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Abstract. Suppose & — B is a non-isotrivial elliptic surface defined over a number field, for
smooth projective curve B. Let k denote the function field Q(B) and E the associated elliptic
curve over k. In this article, we construct adelically metrized R-divisors EX on the base curve B
over a number field, for each X € E(k) ® R. We prove non-degeneracy of the Arakelov—Zhang
intersection numbers Dy - Dy, as a biquadratic form on E(k) ® R. As a consequence, we have
the following Bogomolov-type statement for the Néron—Tate height functions on the fibers E;(Q)
of & over t € B(Q): given points Py, ..., Py € E(k) with m > 2, there exist an infinite sequence
{tn} C B(Q) and small-height perturbations Pi/,t,l € kg, (Q) of specializations P; 1, such that the
set {Pl/ PATERE P,’n,tn} satisfies at least rwo independent linear relations for all n, if and only if the
points P1, ..., Py, are linearly dependent in E (k). This gives a new proof of results of Masser and
Zannier (2010, 2012) and of Barroero and Capuano (2016) and extends our earlier 2020 results. In
the Appendix, we prove an equidistribution theorem for adelically metrized R-divisors on projec-
tive varieties (over a number field) using results of Moriwaki (2016), extending the equidistribution
theorem of Yuan (2012).

Keywords. Arakelov—Zhang pairing, real metrized divisors, elliptic surfaces, Néron—Tate pairing,
Betti coordinates

1. Introduction

Suppose & — B is an elliptic surface defined over a number field K. That is, & is a
projective surface, B is a smooth projective curve, and there exists a section O : B — &,
all defined over K, such that all but finitely many fibers E;, fort € B (I? ), are smooth
elliptic curves with zero O,. We say that the elliptic surface & — B is isotrivial if all the
smooth fibers E; are isomorphic over K. Let k denote the function field K (B); we also
view the surface & as an elliptic curve E over the field k.

In this article, we study the geometry and arithmetic of the set £ (k) of rational points
over the function field kK when & — B is not isotrivial. To this end, we consider height
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functions associated to adelically metrized R-divisors on the base curve B over the num-
ber field K. We study the Arakelov—Zhang intersection of these metrized R-divisors and
prove that it induces a non-degenerate biquadratic form on E (k) ® R. We relate this
theorem to existing results, and provide, for example, a new proof of results of Masser
and Zannier and of Barroero and Capuano on linear relations between specializations of
independent sections.

1.1. Heights and the Arakelov—Zhang intersection of points in E (k)

Assume that & — B is not isotrivial. Let A £ denote the Néron—Tate canonical height
on E(k), associated to the choice of a divisor O on E; let h E, denote the corresponding
canonical height on the smooth fibers E, (K) for (all but finitely many) ¢ € B(K). By non-
isotriviality, a point P € E(k) satisfies hE (P) = 0 if and only if it is torsion on E. We
denote the specializations of P by P; in the fiber E;. Tate [36] showed that the canonical
height function .

he () = hg, (P) (1)

is a Weil height on the base curve B(K), up to a bounded error. More precisely, there exists
a Q-divisor Dp on B of degree ﬁE(P) such that hp(t) = hp, (t) + O(1), where hp,, is
a Weil height on B (I? ) associated to D p. In [14], we showed that we can also understand
the small values of the function (1.1) from the point of view of equidistribution. Assume
that & £ (P) > 0 (so that the function / p is non-trivial) and that, as a section, P : B — & is
defined over the number field K. Building on work of Silverman [30,32,33], we showed
that zip is the height induced by an ample line bundle on B (with divisor D p) equipped
with a continuous, adelic metric of non-negative curvature defined over K, denoted by D p
and satisfying
Dp-Dp =0

for the Arakelov—Zhang intersection number introduced in [45]. In particular, we can
then apply the equidistribution theorems of [10, 37, 42] to deduce that the Gal(K/K)-
orbits of points #, € B(K) with height i p (t,) — 0 are uniformly distributed on B(C)
with respect to the curvature distribution wp for Dp at an archimedean place of K. A
similar equidistribution occurs at each place v of K with respect to a measure wp ,, on the
Berkovich analytification B3" [14, Corollary 1.2].

