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Abstract. We study interpretable sets in henselian and � -henselian valued fields with value group
elementarily equivalent to Q or Z. Our first result is an Ax–Kochen–Ershov type principle for
weak elimination of imaginaries in finitely ramified characteristic zero henselian fields – relative to
value group imaginaries and residual linear imaginaries. We extend this result to the valued differ-
ence context and show, in particular, that existentially closed equicharacteristic zero multiplicative
difference valued fields eliminate imaginaries in the geometric sorts; the !-increasing case corres-
ponds to the theory of the non-standard Frobenius automorphism acting on an algebraically closed
valued field. On the way, we establish some auxiliary results on separated pairs of characteristic
zero henselian fields and on imaginaries in linear structures, which are also of independent interest.

Keywords: model theory, valued fields, classification of imaginaries, non-standard Frobenius
automorphism, separated pairs, linear structures.

1. Introduction

In his seminal work ‘Une théorie de Galois imaginaire’ [39], Poizat introduced the idea
that the classification of certain abstract constructions of model theory – namely inter-
pretable sets or Shelah’s imaginaries – could play an important role in our comprehension
of specific structures. The classification of definable sets, in the guise of quantifier elim-
ination results, has historically been used as a central ingredient in many applications of
model theory. But the development of more sophisticated model-theoretic tools, in partic-
ular stability theory, naturally took place in the larger category of quotients of definable
sets by definable equivalence relations, i.e., interpretable sets. Shelah concretised this idea
with his eq construction that formally makes every interpretable set definable.

However, these interpretable sets immediately escape the realm of well understood
and classified objects, complicating the possibility of applying new tools from stability
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theory in specific examples, in particular coming from algebra. Poizat’s idea was that
these interpretable sets should also be classified, and he did so in algebraically closed
fields and in differentially closed fields. In both cases, he showed that they are all defin-
ably isomorphic to definable sets, i.e., the categories of definable and interpretable sets
are equivalent – we say that these structures eliminate imaginaries. This property later
became an essential feature in model-theoretic applications, e.g., to diophantine geometry
and algebraic dynamics.

The question of elimination of imaginaries also has a very geometric flavour: given a
definable family of sets X � Y �Z, one wishes to find a definable function f W Z ! W

such that for all z1; z2 2 Z, Xz1 WD ¹y 2 Y W .y; z1/ 2 Xº D Xz2 if and only if f .z1/ D
f .z2/ – in other words, one wishes to find a canonical parametrisation of this family
where each set appears exactly once. We refer the reader to Section 2.1 and [47, Sec-
tion 8.4] for further details on these notions and constructions.

Elimination of imaginaries results were then established for numerous structures, but
it was not until work of Haskell, Hrushovski and Macpherson [21] that the first complete
classification of interpretable sets in a valued field was proved. In this case, however, the
field itself does not eliminate imaginaries, as both the value group and the residue field
are interpretable but not isomorphic to a definable set. Nevertheless, one can add certain
well understood interpretable sets, the geometric sorts. These sorts consist of the field K
and, for all n 2 Z>0, of the space

Sn WD GLn.K/=GLn.O/

of free rank n O-submodules of Kn, where O denotes the valuation ring, and of the space
Tn WD

S
s2Sn s=ms where m � O is the unique maximal ideal – see Section 2.2 for a

precise definition of the geometric language. The main result of [21] states that the theory
ACVF of algebraically closed non-trivially valued fields eliminates imaginaries in the
geometric sorts: given a definable family of sets X � Y � Z, there exists a definable
function f W Z ! W , with W a product of geometric sorts, such that for all z1; z2 2 Z,
Xz1 D Xz2 if and only if f .z1/ D f .z2/; equivalently, the category of sets interpretable
in an algebraically closed valued field is equivalent to the category of sets definable in its
geometric sorts. One cannot overstate the impact of this result, as it opened the way for
the development of geometric model theory in the context of valued fields. A beautiful
illustration of the power of these new methods is the work by Hrushovski and Loeser on
topological tameness in non-archimedean geometry [29].

In this paper we consider imaginaries in more general classes of henselian valued
fields of characteristic zero, and also in certain valued difference fields, i.e., valued fields
endowed with a distinguished automorphism compatible with the valuation.

In the last 25 years, the model theory of existentially closed difference fields, largely
developed by Chatzidakis and Hrushovski (see [8]), has led to several spectacular applic-
ations – among others in algebraic dynamics. Note that the corresponding theory ACFA
does eliminate imaginaries and this fact plays an essential role in later developments.
A very deep result of Hrushovski [27], which takes the form of a Frobenius-twisted ver-
sion of the Lang–Weil estimates, implies that ACFA is in fact the asymptotic theory of
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Frobenius automorphisms �q : any non-principal ultraproduct of .F a
q; �q/ is a model of

ACFA. Key properties of algebraic difference varieties may thus be read off from special-
isations to the Frobenius automorphisms.

It is also natural to consider the non-standard Frobenius acting on an algebraically
closed valued field, i.e., the limit theory of the valued difference fields .Fp.t/a; vt ; �p/
as the prime p grows, where vt is an extension of the t -adic valuation. By results of
Hrushovski [24] and Durhan [2], this limit theory corresponds to the theory of existen-
tially closed valued difference fields of equicharacteristic zero with !-increasing auto-
morphism – see Section 2.4 for a detailed discussion. In fact, these structures naturally
arise, as early as in Hrushovski’s proof of the twisted Lang–Weil estimates, in the study of
algebraic difference varieties, by way of transformal specialisations. One may thus expect
that the development of a geometric model theory of valued difference fields will turn out
useful in the future in geometric applications – as it did in the case of ACVF.

Main results

The classification of imaginaries in ACVF by the geometric sorts was later extended to
other valued fields: real closed valued fields [36], separably closed valued fields of finite
imperfection degree [23], and p-adic fields and their ultraproducts [30] – which allowed
to uniformise and extend Denef’s result on the rationality of certain zeta functions to
interpretable sets. The question remained whether a general principle underlined all these
results. Such a principle was conjectured in the early 2000s by Hrushovski. The present
paper establishes it for a large class of henselian fields, which covers most of the examples
considered in applications, and extends it to valued fields with operators.

At this level of generality, one cannot expect elimination in the geometric sorts.
Indeed, the residue field and the value group can be arbitrary and might not themselves
eliminate imaginaries as is the case in all the results cited above. However, a fundamental
idea of the model theory of valued fields, the so-called Ax–Kochen–Ershov principle, is
that the model theory of a henselian equicharactersitic zero field should be controlled by
its value group and residue field. This principle takes its name from the result of Ax and
Kochen [1] and independently Ershov [19] that this is indeed the case for elementary
equivalence, but this phenomenon has also been observed with respect to numerous other
aspects of valued fields, from model-theoretic tameness (starting with [14]) to motivic
integration [28].

It is therefore tempting to conjecture that, beyond the geometric sorts, imaginaries in
equicharacteristic zero henselian fields only arise from the value group and the residue
field. However, non-trivial torsors of the residue field give rise to serious obstructions to
this conjecture. One is thus naturally led to define the k-linear imaginaries. Consider the
two sorted language Lmod of A-modules V with the ring structure on A, the group struc-
ture on V and scalar multiplication. Given a (unary) interpretable set X – more precisely,
a definable quotient of the vector space sort V – in the Lmod-theory of dimension n vector
spaces over a field and given some O-lattice s 2 Sn, we can consider the interpretation
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X .k;s=ms/ of X in the structure .k; s=ms/. We then define

Tn;X WD
G
s2Sn

X .k;s=ms/:

Note that if X D V then Tn;X D Tn, and if X is the one-element quotient of V then
Tn;X Š Sn. In general, the Tn;X are essentially those interpretable sets that admit defin-
able surjections Tn ! Tn;X ! Sn. We write kleq WD

F
n;X Tn;X .

Before we state our main results, let us address some technical points. The first is
that we prove a result not only in equicharacteristic zero, but also in finitely ramified
mixed characteristic. In the latter case one needs to also consider the higher residue rings
R` WD O=`m, for ` 2 Z>0, where `m WD ¹` � x W x 2mº. These rings often play a crucial
role in this situation, and they also come with their linear imaginaries and hence we define
Tn;`;X WD

F
s2Sn X

.R`;s=`ms/ and Rleq WD
F
n;`;X Tn;`;X , whereX is now interpretable in

the Lmod-theory of free rank nmodules. Moreover, if the residue field k comes with addi-
tional structure, in the definition of kleq and Rleq we need to consider all X interpretable
in the corresponding enrichment of the theory of free rank n modules.

The second point is that eliminating imaginaries often splits in two distinct problems:
describing quotients under the action of finite symmetric groups (in other words, finding
canonical parameters for finite sets) and classifying interpretable sets up to one-to-finite
correspondences: given a definable family of sets X � Y �Z, one wishes to find a one-
to-finite definable correspondence F W Z!W such that for all z1; z2 2 Z, Xz1 D Xz2 if
and only if F.z1/ D F.z2/. This latter property is usually referred to as weak elimination
of imaginaries and will be the main focus of this paper.

Our first main result is the following Ax–Kochen–Ershov principle for weak elim-
ination of imaginaries, where �eq refers to the collection all sets interpretable in the
(enriched) ordered abelian group � .

Theorem A (Theorem 6.1.1). Let .K; v/ be a characteristic zero henselian valued field,
possibly with angular components and added structure on the value group � and, separ-
ately, the residue field k. Assume that

(C� ) the induced structure on � is definably complete;

(FR) for every ` 2 Z>0, the interval Œ0; v.`/� is finite and k is perfect;

(Ik) the residue field k is infinite;

(E1k / the induced theory on k eliminates 91.

Then K weakly eliminates imaginaries in the sorts K [ �eq [ Rleq.

All the results with angular component, even in the algebraically closed (equichar-
acteristic zero) case, are new. Angular components are (compatible) multiplicative mor-
phisms acn W K� ! R�n extending the residue map on O�. They play a key role in the
development of the model-theoretic study of valued fields, in particular in the Cluckers–
Loeser treatment of motivic integration [12], by providing uniform cell decomposition
results.



Un principe d’Ax–Kochen–Ershov imaginaire 5

Definable completeness of the value group – that is, the fact that every definable subset
of � has a supremum – is a necessary hypothesis for the conclusion to hold, since other-
wise additional definable cuts appear, inducing more definable O-submodules and hence
more complex imaginaries. It is worth noting that PRES D Th.Z/ and DOAG D Th.Q/
are the only complete theories of pure ordered abelian groups which are definably com-
plete. As both PRES and DOAG eliminate imaginaries, we thus get � D �eq under the
assumptions of Theorem A in case � is not enriched.

As a corollary, Theorem A implies that if F is a field of characteristic zero which
eliminates 91, the theories of the valued fields F..t// and F..tQ// – with or without
angular components – weakly eliminate imaginaries in the sorts K [ kleq – noting that
� Š S1 may be identified with a sort in kleq. If in particular F is (of characteristic zero
and) algebraically closed, real closed or pseudofinite, then using results of Hrushovski
on linear imaginaries we deduce that F..t// and F..tQ// (with or without angular com-
ponents) eliminate imaginaries in the geometric sorts, after naming some constants in the
pseudofinite and in the real closed case (see Corollary 6.1.7 for a precise statement), thus
obtaining an absolute elimination result in these cases.

Without angular components, this provides alternative proofs of Mellor’s result
[36] for R..tQ// and Hrushovski–Martin–Rideau’s result [30] for F..t// where F is
pseudofinite of characteristic zero. Independent work of Vicaria [48] also yields the case
of C..t//, although her work also applies to more general value groups.

In mixed characteristic, the main example covered by Theorem A is W.F a
p/ – where

F a denotes the (field-theoretic) algebraic closure of F – the (fraction field of the) ring
of Witt vectors with coefficients in F a

p , and more generally finite extensions of W.F / for
any perfect infinite field F of characteristic p which eliminates 91. However, in mixed
characteristic, Rleq involves modules over higher residue rings. We conjecture that when
F D F a, these linear structures also eliminate imaginaries. Thus, Theorem A provides
an important step towards proving that the imaginaries of W.F a

p/ are classified by the
geometric sorts as well.

The second main result of this paper concerns valued difference fields. Quantifier
elimination (and hence an Ax–Kochen–Ershov principle for elementary equivalence) has
been proved for various classes; first for isometries in [3,6,45], then for!-increasing auto-
morphisms (for every x 2 m, v.�.x// > Z � v.x/) in [2, 24]. Both of these contexts were
subsumed in later work of Kushik [38] on multiplicative automorphisms where the auto-
morphism acts as multiplication by some element of an ordered field (see Definition 2.4.5
for details). Finally, Durhan and Onay [17] proved that these results hold without any
hypothesis on the automorphism.

Our second result focuses on the multiplicative setting where we prove an absolute
elimination of imaginaries result for the respective model-companions:

Theorem B (Theorem 6.2.1). The theory VFAmult
0;0 eliminates imaginaries in the geomet-

ric sorts.
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Since the isometric case and the !-increasing case correspond, respectively, to the
asymptotic theory of Cp with an isometric lifting of the Frobenius and to Fp.t/a with the
Frobenius, an immediate corollary of these results is a uniform elimination of imaginaries
for large p in these structures. By elimination of imaginaries in ACVF, the result is even
uniform for all p in the latter case.

Overview of the paper

The proofs of both theorems follow the same general strategy and many technical res-
ults are shared between the two. The proof consists of three largely independent steps
(Sections 3 to 5).

In stable theories, every type p – a maximal consistent set of definable sets – is defin-
able, i.e., for every definable X � Y �Z, the set ¹z 2 Z W Xz 2 pº is definable. This was
used in many proofs of weak elimination of imaginaries in the stable context to reduce the
problem of finding canonical parameters for definable sets to finding canonical paramet-
ers for types; which, counter-intuitively maybe, is a simpler problem. In [26], Hrushovski
formalised the idea that even in an unstable context, this reduction could also prove use-
ful, provided definable types were dense: over any algebraically closed imaginary set of
parameters, any definable set contains a definable type.

The first step of the proof consists in proving such density results. But the above
statement cannot hold in the full generality of henselian equicharacteristic zero valued
fields since it might already fail in the residue field. We prove, however, that, under certain
hypotheses, quantifier free definable types are dense; see Theorem 3.1.1. This result does
not apply to discrete valued fields since the family of intervals contains arbitrarily large
finite sets. In Theorem 3.1.3, we do however prove that the density of quantifier free
invariant types holds in this context.

The proof improves on similar results in [42] and the general idea is the same. In
arity 1, we look for a minimal finite set of balls covering the given definable set. The
general case proceeds by fibration in relative arity 1 and by considering germs of functions
into the space of (finite sets of) balls instead of actual balls. This fibration process is where
most of the technical assumptions of Theorem A are used, in particular the elimination of
91 in the residue field.

In contexts with an absolute elimination of quantifiers (as, e.g., in [23, 42]) this first
density result (and the implicit computation of canonical bases) suffices to conclude that
weak elimination of imaginaries holds. In equicharacteristic zero henselian (as well as
� -henselian) fields, types come with more information than quantifier free types; the
information mostly lives in the short exact sequence 1! k�! RV� WD K�=.1Cm/!

�� ! 0. The second step of our proof, Theorem 4.1.1, consists in showing that quanti-
fier free invariant types have invariant completions over RV (and k-vector spaces) – this
generalises to mixed characteristic by considering the higher residue rings.

By quantifier elimination relative to RV, this step reduces to, given an invariant type,
computing canonical generators of the structure generated by (realisations of) the type
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in RV. Note that in the conclusion of Theorem 4.1.1 the types considered are invariant
over definable sets which are of the same size as the model. We do however show various
folklore results implying that this is a well behaved notion when these sets are stably
embedded.

The third step consists in studying imaginaries in RV, which is left as a black box
in the previous steps. We show, in the spirit of [28, Section 3.3], that the imaginaries in
the short exact sequence 1! k�! RV�! ��! 0 come essentially from k and � . To
establish the results we need, as in [28, Section 3.3], we consider more generally structures
given by (enriched) short exact sequences 0! A! B! C! 0 of R-modules for some
ringR. But our result is in a sense orthogonal to the one of Hrushovski and Kazhdan since
we require B to be a pure (in the sense of model theory) extension of A and C, which can
be both arbitrarily enriched, whereas [28, Lemma 3.21] has strong hypotheses on A and
C and no hypothesis on B.

Theorem 5.1.4 is the first version of a series of such reductions of increasing com-
plexity so as to cover the various cases that we require, the ultimate version, Variant 5.2.2,
allowing controlled torsion in � , auxiliary sorts on both the k and � sides, and considering
not one but a projective system of short exact sequences.

These three steps put together allow us to prove relative results like Theorem A. How-
ever, absolute results like Theorem B or Corollary 6.1.7 require one last ingredient: the
classification of imaginaries in collections of vector spaces (linear structures in the ter-
minology of [25]). Our contribution consists in a twisted version (Lemma 2.5.9 (4)) of
Hrushovski’s result on ACF0-linear structures with flags and roots endowed with an auto-
morphism (the final step to prove Theorem B) and a version, Proposition 2.5.21, for real
closed fields.

The plan of the paper is as follows. In Section 2, we provide some preliminary results
on imaginaries, separated pairs of valued fields (in the sense of Baur), valued difference
fields and linear structures. Section 3 is devoted to the proof of the two density results for
definable (resp. invariant) types mentioned above. The fact that invariant quantifier free
types are invariant over RV (and Rn-modules) is established in Section 4. In Section 5, we
prove the results about imaginaries in certain (enriched) short exact sequences of modules.
Finally, in Section 6, we put everything together and prove our main results, in particular
Theorems A and B.

2. Preliminaries

Convention 2.1. Throughout this paper, if M is an L-structure, X is L.M/-definable
and A �M , then X.A/ denotes X \ A.

We adopt this convention, as there are too many structures at play to not be explicit
as to which definable (or algebraic) closures we want to consider. For this reason, setting
X.A/ WD X \ dcl.A/ would lead to ambiguities.
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2.1. Imaginaries

Let T be an L-structure. The language Leq is the language containing L with one addi-
tional sort SX for every L-definable set X � Y � Z, where Y and Z are products of
sorts, and one additional symbol fX W Z ! SX . The Leq-theory T eq is then obtained as
the union of T , the fact that the fX are surjective and that their fibres are the classes of
the equivalence relation defined by Xz1 D ¹y 2 Y W .y; z1/ 2 Xº D Xz2 .

Any M ˆ T has a unique expansion to a model of T eq denoted M eq, whose points
are called imaginaries. Throughout this paper, notations with exponent eq, like dcleq or
acleq, will refer to the Leq-structure of some ambient M eq.

GivenM ˆ T and an L.M/-definable set X , we denote by pXq �M eq the intersec-
tion of all A D dcleq.A/ �M eq such that X is Leq.A/-definable. By construction of T eq,
X is L.pXq/eq-definable, so it is the smallest dcleq-closed set of definition for X . Any
dcleq-generating subset of pXq is called a code of X .

If D is a collection of sorts of Leq – equivalently, a collection of L-interpretable
sets – we say that X is coded in D if it is Leq.D.pXq//-definable, i.e., it admits a code
in D . The theory T is said to eliminate imaginaries in D if, for every M ˆ T , every
L.M/-definable setX is coded in D – equivalently, for every e 2M eq, there is some d 2
D.dcleq.e// such that e 2 dcleq.d/. By compactness, this is equivalent to the definition in
the introduction provided dcl.;/ contains two elements. Finally, we say that the theory T
weakly eliminates imaginaries in D if for every e 2M eq, there is some d 2 D.acleq.e//

such that e 2 dcleq.d/.
We refer the reader to [47, Section 8.4] for a detailed exposition of these notions.

2.2. The languages of valued fields

Any valued field .K; v/ can be considered as a structure in the language Ldiv with one
sort K for the valued field, the ring language and a binary relation x j y interpreted as
v.x/ 6 v.y/. Note that in every language of valued fields that we will consider there is
a sort K for the valued field, and hence, whenever M is a structure representing a valued
field, K.M/ will denote the underlying valued field.

The language Ldiv owes its widespread use to the following result, essentially due to
Robinson [44]:

Fact 2.2.1. The Ldiv-theory ACVF of algebraically closed non-trivially valued fields
eliminates quantifiers.

Notation 2.2. We will write L0 WD Ldiv and throughout this paper, notations with an
index 0, like dcl0, acl0 or tp0, will refer to the quantifier free L0-structure – or equi-
valently, the structure induced by any model of ACVF containing the valued field under
consideration.

Given a valued field, seen as an L0-structure, we will denote by O WD ¹x 2 K W
v.x/> 0º its valuation ring, by m WD ¹x 2K W v.x/ > 0º its maximal ideal, by k WDO=m

its residue field and by � WD K=O� its value monoid; it is the union of the value group



Un principe d’Ax–Kochen–Ershov imaginaire 9

�� DK�=O� and the class of 0 that we usually denote by1. We also let res WO! k and
v W K! � denote the canonical projections. More generally, for every n 2 Z>0, we write
Rn WDO=nm. Let also resn WO!Rn be the canonical projection, R1 the (pro-definable)
set lim
 �n

Rn and res1 W O! R1 the natural map. Note that, working in a sufficiently sat-
urated model, R1 Š O=m1, where m1 WD ¹x 2 K W v1.x/ > �1º and�1 6 � is the
convex subgroup generated by v.char.k// in mixed characteristic, and�1D 0 otherwise.
It is a valuation ring whose fraction field is naturally identified with the residue field k1
associated to the (equicharacteristic) valuation v1 W K! � ! �=�1. We also define
R WD

F
n>0 Rn.

Although most of the present paper is rather insensitive to the choice of lan-
guage for valued fields – or rather we work in L

eq
0 – we will at times need to work

in certain languages tailored for specific elimination results. The first of them is the
Haskell–Hrushovski–Macpherson geometric language. For every n 2 Z>0, let Sn Š
GLn.K/=GLn.O/ be the (interpretable) set of rank n free O-submodules of Kn, and
Tn WD

S
s2Sn s=ms. Let S WD

S
n Sn, T WD

S
n Tn and G WD K[ S[ T. We also denote

by sn W GLn.K/! Sn, tn W GLn.K/! Tn and �n W Tn ! Sn the canonical projections.
We will identify Sn with the zero section inside Tn. Note that GLn.K/ naturally acts
transitively on Sn and Tn n Sn, and the map �n is compatible with these actions.

These interpretable sets (and the geometric language of which they are the sorts,
which also contains the maps sn, tn and �n) were introduced to classify imaginaries in
ACVF:

Fact 2.2.2 ([21, Theorem 1.0.1]). The theory ACVF eliminates imaginaries in the geo-
metric sorts G .

The second language that we will use allows for a description of definable sets in
certain henselian fields. The exact language that we use was introduced by Flenner [20].
For every n 2 Z>0, let RVn be the multiplicative monoid K=.1C nm/; it is the union of
the group RV?nDK�=.1C nm/ and the class of 0, also denoted 0. Let rvn WK!RVn and
rvn;m W RVn! RVm, wherem divides n, denote the canonical projections. The valuation
induces a map RVn ! � that we also denote v. This map induces a short exact sequence

1! R�n ! RV�n ! �� ! 0:

Remark 2.2.3. If v.n/D v.m/, then rvn;m W RVn Š RVm. In particular, in equicharacter-
istic zero all RVn are canonically isomorphic to RV1. We allow this redundancy in order
to have a uniform treatment of characteristic zero henselian valued fields.

Moreover, in positive characteristic p, if n is prime to p then RVn Š RV1, and oth-
erwise RVn Š K. In the latter case, it makes more sense to only consider RV1 – see
below.

Moreover, RVn is endowed with the trace of addition which we denote, in Krasner’s
hyperfield manner, � ˚ � WD ¹rvn.x C y/ W rvn.x/ D � and rvn.y/ D �º � RVn. We say
that � ˚ � is well defined when � ˚ � D ¹�º is a singleton, and we often write � ˚ � D �
in that case.
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Remark 2.2.4. Note that for any two disjoint balls b1 and b2 in some valued field .K; v/,
and any ai ; ci 2 bi , rv1.a1 � a2/ D rv1.c1 � c2/. We will denote by rv1.b1 � b2/ this
common value. If b1 \ b2 ¤ ;, then by convention, rv1.b1 � b2/ D 0.

We denote by RV1 the (pro-definable) set lim
 �n

RVn, and rv1 W K! RV1 denotes
the natural map. Note that RV1 Š K=.1Cm1/, as pro-definable sets. We also denote
RV WD

F
n RVn.

Let LRV be the language with sorts K, � and RVn for all n 2 Z>0, the ring structure
on K, ordered (abelian) monoid structure with a constant for 1 on � , multiplication,
constants 0, 1 and a ternary predicate ˚ on each RVn, the valuation map v W K! � and
the maps rvn WK! RVn and rvn;m W RVn! RVm. Let LRV1 be its restriction to the sorts
K, � and RV1.

Remark 2.2.5. If the interval Œ0; v.n/� is finite, then the predicate˚ on RVn is definable
(in general with parameters, and without parameters in case v.n/ D 0) using addition
on Rn.

Proof. If v.�/ 6 v.�/, then

� ˚ � D � � r�1n .1C ��1�/;

where rn is the map sending rvn.x/ to resn.x/ whenever x 2 O. The remaining cases
are dealt with by symmetry. Therefore, it suffices to show that the map rn is definable.
Let � 2 RVn be an element of minimal positive valuation. Then for every � 2 RVn, if
v.�/ D `v.�/ 2 Œ0; v.n/�, then rn.�/ D rn.�/

` � .rvn.�/�`�/; and if v.�/ > v.n/, then
rn.�/ D 0. So rn is indeed definable (with parameters � and rn.�/, unless v.n/ D 0).

