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Abstract. We study interpretable sets in henselian and o-henselian valued fields with value group
elementarily equivalent to Q or Z. Our first result is an Ax—Kochen—Ershov type principle for
weak elimination of imaginaries in finitely ramified characteristic zero henselian fields — relative to
value group imaginaries and residual linear imaginaries. We extend this result to the valued differ-
ence context and show, in particular, that existentially closed equicharacteristic zero multiplicative
difference valued fields eliminate imaginaries in the geometric sorts; the w-increasing case corres-
ponds to the theory of the non-standard Frobenius automorphism acting on an algebraically closed
valued field. On the way, we establish some auxiliary results on separated pairs of characteristic
zero henselian fields and on imaginaries in linear structures, which are also of independent interest.

Keywords: model theory, valued fields, classification of imaginaries, non-standard Frobenius
automorphism, separated pairs, linear structures.

1. Introduction

In his seminal work ‘Une théorie de Galois imaginaire’ [39], Poizat introduced the idea
that the classification of certain abstract constructions of model theory — namely inter-
pretable sets or Shelah’s imaginaries — could play an important role in our comprehension
of specific structures. The classification of definable sets, in the guise of quantifier elim-
ination results, has historically been used as a central ingredient in many applications of
model theory. But the development of more sophisticated model-theoretic tools, in partic-
ular stability theory, naturally took place in the larger category of quotients of definable
sets by definable equivalence relations, i.e., interpretable sets. Shelah concretised this idea
with his eq construction that formally makes every interpretable set definable.

However, these interpretable sets immediately escape the realm of well understood
and classified objects, complicating the possibility of applying new tools from stability
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theory in specific examples, in particular coming from algebra. Poizat’s idea was that
these interpretable sets should also be classified, and he did so in algebraically closed
fields and in differentially closed fields. In both cases, he showed that they are all defin-
ably isomorphic to definable sets, i.e., the categories of definable and interpretable sets
are equivalent — we say that these structures eliminate imaginaries. This property later
became an essential feature in model-theoretic applications, e.g., to diophantine geometry
and algebraic dynamics.

The question of elimination of imaginaries also has a very geometric flavour: given a
definable family of sets X C Y x Z, one wishes to find a definable function f : Z — W
such thatforallzy,z, € Z, X;, :={y €Y : (y,z1) € X} = X, ifand only if f(z;) =
f(z2) — in other words, one wishes to find a canonical parametrisation of this family
where each set appears exactly once. We refer the reader to Section 2.1 and [47, Sec-
tion 8.4] for further details on these notions and constructions.

Elimination of imaginaries results were then established for numerous structures, but
it was not until work of Haskell, Hrushovski and Macpherson [21] that the first complete
classification of interpretable sets in a valued field was proved. In this case, however, the
field itself does not eliminate imaginaries, as both the value group and the residue field
are interpretable but not isomorphic to a definable set. Nevertheless, one can add certain
well understood interpretable sets, the geometric sorts. These sorts consist of the field K
and, for all n € Z~, of the space

Sn := GL,(K)/GL,(0)

of free rank n 9-submodules of K", where (9 denotes the valuation ring, and of the space
Ty := Uses, s/ms where m C O is the unique maximal ideal — see Section 2.2 for a
precise definition of the geometric language. The main result of [21] states that the theory
ACVF of algebraically closed non-trivially valued fields eliminates imaginaries in the
geometric sorts: given a definable family of sets X € Y x Z, there exists a definable
function f : Z — W, with W a product of geometric sorts, such that for all z;,z, € Z,
X;, = X, ifand only if f(z1) = f(z2); equivalently, the category of sets interpretable
in an algebraically closed valued field is equivalent to the category of sets definable in its
geometric sorts. One cannot overstate the impact of this result, as it opened the way for
the development of geometric model theory in the context of valued fields. A beautiful
illustration of the power of these new methods is the work by Hrushovski and Loeser on
topological tameness in non-archimedean geometry [29].

In this paper we consider imaginaries in more general classes of henselian valued
fields of characteristic zero, and also in certain valued difference fields, i.e., valued fields
endowed with a distinguished automorphism compatible with the valuation.

In the last 25 years, the model theory of existentially closed difference fields, largely
developed by Chatzidakis and Hrushovski (see [8]), has led to several spectacular applic-
ations — among others in algebraic dynamics. Note that the corresponding theory ACFA
does eliminate imaginaries and this fact plays an essential role in later developments.
A very deep result of Hrushovski [27], which takes the form of a Frobenius-twisted ver-
sion of the Lang—Weil estimates, implies that ACFA is in fact the asymptotic theory of
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Frobenius automorphisms ¢,: any non-principal ultraproduct of (F3, ¢,) is a model of
ACFA. Key properties of algebraic difference varieties may thus be read off from special-
isations to the Frobenius automorphisms.

It is also natural to consider the non-standard Frobenius acting on an algebraically
closed valued field, i.e., the limit theory of the valued difference fields (IF, (¢)?, v, ¢p)
as the prime p grows, where v; is an extension of the ¢-adic valuation. By results of
Hrushovski [24] and Durhan [2], this limit theory corresponds to the theory of existen-
tially closed valued difference fields of equicharacteristic zero with w-increasing auto-
morphism — see Section 2.4 for a detailed discussion. In fact, these structures naturally
arise, as early as in Hrushovski’s proof of the twisted Lang—Weil estimates, in the study of
algebraic difference varieties, by way of transformal specialisations. One may thus expect
that the development of a geometric model theory of valued difference fields will turn out
useful in the future in geometric applications — as it did in the case of ACVF.

Main results

The classification of imaginaries in ACVF by the geometric sorts was later extended to
other valued fields: real closed valued fields [36], separably closed valued fields of finite
imperfection degree [23], and p-adic fields and their ultraproducts [30] — which allowed
to uniformise and extend Denef’s result on the rationality of certain zeta functions to
interpretable sets. The question remained whether a general principle underlined all these
results. Such a principle was conjectured in the early 2000s by Hrushovski. The present
paper establishes it for a large class of henselian fields, which covers most of the examples
considered in applications, and extends it to valued fields with operators.

At this level of generality, one cannot expect elimination in the geometric sorts.
Indeed, the residue field and the value group can be arbitrary and might not themselves
eliminate imaginaries as is the case in all the results cited above. However, a fundamental
idea of the model theory of valued fields, the so-called Ax—Kochen—Ershov principle, is
that the model theory of a henselian equicharactersitic zero field should be controlled by
its value group and residue field. This principle takes its name from the result of Ax and
Kochen [1] and independently Ershov [19] that this is indeed the case for elementary
equivalence, but this phenomenon has also been observed with respect to numerous other
aspects of valued fields, from model-theoretic tameness (starting with [14]) to motivic
integration [28].

It is therefore tempting to conjecture that, beyond the geometric sorts, imaginaries in
equicharacteristic zero henselian fields only arise from the value group and the residue
field. However, non-trivial torsors of the residue field give rise to serious obstructions to
this conjecture. One is thus naturally led to define the k-linear imaginaries. Consider the
two sorted language &£,04 of A-modules V with the ring structure on A, the group struc-
ture on V and scalar multiplication. Given a (unary) interpretable set X — more precisely,
a definable quotient of the vector space sort V — in the &£ 04-theory of dimension 7 vector
spaces over a field and given some O-lattice s € S,, we can consider the interpretation
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X (s/ms) of X in the structure (k, s/ms). We then define

T i= || X0/,

SESy,

Note that if X = V then T, x = T, and if X is the one-element quotient of V then
T, x = S,. In general, the T, x are essentially those interpretable sets that admit defin-
able surjections T, = T, x — S,. We write Kled ;= |_|n,X T, x.

Before we state our main results, let us address some technical points. The first is
that we prove a result not only in equicharacteristic zero, but also in finitely ramified
mixed characteristic. In the latter case one needs to also consider the higher residue rings
Ry := O /4w, for £ € Z~¢, where £m := {{ - x : x € m}. These rings often play a crucial
role in this situation, and they also come with their linear imaginaries and hence we define
Tuex = Lses, X R/ and R® :=| |, ; y Tn ¢, x. Where X is now interpretable in
the &£ moq-theory of free rank n modules. Moreover, if the residue field k comes with addi-
tional structure, in the definition of k'*d and R'®d we need to consider all X interpretable
in the corresponding enrichment of the theory of free rank n modules.

The second point is that eliminating imaginaries often splits in two distinct problems:
describing quotients under the action of finite symmetric groups (in other words, finding
canonical parameters for finite sets) and classifying interpretable sets up to one-to-finite
correspondences: given a definable family of sets X € Y x Z, one wishes to find a one-
to-finite definable correspondence F' : Z — W such that forall z1,z, € Z, X, = X, if
and only if F(z1) = F(z2). This latter property is usually referred to as weak elimination
of imaginaries and will be the main focus of this paper.

Our first main result is the following Ax—Kochen—Ershov principle for weak elim-
ination of imaginaries, where I'®? refers to the collection all sets interpretable in the
(enriched) ordered abelian group I'.

Theorem A (Theorem 6.1.1). Let (K, v) be a characteristic zero henselian valued field,
possibly with angular components and added structure on the value group 1" and, separ-
ately, the residue field k. Assume that

(Cr) the induced structure on T is definably complete;

(FR) forevery £ € Z~y, the interval [0, v({)] is finite and K is perfect;
(Ix) the residue field K is infinite;

(ER°) the induced theory on K eliminates 3°°.

Then K weakly eliminates imaginaries in the sorts K U I'®d U R'®q,

All the results with angular component, even in the algebraically closed (equichar-
acteristic zero) case, are new. Angular components are (compatible) multiplicative mor-
phisms ac, : K* — R extending the residue map on O*. They play a key role in the
development of the model-theoretic study of valued fields, in particular in the Cluckers—

Loeser treatment of motivic integration [12], by providing uniform cell decomposition
results.
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Definable completeness of the value group — that is, the fact that every definable subset
of I has a supremum — is a necessary hypothesis for the conclusion to hold, since other-
wise additional definable cuts appear, inducing more definable (9-submodules and hence
more complex imaginaries. It is worth noting that PRES = Th(Z) and DOAG = Th(Q)
are the only complete theories of pure ordered abelian groups which are definably com-
plete. As both PRES and DOAG eliminate imaginaries, we thus get I' = I'*d under the
assumptions of Theorem A in case I is not enriched.

As a corollary, Theorem A implies that if F is a field of characteristic zero which
eliminates 3%, the theories of the valued fields F((¢)) and F((t?)) — with or without
angular components — weakly eliminate imaginaries in the sorts K U k'* — noting that
' = S; may be identified with a sort in k'9. If in particular F is (of characteristic zero
and) algebraically closed, real closed or pseudofinite, then using results of Hrushovski
on linear imaginaries we deduce that F((¢)) and F((t@)) (with or without angular com-
ponents) eliminate imaginaries in the geometric sorts, after naming some constants in the
pseudofinite and in the real closed case (see Corollary 6.1.7 for a precise statement), thus
obtaining an absolute elimination result in these cases.

Without angular components, this provides alternative proofs of Mellor’s result
[36] for R((t@)) and Hrushovski-Martin—Rideau’s result [30] for F((t)) where F is
pseudofinite of characteristic zero. Independent work of Vicaria [48] also yields the case
of C((7)), although her work also applies to more general value groups.

In mixed characteristic, the main example covered by Theorem A is W(F}) — where
F? denotes the (field-theoretic) algebraic closure of F' — the (fraction field of the) ring
of Witt vectors with coefficients in F, and more generally finite extensions of W(F) for
any perfect infinite field F of characteristic p which eliminates 3°°. However, in mixed
characteristic, R'®? involves modules over higher residue rings. We conjecture that when
F = F?, these linear structures also eliminate imaginaries. Thus, Theorem A provides
an important step towards proving that the imaginaries of W(IF,) are classified by the
geometric sorts as well.

The second main result of this paper concerns valued difference fields. Quantifier
elimination (and hence an Ax—Kochen—Ershov principle for elementary equivalence) has
been proved for various classes; first for isometries in [3,6,45], then for w-increasing auto-
morphisms (for every x € m, v(o(x)) > Z - v(x)) in [2,24]. Both of these contexts were
subsumed in later work of Kushik [38] on multiplicative automorphisms where the auto-
morphism acts as multiplication by some element of an ordered field (see Definition 2.4.5
for details). Finally, Durhan and Onay [17] proved that these results hold without any
hypothesis on the automorphism.

Our second result focuses on the multiplicative setting where we prove an absolute
elimination of imaginaries result for the respective model-companions:

Theorem B (Theorem 6.2.1). The theory VFAE‘})lt eliminates imaginaries in the geomet-
ric Sorts.



M. Hils, S. Rideau-Kikuchi 6

Since the isometric case and the w-increasing case correspond, respectively, to the
asymptotic theory of C,, with an isometric lifting of the Frobenius and to I, (¢)* with the
Frobenius, an immediate corollary of these results is a uniform elimination of imaginaries
for large p in these structures. By elimination of imaginaries in ACVF, the result is even
uniform for all p in the latter case.

Overview of the paper

The proofs of both theorems follow the same general strategy and many technical res-
ults are shared between the two. The proof consists of three largely independent steps
(Sections 3 to 5).

In stable theories, every type p —a maximal consistent set of definable sets — is defin-
able, i.e., for every definable X C Y x Z, theset{z € Z : X; € p} is definable. This was
used in many proofs of weak elimination of imaginaries in the stable context to reduce the
problem of finding canonical parameters for definable sets to finding canonical paramet-
ers for types; which, counter-intuitively maybe, is a simpler problem. In [26], Hrushovski
formalised the idea that even in an unstable context, this reduction could also prove use-
ful, provided definable types were dense: over any algebraically closed imaginary set of
parameters, any definable set contains a definable type.