As a consequence of our main result in [14], and combined with the results of Masser
and Zannier [21,22], we have

Dp-Dg > 0forall P,Q € E(k), (1.2)
Ep . 5Q =0 <= ecither P or Q is torsion, or
Ja > Osuch that hp(t) = ahg(t) forall t € B(K)
<= 3 (n,m) € Z*>\ {(0,0)} such that nP = mQ.

In particular, as the Néron—Tate bilinear form

(P,O)g = L(he(P + Q) —he(P) - hE(0))
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is positive definite on E (k) ® R, we have
Dp-Dg =0 <= he(P)hg(Q) = (P.0)} (13)

forall P, Q € E(k).
The main result of this article is the proof of a stronger version of (1.3):

Theorem 1.1. Let & — B be a non-isotrivial elliptic surface defined over a number
field K. Let E be the corresponding elliptic curve over the field k = K(B). There exists
a constant ¢ > 0 such that

c(he(PYhe(Q) = (P, 0)}) < Dp - Do < ¢ (he(P)he(Q) — (P, 0)})
forall P, Q € E(k), where (-,-) g is the Néron—Tate bilinear form on E (k).

The upper bound on Dp - 5Q in Theorem 1.1 is relatively straightforward. The dif-
ficulty lies in the lower bound; in Section 6, we observe that this is equivalent to proving
that Dy - Dy > 0 for all independent X,Y € E(k) ® R.

1.2. Motivation and context

Theorem 1.1 was inspired by the statements and proofs of the Bogomolov Conjecture [35,
38,46], extending Raynaud’s theorem that settled the Manin—-Mumford Conjecture [27],
and the “Mordell-Lang plus Bogomolov” results of Poonen [26] and Zhang [48], in the
spirit of the conjectures of Pink [25] and Zilber [49]. Moreover, as we will explain in Sec-
tion 6, we view Theorem 1.1 as an analog of Zhang’s Conjecture [47, §4]; the conjecture
was formulated for families of abelian varieties 4 — B of relative dimension > 1 and
does not hold as stated for elliptic surfaces [47, §4, Remark 3]. (See [44] for background
and additional references.)

Theorem 1.1 can be seen as a Bogomolov-type bound. The intersection number
Dp - EQ is related to the small values of the heights ﬁE, (P;) + i;E[ (Q;) in the
fibers E;(K). Indeed, as a consequence of Zhang’s inequality [45, Theorem 1.10] applied
to the sum Dp + Dy, and the fact that hp(¢) > 0 at all points ¢ € B(K) for every
P € E(k) [14, Proposition 4.3], we have

Dp- Do
he(P) +hg(Q)
for every pair of non-torsion P, Q € E(k). Here the essential minimum is defined
by essmin(f) = supy infyep\r f(x) with supremum over all finite sets F in B(K).

Bogomolov-type bounds have found many applications in problems of unlikely intersec-
tions. In Section 6, we explain that Theorem 1.1 is equivalent to the following:

1
Eessmin(hp +ho) < <essmin(hp + hp) (1.4)

Theorem 1.2. Let & — B be a non-isotrivial elliptic surface defined over a number
field, and let = : €™ — B be its m-th fibered power with m > 2. Let §™2} denote the
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union of flat subgroup schemes of &™ of codimension at least 2, and consider the tubular
neighborhood

7™ ¢)
={P € &"(Q): 3P € 6™2Q) with n(P) = n(P’) and 28%)(13 — Py <e)

Then, for any irreducible curve C in €™, defined over a number field and dominating B,
there exists € > 0 such that C N T(§™2} €) is contained in a finite union of flat subgroup
schemes of positive codimension in ™.