Definition 2.2.6. We say that a valued field .K; v/ is

� algebraically maximal if it does not admit non-trivial immediate algebraic extensions;

� Kaplansky if ��.K/ is p-divisible and any finite extension of k.K/ has degree prime
to p, where p D char.k.K// if it is positive and p D 1 otherwise;

� finitely ramified if for any ` 2 Z>0 the interval Œ0; v.`/� in �.K/ is finite.

Note that a finitely ramified valued field is algebraically maximal if and only if it is
henselian [18, Theorem 4.1.10].

The following quantifier elimination results are due, respectively, to Basarab [4, The-
orem B] in characteristic zero and Delon [15, Théorème 3.1] in positive characteristic (see
also [34, Corollary 2.2 and Theorem 2.6]):

Fact 2.2.7. � Let L be an RV-enrichment of LRV and T an L-theory containing the
theory Hen0 of henselian valued fields of characteristic zero. Then T eliminates field
quantifiers.

� Let L be an RV1-enrichment of LRV1 and T an L-theory containing the theory of
equicharacteristic p algebraically maximal Kaplansky valued fields, for some fixed
p > 0. Then T eliminates field quantifiers.
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2.3. Separated pairs of valued fields

In this section, we will gather some results about separated pairs of valued fields, in par-
ticular concerning pure stable embeddedness of the residue field and value group pairs in
specific contexts. In equicharacteristic zero, most of the results below follow from work
of Leloup [35], and from work of Rioux [43] in unramified mixed characteristic.

Recall that an extension L=K of valued fields is called separated if every finite-
dimensional K-vector subspace of L admits a K-valuation basis, i.e., a K-basis
.b1; : : : ; bn/ which is valuation independent over K: for any a1; : : : ; an 2 K one has
v.
P
aibi / D min v.aibi /. Also, for field extensions K � L � U and K � K 0 � U , we

write L ⫝ld
K K

0 if L and K 0 are linearly disjoint over K.

Definition 2.3.1. Let K � L � U and K � K 0 � U be valued field extensions.

� We say L and K 0 are �k-independent over K, denoted by L ⫝�k
K K 0, if k.L/ ⫝ld

k.K/
k.K 0/ and �.L/ \ �.K 0/ D �.K/.

� Assume that L=K is separated. Then L is said to be valuatively disjoint from K 0

over K, denoted by L ⫝vd
K K 0, if whenever a tuple .b1; : : : ; bn/ from L is valuation

independent over K, it is valuation independent over K 0.

Fact 2.3.2. Let K � L � U and K � K 0 � U be valued field extensions, with L=K
separated and L ⫝�k

K K 0. Set L0 WD LK 0. Then we have the following:

(1) L ⫝vd
K K 0 – in particular, L ⫝ld

K K
0;

(2) L0=K 0 is separated;

(3) k.L0/ D k.L/k.K 0/ and �.L0/ D �.L/C �.K 0/;

(4) if L1 �U and f WLŠL1 is an isomorphism overK [ k.L/[�.L/, then f extends
.uniquely/ to an isomorphism f 0 W L0 Š L1K

0 over K 0.

Proof. This is shown by adapting the proof of the corresponding result for K maximally
valued from [22, Proposition 12.11].

2.3.1. Reduction to RV. Most of this paper will be concerned with characteristic zero
finitely ramified fields; however, for future reference, we will state and prove certain
results, mostly regarding pairs, in all characteristics, as the arguments are essentially
identical.

Notation 2.3. Given a multisorted language L, we let LP be the associated language
of pairs, i.e., for every sort S from L we add a unary predicate PS of sort S to the
language. If N is an L-substructure of M , we will consider the pair of L-structures
zM D .M;N / as an LP-structure in the natural way, i.e., PS. zM/ D S.N / for each sort S.

We denote by P. zM/ D N the whole L-substructure singled out by the PS’s. Instead of
zM D .M; P. zM//, we will often write .M; P.M//. Given a quantifier free L-definable

set X , we extend the above notation and write PX for the LP-definable set whose points
in .M;P.M// are the P.M/-points of X .
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In LRV1;P, the class of separated pairs of valued fields may be axiomatised. For tech-
nical reasons, we will consider such pairs in a hybrid language, adding higher RV sorts
for the small valued field. Formally, we let L

hyb
RV;P be the language consisting of LRV1;P

together with additional sorts PRVn for all n > 2 and all symbols of LRV, where for
n > 2 we use PRVn instead of RVn. For example, in L

hyb
RV;P, for n > 2 we have a function

symbol rvn W K! PRVn and a ternary relation symbol˚ on PRVn.
Let T ? be a theory of separated pairs .M; P.M// of henselian valued fields in the

language L
hyb
RV;P. Here, M is the LRV1 -structure associated to a valued field, and P.M/

the LRV-structure (interpreted on the respective PS’s) of the corresponding valued sub-
field. (For n > 2, we extend rvn from PK.M/ to K.M/ trivially, setting rvn.a/ WD 0 2
PRVn.M/ for any a 2 K.M/ n PK.M/.) We assume that M eliminates field quantifiers
in LRV1 and P.M/ eliminates field quantifiers in LRV. Note that we do not assume that
PRV1 is stably embedded in RV1.

Remark 2.3.3. In positive characteristic p, since RVp Š K, eliminating quantifiers from
the sort K in LRV is an empty assumption and it makes more sense to consider pairs of
LRV1;P-structures instead, as in Remark 2.3.13.

By a hybrid RV-structure, we mean a structure .RV1.M/; PRV.M// (or one ele-
metarily equivalent to such a structure), where M ˆ T ? – with the restriction of the
L

hyb
RV;P-structure. We also denote by RVhyb the set of sorts ¹RV1; �º [ ¹PRVn W n > 2º.

Lemma 2.3.4. LetM0 4 N0 be hybrid RV-structures. Then k.M0/ ⫝
ld
Pk.M0/

Pk.N0/ and
�.M0/ \ P�.N0/ D P�.M0/.

Proof. Immediate from the elementarity of the extension.

Let M0 be a hybrid RV-structure, say (elementarily equivalent to) a structure of the
form .RV1.M/;PRV.M//, where M ˆ T ?. We say that M0 is finitely ramified if P.M/

is – i.e., Œ0;v.`/�\P� is finite for every `2Z>0. In that case, we also assume that Pk.M/

is perfect. In mixed characteristic .0; p/, R1 WD lim
 �n

PRn.M0/ is a p-ring with perfect
residue field Pk.M0/ (see [46, Ch. II, §5]) and p is not a zero divisor. So it is a com-
plete mixed characteristic discrete valuation ring and a finite extension of W.Pk.M0// of
degree v.p/, where W.k/ denotes the ring of Witt vectors over k. Let � be a uniform-
iser of R1 (i.e., a generator of the maximal ideal) and P its minimal polynomial over
W.Pk.M0//.

Definition 2.3.5. Ramification constants refer to the (infinite) tuple, in Pk.M0/, of Witt
coordinates of the coefficients of a polynomial P as above.

Lemma 2.3.6. Let M0 be a finitely ramified hybrid RV-structure. Assume that k�.M0/

is divisible, or P�.M0/ is a pure subgroup of �.M0/. Then the following hold:

(1) k and � are purely stably embedded and orthogonal.

(2) The theory of M is determined by the theories of the k-pair .with a choice of rami-
fication constants/, the �-pair and ramification data – i.e., the theory stating that,
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for every n, PRn has a uniformiser which is a zero of the polynomial whose Witt
coefficients are the ramification constants.

Moreover, statements .1/ and .2/ hold in any k-�-enrichment of M0, i.e., a k-enrichment
of a �-enrichment of M0.

Here, when we say that a definable set is purely stably embedded, we mean that its
induced structure is given by (a definable expansion of) the restriction of the language to
that set. For example, the structure on k is that of a pair of fields, and the structure on �
is that of a pair of ordered groups.

Proof of Lemma 2.3.6. We may assume that M0 is of the form .RV1.M/;PRV.M// for
some @1-saturated M ˆ T ?. Then, as @1-saturated modules are pure-injective, there is a
section of the valuation map restricted to the small valued field P.M/, inducing coherent
splittings of the sequences

1! PR�n .M0/! PRV�n .M0/! P��.M0/! 0

for all n > 1. In mixed characteristic, we may assume that the splitting is normalised: the
chosen uniformiser � is in the image of the splitting, equivalently, acn.�/D 1 if acn is the
angular component map induced by the splitting. Indeed, the group � generated by v.�/
is convex, so the quotient is also ordered and hence torsion free. As PK�.M/=O�.M/ �

�Z Š P�.M0/=�, the extension PO�.M/ � �Z 6 PK�.M/ is also pure. Pure-injectivity
of PO�.M/ (which is an @1-saturated abelian group) then allows one to extend the retrac-
tion PO�.M/ � �Z ! PO�.M/ sending � to 1 to the whole of PK�.M/.

It follows from the assumptions that the splitting of 1! Pk�.M0/! PRV�1 .M0/!

P��.M0/ ! 0 extends to a splitting of 1 ! k�.M0/ ! RV�1 .M0/ ! ��.M0/ ! 0.
Indeed, let h W PRV�1 .M0/ ! Pk�.M0/ be a retraction of the inclusion map, that is,
hjPk�.M0/ D idPk�.M0/. Then h extends (uniquely) to a homomorphism

zh W k�.M0/ � PRV�1 .M0/! k�.M0/

which is the identity on k�.M0/, since k�.M0/ \ PRV�1 .M0/ D Pk�.M0/. It is enough
to show that zh may be extended to a homomorphism h0 W RV�1 .M0/! k�.M0/. In case
k�.M0/ is divisible, this is clear, since divisible abelian groups are injective. If P�.M0/

is a pure subgroup of �.M0/, such an extension h0 exists, as k�.M0/ is pure-injective and
k�.M0/ � PRV�1 .M0/ is a pure subgroup of RV�1 .M0/ – the quotient being isomorphic to
the torsion-free group �.M0/=P��.M0/.

Note that the additional structure on RVhyb, beyond the abelian structure, is given
by ˚ and some k-�-enrichment. As explained in Remark 2.2.5, ˚ can be defined using
the ring structure on k and the PRn (using the splitting, no further constants are required).
Moreover, PRn is a finite extension, generated by the zero of a polynomial with coef-
ficients the ramification constants, and, as such, is ;-interpretable in Wn.Pk/, which is
itself ;-interpretable in Pk. So, if we add the splittings, RVhyb is (identified to) a k-�-
enrichment of the product of k and � . In the product structure, (1) and (2) are clear, even
for k-�-enrichments. The result follows, as (1) and (2) are preserved in any reduct of the
product structure that carries the whole structure on k and � .
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Remark 2.3.7. If Pk is (purely) stably embedded in k and P� is (purely) stably embed-
ded in � , then PRV is (purely) stably embedded in RVhyb. Indeed, this is true with a
splitting as in the proof above since RV and PRV can be identified to products, and it
remains true after removing the splitting.

We now get back to the L
hyb
RV;P-theory T ? of separated pairs of valued fields. Let

M;N ˆ T ?, where we suppose thatN is jM jC-saturated, and letA6M and f WA!N

be some embedding.

Definition 2.3.8. We say that

(1) A is good if PK.A/ 6 K.A/ is a separated extension of valued fields with

K.A/ ⫝�k
PK.A/ PK.M/I

(2) f is good if A 6 M and f .A/ 6 N are good and fRVhyb is elementary for the
L

hyb
RV;PjRVhyb -structure.

Proposition 2.3.9. Assume f is a good embedding. Then f extends to a good embedding
g WM ! N .

Proof. We proceed step by step.

Step 1. We may extend f to a good map defined on A [ RVhyb.M/, and thus assume
that RVhyb.A/ D RVhyb.M/.

Indeed, this follows from saturation, the fact that fRVhyb is elementary and that the
only symbols in the language involving both K and RVhyb are maps from K to RVhyb.

Step 2. We may extend f to a good map defined on .the substructure generated by/
A [ P.M/, and thus assume that PK.A/ D PK.M/.

Indeed, by K-quantifier elimination in the LRV-theory of the small valued field P.M/,
the map f jP.A/ extends to an (elementary) LRV-embedding g W P.M/! P.N /. Since we
have RVhyb.A/ D RVhyb.M/ and K.A/ ⫝�k

PK.A/ PK.M/, by Fact 2.3.2, f [ g induces a
good embedding of A [ P.M/ into N .

Step 3. We may extend f to a good embedding of M into N .

Indeed, by K-quantifier elimination in the LRV1 -theory of the valued field M , the
map f extends to an (elementary) LRV1 -embedding Qf W M ! N . By Lemma 2.3.4,
we get Qf .K.M// ⫝�k

f .PK.M//
PK.N /, so in particular Qf .K.M// ⫝ld

f .PK.M//
PK.N / (and

thus Qf .K.M//\ PK.N / D f .PK.M//) by Fact 2.3.2 (1), showing that Qf is an LRV1;P-
embedding, with image a good substructure of N . Thus Qf is a good embedding, since f
was already defined on the whole of RVhyb.M/.

Corollary 2.3.10. The theory T ? is complete relative to RVhyb, and RVhyb is purely stably
embedded in T ?, i.e., the induced structure is that of a hybrid RV-structure.
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This also holds for any RVhyb-enrichment of the pair of valued fields. (This is folklore;
see, e.g., [13, Proposition 2.7] for a proof.)

Proof of Corollary 2.3.10. Assume that M; N ˆ T ? are models with RVhyb.M/ �

RVhyb.N /. The isomorphism between the prime substructures, i.e., the substructures
of M an N generated by ;, is easily seen to be a good embedding. It follows by Pro-
position 2.3.9, and a back and forth argument, that it is in fact elementary, i.e., M � N .

Similarly, ifM 4N (in particular a good substructure) and f WM !N is an element-
ary embedding (in particular a good embedding) inducing the identity on RVhyb.M/, then
it remains a good embedding (and hence an elementary one) when extended by the iden-
tity on RVhyb.N /. Thus, tp.M=RVhyb.M// ` tp.M=RVhyb.N //; in other words, RVhyb is
stably embedded. Finally, any L

hyb
RV;PjRVhyb -elementary map on RVhyb is good and hence

L
hyb
RV;P-elementary, so RVhyb is pure.

Remark 2.3.11. With a proof similar to the argument above, we also see that if PRV
is (purely) stably embedded in RVhyb, then PK is (purely) stably embedded. Indeed, if
f WM !N is an elementary embedding which is the identity on PK, and if PRV is stably
embedded, we can extend f to a good embedding by the identity on PRV.N /. Since
K.M/ ⫝ld

P K.M/PK.N /, we can then further extend this good embedding by the identity
on PK.N /. This extension can be seen to preserve rv by using the fact that PK.N / 6
K.N / is separated. This proves that PK is stably embedded.

Moreover, if PRV is purely stably embedded in RVhyb, any automorphism f W PK.N /
! PK.N / is good and hence L

hyb
RV;P-elementary, proving that PK is a pure valued field.

Combining Corollary 2.3.10, Lemma 2.3.6, and Remarks 2.3.7 and 2.3.11, we obtain
the following.

Corollary 2.3.12. LetM ˆ T ? be such that P.M/ is finitely ramified with perfect residue
field. Assume that k�.M/ is divisible .which is the case for example if M ˆ ACVF/
or that P�.M/ is a pure subgroup of �.M/. Then the theory of M is determined by
ramification data and the theories of k .with ramification constants/ and � . Moreover, k
and � are purely stably embedded and orthogonal and RVhyb is purely stably embedded.

Furthermore, if Pk is purely stably embedded in k and P� is purely stably embedded
in � , then PRV and PK are also purely stably embedded.

This remains true in any k-�-enrichment of M and with angular components.

Remark 2.3.13. If we further assume that P.M/ eliminates field quantifiers in LRV1 –
e.g., if it is algebraically closed or algebraically maximal Kaplansky of equicharacteristic
– then all the above results can easily be adapted to pairs of LRV1 -structures (with no need
for the rather exotic hybrid RV-structures).

2.3.2. Characteristic zero Laurent series fields. Let F be a field of characteristic zero,
and let K WD F..t//. In what follows, we are interested in the pair .Ka; K/ of valued
fields. Let us first deal with the pair of value groups. Let Log be the language of ordered
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groups and DOAG be the theory of non-trivial divisible ordered abelian groups. Let also
LPres be the language Log enriched with a constant 1 and unary predicates for divisibility
by integers. Let PRES be the LPres-theory of Z.

Notation 2.4. Let TQ;Z be the theory of all structures .�;�/with � ˆDOAG,�ˆ PRES
and such for any 
 2 � there is a largest ı DW b
c 2 � with ı 6 
 , considered in the
language LQ;Z given by Log;P together with LPres on the predicate P and the function b�c.

The quantifier elimination result we state in part (3) of the following lemma has
already been obtained by Weispfenning [50]. (We thank Matthias Aschenbrenner for hav-
ing brought this to our attention.) We decided to include our proof for convenience of the
reader.

Lemma 2.3.14. (1) Let M D .�; �/ ˆ TQ;Z. Then the map 
 7! .b
c; 
 � b
c/ is an
;-definable bijection between � and � � Œ0; 1/, which identifies the ;-definable sets
inM with the ;-definable sets in the product structure .�;0;C;6/� .Œ0;1/; 0; QC;</,
where a QC b WD a C b � ba C bc is the group law on Œ0; 1/ induced by the natural
bijection between Œ0; 1/ and �=�.

(2) In TQ;Z, the predicate P is stably embedded with induced structure a pure model
of PRES, and Œ0; 1/ is stably embedded, with induced structure given by Log, so in
particular o-minimal.

(3) TQ;Z eliminates quantifiers and is complete.

Proof. Let f W �!�� Œ0; 1/ be the bijection given in (1). Clearly, f is ;-definable, and
the product structure .�; 0;C;</ � .Œ0; 1/; QC;</ is ;-definable inM . Conversely, under
this identification P corresponds to f �1.0/; < on � corresponds to the lexicographic
ordering on�� Œ0;1/; and the addition on � may also be recovered, since if f .
/D .z;a/
and f .
 0/ D .z0; a0/, then

f .
 C ı/ D

´
.z C z0; a QC b/ if a 6 a QC b;
.z C z0 C 1; a QC b/ otherwise:

This proves (1). Part (2) follows directly from (1).
Let us now show (3). Completeness follows from quantifier elimination, since .Z;Z/

embeds into every model of TQ;Z as a substructure. To prove quantifier elimination, we
first note that the Log-theory of .Œ0; 1/; 0; QC; </ has quantifier elimination. (This is well
known, and we leave the easy proof to the reader.) Moreover, PRES has quantifier elim-
ination in LPres. It is thus enough to establish the following claim:

Claim 2.3.15. If D � .� � Œ0; 1//n is defined by an atomic formula in the product struc-
ture � � Œ0; 1/, with LPres on � and Log on Œ0; 1/, then f �1.D/ � M n is defined by a
quantifier free formula .without parameters/.

To prove the claim, let us denote the projection onto � by �1, that onto Œ0; 1/ by �2.
If ' is of the form  .�1.x1/; : : : ; �n.x1// for some atomic LPres-formula  .xy/, the state-
ment is clear, as then f �1.D/ is defined by the quantifier free formula .bx1c; : : : ;bxnc/.
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Else, ' is (equivalent to) a formula of the form z1�2.x1/ QC � � � QC zn�2.xn/ D 0 with
z1; : : : ; zn 2 Z, in which case f �1.D/ is defined by P.

Pn
iD1 zixi /; or ' is (equivalent

to) a formula of the form

z1�2.x1/ QC � � � QC zn�2.xn/ < z
0
1�2.x1/ QC � � � QC z

0
n�2.xn/

with z1; z01; : : : ; zn; z
0
n 2Z, in which case f �1.D/ is defined by the quantifier free formulaPn

iD1 zixi � b
Pn
iD1 zixic <

Pn
iD1 z

0
ixi � b

Pn
iD1 z

0
ixic.

In fact, the proof of Lemma 2.3.14 yields the following more general result.

Remark 2.3.16. Let LC �LPres and TC � PRES be a complete LC-theory with quanti-
fier elimination. Then the corresponding expansion TCQ;Z of TQ;Z is complete, eliminates
quantifiers, and P is purely stably embedded with induced structure given by LC.

Since TQ;Z admits the complete model .R;Z/, it is definably complete. Actually, this
also holds for definable complete expansions of PRES, as the following corollary shows.

Corollary 2.3.17. Assume that the expansion TC � PRES is definably complete. Then
TCQ;Z is definably complete.

Proof. Let .�; �/ ˆ TCQ;Z and let D � � be a definable subset which is bounded and
non-empty. Then bDc is a definable subset of � which is non-empty and bounded. By
assumption, it admits a supremum s in�, which is then the maximum of bDc as the order
on � is discrete.

As the induced structure on Œ0;1/ is o-minimal by Lemma 2.3.14, the induced structure
on Œs; sC 1� is o-minimal as well, and so sup.D/D sup.D \ Œs; sC 1�/ exists in Œs; sC 1�,
proving definable completeness.

Let us now consider the residue field. By a classical result of Keisler [33], if F and F 0

are fields such that F �F 0, then .F a;F /� .F 0a;F 0/. If F DF a or F a is real closed, then
the axiomatisation, in Lring;P, of .F a; F / is clear, and P is stably embedded with induced
structure that of a ring. In case Tf is a complete theory of fields whose models are neither
algebraically nor real closed, and F ˆ Tf , then the models of the Lring;P-theory Tf;a of
.F a; F / are precisely the pairs .M;P.M// of fields such that M DM a and P.M/ ˆ Tf .
By [23, Theorem 4.7], if one definably expands the theory, adding relation symbols ldn
and function symbols `n;i , the theory Tf;a eliminates quantifiers relative to P. This yields
in particular the following.

Fact 2.3.18. For Tf D Th.F / a complete theory of fields .in arbitrary characteristic/,
the predicate P is stably embedded in the Lring;P-theory Tf;a D Th.F a; F /, with induced
structure given by Tf .

This also holds for any L-expansion of F , where L � Lring.

The following lemma will be used in Section 3 (proof of Proposition 3.5.4).

Lemma 2.3.19. Let F be some .enriched/ field which eliminates 91. Then the pair
.F a; F / also eliminates 91.



M. Hils, S. Rideau-Kikuchi 18

Proof. We may suppose that F is neither algebraically nor real closed, as otherwise the
result is clear. By the relative quantifier elimination result [23, Theorem 4.7] already men-
tioned above, if .M;P.M//� .F a; F / and .M;P.M// 4 .U;P.U//, then for any a; b 2
U n .MP.U//a we have tp.a=M/ D tp.b=M/ DW pgen.x/, so, assuming that .U;P.U//
is sufficiently saturated, any element of U is the sum of two realisations of pgen. By com-
pactness, for any M -definable set D D  .M/ �M we then have

D CD DM ”  .U/C  .U/ D U

”  .U/ 6� .MP.U//a ” pgen.x/ `  .x/: (2.1)

We will now assume that M is @0-saturated. Let '.x; y/ be a formula with x a single
variable. Assume that c is a tuple from M such that '.M; c/ is infinite. By compactness,
it is enough to find a formula �.y/ 2 tp.c/ such that for any c0 from M satisfying � the
set '.M; c0/ is infinite.

If pgen.x/ ` '.x; c/, we may find such a �.y/ using (2.1). So assume now that
pgen.x/° '.x; c/, and choose a 62M realising '.x; c/. Then a 2 .MP.U//a nM a, so in
particular

M.a/ ⫝̸ld
P.M/ P.U/:

Set A WD dcl.Ma/. If P.A/ D P.M/, by [23, Lemma 4.1] we have A ⫝ld
P.M/

P.U/, con-
tradicting M.a/ ⫝̸ld

P.M/
P.U/. It follows that there is a0 2 P.A/ n P.M/, so we find an

M -definable function g W D ! P.M/ with infinite image. Using Fact 2.3.18 and the
assumption that the theory of F eliminates 91, we may thus find a formula �.y/ as
required, stipulating explicitly the existence of a definable function with infinite image
in P.

Fix some characteristic zero field F and let T ?Laur be the theory of separated pairs of
henselian valued fields .M;P.M//with .�.M/;P�.M//ˆ TQ;Z and .k.M/;Pk.M//�

.F a; F /. Combining Fact 2.3.18 and Lemma 2.3.14 with Corollary 2.3.12, we obtain the
following.

Proposition 2.3.20. The theory T ?Laur is complete, the definable sets k, � , RV, PK, Pk,
P� and PRV are all purely stably embedded, and k and � are orthogonal. All these
results also hold for Pk-P�-enrichments, and also if one adds an angular component.

2.3.3. Finitely ramified fields. We will now prove analogous statements in mixed charac-
teristic. Let K be a complete mixed characteristic Z-valued field with perfect residue
field F . We are interested in the pair .Ka; K/ of valued fields. Let T ?Witt be a the-
ory of separated pairs of henselian valued fields with fixed ramification data such that
.k.M/;Pk.M// � .F a; F / (with ramification constants) and .�.M/;P�.M// ˆ TQ;Z.
In that case, as a consequence of Corollary 2.3.12, we obtain the following.

Proposition 2.3.21. The theory T ?Witt is complete, the definable sets k, � , RVhyb, PK,
PRV, Pk and P� are all purely stably embedded, and k and � are orthogonal. All these
results also hold for Pk-P�-enrichments, and also if one adds a coherent system of nor-
malised angular components.
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2.3.4. Divisible value group. Let F be a field. If char.F / D p > 0, assume that F does
not admit a finite extension of degree divisible by p (in particular, F is perfect). Let
K WD F..tQ//. In what follows, we are interested in the pair of valued fields .Ka; K/.

Let T ?div be the theory of separated pairs of equicharacteristic algebraically maximal
valued fields .M;P.M// such that .k.M/;Pk.M// � .F a; F / and P�.M/ D �.M/ ˆ

DOAG. Note that the Kaplansky conditions (Definition 2.2.6) are satisfied in this case.
Once again, as a consequence of Corollary 2.3.12, we have the following result.