The first step of the proof consists in proving such density results. But the above
statement cannot hold in the full generality of henselian equicharacteristic zero valued
fields since it might already fail in the residue field. We prove, however, that, under certain
hypotheses, quantifier free definable types are dense; see Theorem 3.1.1. This result does
not apply to discrete valued fields since the family of intervals contains arbitrarily large
finite sets. In Theorem 3.1.3, we do however prove that the density of quantifier free
invariant types holds in this context.

The proof improves on similar results in [42] and the general idea is the same. In
arity 1, we look for a minimal finite set of balls covering the given definable set. The
general case proceeds by fibration in relative arity 1 and by considering germs of functions
into the space of (finite sets of) balls instead of actual balls. This fibration process is where
most of the technical assumptions of Theorem A are used, in particular the elimination of
3% in the residue field.

In contexts with an absolute elimination of quantifiers (as, e.g., in [23,42]) this first
density result (and the implicit computation of canonical bases) suffices to conclude that
weak elimination of imaginaries holds. In equicharacteristic zero henselian (as well as
o-henselian) fields, types come with more information than quantifier free types; the
information mostly lives in the short exact sequence 1 — k* — RV* :=K*/(1 + m) —
' — 0. The second step of our proof, Theorem 4.1.1, consists in showing that quanti-
fier free invariant types have invariant completions over RV (and k-vector spaces) — this
generalises to mixed characteristic by considering the higher residue rings.

By quantifier elimination relative to RV, this step reduces to, given an invariant type,
computing canonical generators of the structure generated by (realisations of) the type
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in RV. Note that in the conclusion of Theorem 4.1.1 the types considered are invariant
over definable sets which are of the same size as the model. We do however show various
folklore results implying that this is a well behaved notion when these sets are stably
embedded.

The third step consists in studying imaginaries in RV, which is left as a black box
in the previous steps. We show, in the spirit of [28, Section 3.3], that the imaginaries in
the short exact sequence 1 — k* — RV* — I'’* — 0 come essentially from k and I". To
establish the results we need, as in [28, Section 3.3], we consider more generally structures
given by (enriched) short exact sequences 0 — A — B — C — 0 of R-modules for some
ring R. But our result is in a sense orthogonal to the one of Hrushovski and Kazhdan since
we require B to be a pure (in the sense of model theory) extension of A and C, which can
be both arbitrarily enriched, whereas [28, Lemma 3.21] has strong hypotheses on A and
C and no hypothesis on B.

Theorem 5.1.4 is the first version of a series of such reductions of increasing com-
plexity so as to cover the various cases that we require, the ultimate version, Variant 5.2.2,
allowing controlled torsion in I', auxiliary sorts on both the k and T" sides, and considering
not one but a projective system of short exact sequences.

These three steps put together allow us to prove relative results like Theorem A. How-
ever, absolute results like Theorem B or Corollary 6.1.7 require one last ingredient: the
classification of imaginaries in collections of vector spaces (linear structures in the ter-
minology of [25]). Our contribution consists in a twisted version (Lemma 2.5.9 (4)) of
Hrushovski’s result on ACFy-linear structures with flags and roots endowed with an auto-
morphism (the final step to prove Theorem B) and a version, Proposition 2.5.21, for real
closed fields.

The plan of the paper is as follows. In Section 2, we provide some preliminary results
on imaginaries, separated pairs of valued fields (in the sense of Baur), valued difference
fields and linear structures. Section 3 is devoted to the proof of the two density results for
definable (resp. invariant) types mentioned above. The fact that invariant quantifier free
types are invariant over RV (and R, -modules) is established in Section 4. In Section 5, we
prove the results about imaginaries in certain (enriched) short exact sequences of modules.
Finally, in Section 6, we put everything together and prove our main results, in particular
Theorems A and B.

2. Preliminaries

Convention 2.1. Throughout this paper, if M is an £-structure, X is £(M)-definable
and A C M, then X(A) denotes X N A.

We adopt this convention, as there are too many structures at play to not be explicit
as to which definable (or algebraic) closures we want to consider. For this reason, setting
X(A) := X Ndcl(A) would lead to ambiguities.
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2.1. Imaginaries

Let T be an L-structure. The language £°9 is the language containing £ with one addi-
tional sort Sy for every £-definable set X C Y x Z, where Y and Z are products of
sorts, and one additional symbol fy : Z — Sx. The £-theory T is then obtained as
the union of T, the fact that the fy are surjective and that their fibres are the classes of
the equivalence relation defined by X;, ={y €Y : (y,z1) € X} = X;,.

Any M = T has a unique expansion to a model of 7 denoted M 4, whose points
are called imaginaries. Throughout this paper, notations with exponent eq, like dcl®? or
acl®, will refer to the £°9-structure of some ambient M 4.

Given M = T and an £(M )-definable set X, we denote by " X ' € M the intersec-
tion of all A = dcl®d(A) € M9 such that X is £°4(A)-definable. By construction of 79,
X is £(" X ")*d-definable, so it is the smallest dcl®d-closed set of definition for X. Any
dcl®-generating subset of " X 7 is called a code of X.

If D is a collection of sorts of £° — equivalently, a collection of £-interpretable
sets — we say that X is coded in D if it is £9(D(" X ))-definable, i.e., it admits a code
in . The theory T is said to eliminate imaginaries in D if, for every M = T, every
£ (M)-definable set X is coded in D — equivalently, for every e € M4, there is some d €
D(dcl®(e)) such that e € dcl®d(d). By compactness, this is equivalent to the definition in
the introduction provided dcl(9) contains two elements. Finally, we say that the theory T’
weakly eliminates imaginaries in D if for every e € M4, there is some d € D (acl®(e))
such that e € dcl®i(d).

We refer the reader to [47, Section 8.4] for a detailed exposition of these notions.

2.2. The languages of valued fields

Any valued field (K, v) can be considered as a structure in the language £4;y with one
sort K for the valued field, the ring language and a binary relation x | y interpreted as
v(x) < v(y). Note that in every language of valued fields that we will consider there is
a sort K for the valued field, and hence, whenever M is a structure representing a valued
field, K(M ) will denote the underlying valued field.

The language £4;y owes its widespread use to the following result, essentially due to
Robinson [44]:

Fact 2.2.1. The L4y -theory ACVF of algebraically closed non-trivially valued fields
eliminates quantifiers.

Notation 2.2. We will write £ := £g4;, and throughout this paper, notations with an
index 0, like dclg, aclp or tp,, will refer to the quantifier free &£o-structure — or equi-
valently, the structure induced by any model of ACVF containing the valued field under
consideration.

Given a valued field, seen as an £q-structure, we will denote by O = {x € K :
v(x) = 0} its valuation ring, by m := {x € K: v(x) > 0} its maximal ideal, by k := O /m
its residue field and by ' := K/O* its value monoid,; it is the union of the value group
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' = K*/0O* and the class of 0 that we usually denote by co. We also letres : O — k and
v : K — I denote the canonical projections. More generally, for every n € Z~, we write
R, := @/nm. Letalsores, : @ — R, be the canonical projection, Ry, the (pro-definable)
set l(lnn R, and ress, : @ — Ry the natural map. Note that, working in a sufficiently sat-
urated model, Roo = /100, Where 1y, 1= {x € K: Vo (X) > Ao} and Ao < T is the
convex subgroup generated by v(char(k)) in mixed characteristic, and Ao, = 0 otherwise.
It is a valuation ring whose fraction field is naturally identified with the residue field k
associated to the (equicharacteristic) valuation v : K — I' = '/ As. We also define
R:= |_|n>0 R;.

Although most of the present paper is rather insensitive to the choice of lan-
guage for valued fields — or rather we work in £’ — we will at times need to work
in certain languages tailored for specific elimination results. The first of them is the
Haskell-Hrushovski—-Macpherson geometric language. For every n € Zo, let S, =
GL, (K)/GL,(O) be the (interpretable) set of rank n free @-submodules of K”, and
Ty := Ujses, s/ms. Let S := U, Sy, T := |, Tp and § := KUS U T. We also denote
by s, : GL,(K) — S,, ¢, : GL,(K) — T, and t, : T, — S, the canonical projections.
We will identify S,, with the zero section inside T,. Note that GL, (K) naturally acts
transitively on S, and T, \ S, and the map 1, is compatible with these actions.

These interpretable sets (and the geometric language of which they are the sorts,
which also contains the maps s;, #, and t,,) were introduced to classify imaginaries in
ACVF:

Fact 2.2.2 ([21, Theorem 1.0.1]). The theory ACVF eliminates imaginaries in the geo-
metric sorts §.

The second language that we will use allows for a description of definable sets in
certain henselian fields. The exact language that we use was introduced by Flenner [20].
For every n € Z-¢, let RV,, be the multiplicative monoid K/(1 4 nm); it is the union of
the group RV, = K*/(1 + nm) and the class of 0, also denoted 0. Let rv,, : K — RV, and
vy m : RV, — RV,,, where m divides n, denote the canonical projections. The valuation
induces a map RV,, — I" that we also denote v. This map induces a short exact sequence

1—>R, >RV, >T*—0.

Remark 2.2.3. If v(n) = v(m), then 1v,, s : RV, = RV,,. In particular, in equicharacter-
istic zero all RV,, are canonically isomorphic to RV;. We allow this redundancy in order
to have a uniform treatment of characteristic zero henselian valued fields.

Moreover, in positive characteristic p, if n is prime to p then RV, = RV, and oth-
erwise RV, =~ K. In the latter case, it makes more sense to only consider RV; — see
below.

Moreover, RV, is endowed with the trace of addition which we denote, in Krasner’s
hyperfield manner, { & £ := {rv,(x + y) : rv,(x) = ¢ and rv,(y) = £} € RV,,. We say
that ¢ & & is well defined when ¢ @ & = {y} is a singleton, and we often write { @ & = y
in that case.
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Remark 2.2.4. Note that for any two disjoint balls b, and b, in some valued field (K, v),
and any a;, ¢; € b;, rvi(ay — az) = rvi(c1 — ¢3). We will denote by rvy(by — by) this
common value. If by N b, # @, then by convention, rvy(b; — by) = 0.

We denote by RV, the (pro-definable) set l<i£1n RV, and rv : K — RV, denotes
the natural map. Note that RV, = K/(1 4+ m), as pro-definable sets. We also denote
RV :=| |, RV,.

Let £y be the language with sorts K, I" and RV,, for all n € Z-, the ring structure
on K, ordered (abelian) monoid structure with a constant for co on I', multiplication,
constants 0, 1 and a ternary predicate @ on each RV, the valuation map v : K — I' and
the maps rv, : K— RV,, and rv,, ;, : RV, — RV,,,. Let £ry, be its restriction to the sorts
K, I" and RV;.

Remark 2.2.5. If the interval [0, v(n)] is finite, then the predicate & on RV, is definable
(in general with parameters, and without parameters in case v(n) = 0) using addition
onR,.

Proof. If v(¢) < v(§), then

C@E=Cr (14+E710),

where r, is the map sending rv, (x) to res,(x) whenever x € (. The remaining cases
are dealt with by symmetry. Therefore, it suffices to show that the map r, is definable.
Let 7 € RV, be an element of minimal positive valuation. Then for every £ € RV,,, if
v(€) = v(m) € [0, v(n)], then r, (&) = rp(m) - (tv, () ~tE); and if v(§) > v(n), then
r,(§) = 0. So r,, is indeed definable (with parameters 7 and r, (), unless v(n) = 0). =

Definition 2.2.6. We say that a valued field (K, v) is
e algebraically maximal if it does not admit non-trivial immediate algebraic extensions;

e Kaplansky if I'’*(K) is p-divisible and any finite extension of k(K) has degree prime
to p, where p = char(k(K)) if it is positive and p = 1 otherwise;

o finitely ramified if for any £ € Z~ the interval [0, v(£)] in T'(K) is finite.

Note that a finitely ramified valued field is algebraically maximal if and only if it is
henselian [18, Theorem 4.1.10].

The following quantifier elimination results are due, respectively, to Basarab [4, The-
orem B] in characteristic zero and Delon [15, Théoréme 3.1] in positive characteristic (see
also [34, Corollary 2.2 and Theorem 2.6]):

Fact 2.2.7. e Let £ be an RV-enrichment of £ry and T an £-theory containing the
theory Heng of henselian valued fields of characteristic zero. Then T eliminates field
quantifiers.

o Let £ be an RV -enrichment of £ry, and T an £L-theory containing the theory of
equicharacteristic p algebraically maximal Kaplansky valued fields, for some fixed
p > 0. Then T eliminates field quantifiers.
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2.3. Separated pairs of valued fields

In this section, we will gather some results about separated pairs of valued fields, in par-
ticular concerning pure stable embeddedness of the residue field and value group pairs in
specific contexts. In equicharacteristic zero, most of the results below follow from work
of Leloup [35], and from work of Rioux [43] in unramified mixed characteristic.

Recall that an extension L/K of valued fields is called separated if every finite-
dimensional K-vector subspace of L admits a K-valuation basis, i.e., a K-basis
(b1, ..., by) which is valuation independent over K: for any ay,...,a, € K one has
v(>_a;b;) = minv(a;b;). Also, for field extensions K C L C U and K C K' C U, we
write L |'¢ K’ if L and K’ are linearly disjoint over K.