See, e.g., [5, Lemma 2.2] for definitions and a classification of flat subgroup schemes.
Our main result in [14] treated the intersections of C with the smaller tube 7(& m.{m} €),
the torsion subgroups.

The conclusion of Theorem 1.2 with € = 0 is a result of Barroero and Capuano [5,
Theorem 2.1]: using techniques involving o-minimality and transcendence theory, similar
to those of [21,22] (which treated the intersections of curves C with T (& m{m} 0)), they
show that C N T(&€”{2} 0) is contained in a finite union of flat subgroup schemes of
positive codimension. Thus Theorem 1.2 may be seen as a Bogomolov-type extension of
[5, Theorem 2.1], while providing a new proof of results in [5,21,22]. The result in [5]
is extended in [3, 4] where Pink’s conjecture [25, Conjecture 6.1] is proved for curves
in §™. We may also view Theorem 1.2 as a Bogomolov-type extension of a special case
of Pink’s conjecture. However, Pink’s conjecture also considers algebraic subgroups of
codimension at least 2 within fibers having complex multiplication, which we do not treat
here, restricting our study to flat subgroup schemes.

If the elliptic surface & — B is isotrivial, the conclusion of Theorem 1.2 with € = 0
was established by Viada [40] and Galateau [ 16]. Moreover, in this isotrivial setting, Viada
proved the analogue of Theorem 1.2 (for positive effective €) in [41, Theorem 1.4], [40,
Theorem 1.2], providing in particular new proofs of instances of earlier results by Poo-
nen [26] and Zhang [48] and extending the work in [28]. It is worth pointing out that the
aforementioned results invoked a different Bogomolov-type bound than the one in Theo-
rem |.1, established by Galateau [16]. In the case ¢ = 0, an analogous statement for curves
in constant abelian varieties is established in [18]. The authors use, amongst others, tech-
niques from o-minimality. In the setting of the multiplicative group G/, Habegger [17]
established results of this flavor in arbitrary dimension, generalizing a result of Bombieri—
Masser—Zannier [9].

We remark that the analogues of Theorems 1.1 and 1.2 can be formulated for arbitrary
fiber products of elliptic surfaces over a given base curve B, as we did in [14, Theo-
rem 1.4]. For example, Theorem 1.1 would assert that 53, P D #,0 1s comparable with
h e(P )hA F(Q) if the two non-isotrivial elliptic surfaces & — B and ¥ — B are not isoge-
nous. Theorem 1.2 would read exactly the same upon replacing & in the statement with
the fibered product & xp --- Xg &,, of any m > 2 non-isotrivial elliptic surfaces & — B.
Our methods here would yield these results, and in particular [6, Theorem 1.1] of Barroero
and Capuano. We omit them in this article to simplify our exposition.
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1.3. Metrized R-divisors on curves and proof strategy

For each t € B(K) with E; smooth, the canonical height h E, induces a positive definite
quadratic form on Et(I?) ® R; see, e.g., [34, Ch. VIII, Prop. 9.6]. The height func-
tions 1p on B(K), defined by (1.1) for P € E (k), therefore make sense for elements of the
finite-dimensional vector space E (k) ® R. In Theorem 3.6, we prove that every non-zero
element X € E(k) ® R gives rise to a continuous, adelic, semipositive metrization EX
of an ample R-divisor on the base curve B, defined over a number field K, with height
function hy () = };E, (X;) fort € B(K) when E; is smooth, satisfying Dy - Dy = 0.

Consequently, we are able to employ results of Moriwaki [24] in our proofs of Theo-
rems 1.1 and 1.2. Specifically, we use his arithmetic Hodge index theorem for adelically
metrized R-divisors on curves defined over a number field [24, Corollary 7.1.2] to deduce
that Dy - Dy = 0 for X,Y € E(k) ® R implies that Dy ~ Dy. As we will show in
Section 6, the proofs of Theorems 1.1 and 1.2 are then reduced to showing which points
X,Y give rise to isomorphic metrized R-divisors on B.