Proposition 2.3.22. The theory T ?div is complete. The definable sets k, � , RV, PK, Pk
and PRV are all purely stably embedded, and k and � are orthogonal. All these results
also hold for Pk-�-enrichments, and also if one adds angular components.

2.4. Valued difference fields

Let .K; v; �/ be an equicharacteristic zero valued field with an automorphism.

Definition 2.4.1. (1) For every P 2 KŒx0; : : : ; xn�, a 2 K, d 2 KnC1 and 
 2 �.K/�,
we say that .P; a; d; 
/ is in � -Hensel configuration if

v.P.ra// > min
i
Œv.di /C � i .
/�

and, for all x; y 2 K with v.x � a/; v.y � a/ > 
 ,

v.P.ry/ � P.rx/ � d � r.y � x// > min
i

v.di� i .y � x//:

Here, ra WD .� i .a//06i6n.

(2) We say that .K; v; �/ is � -henselian if for every .P; a; d; 
/ in � -Hensel configura-
tion, there exists c 2 K.M/ such that P.rc/ D 0 and

v.c � a/ > max
i; di¤0

v.��i .P.ra//d�1i /:

(3) A difference field .k; �/ is called linearly closed if for every linear non-constant
L 2 kŒx0; : : : ; xn� and c 2 k, there exists a 2 k such that L.r.a// D c.

Fact 2.4.2. Assume that k.K/ is linearly closed and either

� .K; v/ is maximally complete, or

� .K; v/ is complete and rank 1, i.e., the value group is archimedean.

Then .K; v; �/ is � -henselian.

This follows from Newton approximation (see [41, Proposition 4.14]). Note that at
each step the approximation to the root of a � -Hensel configuration .P; a; d; 
/ improves
by at least 
 (see [41, Lemma 4.16]), and hence, in rank 1, completeness suffices.

Let L�
RV be the language LRV with three new unary functions �K W K ! K, �RV W

RV! RV and �� W � ! � . The expected quantifier elimination result also holds in char-
acteristic zero � -henselian fields, by [17, Theorem 7.3] (see also [41, p. 41, Theorem A]):
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Fact 2.4.3. Let L be an RV-enrichment of L�
RV and T an L-theory containing the the-

ory Hen�0;0 of equicharacteristic zero � -henselian valued fields. Then T eliminates field
quantifiers.

Remark 2.4.4. In [2,17,38] an a priori weaker notion of � -henselian fields is considered.
However, both notions hold in maximally complete fields (with linearly closed residue
field) and both allow proving Fact 2.4.3. In equicharacteristic zero, the automorphism
extends to any maximal completion. Moreover, that maximal completion has the same
RV as the original field. Thus, it follows from Fact 2.4.3 that any equicharacteristic zero
field satisfying either notion is elementarily equivalent to any maximal completion where
both notions hold. So these two notions of � -henselianity coincide.

It follows from field quantifier elimination that RV is purely stably embedded. Its
induced structure is the expansion of the short exact sequence of ZŒ��-modules 1! k�!
RV� ! �� ! 0 by˚ and <, which, by Remark 2.2.5, can be defined (with parameters)
in a �-k-enrichment.

In order to obtain model complete theories, one often restricts the behaviour of the
automorphism on the value group, e.g., the class of (existentially closed) multiplicative
difference valued fields introduced in [38]:

Definition 2.4.5. Let VFAmult
0;0 be the theory of � -henselian non-trivially valued fields

such that

(1) for every P 2 ZŒ��, either P.�>0/ D �>0, P.�<0/ D �>0 or P.�/ D 0;

(2) .k; �k/ ˆ ACFA0;

(3) the embedding k� ! RV of ZŒ��-modules is pure.

Remark 2.4.6. Two multiplicative behaviours of � are of particular interest:

(1) The !-increasing case – i.e., for all x 2 O and n 2 Z>0, v.�.x// > nv.x/ – studied
in [2, 16]. One then gets the asymptotic theory of .Fp.t/a; vt ; �p/, where �p is the
Frobenius automorphism.

(2) The isometric case, studied in [6]. In that case, one gets the asymptotic theory
of .Cp; vp; �p/, where �p is an isometric lift of the Frobenius automorphism on
k.Cp/ D F a

p .

Both characterisations follow (see, e.g., [10]) from the Ax–Kochen–Ershov principle
for � -henselian valued fields and Hrushovski’s deep result that ACFA0 is the asymptotic
theory of .F a

p; �p/ (see [27]).

Fact 2.4.7. In VFAmult
0;0 , k is a stably embedded pure difference field and � is a stably

embedded o-minimal pure ordered ZŒ��-module, and k and � are orthogonal. These res-
ults also hold if one adds a � -equivariant angular component.

Proof. Condition (3) in Definition 2.4.5 ensures that in any @1-saturated model of
VFAmult

0;0 there is a � -equivariant angular component map ac. [38, Theorem 11.8] yields
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the results if we add such an ac map to the language, and they obviously go down to the
reduct without ac.

2.5. Linear structures

Let us now recall the results of [25] on linear structures. In the case of valued difference
fields, we will need ‘twisted’ versions of these results. As it took us a while to get the
arguments clear, we decided to spell them out in detail.

2.5.1. Independent amalgamation. We will first recall some material from [25, Sec-
tion 4]. We fix a complete stable theory T in some language L, and we assume that
T eliminates quantifiers and imaginaries. Let CT be the category consisting of those L-
structures that are algebraically closed substructures of a model of T , with L-embeddings
(which are L-elementary in T by assumption) as morphisms. Let n D ¹0; 1; : : : ; n � 1º,
and set P .n/� WDP .n/ n ¹nº. We consider P .n/� and P .n/ as categories, with inclusion
maps as morphisms.

Given a functorA W P ! CT , where P equals P .n/� or P .n/, if � Ww1!w2 denotes
the inclusion map for two sets w1 � w2 2 P , in what follows we will write A.w1/ for
the subset A.�/.A.w1// of A.w2/, thus omitting the map A.�/ in our notation. This slight
abuse of notation should not lead to any confusion.

Definition 2.5.1. Let P equal P .n/� or P .n/.
(1) A functor A W P ! CT is called independence preserving if for any w;w0 2 P with

w [ w0 2 P one has A.w/ ⫝A.w\w0/ A.w0/ (inside A.w [ w0/).

(2) A functor A W P ! CT is called bounded if for any ; ¤ w 2 P one has

A.w/ D acl
�[
i2w

A.¹iº/
�
:

(3) An n-amalgamation problem in T is a bounded independence preserving functor
A� W P .n/� ! CT . A solution of A� is a bounded independence preserving functor
A W P .n/! CT extending A�.

Definition 2.5.2. The theory T is said to have

� n-existence if every n-amalgamation problem in T has a solution;

� n-uniqueness if whenever A and A0 are solutions of the same n-amalgamation problem
A� in T , then A and A0 are isomorphic over A�, i.e., there is an L-isomorphism f W

A.n/ Š A0.n/ fixing A�.w/ pointwise for every w 2 P .n/�.

Remark 2.5.3. In the terminology of [25], these notions correspond to n-existence/
n-uniqueness of T over every parameter set.

Remark 2.5.4. It follows from stability and elimination of imaginaries in T (as then
types over algebraically closed sets are stationary) that T has 2-existence, 2-uniqueness
and 3-existence.
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Let � be a new unary function symbol, and L� WDL[ ¹�º. Consider the category zCT
of L� -structures of the form .A; �/, where A 2 CT and � 2 AutL.A/, with L� -embed-
dings as morphisms.

Definition 2.5.5. Let P equal P .n/� or P .n/.
(1) A functor A W P ! zCT is called independence preserving (bounded, respectively) if

it is so when composed with the forgetful functor from zCT to CT .

(2) We say that zCT has n-existence if every bounded independence preserving func-
tor A� W P .n/� ! zCT extends to a bounded independence preserving functor A W
P .n/! zCT .

It follows from 2-uniqueness and 2-existence in T that zCT has 2-existence.
Let T� be the L� -theory of all .M;�/ 2 zCT such thatM ˆ T . Recall that if T� admits

a model-companion, it is denoted by TA. If this is the case, we will say that ‘TA exists’.
(We refer to [9] for fundamental facts about TA.)

Fact 2.5.6 ([25, Proposition 4.7 and Corollary 4.10]). For T as above, the following are
equivalent:

(1) T has 3-uniqueness.

(2) zCT has 3-existence.

Moreover, assuming in addition that TA exists, the above conditions imply

(3) TA eliminates imaginaries.

It is easy to see that if TA exists and it eliminates bounded hyperimaginaries (e.g.,
when T is superstable, by [7] combined with [9, Corollary 3.8]), then (3) is actually
equivalent to (1) and (2). We will not use this in our paper.

2.5.2. Twisted independent amalgamation. Let � W L Š L0 be a bijection between two
first order languages (sending sorts to sorts, function symbols to function symbols consist-
ently with their arity, and similarly for constants and relations). Then � extends naturally
to a bijection between the set of L-formulas and the set of L0-formulas. Given an L-
formula ', we denote by '� its image under this map. If T is an L-theory, then T � WD
¹'� W ' 2 T º is an L0-theory. Of course, up to changing the names of the symbols using � ,
T � is the ‘same’ theory as T .

If M is an L-structure, we denote by M � the L0-structure with base set M and inter-
pretations .†� /M

�

D †M , for any symbol † 2 L. If N 0 is an L0-structure, we call an
L0-isomorphism � W M � Š N 0 a � -twisted isomorphism between M and N 0. Similarly,
one defines the notion of a � -twisted elementary map � W A! A0, where A � M and
A0 � N 0, i.e., one requires that for any L-formula '.x/ and any tuple a from A of the
right length, one has M ˆ '.a/ if and only if N 0 ˆ '� .�.a//.
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Lemma 2.5.7. Let T be a complete stable L-theory eliminating quantifiers and imagin-
aries. Assume that T has n-uniqueness. Let A W P .n/! CT and A0 W P .n/! CT � be
bounded independence preserving functors.

Then for any coherent system .�w/w2P .n/� of � -twisted elementary bijections �w W
A.w/!A0.w/ there exists a � -twisted elementary bijection �n WA.n/!A0.n/ extending
�w for every w 2 P .n/�.

Proof. The result follows from n-uniqueness of T � , since we may consider A as a functor
to CT � , replacing A.w/ by A.w/� .

We now consider the special case where L0 D L, � is a permutation of L, and T is a
complete L-theory such that T D T � . Let zC .�/T be the category of L� -structures .B; �/
with B 2 CT and � W B ! B a � -twisted elementary bijection. When T is stable, we use
the same terminology as in Definition 2.5.5, for functorsA W P ! zC .�/T . Lemma 2.5.7 then
yields the following result.

Corollary 2.5.8. Let T be a complete stable L-theory eliminating quantifiers and ima-
ginaries, and let � W L! L be a bijection such that T � D T . Then zC .�/T has 2-existence.
If in addition we assume that T has 3-uniqueness, then zC .�/T has 3-existence.

Proof. Lemma 2.5.7 implies that if T has n-uniqueness and n-existence, then zC .�/T has
n-existence. We thus get the assertion by Remark 2.5.4.

Given a complete L-theory T and a permutation � of L such that T � D T , we let
T
.�/
� be the L� -theory whose models are of the form .M; �/, whereM ˆ T and where �

is a � -twisted automorphism of M .
Assume now in addition that T is stable and eliminates quantifiers and imaginaries.

It follows from quantifier elimination in T that T .�/� is then a 89-theory, and so it has
a model-companion if and only if the e.c. models of T .�/� form an elementary class. If
this is the case, denote by T .�/A the model-companion of T .�/� . Then the models of T .�/A
are precisely the e.c. models of T .�/� . The basic results on TA, due to Chatzidakis and
Pillay [9], generalise to this context in a straightforward manner. We will only state some
facts which we will need.

Lemma 2.5.9. Let T and � be as above, and assume that T .�/A exists. Then the following
hold:

(1) If .M; �/ ˆ T .�/A and B �M then

acl.M;�/.B/ D acl� .B/ WD aclM
�[
z2Z

�z.B/
�
:

(2) (Quantifier reduction) If .Mi ;�i /ˆT
.�/A andBi �Mi for i D 1;2, thenB1�L� B2

if and only if there is an L� -isomorphism from acl� .B1/ to acl� .B2/ sending B1
to B2.
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(3) T .�/A is simple and

A ⫝T
.�/A

E B if and only if acl� .EA/ ⫝Tacl� .E/ acl� .EB/:

If T is superstable, then T .�/A is supersimple.

(4) Assume that zC .�/ has 3-existence. .Equivalently, in T .�/A, the independence theorem
holds over acl� -closed sets./ Then T .�/A eliminates imaginaries.

Proof. To prove (2), assume that B D acl� .B/ is a common substructure of two mod-
els .M; �/ and .N; �/ of T .�/A such that .N; �/ is jM jC-saturated. We need to show
that .M; �/ L� .B/-embeds into .N; �/. As zC .�/T has 2-existence, there is an amalgam
.A; �/ 2 zC

.�/
T of N and M over B . Enlarging .A; �/ if necessary, we may assume that

.A; �/ˆ T .�/A, hence .A; �/ < .N; �/. In particular, tpL�
.M=B/ is finitely satisfiable in

.N; �/, so this type is realised in .N; �/ by saturation, yielding an L� .B/-embedding of

.M; �/ into .N; �/.
We now prove (1). Let .M; �/ ˆ T .�/A and let B � M . Clearly, acl.M;�/.B/ �

acl� .B/. To prove the other inclusion, it suffices to show that if B D acl� .B/, then B
is algebraically closed in .M; �/. Let a 2M nB , and set A WD acl� .Ba/. Then .B; �/ �
.A; �/ is an extension in zC .�/T .

For n 2 Z>0, using 2-existence in zC .�/T and induction, we may construct an extension
.B; �/ � .Cn; �/ 2 zC

.�/
T such that Cn contains n isomorphic copies .A1; �/; : : : ; .An; �/

of .A; �/ over B which are L-independent over B . Replacing .M; �/ by an elementary
extension if necessary, using (2) we may assume that Cn �M . Since B D aclL.B/L, we
haveAi \Aj DB for any i ¤ j , so .M;�/ contains n distinct realisations of tpL�

.a=B/,
by part (2). As n was arbitrary, a 62 acl.M;�/.B/.

To show (3), we proceed exactly as in the proof of the corresponding result for TA
[9, Corollary 3.8]. If A; B; E are subsets of a model of T .�/A, we say that A and B are
independent over E if

acl� .EA/ ⫝Tacl� .E/ acl� .EB/;

where ⫝T denotes forking independence in T . This relation satisfies all the abstract prop-
erties of an independence notion that guarantee, by the theorem of Kim–Pillay (see, e.g.,
[49, Theorem 2.6.1]), that T .�/A is simple and that non-forking is given by the independ-
ence notion in question. This is clear for all properties except the independence theorem
(over a model). To establish the latter, one shows that every 3-amalgamation problem
A� W P .3/� ! zC .�/T with A�.;/ ˆ T .�/A has a solution; equivalently, the independence
theorem even holds over models of T .�/� . The proof of this is identical to the proof of
[9, Theorem 3.7].

The statement about supersimplicity follows as in [9, proof of Corollary 3.8].
Part (4) is the analog of [25, Proposition 4.7]. Weak elimination of imaginaries

in T .�/A follows directly from a formalisation of Hrushovski’s argument by Montenegro
and the second author [37, Proposition 1.17]. But finite sets are coded in models of T , as
T eliminates imaginaries by assumption. so they are also coded in the expansion T .�/A
of T . Hence T .�/A eliminates imaginaries.
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2.5.3. Linear imaginaries. Let us now recall some notions from [25, Section 5].

Definition 2.5.10. Let t be a theory of fields (possibly with additional structure). Then
a t-linear structure M is an L-structure with a sort k for a model of t, and additional
sorts Vi (i 2 I ) denoting finite-dimensional k-vector spaces, such that the family .Vi /i2I
is closed under tensor products and duals. Each Vi has (at least) the k-vector space struc-
ture. One assumes that k is stably embedded in M with induced structure given by t.

We now fix such a t-linear structure M .

(1) M is said to have flags if for any i with dim.Vi / > 1, for some j; k with dim.Vj / D
dim.Vi /� 1, there exists a ;-definable exact sequence 0! Vk ! Vi ! Vj ! 0. We
will call such a short exact sequence a flag.

(2) M is said to have roots if for any one-dimensional V D Vi , and anym> 2, there exists
a (one-dimensional)W D Vj and a ;-definable k-linear isomorphism f WW ˝m Š V .

Let us now mention two results from [25]. The proof of the first one is rather element-
ary, whereas that of the second one is quite involved.

Fact 2.5.11 ([25, Lemma 5.6]). The theory of an ACF-linear structure with flags .in any
characteristic/ eliminates imaginaries.

The following fact follows from [25, Proposition 5.7] in combination with [25, Pro-
position 4.3 and Corollary 4.10].

Fact 2.5.12. Let T be the theory of an ACF0-linear structure with flags and roots. Then
T has 3-uniqueness.

Our main interest in linear structures stems from the fact that the k-internal sets in a
given model of ACVF give rise to such a structure. For everyM ˆ Hen0 and A � G .M/,
we define

LinA WD
G

s2S.dcl0.A//
`2Z>0

s=`ms:

In equicharacteristic zero, i.e., if M ˆ Hen0;0, this corresponds exactly to the col-
lection of vector spaces VSk;A D

F
s2S.dcl0.A// s=ms introduced in [22]. In mixed char-

acteristic, however, this is a more complicated structure since it also consists of (free)
R`-modules – and this more complicated structure is actually needed in Section 4. Note
that, by Convention 2.1 and our choice of representation of the geometric sorts, LinA.M/

is the set of cosets c C `ms where s 2 S.dcl0.A// has a basis in M and c 2 s.M/.

Lemma 2.5.13. LetM ˆHen0;0 andA� G .M/. Then LinA.M/with its L0.A/-induced
structure is a Th.k.M//-linear structure with flags. Moreover, if �.M/ is divisible, then
LinA.M/ has roots.

Proof. We may assume that dcl0.A/ \ G .M/ � A. The fact that the residue field k is
stably embedded in Hen0;0, with induced structure that of a pure field, is well known, and
follows from the existence of splittings as in Lemma 2.3.6.
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Now let V; W be two sorts from LinA.M/, i.e., vector spaces over k of the form
V D a=ma, W D b=mb for some a 2 Sm.A/ and b 2 Sn.A/, with bases in M . Then
a ˝O b is canonically isomorphic to an element c from Sm�n.A/, so we may identify
V ˝k W with c=mc, which is a sort from LinA.M/. Similarly, La D HomO.a;O/ can be
identified with ¹z 2 Kn W 8v 2 a;

P
zivi 2 Oº 2 Sm.A/, so LV D Homk.V; k/ Š La=m La

is a sort from LinA as well.

Flags: For a 2 Sn.A/ define a1 WD a \ .K � ¹0ºn�1/. Then the projection onto the first
coordinate identifies a1 with an element of S1.A/. Let � W a!Kn�1 be induced from the
projection on the last n � 1 coordinates. Then

0! ker.�/ D a1 ! a! �.a/! 0

is an A-definable exact sequence of free O-modules, and �.a/ 2 Sn�1.A/ – this follows
from the fact that �.a/ is a finitely generated torsion free O-submodule of Kn�1 of rank
n � 1. Reducing modulo m, we conclude that LinA.M/ has flags.

Roots: Assume �.M/ is divisible. Let n > 1, and let V be a one-dimensional sort from
LinA. Then V D 
O=
m for some 
 2 �.dcl0.A//. Consider Vn WD ıO=ım for ıD 
=n.
The map

x=
m 7! y=ım˝ � � � ˝ y=ım W V ! V ˝nn ;

where ynD x, is well defined and anA-definable isomorphism of k-vector spaces defined
over A. In particular, LinA has roots.

The result above actually holds for the stable part
F
s2S.dcl0.A// s=ms in any charac-

teristic (provided k is stably embedded).

Corollary 2.5.14. Let M ˆ ACVF0;0 and A � G .M/. Then LinA satisfies 3-unique-
ness.

2.5.4. Twisted linear imaginaries.

Lemma 2.5.15. Let t be a stable theory of fields, and let T be the theory of a t-linear
structure such that T eliminates quantifiers. Let � be a permutation of the language with
T D T � such that � fixes all the formulas on the sort k. Suppose tA exists. Then T .�/� [ tA

is the model-companion of T .�/� . In particular, this holds for t D ACF.

Proof. Let .M; �/ ˆ T
.�/
� . Then, as M ˆ T , for any sort V from L there is an M -

definable surjection f W k.M/! V.M/. For any N <L M , f then also defines a sur-
jection from k.N / onto V.N /, hence N D dclL.Mk.N //. Thus, any extension of � to
a � -twisted automorphism on N is uniquely determined by its restriction to k.N /. It fol-
lows that .M; �/ is an e.c. model of T .�/� if and only if .k.M/; � jk.M// is an e.c. model
of t� . This yields the statement of the lemma.

As a special case of Lemma 2.5.15, we get the following.
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Remark 2.5.16. Let t be a stable theory of fields, and let T be the theory of a t-linear
structure such that T eliminates quantifiers. Suppose tA exists. Then TA exists and is
given by T� [ tA. In particular, this holds for t D ACF.

Definition 2.5.17. Let k be a stably embedded sort in a theory T . An A0-definable set D
is said to be internally k-internal (overA0) if there is a tuple d 2D and anA0d -definable
surjection f W Y ! D, where Y � kn for some n.

Lemma 2.5.18. Let k be a stably embedded sort in a theory T , and letD beA0-definable
and internally k-internal .over A0/. Then k [D is stably embedded .over A0/.

Proof. Set D0 WD k [ D. It follows from the assumptions that D0 is A0-definable and
internally k-internal over A0. Let f be an A0d -definable surjection as in the definition,
with d 2 D0. Taking the preimage under f � � � � � f , one sees that any U-definable
subset X of D0m is k.U/A0d -definable, by stable embeddedness of k. In particular, X is
A0D

0.U/-definable, proving stable embeddedness of D0 (over A0).

Proposition 2.5.19. Let M ˆ VFAmult
0;0 and A � G .M/. Then LinA is stably embedded

in VFAmult
0;0 and its A-induced structure eliminates imaginaries.

Proof. Stable embeddedness follows from stable embeddedness of k (see Fact 2.4.7) and
the fact that LinA is internally k-internal (by naming a basis for every sort).

Now, let T be the theory of LinA.M/with its L0.A/-induced structure. By Fact 2.5.11
and Lemma 2.5.13, T eliminates imaginaries. Let � be the permutation of L0.A/ induced
by � . Then � fixes all the formulas on the sort k, and we have T � D T . It follows from
Corollary 2.5.14 and Lemma 2.5.9 (4) that T .�/A eliminates imaginaries.

Also, by Fact 2.4.7, .k.M/; �k/ is a stably embedded pure model of ACFA, and hence
LinA.M/ ˆ T .�/A by Lemma 2.5.15. Since the A-induced structure on LinA is a defin-
able expansion of its ACF-linear structure with a twisted automorphism, elimination of
imaginaries follows, e.g., by [25, Lemma 5.4].

2.5.5. Real linear imaginaries. We conclude these preliminaries with a study of RCF-
linear structures.

Definition 2.5.20. An RCF-linear structure with flags is said to be oriented if for every
sort V of dimension 1, each of the two half-lines is ;-definable.

Proposition 2.5.21. Any oriented RCF-linear structure with flags eliminates imaginaries.

Proof. Let us first prove a few preliminary results. Let M be a sufficiently saturated and
homogeneous oriented RCF-linear structure with flags. First, note that if 0!W ! V !

U ! 0 is an ;-definable flag, then any translate of W in V is ordered by a < b if a � b
is in a fixed half-line of W .

Claim 2.5.22. M is rigid: for every A �M , acl.A/ D dcl.A/.
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Proof. Let X be a non-empty finite A-definable set such that all elements of X have
the same type over A. We need to show that X is a singleton. Using tensors, we may
assume that X is contained in some sort V . We proceed by induction on dim.V /. Let
0! W ! V ! U ! 0 be an ;-definable flag for V . By induction, we may assume that
X projects to a singleton b 2 U , i.e., X is contained in a translate a C W of W in V .
In this case, the assertion is clear, as a CW inherits an ;-definable total order from the
ordered group structure on W .

Claim 2.5.23. Let X � c CW � V be definable for some ;-definable flag 0! W !

V ! U ! 0 and some c 2 V . Then X is coded.

Proof. Since k is o-minimal and there is a definable order preserving bijection between
cCW and k,X is a finite union of points and intervals and hence it is coded by its (finite)
border.

Let K D k.M/a and K ˝M be the structure whose sorts are the sorts V of M
interpreted as K ˝k.M/ V.M/, with the field structure on k, the k-vector space struc-
ture on each V , and the tensor, dual and flag structure. Then K ˝M is an ACF-structure
with flags. Let us denote by acl0 (respectively dcl0) the algebraic (respectively defin-
able) closure in K ˝M . For every N 4 M , and tuple c 2 M , since all of the vector
spaces have bases in N , we get dcl.Nc/ � acl0.Nc/. Note also that in K ˝M , we have
k.dcl0.M// D k.M/ and since each of the vector spaces has a basis in M , we find that
dcl0.M/ � M . Since K ˝M eliminates imaginaries by Fact 2.5.11, it follows that any
M -definable set in K ˝M has a code consisting of elements in M .