Definition 2.3.1. Let K € L C U and K € K’ C U be valued field extensions.

e We say L and K’ are I'k-independent over K, denoted by L [1* K', if k(L) J,k(K)
k(K')and T'(L) NT(K') = I'(K).

e Assume that L/K is separated. Then L is said to be valuatively disjoint from K’
over K, denoted by L LVd K’, if whenever a tuple (b, ..., b,) from L is valuation
independent over K, it is Valuatlon independent over K.

Fact 2.3.2. Let K C L C U and K C K' C U be valued field extensions, with L/K
separated and L | 2X K'. Set L' := LK'. Then we have the following:

() L J,}g K’ —in particular, L J,]I‘é K';
(2) L'/K' is separated;
3) k(L") =k(L)k(K") and T'(L") = T'(L) + T'(K");

@) if Ly CUand f: L = Ly is anisomorphism over K UK(L) UT (L), then f extends
(uniquely) to an isomorphism f': L' =~ LK’ over K'.

Proof. This is shown by adapting the proof of the corresponding result for K maximally
valued from [22, Proposition 12.11]. [

2.3.1. Reduction to RV. Most of this paper will be concerned with characteristic zero
finitely ramified fields; however, for future reference, we will state and prove certain
results, mostly regarding pairs, in all characteristics, as the arguments are essentially
identical.

Notation 2.3. Given a multisorted language £, we let £p be the associated language
of pairs, i.e., for every sort S from £ we add a unary predicate PS of sort S to the
language. If N is an £-substructure of M, we will consider the pair of £-structures

= (M, N) as an Lp-structure in the natural way, i.e., PS(M ) = S(N) for each sort S.
We denote by P(M ) = N the whole £-substructure singled out by the PS’s. Instead of

= (M,P(M)), we will often write (M, P(M)). Given a quantifier free £-definable
set X , we extend the above notation and write PX for the &£p-definable set whose points
in (M,P(M)) are the P(M )-points of X.
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In &£rv, p, the class of separated pairs of valued fields may be axiomatised. For tech-
nical reasons, we will consider such pairs in a hybrid language, adding higher RV sorts
for the small valued field. Formally, we let éﬁ;y\l,),l, be the language consisting of £rv,,p
together with additional sorts PRV,, for all » = 2 and all symbols of £gry, where for
n = 2 we use PRV, instead of RV,,. For example, in i;’{y‘t,’,l,, for n = 2 we have a function
symbol rv, : K — PRV,, and a ternary relation symbol & on PRV,,.

Let T* be a theory of separated pairs (M, P(M)) of henselian valued fields in the
language :ﬁll;y",),l,. Here, M is the £y, -structure associated to a valued field, and P(M)
the Lgy-structure (interpreted on the respective PS’s) of the corresponding valued sub-
field. (For n = 2, we extend rv, from PK(M) to K(M) trivially, setting rv,(a) := 0 €
PRV, (M) for any a € K(M) \ PK(M).) We assume that M eliminates field quantifiers
in £ry, and P(M) eliminates field quantifiers in £ry. Note that we do not assume that
PRV, is stably embedded in RV.

Remark 2.3.3. In positive characteristic p, since RV, = K, eliminating quantifiers from
the sort K in £y is an empty assumption and it makes more sense to consider pairs of
£rv, p-structures instead, as in Remark 2.3.13.

By a hybrid RV-structure, we mean a structure (RV;(M), PRV(M)) (or one ele-
metarily equivalent to such a structure), where M = T* — with the restriction of the
:Clﬁy",),l,—structure. We also denote by RV™® the set of sorts {RV, '} U {PRV,, : n > 2}.

Lemma 2.3.4. Let My < Ng be hybrid RV-structures. Then k(My) iifk( Mo) PKk(Ny) and
I'(My) NPT (Ng) = PT'(My).

Proof. Immediate from the elementarity of the extension. ]

Let My be a hybrid RV-structure, say (elementarily equivalent to) a structure of the
form (RV(M),PRV(M)), where M |= T*. We say that M, is finitely ramified if P(M)
is—i.e., [0,v(£)] NPT is finite for every £ € Z-.0. In that case, we also assume that Pk(M)
is perfect. In mixed characteristic (0, p), Roo := l(iLnn PR, (My) is a p-ring with perfect
residue field Pk(Mj) (see [46, Ch. II, §5]) and p is not a zero divisor. So it is a com-
plete mixed characteristic discrete valuation ring and a finite extension of W(Pk(M,)) of
degree v(p), where W(k) denotes the ring of Witt vectors over k. Let 7 be a uniform-
iser of Ry (i.e., a generator of the maximal ideal) and P its minimal polynomial over
W(Pk(Mp)).

Definition 2.3.5. Ramification constants refer to the (infinite) tuple, in Pk(My), of Witt
coordinates of the coefficients of a polynomial P as above.

Lemma 2.3.6. Let M be a finitely ramified hybrid RV-structure. Assume that kK*(My)
is divisible, or PT"(My) is a pure subgroup of T'(My). Then the following hold:
(1) kand ' are purely stably embedded and orthogonal.

(2) The theory of M is determined by the theories of the K-pair (with a choice of rami-
fication constants), the T'-pair and ramification data — i.e., the theory stating that,
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for every n, PR, has a uniformiser which is a zero of the polynomial whose Witt
coefficients are the ramification constants.

Moreover, statements (1) and (2) hold in any K-T -enrichment of My, i.e., a k-enrichment
of a T'-enrichment of M.

Here, when we say that a definable set is purely stably embedded, we mean that its
induced structure is given by (a definable expansion of) the restriction of the language to
that set. For example, the structure on k is that of a pair of fields, and the structure on I"
is that of a pair of ordered groups.

Proof of Lemma 2.3.6. We may assume that M is of the form (RV;(M ), PRV(M)) for
some Nj-saturated M |= T*. Then, as 81 -saturated modules are pure-injective, there is a
section of the valuation map restricted to the small valued field P(M ), inducing coherent
splittings of the sequences

1 — PRX(My) — PRV (M) — PT’*(M,) — 0

for all n > 1. In mixed characteristic, we may assume that the splitting is normalised: the
chosen uniformiser 7 is in the image of the splitting, equivalently, ac, () = 1 if ac, is the
angular component map induced by the splitting. Indeed, the group A generated by v(7)
is convex, so the quotient is also ordered and hence torsion free. As PK*(M)/O* (M) -
7% = PI'(My)/A, the extension PO* (M) - % < PK* (M) is also pure. Pure-injectivity
of PO* (M) (which is an N -saturated abelian group) then allows one to extend the retrac-
tion PO*(M) - 7% — PO>* (M) sending 7 to 1 to the whole of PK* (M).

It follows from the assumptions that the splitting of 1 — Pk*(My) — PRV (M) —
PT*(My) — 0 extends to a splitting of 1 — k*(Mp) — RV (My) — I'*(My) — 0.
Indeed, let i : PRVT(Mo) — Pk*(My) be a retraction of the inclusion map, that is,
hlpk< (M) = idpkx(ar,)- Then h extends (uniquely) to a homomorphism

h - KX (Mo) - PRV (Mo) — k*(Mj)

which is the identity on k* (M), since kK*(Mp) N PRVT (My) = Pk*(M,). It is enough
to show that /1 may be extended to a homomorphism A’ : RV} (Mp) — k*(Mp). In case
k* (M) is divisible, this is clear, since divisible abelian groups are injective. If PT" (M)
is a pure subgroup of I"(My), such an extension i’ exists, as kK (Mp) is pure-injective and
k*(My) - PRV (M)) is a pure subgroup of RV (My) — the quotient being isomorphic to
the torsion-free group I'(My)/PT > (My).

Note that the additional structure on RV™®, beyond the abelian structure, is given
by @ and some k-I"-enrichment. As explained in Remark 2.2.5, @ can be defined using
the ring structure on k and the PR,, (using the splitting, no further constants are required).
Moreover, PR, is a finite extension, generated by the zero of a polynomial with coef-
ficients the ramification constants, and, as such, is @-interpretable in W}, (Pk), which is
itself @-interpretable in Pk. So, if we add the splittings, RV™® is (identified to) a k-T'-
enrichment of the product of k and T". In the product structure, (1) and (2) are clear, even
for k-T"-enrichments. The result follows, as (1) and (2) are preserved in any reduct of the
product structure that carries the whole structure on k and T". ]
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Remark 2.3.7. If Pk is (purely) stably embedded in k and PT" is (purely) stably embed-
ded in T, then PRV is (purely) stably embedded in RV™®. Indeed, this is true with a
splitting as in the proof above since RV and PRV can be identified to products, and it
remains true after removing the splitting.

We now get back to the cfll;y‘l,),},-theory T* of separated pairs of valued fields. Let
M, N = T*, where we suppose that N is | M |"-saturated, andlet A< M and f : A — N
be some embedding.

Definition 2.3.8. We say that
(1) Ais good if PK(A) < K(A) is a separated extension of valued fields with

K(A) llr;llé(A) PK(M)§

(2) f is good if A < M and f(A) < N are good and frymo is elementary for the
i;y‘l,),l, | gyhyb -Structure.

Proposition 2.3.9. Assume f is a good embedding. Then f extends to a good embedding
g: M — N.

Proof. We proceed step by step.

Step 1. We may extend f to a good map defined on A U RV™® (M), and thus assume
that RV (4) = RV (M).

Indeed, this follows from saturation, the fact that fpym» is elementary and that the

only symbols in the language involving both K and RV™® are maps from K to RV™?.

Step 2. We may extend f to a good map defined on (the substructure generated by)
A UP(M), and thus assume that PK(A) = PK(M).

Indeed, by K-quantifier elimination in the £ry-theory of the small valued field P(M ),
the map f |p(4) extends to an (elementary) £rv-embedding g : P(M) — P(XN). Since we
have RV™®(4) = RV™°(M) and K(4) Lptia) PK(M), by Fact 2.3.2, f U g induces a
good embedding of A UP(M) into N.

Step 3. We may extend f to a good embedding of M into N.

Indeed, by K-quantifier elimination in the £ry,-theory of the valued field M, the
map f cjxtends to an (elementary) £ry,-embedding f :M — N. By Lemma 2.3.4,
we get f(K(M)) Lftxary PK(N), so in particular f (K(M)) Lk ary) PK(N) (and
thus £ (K(M)) NPK(N) = f(PK(M))) by Fact 2.3.2 (1), showing that f is an £ry, p-
embedding, with image a good substructure of N. Thus f is a good embedding, since f
was already defined on the whole of RV™®(M). ]

Corollary 2.3.10. The theory T* is complete relative to RV™®, and RV™® is purely stably
embedded in T, i.e., the induced structure is that of a hybrid RV-structure.
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This also holds for any RV™®-enrichment of the pair of valued fields. (This is folklore;
see, e.g., [ 13, Proposition 2.7] for a proof.)

Proof of Corollary 2.3.10. Assume that M, N = T* are models with RV (M) =
RV™®(N). The isomorphism between the prime substructures, i.e., the substructures
of M an N generated by 0, is easily seen to be a good embedding. It follows by Pro-
position 2.3.9, and a back and forth argument, that it is in fact elementary, i.e., M = N.
Similarly, if M < N (in particular a good substructure) and f : M — N is an element-
ary embedding (in particular a good embedding) inducing the identity on RV™° (M), then
it remains a good embedding (and hence an elementary one) when extended by the iden-
tity on RVY?(N). Thus, tp(M/RV™®(M)) F tp(M/RV™®(N)); in other words, RV’ is
stably embedded. Finally, any i;y‘t,’,ﬂRVhyb-elementary map on RV™ is good and hence

hyb .
£ gy p-clementary, so RV™? is pure. m

Remark 2.3.11. With a proof similar to the argument above, we also see that if PRV
is (purely) stably embedded in RV™®, then PK is (purely) stably embedded. Indeed, if
f M — N is an elementary embedding which is the identity on PK, and if PRV is stably
embedded, we can extend f to a good embedding by the identity on PRV(N). Since
K(M) iif‘ K(M)PK(N), we can then further extend this good embedding by the identity
on PK(N). This extension can be seen to preserve rv by using the fact that PK(N) <
K(N) is separated. This proves that PK is stably embedded.

Moreover, if PRV is purely stably embedded in RV™®, any automorphism f : PK(N)
— PK(N) is good and hence cfllj{y‘],il,—elementary, proving that PK is a pure valued field.

Combining Corollary 2.3.10, Lemma 2.3.6, and Remarks 2.3.7 and 2.3.11, we obtain
the following.

Corollary 2.3.12. Let M |= T* be such that P(M) is finitely ramified with perfect residue
field. Assume that K* (M) is divisible (which is the case for example if M = ACVF)
or that PI'(M) is a pure subgroup of I'(M). Then the theory of M is determined by
ramification data and the theories of k (with ramification constants) and I". Moreover, k
and T are purely stably embedded and orthogonal and RV™® is purely stably embedded.

Furthermore, if PK is purely stably embedded in k and PT is purely stably embedded
in I, then PRV and PK are also purely stably embedded.

This remains true in any k-I"-enrichment of M and with angular components.

Remark 2.3.13. If we further assume that P(M) eliminates field quantifiers in £ry, —
e.g., if it is algebraically closed or algebraically maximal Kaplansky of equicharacteristic
— then all the above results can easily be adapted to pairs of &£Ry, -structures (with no need
for the rather exotic hybrid RV-structures).

2.3.2. Characteristic zero Laurent series fields. Let F be a field of characteristic zero,
and let K := F((¢)). In what follows, we are interested in the pair (K*?, K) of valued
fields. Let us first deal with the pair of value groups. Let £, be the language of ordered
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groups and DOAG be the theory of non-trivial divisible ordered abelian groups. Let also
&Lpres be the language &£, enriched with a constant 1 and unary predicates for divisibility
by integers. Let PRES be the &£p.s-theory of Z.

