ dx � .1C "/BL.L;p/

mY
jD1

kfj kLpj . zQn."//


`
rj .Zd /

(3.5)

� .1C "/BL.L;p/
mY
jD1

kfj kLpj . zQn."//


`
pj .Zd /

:

Since zQn."/ are finitely overlapped, taking the supremum over kgkp0 � 1 in (3.5) gives

kT
EB
K .F/kLp.Rd / . .1C "/BL.L;p/

mY
jD1

kfj kLpj .Rd /

for the desired p; p1; : : : ; pm.

Now we present the proof of Theorem 1.3.

3.2. Proof of Theorem 1.3

There is a C 2 mapping ˆWRk ! Rdc for dc D d � k such that �k is locally a graph
¹.y0; ˆ.y0// 2 Rd º. Then, in Proposition 3.3, we let Bj .x; y0/ D x C‚j .y0; ˆ.y0// for
ˆ D .�1; : : : ; �dc /, j D 1; : : : ; m. Now, for j D m C 1, we let BmC1 D �Rd , where
�Rd WRd �Rk ! Rd is a projection onto x-variable in Rd . For j D 1; : : : ; m, we define
Lj WD dBj .0; 0/, which is given by

2666666664
Id ‚jrjy0D0

2666666664

y01
:::

y0
k

�1.y0/
:::

�d�k.y0/

3777777775

3777777775
D

2666666666664
Id ‚j

2666666666664

1 0 : : : 0

0 1 : : : 0
:::

:::
: : :

:::

0 0 : : : 1

�1
y01
.0/ �1

y02
.0/ : : : �1

y0
k

.0/

:::
:::

: : :
:::

�
dc
y01
.0/ �

dc
y02
.0/ : : : �

dc
y0
k

.0/

3777777777775

3777777777775
;
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where Id denotes the d � d identity matrix. If there is no confusion, we simply write

Lj D

�
Id ‚j

�
Ik

dˆ.0/

��
; dˆ D .d�1; : : : ; d�dc /:

Without loss of generality, we assume that dˆ.0/ is a dc � k zero matrix. That is, for
j D 1; : : : ; m, we have

Lj D
�
Id ‚1j

�
; ‚j D

�
‚1j ‚2j

�
;

where ‚1j and ‚2j are d � k and d � dc matrices, respectively. Since ‚1j has k linearly
independent columns, its rank is k. In the case of j D mC 1, we have

d�Rd D
�
Id Zd

�
;

whereZd means all d � d elements are zero. We show that LD .L1; : : : ;Lm; d�Rd / and
p D .1=m; : : : ; 1=m; k=d/ are the Brascamp–Lieb data by making use of Lemma 3.2.

Let K� D ker.�Rd / D ¹.0; y0/ 2 Rd �Rk W y0 2 Rkº, which is k-dimensional. Then
it is clear that K?� D ¹.x; 0/ 2 Rd �Rk W x 2 Rd º. For K� , we have

mX
jD1

dim.LjK�/
pj

C
dim.�RdK�/

p0
D

mX
jD1

k

pj
D k D dim.K�/:

Since dim.LjK/ equals dim.K/ for any subspace K of K� , with j D 1; : : : ; m, we also
have

mX
jD1

dim.LjK/
pj

C
dim.�RdK/

p0
D

mX
jD1

dim.K/
pj

D dim.K/:

Thus, K� is a critical subspace and .LK� ;p/ is a Brascamp–Lieb datum.
On the other hand, for K?� D ¹.x; 0/ 2 Rd �Rk W x 2 Rd º, we consider .LK?� ;p/:

LK?� D
�
K?� ; ¹R

d=.LjK�/º1�j�mC1; ¹Lj;K?� º1�j�mC1
�
;

p D
� 1
p1

, . . . , 1
pm

, 1
p0

�
:

Note that �Rd ;K?�
D �Rd . Then we have

mX
jD1

dim.Lj;K?�K
?
� /

pj
C

dim.�RdK?� /

p0
D

mX
jD1

d � k

pj
C
d

p0

D d � k C
dk

d
D d D dim.K?� /:

It remains to verify (3.2) for any proper subspace ofK?� . In order to show this, we consider
a subspaceK ofK?� whose dimension dK satisfies d > dK � k or k > dK � 1. Note that
it is important to check the dimension ofLjK=LjK� , but it suffices to considerK instead
of LjK because every element of K is given by .x; 0/ 2 Rd �Rk and Lj .x; 0/ D x.
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3.2.1. The case d > dK > k. Let K be a dK-dimensional subspace of K?� and observe
that

L�.0; y
0/ D ‚1�y

0 for all .0; y0/ 2 K� :

Then we defineKj WDLjK� D ¹.‚1j y
0; 0/ 2Rd �Rky0 2Rkº, which is a k-dimensional

subspace of K?� due to the full rank of ‚1j . It is possible that for some � D 1; : : : ; m,
L�K \ K� D K \ K� is k-dimensional. Thus, in general, we have dim.L�;K?�K/ D
dim.K=K�/ � dK � k. Note that our choice of ¹‚j º satisfying (1.8) allows us to have

dim.span¹K�; Kj1 ; : : : ; Kj`º/ � k C `; ji 6D �:

That is, there are at most ` D dK � k j ’s such that Kj is a subspace of K. Therefore, we
have dim.K=Kj / � dK � k for `C 1 D dK � k C 1 of the j ’s. Otherwise, for the rest
m � ` � 1 j ’s, we have dim.K=Kj / � dK � k C 1. Hence, it follows that

mX
jD1

dim.Lj;K?�K/

pj
C

dim.�RdK/

p0

�
.dK � k/.`C 1/

m
C
.dK � k C 1/.m � ` � 1/

m
C
k

d
dK

D .dK � k/C
m � ` � 1

m
C
k

d
dK D dK � k C

m � dK C k � 1

m
C
k

d
dK :(3.6)

Here we choose pj D m for all j D 1; : : : ; m in order to minimize the loss, that is,
to maximize the lower bound of (3.6). Thus, we fix p as .1=p1; : : : ; 1=pm; 1=p0/ D
.1=m; : : : ; 1=m; k=d/: Note that the last expression of (3.6) is greater than or equal to dK
whenever

(3.7) �k C
m � dK C k � 1

m
C
k

d
dK � 0:

Since d > dK > k, it follows that the left-hand side of (3.7) is larger than

�k C
m � d C 1C k � 1

m
C
k.k C 1/

d
�

Thus, (3.7) holds whenever

m � d C k

m
�
d � k � 1

d
k:

3.2.2. The case k � dK � 1.

The case dK D k.
Let K be not equal to any Kj for j D 1; : : : ; m so that dim.K \Kj / � k � 1. Thus,

we have dim.Lj;K?�K/ D dim.K=Kj / � 1 for j D 1; : : : ; m, so it follows that

mX
jD1

dim.Lj;K?�K/
pj

C
dim.�RdK/

p0
�

mX
jD1

1

m
C
k2

d

D 1C
k2

d
D k C 1 �

d � k

d
k:
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The last expression is greater than or equal to dim.K/ D k if

(3.8) 1 �
d � k

d
k:

On the other hand, let K D K� for some � D 1; : : : ; m. By using (1.9), we have that
dim.K \Kj / � k � 1 for j 6D �. Thus, it follows that

mX
jD1

dim.Lj;K?�K/
pj

C
dim.�RdK/

p0
�

X
j 6D�

1

m
C
k2

d

D
m � 1

m
C
k2

d
D k C

m � 1

m
�
d � k

d
k:

The last expression is greater than or equal to dim.K/ D k if

(3.9)
m � 1

m
�
d � k

d
k:

Note that (3.8) is implied by (3.9).

The case dK D k � 1.
For this case, we consider a subspace K which is not contained in Kj for all j D

1; : : : ; m. Then for some � 2 ¹1; : : : ; mº the worst case verifying (3.2) is that K \K� is
.k � 2/-dimensional, since dim.Lj;K?�K/ gets lower as dim.K \K�/ gets larger. Thus,
we have dim.K=K�/ D 1, and this may happen for any j D 1; : : : ; m. It follows that
mX
jD1

dim.Lj;K?�K/
pj

C
dim.�RdK/

p0
�

mX
jD1

1

m
C
k

d
.k � 1/

D 1C
k

d
.k � 1/ D .k � 1/C 1 �

d � k

d
.k � 1/:

The last expression is greater than or equal to dim.K/ D k � 1 if

(3.10) 1 �
d � k

d
.k � 1/:

Now, let K be a .k � 1/-dimensional subspace of K� for some � 2 ¹1; : : : ; mº. Then
the worst case is whenK is given by the intersection ofK� andK� for some � 6D �. Thus,
we have dim.K=K�/D dim.K=K�/D 0. However, if we choose any other j 6D�;�, then
we have dim.K=Kj /� 1 because dim.K� \K� \Kj /� k � 2 due to (1.9). Without loss
of generality, say � D 1 and � D 2, so that by (1.9) one can check

mX
jD1

dim.Lj;K?�K/
pj

C
dim.�RdK/

p0
�

mX
jD3

1

m
C
k

d
.k � 1/ D

m � 2

m
C
k

d
.k � 1/

D .k � 1/C
m � 2

m
�
d � k

d
.k � 1/:

The last expression is greater than or equal to k � 1 whenever

(3.11)
m � 2

m
�
d � k

d
.k � 1/:

Note that (3.11) implies (3.10).
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The case dK D k � n.
Similar to the k; .k � 1/-dimensional cases ofK, for an arbitrary .k � n/-dimensional

subspace K, one can check that the worst case happens when K is contained in Kji for
j1; : : : ; jn. Thus, we have

mX
jD1

dim.Lj;K?�K/
pj

C
dim.�RdK/

p0
�

X
j 6D�;j1;:::;jn

1

m
C
k

d
.k � n/

D
.m � n � 1/

m
C
k

d
.k � n/

D .k � n/C
.m � n � 1/

m
�
d � k

d
.k � n/:

Then the last line is greater than or equal to k � n whenever

.m � n � 1/

m
�
d � k

d
.k � n/;

which leads to m � d when k D d � 1 or k D nC 1.
Together with (3.7), one can conclude that BL.L; p/ is finite for given data .L; p/

whenever .m� n� 1/=m � d�k
d
.k � n/ for all 0 � n � k � 1. Note that we can rewrite

the condition as

(3.12)
m � 1

m
�
d � k

d
k �

�d � k
d
�
1

m

�
n; 0 � n � k � 1:

Note that (3.12) is reduced to
m � 1

m
�
d � k

d
k

for all 0 � n � k � 1 when m � d . Thus, .L; p/ is a Brascamp–Lieb datum. Hence, by
Proposition 3.3, we end the proof of Theorem 1.3.