By [21, Remark 3.2.2], to prove elimination of imaginaries in M , it suffices to code
every definable function f W V ! S , where S is a sort. We will proceed by induction
on the dimension of V . Let 0! W ! V ! U ! 0 be an ;-definable flag for V . Let
F be the Zariski closure of the graph of f in K ˝M ; any choice of basis induces a
Zariski topology on V , but this topology is independent of the choice of coordinates.
For every c 2 V.M/, since dcl.Nc/ � acl0.Nc/ for every N 4 M , the fiber Fc of F
above c is a finite set containing f .c/. As was noted above, F has a code in M . Note
that any � 2 Aut.M=pf q/ can be extended to an automorphism of K ˝M fixing F . It
follows that F.M/ is defined over pf q and hence it has a code in M \ pf q. Moreover,
by compactness and Claim 2.5.22, in M , we find pF q-definable maps .hi /i<n such that
for all c 2 V.M/, Fc.M/ D ¹hi .a/ W i < nº.

Now, fix a 2 U.M/ and c 2 V above a. Let fa be the restriction of f to the fiber
c CW above a in V . LetXa;i D ¹x 2 c CW W fa.x/D hi .x/º. By Claim 2.5.23, this set
is coded inM . Let g.a/ denote the tuple consisting of the codes of the Xi;a. The function
g is pf q-definable with domain U , so, by induction, g is coded inM . This concludes the
proof since f is .pF q; pgq/-definable.

Proposition 2.5.24. Let .K;<; v/ be an ordered field with a non-trivial convex valuation
and A � G .A/. Then LinA.K/ is oriented.
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In particular, if v is henselian and k.K/ ˆ RCF, then LinA.K/ is stably embedded
and its A-induced structure eliminates imaginaries.

Proof. Dimension 1 sorts in LinA are of the form 
O=
m for some 
 2 �.K/. But this
quotient inherits the order on 
O, so it is oriented. The rest of the proposition follows
from Lemma 2.5.18, Proposition 2.5.21 and Lemma 2.5.13.

Remark 2.5.25. � Any K � R..Q//, being real closed, admits a unique field ordering
which is definable (without parameters).

� Any K � R..t// admits exactly two field orderings, depending on the sign of a choice
of uniformiser � . Both orders are definable (using an imaginary parameter for a half-
line in RV1;v.�/ WD ¹� 2 RV1 W v.�/ D v.�/º, in particular any element of RV1;v.�/).

3. C -minimal definable generics

We will now consider generalisations of [42, Theorem 8.7]. We fix the following notation
for Sections 3 and 4.

Notation 3.1. Let L0 D Ldiv and T0 be the L0-theory ACVF. Let L � L0 and T be a
(complete) L-theory of valued fields. LetM ˆ T be sufficiently saturated and homogen-
eous andM0 DM

a ˆ T0. Note that since ACVF eliminates quantifiers, we will implicitly
assume that every L0-formula is quantifier free. We will denote by S0x.M/ the set of
(quantifier free) L0.M/-types (in M0) in variables x, and whenever ‰.xI t / is a set of
L0-formulas, S‰x .M/ will denote the set of ‰-types over M , that is, maximal consistent
sets (in M0) of formulas  .xI a/ and : .x; a/ with  2 ‰ and a 2M t .

Note that, unless explicitly specified, we do not make any assumption on the charac-
teristic in Section 3.

3.1. Main results

In this section we prove the following two density results:

Theorem 3.1.1. Assume that

(CB) T is definably spherically complete;

(C� ) the full induced theory on � is definably complete;

(E1k / the full induced theory on k eliminates 91;

(E1� / the full induced theory on � eliminates 91.

Then, for every strict pro-L.A/-definable X � Kx with x countable and A D acleq.A/ �

M eq ˆ T eq, there exists an L0.G .A//-definable p 2 S0x.M/ consistent with X .

In other terms, there exist N < M and a 2 X.N/ such that tp0.a=M/ is L0.G .A//-
definable. Recall (see, e.g., [29, Section 2.2]) that a set is strict pro-definable if it is the
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limit of a small directed system of definable sets with surjective transition maps. In other
terms, it is a ?-definable set whose projection on any finite set of variables is definable.

Proof of Theorem 3.1.1. This is a particular case of Proposition 3.5.1.

Remark 3.1.2. � Any (non-zero) definably complete ordered abelian group � is ele-
mentarily equivalent to either Z or Q. Indeed, � cannot have a proper non-trivial
definable convex subgroup and is therefore elementarily equivalent to a subgroup H
of .R;C; </. If � is not elementarily equivalent to Z or Q, then H is a dense non-
divisible subgroup of R. For any 
 2 � non-divisible by n 2 Z>0, the cut at 
=n yields
a counter-example.

� Hypotheses (CB) and (C� ) are necessary for the conclusion of Theorem 3.1.1 to hold.
Indeed, the conclusion implies that any L.M/-definable chain C of balls is L0.M/-
definable: taking a generic translate, on can ensure that

T
b2C b does not contain any

L0.M/-definable chain of balls, hence any L0.M/-definable type consistent with this
translate of

T
b2C b must be the generic of this intersection. Then

T
b2C b is a ball,

proving both (CB) and (C� ).

� Hypothesis (E1� / does not allow for discrete value groups. Note however that the con-
clusion of the theorem fails in p-adic fields. So the hypotheses (CB), (C� ) and (E1k /
cannot be sufficient.

� As Theorem 3.1.3 illustrates, by restricting to a mild class of enrichments of ACVF8,
one can trade hypothesis (E1� / for purely algebraic conditions and a weaker conclusion.

Let Hen0 be the L0-theory of characteristic zero henselian valued fields.

Theorem 3.1.3 (cf. Corollary 3.5.6). Let T be a k-�-enrichment of Hen0 such that

(C� ) the . full/ induced theory on � is definably complete;

(FR) for every n 2 Z>0, the interval Œ0; v.n/� is finite and k is perfect;

(Ik) the residue field k is infinite;

(E1k / the . full/ induced theory on k eliminates 91.

Then, for every strict pro-L.A/-definableX �Kx withAD acleq.A/�M eq ˆ T eq, there
exists an Aut.M=G .A//-invariant p 2 S0x.M/ consistent with X .

Note that in this setting k is stably embedded, so the full induced structure coincides
with the ;-induced structure.

Remark 3.1.4. � Unlike Theorem 3.1.1, Theorem 3.1.3 requires finite ramification in
mixed characteristic. Even if Theorem 3.1.3 does not apply to characteristic zero non-
archimedean local fields either; cf. the stronger [30, Remark 4.7].

� Under the hypotheses of Theorem 3.1.3, locally, we do find definable types: for any
finite set ‰.xI t / of L0-formulas, we can find an L0.G .A//-definable p 2 S‰x .M/

consistent with X (see Proposition 3.5.4). This local statement does not hold in char-
acteristic zero non-archimedean local fields.
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� In both theorems, hypothesis (E1k / is an artefact of our proof. This hypothesis is neces-
sary to prove certain intermediate results. However, we do not know if (E1k / is neces-
sary to prove either theorem. Moreover, these theorems are the only reason hypothesis
(E1k / appears in the imaginary Ax–Kochen–Ershov principle (see Theorem 6.1.1).

Given these observations, the following questions are quite natural:

Question 3.1.5. (1) Can the density of either invariant or definable types – i.e., the con-
clusion of either theorem – be proved without assuming (E1k /?

(2) Under the hypotheses of Theorem 3.1.3, can we find an L0.G .A//-definable type p?

(3) Can the hypotheses of Theorem 3.1.3 be weakened to also encompass characteristic
zero non-archimedean local fields?

3.2. The uniform arity one case

We start by giving a succinct (and slightly more general) presentation of terminology and
results from [42, Sections 6 and 7]. The types in Theorems 3.1.1 and 3.1.3 are found by
finding, for every unary set, a close-fitting intersection of balls (uniformly over realisa-
tions of a type found at an earlier step). To obtain anything definable, we need to localise
to definable families of (finite sets of) balls. The main technical issue is then to find large
enough families such that the approximation (and later induction on arity) goes through
while keeping it small enough that it stays definable; this is achieved with the notion of
good presentation (Definition 3.2.7).

Once these have been introduced, the main goal of this section is to give two ver-
sions of the approximation process (Corollary 3.2.18 and Lemma 3.2.21). We invite a
first reader to assume in Definition 3.2.15 and onwards that p is an arity zero type (equi-
valently, a realised type) and that F� is the collection of all balls (open and closed) to get
an idea of the base arity 1 case with fixed parameters.

Definition 3.2.1. We define B to be the (L0-definable) set of balls (closed or open) in
models of T0; the field itself is the open ball of radius �1 and points are closed balls
of radius C1. For every r 2 Z>0, BŒr� is the set of finite (potentially empty) subsets of
cardinality at most r C 1 of B of the same radius and either all open or all closed; in
particular, there is no nesting among the elements of some B 2 BŒr�. Let also BŒ<1� WDS
r>0 BŒr�.

Similarly, we denote by KŒr� � BŒr� the set of finite subsets of cardinality at most
r C 1 of K and set KŒ<1� WD

S
r>0 KŒr� � BŒ<1�.

For every finite set B of balls, we define B[ WD
S
b2B b and for any finite sets B1

and B2 of balls, we write B1 6 B2 if B[1 � B
[
2 . For any b1; b2 2 B, we also define

d.b1; b2/ WD inf ¹v.x1 � x2/ W xi 2 biº. Note that this is not a metric on the space of
balls since d.b1; b1/ D rad.b1/, the radius of b1. Finally, for B1; B2 2 BŒr�, we define
D.B1; B2/ WD ¹d.b1; b2/ W bi 2 Biº. We enumerate D.B1; B2/ � � in increasing order.
Let di .B1; B2/ be the i -th element of this enumeration. So di .B1; B2/ is defined for all
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i < r2, and for every i above the cardinality of D.B1; B2/, we set di .B1; B2/ to be the
maximal element. This choice of an enumeration (with repetitions) of D.B1; B2/ does
not actually matter, as long as it is uniform.

Let us now fix a set ‰.xI t / of L0-formulas, an L0-definable set ƒ, an integer r and
an L0-definable family F D .F�/�2ƒ of functions F� W Kx ! BŒr�. We wish to give
sufficient conditions on‰ and F that will allow us to proceed with certain classical unary
constructions in valued fields, uniformly over realisations of ‰-types. In particular, this
will allow us to describe (local) types in nC 1 variables as generics of balls parametrised
by n variables.

Definition 3.2.2. Let p 2 S‰x .M/.

(1) We say that p is adapted to F if, for each of the following statements, p implies
either this statement or its negation:

� F�.x/�
S
i<r F�i .x/ where �;�i 2 ƒ.M/ and� 2 ¹D;�;�;6; <º;

� F [
�
.x/ D F [�1.x/ \ F

[
�2
.x/, where �;�i 2 ƒ.M/;

� every ball in F�.x/ is closed;

� rad.F�.x//� di .F�1.x/;F�2.x//, where �;�i 2 ƒ.M/,� 2 ¹D;6º and i < r2.

(2) We say that F is closed under intersections over p if for any �; � 2 ƒ.M/, there
exists " 2ƒ.M/ with p.x/ ` F [

�
.x/\ F [� .x/D F

[
" .x/, and we further assume that

there exists � 2 ƒ.M/ such that F�.x/ D ¹Kº.
(3) We say that F is closed under complement over p if for any �; � 2 ƒ.M/ with

p.x/ ` F�.x/� F�.x/, there exists " 2ƒ.M/with p.x/ ` F".x/D F�.x/ nF�.x/.

Note that, in the above definition, the L-structure on M does not matter.

Remark 3.2.3. The family of all constant functions to B (over any type) is an important
example of the above properties. This simple family suffices to prove Theorems 3.1.1 and
3.1.3 forX �K1. Dealing with higher arity definable sets, however, requires non-constant
functions.

Let now p 2 S‰x .M/ be adapted to F , and let us assume that F is closed under inter-
sections and complement over p.

Definition 3.2.4. Let � 2 ƒ.M/. We say that F� is irreducible over p if for every
� 2 ƒ.M/, p.x/ ` F�.x/ � F�.x/ implies p.x/ ` F�.x/ D ; _ F�.x/ D F�.x/.

We define ƒp.M/ WD ¹� 2 ƒ.M/ W F� irreducible over pº.

Lemma 3.2.5. For every � 2 ƒ.M/, there exist finitely many �i 2 ƒp.M/ with p.x/ `
F�.x/ D

S
i F�i .x/.

Proof. Since p is adapted to F it suffices to check that the lemma holds at one real-
isation a of p. We can then proceed by induction on the cardinality of F�.a/, using
closedness under complement.
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Lemma 3.2.6. For all �;� 2 ƒp.M/, we have

p.x/ ` F [� .x/ \ F
[
� .x/ D ; _ F�.x/ 6 F�.x/ _ F�.x/ 6 F�.x/:

Proof. Again, it suffices to check this for one a ˆ p. We may assume that the balls in
F�.a/ have radius equal to those in F�.a/ (or smaller), and if the radii are equal and the
balls in F�.a/ are open, so are the balls in F�.a/. By closedness under intersection, we
find " 2 ƒ.M/ such that F [

�
.a/\ F [� .a/ D F

[
" .a/. By hypothesis on the radii, F".a/ �

F�.a/ and hence, by irreducibility, either F".a/ D ; or F".a/ D F�.a/.

We will later need some further hypotheses (cf. Lemma 3.3.1) on ‰ and F leading to
the following definition:

Definition 3.2.7. Let ‰.xI t / be a set of L0-formulas, and F D .F�/�2ƒ W Kx ! BŒr�

be a definable family of functions, for some L0-definable ƒ and integer r . We say that
.‰; F / is a good presentation if, for any p 2 S‰x .M/,

(1) p is adapted to F ;

(2) F is closed under intersection and complement over p;

(3) F has large balls over p, i.e., for all �;� 2 ƒ.M/ and i 2 Z>0,

� if p.x/ ` F�.x/ ¤ K, there is � 2 ƒ.M/ such that

p.x/ ` rad.F�.x// D di .F�.x/; F�.x// ^ ‘F�.x/ is closed’ ^ F�.x/ 6 F�.x/I

� if p.x/ ` ‘F�.x/ is open’_ rad.F�.x// < di .F�.x/; F�.x//, there is � 2 ƒ.M/

such that

p.x/ ` rad.F�.x// D di .F�.x/; F�.x// ^ ‘F�.x/ is open’ ^ F�.x/ 6 F�.x/:

Let �.xyI s/ with jyj D 1 be a set of L0-formulas. We say that .‰; F / is a good
presentation for� if .‰;F / is a good presentation and everyM -instance of� is a boolean
combination of M -instances of ‰ and formulas y 2 F�.x/[ with � 2 ƒ.M/.

LetG WD .G!/!2� WKx! BŒ`� be an L0-definable family of functions. If, moreover,
for every ! 2 �.M/, there exists � 2 ƒ.M/ such that G! D F�, we say that .‰; F / is a
good presentation for .�;G/.

An important point is that finite good presentations always exist:

Proposition 3.2.8. Let �.xyI s/ be a finite set of L0-formulas with jyj D 1 and let
.G!/!2� W Kx ! BŒ`� be L0-definable. Then there exists a finite set ‰.xI t / of L0-
formulas and an L0-definable F WD .F�/�2ƒ W Kx ! BŒr� such that .‰; F / is a good
presentation for .�;G/.

We only sketch the proof; the details of the precise encodings can be found in [42,
Propositions 6.14, 6.15, 6.18 and 7.12].
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Proof of Proposition 3.2.8. The existence of ‰ and F such that any instance of � is a
boolean combination of instances of ‰ and y 2 F [

�
.x/ follows by compactness from the

Swiss cheese decomposition. EnlargingF , we may assume it containsG and condition (3)
holds. At any point, enlarging ‰, we may assume that condition (1) holds. Since the
intersection of two balls is either empty or one of these balls, F can be closed under
intersection by considering the family of r C 1-fold intersections of F . Closedness under
complement can be obtained by considering the finite boolean algebra generated by the
subsets, appearing in F , of any given F� (over some realisation of p). They are generated
in (uniformly) finitely many steps and hence can be considered as the elements of one
single family. This concludes the proof since the previous two steps preserve condition (3).

Remark 3.2.9. A good presentation .‰.xI t /; F / remains a good presentation as ‰
grows. So, given a set ‰.xyI t / of L0-formulas and an L0-definable F WD .F�/�2ƒ W

Kx ! BŒr�, we say that .‰.xyI t /; F / is a good presentation if there exists ˆ.xI t / � ‰
such that .ˆ.xI t /; F / is a good presentation.

We now fix a good presentation .‰.xyI t /; F / with jyj D 1, and p 2 S‰xy.M/. Let
.‰; F / be the set ‰ [ ¹y 2 F [

�
.x/º of L0-formulas in variables xy and parameters t�.

Let S‰;Fxy .M/ denote the space of .‰; F /-types over M (in M0).

Definition 3.2.10. For any L.M/-definable maps f;g WX ! Y and every partial L.M/-
type q concentrating on X , we say that f and g have the same q-germ, and we write
Œf �q D Œg�q , if q.x/ ` f .x/ D g.x/.

Definition 3.2.11. For �;� 2 ƒ.M/, we write � 6p � whenever

p.xy/ ` F�.x/ 6 F�.x/:

Note that 6p is an L.M/-definable pre-order. Recall that elements of any B 2 BŒr�

cannot be nested. It follows that, for any two B1; B2 2 BŒr�, B1 D B2 if and only if
B[1 D B

[
2 . So the equivalence relation associated to 6p is equality of p-germs. We there-

fore write � <p � whenever � 6p � and they have distinct p-germs.
Moreover, when restricted to ƒp , by Lemma 3.2.6, there is a largest element, K, and

the 6p-upwards closure of any � 2 ƒp n Œ;�p is totally ordered: .ƒp n Œ;�p;6p/ is a tree.

Definition 3.2.12. Let E � ƒp.M/. The generic type of E above p is

�E;p.xy/ WD p.xy/

[ ¹y 2 F [� .x/ W � 2 Eº

[ ¹y … F [� .x/ W � 2 ƒ.M/ ^ 8� 2 E � <p �º:

This is the partial type of realisations of p such that y is in
T
�2E F

[
� .x/, but in

no strict subset of the form F [
�
.x/. Provided �E;p is consistent it generates a com-

plete .‰; F /-type that we also denote �E;p 2 S‰;Fxy .M/. If we further assume that p is
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L.M/-definable (as a ‰-type), then ƒp.M/ is an L.M/-definable set, and if E � ƒp is
L.M/-definable then the type �E.M/;p is an L.M/-definable .‰; F /-type, provided it is
consistent. We denote it �E;p .

Definition 3.2.13. Let �.x/ be a partial L.M/-type and A � M eq. We say that � is
L.A/-quantifiable over L if, for every L-formula '.xI t /, there exists an L.A/-formula
�.t/ such that ¹b 2M t W�.x/` '.xIb/ºD �.M/. When it exists, we write8�x '.xI t / WD
�.t/ and 9�x '.xI t / D :.8px :'.xI t //.

Remark 3.2.14. (1) Such a type is often also a ‘definable partial type’ in the literature.
There is however some ambiguity on the terminology (see [42, Remark 7.2 (ii)]),
hence the present distinct choice of terminology.

(2) If, for some set �.xI y/ of L0-formulas, p.x/ is a complete L.A/-quantifiable �-
type over M , then it is L.A/-definable, as a �-type – that is, 8px '.xI t / exists for
every '.xI y/ 2 �. As we will see in Lemma 3.3.1, under certain hypotheses on T
and �, the converse also holds.

We can now prove the crucial step in proving Theorems 3.1.1, 3.1.3: the relative arity 1
case. Let us now assume that p is L.A/-quantifiable over L, where AD acleq.A/�M eq,
and consistent with some L.A/-definable X � Kxy .

Definition 3.2.15. For �;� 2 ƒp , let � P � hold whenever

8pxy y 2 Xx \ F
[
� .x/! y 2 F [� .x/;

where Xx D ¹y W xy 2 Xº denotes the fibre above x.

The relation P is an L.A/-definable preorder on ƒp and we denote by � the associ-
ated equivalence relation. Since 6p refines P on ‚p WD ƒp n .;=�/, this is also a tree
with root K=� and�-classes are 6p-convex.

Lemma 3.2.16. For every � 2 ‚p , if the generic ��=�;p of �=� over p is not consist-
ent with X , then �=� has finitely many P-daughters .�i=�/06i<n 2 acleq.Ap�=�q/ in
‚p=�. Moreover, n > 2 and p.xy/ ` y 2 Xx \ F [� .x/!

W
i<n y 2 F

[
�i
.x/.

Proof. Let us assume that ��=�;p is not consistent with X , i.e., p.xy/ [ ¹.x; y/ 2 Xº
[ ¹y 2 F�.x/º [ ¹y … F�.x/ W � G �º is not consistent. By compactness, there exist
.�i /06i<m 2‚p.M/ such that �i G � and p.xy/` y 2Xx \F [� .x/!

W
i<m y 2F

[
�i
.x/.

The existence of the �i now follows from the facts that any �P � is P-comparable to one
of the �i and that since the F�i are irreducible, the subtree with root � and leaves .�i /i<m
embeds in the lattice of subsets of ¹0; : : : ; m � 1º, which is finite – we refer the reader to
[42, Claim 8.4] for details. Finally, if n D 1, we would have � P �0, contradicting that
�0 is a daughter of �.

Let x‚p WD ¹� 2 ‚p W 8pxy ‘F�.x/ is closed’º and, for every � 2 ƒ, let Y� WD
¹� 2 x‚p W 8pxy rad.F�.x// D rad.F�.x//º.
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Lemma 3.2.17. One of the following holds:

� There exists a � 2 ‚p such that �=� 2 A and ��=�;p is consistent with X .

� There exists �=� 2 A with ŒY��p WD ¹ŒF��p W � 2 Y�º finite of arbitrarily large cardin-
ality.

Proof. Assume that X is consistent with no ��=�;p , where �=� 2 A. Then, by
Lemma 3.2.16, ‚p=� admits an initial finitely strictly branching discrete tree – that is,
every element has at least two daughters – with every branch infinite. Note that, for every
� 2 ‚p with � <p K, by the large ball property, there is � 2 ƒ with � 6p � and 8pxy
‘F�.x/ is closed’ ^ rad.F�.x// D rad.F�.x//. We may assume that F� is irreducible
over p. Then � D � or � is the unique 6p-daughter of �. Note also that, by the large ball
property, x‚p \K=� ¤ ;. It follows that x‚p=� also admits an initial finitely branching
discrete tree, denoted „p , with every branch infinite.

Note that, for any two �; � 2 Y�, since 8pxy rad.F�.x// D rad.F�.x//, we see that
ŒF��p D ŒF� �p implies � � �, which implies that 8pxy F [� .x/ \ F

[
� .x/ ¤ ;, which,

by irreducibility, implies that ŒF��p D ŒF� �p , so these three statements are equivalent. In
particular, the identity induces a bijection between ŒY��p and Y�=�.

We now build, by induction, �i 2 ƒ such that Y�i =� � „p and jY�i =�j D jŒY�i �pj
is finite and strictly increasing. Start with any �0 2 x‚p \ K=�. Then Y�0 D ŒF��p
and Y�0=� D �0=� D K=�. If �i is built, let .�j /j<m enumerate all the P-daughters
(in „p) of the elements in Y�i =�. Let j0 be such that, for all j , 8pxy rad.F�j0 .x// 6
rad.F�j .x//. For every � 2 Y�j0 , by the large ball property, we find � 2 Y�i such that
� 6p �. Since 8pxy rad.F�.x// D rad.F�j0 .x// 6 rad.F�j .x//, we cannot have � G �j
and hence either �=� is in Y�i =� or it is one of the �j =�. So Y�j0 =� � „p is finite.

Furthermore, for every �j , by the large ball property, there exists � 2 Y�j0 such that
�j 6p �. It follows that, for every element of Y�i =�, either it or all of its daughters
(more than one) appear in Y�j0 . In particular, all the sisters of �j0=� appear, and hence
jY�j0

=�j > jY�i =�j. Thus, we can choose �iC1 D �j0 .

We can now eliminate the second option in Lemma 3.2.17 by imposing a uniform
bound on the size of finite instances of .Y�/�2ƒ:

Corollary 3.2.18. Assume that

(E1
p; xF

) for every L.M/-definable family .Yz/z of subsets of ŒFƒp �p WD ¹ŒF��p W � 2 ƒpº
such that for all z and ŒF��p; ŒF��p 2 Yz , p.xy/ ` ‘F�.x/ is closed’ ^
rad.F�.x// D rad.F�.x//, there exists n 2 Z>0 such that, for all z, jYzj < 1
implies jYzj 6 n.

Then there exists an L.A/-definable E � ƒp such that �E;p is consistent with X .

However, the family ŒYƒ�p is not any definable family in ŒFƒp �p . It has certain geo-
metric properties that reflect those of X . In particular, with further hypotheses on X , we
can dispense with (E1

p; xF
) altogether, as we will see in Lemma 3.2.21.
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We now wish to apply the construction above in the pair .M0; M/ which is natur-
ally an L0;P -structure enriched with the L-structure on M . To be precise and avoid an
unnecessary conflict of notation, we set up the following.

Notation 3.2. Let L1 be some expansion of L0, and T1 some L1-theory of valued fields.
In the following lemma, we apply the above with T the theory of the pairM WD .M a

1 ;M1/,
where M1 ˆ T1 is sufficiently saturated and homogeneous, in the language L WD LP

consisting of the L0;P -structure enriched with the L1-structure on P – so M0 DM
a
1 .

Let us now introduce some useful terminology from [11]:

Definition 3.2.19. Fix n 2 Z>0 invertible in K.M/. For any ball b, we define bŒn� WD
¹a C n�1.a � c/ W a; c 2 bº. It is a ball of radius rad.b/ � v.n/ around b, open if b is,
closed otherwise. For a set B of balls, we set BŒn� WD ¹bŒn� W b 2 Bº.