To complete the proofs of Theorems 1.1 and 1.2, we examine the curvature distri-
butions for Dy. Fix an embedding of the number field K into C. In [14], the curvature
measure wp for the metrized divisor Dp of P € E(k), at the given archimedean place,
is computed as the pullback by P of a certain (1, 1)-form on &(C), via a dynamical con-
struction. In [13], it is shown that wp = dby A db, in the Betti coordinates (b1, b;) of P.
We explain in Section 7 that elements X € E(k) ® R are also represented by holomor-
phic curves in the surface &, and the Betti coordinates of X are real linear combinations
of the Betti coordinates of points P; € E (k). We use this to prove that the measure wy,
at a single archimedean place of the number field K, is enough to uniquely determine the
pair of points X and —X:

Theorem 1.3. Fix X and Y in E(k) ® R and an archimedean place of the number
field K. Let wxy and wy denote the curvature distributions on B(C) at this place for
the adelically metrized R-divisors EX and 5y. Then

wy =wy < X =4+Y.

We are grateful to Lars Kiihne for helping us with the proof of Theorem 1.3; we
use the holomorphic-antiholomorphic trick of André, Corvaja, and Zannier [1, §5] and
a transcendence result of Bertrand [7, Théoréme 5]. A special case of Theorem 1.3 was
proved by a different method in [15, Proposition 1.9].

1.4. Small points

In the Appendix, we show that heights associated to semipositive metrized R-divisors
satisfy an equidistribution law. As we shall see, Corollary A.2 applies to sequences in
the base curve B where the specializations of points in E (k) satisfy non-trivial linear
relations. For example, generalizing [14, Corollary 1.2], we obtain
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Theorem 1.4. Let & — B be a non-isotrivial elliptic surface defined over a number
field K, and let E be the corresponding elliptic curve over the field k = K(B). Suppose
that Py, ..., Py, is a collection of m > 1 linearly independent points in E(k), also defined
over K as sections of & — B. Suppose that {t,} C B(K) is a non-repeating sequence
where

al,n Pl,tn + azn P2,tn + ot amn Pm,t,, = Otn (L.5)

forain € Z,with|ai, @+ Amp) = [X1 1+ Xp] in RP™ ! asn — oo. Set
X=x1P1+---+x,P, € E(k)@R

Then h (t,) — O for the height function associated to the metrized R-divisor Dyx. More-
over, for each place v of K, the Gal(K / K)-orbits of t,, in B(K) are uniformly distributed
on B with respect to the probability measure

1 1
Hxpop = =———Wxy = % <Z<x,2 - inxj)wPi,v + inxjwl’i+1’,/,v)~
hE(X) hE(X) i J#i i<j

A sequence {t, }»>0 is said to be non-repeating if t, # t,, for all n # m.

Remark 1.5. For non-zero X € E(k) ® R, the height #x will have only finitely many
zeros unless a positive real multiple ¢ X is represented by an element of E (k); see Propo-
sition 4.5. On the other hand, there is always an infinite sequence {t,} for which (1.5) is
satisfied, so that ess min(hy) = 0; see Proposition 4.1.

1.5. Example
Let E, be the Legendre elliptic curve defined by

y2=x(x—1)(x—1)

for t € Q \ {0, 1}. By filling in the family over ¢ = 0, 1, oo, we obtain an elliptic surface
€ — B with B = P! defined over Q. Here k = Q(r). It is easy to see that rank E (k) = 0.
However, by choosing any collection of m distinct points x1, ..., X, € Pl (@) \ {0, 1, 00},
we can construct an elliptic surface & — B’ with rank E’(k’) > m where k' = Q(B’).
Indeed, we let Py; be a point with constant x-coordinate equal to x;. As the points x; are
distinct, the structure of the field extensions k;/ k, determined by each Py, , implies that
the points must be independent. We pass to a branched cover B’ — B such that each Py,
defines a section over B’ and set k’ = Q(B’). These examples were considered in [21]
and the associated measures wp,, On B’(C) (or rather their projections to B = P!) were
computed in [15].