4. Proof of Theorem 1.5

Recall that the lacunary maximal function M‚
�

is defined by

M‚
� .F/.x/ D sup

`2Z

ˇ̌̌ Z
�

mY
jD1

fj .x � 2
�`‚jy/ d�.y/

ˇ̌̌
;

where � has �-nonvanishing principal curvatures and ‚ D ¹‚j º is a family of mutually
linearly independent rotation matrices.

Observe that for any fixed ` 2 Z, we can write the identity operator I as follows:

(4.1) I D P<` C

1X
nD0

P`Cn D P<` C P`�:
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Then we have
mY
jD1

fj D

mY
jD1

.P<`fj C P`�fj /(4.2)

D

� mY
jD1

P<`fj

�
C

� mY
jD1

P`�fj

�
C

m�1X
˛D1

1

˛Š.m � ˛/Š

X
�2Sm

� Y̨
iD1

P`�f�.i/

�� mY
iD˛C1

P<`f�.i/

�
;

where the second summation runs over the symmetric group Sm over ¹1; : : : ; mº. For
n D .n1; : : : ; nm/ 2 Nm

0 D .N [ ¹0º/
m, we define

A
˛;�
`
.F/.x/ WD

Z
�

� Y̨
iD1

P<`f�.i/.x � 2
�`‚�.i/y/

�
(4.3)

�

� mY
iD˛C1

f�.i/.x � 2
�`‚�.i/y/

�
d�.y/;

zA
˛;�
`
.F/.x/ WD

Z
�

� Y̨
iD1

f�.i/.x � 2
�`‚�.i/y/

�
(4.4)

�

� mY
iD˛C1

P<`f�.i/.x � 2
�`‚�.i/y/

�
d�.y/;

Mn.F/ WD sup
`2Z

ˇ̌̌ Z
�

mY
jD1

P`Cnj fj .x � 2
�`‚jy/ d�.y/

ˇ̌̌
;(4.5)

�n.F/ WD
X
`2Z

ˇ̌̌ Z
�

mY
jD1

P`Cnj fj .x � 2
�`‚jy/ d�.y/

ˇ̌̌
:(4.6)

Note that Mn.F/ corresponds to ˛ D 0 in (4.2). Thus, the lacunary maximal function M‚
�

can be controlled by a constant multiple of

mX
˛D1

X
�2Sm

sup
`2Z

.jA
˛;�
`
.F/j C j zA ˛;�

`
.F/j/C

X
n2Nm

0

Mn.F/:

By the similarity of A
˛;�
`
.F/ and zA ˛;�

`
.F/ together with the symmetry on � 2 Sm, instead

of the first summation it suffices to consider estimates for A˛
`
.F/, given by

A˛
` .F/.x/ WD

Z
�

� Y̨
jD1

P<`fj .x � 2
�`‚jy/

�� mY
jD˛C1

fj .x � 2
�`‚jy/

�
d�.y/:

Then the proof will be completed by combination of the following lemmas and induction
on m-linearity.
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Lemma 4.1. For m D 2 and ˛ D 1, we have

A˛
` .F/.x/ �MHL.f1/.x/ �M

‚2
�
.f2/.x/;

where F D .f1; f2/ and

M
‚2
�
.f2/.x/ D sup

`2Z

ˇ̌̌ Z
�

f2.x � 2
�`‚2y/ d�.y/

ˇ̌̌
D sup
`2Z

ˇ̌̌ Z
�

f2.‚2.‚
�1
2 x � 2

�`y// d�.y/
ˇ̌̌
:

Proof. For m D 2, we have

A˛
` .F/.x/ D

ˇ̌̌ Z
�

P<`f1.x � 2
�`‚1y/ � f2.x � 2

�`‚2y/ d�.y/
ˇ̌̌
:

It suffices to show supy2� jP<`f .x � 2
�`y/j . MHL.f /.x/, where MHL denotes the

Hardy–Littlewood maximal function. Since �`.x/ D 2`d�.2`x/, we have

P<`f .x � 2
�`y/ D

Z
Rd

f .z/ 2`d �.2`.x � 2�`y � z// dz

D

Z
Rd

f .x C 2�`z/ �.y � z/ dz:

Since y is contained in a compact surface � , for any N > 0, we have

jP<`f .x � 2
�`y/j .

Z
Rd

jf .x C 2�`z/j
CN

.1C jzj/N
dz �MHL.f /.x/:

SinceMHL;M
‚2
� are bounded onLp for p 2 .1;1�, we need to handle the summation

of Mn over n 2 Nm
0 . Note that for ˛ D 2, we have

A˛
` .F/.x/ . MHL.f1/.x/ �MHL.f2/.x/:

Lemma 4.2. Let n 2Nm and let 1=pD 2.� C 1/=.�C 2/. Then, for .1=p1; : : : ; 1=pm/ 2
conv.V�/, we have

kMn.F/kLp;1 � C.1C jnjm/
mY
jD1

kfj kLpj :

In particular, we have 1=p D 2d=.d C 1/ when we consider averages over � D Sd�1.