(1) An L.M1/-definable set X � K.M1/ is n-prepared by some finite set C � K.M0/ if
for every ball b 2 B.M0/ with bŒn�\C D ;, either b \X.M1/D ; or b \X.M1/D

b.M1/.

(2) We say that some L0.M1/-definable G W Kn ! KŒr� n-prepares X � KnC1.M1/ if,
for every x 2 K.M1/

n, G.x/ n-prepares Xx .

(3) We say that X � KnC1.M1/ is n-prepared by F if there exists � 2 ƒ.M1/ such that
F� has values in KŒr� and n-prepares X .

Remark 3.2.20. By field quantifier elimination (Fact 2.2.7), if M1 is a pure henselian
field of characteristic zero, any L.M1/-definable X � K is p`-prepared, for some `, by
the finite set of roots of polynomials that appear in the (field quantifier free) definition
of X , where p is either 1 or the residue characteristic when it is positive.

Let also A1 D acleq
1 .A1/ � M

eq
1 , X � Kxy.M1/ be L1.A1/-definable, A D AP D

acleq.A1/ and p 2 S‰xy.M0/ be LP.AP /-definable and consistent with X .

Lemma 3.2.21. Letˆ.xI t /�‰ be such that .ˆ;F / is a good presentation for‰. Assume
that there is some n 2 Z>0 \K�.M/ such that

(PF;nX ) the set X is n-prepared by F ;

(FRn) the interval Œ0; v.n/� � �.M1/ is finite and k.M1/ is perfect;

(Ik) the residue field k.M1/ is infinite.

Then there exists an LP.AP /-definable E � ƒp.M0/ such that �E;pjM0 is consistent
with X .

Proof. Let � be such that F�.x/ n-prepares Xx for all x. By Lemma 3.2.17, applied in
M D .M a

1 ;M1/, either the conclusion of the lemma holds, or we can find �=� 2 A with
jŒY��pj > r . Then some element of Y�, say F�, does not contain any point of F�.x/.
Replacing � with any � P � in„p such that jŒ�; ��j > jŒ0;v.n/�j, we may further assume
that F�.x/ \ F�.x/Œn�[ D ; – where, for any B 2 BŒ<1�, BŒn� WD ¹bŒn� W b 2 Bº – and
that � GK.
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By Lemma 3.2.16, we have p.xy/ ` y 2 Xx \ F [� .x/!
W
i<n y 2 F

[
�i
.x/, where

the .�i=�/i<n are the daughters of �=�. By compactness, there exists some  .xy/ 2 p
such that q WD pjˆ ` 8y  .xy/ ^ y 2 Xx \ F [� .x/!

W
i<n y 2 F

[
�i
.x/. Since .ˆ;F /

is a good presentation for ‰, there are � and .�i /n6i<m 2 ƒp with ˆ  .xy/ $ y 2

F [� .x/ n
S
n6i<m F

[
�i
.x/. In particular, p.xy/ ` y 2 F [� .x/. It follows that � � K and

hence � P �. So, we have

q ` F [� .x/ \Xx �
[
i

F [�i .x/:

Since � ¥ ;, there exists ac ˆ p in some N1 < M1 such that c 2 Xa \ F [� .a/.
Let b0 2 B.N a

1/ be the ball of F�.a/ containing c. Since F�.a/ \ b0Œn� D ;, we have
b0 \ Xa.N1/ D b0.N1/. It follows that b0.N1/ �

S
i F
[
�i
.a/. By construction, b0.N1/

is not covered by any single ball in
S
i F�i .a/. So ¹v.x � y/ W x; y 2 b0.N1/º has a

minimal element (realised by some x; y in distinct balls of
S
i F�i .a/). Let b 2 B.N1/ be

the smallest closed ball containing b0.N1/. Then b.N1/ D b0.N1/ is covered by finitely
many of its maximal open subballs, contradicting hypothesis (Ik).

3.3. Quantifiable types

To use the above constructions in an inductive reasoning, we need a number of results on
quantifiable types. The first one is that �E;p is itself quantifiable when p is. Recall our
general setup (Section 3) for this section.

For any finite set B of balls, let kB be the set of maximal open subballs of the balls
b 2 B and resB W B[ ! kB be the projection.

Lemma 3.3.1 (cf. [42, Corollary 6.9]). Let .‰.xyI t /; .F�.x//�2ƒ/ be a good presenta-
tion. Let p 2 S‰xy.M/ be L.A/-quantifiable over L, where A �M eq. Assume that

(E1
p; VF

) for any L.M/-definable .Yz/z � ŒFƒ�p and � 2 ƒ.M/ such that, for all z and
ŒF��p 2 Yz , p.xy/ ` F�.x/ � kF�.x/, there exists n 2 Z>0 such that, for all z,
jYzj <1 implies jYzj 6 n.

Then any L.A/-definable q 2 S‰;Fxy .M/ containing p is L.A/-quantifiable over L.

Proof. Let E WD ¹� 2ƒp W q.xy/` y 2 F
[
�
.x/º. Then E is L.A/-definable and qD �E;p .

If E does not have a 6p-minimal element which is closed, for any L-formula '.xyI s/
and e 2M s , q.xy/ ` '.xyI e/ if and only if there exist � 2 E.M/ and � 2 ƒp.M/ with
� <p E and q.xy/ ` y 2 F [

�
.x/ n F [� .x/! '.xyI e/ (see [42, Proposition 6.4]). So let

us assume that E has a6p-minimal element �0 which consists of closed balls. If p.xy/ `
rad.F�0.x// D C1, then q.xy/ ` '.xyI e/ if and only if p.xy/ ` F [

�0
.x/! '.xyI e/

(see [42, Proposition 6.6]). If p.xy/ ` rad.F�0.x// ¤ C1, let

Ys WD ¹� 2 ƒp W 8pxy F�.x/ � kF�.x/ ^ 9pxy '.xyI s/ ^ y 2 F
[
� .x/º:

Let n be a uniform bound on the cardinality of finite ŒYs�p , as in (E1
p; VF

).
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Claim 3.3.2. For every e 2 M s , q is consistent with '.xyI e/ if and only if, for every
.�i /i<n 2ƒp , with8pxy F�i .x/ 2 kF�0.x/ , 9pxy '.xyIe/^ y 2F

[
�0
.x/ n

S
i<nF

[
�i
.x/.

Proof. Assume q is not consistent with '.xyI e/. By compactness, there exists
.�i /i<m 2ƒp such that �i <p E and 8pxy '.xyIe/^ y 2 F [�0.x/!

W
i<m y 2 F

[
�i
.x/.

By the large ball property, we may assume 8pxy F�i .x/ 2 kF�0.x/ . Choosing a min-
imal m, we may also assume that 9pxy '.xyI e/ ^ y 2 F [�i .x/. In particular, �i 2 Ye .

By definition of Ys , for every � 2 Ye.M/, we find ac ˆ p such that '.acI e/ and
c 2 F [� .a/ � F

[
�0
.a/. So there is an i such that c 2 F [�i .a/. By irreducibility, F�.a/ D

F�i .a/. It follows that ŒYe�p is finite and thus m 6 jŒYe�pj 6 n.

Since q ` '.xyI e/ if and only if q is not consistent with :'.xyI e/, Claim 3.3.2
allows us to conclude the proof of Lemma 3.3.1.

We also need a better understanding of the interpretable set ŒFƒ�p . Note that it is,
a priori, L.M/-interpretable, which is exactly the kind of sets elimination of imaginaries
aims at describing. However, if p happens to be the restriction to M of a global L0.M/-
definable type, then ŒFƒ�p naturally embeds in an L0.M/-interpretable set. The goal
of the following lemmas is to give (necessary) hypotheses under which any definable p
satisfies that condition. Valued vector spaces will play an important role:

Definition 3.3.3. Let .K; v/ be a valued field and V be a K-vector space. A valuation
on V is a map v W V ! X where X is an ordered set with a maximal element1 and an
actionC of � , respecting the order, such that

� v.0/ D1;

� for all x; y 2 V , v.x C y/ > min ¹v.x/; v.y/º;

� for all a 2 K and x 2 V , v.a � x/ D v.a/C v.x/.

We say that a family .xi /i2I 2 V is separating if for every finite I0 � I and every
.ai /i2I0 2 K, v.

P
i2I0

aixi / D mini2I0.v.ai /C v.xi //.

The following lemma owes much to Johnson’s computation of the canonical basis of
definable types in ACVF (see [31, Section 5.2]).

Let 'd .xIyz/ WD v.
P
jI j<d yIx

I / > v.
P
jI j<d zIx

I /.

Proposition 3.3.4. Assume that

(CV ) for every n 2 Z>1, every L.M/-definable valuation v on Kn has a separating
basis;

(C� ) T has definably complete value group.

Then, for every A D dcleq.A/ �M eq, L.A/-definable p 2 S'd .M/ and algebraic exten-
sion K.M/ 6 L, any q 2 S'd .L/ extending p and finitely satisfiable in M is L0.G .A//-
definable.

Proof. For every field F with K D K.M/ 6 F 6 L, we define a valuation v on the F -
vector space Vd .F / WD F Œx�6d of polynomials in variables x over F of degree at most d
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by v.P.x// 6 v.Q.x// if v.P.x// 6 v.Q.x// 2 q. The valuation v on Vd .K/ is L.A/-
definable. By hypothesis (CV ), it has a separating basis .Pi /i 2 Vd .K/.

Claim 3.3.5. .Pi /i is a separating basis of Vd .L/ over L.

Proof. We may assume that K 6 L is finite. By [32, Remark 2.7], the valuation on L
(interpreted in K) is then L.M/-definable and hence, by hypothesis (CV ), also has a
separating basis .cj /j 2 L over K. Let bi D

P
j bi;j cj 2 L, where bi;j 2 K. Since q is

finitely satisfiable inM , if v.
P
j .
P
i bi;jPi /cj / >minj Œv.

P
i bi;jPi /C v.cj /� then there

exists an a 2 M such that v.
P
j .
P
i bi;jPi .a//cj / > minj Œv.

P
i bi;jPi .a// C v.cj /�,

contradicting that .cj /j is separating over K. So

v
�X
i

biPi

�
D v

�X
j

�X
i

bi;jPi

�
cj

�
D min

j

h
v
�X
i

bi;jPi

�
C v.cj /

i
D min

i;j
Œv.bi;j /C v.cj /C v.Pi /�

6 min
i
Œv.bi /C v.Pi /�

6 v
�X
i

biPi

�
:

We now define the L-archimedean equivalence on v.Vd .L//: v.P / �1L v.Q/ holds
if there exists c 2 L� with v.c/ > 0 such that �v.c/C v.P / 6 v.Q/ 6 v.c/C v.P /.
One can check that jv.Vd .L//=�1L j 6 jv.Vd .L//=v.L/j 6 dimL.Vd .L//C 1 <1. We
also define theL-infinitesimal equivalence on v.Vd .L//: v.P /�0L v.Q/ holds if for every

 2 v.L/>0 we have�
 C v.P / < v.Q/< 
 C v.P /. Note that two elements of the same
v.L/-orbit cannot be �0L-equivalent unless they are equal. It follows that �0L-classes are
finite.

Let C be any K-archimedean class and xC denote its upwards closure. Then VC WD
v�1. xC/ 6 Vd .K/ is an L.A/-definable K-vector subspace.

Claim 3.3.6 ([31, Lemma 4.3]). VC has a basis of elements in A.

Proof. Some coordinate projection VC � Kl ! Km restricts to an isomorphism on VC .
The preimage of the standard basis of Km then has the required properties.

Let C0 be the successor of C in Vd .K/=�1K . Since VC0 � VC , any basis of VC has
an element outside VC0 . In particular, .VC n VC0/.A/ ¤ ; and we find 
C 2 C.A/ ¤ ;.
Then the whole (finite) K-infinitesimal class of 
C is in A. Let i be such that v.Pi / 2 C .
By (C� ), the set ¹
 2 v.K/ W 
 C v.Pi / 6 
C º has a supremum 
i . Multiplying Pi by
some constant c 2 K with v.c/ D �
i , we may assume that 
i D 0 in which case v.Pi /
isK-infinitesimally close to 
C 2 A. Since theK-infinitesimal class of 
C is finite, it fol-
lows that v.Pi / is also in A. Since every v.K/-orbit is contained in some K-archimedean
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class, we now see that for any i , v.Pi / 2 A, and for any j , if v.Pi / �1K v.Pj /, then
v.Pi / �

0
K v.Pj /.

Note that, since v.L/ is in the convex hull of v.K/, �1L extends �1K . Also, if v.K/ is
dense, then �0L extends �0K . However, if v.K/ is discrete then �0K reduces to equality. In
particular, we also find that if v.Pi / �1L v.Pj /, then v.Pi / �0L v.Pj /.

For any i , d , letMi;d .L/D ¹P 2 Vd .L/ W v.P / > v.Pi /º. Note that, by Claim 3.3.5,P
�jPj 2Mi;d .L/ if and only if

� �j D 0 for every j with v.Pj / < v.Pi / and v.Pj / œ1K v.Pi /;

� �j 2 m for j with v.Pj / < v.Pi / and v.Pj / �0K v.Pi /;

� �j 2 O for j with v.Pi / 6 v.Pj / and v.Pj / �0K v.Pi /.

So Mi;d is (quantifier free) L0.G .A//-definable. Since q is L0.
S
i;dpMi;dq/-definable,

it is indeed L0.G .A//-definable.

If p 2 S0.M/, the existence (and uniqueness) of such a q follows, on general grounds,
from the finite satisfiability of p:

Lemma 3.3.7. Let p 2 S0.M/ be finitely satisfiable inM . Then any two realisations of p
have the same L0.acl0.M//-type. In particular, the unique extension of p to acl0.M/ is
finitely satisfiable in M .

Proof. Fix any c 2 acl0.M/, '.xy/ an L0-formula and  .y/ an L0.M/-formula wit-
nessing that c 2 acl0.M/. Then 8y Œ .y/! .'.x1y/$ '.x2y/)] defines an L0.M/-
definable equivalence relation with finitely many classes. Then the E-class of any a 2
N < M realising p has an element e 2 M . It follows that p.x/ ` xEe. In particular,
p.x/ ` '.xc/ whenever '.ec/ holds.

Let q be the unique extension of p to acl0.M/. Then p ` q and hence q is finitely
satisfiable in M .

Following [5], we can prove that (CV ) follows from definable spherical completeness.
Up to definability, this is a standard result. But we include its proof, on the one hand, for
the sake of completeness, and, on the other, to show that the proof can indeed be done
definably.

Lemma 3.3.8. Assume that

(CB) T is definably spherically complete: any L.M/-definable chain of balls has a non-
empty intersection.

Then any . finite-dimensional/ L.M/-interpretable valued K-vector space .V; v/ has a
separating basis.

Proof. Let us proceed by induction on nC 1 WD dim.V /. In particular, we may assume
that we have found a separating family .yi /06i<n 2 V .

Claim 3.3.9. For every x 2 V , ¹v.x � �y/ W � 2 Knº has a maximal element.
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Proof. For all �; � 2 Kn, we have v.x � �y/ > v.x � �y/ DW 
 if and only if
mini¹v.�i � �i /C v.yi /º D v..� � �/y/ > 
 . For every i < n and � 2 Kn, let Bi;� WD
¹�2K W v.x ��¤iy¤i ��yi /> v.x ��y/ºD ¹�2K W v.���i /C v.yi /> v.x ��y/º.
They form a chain for inclusion.

If there is a minimal Bi;�0 , pick any �i 2 Bi;�0 . If there is no minimal Bi;�, for every

 2 v.K/, let bi;
 be the closed ball of radius 
 containing some Bi;�, if it exists, or
K otherwise. Since the chain of Bi;� does not have a minimal element, any Bi;� con-
tains a bi;
 that itself contains a Bi;�. By definable spherical completeness, we find
�i 2

T

 bi;
 D

T
� Bi;�. Then �i has the property that, for any � 2 Kn, v.x � �y/ 6

v.x � �¤iy¤i � �iyi /. It follows that v.x � �y/ is maximal.

Let x be linearly independent from the yi . By Claim 3.3.9, we may assume that
v.x/Dmax¹v.x ��y/ W�2Knº. Then, for all�2K and �2Kn, we have v.�xC�y/6
v.�x/, and thus v.�x C �y/ D min ¹v.�x/; v.�y/º D mini¹v.�x/; v.�iyi /º.

Remark 3.3.10. Note that given any basis of V , in the above lemma we actually construct
a separating basis whose base change is upper triangular.

3.4. Counting germs

The last ingredient in this section is to reduce the (seemingly horrendous) hypotheses
(E1
p; VF

) and (E1
p; xF

) to something more tractable. We start by generalizing [42, Section 7].

Let M ˆ T , M0 WDM
a ˆ T0 and let Q be either � or k.

Lemma 3.4.1. Let .f�/�2ƒ W Kn ! Q be an L0-definable family and c 2 K.N0/n,
where N0 <M0. There exists an L0.M/-definable family .g�/�2R W Kn ! QŒ<1�, with
R � Qm, such that for all � 2 ƒ.M0/, there exists � 2 R.M0/ with f�.c/ 2 g�.c/.

In particular, if p 2 S0.M0/ is L0.M/-definable, there is an L0.M/-definable finite-
to-one map ¹Œf��p W � 2 ƒ.M0/º ! Qm for some m 2 Z>0.

Proof. We start with the non-uniform version of the result:

Claim 3.4.2. For everyN0 ˆ ACVF, A 6K.N0/ and finite tuple c 2K.N0/, there exists
a finite tuple a 2 A such that Q.acl0.Ac// � acl0.Q.A/ac/.

Proof. If jcj D 1, let a0 2 K.acl0.A// be such that v.c � a0/ is maximal, if it exists;
otherwise the extension A 6 A.c/ is immediate and we take a0 D 0. Then RV.A.c// �
dcl0.rv.A/rv.c � a0//. It follows that

Q.acl0.Ac// D acl0.Q.A.c/// � acl0.Q.acl0.A//ca0/ D acl0.Q.A/ca0/:

If a 2 A is such that a0 2 acl0.a/, we indeed have Q.acl0.Ac// � acl0.Q.A/ac/.
If c D de with jej D 1, we proceed by induction:

Q.acl0.Ade// � acl0.Q.acl0.Ad//be/ � acl0.Q.A/acbe/

with a; b 2 A.
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By Claim 3.4.2, and compactness in a saturated model of the pair .N0; M0/, there
exists an L0.M0/-definable g as above. The union of its conjugates overM has the same
properties and is L0.M/-definable.

Now, if p 2 S0.M0/ is L0.M/-definable, then for any � 2 ƒ.M0/, let

Y� WD ¹� W 8px f�.x/ 2 g�.x/º

and h.Œf��p/ WD pY�q 2 Qm. Note that p.x/ ˆ f�.x/ 2
T
�2Y�

g�.x/, which is a finite
set. It follows that there are at most finitely many germs Œf��p associated to a given Y�,
in other words, h is finite-to-one.

Lemma 3.4.3. Assume that

(E1k / for any L.M/-definable .Yz/z � k, there exists n 2 Z>0 such that, for every z,
jYzj <1 implies jYzj 6 n.

Then, for every L0.M/-definable p 2 S0x.M0/ and L0-definable .F�/�2ƒ W Kx ! BŒr�,
(E1
p; VF

) holds, uniformly in �.

Proof. The core of the proof is the following almost internality result:

Claim 3.4.4. For every � 2 ƒ.M/, there exists an L0.M/-definable finite-to-one map
g� W X� WD ¹ŒF��p W � 2 ƒ.M0/ and p.x/ ` ‘F�.x/ are maximal open balls of
F�.x/’º ! km for some m 2 Z>0.

Proof. Let c ˆ p. In M.c/a ˆ ACVF, any closed ball of F�.c/ has at least two (infin-
itely many, in fact) distinct maximal open subballs. So there exist Gi .c/ 2 BŒ<1�, for
i WD 1; 2, two L0.Mc/-definable sets picking at least one maximal open ball in each of
the balls of F�.c/ and such that G1.c/ \ G2.c/ D ;. For every � with ŒF��p 2 X�, let
f�.x/ WD ¹.b � b1/=.b2 � b1/ W b 2F�.x/; bi 2Gi .x/ and b;b1; b2 are in the same ball of
F�.x/º 2 kŒ<1�. Note that F�.c/ 2 acl0.f�.c/G1.c/G2.c//. Using symmetric functions,
we identify kŒ<1� with some kn.

By Lemma 3.4.1, we find an L0.M/-definable finite-to-one map h W ¹ŒF��p W

ŒF��p 2 X�º ! km. Then we have ŒF��p 2 acl0.ŒG1�pŒG1�pŒf��p/ � acl0.Mh.�// and
h.�/ 2 dcl0.MŒf��p/ � dcl0.MŒF��p/.

Since k.dcl0.M// is the perfect closure of k.M/, by compactness, composing with
a power of the Frobenius automorphism, we may assume that g�.X�.M// � k.M/ and
that g� is uniform in �. The (uniform) bound in (E1

p; VF
) now follows from (E1k /.

Lemma 3.4.5. Assume (E1k / and

(E1� / for any L.M/-definable .Yz/z � � , there exists n 2 Z>0 such that, for all z,
jYzj <1 implies jYzj 6 n.

Then for every L0.M/-definable p 2 S0x.M0/, L0-definable .F�/�2ƒ W Kx ! BŒr�, and
L.M/-definable .Yz/z � ŒFƒ�p , there exists n2Z>0 such that jYzj<1 implies jYzj6 n.

In particular, (E1
p; xF

) holds.
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Proof. Let r�.x/WDrad.F�.x//. By Lemma 3.4.1, there exists an L0.M/-definable finite-
to-one map g W Œrƒ�p ! �m. Composing with division by a fixed integer, we may assume
that g.Œrƒ�p.M// � �.M/. It follows that there is an integer n such that, for every z,
the set ¹Œr��p W ŒF��p 2 Yzº is either infinite or finite of size bounded by n. So, cutting
each Yz into finitely many pieces (and getting rid of the infinite ones), we may assume
that Œrad.F�/�p is constant and the balls are of the same type, as ŒF��p ranges through Yz .
Similarly, we may assume that the set of distances between balls inF�.x/ andF�.x/, with
ŒF��p; ŒF��p 2 Yz has size bounded by some integer k. We now proceed by induction on k.

Let 
z.x/ be the smallest such distance, G�;z.x/ be the set of closed balls of radius

z.x/ around F�.x/, andZz WD ¹ŒG�;z �p W ŒF��p 2 Yzº. Then the set of distances between
balls in Zz has size at most k � 1 and we find a bound by induction. In particular, remov-
ing some more infinite Yz , we find an Hz W Kn ! BŒ<1� such that every maximal open
ball of Hz.x/ contains at most one ball of F�.x/ as ŒF��p varies through Yz . The bound
now follows from Lemma 3.4.3.

3.5. The higher arity case

We can now proceed with the induction:

Proposition 3.5.1. Assume (CV ), (C� ), (E1k / and (E1� /. LetX �Kx be strict pro-L.A/-
definable, where A D acleq.A/ � M eq and x is countable. Let �.xI t / be a finite set of
L0-formulas, p 2 S�x .M/ be L.A/-quantifiable over L and consistent withX , and z � x.
Then there exists an L0.G .A//-definable q 2 S0z.M0/ such that qjM is consistent with p
and X .

Proof. We proceed by induction on jzj. In particular, we may assume that for any set
�.xI t / of L0-formulas, any p 2 S�x .M/ which is L.A/-quantifiable over L, and any
finite strictly smallerw � z, pjw can be extended to an L0.G .A//-definable q 2 S0w.M0/.

Claim 3.5.2. Let�.xI t / be a finite set of L0-formulas, p 2 S�x .M/ be L.A/-quantifiable
over L and consistent with X , z � x be finite and ˆ.zI s/ be a finite set of L0-formulas.
Then there exists a finite set ‚.zI t / containing ˆ and q 2 S�;‚x .M/ which is L.A/-
quantifiable over L and consistent with p and X .

Proof. We proceed by induction on jzj. Assume z D wy with jyj D 1 (where w might be
the empty tuple). By Proposition 3.2.8, we find a finite good presentation .‰.wI t /;F .w//
forˆ. By induction, we find„.wIu/ � ‰ and q 2 S�;„x .M/ which is L.A/-quantifiable
over L and consistent with p and X . Since w � z, as stated in the first paragraph of the
proof, qjw extends to a complete L0.G .A//-definable L0.M0/-type.

By Corollary 3.2.18 and Lemma 3.4.5, we now find an L.A/-definable r2S�;„;Fx .M/

which is consistent with q and X . By Lemmas 3.3.1 and 3.4.3, r is L.A/-quantifiable
over L.

Let .'i .zI ti //i2! enumerate all L0-formulas. By Claim 3.5.2, we find ‚i containing
'i and qi 2 S�;‚6i

z .M/, which is L.A/-quantifiable over L and consistent with p [
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S
j<i qj and X . Then

S
i qi 2 S0z.M/ is L.A/-definable and consistent with p and X .

By Proposition 3.3.4 and Lemma 3.3.7, q extends to a complete L0.G .A//-definable
L0.M0/-type.

This result is already non-trivial when X D Kx and T D ACVF:

Corollary 3.5.3. Let‰.xI t / be a set of L0-formulas andAD acl0.A/6M0. Any L0.A/-
quantifiable p 2 S‰x .M0/ can be extended to an L0.A/-definable q 2 S0x.M0/.