1.6. Outline of the article

In Section 2, we fix some notation and introduce metrizations on R-divisors on curves
defined over a number field, and we examine their intersection numbers. In Section 3, we
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prove that each non-zero element X € E (k) ® R induces a continuous, adelic, semipos-
itive metrization Dy on an ample R-divisor on the base curve B. In Section 4, we study
the sequences of small points for the height function 4y on B(Q) associated to Dy. In
Section 5 we lay out the basic properties of the intersection number (X, Y) +— Dy - Dy
as a biquadratic form on the vector space E(k) ® R. In Section 6, we analyze the sig-
nificance of Dy - Dy = 0 for non-zero X,Y € E (k) ® R, and we explain how to relate
Theorems 1.1 and 1.2. We provide a list of equivalent formulations of these theorems in
Theorem 6.4, including one inspired by Zhang’s Conjecture in [47]. Section 7 contains a
proof of Theorem 1.3, and we complete the proofs of Theorems 1.1 and 1.2 in Section 8.
In the Appendix, we provide a proof of equidistribution results for heights associated to
R-divisors on projective varieties.

2. R-divisors on curves and arithmetic intersection

In this section, we introduce metrizations on R-divisors on curves, following Mori-
waki [24], and their intersection numbers.

2.1. Notation

Here, and throughout this article, K denotes a number field. We let Mg denote its set of
places, with absolute values | - |, satisfying the product formula

[T b2l =1 2.1

vEMK

for all non-zero x in K. Here K, denotes the completion of K with respect to | - |,,. We

set
e [Ky : Qy]
YUK :Ql

For each place v € Mg, we let C,, denote the completion of an algebraic closure of K.

2.2)

We let B denote a smooth projective curve defined over a number field K. For each
v € Mk, we let B" denote the Berkovich analytification of B over the field C,,.

We let Divz (B) denote the group of divisors on B.

Throughout, k denotes the function field K (B). Its places are in one-to-one correspon-
dence with the elements ¢ € B(K), with absolute values given by | f|; = exp(—ord,(f))
for each non-zero f € K(B).

2.2. Metrizations of R-divisors on curves

Let B be a smooth projective curve defined over a number field K. Let D = )", a; D; be
an ample R-divisor on B, with @; € R and D; € Divgz(B) with support in B(K), invari-
ant under the action of Gal(K/K). By rewriting the sum if necessary, we may assume
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that each D; is associated to an ample line bundle L; that extends over the Berkovich
analytification B:" for each place v of K.
A continuous, adelic metrization for D is a collection of continuous functions

gv:Bi"\suppD — R

for v € Mg such that

(1) for each v, the locally defined function v, := g, + > _; a; log| f;|» extends contin-
uously to the support of D, where f; is a local defining equation for D; defined
over K;;

(2) there exists a model (B, D) of (B, D) over the ring of integers Ok such that g, is
the associated model function for all but finitely many v, or equivalently, ¥, = 0 at
all but finitely many places v for the associated { f; } near each element of supp D.

See [24, §0.2] and [11, §1.3.2] for the definition of model functions. We denote this data
by D = (D.{gv}vemy)-

The metrization is semipositive if each g, is subharmonic on Bi" \ supp D. An
R-divisor D on B with a collection of continuous functions g, : Bi" \ supp D — R, for
v € Mk, is said to be integrable if D = D; — D5 and g, = gy,1 — gv,2 for two adelic,
semipositive metrizations on ample R-divisors D; =(D; { gi.v}). We write D=D,—D,.
An associated height function is givenby hs = hp —hp,.

Moriwaki [24] calls a semipositive D a relatively nef adelic arithmetic R-divisor on B.
This extends Zhang’s [45] notion of an adelic, semipositive metric on a line bundle to
R-divisors. Indeed, for D an ample divisor on B associated to a line bundle L, equipped
with an adelic metric {|| - ||y }vem, , and s a meromorphic section of L with (s) = D, we
put g, = —log ||s||» at each place v of the number field K.