Notation 2.4. Let T,z be the theory of all structures (I', A) with I' = DOAG, A = PRES
and such for any y € I" there is a largest § =: |y| € A with § < y, considered in the
language £q,z given by &£, p together with £pys on the predicate P and the function |-].

The quantifier elimination result we state in part (3) of the following lemma has
already been obtained by Weispfenning [50]. (We thank Matthias Aschenbrenner for hav-
ing brought this to our attention.) We decided to include our proof for convenience of the
reader.

Lemma 2.3.14. (1) Let M = (I', A) = Tg,z. Then the map y — (Ly],y — ly]) is an
@-definable bijection between I" and A x [0, 1), which identifies the O-definable sets
in M with the @-definable sets in the product structure (A, 0,4+, <) x ([0,1),0, F, <),
where a + b :=a + b — |a + b] is the group law on [0, 1) induced by the natural
bijection between [0, 1) and T'/ A.

(2) In Tg,z, the predicate P is stably embedded with induced structure a pure model
of PRES, and [0, 1) is stably embedded, with induced structure given by £g, so in
particular o-minimal.

(3) To,z eliminates quantifiers and is complete.

Proof. Let f :T" — A x [0, 1) be the bijection given in (1). Clearly, f is @-definable, and
the product structure (A, 0, 4, <) x ([0, 1), ¥, <) is @-definable in M. Conversely, under
this identification P corresponds to f~!(0); < on I" corresponds to the lexicographic
ordering on A x [0, 1); and the addition on I" may also be recovered, since if f(y) = (z,a)
and f(y") = (z/,d’), then

z+z2,a%b) ifa<adb,

+4) = ~
T+ { (z+z +1,a+b) otherwise.

This proves (1). Part (2) follows directly from (1).

Let us now show (3). Completeness follows from quantifier elimination, since (Z, Z)
embeds into every model of T,z as a substructure. To prove quantifier elimination, we
first note that the &£,,-theory of ([0, 1), 0, ¥+, <) has quantifier elimination. (This is well
known, and we leave the easy proof to the reader.) Moreover, PRES has quantifier elim-
ination in £Lpys. It is thus enough to establish the following claim:

Claim 2.3.15. If D C (A x [0, 1))" is defined by an atomic formula in the product struc-
ture A x [0, 1), with Lpres on A and Log on [0, 1), then f~1(D) € M" is defined by a
quantifier free formula (without parameters).

To prove the claim, let us denote the projection onto A by 71, that onto [0, 1) by 5.
If ¢ is of the form v (71 (x1), ..., 7, (x1)) for some atomic £pes-formula ¥ (y), the state-
ment is clear, as then f~!(D) is defined by the quantifier free formula v (| x1,. .., |x.]).
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Else, ¢ is (equivalent to) a formula of the form z;7m,(x1) F.ooF 2y 2 (xy) = 0 with
Z1,...,Zn € Z, in which case f_l(D) is defined by P(Z:’zl z;Xj); or ¢ is (equivalent
to) a formula of the form

21ma(x1) F o F Zama(xg) < Zima(x1) o F zp w2 (xn)

with z1,27,...,2s, 2, € Z,in which case f_1 (D) is defined by the quantifier free formula
Yoo ziXi — Doy zixi] < Doy zix = [y zixil u
In fact, the proof of Lemma 2.3.14 yields the following more general result.

Remark 2.3.16. Let £ D £pys and T D PRES be a complete &£ -theory with quanti-
fier elimination. Then the corresponding expansion T& 7 of TQ,z is complete, eliminates
quantifiers, and P is purely stably embedded with induced structure given by £%.

Since T,z admits the complete model (R, Z), it is definably complete. Actually, this
also holds for definable complete expansions of PRES, as the following corollary shows.

Corollary 2.3.17. Assume that the expansion Tt D PRES is definably complete. Then
T& 7z s definably complete.

Proof. Let (I, A) = T& z and let D C T be a definable subset which is bounded and
non-empty. Then | D | is a definable subset of A which is non-empty and bounded. By
assumption, it admits a supremum s in A, which is then the maximum of | D | as the order
on A is discrete.

As the induced structure on [0, 1) is 0-minimal by Lemma 2.3.14, the induced structure
on [s,s + 1] is o-minimal as well, and so sup(D) = sup(D N [s,s + 1]) exists in [s,s + 1],
proving definable completeness. ]

Let us now consider the residue field. By a classical result of Keisler [33], if F and F’
are fields such that F = F’, then (F?®, F) = (F’*, F').If F = F* or F*isreal closed, then
the axiomatisation, in & ing,p, of (F*, F) is clear, and P is stably embedded with induced
structure that of a ring. In case T is a complete theory of fields whose models are neither
algebraically nor real closed, and F = Ty, then the models of the &y p-theory T, of
(F*, F) are precisely the pairs (M, P(M)) of fields such that M = M* and P(M) |= Ty.
By [23, Theorem 4.7], if one definably expands the theory, adding relation symbols 1d,,
and function symbols £, ;, the theory T, eliminates quantifiers relative to P. This yields
in particular the following.

Fact 2.3.18. For Ty = Th(F) a complete theory of fields (in arbitrary characteristic),
the predicate P is stably embedded in the £ ing p-theory Tr, = Th(F?, F), with induced
structure given by Ty.

This also holds for any £-expansion of F, where £ 2 &L ing.

The following lemma will be used in Section 3 (proof of Proposition 3.5.4).

Lemma 2.3.19. Let F be some (enriched) field which eliminates 3°°. Then the pair
(F?, F) also eliminates 3.
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Proof. We may suppose that F' is neither algebraically nor real closed, as otherwise the
result is clear. By the relative quantifier elimination result [23, Theorem 4.7] already men-
tioned above, if (M,P(M)) = (F?, F) and (M,P(M)) < (U,P(U)), then for any a, b €
U\ (MP(U))* we have tp(a/M) = tp(b/M) =: pgen(X), s0, assuming that (U, P(U))
is sufficiently saturated, any element of U is the sum of two realisations of pge,. By com-
pactness, for any M -definable set D = (M) C M we then have

D+D=M < yU+yU =U
— Y(U) £ (MP(U))* <= peen(x) ¥ (x). 2.1)

We will now assume that M is Rg-saturated. Let ¢(x, y) be a formula with x a single
variable. Assume that ¢ is a tuple from M such that (M, c) is infinite. By compactness,
it is enough to find a formula y(y) € tp(c) such that for any ¢’ from M satisfying y the
set (M, ¢’) is infinite.

If peen(x) F @(x, ¢), we may find such a x(y) using (2.1). So assume now that
Deen(X) ¥ @(x,c), and choose a ¢ M realising ¢(x,c). Thena € (MP(U))* \ M*?, soin
particular

M(a) Ly P(U).
Set A := dcl(Ma). If P(A) = P(M), by [23, Lemma 4.1] we have A li;j(M) P(U), con-
tradicting M (a) j;i;i(M) P(U). It follows that there is a’ € P(A4) \ P(M), so we find an
M -definable function g : D — P(M) with infinite image. Using Fact 2.3.18 and the
assumption that the theory of F eliminates 3°°, we may thus find a formula y(y) as
required, stipulating explicitly the existence of a definable function with infinite image
inP. ]

Fix some characteristic zero field F* and let 7% . be the theory of separated pairs of
henselian valued fields (M, P(M)) with (I'(M),PI'(M)) |= To,z and (k(M),Pk(M)) =
(F?*, F). Combining Fact 2.3.18 and Lemma 2.3.14 with Corollary 2.3.12, we obtain the

following.

Proposition 2.3.20. The theory T, is complete, the definable sets k, ', RV, PK, Pk,

PI" and PRV are all purely stably embedded, and k and T" are orthogonal. All these
results also hold for Pk-PI'-enrichments, and also if one adds an angular component.

2.3.3. Finitely ramified fields. We will now prove analogous statements in mixed charac-
teristic. Let K be a complete mixed characteristic Z-valued field with perfect residue
field F. We are interested in the pair (K*, K) of valued fields. Let Ty, be a the-
ory of separated pairs of henselian valued fields with fixed ramification data such that
(k(M),Pk(M)) = (F?, F) (with ramification constants) and (I'(M),PI'(M)) = Tg,z.
In that case, as a consequence of Corollary 2.3.12, we obtain the following.

Proposition 2.3.21. The theory Ty, is complete, the definable sets k, T, RV™®, PK,
PRYV, Pk and PT" are all purely stably embedded, and k and T" are orthogonal. All these
results also hold for Pk-PT -enrichments, and also if one adds a coherent system of nor-
malised angular components.
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2.3.4. Divisible value group. Let F be a field. If char(F) = p > 0, assume that F does
not admit a finite extension of degree divisible by p (in particular, F is perfect). Let
K := F((t9)). In what follows, we are interested in the pair of valued fields (K?, K).

Let T, be the theory of separated pairs of equicharacteristic algebraically maximal
valued fields (M, P(M)) such that (k(M),Pk(M)) = (F?, F)and PT’'(M) =T (M) E
DOAG. Note that the Kaplansky conditions (Definition 2.2.6) are satisfied in this case.
Once again, as a consequence of Corollary 2.3.12, we have the following result.

Proposition 2.3.22. The theory Ty, is complete. The definable sets k, I', RV, PK, Pk
and PRV are all purely stably embedded, and k and T are orthogonal. All these results
also hold for PK-T"-enrichments, and also if one adds angular components.

2.4. Valued difference fields
Let (K, v, 0) be an equicharacteristic zero valued field with an automorphism.

Definition 2.4.1. (1) Forevery P € K[x¢.....x,],a € K,d € K" ' and y € ['(K)*,
we say that (P,a,d, y) is in o-Hensel configuration if

v(P(Va)) > min[v(d;) + o' (y)]
and, for all x, y € K with v(x —a),v(y —a) > vy,

V(P(Vy) = P(Vx) —d - V(y = x)) > minv(d;o’ (y = x)).

Here, Va := (6% (a))o<i<n-

(2) We say that (K, v, o) is o-henselian if for every (P, a, d, y) in o-Hensel configura-
tion, there exists ¢ € K(M) such that P(Vc¢) = 0 and

vie —a) > max v~ (P(Va)d; ™).

(3) A difference field (k, o) is called linearly closed if for every linear non-constant
L € k[xg,...,x,] and ¢ € k, there exists a € k such that L(V(a)) = c.

Fact 2.4.2. Assume that K(K) is linearly closed and either

o (K,v) is maximally complete, or

e (K,v) is complete and rank 1, i.e., the value group is archimedean.
Then (K, v,0) is o-henselian.

This follows from Newton approximation (see [41, Proposition 4.14]). Note that at
each step the approximation to the root of a o-Hensel configuration (P, a, d, y) improves
by at least y (see [41, Lemma4.16]), and hence, in rank 1, completeness suffices.

Let £%y be the language £gv with three new unary functions ok : K — K, ogy :

RV — RV and or : I' — I'. The expected quantifier elimination result also holds in char-
acteristic zero o-henselian fields, by [17, Theorem 7.3] (see also [41, p. 41, Theorem A]):



M. Hils, S. Rideau-Kikuchi 20

Fact 2.4.3. Let £ be an RV-enrichment of 3y and T an £-theory containing the the-
ory Heng,0 of equicharacteristic zero o-henselian valued fields. Then T eliminates field
quantifiers.

Remark 2.4.4. In[2,17,38] an a priori weaker notion of o-henselian fields is considered.
However, both notions hold in maximally complete fields (with linearly closed residue
field) and both allow proving Fact 2.4.3. In equicharacteristic zero, the automorphism
extends to any maximal completion. Moreover, that maximal completion has the same
RYV as the original field. Thus, it follows from Fact 2.4.3 that any equicharacteristic zero
field satisfying either notion is elementarily equivalent to any maximal completion where
both notions hold. So these two notions of o-henselianity coincide.

It follows from field quantifier elimination that RV is purely stably embedded. Its
induced structure is the expansion of the short exact sequence of Z[o]-modules 1 — k* —
RV* — I'* — 0 by @ and <, which, by Remark 2.2.5, can be defined (with parameters)
in a I'-k-enrichment.

In order to obtain model complete theories, one often restricts the behaviour of the
automorphism on the value group, e.g., the class of (existentially closed) multiplicative
difference valued fields introduced in [38]:

Definition 2.4.5. Let VFA‘(‘)"%'t be the theory of o-henselian non-trivially valued fields
such that

(1) forevery P € Z|o], either P(I's¢) = I'sg, P(I'<p) = 'sg or P(T") = 0;

(2) (k,0x) = ACFAo;

(3) the embedding k* — RV of Z[o]-modules is pure.

Remark 2.4.6. Two multiplicative behaviours of o are of particular interest:

(1) The w-increasing case —i.e., forall x € @ and n € Z~¢, v(o(x)) = nv(x) — studied
in [2, 16]. One then gets the asymptotic theory of (F,(¢)*, v, ¢p), where ¢, is the
Frobenius automorphism.

(2) The isometric case, studied in [6]. In that case, one gets the asymptotic theory
of (Cp, vp, 0p), where o, is an isometric lift of the Frobenius automorphism on
k(Cp) = F;.

Both characterisations follow (see, e.g., [10]) from the Ax—Kochen—Ershov principle
for o-henselian valued fields and Hrushovski’s deep result that ACFA is the asymptotic

theory of (F3, ¢,) (see [27]).