If we do not assume (E1� /, and try to replace the use of Corollary 3.2.18 by that of
Lemma 3.2.21, the above induction fails. We can, nevertheless, recover a local version of
the result:

Proposition 3.5.4. Let n 2 Z>0 \K�.M/ and X � Kx be L.A/-definable, where A D
acleq.A/ � M eq. Assume (CV ) holds in M and in the pair .M0; M/, and assume (C� ),
(E1k /, (Ik), (FRn). Also assume that

(Pn
�.X/

) for every projection Y �Kzy ofX with jyj D 1, everyN <M and every a 2N y ,
Ya is n-prepared by some finite L0.Ma/-definable set C � K.

Then, for every finite set ‰.x; t/ of L0-formulas, there exists an L0.G .A//-definable
p 2 S‰x .M/ consistent with X .

Proof. Let AP D acleq
LP
.A/. We say that ‚.zy; s/, where jyj D 1, is a hereditarily good

presentation if‚ is of the formˆ.z; t/[ ¹y 2 F�.z/º for some good presentation .ˆ;F /
where ˆ is itself a hereditarily good presentation.

Claim 3.5.5. Let ‚.x; s/ be a hereditarily good presentation and let q 2 S‚x .M0/ be
L0.G .AP //-definable. Then for L 2 ¹L0;LPº, q is L.G .AP //-quantifiable over L; in
particular, it has a complete L0.G .AP //-definable extension to S0x.M0/.

Proof. We proceed by induction on jxj. By Lemma 2.3.19, (E1k / holds in the pair
.M0; M/. So quantifiability follows from Lemmas 3.3.1 and 3.4.3, applied respectively
to M0 and to the pair .M0;M/. The existence of a complete definable extension follows
by Corollary 3.5.3 applied in M0.

We now prove, by induction on x D zy, the existence of p 2 S‰x .M0/ which is
consistent with X and L0.G .AP //-definable. By compactness, there exists .G!/!2� W
Kz ! KŒ<1� such that the family .Xz/z is n-prepared by G. Let d 2 Z>0 bound
the degree of any polynomial appearing in ‰ and G. By Proposition 3.2.8, and induc-
tion, we find a finite hereditarily good presentation .‚.z; s/; F .z// for 'd .x; uv/ WD
v.
P
jI j<d uIx

I / > v.
P
jI j<d vIx

I /. By induction, there exists q 2 S‚z .M0/ which
is L0.G .AP //-definable and consistent with X . By Claim 3.5.5, q is LP.G .AP //-
quantifiable over LP. By Lemma 3.2.21, there exists an LP.AP /-definable p 2 S‚;Fx .M0/

consistent with X . By hypothesis, (CV ) holds in .M0;M/, and so does (C� ), by Corol-
lary 2.3.17. By Proposition 3.3.4, the type pj'd is L0.G .AP //-definable – and hence so
is pj‰ .
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Let a 2 AP be the canonical basis of pj'd . Since M0 D M a � acl0.M/, we have
a2 acl0.M/. Let c 2 dcl0.M/ be a code of the finite L0.M/-orbit of a – which is included
in its finite LP.A/-orbit. Let f be L0-definable such that c 2 f .M/ and e 2 M eq be a
code of f �1.c/. The LP.A/-orbit of c consists of finite subsets of the LP.A/-orbit of a
and is therefore finite. Hence, so is the L.A/-orbit of e; i.e., e 2 acleq.A/ D A. It follows
that pj'd ;M �

T
�2Aut.M0=M/ �.pj'd / is L.A/-definable. By Proposition 3.3.4, it is in

fact L0.G .A//-definable — and hence so is pj‰;M .

This local result does imply the existence of a global invariant type:

Corollary 3.5.6. Let n 2 Z>0 \ K�.M/ and X � Kx be strict pro-L.A/-definable,
where A D acleq.A/ � M eq. Assume (CV ) holds in both M and in the pair .M0; M/,
and assume (C� ), (E1k /, (Ik), (FRn) and

(Pn
�.X/

) for every projection Y � Kzy of X onto finitely many coordinates with jyj D 1,
every N < M and every a 2 Kz.N /, Ya is n`-prepared by some L0.Ma/-
definable set C � K.N / for some ` 2 Z>0.

Then there exists an Aut.M=G .A//-invariant p 2 S0x.M/ consistent with X .

Note that (FRn) implies (FRn` ) for every ` 2 Z>0. Also if M is a finitely ramified
henselian field, then (CV ) holds in both M and .M0;M/, since both theories have max-
imally complete models, and (Pn

�.X/
) holds by Remark 3.2.20.

Proof of Corollary 3.5.6. For every (finite) set ‰.x; t/ of L0-formulas, the set of
p 2 S0x.M/ which are consistent with X and whose ‰-type is Aut.M=G .A//-invariant
is closed. It is non-empty, by Proposition 3.5.4. By compactness, the intersection of all
these sets, which coincides with the set of Aut.M=G .A//-invariant p 2 S0x.M/ consistent
with X , is also non-empty.

Remark 3.5.7. If T is a k-�-enrichment of finitely ramified henselian fields, then, by
Corollary 2.3.12, the pair .M0; M/ is elementarily equivalent to one where both K and
PK are maximally complete – namely the pair of the maximal completion of M inside
the maximal completion of its algebraic closure. Hence (CB) (and therefore (CV )) holds
both in M and in the pair .M0;M/.

4. Invariant completions

Notation 4.1. In this section, let T be an RV-enrichment of the theory of characteristic
zero henselian fields.

4.1. Main results

Our goal in this section is to describe the behaviour of global L-types whose underlying
L0-type is invariant. A crucial point is that Fact 2.2.7 can be reformulated in the following
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manner: for every A 6M ˆ T ,

tp0.A/ [ tp.RV.A// ` tp.A/:

Therefore, the main point of this section is to better understand tp.RV.A// and then
deduce properties of tp.A/. In particular, we will show that RV.A/ is generated by a
small canonical set. This will allow us to conclude that a global type whose underlying
quantifier free type is invariant is itself invariant over RV (Corollary 4.3.17). However,
better control of the parameters requires more auxiliary sorts. Recall that

LinA WD
G

s2S.dcl0.A//
`2Z>0

s=`ms:

In this section, we prove the following result.

Theorem 4.1.1. Assume that

(Ik) the residue field k is infinite.

Let M 4 N ˆ T be sufficiently saturated and homogeneous, and let A � G .M/

and a 2 K.N / be such that tp0.a=M/ is Aut.M=A/-invariant. Then tp.a=M/ is
Aut.M=ARV.M/LinA.M//-invariant.

4.2. Invariance and stably embedded sets

Note that we consider invariance over large subsets of our model, which happen to be the
points of some stably embedded definable sets. This gives rise to some subtle issues and
two notions of invariance. When D D

S
i Di is ind-L-definable, we denote by Deq the

ind-L-definable union of all L-interpretable sets X that admit an L-definable surjectionQ
j Dij ! X .

Definition 4.2.1. Let M be an L-structure, C �M , D be a (ind-)L-definable set and p
be a partial L.M/-type. We say that the type p

� is Aut.M=C/-invariant if for every � 2 Aut.M=C/, p and �.p/ are equivalent;

� has Aut.M=C/-invariant D-germs if it is Aut.M=C/-invariant and so is the p-germ
of every L.M/-definable map f W p ! Deq;

� is Aut.M=D/-invariant if it has Aut.M=D.M//-invariant D-germs.

We will only apply these notions for M saturated, p a complete �-type for some set
� of L-formulas, C equal to the M -points of a stably embedded (ind-)L-definable set,
and D stably embedded; an ind-L-definable set D D

S
i Di is stably embedded if any

definable X �
Q
j Dij is definable with parameters from D.

Remark 4.2.2. (1) An Aut.M=D.M//-invariant type might not be Aut.M=D/-invari-
ant. For example, let M ˆ ACVF and b be a closed ball of M without any
acl.pbqRV1.M//-definable subballs. Then any a1; a2 2 b.M/ have the same type
over acl.pbqRV1.M//. However, for every x 2 b, rv1.x � a1/D rv1.x � a2/ implies



M. Hils, S. Rideau-Kikuchi 48

that the ai are in the same maximal open subball of b. It follows that the generic of b
over M is Aut.M=pbq/-invariant but not Aut.M=pbqRV1/-invariant.

(2) A type p 2 S.M/ is Aut.M=C/-invariant if and only if for every realisation a ˆ p
in a sufficiently homogeneous N <M , any � 2 Aut.M=C/ extends to an element of
Aut.N=Ca/.

(3) On the other hand, a type p 2 S.M/ has Aut.M=C/ invariant D-germs, where D is
stably embedded, if and only if for every a ˆ p in a sufficiently saturated N < M ,
any � 2 Aut.M=C/ extends to an element of Aut.N=CD.N/a/ (see the proof of
Lemma 4.2.4).

(4) The set of types with Aut.M=C/-invariant D-germs is closed: for any � 2

Aut.M=C/ and any L.M/-definable map f W p ! Deq, no type in the open set
‘Œf �p ¤ Œf � �p’ has Aut.M=C/-invariant D-germs.

Let us now recall the following folklore result on stable embeddedness which states
that we can recover the usual characterisation of types and hence of definable closure
(equivalently internality) from invariance over a stably embedded definable set:

Lemma 4.2.3. Let M be saturated sufficiently large, D be (ind-)L-definable stably
embedded and e 2M . If e is fixed by every � 2 Aut.M=D.M//, then e 2 dcl.D.M//.

Proof. Let e0 2 M be such that e �D.M/ e
0. By [47, Lemma 10.1.5] (more precisely,

its extension mutatis mutandis to stably embedded ind-definable sets) we can find � 2
Aut.M=D.M// such that e0 D �.e/D e. SinceD is stably embedded, there exists a small
A � D.M/ such that tp.e=A/ ` tp.e=D.M//. So both types have a single realisation
in M , i.e., e 2 dcl.A/ � dcl.D.M//.

One advantage of the stronger notion of invariance is transitivity:

Lemma 4.2.4. Let M 4 N be L-structures with N saturated and sufficiently large,
C � M .potentially large/, D be an .ind-/L-definable stably embedded set, p 2 S.M/

have Aut.M=C/-invariant D-germs, a ˆ p in N and q 2 S.N / be Aut.N=CD.N/a/-
invariant. Then qjM is Aut.M=C/-invariant.

If moreover q has Aut.N=CD.N/a/-invariant E-germs for some .ind-/L-definable
set E, then qjM has Aut.M=C/-invariant E-germs.

Proof. Fix � 2Aut.M=C/. Since p is Aut.M=C/-invariant, the automorphism � extends
to a partial L-elementary isomorphism � W M.a/ ! M.a/ fixing a. Since � fixes the
germs of every definable map from p to Deq, � induces the identity on Deq.dcl.M.a///.
SinceD is stably embedded, it follows that Ca and �.Ca/ have the same type overD.N/
and hence � extends to an element of Aut.N=CD.N/a/ (see [47, Lemma 10.1.5]). This
automorphism � fixes q. It follows that qjM is fixed by � jM D � .

If moreover q has Aut.N=CD.N/a/-invariantE-germs, then � D � jM fixes the qjM -
germ of any L.M/-definable function into Eeq.

The core of our proof of Theorem 4.1.1 is the following variation on transitivity:
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Lemma 4.2.5. Let M 4 N ˆ T , C � M potentially large, a 2 Kx.N / a .potentially
infinite/ tuple and � W Kx ! RV be pro-L0.M/-definable. Assume that rv1.M.a// �
dcl0.C�.a// and that p WD tp0.a=M/ and Œ��p are Aut.M=C/-invariant. Then tp.a=M/

has Aut.M=C/-invariant RV-germs.

Proof. Pick � 2 Aut.M=C/. Let N0 ˆ ACVF containing N be saturated and sufficiently
large. By invariance of p, the automorphism � extends to a partial L0-isomorphism
� W M.a/! M.a/ fixing a. Note that �.�.a// D �� .a/ D �.a/ and hence � jrv1.M.a//
is the identity. By quantifier elimination in ACVF (in LRV, which implies a strong form
of stable embeddedness for RV), � extends to a partial elementary map which is the
identity on RV.N0/, which further extends to some element of Aut.N0=CRV.N0/a/,
also denoted � (see [47, Lemma 10.1.5]). By Fact 2.2.7, tp.Ma/ D tp.�.M/a/, i.e.,
�.p/ D p. Moreover, any L.Ma/-definable X � RVn is L.rv1.M.a///-definable and
hence X.N/ D �.X.N // D X � .N /, equivalently, � fixes the p-germ of any L.M/-
definable function into RVeq.

4.3. Computing leading terms

In view of Lemma 4.2.5, given any A-invariant type tp0.a=M/, we want to find a
pro-L0.M/-definable map � such that �.a/ dcl0-generates rv1.M.a// and Œ��p is
Aut.M=A/-invariant. When A 4 M and A is sufficiently large, this is done in Corol-
lary 4.3.16. As previously stated, for general small A, dealing with closed balls forces us
to also consider maps into certain A-definable k-vector spaces. The goal then becomes to
build a ‘nice’ model of T containing A and proceed by transitivity.

The technical core of the proof consists in a generalisation to relative arity 1 of the
classical description of 1-types in henselian fields, in Lemmas 4.3.8, 4.3.10 and 4.3.13.

Let us start with three leading term computations that we will need later.

Lemma 4.3.1. Let M ˆ ACVF. Let L 6 K D K.M/ be a subfield and let R � rv1.K/
contain rv1.L/. Let also b 2 B.K/, g 2 K.dcl0.LR//, c 2 K and P WD

Q
i<d .x � ei / 2

K.dcl0.LR//Œx�.

(1) If c; g 2 b and ei … b for all i , then rv1.P.c// D rv1.P.g// 2 dcl0.R/.

(2) If c … b and g; ei 2 b for all i . then rv1.P.c// D rv1.c � g/d .

(3) Assume that b is closed, c; g; ei 2 b for all i , and the maximal open subball of b
around c contains neither g nor any ei . Then

rv1.P.c// D
M
i6d

rv1.Pi .g//rv1.c � g/i 2 dcl0.Rrv1.c � g//;

where P.y C x/ D
P
i Pi .y/x

i . In particular, the sum is well defined.

In fact, (2) is a particular case of (3): consider the smallest closed ball containing c,
g and the ei . Recall that if a1 and a2 are in some ball b that does not contain c, then
rv1.c � a1/ D rv1.c � a2/ (see Remark 2.2.4).
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Proof. For (1), we have rv1.P.c// D
Q
i rv1.c � ei / D

Q
i rv1.g � ei / D rv1.P.g// 2

RV1.dcl0.LR// � dcl0.rv1.L/R/ D dcl0.R/, where the inclusion follows from quanti-
fier elimination for ACVF in LRV. As for (2), we have rv1.P.c// D

Q
i rv1.c � ei / D

rv1.c � g/d . Finally, in the case of (3), let Q.x/ D P..c � g/x C g/=.c � g/d andP
i Qi .y/x

i D Q.x C y/. The roots .ei � g/=.c � g/ of Q are in O. Thus Q 2 OŒx�,
Qi .0/ D Pi .g/.c � g/

i�d 2 O and v.Q.1// D 0. We have

rv1.P.c// D rv1.c � g/d res.Q.1// D rv1.c � g/d
�X
i

res.Qi .0//
�

D rv1.c � g/d
�M

i

rv1.Qi .0//
�
D

M
i6d

rv1.P .i/.g//rv1.c � g/i

2 RV1.dcl0.LRrv1.c � g/// � dcl0.Rrv1.c � g//;

where the third equality follows from the fact that

v
�X
i

Qi .0/
�
D v.Q.1// D 0 6 min

i
v.Qi .0// 6 v

�X
i

Qi .0/
�
:

Remark 4.3.2. In mixed characteristic, we will be applying this result to the least
equicharacteristic zero coarsening, yielding a computation for rv1 and not just rv1.

Essentially every computation of leading terms reduces to the above cases by the
following lemma.

Lemma 4.3.3. Let M ˆ ACVF, L 6 K D K.M/, c 2 K and rv1.L/ 6 R D

RV.dcl0.R// 6 rv1.K/. The following are equivalent:

(1) rv1.L.c// � R;

(2) for every P 2K.dcl0.LR//Œx� which is monic and irreducible over K.dcl0.LR//, we
have rv1.P.c// 2 R.

Moreover, if P 2 K.dcl0.LR//Œx� is irreducible, then its roots are either all inside or all
outside any B 2 BŒ<1�.dcl0.LR//.

Proof. By (1), rv1.P.c// 2 RV.dcl0.LRc// � RV.dcl0.rv1.L.c//R// D R. The con-
verse is a consequence of the fact that rv1 is a multiplicative morphism and any poly-
nomial over L is a product of (an element of L and) monic irreducible polynomials over
K.dcl0.LR//.

As for the ‘moreover’ statement, fix some B 2 BŒ<1�.dcl0.LR//. Let E be the set of
roots of P that belong toB andQD

Q
e2E .x � e/ 2K.dcl0.LR//Œx�. If P is irreducible,

then Q D P or Q D 1.

One last important ingredient – also ubiquitous in the development of motivic integra-
tion (e.g., in [28]) – is the fact that, in characteristic zero, finite sets of points (and of balls
in equicharacteristic zero) can be canonically parametrised by RV. Recall the definitions
of BŒr� in Definition 3.2.1 and that of bŒn� and BŒn� from Definition 3.2.19.
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Lemma 4.3.4. For every r 2Z>0, there existsm 2Z>0 such that for every characteristic
zero valued field L and B 2 BŒr�.L/ with jBŒm�j D r , there exists L0.pBq/-definable
injection � W B ! RVn.

Proof. We proceed by induction on r . If r D 1, take m D 1 and � to be constant equal to
1 2 RV1. If jBj> 1, we may assume that jBŒm�j D r for allm, and the lemma will follow
by compactness. Also, assuming that L ˆ ACVF is sufficiently saturated and homogen-
eous, it suffices to find an Aut.L=pBq/-invariant injection � W B ! .RV1/n. Indeed,
since B is finite, some projection to RVn is already injective and it must be definable.
Finally, let 
 WD max ¹v.b1 � b2/ W bi 2 B distinctº. Since jBŒm�j D r for all m, we have

 < rad.B/C v.Z/ and B can be injected in the set of open v1-balls of radius 
=�1.
So we may assume that the residue characteristic of L is zero.

Let B 0 be the set of closed balls of radius 
 around the balls of B . By construction, we
have jB 0j < jBj D r . For every b0 2 B 0, let Bb0 WD ¹b 2 B W b � b0º. Note that, by hypo-
thesis, resb0.b/ 2 Rb0 D ¹maximal open subballs of b0º uniquely determines b inside B .
Let cb0 2 Rb0 denote the average of the resb0.b/ as b ranges over Bb0 . By induction, we
find an L0.pBq/-definable injection � W ¹cb0 W b0 2 B 0º ! RVn. For every b 2 B , let
�.b/ WD .rv1.b � cb0/;�.cb0// where b � b0 2 B 0. Then � W B ! RVnC1 is an L0.pBq/-
definable injection.

Lemma 4.3.5. For every r 2 Z>0 there existsm 2 Z>0 such that for every characteristic
zero valued field L and every B 2 BŒr�.L/ with jBŒm�j D r , there exists g 2 KŒr�.L/ with
exactly one point inside each ball of BŒm�.

Proof. Let us start with a weaker version of the result:

Claim 4.3.6. For every b 2 B.acl0.L//, b.acl0.L// ¤ ;.

Proof. We may assume thatL is algebraically closed. If v.L/¤ 0,LˆACVF and hence,
by model completeness, b.L/¤;. If v.L/D 0, then rad.b/ 2 �.dcl0.L//D ¹0º. If 0 2 b,
we are done. Otherwise, v.b/ D 0 and b � O. So b is open and it is (interdefinable with)
a residue element. But k.acl0.L// D res.L/ and thus b.L/ ¤ ;.

Claim 4.3.7. For every B 2 BŒr�.dcl0.L//, there exist m 2 Z>0 and g 2 KŒr�.dcl0.L//
such that if jBŒm�j D r then there is exactly one point of g inside each ball of BŒm�.

Proof. We may assume that B is irreducible over L, i.e., for any non-empty L0.L/-
definable C � B , we have C D B . For every b 2 B , let d 2 b.acl0.L//. LetD be L0.L/-
definable and irreducible over L containing d and let gb 2 acl0.L/ be the average of
D \ b. Then gb 2 bŒm�, where m WD jD \ bj. Let g be a finite L0.L/-definable set
irreducible over L containing gb . Since jBŒm�j D r D jBj, we get g \ bŒm� D ¹gbº. By
irreducibility, each ball of BŒm� contains exactly one element of g.

Lemma 4.3.5 follows by compactness.
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Let BŒr�x denote the (ind-L0-definable) set of L0-definable maps F W Kx ! BŒr�,
and BŒ<1�x denote the (ind-L0-definable) set

S
r BŒr�x . Similarly we denote by KŒr�

x the
(ind-L0-definable) set of L0-definable maps F W Kx ! KŒr�, and by KŒ<1�

x the (ind-L0-
definable) set

S
r KŒr�

x .

Notation 4.2. We fixM 4 N ˆ T , A �M eq, a 2 Kx.N / a potentially infinite tuple and
c 2K.N / a single element. Assume that p.xy/D tp0.ac=M/ is Aut.M=A/-invariant and
let q WD tp0.a=M/. For every F;G 2 BŒ<1�x .M/, we write F 6q G if q.x/ ` F [.x/ �
G[.x/. Finally, let E WD ¹F 2 BŒ<1�x .M/ W p.x; y/ ` y 2 F [.x/º.

In Lemmas 4.3.8, 4.3.10 and 4.3.13, we will describe how RV.M.ac// is generated
depending on the shape of E.

Lemma 4.3.8 (Finite sets). Assume that E has a least element f for 6q and that
f 2 KŒr�

x . Then there exists a pro-L0.M/-definable map � W Kxy ! RVn whose p-germ
is Aut.M=A/-invariant such that rv1.M.ac// � dcl0.rv1.M.a//�.ac//.

Proof. Let �.ac/ D �a.c/, where �a W f .a/! RVn is the L0.f .a//-definable injection
of Lemma 4.3.4. By invariance of p, for every � 2Aut.M=A/we have c 2 f � .a/\ f .a/.
Since f is the least element of E, we have f � .a/D f .a/ and hence Œf �q (and thus Œ��p)
is Aut.M=A/-invariant. Moreover, since c 2 dcl0.Ma�.ac//, we have rv1.M.ac// �
RV.dcl0.Ma�.ac/// � dcl0.rv1.Ma/�.ac//.

We now assume that E \KŒ<1�
x D ;.

Lemma 4.3.9. There exists a pro-L0.M/-definable map � W Kxy ! RV� , with � poten-
tially infinite, whose p-germ is Aut.M=A/-invariant such that, for every F 2 E, for
some m 2 Z>0 which only depends on jF.a/j, the ball b 2 F.a/Œm� containing c is
L0.Ma�.ac//-definable, and �.ac/ 2 acl0.Ma/.

Proof. For every r 2 Z>0, let mr 2 Z>0 be as in Lemma 4.3.4. Let F 2 E \ BŒr�x be
irreducible over q and such that jF Œmr �j D r ; if such an F does not exist let �r .x/ D 1.
By irreducibility, for every G 2 E \ BŒr�x with G 6q F , every ball in F.a/ contains
exactly one ball of G.a/. In particular, neither 
 D max ¹v.b1 � b2/ W bi 2 F.a/ distinctº
nor Br .a/, the set of open balls of radius 
 C v.mr / around balls of F.a/, depend on
the choice of F . It follows that ŒBr �q is Aut.M=A/-invariant. By construction, inclusion
induces an injection F.a/! Br .a/ and jBr .a/j D jBr .a/Œmr �j.

So in Lemma 4.3.4, let �r W Br .a/! RVn be an L0.pBr .a/q/-definable injection.
Let �r .ac/ D �r .b/ where c 2 b 2 Br .a/. Note that �r .ac/ 2 acl0.Ma/. The element
of F.a/ containing c is uniquely determined by b, and hence by �r .ac/; and Œ�r �p is
Aut.M=A/-invariant by construction.

Now fix any F 2E, which we can assume irreducible. LetM Dmax ¹ms W s6 jF.a/jº.
The sequence jF.a/ŒM k �j > 1 is decreasing and bounded by jF.a/j, and hence
there exists k 6 jF.a/j such that jF.a/ŒM k �ŒM �j D jF.a/ŒM kC1�j D jF.a/ŒM k �j. Let
r WD jF ŒM k �j. By the previous paragraphs and the choice of M , the ball b 2 F.a/ŒM k �
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containing c is L0.Ma�r .ac//-definable. It follows that � D .�r /r>1 has the required
properties.

We now wish to consider the case where either E induces a strict intersection in the
least equicharacteristic zero coarsening v1 (case (1)), or c is generic over Ma in a finite
set of open v1-balls (case (2)):

Lemma 4.3.10 (Open and strict balls). Assume that one of the following holds:

(1) for all F 2 E, there exists G 2 E with GŒm� <q F for any m 2 Z>0;

(2) there exists an r 2 Z>0 such that for every F 2 E andm 2 Z>0, there exists an open
G 2 E \ BŒr�x with GŒm� 6q F .

Then there is a pro-L0.M/-definable map � W Kxy ! RV� whose p-germ is Aut.M=A/-
invariant and such that rv1.M.ac// � dcl0.rv1.M.a//�.ac//.

Note that cases (1) and (2) are not mutually exclusive.

Proof of Lemma 4.3.10. Let � W Kxy ! RV� be as in Lemma 4.3.9.

Claim 4.3.11. For every F 2 E, the ball b 2 F.a/ containing c is in dcl0.Ma�.ac//.

Proof. Assume that there exists G 2 E with GŒm� 6q F for every m 2 Z>0. By
Lemma 4.3.9 applied toG, the ball b0 2G.a/Œm� containing c is L0.Ma�.ac//-definable.
The claim follows since b0 � b.