For any integrable D, we let @ b, denote its curvature distribution on Bi"; by defi-
nition, this is a (signed) measure of total mass deg D, equal to the Laplacian of g, away
from supp D. See, for example, [2] for more information about the distribution-valued
Laplacian on Berkovich curves. For semipositive D, the measure @ b, 18 positive, and its
associated probability measure is denoted by

1
H’E,U = dengB,U'

There is an associated height function on B(K) defined by

Iy
hs = _ v (X)), 2.3
p) UEXM:K |Gal(K/K) - x| x/eGal(XK_:/K)-xg ) @3

for x & supp D. Recall that r, was defined in (2.2). For any rational function ¢ on B
defined over K, and for any real a € R, note that

Iy ,
h n = - - - 1
D(x) UGZM:K |Ga1(K/K) . xl x,ecajl(lz:/K)'x(gv alog |¢|U)(-x )
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away from (supp D) U (supp(¢)), from the product formula (2.1). This allows definition
(2.3) to extend to the points x € supp D, by choosing any ¢ such that x € supp(¢) and
a such that g, — a log |¢|, extends continuously at x for every v. For an R-divisor D’ =
>, bilx;] with support in B(K), we will write

hp(D') = "bihpy(x;).

2.3. Intersection

For divisors Dy, D, € Divz(B) associated to line bundles L; and L,, respectively,
equipped with continuous, adelic metrics D and D,, the arithmetic intersection num-
ber is defined in [45] (see also [11]) as

Bi-Bai=hg, () + 3 o [ lozllsal 5, o,

vEMK

= hp, ((52)) + b, (1) + D rv/ (—loglls2ll 5, )dwp, \ = 8s)))

veEMg

= hp,((2) + hp, (s1) + Y rv/ (=log szl 5,,, ) A(=log|ls1l 5, ,)

vEMK

=D, - Dy, (2.4)

where s; is a meromorphic section of L; defined over K, for i = 1,2, with divisors (s1)
and (s,) of disjoint support. For the continuous, adelic metrizations of R-divisors, we
extend by R-linearity, so that

Dy-Dy=hp (D2)+ ) r,,/ €5, 405, , = Dy - Dy. (2.5)

veEMK

Remark 2.1. The intersection number (2.5) coincides with @(5 152) of [24]. Indeed,
[24, Theorem 4.1.3] states that each D can be uniformly approximated by metrizations
associated to models, and it is known that the intersection numbers coincide for these
model metrics [23, Proposition 2.1.1].

Now suppose that D is an ample R-divisor on B. We say D is normalized if its self-
intersection number satisfies
D-D=0.

Note that any continuous, adelic metrization on the ample D can be normalized by adding
a constant to g, at some place.

Foreacha e R and D = (D {gv}), we write a D for the pa1r (aD, {agv 1. Normalized
metrized divisors D1 and D2 on B are isomorphic (written D1 ~ D2) if Dl D2 is
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principal, meaning that there are rational functions ¢1, . .., ¢, € K(B) and real numbers
ai,...,da; such that

m

51 — 52 = Zai(((bi)’ {_log |¢i|v}v€MK)‘

i=1

Note that by the product formula the height function / 5 depends only on the isomorphism
class of D.

We will make use of Moriwaki’s arithmetic Hodge-index theorem in the following
form:

Theorem 2.2 ([24, Corollary 7.1.2]). Suppose Dy and D, are normalized continuous
semipositive adelic metrizations on ample R-divisors with deg D1 =deg D». Then D1 - D,
>0, and Dy - Dy = 0if and only if D1 and D, are isomorphic.

Proof. Set D = D — D5, so that the underlying divisor D has degree 0, and
D-D = -2Dy-D,.