Fact 2.4.7. In VFA’&L(‘)M, k is a stably embedded pure difference field and T is a stably
embedded o-minimal pure ordered 7.[o]-module, and k and T" are orthogonal. These res-
ults also hold if one adds a o-equivariant angular component.

Proof. Condition (3) in Definition 2.4.5 ensures that in any ®;-saturated model of
VFAgl’L(‘)h there is a o-equivariant angular component map ac. [38, Theorem 11.8] yields



Un principe d’ Ax—Kochen—Ershov imaginaire 21

the results if we add such an ac map to the language, and they obviously go down to the
reduct without ac. ]

2.5. Linear structures

Let us now recall the results of [25] on linear structures. In the case of valued difference
fields, we will need ‘twisted” versions of these results. As it took us a while to get the
arguments clear, we decided to spell them out in detail.

2.5.1. Independent amalgamation. We will first recall some material from [25, Sec-
tion 4]. We fix a complete stable theory 7 in some language £, and we assume that
T eliminates quantifiers and imaginaries. Let €7 be the category consisting of those &£-
structures that are algebraically closed substructures of a model of 7', with £-embeddings
(which are £-elementary in 7 by assumption) as morphisms. Letn = {0, 1,...,n — 1},
and set (n)~ := £ (n) \ {n}. We consider (n)~ and & (n) as categories, with inclusion
maps as morphisms.

Given a functor A : P — €, where P equals ?(n)~ or (n), if ¢ : w; — w; denotes
the inclusion map for two sets w; € w, € P, in what follows we will write A(w;) for
the subset A(t)(A(w)) of A(w,), thus omitting the map A(¢) in our notation. This slight
abuse of notation should not lead to any confusion.

Definition 2.5.1. Let P equal #(n)~ or & (n).

(1) A functor A : P — €7 is called independence preserving if for any w, w’ € P with
wUw' € P onehas A(w) Lawnw) A(w’) (inside A(w U w’)).

(2) A functor A : P — €7 is called bounded if for any @ # w € P one has

A(w) = acl(U A({i})).
i€w
(3) An n-amalgamation problem in T is a bounded independence preserving functor

A7 : P (m)” — €. A solution of A~ is a bounded independence preserving functor
A : P (m) - Cr extending A™.

Definition 2.5.2. The theory T is said to have

e n-existence if every n-amalgamation problem in 7" has a solution;

o n-uniqueness if whenever A and A’ are solutions of the same n-amalgamation problem
A" in T, then A and A’ are isomorphic over A™, i.e., there is an £-isomorphism f :
A(n) = A’(n) fixing A~ (w) pointwise for every w € £ (n)~.

Remark 2.5.3. In the terminology of [25], these notions correspond to n-existence/

n-uniqueness of T over every parameter set.

Remark 2.5.4. It follows from stability and elimination of imaginaries in 7 (as then
types over algebraically closed sets are stationary) that 7" has 2-existence, 2-uniqueness
and 3-existence.
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Let ¢ be a new unary function symbol, and £, := £ U {o}. Consider the category Cr
of £s-structures of the form (A4, o), where A € €7 and 0 € Autg(A4), with £,-embed-
dings as morphisms.

Definition 2.5.5. Let P equal #(n)~ or #(n).

(1) A functor A: P — ‘gT is called independence preserving (bounded, respectively) if
it is so when composed with the forgetful functor from €7 to €7.

(2) We say that ©r has n-existence if every bounded independence preserving func-
tor A~ : £ (n)” — €r extends to a bounded independence preserving functor A4 :
P (n) — €T~

It follows from 2-uniqueness and 2-existence in 7 that Cr has 2-existence.

Let Ty be the £4-theory of all (M, o) € ‘gT such that M |= T. Recall that if T, admits
a model-companion, it is denoted by TA. If this is the case, we will say that ‘T'A exists’.
(We refer to [9] for fundamental facts about 7'A.)

Fact 2.5.6 ([25, Proposition 4.7 and Corollary 4.10]). For T as above, the following are
equivalent:

(1) T has 3-uniqueness.

2) gT has 3-existence.
Moreover, assuming in addition that TA exists, the above conditions imply
(3) TA eliminates imaginaries. [

It is easy to see that if TA exists and it eliminates bounded hyperimaginaries (e.g.,
when T is superstable, by [7] combined with [9, Corollary 3.8]), then (3) is actually
equivalent to (1) and (2). We will not use this in our paper.

2.5.2. Twisted independent amalgamation. Let © : £ =~ £’ be a bijection between two
first order languages (sending sorts to sorts, function symbols to function symbols consist-
ently with their arity, and similarly for constants and relations). Then 7 extends naturally
to a bijection between the set of £-formulas and the set of &£’-formulas. Given an £-
formula ¢, we denote by ¢ its image under this map. If 7 is an £-theory, then 77 :=
{@" : ¢ € T} is an £’-theory. Of course, up to changing the names of the symbols using t,
T7 is the ‘same’ theory as 7.

If M is an £-structure, we denote by M * the &£’-structure with base set M and inter-
pretations (E’)MT = XM for any symbol ¥ € £. If N’ is an £’-structure, we call an
&’-isomorphism o : M* = N’ a t-twisted isomorphism between M and N’. Similarly,
one defines the notion of a t-rwisted elementary map o : A — A’, where A € M and
A’ € N, i.e., one requires that for any £-formula ¢(x) and any tuple a from A of the
right length, one has M = ¢(a) if and only if N’ = ¢ (0 (a)).
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Lemma 2.5.7. Let T be a complete stable £-theory eliminating quantifiers and imagin-
aries. Assume that T has n-uniqueness. Let A : #(n) — €7 and A’ : P (n) — Cr be
bounded independence preserving functors.

Then for any coherent system (Oy)wepm)— Of T-twisted elementary bijections oy, :
A(w) — A’ (w) there exists a T-twisted elementary bijection oy, : A(n) — A’(n) extending
oy for every w € P(n)".

Proof. The result follows from n-uniqueness of 7%, since we may consider A as a functor
to €, replacing A(w) by A(w)*. |

We now consider the special case where £’ = £, 7 is a permutation of &£, and T is a
complete £-theory such that 7 = T*. Let 57@ be the category of £,-structures (B, o)
with B € €7 and 0 : B — B a t-twisted elementary bijection. When T is stable, we use
the same terminology as in Definition 2.5.5, for functors 4 : P — ‘57@. Lemma 2.5.7 then
yields the following result.

Corollary 2.5.8. Let T be a complete stable £-theory eliminating quantifiers and ima-
ginaries, and let T : £ — £ be a bijection such that T* = T. Then ‘67@ has 2-existence.

If in addition we assume that T has 3-uniqueness, then ‘g;r) has 3-existence.

Proof. Lemma 2.5.7 implies that if 7' has n-uniqueness and n-existence, then “57@ has
n-existence. We thus get the assertion by Remark 2.5.4. ]

Given a complete £-theory T and a permutation t of &£ such that 7% = T, we let
Tér) be the £, -theory whose models are of the form (M, ¢), where M = T and where ¢
is a t-twisted automorphism of M.

Assume now in addition that 7" is stable and eliminates quantifiers and imaginaries.
It follows from quantifier elimination in 7' that Tér) is then a V3-theory, and so it has
a model-companion if and only if the e.c. models of Tér) form an elementary class. If
this is the case, denote by 7' (P4 the model-companion of Tér). Then the models of 7 (94
are precisely the e.c. models of Ta(r). The basic results on TA, due to Chatzidakis and
Pillay [9], generalise to this context in a straightforward manner. We will only state some
facts which we will need.

Lemma 2.5.9. Let T and t be as above, and assume that T VA exists. Then the following
hold:

(1) If (M,0) = T®A and B € M then

acl(p,0)(B) = acly(B) := aclM(U oZ(B)>.
z€Z
(2) (Quantifier reduction) If (M;,0;) = T®A and B; € M; fori = 1,2, then By =g, B,
if and only if there is an £Lq-isomorphism from acly(B1) to acly(B2) sending B,
to B,.
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3) TOA is simple and
ALET B ifandonlyif acly(EA) LT, ) acl(EB).

If T is superstable, then T'DA is supersimple.

(4) Assume that € has 3-existence. (Equivalently, in T DA, the independence theorem
holds over acly-closed sets.) Then T DA eliminates imaginaries.

Proof. To prove (2), assume that B = acly;(B) is a common substructure of two mod-
els (M, o) and (N, o) of T4 such that (N, o) is |M|*-saturated. We need to show
that (M, o) £ (B)-embeds into (N, o). As ‘5?) has 2-existence, there is an amalgam
(A,0) € 67@ of N and M over B. Enlarging (A, o) if necessary, we may assume that
(A,0) = T4, hence (4,0) = (N, o). In particular, tpg, (M/ B) is finitely satisfiable in
(N, 0), so this type is realised in (N, o) by saturation, yielding an £, (B)-embedding of
(M, o) into (N, o).

We now prove (1). Let (M, 0) = T®A and let B € M. Clearly, acly,6)(B) 2
acly (B). To prove the other inclusion, it suffices to show that if B = acly(B), then B
is algebraically closed in (M, o). Leta € M \ B, and set A := acly(Ba). Then (B,0) C
(4, 0) is an extension in g}:).

For n € Z~, using 2-existence in "CZ;T) and induction, we may construct an extension
(B,o) C (Cyp,0) € ‘g;ﬂ such that C, contains n isomorphic copies (A1,0), ..., (A, 0)
of (A4, o) over B which are £-independent over B. Replacing (M, o) by an elementary
extension if necessary, using (2) we may assume that C,, € M. Since B = aclg (B)<L, we
have 4; N Aj = B forany i # j,so (M,o) contains n distinct realisations of tpe _(a/B),
by part (2). As n was arbitrary, a ¢ aclias,¢)(B).

To show (3), we proceed exactly as in the proof of the corresponding result for 74
[9, Corollary 3.8]. If A, B, E are subsets of a model of TOA, we say that A and B are
independent over E if

acly (EA) LY, ) acle (EB).

where |7 denotes forking independence in T'. This relation satisfies all the abstract prop-
erties of an independence notion that guarantee, by the theorem of Kim—Pillay (see, e.g.,
[49, Theorem 2.6.1]), that TP 4 is simple and that non-forking is given by the independ-
ence notion in question. This is clear for all properties except the independence theorem
(over a model). To establish the latter, one shows that every 3-amalgamation problem
AT : P37 — ‘E}r) with A= (0) &= T (4 has a solution; equivalently, the independence
theorem even holds over models of Tér). The proof of this is identical to the proof of
[9, Theorem 3.7].

The statement about supersimplicity follows as in [9, proof of Corollary 3.8].

Part (4) is the analog of [25, Proposition 4.7]. Weak elimination of imaginaries
in 74 follows directly from a formalisation of Hrushovski’s argument by Montenegro
and the second author [37, Proposition 1.17]. But finite sets are coded in models of T, as
T eliminates imaginaries by assumption. so they are also coded in the expansion T ("4
of T. Hence T ¥4 eliminates imaginaries. |
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2.5.3. Linear imaginaries. Let us now recall some notions from [25, Section 5].

Definition 2.5.10. Let t be a theory of fields (possibly with additional structure). Then
a t-linear structure M is an £-structure with a sort k for a model of t, and additional
sorts V; (i € I) denoting finite-dimensional k-vector spaces, such that the family (V;);
is closed under tensor products and duals. Each V; has (at least) the k-vector space struc-
ture. One assumes that k is stably embedded in M with induced structure given by t.

We now fix such a t-linear structure M.

(1) M is said to have flags if for any i with dim(V;) > 1, for some j, k with dim(V;) =
dim(V;) — 1, there exists a #-definable exact sequence 0 — Vx — V; — V; — 0. We
will call such a short exact sequence a flag.

(2) M is said to have roots if for any one-dimensional V' = V;, and any m > 2, there exists
a (one-dimensional) W = V; and a @-definable k-linear isomorphism f : W®" ~ V.

Let us now mention two results from [25]. The proof of the first one is rather element-
ary, whereas that of the second one is quite involved.

Fact 2.5.11 ([25, Lemma 5.6]). The theory of an ACF-linear structure with flags (in any
characteristic) eliminates imaginaries.

The following fact follows from [25, Proposition 5.7] in combination with [25, Pro-
position 4.3 and Corollary 4.10].

Fact 2.5.12. Let T be the theory of an ACFy-linear structure with flags and roots. Then
T has 3-uniqueness.

Our main interest in linear structures stems from the fact that the k-internal sets in a
given model of ACVF give rise to such a structure. For every M |= Heng and A C §(M),
we define

Ling := |_| s /Lwus.
s€S(dclpg(A))
€Z~o

In equicharacteristic zero, i.e., if M |= Heng,g, this corresponds exactly to the col-
lection of vector spaces VSk A = Uses(dcl o(4) S /s introduced in [22]. In mixed char-
acteristic, however, this is a more complicated structure since it also consists of (free)
R;-modules — and this more complicated structure is actually needed in Section 4. Note
that, by Convention 2.1 and our choice of representation of the geometric sorts, Ling (M)
is the set of cosets ¢ + £1us where s € S(dclp(A)) has a basis in M and ¢ € s(M).

Lemma 2.5.13. Let M |=Heng,g and A C§(M). Then Ling (M) with its £¢(A)-induced
structure is a Th(K(M))-linear structure with flags. Moreover, if I'(M) is divisible, then
Ling (M) has roots.