Otherwise, by case (2), we can find a minimal r such that for every F 2 E and
m 2 Z>0, there exists an open G 2 E \ BŒr�x with GŒm� 6q F . Then for m sufficiently
large, depending on r , by Lemma 4.3.9, the ball b0 2GŒm� containing c is L0.Ma�.ac//-
definable. The claim follows since b0 � b.

If there does not exist g 2 KŒ<1�
x .M/ such that ; <q g 6q E, let �.ac/ D �.ac/.

If such a g exists, we may assume that it is irreducible and then the cardinality of the
F 2 E irreducible over q is bounded by jg.a/j. Let F 2 E be irreducible over q of
maximal cardinality r and let b.ac/ 2 F.a/ contain c. Note that the partition of g.a/
induced by F , and in particular h.ac/ WD g.a/\ b.ac/, does not depend on F . Moreover,
since there is some (irreducible) G 2 E \ BŒr�x with GŒjh.ac/j� 6q F , the average of
h.ac/ is in b.ac/. So, replacing h.ac/ by its average, we may assume that h.ac/ is a
singleton. Then h.ac/ 2 dcl0.g.a/b.ac// � dcl0.Ma�.ac// by Claim 4.3.11. We define
�.ac/ D .�.ac/; rv1.c � h.ac///.

For every � 2 Aut.M=A/, applying the previous argument to g and F �
�1
2 E, we

have h.ac/ 2 b�
�1
.ac/, and hence, by invariance of p, h� .ac/ 2 b.ac/. Note that the

smallest (closed) ball containing h.ac/ and h� .ac/ is algebraic over Ma and let D.a/ be
its finite orbit over Ma. We have D 6q E. If DŒm� 2 E for some m 2 Z>0, then there is
G 2E open (irreducible) such thatGŒm�6qDŒm� and henceD>q G 2E. But then either
h.ac/ … G.ac/ or h� .ac/ … G. By invariance of p, we may assume that h.ac/ … G.ac/,
contradicting the fact that h.ac/ does not depend on the choice of F . Thus D.a/Œm� 62 E
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and so c … D.a/Œm�[. It follows that rv1.c � h.ac// D rv1.c � h� .ac//. We have just
proved the Aut.M=A/-invariance of Œ��p .

Now, to prove that rv1.M.ac//� dcl0.rv1.M.a//�.ac//, by Lemma 4.3.3 it suffices
to prove that, for every irreducible P 2 K.dcl0.Ma�.ac///Œx�, we have rv1.P.c// 2
dcl0.rv1.M.a//�.ac//. Recall that, by Lemma 4.3.9, �.ac/ 2 acl0.Ma/. Let z.a/ be the
finite set, irreducible over M.a/, containing the set Z of roots of P . If z 6q E, then as
above c avoids d.ac/Œm�, where d.ac/ is the smallest closed ball around Z [ ¹h.ac/º.
By Lemma 4.3.1 (2), taking into account Remark 4.3.2, rv1.P.c//D rv1.c � h.ac//d 2
dcl0.�.ac//.

Otherwise, there is some F 2E such thatZ \F.a/[ D;. Then, by Lemma 4.3.1 (1),
rv1.P.c// 2 dcl0.rv1.M.a//�.ac//.

Remark 4.3.12. There are actually two distinct possible behaviours in Lemma 4.3.10:

� If there does not exist g 2 KŒ<1�
x such that g 6q F for every F 2 E, then

rv1.M.ac// � dcl0.rv1.M.a//�.ac// � acl0.rv1.M.a///:

� If such a g exists, then v.M.ac// 6� acl0.v.M.a///.

The last remaining case to consider is when c is generic over Ma in some closed
v1-ball. For every B 2 BŒ<1�, we define RB;m WD ¹b0 � B[ W b0 an open ball of radius
rad.B/ C v.m/º and RB;1 D lim

 �m
RB;m. For every x 2 B[, let resB;m.x/ denote the

unique element of RB;m containing x and resB;1 W B[ ! RB;1 be the induced map.

Lemma 4.3.13 (Closed balls). Assume that there exists an F 2 E such that for every
g 2 KŒ<1�

x .M/ with g 6q F , we have c … resF.a/;1.g.a//[. Let b 2 F.a/ contain c,
� 2 RVn be such that b 2 dcl0.Ma�/ and G 2 resb;1.dcl0.Ma�//. Then

rv1.M.ac// � dcl0
�
rv1.M.a//�rv1.resF.a/;1.c/ �G.a�//

�
:

In later applications of this lemma, we will take � D �.ac/ as given by Lemma 4.3.9.

Proof of Lemma 4.3.13. Note that for any m 2 Z>0, the hypothesis on F remains true
of F Œm�. So, replacing F by some F Œm� with jF Œm�.a/j minimal, we may assume that
jF Œm�.a/j is constant. By Lemma 4.3.5, we can now find f 2 KŒ<1�

x .M/ such that
f .a/ has exactly one point in every ball of F.a/. By hypothesis, c … resF.a/;1.f .a//.
Let h 2 dcl0.Ma�/ denote the unique element of f .a/ \ b. Since rad.F.a//=�1 D
v1.c � h/ D v1.c �G.a; �// 6 v1.G.a; �/ � h/, we have

rv1.c � h/ D rv1.resF.a/;1.c/ �G.a�//˚ rv1.G.a�/ � h/:

So it suffices to prove that rv1.M.ac// � dcl0.rv1.M.a//�rv1.c � h//.
By Lemma 4.3.3, it suffices to prove that, for every irreducibleP 2K.dcl0.Ma�//Œx�,

rv1.P.c// 2 dcl0.rv1.M.a//�rv1.c � h//. If, for every m 2 Z>0, no root of P is
in bŒm�, then, by Lemma 4.3.1 (1), rv1.P.c// 2 dcl0.rv1.M.a//�/. Otherwise, let
m 2 Z>0 be such that every root of P is in bŒm�. Since K.acl0.Ma�// � acl0.Ma/,
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let z.a/ be finite irreducible over M.a/ containing the roots of P . By hypothesis,
c … resF.a/Œm�.z.a//. By Lemma 4.3.1 (3), rv1.P.c// 2 dcl0.rv1.M.a//rv1.c � h//.

Notation 4.3. Let yA � K.M/ contain a realisation of every L.A/-type and assume that
M is sufficiently saturated and homogeneous.

We can now wrap up the relative arity 1 case:

Proposition 4.3.14. There exists a pro-L0. yA/-definable map � W Kxy ! RV� such that
rv1.M.ac// � dcl0.rv1.M.a//�.ac//.

Proof. Note first that any Aut.M=A/-invariant p-germ of L0.M/-definable functions is
represented by an L0. yA/-definable function: it suffices to consider a realisation in yA of
the type of the parameters over A.

If E \ KŒ<1�
x ¤ ;, we apply Lemma 4.3.8. So let us assume that E \ KŒ<1�

x D ;.
If for every F 2 E, there exists G 2 E with GŒm� <q F for every m 2 Z>0, we are in
case (1) of Lemma 4.3.10 and the lemma yields the assertion. So we may assume that
there exists F such that for every G 2 E, F 6q GŒm� for some m 2 Z>0. If there exists
g 2 KŒ<1�

x with g 6q F and c 2 resF.a/;1.g.a//, then, for all H 2 E and n 2 Z>0,
H 6q F Œm� for somem 2 Z>0. LetG.a/ WD resF.a/;mn.g.a//. Then c 2GŒn�6q H and
hypothesis (2) of Lemma 4.3.10 holds with r D jgj.

So we may assume that no such g exist, i.e., the hypotheses of Lemma 4.3.13 hold.
As previously, we may assume that jF Œm�j is constant. Let � be as in Lemma 4.3.9; we
may assume that � is L0. yA/-definable. Let b.ac/ 2 F.a/ contain c.

Claim 4.3.15. There exists G.ac/ 2 resb.a/Œm�;1.dcl0. yAa�.ac/// for some m 2 Z>0.

Proof. By construction of yA, there exists � 2 Aut.M=A/ such that F � is L0. yA/-defin-
able. By Aut.M=A/-invariance of p, we have F � 2 E and hence F � 6q F Œm� for some
m 2 Z>0. So, up to replacing F by F � , we may assume F is L0. yA/-definable. By
Lemma 4.3.5, and replacing F by some F Œm�, we find g 2 KŒ<1�

x . yA/ with exactly one
element in each ball of F . It then suffices to consider the only element of kF.a/;1.g.a//
contained in b.ac/.

By Lemma 4.3.13, we have

rv1.M.ac// � dcl0.rv1.M.a//�.ac/rv1.resF.a/;1.c/ �G.ac///

� dcl0.rv1.Ma/ yAac/:

Corollary 4.3.16. There exists a pro-L0. yA/-definable map � W Kx ! RV� such that

rv1.M.a// � dcl0.rv1.M/�.a//:

Proof. We proceed by induction on an enumeration of a. The induction step is Proposi-
tion 4.3.14 and the limit case is trivial.
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Corollary 4.3.17. The type tp.a=M/ is Aut.M= yARV/-invariant.

Proof. This follows from Corollary 4.3.16 and Lemma 4.2.5.

4.4. Invariant resolutions

Notation 4.4. Let M 4 N ˆ T both be sufficiently saturated and homogeneous and
A � G .M/.

By transitivity, it remains to build a sufficiently saturated model containing A whose
type is invariant.

Lemma 4.4.1. Assume A � K.M/ and let R � RV.M/. There exists C � K.N / and
a pro-L0.M/-definable map � W KjC j ! RV� such that R � rv1.A.C // � dcl0.AR/,
q WD tp0.C=M/ and Œ��q are Aut.M=AR/-invariant and

rv1.M.C// � dcl0.rv1.M/�.C //:

Proof. We proceed by induction on an enumeration of R. Assume the property holds
for R for some C and � and pick any � 2 RV1.M/. If � 2 rv1.acl0.AC//, let c 2
K.acl0.AC// be such that rv1.c/D �. LetD be a minimal finite L0.AC�/-definable set
containing c. Replacing c by the average of D, we may assume that c 2 dcl0.AC�/ �
dcl0.MC/�N . We haveR� � rv1.A.Cc//�RV.dcl0.AC�//� dcl0.rv1.A.C //�/�
dcl0.AR�/, tp0.Cc=M/ is Aut.M=AR�/-invariant, and since c 2 dcl0.MC/ DM.C/h,
we get rv1.M.Cc// D rv1.M.C// � dcl0.rv1.M/�.C //.

If � … rv1.acl0.AC//, let c 2N be generic in rv�11 .�/ overM . Then p WD tp0.Cc=M/

is Aut.M=AR�/-invariant. By Lemma 4.3.10, we find a pro-L0.M/-definable map �0 W
KjC jC1 ! RV�1 such that

rv1.M.Cc// � dcl0.rv1.M.C//�0.Cc// � dcl0.rv1.M/�.C /�0.Cc//

and whose p-germ is Aut.M=AR�/-invariant. Moreover, no P 2 K.dcl.AC//Œx� has
roots in rv�11 .�/. For any g 2 rv�11 .�/, by Lemma 4.3.1 (1), rv1.P.c// D rv1.P.g//
does not depend on g and is thus in RV.dcl0.AC�// � dcl0.rv1.AC/�/ � dcl0.AR�/.
By Lemma 4.3.3, rv1.A.Cc// � dcl0.AR�/.

Corollary 4.4.2. Assume that A � K.M/. There exists C 4 N containing A and a pro-
L0.M/-definable map � WKjC j! RV� such that p WD tp0.C=M/ is Aut.M=ARV.M//-
invariant, Œ��p is Aut.M=ARV.M//-invariant and rv1.MC/ � dcl0.rv1.M/�.C //.

In particular, by Lemma 4.2.5, tp.C=M/ is Aut.M=ARV/-invariant.

Proof of Corollary 4.4.2. Let A � M1 4 M , with M1 small. Applying Lemma 4.4.1 to
rv1.M1/, we find C �N and � such that rv1.M1/� rv1.A.C //� dcl0.Arv1.M1//\

rv1.N / � rv1.M1/, and p WD tp0.C=M/ is such that Œ��p is Aut.M=Arv1.M1//-
invariant and such that rv1.M.C// � dcl0.rv1.M/�.C //. By replacing C with
K.dcl0.AC//, we may assumeA�C DC h. Since rv1.C /D rv1.A.C //D rv1.M1/4
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rv1.N / and C is a characteristic zero henselian field, it follows from Fact 2.2.7 that
C 4 N .

Corollary 4.4.3. Assume that A � K.M/. There exists yA 4 N containing a realisation
of every L.A/-type such that tp. yA=M/ is Aut.M=ARV/-invariant.

Proof. Let C be as in Corollary 4.4.2. Then any L.A/-definable set X has a point in C
and and its type is an Aut.M=ARV/-invariant type concentrating on X . Since the set
of Aut.M=ARV/-invariant types is closed, it follows by compactness that any L.A/-type
has an Aut.M=ARV/-invariant extension. The corollary follows by the standard construc-
tion relying on transitivity, Lemma 4.2.4; for the limit steps, note that Aut.M=ARV/-
invariance is finitary: tp.c=M/ is Aut.M=ARV/-invariant if and only if for every finite
c0 � c, tp.c0=M/ is Aut.M=ARV/-invariant.

Recall that, by Convention 2.1, LinA.M/ denotes the set of cosets c C `ms where
s 2 S.dcl0.A// has a basis in M and c 2 s.M/.

Lemma 4.4.4. Assuming that

(Ik) the residue field k is infinite in models of T ,

there exists C � K.N / and an L0.A/-definable map � W KjC j ! Lin�A such that, for all
n 2 Z>0, Sn.A/ � sn.C /, tp0.C=M/ is L0.A/-definable and

rv1.M.C// � dcl0.rv1.M/LinA.M/�.C //:

In mixed characteristic, we may further assume that
S
n>0 Tn.A/ � dcl0.C /.

Proof. Fix s 2 Sn.A/ and let ˇ 2 GLn.M/ be a basis of s. Then any ˛ ˆ ˇ � .�OjM /
˝n2

(which is realised in N by (Ik)), where �O is the generic (quantifier free) type of O, is
a basis of s. Note that tp0.˛=M/ D ˇ � �˝n

2

O
only depends on s and is indeed L0.A/-

definable. Let x̨, respectively x̌, be the basis of s=m1s (seen as a pro-definable set)
induced by ˛, respectively ˇ. The matrix of k1-coefficients of ˛ in the basis ˇ is
res1.ˇ�1 � ˛/ where ˇ�1 � ˛ ˆ .�OjM /

˝n2 . It follows that

rv1.M.˛// D rv1.M.ˇ�1 � ˛// � dcl0.RV.M/res1.ˇ�1 � ˛// � dcl0.RV.M/ x̌x̨/:

The first part of the statement follows by iterating the above construction independently
for every s 2 Sn.A/.

Let us now assume that we are in mixed characteristic. For every c ˆ �mjM , we have
rv1.M.Cc//� dcl0.rv1.M.C//res1.c//. This also holds for all maximal open subballs
of O. So, enlarging C further, we may also assume that k.dcl0.AC// \M � res.C /.
Then, for every e 2 Tn.A/, s D �n.e/ 2 S.A/ has a basis in C and every coordinate of e
in that basis is the residue of an element of C . It then follows that e 2 tn.C /.

Lemma 4.4.5. In equicharacteristic zero, assume that, for all n 2 Z>0, �n.Tn.A// �
sn.K.A//. Then there exists C � K.N / and an L0.M/-definable map � W KjC j ! RV�

such that A � dcl0.C /, q WD tp0.C=M/ is Aut.M=A/-invariant, Œ��q is Aut.M=A/-
invariant and rv1.M.C// � dcl0.rv1.M/�.C //.
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Proof. For every e 2 Tn.A/, by hypothesis, s WD �.e/ has a basis in K.A/. It follows
that s=ms also has a basis of dcl0.A/-points and hence is L0.A/-definably isomorphic
to kn. By Lemma 4.4.1 applied to R WD k.dcl0.A// \M � dcl0.A/, we find K.A/ �
C 6K.N / such that k.dcl0.A//\M � res.C /, q WD tp0.C=M/ is Aut.M=A/-invariant,
Œ��q is Aut.M=A/-invariant and rv1.M.C// � dcl0.rv1.M/�.C //. Then we have A D
K.A/ [

S
n Sn.A/ [

S
n Tn.A/ � dcl0.C /.

Corollary 4.4.6. Assume that (Ik) holds. Then there exists C � K.N / such that
tp0.C=M/ has Aut.M=ARV.M/LinA.M//-invariant RV-germs and A � dcl0.C /.

Proof. In mixed characteristic, this follows immediately from Lemmas 4.2.5 and 4.4.4.
In residue characteristic zero, it follows from Lemmas 4.4.4 and 4.4.5 and transitivity (see
Lemma 4.2.4).

Proof of Theorem 4.1.1. By Corollary 4.4.6, we find C � K.N / such that A � dcl0.C /
and tp.C=M/ has Aut.M=ARV.M/LinA.M//-invariant RV-germs. Let M 4 M1 4 N
be sufficiently saturated and homogeneous and contain C . By Corollary 4.4.3, we
find yC 4 N containing a realisation of every L.C /-type such that tp. yC=M1/ is
Aut.M1=CRV/-invariant. LetM1 4M2 4N be sufficiently saturated and homogeneous
and contain yC .

Let p WD tp0.a=M/, which is Aut.M=A/-invariant by assumption.

Claim 4.4.7. tp.a=M/ [ pjM2 is consistent.

Proof. Let '.x; m/ be some L.M/-formula such that N ˆ '.a; m/ and let  .x; d/ 2
pjM2 . Let � 2 Aut.N=Amd/ be such that �.d/ 2M . Then N ˆ  .a; �.d// and hence
��1.a/ ˆ  .x; d/ ^ '.x;m/.

Let a0ˆ tp.a=M/[pjM2 . Then tp0.a
0=M2/DpjM2 is Aut.M2=C /-invariant and, by

Corollary 4.3.17, tp.a0=M2/ is Aut.M2= yCRV/-invariant. By transitivity (Lemma 4.2.4),
since tp. yC=M1/ is Aut.M1=CRV/-invariant, tp.a0=M1/ is Aut.M1=CRV/-invariant.
By transitivity, since tp.C=M/ has Aut.M=ARV.M/LinA.M//-invariant RV-germs, the
type tp.a=M/ D tp.a0=M/ is Aut.M=ARV.M/LinA.M//-invariant.

Let us conclude this section by relating Theorem 4.1.1 to imaginaries:

Proposition 4.4.8. Let T � Hen0 be an L-theory such that

(D) for every strict pro-L.A/-definableX �Kx withAD acleq.A/�M eqˆ T eq, there
exist an Aut.M=G .A//-invariant p 2 S0x.M/ consistent with X ;

(QK) for every tuple a 2 K.M/ with M ˆ T , we have tp1.f .a// ` tp.a/, where f W
K! Kx is pro-L-definable and L0 � L1 � L where L1 is an RV-enrichment
of L0;

(Ik) the residue field k is infinite;

(SE) RV and R D
S
` O=`m are stably embedded.
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Let M ˆ T , e 2M eq and A D acleq.e/. Then

e 2 dcleq.K.A/ [ .RV [ LinG .A//
eq.A//:

Proof. Let M ˆ T be saturated and sufficiently large, e 2 M eq and A D acleq.e/. Then
e D g.a/ for some L-definable map g and tuple a 2 K.M/. Let Y D g�1.e/ and X D
f .Y /, which is a strict pro-L.A/-definable set. By (D), there exists an Aut.M=G .A//-
invariant p 2 S0x.M/ consistent with X . We may assume that f .a/ ˆ p. By
Theorem 4.1.1, tp1.f .a/=M/ is Aut.M=G .A/RV.M/LinG .A/.M//-invariant. By (QK),
tp.a=M/ (and hence e 2M eq) is also Aut.M=G .A/RV.M/LinG .A/.M//-invariant.

Since LinG .A/ is a collection of free O=`m-modules, LinG .A/, and in fact
LinG .A/ [ RV, is stably embedded. By Lemma 4.2.3, e 2 dcleq.G .A/ [ RV.M/ [

LinG .A/.M//, i.e., eD h.c/ for some L.G .A//-definable map h and tuple c 2RVm.M/�

LinnG .A/.M/. Let Z D h�1.e/. Then pZq 2 .RV [ LinG .A//
eq.A/ and

e 2 dcleq.G .A/pZq/ � dcleq.G .A/ [ .RV [ LinG .A//
eq.A//

� dcleq.K.A/ [ .RV [ LinG .A//
eq.A//;

since G .A/ nK.A/ � Lineq
G .A/

.A/.

5. Imaginaries in short exact sequences

In this section we will establish results which yield a relative understanding of imaginaries
in certain pure short exact sequences of modules.

5.1. The core case

We start with a well known lemma. We include a proof for convenience.

Lemma 5.1.1. Let D and C be stably embedded .ind-/definable sets in D [ C such that
D ? C .i.e., D and C are orthogonal/.

(1) Assume that bothD and C .considered with the full induced structures/ weakly elim-
inate imaginaries. Then D [ C weakly eliminates imaginaries.

(2) Assume that both D and C eliminate imaginaries and that in C one has dcl D acl.
Then D [ C eliminates imaginaries.

Proof. (1) Let X � Dm � C n be a definable subset. Since D ? C , the equivalence
relation � on C n given by c � c0 W, Xc D Xc0 has finitely many equivalence classes
Z1 D c1=�; : : : ; Zk D ck=�. As � is pXq-definable and C is stably embedded, the Zi
are all C eq.acleq.pXq//-definable.

For i D 1; : : : ; k, set Yi D Xci � D
m, which is Deq.acleq.pXq//-definable since D

is stably embedded. As D and C weakly eliminate imaginaries, there are finite tuples
d 2 D.acleq.pXq// and c 2 C.acleq.pXq// such that the Yi are all d -definable and the
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Zi are all c-definable. Thus X D
Sk
iD1.Yi � Zi / is dc-definable, so in particular it is

definable over D.acleq.pXq//C.acleq.pXq/.
(2) The assumptions on C yield C eq.acleq.pXq// � dcleq.C.pXq//, and so the sets

Z1; : : : Zk are c-definable for some c 2 C.pXq/. In particular, the Yi are then all pXq-
definable, thus Deq.pXq/-definable. By elimination of imaginaries in D, there exists
some d 2 D.pXq/ such that all Yi are d -definable. We now finish as in (1).

Fact 5.1.2. Let G be a group, and let H1; : : : ; HN be subgroups of G. Then the left
cosets of theHi form a pre-basis of closed sets for a noetherian topology onG. Moreover,
setting HI WD

T
i2I Hi for I � ¹1; : : : ; N º, the irreducible closed sets for this topology

are precisely the left cosets of thoseHI with the property that any proper subgroup ofHI
of the form HJ is of infinite index in HI .

Proof. This is an easy consequence of Neumann’s Lemma.

Let R be an integral domain, L � LR-mod and M an L-expansion of an infin-
ite torsion free R-module. Let Z � M n be an L.M/-definable set. Let dimR.Z/ WD

max ¹dimR.c=M/ W c 2 Z.N/º, where N <M is sufficiently saturated and dimR.a=B/

denotes the Q.R/-linear dimension of a over B , for Q.R/ the field of fractions of R.

Lemma 5.1.3. In the above situation, assume dimR.Z/ 6 r . Then there are definable
sets C1; : : : ; Cs �M n with the following properties:

(1)
Ss
iD1 Ci is pZq-definable;

(2) each Ci is acleq.pZq/-definable;

(3) each Ci is of the form 
i CHi , where Hi is a definable R-submodule of M n given
by a condition Lix0 D mx00 for some matrix Li 2 R.n�r/�r and m 2 R n ¹0º, where
x is the tuple x0x00 up to permutation and jx0j D r .in particular, dimR.Ci / D r for
all i/;

(4) Z �
Ss
iD1 Ci .

Moreover, if Z is a definable family such that dimR.Zb/ 6 r for all b, then there are
finitely many R-submodules H1; : : : ; HN as in the statement such that for any b the Ci
may be chosen from among the cosets of the Hk .

Proof. Since dimR.Z/ 6 r , any c 2 Z is in a set of the form 
 CH as in (3). By com-
pactness there are sets C1; : : : ; CN with Ci D ıi CHi as in (3) such that Z �

SN
iD1 Ci .

Note that all Hi are ;-definable subgroups.
By Fact 5.1.2, the cosets of the Hi form a pre-basis of closed sets for a noetherian

topology on M n. In particular, in this topology there exists a smallest closed subset W
of M n containing Z, and this W is clearly pZq-definable. The (finitely many) irredu-
cible components of W are then all acleq.pZq/-definable. If Wj is such an irreducible
component, it is of the form Wj D 
j C

T
i2Ij

Hi (where Ij ¤ ; in case r < n, since

Z �
SN
iD1 ıi CHi by assumption). As the Hi are ;-definable, it is easy to see that if we

replace each component Wj D 
j C
T
i2Ij

Hi by W 0j D
S
i2Ij


j CHi , then the union
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of all W 0j is pZq-definable and each coset 
j CHi occurring in this union is acleq.pZq/-
definable.

The ‘moreover’ part follows by compactness.

Theorem 5.1.4. Let R be an integral domain and M be

0! A! B! C! 0;

a short exact sequence of R-modules, in an A-C-enrichment L of the pure .in the sense
of model theory/ three-sorted sequence of R-modules. Assume the following properties
hold:

(1) A is a pure submodule of B .in the sense of module theory/;

(2) C is torsion free;

(3) for any l 2 R n ¹0º, the quotient C=lC is finite and the preimage in B of any coset
c C lC contains an element which is algebraic over ;.

Let e 2M eq. Then, setting E WD acleq.e/ and � WD C.E/, we have

e 2 dcleq.Ceq.E/Beq
�.E//;

where B� denotes the union of all fibres Bı with ı 2 �.