Lemma 4.3. Let n 2 Nm and 1 D
Pm
jD1 1=rj for some r1; : : : ; rm 2 .1;1/. Then we

have

k�n.F/kL1 . 2�ıjnj
mY
jD1

kfj kLrj :
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The proofs of Lemmas 4.2 and 4.3 will be given in Section 5, and note that Lemma 4.3
is an easy consequence of the assumption (1.12). Since Mn � �n, by definition, it follows
from interpolation between Lemmas 4.2 and 4.3 that

kMn.F/kLp . 2�ı
0jnj

mY
jD1

kfj kLpj ; ı0 > 0;

whenever 1=p < 2.� C 1/=.� C 2/ and .1=p1; : : : ; 1=pm/ is in the interior of the convex
hull of conv.V�/ and .1=r1; : : : ; 1=rm/. Since 2�ı 0jnj is summable over n 2 Nm

0 , this
proves the theorem for m D 2 inside of the convex hull. Then, together with interpolation
with trivial L1 � � � � � L1 ! L1 estimates, we prove the theorem for m D 2.

For the induction, we assume that Theorem 1.5 holds for N -linear operators, where
N D 2; : : : ;m� 1. Note that we already showed that the casemD 2 holds. By the assump-
tion, we have the following lemma.

Lemma 4.4. For ˛ D 1; : : : ; m, we have

A˛
` .F/.x/ .

Y̨
�D1

MHL.f�/.x/ � sup
`2Z

Z
�

ˇ̌̌ mY
�D˛C1

f�.x � 2
�`‚�y/

ˇ̌̌
d�.y/:

In addition, if we assume that Theorem 1.5 holds for N -linear operators, where N D
2; 3; : : : ; m � 1, then it follows that

sup
`2Z

Z
�

ˇ̌̌ mY
�D˛C1

f�.x � 2
�`‚�y/

ˇ̌̌
d�.y/

satisfies the multilinear estimates of Theorem 1.5.

Proof. The first assertion of the lemma follows directly from the proof of Lemma 4.1. For
the second assertion, it is just an .m� ˛/-sublinear average, hence the conclusion follows
directly by the assumption.

We assume that Theorem 1.5 is true for N -linear operators, with N D 2; : : : ; m � 1,
and prove the case N D 2. For general m, by Lemma 4.4, we have

kA˛
` .F/.x/kLp.Rd /(4.7)

.
 Y̨
�D1

MHL.f�/.x/ � sup
`2Z

Z
†

ˇ̌̌ mY
�D˛C1

f�. � � 2
�`y�/

ˇ̌̌
d�.y/


Lp.Rd /

�

 Y̨
�D1

MHL.f�/

L1=˛1 .Rd /

�

 sup
`2Z

Z
†

ˇ̌̌ mY
�D˛C1

f�. � � 2
�`y�/

ˇ̌̌
d�.y/


L1=˛2 .Rd /

.
Y̨
�D1

kf�kLp� .Rd / �

mY
�D˛C1

kf�kLp� .Rd /;

where ˛1 D 1=p1 C � � � C 1=p˛ and ˛2 D 1=p˛C1 C � � � C 1=pm.
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Since we have already proved Lemmas 4.2 and 4.3 for general m, together with (4.7)
we show that Theorem 1.5 holds form-linear lacunary maximal averages under the assum-
ption that N cases hold for N D 2; : : : ;m� 1. This closes the induction hence proves the
theorem.

5. Proofs of Lemmas 4.2 and 4.3

5.1. Proof of Lemma 4.2

For the Lp;1-estimate of Lemma 4.2, we assume that kfj kpj D 1 and we will show the
following inequality:

(5.1) meas.¹xWMn.F/.x/ > �º/ . jnjm��p:

To obtain (5.1), we exploit the approach of Chirst and Zhou [12], which is based on the
multilinear Calderón–Zygmund decomposition. We now apply the Calderón–Zygmund
decomposition at height C�p=pj to each fj , j D 1; : : : ; m, for some C > 0 so that for
each j , we have fj D gj C bj such that

kgj k1 � C�
p=pj ;(5.2)

bj D
X


bj; ; supp.bj; / � Qj; ;(5.3)

kbj;k
pj

L
pj . �pmeas.Qj; /;

X


meas.Qj; / . ��p;(5.4) Z
bj; D 0:(5.5)

Note that Qj; denotes a dyadic cube. Then we have

meas.¹xWMn.F/.x/ > �º/ . meas.¹xWMn.g1; : : : ; gm/.x/ > 2
�m�º/

Cmeas.¹xWMn.g1; : : : ; gm�1; bm/.x/ > 2
�m�º/

C � � � Cmeas.¹xWMn.b1; : : : ; bm/.x/ > 2
�m�º/:

For C� D 5max.1; diam.�//, we define E D
Sm
jD1

S
 C�Qj; so that meas.E/ . ��p .