Proof. We may assume that dclo(A4) N §(M) € A. The fact that the residue field k is
stably embedded in Heng o, with induced structure that of a pure field, is well known, and
follows from the existence of splittings as in Lemma 2.3.6.
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Now let V, W be two sorts from Ling (M), i.e., vector spaces over k of the form
V =a/wma, W = b/wb for some a € S,,(A) and b € S,/ (A), with bases in M. Then
a ®@ b is canonically isomorphic to an element ¢ from S,,.,(A4), so we may identify
V ®k W with ¢/mc, which is a sort from Ling (M). Similarly, ¢ = Homg (a, ©) can be
identified with {z € K" : Vv € a, ) z;v; € O} € S;,(A), so V = Homy(V,K) = a/wma
is a sort from Ling as well.

Flags: Fora € S, (A) define a; := a N (K x {0}"~!). Then the projection onto the first
coordinate identifies a; with an element of S;(A). Let 7 : @ — K"~! be induced from the
projection on the last n — 1 coordinates. Then

0 —ker(r) =a; >a—>n(a) >0

is an A-definable exact sequence of free (9-modules, and 7(a) € S,,—1(A) — this follows
from the fact that 7 (a) is a finitely generated torsion free @-submodule of K*~! of rank
n — 1. Reducing modulo mt, we conclude that Ling (M) has flags.

Roots: Assume I'(M) is divisible. Let n = 1, and let V' be a one-dimensional sort from
Ling. Then V =y /ym for some y € I'(dcly(A)). Consider V,, := 80 /ém for§ = y/n.
The map

x/ymisy/dm @ ®y/Sm: V — VI

where y” = x, is well defined and an A-definable isomorphism of k-vector spaces defined
over A. In particular, Linyg has roots. [

The result above actually holds for the stable part | | cg(e,(ay) $/ms in any charac-
teristic (provided k is stably embedded).

Corollary 2.5.14. Let M = ACVF and A € §(M). Then Ling satisfies 3-unique-
ness. (]

2.5.4. Twisted linear imaginaries.

Lemma 2.5.15. Let t be a stable theory of fields, and let T be the theory of a t-linear
structure such that T eliminates quantifiers. Let T be a permutation of the language with
T = T7 such that t fixes all the formulas on the sort K. Suppose t A exists. Then Tg(r) UtAd
is the model-companion of chf). In particular, this holds for t = ACF.

Proof. Let (M, 0) = Tér). Then, as M = T, for any sort V' from &£ there is an M-
definable surjection f : k(M) — V(M). For any N >=¢ M, f then also defines a sur-
jection from k(N) onto V(N), hence N = dclg (Mk(N)). Thus, any extension of ¢ to
a t-twisted automorphism on N is uniquely determined by its restriction to k(N). It fol-
lows that (M, 0) is an e.c. model of Tg(r) if and only if (k(M), olkr)) is an e.c. model
of t,. This yields the statement of the lemma. ]

As a special case of Lemma 2.5.15, we get the following.
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Remark 2.5.16. Let t be a stable theory of fields, and let 7' be the theory of a t-linear
structure such that 7' eliminates quantifiers. Suppose tA exists. Then TA exists and is
given by T, U tA. In particular, this holds for t = ACF.

Definition 2.5.17. Let k be a stably embedded sort in a theory 7. An Ay-definable set D
is said to be internally k-internal (over Ay) if there is a tuple d € D and an Ayd-definable
surjection f : Y — D, where Y C k” for some n.

Lemma 2.5.18. Letk be a stably embedded sort in a theory T, and let D be Ay-definable
and internally K-internal (over Ay). Then k U D is stably embedded (over Ay).

Proof. Set D' := kU D. It follows from the assumptions that D’ is Ag-definable and
internally k-internal over Ay. Let f be an Agd-definable surjection as in the definition,
with d € D’. Taking the preimage under f X --- x f, one sees that any U-definable
subset X of D" is k(U) Aod -definable, by stable embeddedness of k. In particular, X is
Ao D' (U)-definable, proving stable embeddedness of D’ (over Ayp). ]

Proposition 2.5.19. Let M = VFAg"%lt and A C §(M). Then Ling is stably embedded
in VFA‘(}”L(‘,lt and its A-induced structure eliminates imaginaries.

Proof. Stable embeddedness follows from stable embeddedness of k (see Fact 2.4.7) and
the fact that Linyg is internally k-internal (by naming a basis for every sort).

Now, let T' be the theory of Ling (M) with its &£¢(A)-induced structure. By Fact 2.5.11
and Lemma 2.5.13, T eliminates imaginaries. Let T be the permutation of &£¢(A4) induced
by o. Then 7 fixes all the formulas on the sort k, and we have 7" = T'. It follows from
Corollary 2.5.14 and Lemma 2.5.9 (4) that T (¥4 eliminates imaginaries.

Also, by Fact 2.4.7, (k(M), o) is a stably embedded pure model of ACFA, and hence
Ling (M) = T™A by Lemma 2.5.15. Since the A-induced structure on Liny is a defin-
able expansion of its ACF-linear structure with a twisted automorphism, elimination of
imaginaries follows, e.g., by [25, Lemma 5.4]. [

2.5.5. Real linear imaginaries. We conclude these preliminaries with a study of RCF-
linear structures.

Definition 2.5.20. An RCF-linear structure with flags is said to be oriented if for every
sort V' of dimension 1, each of the two half-lines is #-definable.

Proposition 2.5.21. Any oriented RCF-linear structure with flags eliminates imaginaries.

Proof. Let us first prove a few preliminary results. Let M be a sufficiently saturated and
homogeneous oriented RCF-linear structure with flags. First, note thatif 0 - W — V —
U — 0is an @-definable flag, then any translate of W in V is ordered by a < b ifa — b
is in a fixed half-line of W.

Claim 2.5.22. M is rigid: for every A C M, acl(A) = dcl(A).
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Proof. Let X be a non-empty finite A-definable set such that all elements of X have
the same type over A. We need to show that X is a singleton. Using tensors, we may
assume that X is contained in some sort V. We proceed by induction on dim(V'). Let
0— W — V — U — 0be an #-definable flag for V. By induction, we may assume that
X projects to a singleton » € U, i.e., X is contained in a translate a + W of W in V.
In this case, the assertion is clear, as a + W inherits an @-definable total order from the
ordered group structure on W. ]

Claim 2.5.23. Let X C ¢ + W C V be definable for some @-definable flag 0 — W —
V — U — 0and some ¢ € V. Then X is coded.

Proof. Since k is o-minimal and there is a definable order preserving bijection between
¢ 4+ W and k, X is a finite union of points and intervals and hence it is coded by its (finite)
border. ]

Let K = k(M)* and K ® M be the structure whose sorts are the sorts V' of M
interpreted as K ®g(ur) V(M), with the field structure on k, the k-vector space struc-
ture on each V, and the tensor, dual and flag structure. Then K ® M is an ACF-structure
with flags. Let us denote by acly (respectively dcly) the algebraic (respectively defin-
able) closure in K ® M. For every N < M, and tuple ¢ € M, since all of the vector
spaces have bases in N, we get dcl(Nc) € aclp(Nc¢). Note also that in K ® M, we have
k(dclg(M)) = k(M) and since each of the vector spaces has a basis in M, we find that
dcly(M) € M. Since K ® M eliminates imaginaries by Fact 2.5.11, it follows that any
M -definable set in K ® M has a code consisting of elements in M.

By [21, Remark 3.2.2], to prove elimination of imaginaries in M, it suffices to code
every definable function f : V — S, where S is a sort. We will proceed by induction
on the dimension of V. Let 0 > W — V — U — 0 be an @-definable flag for V. Let
F be the Zariski closure of the graph of f in K ® M; any choice of basis induces a
Zariski topology on V/, but this topology is independent of the choice of coordinates.
For every ¢ € V(M), since dcl(Nc) C acly(Nc) for every N < M, the fiber F, of F
above c is a finite set containing f(c). As was noted above, F has a code in M. Note
that any 0 € Aut(M/" f) can be extended to an automorphism of K ® M fixing F. It
follows that F' (M) is defined over ™ f ' and hence it has a code in M NT . Moreover,
by compactness and Claim 2.5.22, in M, we find " F '-definable maps (%;); <, such that
forallc e V(M), Fo(M) = {hi(a) :i < n}.

Now, fix a € U(M) and ¢ € V above a. Let f, be the restriction of f to the fiber
c+WaboveainV.Let X,; ={x cc+ W: f,(x) = h;(x)}. By Claim 2.5.23, this set
is coded in M. Let g(a) denote the tuple consisting of the codes of the X; ,. The function
g is " f-definable with domain U, so, by induction, g is coded in M. This concludes the
proof since f is (" F 7, " g7)-definable. L]

Proposition 2.5.24. Let (K, <, v) be an ordered field with a non-trivial convex valuation
and A C §(A). Then Ling (K) is oriented.
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In particular, if v is henselian and K(K) = RCF, then Ling (K) is stably embedded
and its A-induced structure eliminates imaginaries.

Proof. Dimension 1 sorts in Ling are of the form y@/ym for some y € I'(K). But this
quotient inherits the order on y (@, so it is oriented. The rest of the proposition follows
from Lemma 2.5.18, Proposition 2.5.21 and Lemma 2.5.13. ]

Remark 2.5.25. ¢ Any K = R((Q)), being real closed, admits a unique field ordering
which is definable (without parameters).

e Any K = R((¢)) admits exactly two field orderings, depending on the sign of a choice
of uniformiser . Both orders are definable (using an imaginary parameter for a half-
line in RV y(r) 1= {§ € RV : v(§) = v(or)}, in particular any element of RV y(x)).

3. C-minimal definable generics

We will now consider generalisations of [42, Theorem 8.7]. We fix the following notation
for Sections 3 and 4.

Notation 3.1. Let £9 = Lgjy and Ty be the £y-theory ACVF. Let £ D £y and T be a
(complete) £L-theory of valued fields. Let M = T be sufficiently saturated and homogen-
eous and My = M?* |= Tp. Note that since ACVF eliminates quantifiers, we will implicitly
assume that every £o-formula is quantifier free. We will denote by S%(M) the set of
(quantifier free) £o(M )-types (in My) in variables x, and whenever W(x;?) is a set of
£o-formulas, S;f (M) will denote the set of W-types over M, that is, maximal consistent
sets (in My) of formulas v (x; a) and = (x,a) with € W anda € M’.

Note that, unless explicitly specified, we do not make any assumption on the charac-
teristic in Section 3.

3.1. Main results
In this section we prove the following two density results:

Theorem 3.1.1. Assume that

(Cg) T is definably spherically complete;

(Cr) the full induced theory on T is definably complete;

(ER°) the full induced theory on K eliminates 3%°;

(EY°) the full induced theory on I" eliminates 3°°.

Then, for every strict pro-£(A)-definable X € K* with x countable and A = acl®d(A) C
M® = T, there exists an £o(5 (A))-definable p € S%(M) consistent with X.

In other terms, there exist N > M and a € X(N) such that tpy(a/M) is £o(F(A))-
definable. Recall (see, e.g., [29, Section 2.2]) that a set is strict pro-definable if it is the
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limit of a small directed system of definable sets with surjective transition maps. In other
terms, it is a x-definable set whose projection on any finite set of variables is definable.

Proof of Theorem 3.1.1. This is a particular case of Proposition 3.5.1. ]

Remark 3.1.2. ¢ Any (non-zero) definably complete ordered abelian group I' is ele-
mentarily equivalent to either Z or Q. Indeed, I" cannot have a proper non-trivial
definable convex subgroup and is therefore elementarily equivalent to a subgroup H
of (R, 4, <). If T is not elementarily equivalent to Z or QQ, then H is a dense non-
divisible subgroup of R. For any y € I" non-divisible by n € Z~¢, the cut at y/n yields
a counter-example.

e Hypotheses (Cp) and (Cr) are necessary for the conclusion of Theorem 3.1.1 to hold.
Indeed, the conclusion implies that any &£ (M )-definable chain C of balls is £o(M)-
definable: taking a generic translate, on can ensure that ()¢ b does not contain any
£o(M)-definable chain of balls, hence any &£ (M )-definable type consistent with this
translate of (),cc b must be the generic of this intersection. Then (), b is a ball,
proving both (Cp) and (Cr).

e Hypothesis (EX°) does not allow for discrete value groups. Note however that the con-
clusion of the theorem fails in p-adic fields. So the hypotheses (Cg), (Cr) and (E°)
cannot be sufficient.

e As Theorem 3.1.3 illustrates, by restricting to a mild class of enrichments of ACVFy,
one can trade hypothesis (Ef°) for purely algebraic conditions and a weaker conclusion.

Let Heng be the £¢-theory of characteristic zero henselian valued fields.

Theorem 3.1.3 (cf. Corollary 3.5.6). Let T be a k-I"-enrichment of Hengy such that
(Cr) the (full) induced theory on T is definably complete;

(FR) foreveryn € Zy, the interval [0, v(n)] is finite and K is perfect;

(Ix) the residue field Kk is infinite;

(ER°) the (full) induced theory on k eliminates 3°°.

Then, for every strict pro-£(A)-definable X C K* with A = acl®¥(4) C M= T, there
exists an Aut(M /G (A))-invariant p € S%(M) consistent with X .

Note that in this setting k is stably embedded, so the full induced structure coincides
with the @-induced structure.

Remark 3.1.4. o Unlike Theorem 3.1.1, Theorem 3.1.3 requires finite ramification in
mixed characteristic. Even if Theorem 3.1.3 does not apply to characteristic zero non-
archimedean local fields either; cf. the stronger [30, Remark 4.7].

e Under the hypotheses of Theorem 3.1.3, locally, we do find definable types: for any
finite set W(x;t) of £o-formulas, we can find an £4(&(A4))-definable p € S;CI’ (M)
consistent with X (see Proposition 3.5.4). This local statement does not hold in char-
acteristic zero non-archimedean local fields.
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o In both theorems, hypothesis (E{°) is an artefact of our proof. This hypothesis is neces-
sary to prove certain intermediate results. However, we do not know if (E£°) is neces-
sary to prove either theorem. Moreover, these theorems are the only reason hypothesis
(Eg°) appears in the imaginary Ax—Kochen—Ershov principle (see Theorem 6.1.1).