We will prove a slight generalisation of Theorem 5.1.4:

Theorem 5.1.5. Let QR be a ring and R D QR=I an integral domain, with I a finitely
generated ideal. Let M be

0! QA! QB! QC! 0;

a short exact sequence of QR-modules, in an QA- QC-enrichment L of the pure .in the sense of
model theory/ three-sorted sequence of QR-modules. Let AD ¹a 2 QA W IaD .0/º, and let B
and C be the QR-submodules of QB and QC defined similarly. Consider A;B;C asR-modules
in the natural way.

Assume the following properties hold:

(1) QA is a pure QR-submodule of QB .in the sense of module theory/;

(2) C D QC;

(3) C is a torsion free R-module;

(4) for any l 2 R n ¹0º, the quotient C=lC is finite and the preimage in QB of any coset
c C lC contains an element which is algebraic over ;.

Let e 2M eq. Then, setting E WD acleq.e/ and � WD C.E/, we have

e 2 dcleq.Ceq.E/ QBeq
�.E//;

where QB� denotes the union of all QBı for ı 2 �.

Proof. Denote by � W QA! QB and v W QB! QC the structural maps.
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Note that in particular QA D QB0 � QB�. By (1), QA and QC are (purely) stably embed-
ded in T , with QA ? QC. Indeed, since sufficiently saturated QR-modules are pure-injective
[40, Corollary 2.9], replacing M by a sufficiently saturated extension, the purity assump-
tion (1) entails that the short exact sequence of QR-modules is split. Adding a splitting to
the structure yields an expansion in which QB is just the product structure of QA and QC. Thus,
with a splitting, QA and QC are stably embedded and orthogonal. They remain so without
the splitting. For any subgroup � 6 C, as QB� is internally QA-internal, it follows from
Lemma 2.5.18 that QB� is stably embedded in T (over �), and one has QB� ? QC.

Since I is finitely generated, it follows that A;B and C are definable and the induced
sequence of R-modules

0! A! B! C! 0

is also exact. Indeed, this is first order expressible and holds in any sufficiently saturated
elementary extension which is split.

We now fix some e 2M eq and letX be L.M/-definable with pXqD dcleq.e/. Lifting
it to QB, we may assume X � QBn. Assume dimR.v.X//D r . Up to passing to some subset
of X which is definable over acleq.pXq/ D E, we may assume, using Lemma 5.1.3, that
there are L 2 R.n�r/�r ,m 2 R n ¹0º and ı00 2 Cn�r such that for x D x0x00 with jx0j D r ,
we havemv.x00/ D Lv.x0/C ı00 for any x D x0x00 2 X . We now consider the (fibrewise)
action of .Ar ;C/ on QBn given by

a � .x0; x00/ WD .x0 Cma; x00 C La/:

For every c 2 Cn, let Xc denote the fibre above c, i.e., Xc D X \ v�1.c/.

Claim 5.1.6. There is l 2 R n ¹0º such that

dimR.¹z 2 v.X/ W .lA/r �Xz ¤ Xzº/ < r:

Proof. Let �.z/ be the partial type expressing that z 2 v.X/ and that dimR.z=M/ D r ,
and let �.y/ be the partial type expressing that y 2 .lA/r for any l 2 R n ¹0º. Fix a
realisation .c; a/ ˆ �.z/ [ �.y/ in N < M with c D c0c00. Then there is an R-linear
map � W C.N / ! A.N / which is trivial on C.M/ and such that �.c0/ D ma. Indeed,
such a map � may be found as the restriction of an R-linear map from C.N /˝R Q.R/
to A.N / which is the identity on a Q.R/-vector space complement of Q.R/c0 and such
that, for every non-zero l 2R, �.l�1c0/D al where the sequence .al /l2Rn¹0º is a coherent
sequence of roots: we have a1 D ma and for every non-zero l; s 2 R, sasl D al .

For b 2 QB.N /, let �.b/ WD b C �.v.b//. Then � is an automorphism of the QR-module
QB.N / whose inverse is b 7! b � �.v.b//, since v.�.b// D �.b/. It is the identity on
QA.N / and on QB.M/, since � is trivial on v.C.M//. Moreover, it induces the identity on
C D QB= QA. Since M is an QA- QC-enrichment of the pure short exact sequence, � preserves
all the structure, i.e., � 2 AutL.N=M/.

In particular, for any b 2 Xc , we have tp.b=M/ D tp.�.b/=M/ and so �.b/ 2 Xc .
On the other hand, as c00 D .Lc0 C ı00/=m D Lc0=mC ı00=m and v.b/ D .c0; c00/, using
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L ı � D � ı L we compute

�.v.b// D .�.c0/; �.c00// D .�.c0/; �.Lc0=m/C �.ı00=m// D .ma;La/;

from which it follows that

�.b/ D b C �.v.b// D .b0 C �.c0/; b00 C �.c00// D .b0 Cma; b00 C La/ D a � .b0; b00/:

Thus Xc is stabilised by
T
l2Rn¹0º.lA/r . Claim 5.1.6 now follows by compactness.

Fix l 2 R n ¹0º as in the claim. Define X0 D ¹x 2 X W .lA/r � x � Xº. Then
dimR.v.X nX0// < r andX nX0 is coded by induction. So we can assume thatX D X0
is globally stabilised by .lA/r . In addition, using assumption (4) and cutting X into
finitely many pieces, we may suppose that v.X/ � mlCn. Indeed, there are only finitely
many cosets ofmlCn, all acleq.;/-definable, so we may assume X � v�1.W / for a coset
W of mlCn. Replacing X by X � h for some h 2 W \ acl.;/ if necessary, we may
assume W D mlCn. Let a 2 QAr and c 2 Cn. If there exist b1 D b01b

00
1 2 Xc and b00 2 Br

such that b01 D aCmlb
0
0, we set

Ya;c WD ¹b
00
� lLb00 W .b

0
1; b
00/ 2 Xº D X.b0

1
/ � lLb

0
0;

where X.b0
1
/ denotes the fibre ¹b00 2 QBn�r W .b01; b

00/ 2 Xº. Else we set Ya;c WD ;. Let us
first show that in the first case, Ya;c does not depend on the choice of b1 and b00. Indeed, if
d1 D d

0
1d
00
1 2Xc and d 00 2 Br are such that d 01 D aCmld

0
0, then b01 � d

0
1 Dml.b

0
0 � d

0
0/,

somlv.b00 � d
0
0/ D 0, thus v.b00 � d

0
0/ D 0, i.e., b00 � d

0
0 2 Ar . Set a00 WD l.b

0
0 � d

0
0/. For

d 00 2 X.d 0
1
/, since .lA/r �Xc D Xc , we have

a00 � .d
0
1; d
00/ D .d 01 Cma

0
0; d
00
C La00/ D .b

0
1; d
00
C La00/ 2 Xc ;

so d 00 C lL.b00 � d
0
0/ D d

00 CLa00 2 X.b01/
, showing that X.d 0

1
/ � lLd

0
0 � X.b01/

� lLb00.
By symmetry, we get the other inclusion X.b0

1
/ � lLb

0
0 � X.d 0

1
/ � lLd

0
0, and thus

X.b0
1
/ � lLb

0
0 D X.d 01/

� lLd 00.
Let ı00 D .ı00i /16i6n�r and let b0 D aCmlb00 be as in the definition of Ya;c . Then for

y D b00 � lLb00 2 Ya;c , we compute

mv.y/ D mv.b00/ �mlLv.b00/ D .Lv.b
0/C ı00/ � Lv.b0/ D ı00;

yielding Ya;c � QBı00=m D
Qn�r
iD1
QBı00
i
=m. It follows that

Y � . QBı00=m � QAr / � Cn:

As ı00=m 2 C.E/ D � and QB� ? C, by Lemma 5.1.1 (1), Y is coded in QBeq
� [Ceq. So X

is coded in the same sorts once the following claim is established.

Claim 5.1.7. pXq and pY q are interdefinable.
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It is clear by construction that Y is pXq-definable. For the converse, we will use the
fact that we have reduced to the case where v.X/ � mlCn. We may thus reconstruct X
from Y as follows:

d D d 0d 00 2 X ” 9a 2 QEr 9d 00 2 Br W d 0 D aCmld 00 and d 00 2 Ya;v.d/ C lLd 00:

This yields the claim.

5.2. Some variants

We will now state two variants of Theorem 5.1.5, tailored for our applications to
(enriched) henselian valued fields.

Variant 5.2.1. Let L be a multisorted language, let At ¹ QB; QCº be a partition of the sorts
of L and let QA 2 A. Let QR be a ring and R D QR=I an integral domain, with I a finitely
generated ideal. Let

0! QA! QB! QC! 0 (5.1)

be a short exact sequence of QR-modules. Let M be an L-structure which is an A- QC-
enrichment of the pure .in the sense of model theory/ sequence (5.1) of QR-modules.
Assume that properties (1)–(4) from the statement of Theorem 5.1.5 hold.

Let e 2M eq. Then, setting E WD acleq.e/ and � WD C.E/, we have

e 2 dcleq�Ceq.E/ [ .A [ QB�/eq.E/
�
;

where QB� denotes the union of all QBı for ı 2 �.

Proof. The proof is a slight variation of the proof of Theorem 5.1.5. Let us indicate the
necessary adaptations.

Firstly, it follows from the assumptions that A and C are (purely) stably embedded
with A ? C. Thus, by Lemma 2.5.18, .A [ QB�/ ? C and A [ QB� is stably embedded.

Given e 2M eq, we choose an L.M/-definable setX � A0 �Cm � QBn with e D pXq,
where A0 is a finite product of sorts from A. For every a0 2 A0, let

Xa0 � QBn

be the fibre over a0. Performing the same reductions as in the proof of Theorem 5.1.5, by
compactness, we may assume that there is an ;-definable set

Y � A0 � QBı � Cn

for some finite tuple ı 2 � such that for any a0 2 A0 � C0, pXa0q and pYa0q are inter-
definable, so in particular pXq and pY q are interdefinable. The result then follows from
Lemma 5.1.1, since .A [ QB�/ ? C.

The second variant is designed for applications to henselian valued fields in mixed
characteristic.
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Variant 5.2.2. Let L be a multisorted language, and At ¹ QBn W n 2Nº t ¹ QCº a partition
of the sorts of L. For any n 2 N, let QAn 2 A. Let QR be a ring and R D QR=I an integral
domain, with I a finitely generated ideal. Let QA D . QAn/n2N and QB D . QBn/n2N be pro-
jective systems of QR-modules with surjective transition functions, and let QC D . QCn/n2N

be the projective system with QCn D QC for all n and identical transition functions. Let

0! QA! QB! QC! 0 (5.2)

be a short exact sequence of projective systems of QR-modules.
Let M be an L-structure which is an A- QC-enrichment of the pure .in the sense of

model theory/ sequence (5.2) of projective systems of QR-modules.
Assume that for every n 2 N the exact sequence 0! QAn ! QBn ! QC! 0 has prop-

erties (1)–(4) from the statement of Theorem 5.1.5.
Let e 2M eq. Then, setting E WD acleq.e/ and � WD C.E/, we have

e 2 dcleq.Ceq.E/.A [ QB�/eq.E//;

where QB� denotes the union of all . QBn/ı for ı 2 � and n 2 N.

Proof. Let us first show that A and C are (purely) stably embedded inM such that A?C.
For this, given N 2 N, we consider the structure MN given by restricting M to the sorts
At ¹ QBm Wm6N º tC. Form6N we denote by pN;m the structural map from QBN to QBm
and by qN;m the one from QAN to QAm. For any m 6 N , the sequence QSm of QR-modules

0! QAm ! QBm ! C! 0

is interpretable in the sequence QSN once a predicate for ker.qN;m/ 6 QAN is added. Thus,
MN may be seen as an A-C-enrichment of QSN .

As in the previous proofs, it follows that A [ QB� is stably embedded in M with
.A [ QB�/ ? C. Given e 2 M eq, we choose X � A0 � Cm � QBn

k
L.M/-definable with

e D pXq, where A0 is a finite product of sorts from A and m; n; k 2 N. Let N > k
be such that X may be defined using formulas involving only variables from sorts in
A [ C [ ¹ QBi W i 6 N º. Since, for N > m, QSm is interpretable in an A-C-enrichment
of QSN , we may conclude the proof with Variant 5.2.1.

5.3. Imaginaries in RV

Recall that in a finitely ramified henselian valued field, the projective system of short
exact sequences

1! R�n ! RV�n ! �� ! 0

is stably embedded with the induced structure a �-R-enrichment of the pure short exact
sequence of abelian groups. Thus Variant 5.2.2 applies and yields the following elimina-
tion of imaginaries:

Proposition 5.3.1. LetM be a �-R-enriched finitely ramified henselian field,A� G .M/,
e 2 .RV [ LinA/eq.M/ and E D acleq.e/. Assume that
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� for all n; ` 2 Z>0, �=`� is finite and the preimage in RVn of any coset of `� contains
an element which is algebraic over ;.

Then e 2 dcleq.�eq.E/ [ .LinA [ RV�.E//eq.E//.

In particular, for A D acleq.A/ �M eq, we have

.RV [ LinG .A//
eq.A/ � dcleq.�eq.A/ [ Lineq

G .A/
.A//:

Proof. We apply Variant 5.2.2 with R D QR D Z. Since � is ordered, it is a torsion free
Z-module, so (1)–(3) hold, and (4) holds by hypothesis.

These results also apply with an automorphism:

Proposition 5.3.2. Let M ˆ VFAmult
0;0 , A � G .M/, e 2 .RV [ LinA/eq.M/ and E D

acleq.e/. Then e 2 dcleq.A�.E/RV�.E/.E/LinA.E//.
In particular, for A D acleq.A/ �M eq, .RV [ LinG .A//

eq.A/ � dcleq.G .A//.

Proof. We apply Variant 5.2.1 withRD ZŒ�� and I WD ¹P 2 ZŒ�� W P.�/D 0º, which is
finitely generated since R is noetherian. Hypothesis (1) holds by assumption. Hypotheses
(2) and (3) hold by multiplicativity: if c 2 �>0 and P 2 ZŒ�� are such that P.c/D 0, then
for all c 2 � , P.c/ D 0 and P 2 I . Finally hypothesis (4) holds by divisibility.

So e 2 dcleq.�eq/.E/[ .LinA [RV�.E//eq.E/. But � is an ordered vector field over
(the field of fraction of) ZŒ��=I , so it eliminates imaginaries. Also, by Proposition 2.5.19,
LinA [ RV�.E/ weakly eliminates imaginaries. So �eq.E/ � dcleq.�.E// and

.LinA [ RV�.E//eq.E/ � dcleq.LinA.E/RV�.E/.E//:

The result follows.

6. Imaginaries in valued fields

6.1. The henselian case

Let Henac
0 denote the RV-enrichment of Hen0 with a compatible system of angular com-

ponents acn W K! R�n ; we denote this language by Lac. We fix a �-k-enrichment T of
either Hen0 or Henac

0 .
Recall that the two-sorted language Lmod is given by a sort A endowed with the lan-

guage of rings, a sort V endowed with the language of abelian groups and a function
symbol � W A � V ! V for scalar multiplication. Let t` denote the ;-induced theory
on R`. For every X � V2 definable in the A-enriched theory of free rank n 2 Z>0 mod-
ules over models of t`, we define an equivalence relation EX on V by vEXw if Xv D Xw
and Tn;`;X WD

F
s2Sn.V=EX /

.R`;s=`ms/. Let Rleq denote
F
n;`;X Tn;`;X , the R-linear ima-

ginaries. We can now prove our imaginary Ax–Kochen–Ershov principle:

Theorem 6.1.1 (Theorem A). Let T be a �-k-enrichment of either Hen0 or Henac
0 such

that
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(C� ) T has definably complete value group;

(FR) for every ` 2 Z>0, the interval Œ0; v.`/� is finite and k is perfect;

(Ik) the residue field k is infinite;

(E1k / the induced theory on k eliminates 91.

Then T weakly eliminates imaginaries in K [ �eq [ Rleq.

Proof. We will use Proposition 4.4.8. By Theorem 3.1.3, hypothesis (D) holds. Hypo-
thesis (QK) holds trivially for L1 D L and f D id. Also, RV and R are stably embedded
in characteristic zero henselian fields. Let M ˆ T , e 2 M eq and A D acleq.e/. By Pro-
position 4.4.8, e 2 dcleq.K.A/ [ .RV [ LinG .A//

eq.A//.

Claim 6.1.2. .RV [ LinG .A//
eq.A/ � dcleq.�eq.A/ [ Lineq

G .A/
.A//.

Proof. If T � Henac
0 , then RVn is Lac isomorphic to R�n � � and the isomorphisms are

compatible as n varies. It follows that .RV[ LinG .A//
eq � .� [ LinG .A//

eq, and since �
and LinG .A/ are orthogonal, the claim follows.

If T is a �-k-enrichment of Hen0, the claim follows from Proposition 5.3.1. Note that
by (C� ), � � Q or � � Z and hence �=n� is finite and every coset is represented in
�.dcleq.;//.

Claim 6.1.3. Lineq
G .A/

.A/ � dcleq.Rleq.A//.

Proof. Recall that LinG .A/ is stably embedded. It follows that, for every e 2 Lineq
G .A/

.A/,
taking tensor products of lattices, we may assume that there exist n;`2Z>0 and s 2 Sn.A/
such that e codes some subset Xa of s=`ms and a a single parameter in s=`ms. Since
s=`ms is definably isomorphic to Rn

`
once we name a basis, it follows that X is definable

with parameters in the Lmod-structure .R`; s=`ms/, so e 2 dcleq.Tn;`;X .A//.

It follows that e 2 dcleq.K.A/ [ �eq.A/ [ Rleq.A//, which concludes the proof.

Let kleq WD
F
s;n;X .V=EX /.k;s=ms/.

Corollary 6.1.4. Let F be a characteristic zero field that eliminates 91. Then any valued
field elementarily equivalent to F..t// or F..tQ// .with or without angular components/
weakly eliminates imaginaries in K [ kleq.

In certain cases, the elimination of imaginaries in Th.k/-linear structures allows one
to further reduce this result to the geometric sorts. We can then also code finite sets, by
adapting an argument of Johnson [31, Section 5.3]:

Proposition 6.1.5. Let M be a henselian valued field such that

(Ik) the residue field k is infinite;

(CbK) for any A D dcleq.A/ �M eq, any L.A/-definable type p 2 S0Kn.M/ finitely sat-
isfiable in M is L0.G .A//-definable.

Then every finite set in G is coded in G .
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Proof. This follows from this claim:

Claim 6.1.6. Let C � G be a finite set. There exists an L.pCq/-definable type pC 2
S0Kn.M/ finitely satisfiable in M such that C is L.a/-definable for any a ˆ pC .

Indeed, taking pC as in the claim, by (CbK), pC is G .dcleq.pCq//-definable, and
hence so is C .

We now prove the claim. We start by considering C D ¹sº � Sn. By (Ik), the generic
type qn of GLn.O/ (that is, the quantifier free type that reduces to the generic of GLn.k/
modulo m) is finitely satisfiable in M . Note also that it is L0-definable and symmetric
(see [31, Section 3.3]): for every definable quantifier free type r , qn ˝ r D r ˝ qn. Let B
be the matrix associated to some basis of s in M and let ps D B � qn. This type does not
depend on B , is L0.s/-definable, finitely satisfiable in M and symmetric.

If C � Sn, let a ˆ
N
s2C ps and A be the set of all as for s 2 S . Since finite subsets

of K are coded in K, pAq can be identified with a tuple in K. Then pC D tp0.pAq=M/

does not depend on the choice of enumeration of C and thus it is L.pCq/-definable
(and finitely satisfiable in M ). Note that if �.M/ has a smallest positive element, we are
done since, for any lattice s, ms is (L-definably isomorphic to) a lattice and hence Tn
L-definably embeds in SnC1 by the usual identification of translates of linear spaces with
higher-dimensional linear spaces.

Let us now assume that �.M/ does not admit a smallest positive element. We first
consider the case where C � Ki � kj . Let E � k be the set of elements of k appear-
ing as coordinates of elements in C , let b be the tuple of coefficients of the polynomialQ
e2E .x � e/ and let pE 2 S0.M/ be the type of generic lifts of b 2 k to O. This type

is L.pCq/-definable and finitely satisfiable in M since the value group does not admit
a smallest positive element. Then for any a ˆ pE , res induces a bijection between the
L0.a/-definable set of roots of the polynomial

P
` a`x

` and E. It follows that C is in
L0.a/-definable bijection with a subset D of KiCj , which is coded in some cartesian
power of K. Then pC D tp0.apDq=M/ has the required properties.

Let us finally consider e 2 Tn.M/ and let s D �n.e/ (see Section 2.2). If a ˆ ps ,
then e is L0.a/-definably isomorphic to a tuple b 2 k. The type pe D tp0.ab=M/ is
L0.e/-definable, finitely satisfiable in M and symmetric, since k is quantifier free stable.
If C � Tn, let a ˆ

N
e2C pe and A � Ki � kj be the set of the ae , for e 2 C . Then,

applying the previous paragraph to A, we find pC as required.

The authors would like to thank Ehud Hrushovski for his insights on the correct state-
ment of the following corollary.

Corollary 6.1.7. Let F be a characteristic zero field that is either algebraically closed,
pseudofinite or real closed. Then any valued fieldM elementarily equivalent to F..t// or
F..tQ// .with or without angular components/ eliminates imaginaries in G provided we
add the following .imaginary/ constants:

� if F is real closed and the value group is a Z-group with minimal positive element 
0,
a constant for a half-line of RV1;
0 ;
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� if F is pseudofinite, constants for a generator of Galois of F .see [25, Section 5.9]/;

� if F is pseudofinite and the value group is a Z-group with minimal positive element 
0,
a constant for a .k?/n-orbit in RV1;
0 , for every n > 1.

Proof. Let A D dcleq.A/ � M eq. By Lemma 2.5.13, LinA.M/ is a Th.k.M//-linear
structure with flags. If k.M/ is algebraically closed, then by [25, Lemma 5.6], it elim-
inates imaginaries. If k.M/ is real closed, LinA also eliminates imaginaries by Proposi-
tions 2.5.21 and 2.5.24 and Remark 2.5.25. If k.M/ is pseudofinite and �.M/ is divisible,
LinA.M/ has roots and we get the assertion from [25, Theorem 5.10]. If �.M/ is a Z-
group, LinA does not have roots, but by [25, Remark 5.8] it suffices to ensure the existence
of an ;-definable .k?/n-orbit inside each one-dimensional vector space of LinA, i.e., each
RV1;
 with 
 2 �.A/. For every n, write 
 as i
0 C nı. By assumption, there exists an
;-definable .k?/n � � � RV1;
0 . Then .k?/n � � i�n � RV1;
 is independent of the choice
of � 2 RV1;ı and thus ;-definable.

It now follows from Corollary 6.1.4 that M weakly eliminates imaginaries in G and
we get the assertion from Proposition 6.1.5.

Not all of these results are new, although all of the statements with angular com-
ponents are. The case of C..tQ// just amounts to Haskel–Hrushovski–Macpherson’s
result [21] for ACVF. The case of R..tQ// is Mellor’s result [36] for RCVF, and the case
of F..t// with F pseudofinite is Hrushovski–Martin–Rideau’s result [30] for pseudolocal
fields, slightly improved since we only require algebraic constants in RVeq

1 and not in K.

Corollary 6.1.8. Let F be a positive characteristic perfect field that eliminates 91. Then
W.F / .with or without compatible angular components/ weakly eliminates imaginaries
in K [ Rleq.

It seems plausible that if F ˆ ACF, then the R-linear imaginaries can also be elimin-
ated, yielding elimination of imaginaries in G for W.F a

p/. However, this remains an open
problem.

6.2. The � -henselian case

Let us conclude with the description of the imaginaries in VFAmult
0;0 :

Theorem 6.2.1 (Theorem B). The theory VFAmult
0;0 .with or without equivariant angular

components/ eliminates imaginaries in G .

Proof. Any model of VFAmult
0;0 is elementarily equivalent to a maximally complete one

(see Remark 2.4.4) and hence (CB) holds. By Fact 2.4.7, the structure induced on � is
o-minimal. So (C� ) and (E1� / hold. Finally, (E1k / holds since ACFA eliminates 91. By
Theorem 3.1.1, (D) holds. Hypothesis (QK) follows from Fact 2.4.3 with L1 WD LRV [

¹�RVº and f .x/ WD .�n.c//n2Z>0 . So, by Proposition 4.4.8, for allM ˆVFAmult
0;0 , e 2M eq

andAD acleq.e/, we have e 2 dcleq.K.A/[ .RV[LinG .A//
eq.A//. By Proposition 5.3.2

(or using the angular components) we have .RV [ LinG .A//
eq.A/ � dcleq.G .A//.
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Similar results hold in differential valued fields.

Corollary 6.2.2. The following two families of difference valued fields, indexed by integer
primes p:

(1) Kp WD .Fp.t/a; vt ; �p/, where �p is the Frobenius automorphism;

(2) Kp WD .Cp; vp; �p/, where �p is an isometric lift of the Frobenius automorphism on
k.Cp/ D F a

p ,

uniformly eliminate imaginaries in G for large p: for any L�
RV-definable setsX � Y �Z,

there exists an L�
RV-definable map f W Z ! W , where W is a product of sorts in G , and

some N 2 Z>0 such that for every prime p > N and z1; z2 2 Z.Kp/, f .z1/ D f .z2/ if
and only if Xz1.Kp/ D Xz2.Kp/.

As noted earlier, in case (1), since Kp is a definable expansion of a model of ACVF
which also eliminates imaginaries in the geometric sorts, the result is even uniform in
all p.
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