Note that C�Q is a cube whose side-length is C� times that of Q with the same center
as Q. Thus, we estimate each level set for x 2 Rd n E .

5.1.1. Estimates for Mn.b1; : : : ;bm/. Let bij D
P
 Ws.Qj; /D2

�ibj;
, where s.Q/ denotes

the side-length of Q. Then jMn.b1; : : : ; bm/j
p , with p D �C2

2.�C1/
, is bounded byX

i1;:::;im2Z

X
`2Z

jAn
`.b

i1
1 ; : : : ; b

im
m /j

p;

where

An
`.f1; : : : ; fm/.x/ D

Z
�

mY
jD1

PnjC`fj .x � 2
�`‚jy/ d�.y/:
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To proceed further, we need two lemmas, whose proofs will be given in the last part
of this subsection.

Lemma 5.1. For .1=p1; : : : ; 1=pm/ 2 conv.V�/ with 1=p D
Pm
jD1 1=pj , we have

kAn
`.b

i1
1 ; : : : ; b

im
m /k

p

Lp.Rd nE/
. min
jD1;:::;m

min
�
1; 2.njC`�ij /.1Cd=p

0
j /; 2ij�`

� mY
jD1

kb
ij
j k

p
pj
:

FormD 2 and p D 1=2, Lemma 5.1 is given in [12]. The proof for generalm � 2 and
the case p D �C2

2.�C1/
is given in a similar manner.

Lemma 5.2. Under the same conditions of Lemma 5.1, we haveX
`2Z

min
i1;:::;im

min.1; 2.njC`�ij /.1Cd=p
0
j /; 2ij�`/ . jnj

Y
j;j 0;j 6Dj 0

min.1; 2jnj�jij�ij 0 j/1=Œm.m�1/�:

By using Lemmas 5.1 and 5.2, we have

kMn.b1; : : : ; bm/k
p

Lp.Rd nE/
.
X
i12Z

� � �

X
im2Z

X
`2Z

kAn
`.b

i1
1 ; : : : ; b

im
m /k

p

Lp.Rd nE/

.
X
i1;:::;im

jnj
Y

j;j 0;j 6Dj 0

min.1; 2jnj�jij�ij 0 j/
p

m.m�1/

mY
jD1

kb
ij
j k

p
pj
:

We apply Hölder’s inequality to the last line and obtain

kMn.b1; : : : ; bm/k
p

Lp.Rd nE/
. jnj

mY
jD1

� X
i1;:::;im

Y
l 6Dj

min.1; 2jnj�jij�il j/
pj

m.m�1/ kb
ij
j k

pj
pj

�p=pj
:

Observe that the summation over i1; : : : ; ij�1; ijC1; : : : ; im yieldsX
ij2Z

jnjm�1kbijj k
pj
pj :

This is because we have X
il

min.1; 2jnj�jij�il j/
pj

m.m�1/ . jnj;

since

min.1; 2jnj�jij�il j/ D

8̂<̂
:
2jnjCij�il ; il > ij C jnj;
1; ij � jnj � il � ij C jnj;
2jnj�ijCil ; il < ij � jnj:

Therefore, kMn.b1; : : : ; bm/kLp.Rd nE/ is bounded by a constant multiple of

(5.6) jnjm=p
mY
jD1

�X
ij2Z

kb
ij
j k

pj
pj

�1=pj
D jnjm=p

mY
jD1

kbj kpj :
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With help of (5.6), we finally estimate the level set of Mn.b1; : : : ; bm/:

meas.¹xWMn.b1; : : : ; bm/.x/ > 2
�m�º/ . ��pkMn.b1; : : : ; bm/k

p

Lp.Rd nE/

� ��pjnjm
mY
jD1

kbj k
p
pj
:

Since kbj kpj . 1, we obtain (5.1) for b1; : : : ; bm.

5.1.2. Estimates for other terms. The cases Mn.g1; : : : ; gm/, Mn.g1; : : : ; gm�1; bm/,
: : : , Mn.b1; : : : ; bm�1; gm/ follow from simplified arguments given in Section 5.1.1. We
first consider all cases except Mn.g1; : : : ; gm/. Thus, we define, for ˛ C ˇ D m and
1 � ˛; ˇ � m � 1,

Mn.g˛;bˇ / DMn.g1; : : : ; g˛; b˛C1; : : : ; bm/:

Note that one can modify the proofs of Lemmas 5.1 and 5.2 to obtain bˇ -analogue. Let
.0; : : : ; 0; 1=r˛C1; : : : ; 1=rm/ 2 conv.V�/ with 1=p D

Pm
�D˛C1 1=r� . Then the proof of

Lemma 5.1 yields that

kAn
`.g

˛;bˇ /kLp.Rd nE/(5.7)

.
Y̨
�D1

kg�kL1 min
�D˛C1;:::;m

min.1; 2.n�C`�i�/.1Cd=r
0
�/; 2i��`/

mY
�D˛C1

kbi�� kr� :

We have X
`2Z

min
i˛C1;:::;im

min.1; 2.n�C`�i�/.1Cd=r
0
�/; 2i��`/(5.8)

. jnj
Y

˛C1��;�0�m;j 6Dj 0

min.1; 2jnj�ji��i�0 j/
1

ˇ.ˇ�1/ :

With help of (5.7) and (5.8), we estimate kMn.g˛;bˇ /kLp.Rd nE/ as follows:

(5.9) kMn.g˛;bˇ /kLp.Rd nE/ . jnjˇ=p
Y̨
�D1

kg�kL1 �

mY
�D˛C1

kb�kLr� :

Since supp.b�/ �
S
 Q�; and

P
 meas.Q�; / . ��p , due to (5.3) and (5.4), the right-

hand side of (5.9) is bounded by a constant multiple of

(5.10) jnjˇ=p�
P˛
�D1 p=pj � ��p.