Given these observations, the following questions are quite natural:

Question 3.1.5. (1) Can the density of either invariant or definable types — i.e., the con-
clusion of either theorem — be proved without assuming (E2°)?

(2) Under the hypotheses of Theorem 3.1.3, can we find an £ (G (A))-definable type p?

(3) Can the hypotheses of Theorem 3.1.3 be weakened to also encompass characteristic
zero non-archimedean local fields?

3.2. The uniform arity one case

We start by giving a succinct (and slightly more general) presentation of terminology and
results from [42, Sections 6 and 7]. The types in Theorems 3.1.1 and 3.1.3 are found by
finding, for every unary set, a close-fitting intersection of balls (uniformly over realisa-
tions of a type found at an earlier step). To obtain anything definable, we need to localise
to definable families of (finite sets of) balls. The main technical issue is then to find large
enough families such that the approximation (and later induction on arity) goes through
while keeping it small enough that it stays definable; this is achieved with the notion of
good presentation (Definition 3.2.7).

Once these have been introduced, the main goal of this section is to give two ver-
sions of the approximation process (Corollary 3.2.18 and Lemma 3.2.21). We invite a
first reader to assume in Definition 3.2.15 and onwards that p is an arity zero type (equi-
valently, a realised type) and that F} is the collection of all balls (open and closed) to get
an idea of the base arity 1 case with fixed parameters.

Definition 3.2.1. We define B to be the (£¢-definable) set of balls (closed or open) in
models of Tp; the field itself is the open ball of radius —oo and points are closed balls
of radius +oo. For every r € Z=g, BI'l is the set of finite (potentially empty) subsets of
cardinality at most r + 1 of B of the same radius and either all open or all closed; in
particular, there is no nesting among the elements of some B € BI']. Let also B[<>] :=
Ur >0 B[r]'

Similarly, we denote by K"l € BU] the set of finite subsets of cardinality at most
r + 1 of K and set K[=l :=  J _  KI"T C Bl=>°l,

For every finite set B of balls, we define BY := (g b and for any finite sets B,
and B, of balls, we write By < B, if By € B5. For any by, b, € B, we also define
d(by, by) := inf{v(x1 — x2) : x; € b;}. Note that this is not a metric on the space of
balls since d(by, by) = rad(b;), the radius of b;. Finally, for By, B, € B!, we define
D(B1, By) :={d(b1,b3) : b; € B;}. We enumerate D(B1, B;) € I in increasing order.
Let d; (B1, B>) be the i-th element of this enumeration. So d; (B;, B>) is defined for all
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i < r?, and for every i above the cardinality of D(By, B;), we set d; (B, B;) to be the
maximal element. This choice of an enumeration (with repetitions) of D(Bj, B,) does
not actually matter, as long as it is uniform.

Let us now fix a set W(x;¢) of £o-formulas, an £¢-definable set A, an integer r and
an Lo-definable family F' = (F))jep of functions F : K* — B!, We wish to give
sufficient conditions on ¥ and F' that will allow us to proceed with certain classical unary
constructions in valued fields, uniformly over realisations of W-types. In particular, this
will allow us to describe (local) types in # + 1 variables as generics of balls parametrised
by n variables.

Definition 3.2.2. Let p € SY(M).

(1) We say that p is adapted to F if, for each of the following statements, p implies
either this statement or its negation:

Fy(x)OU;, Fu;(x) where A, u; € A(M)and O € {=,C,C, <, <};

F(x) = F) (x) N F(x), where A, ; € A(M);

every ball in F) (x) is closed;

rad(F(x)) O d; (Fy, (x), Fu,(x)), where A, u; € A(M),0 € {=,<}andi < r?,

(2) We say that F is closed under intersections over p if for any A, u € A(M), there
exists & € A(M) with p(x) F F(x) N F/(x) = F/(x), and we further assume that
there exists n € A(M) such that Fy,(x) = {K}.

(3) We say that F is closed under complement over p if for any A, u € A(M) with
p(x) = F,(x) € F)(x), there exists ¢ € A(M) with p(x) = Fe(x) = Fy(x) \ Fy(x).

Note that, in the above definition, the £-structure on M does not matter.

Remark 3.2.3. The family of all constant functions to B (over any type) is an important
example of the above properties. This simple family suffices to prove Theorems 3.1.1 and
3.1.3 for X € K!. Dealing with higher arity definable sets, however, requires non-constant
functions.

Letnow p € S)‘?(M ) be adapted to F', and let us assume that F is closed under inter-
sections and complement over p.

Definition 3.2.4. Let A € A(M). We say that F) is irreducible over p if for every
neAM), p(x) F Fu(x) S Fy(x) implies p(x) = F,(x) =0V F,(x) = F)(x).

We define A,(M) := {1 € A(M) : F) irreducible over p}.
Lemma 3.2.5. For every A € A(M), there exist finitely many j; € Ap(M) with p(x)
Fp.(x) = U; Fu; (%)

Proof. Since p is adapted to F it suffices to check that the lemma holds at one real-
isation a of p. We can then proceed by induction on the cardinality of Fj(a), using
closedness under complement. ]
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Lemma 3.2.6. Forall A, u € Ap(M), we have
p(x) Ff(x) N F;(x) =0V Fy(x) < Fu(x) Vv Fu(x) < Fy(x).

Proof. Again, it suffices to check this for one a = p. We may assume that the balls in
F) (a) have radius equal to those in F,(a) (or smaller), and if the radii are equal and the
balls in F) (a) are open, so are the balls in F},(a). By closedness under intersection, we
find & € A(M) such that F,’(a) N F;/(a) = F,’(a). By hypothesis on the radii, F;(a) S
F) (a) and hence, by irreducibility, either Fg(a) = @ or F¢(a) = Fy(a). |

We will later need some further hypotheses (cf. Lemma 3.3.1) on ¥ and F leading to
the following definition:

Definition 3.2.7. Let W(x; 1) be a set of £o-formulas, and F = (Fj)ep : K¥ — Bl
be a definable family of functions, for some £(-definable A and integer r. We say that
(W, F) is a good presentation if, for any p € S;I’(M),

(1) pisadaptedto F;

(2) F is closed under intersection and complement over p;

(3) F has large balls over p, i.e., forallA,u € A(M) andi € Zx,,

o if p(x) F F)(x) # K, there is n € A(M) such that
p(x) Frad(Fy(x)) = di (Fa(x), F,(x)) A “Fp(x) is closed” A Fy(x) < Fp(x);

o if p(x) F ‘Fy(x) is open’ v rad(Fy (x)) < d;(Fj(x), Fu(x)), there is n € A(M)
such that

p(x) Frad(Fy(x)) = d;i (Fy(x), Fi.(x)) A “Fy(x) is open’ A Fj(x) < Fp(x).

Let A(xy;s) with |[y| = 1 be a set of £o-formulas. We say that (¥, F) is a good
presentation for A if (W, F) is a good presentation and every M -instance of A is a boolean
combination of M -instances of ¥ and formulas y € Fj(x)"” with A € A(M).

Let G := (Gy)pegn : K¥ — BY be an £,-definable family of functions. If, moreover,
for every w € (M), there exists A € A(M) such that G, = F), we say that (¥, F) is a
good presentation for (A, G).

An important point is that finite good presentations always exist:

Proposition 3.2.8. Let A(xy;s) be a finite set of Lo-formulas with |y| = 1 and let
(Go)oweca : K¥ — B be £o-definable. Then there exists a finite set W(x;t) of £o-
formulas and an Lo-definable F = (F3)zen : KX — BUY such that (W, F) is a good
presentation for (A, G).

We only sketch the proof; the details of the precise encodings can be found in [42,
Propositions 6.14, 6.15, 6.18 and 7.12].
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Proof of Proposition 3.2.8. The existence of W and F such that any instance of A is a
boolean combination of instances of W and y € F. f (x) follows by compactness from the
Swiss cheese decomposition. Enlarging F', we may assume it contains G and condition (3)
holds. At any point, enlarging W, we may assume that condition (1) holds. Since the
intersection of two balls is either empty or one of these balls, F' can be closed under
intersection by considering the family of r + 1-fold intersections of F. Closedness under
complement can be obtained by considering the finite boolean algebra generated by the
subsets, appearing in F', of any given F, (over some realisation of p). They are generated
in (uniformly) finitely many steps and hence can be considered as the elements of one
single family. This concludes the proof since the previous two steps preserve condition (3).

|

Remark 3.2.9. A good presentation (¥(x;¢), F') remains a good presentation as W
grows. So, given a set W(xy;¢) of Lo-formulas and an £¢-definable F := (F))jcp :
K* — Bl we say that (¥(xy; 1), F) is a good presentation if there exists ®(x;7) € ¥
such that (®(x;¢), F) is a good presentation.

We now fix a good presentation (W(xy;¢), F) with |y| =1, and p € S;I’y(M). Let
(U, F)betheset WU {y € F f (x)} of £o-formulas in variables xy and parameters fA.
Let S;I}F (M) denote the space of (¥, F)-types over M (in My).

Definition 3.2.10. For any &£ (M )-definable maps f, g : X — Y and every partial £ (M )-
type ¢ concentrating on X, we say that f and g have the same ¢-germ, and we write

[flq = [8lg- ifq(x) F f(x) = g(x).
Definition 3.2.11. For A, u € A(M), we write A <, u whenever

p(xy) F Fa(x) < Fu(x).

Note that <, is an &£ (M )-definable pre-order. Recall that elements of any B € Bl
cannot be nested. It follows that, for any two By, B, € Bl B, = B, if and only if
B} = B5. So the equivalence relation associated to <, is equality of p-germs. We there-
fore write A <, u whenever A <, u and they have distinct p-germs.

Moreover, when restricted to A, by Lemma 3.2.6, there is a largest element, K, and
the <,-upwards closure of any A € A, \ [0],, is totally ordered: (A, \ [9],, <p) is a tree.

Definition 3.2.12. Let £ € A,(M). The generic type of E above p is

nEe.p(xy) == p(xy)
U{yeFlf(x):ueE}
U{y¢FAU(x):AeA(M)/\V,ueEk<pu}.

This is the partial type of realisations of p such that y is in [ wek I lf (x), but in
no strict subset of the form F f (x). Provided ng,, is consistent it generates a com-

plete (¥, F)-type that we also denote ng, , € S;’J’,F (M). If we further assume that p is
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&£ (M )-definable (as a W-type), then A,(M) is an £(M )-definable set, and if & C A is
&£ (M )-definable then the type ng(ar),p is an £ (M )-definable (W, F)-type, provided it is
consistent. We denote it ng .

Definition 3.2.13. Let 7(x) be a partial £(M)-type and A C M. We say that 7 is
£ (A)-quantifiable over £ if, for every £-formula ¢(x;t), there exists an £(A)-formula
O(t) suchthat {b € M" : t(x) = @(x;b)} = 6(M). When it exists, we write YV x ¢(x;) :=
0(¢t) and Iz x @(x;t) = = (Vpx —e(x;1)).

Remark 3.2.14. (1) Such a type is often also a ‘definable partial type’ in the literature.
There is however some ambiguity on the terminology (see [42, Remark 7.2 (ii)]),
hence the present distinct choice of terminology.

(2) If, for some set A(x; y) of £o-formulas, p(x) is a complete £(A)-quantifiable A-
type over M, then it is &£(A)-definable, as a A-type — that is, V,x ¢(x;¢) exists for
every ¢(x;y) € A. As we will see in Lemma 3.3.1, under certain hypotheses on 7’
and A, the converse also holds.

‘We can now prove the crucial step in proving Theorems 3.1.1, 3.1.3: the relative arity 1
case. Let us now assume that p is £ (A)-quantifiable over £, where A = acl®*d(4) C M9,
and consistent with some &£ (A)-definable X C K*7.

Definition 3.2.15. For A, u € Ap,let A < p hold whenever
Vpxyy € Xx N FAU(x) —y € F/f(x),
where X, = {y : xy € X} denotes the fibre above x.

The relation < is an &£(A)-definable preorder on A, and we denote by = the associ-
ated equivalence relation. Since <, refines < on ©, := A, \ (J/=), this is also a tree
with root K/= and =-classes are <,-convex.

Lemma 3.2.16. For every A € ©,, if the generic 0y /= p of A/= over p is not consist-
ent with X, then A /= has finitely many <-daughters (i /| =)o<i<n € acl®{(A"A/=") in
®p/=. Moreover, n = 2 and p(xy) -y € Xx N F'(x) = \/, ., ¥ € F, (x).

Proof. Let us assume that /= , is not consistent with X, i.e., p(xy) U {(x,y) € X}
U{y € Fa(x)} U{y ¢ F,(x) : v < A} is not consistent. By compactness, there exist
(Vi)osi<m € Op(M) such that v; <A and p(xy) =y € X N F(x) =\, ,, ¥y € F)(%).
The existence of the w; now follows from the facts that any p < A is <-comparable to one
of the v; and that since the F,, are irreducible, the subtree with root A and leaves (v;); <m

embeds in the lattice of subsets of {0, ...,m — 1}, which is finite — we refer the reader to
[42, Claim 8.4] for details. Finally, if n = 1, we would have A < g, contradicting that
o is a daughter of A. m

Let @p = {n € O, : Voxy ‘F,(x) is closed’} and, for every A € A, let Y} =
{n € Op 1 Vpxy rad(Fy(x)) = rad(Fy(x))}.
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Lemma 3.2.17. One of the following holds:

o There exists a A € Op such that A/= € A and n) = , is consistent with X.

o Thereexists A= € Awith [Y;]p := {[F.lp : n € Y;} finite of arbitrarily large cardin-
ality.