Pm
�D˛C1 1=r��1=p�/ D jnjˇ=p:

Here the left-hand side of (5.10) is a consequence of Hölder’s inequality on kb�kLr� .
Finally, by making use of (5.9) and (5.10), we have

meas.¹xWMn.g˛;bˇ /.x/ > 2�m�º/ . ��pkMn.g˛;bˇ /kpLp.Rd nE/
� ��pjnjˇ :
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For Mn.g1; : : : ; gm/, we simply choose C < 2�1 in (5.2) so that

jMn.g1; : : : ; gm/j �

mY
jD1

kgj kL1 � C
m� < 2�m�:

Thus, we have
meas.¹xWMn.g1; : : : ; gm/.x/ > 2

�m�º/ D 0:

5.1.3. Proof of Lemma 5.1. For simplicity, let nj C `D � and bijj D b D
P
Q bQ, where

Q DQj; whose sidelength is 2�i . Then, thanks to Proposition 1.1, it suffices for the first
and second term in the minimum to show that

kP�bQkp . min.1; .2�s.Q//1Cd=p
0

/kbQkp:

The first term, 1, is directly given by the fact that k �k1 D 1 and Young’s inequality.
For the second term, we make use of the vanishing property of bQ. Let cQ be the

center of Q. Then

P�bQ.x/ D

Z
Rd

. � .x � y/ �  � .x � cQ//bQ.y/ dy

D

Z
Rd

Z 1

0

hry. � /.x � cQ � t .y � cQ//; y � cQi dt bQ.y/ dy:

Since  is of Schwartz class, it follows that

1

jy � cQj

Z 1

0

hry. � /.x � cQ � t .y � cQ//; y � cQidt

is bounded by a constant multiple of

2�.dC1/

.1C 2� jx � cQ � t .y � cQ/j/N
,

for any N > 0. Thus, we apply Minkowski’s integral inequality to obtain

kP�bQkLp.Rd / .
� Z

Rd

2�.dC1/p

.1C 2� jxj/pN
dx
�1=p

�

Z
Q

jy � cQj jbQ.y/j dy

� 2�.dC1/ 2��d=p s.Q/s.Q/d�d=pkbQkp:

This establishes

kP�bQkLp.Rd / . 2�.1Cd=p
0/ s.Q/1Cd=p

0

kbQkp:

Therefore, we have

kP�bkLp.Rd / D

�X
Q

kP�bQk
p
p

�1=p
(5.11)

. .2�s.Q//1Cd=p
0
�X
Q

kbQk
p
p

�1=p
D .2�s.Q//1Cd=p

0

kbkp:

The first and the last equalities follow from the disjointness of Q’s. This gives a decay
estimate when nj C ` < ij .
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Lastly, we assume that ` > ij , so that for x 2 .C�Q/
c and z 2 Q, we have that

dist.x�2�`y; z/ � s.Q/ uniformly in y2� , because we chooseC� D 5max.1;diam.�//.
Thus, it follows that

PnjC`b
ij
j; .x � 2

�`‚jy/ D zPnjC`b
ij
j; .x � 2

�`‚jy/;

where the kernel of zP� is given by

 � .y/ 1jyj�s.Q/.y/:

Therefore, with help of (5.11), we obtain

kAn
`.b

i1
1 ; : : : ; b

im
m /kLp.Rd nE/ . min

jD1;:::;m
k zPnjC`kp!p

mY
jD1

kb
ij
j kpj :

Observe that, for any N > 0,

k zPnjC`kp!p �

Z
Rd

j njC`�ij .x/j1jxj�1.x/ dx . 2�N.njC`�ij /:

Thus, we have k zPnjC`kp!p � 2
�`Cij regardless of nj � 0. This proves the lemma.

5.1.4. Proof of Lemma 5.2. It suffices to show that for any i1, i2,

(5.12)
X
`2Z

min
i1; i2

min.1; 2.njC`�ij /.1Cd=p
0
j /; 2ij�`/ . jnjmin.1; 2jnj�ji1�i2j/:

Note that

min.1; 2.njC`�ij /.1Cd=p
0
j /; 2ij�`/ �

8̂<̂
:
2ij�`; ij < `;

1; ij � jnj � ` � ij ;
2.jnj�ijC`/.1Cd=p

0
j /; ` < ij � jnj:

When i1 � i2, the left-hand side of (5.12) is bounded by a constant multiple of jnj. Thus,
we consider the case of i2 being greater than i1 C jnj. Since i2 > i1 C jnj, it follows that
for i1 � jnj � ` � i1,

(5.13) min
i1; i2

min.1;2.njC`�ij /.1Cd=p
0
j /; 2ij�`/�2.jnj�i2C`/.1Cd=p

0
j /�2.jnj�ji1�i2j/.1Cd=p

0
j /:

Similarly, for i2 � jnj � ` � i2, we have

(5.14) min
i1; i2

min.1; 2.njC`�ij /.1Cd=p
0
j /; 2ij�`/ � 2i1�` � 2jnj�ji1�i2j:

One can obtain the same bounds when i1 > i2 C jnj by changing roles of i1; i2 in (5.13)
and (5.14). Therefore, we conclude thatX

`2Z

min
i1; i2

min.1; 2.njC`�ij /.1Cd=p
0
j /; 2ij�`/ . jnjmin.1; 2jnj�ji1�i2j/:
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5.2. Proof of Lemma 4.3

By the assumption (1.12), for 1 � r1; : : : ; rm <1 with 1 D
Pm
jD1 1=rj , we have

kA‚
� .Pn1f1; : : : ; Pnmfm/kL1 . 2�ıjnj

mY
jD1

kPnj fj kLrj ; ı > 0:

We make use of the following scaling invariance of A‚
�

:Z
�

mY
jD1

P`Cnj fj .x � 2
�`‚jy/d�.y/


L1.dx/

D 2�`dkA‚
� .Pn1f1;�`; : : : ;Pnmfm;�`/kL1 ;

where fj;�`.x/ D fj .2�`x/. Then it follows that

k�n.F/kL1 �
X
`2Z

2�`dkA‚
� .Pn1f1;�`; : : : ; Pnmfm;�`/kL1

.
X
`2Z

2�`d 2�ıjnj
mY
jD1

kPnj fj;�`kLrj

D

X
`2Z

2�`d 2�ıjnj
mY
jD1

2`d=rj kPnjC`fj kLrj

D

X
`2Z

2�ıjnj
mY
jD1

kPnjC`fj kLrj :

We apply Hölder’s inequality to the last line to obtain

k�n.F/kL1 . 2�ıjnj
mY
jD1

�X
`2Z

kPnjC`fj k
rj

L
rj

�1=rj
:

Note that .
P
j kPjf k

p
p /
1=p . kf kp for p � 2, which gives

k�n.F/kL1 . 2�ıjnj
mY
jD1

kfj kLrj :

This proves the lemma.

6. Proof of Theorem 1.6

Recall that for an .md � 1/-dimensional hypersurface † in Rmd with � non-vanishing
principal curvatures and � > .m � 1/d , we define A†.F/.x/ as follows:Z

†

mY
jD1

fj .x � yj / d�†.y/; y D .y1; : : : ; ym/ 2 Rmd :
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By making use of the dyadic decomposition of Section 4 satisfying (1.14), (4.1),
and (4.2), we define the following quantities, similar to (4.3)–(4.6):

A
˛;�
`
.F/.x/ WD

Z
†

� Y̨
iD1

P<`f�.i/.x � 2
�`y�.i//

�
(6.1)

�

� mY
iD˛C1

f�.i/.x � 2
�`y�.i//

�
d�.y/;

zA
˛;�
`
.F/.x/ WD

Z
†

� Y̨
iD1

f�.i/.x � 2
�`y�.i//

�
(6.2)

�

� mY
iD˛C1

P<`f�.i/.x � 2
�`y�.i//

�
d�.y/;

Mn.F/ WD sup
`2Z

ˇ̌̌ Z
†

mY
jD1

P`Cnj fj .x � 2
�`yj / d�.y/

ˇ̌̌
;(6.3)

Sn.F/ WD
X
`2Z

ˇ̌̌ Z
†

mY
jD1

P`Cnj fj .x � 2
�`yj / d�.y/

ˇ̌̌
:(6.4)

Therefore, the lacunary maximal operator M† is bounded by a constant multiple of

(6.5)
mX
˛D1

X
�2Sm

sup
`2Z

.jA
˛;�
`
.F/j C j zA ˛;�

`
.F/j/C

X
n2Nm

0

Mn.F/; N0 D N [ ¹0º:

As in the previous section, instead of the first summation in (6.5), it suffices to consider
estimates for A˛

`
.F/, given by

A˛` .F/.x/ WD
Z
†

� Y̨
jD1

P<`fj .x � 2
�`yj /

�� mY
jD˛C1

fj .x � 2
�`yj /

�
d�.y/:

Then the proof will be completed by a combination of the following lemmas and an induc-
tion argument which is slightly different from the argument in Section 4.