Proof. Assume that X is consistent with no 71/= ,, where 1/= € A. Then, by
Lemma 3.2.16, ®,/= admits an initial finitely strictly branching discrete tree — that is,
every element has at least two daughters — with every branch infinite. Note that, for every
A € O, with A <, K, by the large ball property, there is & € A with A <, p and V,xy
‘Fu(x) is closed” A rad(F,(x)) = rad(Fy(x)). We may assume that F, is irreducible
over p. Then A = p or A is the unique <,-daughter of u. Note also that, by the large ball
property, ®, N K/= # @. It follows that ®,/= also admits an initial finitely branching
discrete tree, denoted Z ,, with every branch infinite.

Note that, for any two i, v € Y;, since V,xy rad(F,(x)) = rad(F,(x)), we see that
[Fulp = [Fv]p implies i = v, which implies that V,xy Flf(x) N F(x) # @, which,
by irreducibility, implies that [F,,], = [F,]p. so these three statements are equivalent. In
particular, the identity induces a bijection between [Y;], and Y, /=.

We now build, by induction, A; € A suchthat Y, /= C Ej, and |Yy, /=] = |[Y3,]p]
is finite and strictly increasing. Start with any A9 € ®, N K/=. Then Yo = [Falp
and Y, ,/= = Ao/= = K/=.If A; is built, let (1t;); <m enumerate all the <J-daughters
(in E,) of the elements in Y, /=. Let jo be such that, for all j, V,xy rad(FMj0 (x) <
rad(Fy,; (x)). For every v € YMO, by the large ball property, we find A € Y}, such that
v <p A. Since V,xy rad(Fy(x)) = rad(FMj0 (x)) < rad(Fy, (x)), we cannot have v < u;
and hence either v/=is in Y}, /= or it is one of the u;/=. So YM],O/E C &) is finite.

Furthermore, for every p;, by the large ball property, there exists v € YMO such that
wj <p v. It follows that, for every element of Y}, /=, either it or all of its daughters
(more than one) appear in Y}, o In particular, all the sisters of i, /= appear, and hence
1Yy, /=| > |Y3;/=|. Thus, we can choose Ai 11 = [jq. L]

We can now eliminate the second option in Lemma 3.2.17 by imposing a uniform
bound on the size of finite instances of (Y} )ea:

Corollary 3.2.18. Assume that
(E;OF) for every £(M)-definable family (Y;). of subsets of [Fa,lp := {[Filp : A € Ap}
such that for all z and [Fplp, [Fulp € Yz, p(xy) B ‘Fu(x) is closed’ A
rad(F(x)) = rad(F,,(x)), there exists n € Zxq such that, for all z, |Y;| < co
implies |Y;| < n.
Then there exists an £(A)-definable & C A, such that ng , is consistent with X. |
However, the family [YA], is not any definable family in [Fy ,],. It has certain geo-

metric properties that reflect those of X. In particular, with further hypotheses on X, we
can dispense with (E;"F) altogether, as we will see in Lemma 3.2.21.
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We now wish to apply the construction above in the pair (Mo, M) which is natur-
ally an &, p-structure enriched with the £-structure on M. To be precise and avoid an
unnecessary conflict of notation, we set up the following.

Notation 3.2. Let £ be some expansion of &£, and 77 some £1-theory of valued fields.
In the following lemma, we apply the above with T the theory of the pair M := (M, M),
where M, | T is sufficiently saturated and homogeneous, in the language £ := £p
consisting of the &£, p-structure enriched with the &£-structure on P — so My = M7.

Let us now introduce some useful terminology from [11]:

Definition 3.2.19. Fix n € Z~ invertible in K(M). For any ball b, we define b[n] :=
{a +n"Ya —c):a,c € b). Itis aball of radius rad(h) — v(n) around b, open if b is,
closed otherwise. For a set B of balls, we set B[n] := {b[n] : b € B}.

(1) An £(M;)-definable set X < K(M,) is n-prepared by some finite set C € K(M,) if
for every ball b € B(My) with b[n] N C = @, eitherb N X (M) =@ orb N X(My) =
b(My).

(2) We say that some £o(M;)-definable G : K* — KU'! n-prepares X € K1 (M,) if,
for every x € K(M1)", G(x) n-prepares X.

(3) We say that X € K"*1(M,) is n-prepared by F if there exists A € A(M) such that
F; has values in KI'l and n-prepares X .

Remark 3.2.20. By field quantifier elimination (Fact 2.2.7), if M is a pure henselian
field of characteristic zero, any £(M;)-definable X C K is p*-prepared, for some £, by
the finite set of roots of polynomials that appear in the (field quantifier free) definition
of X, where p is either 1 or the residue characteristic when it is positive.

Let also A1 = acl{’(41) € M, X € K*(M,) be £(A;)-definable, 4 = Ap =
acl®(Ay) and p € s;?y (M) be £p(Ap)-definable and consistent with X .

Lemma 3.2.21. Let ©(x;t) C W be such that (®, F) is a good presentation for V. Assume
that there is some n € Z-o N K*(M) such that

(P;’") the set X is n-prepared by F';
(FR,,) the interval [0,v(n)] C T'(My) is finite and K(M,) is perfect;
(Ix)  the residue field K(M,) is infinite.

Then there exists an £p(Ap)-definable & € Ap(Mo) such that ng p|m, is consistent
with X.

Proof. Let p be such that F,(x) n-prepares X, for all x. By Lemma 3.2.17, applied in
M = (M}, M,), either the conclusion of the lemma holds, or we can find /= € A4 with
[[Y2]p| > r. Then some element of Yy, say Fy, does not contain any point of F,(x).
Replacing A with any p < A in 8, such that |[i, A]| = |[0, v(n)]|, we may further assume
that Fj,(x) N Fy(x)[n]Y = @ — where, for any B € B<l B[n] := {b[n] : b € B} —and
that A < K.
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By Lemma 3.2.16, we have p(xy) -y € Xy N F’(x) = \/,_, » € F, (x), where
the (u;/=);<n are the daughters of A /=. By compactness, there exists some ¥ (xy) € p
such that g := ple = Vy ¥(xy) Ay € Xx N F)(x) = \/,;_, ¥ € F; (x). Since (®, F)
is a good presentation for W, there are « and (U;)n<i<m € Ap With = Y (xy) <> y €
F2 () \ Upsi<m Fyi, (x). In particular, p(xy) =y € F(x). It follows that k = K and
hence A < k. So, we have

g Fx)n X, | JF5 ).
i

Since A # @, there exists ac = p in some N; > M; such that ¢ € X; N Ff(a).
Let by € B(N7{) be the ball of F(a) containing c¢. Since Fy(a) N bo[n] = @, we have
bo N Xq(N1) = bo(Ny). It follows that bo(N71) € U; F;ji (a). By construction, bo(N7)
is not covered by any single ball in | J; Fy; (a). So {v(x —y) : x,y € bo(Ny)} has a
minimal element (realised by some x, y in distinct balls of | J; F,; (a)). Let b € B(N;) be
the smallest closed ball containing bo(N;). Then b(N;y) = bo(Ny) is covered by finitely
many of its maximal open subballs, contradicting hypothesis (Ix). ]

3.3. Quantifiable types

To use the above constructions in an inductive reasoning, we need a number of results on
quantifiable types. The first one is that ng , is itself quantifiable when p is. Recall our
general setup (Section 3) for this section.

For any finite set B of balls, let kp be the set of maximal open subballs of the balls
b € B andresg : BY — kg be the projection.

Lemma 3.3.1 (cf. [42, Corollary 6.9]). Let (W(xy;t), (Fi(x))ren) be a good presenta-
tion. Let p € S;I’y (M) be £(A)-quantifiable over &£, where A € M ®4. Assume that
(EOOI?) for any £(M)-definable (Y;); C [Falp and A € A(M) such that, for all z and
’ [Fulp € Yz, p(xy) = Fiu(x) S KF, (x), there exists n € Zxg such that, for all z,
|Y;| < oo implies |Y;| < n.
Then any £(A)-definable q € S;IJJ’,F (M) containing p is £(A)-quantifiable over £.

Proof. Let&:={leAp,:q(xy)lFye Ff(x)}. Then & is &£(A)-definable and ¢ = ng p.
If & does not have a <,-minimal element which is closed, for any £-formula ¢(xy;s)
ande € M*, g(xy) - ¢(xy;e) if and only if there exist A € E(M) and u € A,(M) with
A<p&andg(xy)Fye FAU(x) \ F,f(x) — @(xy;e) (see [42, Proposition 6.4]). So let
us assume that & has a <,-minimal element A which consists of closed balls. If p(xy) -
rad(F,(x)) = +o0o, then g(xy) I ¢(xy;e) if and only if p(xy) - F)tJO(x) — @(xy;e)
(see [42, Proposition 6.6]). If p(xy) b rad(F,(x)) # +oo, let

Yo :={ne€Ap:Vpxy Fu(x) Ckp, (x) Apxy o(xy;s) Ay € F;(x)}.

Let n be a uniform bound on the cardinality of finite [¥],, as in (EOOI?)'
j 2
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Claim 3.3.2. For every e € M®, q is consistent with ¢(xy;e) if and only if, for every
(1i)i<n € Np, WithVpxy Fpu, (x) €KF, (), Fpxy p(xy;e) Ay € Fﬁ)(x) \Ui<n Fii ().

Proof. Assume ¢ is not consistent with ¢(xy; e). By compactness, there exists
(ii)i<m € Ap suchthat u; <, & and Vpxy p(xy;e) Ay € FAL:)(x) = Viem ¥ € F (x).
By the large ball property, we may assume V,xy Fy, (x) € kFAO(x)- Choosing a min-
imal m, we may also assume that 3,xy ¢(xy;e) Ay € Flfl (x). In particular, u; € Y.
By definition of Y, for every u € Y,(M), we find ac = p such that ¢(ac; e) and
ceFl)c F/\% (a). So there is an i such that ¢ € F}; (a). By irreducibility, Fy,(a) =
F,; (a). It follows that [Y,], is finite and thus m < |[Ye]p| < n. L]

Since g F ¢(xy;e) if and only if g is not consistent with —~¢(xy; e), Claim 3.3.2
allows us to conclude the proof of Lemma 3.3.1. ]

We also need a better understanding of the interpretable set [FA],. Note that it is,
a priori, £ (M )-interpretable, which is exactly the kind of sets elimination of imaginaries
aims at describing. However, if p happens to be the restriction to M of a global &£((M)-
definable type, then [F], naturally embeds in an £o(M )-interpretable set. The goal
of the following lemmas is to give (necessary) hypotheses under which any definable p
satisfies that condition. Valued vector spaces will play an important role:

Definition 3.3.3. Let (K, v) be a valued field and V be a K-vector space. A valuation
onVisamapv:V — X where X is an ordered set with a maximal element co and an
action + of I', respecting the order, such that

e v(0) = o0;
o forallx,y € V,v(x + y) = min{v(x),v(y)};
e foralla e Kandx € V,v(a-x) = v(a) + v(x).
We say that a family (x;);e;r € V is separating if for every finite /9 C I and every
(ai)iery € K, v(Yjeq, @ixi) = minery (v(ai) + v(x;)).

The following lemma owes much to Johnson’s computation of the canonical basis of
definable types in ACVF (see [31, Section 5.2]).

Let g (x; yz) := V(Z|1\<d yixt) = V(Z|1|<d zrxh).
Proposition 3.3.4. Assume that
(Cy) for every n € Zx1, every L£(M)-definable valuation v on K" has a separating

basis;

(Cr) T has definably complete value group.
Then, for every A = dcl*(A) € M9, £(A)-definable p € Sy, (M) and algebraic exten-
sion K(M) < L, any q € Sy, (L) extending p and finitely satisfiable in M is £¢(§(A))-
definable.

Proof. For every field F with K = K(M) < F < L, we define a valuation v on the F-
vector space Vy (F) := F[x]<q of polynomials in variables x over F of degree at most d
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by v(P(x)) < v(Q(x))if v(P(x)) < v(Q(x)) € g. The valuation v on V;(K) is £(A)-
definable. By hypothesis (Cy ), it has a separating basis (P;); € Vi (K).

Claim 3.3.5. (P;); is a separating basis of V(L) over L.

Proof. We may assume that K < L is finite. By [32, Remark 2.7], the valuation on L
(interpreted in K) is then &£ (M )-definable and hence, by hypothesis (Cy ), also has a
separating basis (c;); € L over K. Letb; = ) _; b; jcj € L, where b; ; € K. Since q is
finitely satisfiable in M, if v(3_; (3_; bi,j Pi)c;) > min; [v(D_; bi,j Pi) + v(c;)] then there
exists an a € M such that v(3_;(3_; bi,j Pi(a))cj) > min;[v(}_; bi,; Pi(a)) + v(c;)],
contradicting that (c;); is separating over K. So

v(; b; Pi) = v(Z(Z bi,; Pi)cj)
bl (Shor) v

rgnjn[V(bi,j) +v(cj) +v(P)]

/A

min[v(b;) + v(F;)]
U(Z b,‘ P,'). |

We now define the L-archimedean equivalence on v(Vy(L)): v(P) ~7° v(Q) 