Lemma 6.1. Let F D .f1; f2; 1; : : : ; 1/ and ˛ D 1. Then we have

A˛` .F/.x/ �MHL.f1/.x/ �M†.f2/.x/;

where
M†.f /.x/ D sup

`2Z

ˇ̌̌ Z
†

f .x � 2�`y2/ d�.y/
ˇ̌̌
:

The proof of Lemma 6.1 is the same as that of Lemma 4.1, so we omit it. Note that
MHL and M† are bounded on Lp for p 2 .1;1�, hence we need the boundedness of the
second term in (6.5).
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Lemma 6.2. Let n 2 Nm and .mC 1/=2 � 1=p < .2d C �/=.2d/. For pj 2 Œ1; 2�; j D
1; : : : ; m, with

Pm
jD1 1=pj D 1=p, we have

kMn.F/kLp;1 � C.1C jnjm/
mY
jD1

kfj kLpj :

The proof of Lemma 6.2 is similar to the proof of Lemma 4.2. The only difference
occurs in showing Lemma 5.1 in terms of An

`
which corresponds to An

`
, since An

`
is an

average over †, which in turn is .md � 1/-dimensional and each fj depends on x � yj
not x � ‚jy. This difference is harmless, however, because only the compactness of �

does matter in the proof of Lemma 5.1 and † is a compact hypersurface. On the other
hand, the range .mC 1/=2 � 1=p < .2d C �/=.2d/ follows from Proposition 1.2.

Lemma 6.3. Let n 2 Nm and 1 D
Pm
jD1 1=rj . Then

kSn.F/kL1 . 2�ıjnj
mY
jD1

kfj kLrj :

The proof of Lemma 6.3 is the same with that of Lemma 4.3 together with (1.7), so
we omit it.

Due to Mn � Sn, by the definitions in (6.3) and (6.4), it follows from interpolation
between Lemmas 6.2 and 6.3 that

(6.6) kMn.F/kLp . 2�ı
0jnj
Y
jD1

kfj kLpj ; ı0 > 0;

whenever 1=p1 C � � � C 1=pm D 1=p < .2d C �/=.2d/. It should be noted that Lem-
mas 6.2 and 6.3 are still valid for F D .f1; : : : ; fN ; 1; : : : ; 1/ with m replaced by N and
taking L1 norms for 1’s. That is, for F D .f1; : : : ; fN ; 1; : : : ; 1/, we have

kMn.F/kLp;1 � C.1C jnjN /
NY
jD1

kfj kLpj ;
1

p
D

1

p1
C � � � C

1

pN
,

kSn.F/kL1 . 2�
Qıjnj

NY
jD1

kfj kLrj ; 1 D
1

r1
C � � � C

1

rN
,

for some Qı > 0. Thus, instead of (6.6), we have, for F D .f1; : : : ; fN ; 1; : : : ; 1/,

kMn.F/kLp . 2�
Qı 0jnj

NY
jD1

kfj kLpj for some Qı0 > 0:

Since 2� Qı 0jnj is summable over n2Nm
0 , this, together with Lemma 6.1, proves the theorem

for F D .f1; f2; 1; : : : ; 1/.
For the induction, we assume that Theorem 1.6 holds for F D .f1; : : : ; fN ; 1; : : : ; 1/

for N D 2; : : : ; m � 1 with 1=p D 1=p1 C � � � C 1=pN . Note that we showed the case
N D 2. By the assumption, we have the following lemma.
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Lemma 6.4. For ˛ D 1; : : : ; m, we have

A˛` .F/.x/ .
Y̨
�D1

MHL.f�/.x/ � sup
`2Z

ˇ̌̌ Z
†

mY
�D˛C1

f�.x � 2
�`y�/ d�†.y/

ˇ̌̌
:

Moreover, if we assume that Theorem 1.6 is true for F D .f1; : : : ; fN ; 1; : : : ; 1/ with
N D 2; : : : ; m � 1 and 1=p D 1=p1 C � � � C 1=pN , then it follows that

sup
`2Z

ˇ̌̌ Z
†

mY
�D˛C1

f�.x � 2
�`y�/ d�†.y/

ˇ̌̌
satisfies multilinear estimates of Theorem 1.6 for .m � ˛/-linear operators.

Proof. The first assertion of the lemma follows directly by the proof of Lemma 4.1. For
the second assertion, recall that jdy�†.�/j . .1C j�j/��=2 for .m � 1/d < � � md � 1.
Theorem 1.6 holds for .m� ˛/-linear maximal averages when � > .m� ˛� 1/d , which is
already affirmative. Thus, the assertion holds from the assumption that Theorem 1.6 is true
for F D .f1; : : : ;fN ; 1; : : : ; 1/withN D 2; : : : ;m� 1 and 1=pD 1=p1C � � � C 1=pN .

Since we have already proved Lemmas 4.2 and 4.3 for general m, Theorem 1.6 for
m-linear operators holds under the assumption that N D 2; : : : ; m � 1 cases hold. This
closes the induction hence proves the theorem.

We end this section by suggesting the proof of Remark 1.8.

Proof of Remark 1.8. Note that, for dimension d D 1, the proof of this remark is already
given in [12]. Although the proof for the case d � 2 is given in [8], we present a different
proof by exploiting ideas of [12]. In fact, the proof follows from Theorem 1.6 with minor
modifications in Lemmas 6.2 and 6.3. Indeed, note that in [20] the authors proved the
L1 �L1! L1=2 estimate of the bilinear spherical average A1

S2d�1
. Using this estimate in

Lemma 6.2, we get

kMn.F/kL1=2;1 � C.1C jnj
2/

2Y
jD1

kfj kL1 :

Further, using the estimate in Lemma 6.3 with † D S2d�1, we get

kSn.F/kL1 . 2�ıjnj
mY
jD1

kfj kL2 for some ı > 0.

The rest of the proof follows by imitating the machinery of Theorem 1.6.
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