From [24, Corollary 7.1.2], we know that D - D < 0 with equality if and only if D is
principal, up to addition of a constant ¢ € R to the metrization g, at some place v. But
then 51 . 51 = 52 . 52 + 2cry deg D5 for this constant ¢, so the normalization of D 1
and D, implies that ¢ = 0. ]

2.4. Essential minima

Following [45], the essential minimum of the height / 5 is defined as

e1(D):=sup inf hp(x), (2.6)
F xeB(K)\F

with supremum over all finite subsets F of B(K), and we put
e2(D):= inf_ hj(x).
xeB(K)

Theorem 2.3 ([45, Theorem 1.101). For any adelic, semipositive metrization D of an
ample R-divisor D, we have

> (@(D) + ex(D))

Proof. Zhang [45, Theorem 1.10] proved the result for ample line bundles equipped
with adelic, semipositive metrics. It also holds for metrizations of R-divisors because
the height function associated to an R-divisor is a uniform limit of heights associated to
Q-divisors, and the intersection number is a bilinear form on metrized divisors. n

Using the upper bound on D - D in Theorem 2.3, we can extend Theorem 2.2 to
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Theorem 2.4. Suppose Dy and D, are normalized semipositive adelic metrizations on
ample R-divisors of the same degree, and suppose the essential minimum of at least one
of the D; is 0. Then the following are equivalent:

(1) Dy -D, =0;

2) Dy and Dy are isomorphic;

(3) hp, = hp, on B(K);

4 hp, = h52 at all but finitely many points of B(K);

(5) there exists an infinite non-repeating sequence t, in B(K) for which
Tim (h, (tn) + B, (1)) = 0.

Proof. We have (1)< (2) from Theorem 2.2. The definition of the height function, in view
of the product formula, implies that (2)=>(3), and we clearly have (3)=(4). The essential
minimum being 0 for D; or for D, gives (4)=>(5). Finally, assume (5). Theorem 2.3
implies that e} (Ei) > (0 fori = 1,2, because lji is normalized. Therefore, we also have
e1(D1 + D5) > 0 for the essential minimum of the sum /4 b, T h Dy- The existence of the
sequence {t,} thus implies that e;(Dy + D;) = 0. As Dy - D > 0 from Theorem 2.2
and D; - D; = 0 for i = 1,2 by assumption, we apply Zhang’s inequality (Theorem 2.3)
to 51 + 52 to obtain

)

0 (D1 + D) > 2Dy - D, >
= e _—_—
e 2 ~degD; +deg D, —

which allows us to deduce condition (1). ]

We will use the equivalences of Theorem 2.4 repeatedly in our proofs of Theorems
1.1 and 1.2.

3. A metrized R-divisor for each element of E(k) ® R

Throughout this section, we let & — B be a non-isotrivial elliptic surface defined over a
number field K, and let E be the corresponding elliptic curve over the field k = K(B).
We denote the zero by O € E (k). As E(k) is finitely generated, we enlarge K if needed
so that all sections of & — B are defined over K. Recall that points Py,..., P, € E(k)
are independent if the relation

arPr+--+amPm=0

in E(k) with a; € Z implies thatay = --- = a,, = 0.

In this section, we show that each non-zero element X € E (k) ® R naturally gives rise
to an adelic, semipositive continuous metrization Dy associated to an ample R-divisor
Dyx on B; see Theorem 3.6. For P € E(k), these metrizations on R-divisors coincide
with the adelically metrized line bundles on B that we studied in [14]. In §3.4, we observe
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that the assignment X — EX is quadratic, in the sense that 5;( ~ 5( x,x) for a bilinear
operator (X,Y) — E(X’y) = %(EXHI — Dx — Dy)on E(k) ® R.

We begin by recalling the basic properties of Néron—Tate heights and their local
decompositions.

3.1. Néron—Tate heights

Let ¥ be a number field or a function field of transcendence degree 1 in characteristic 0.
We let M ¢ denote its set of places. Let E/¥ be an elliptic curve with origin O, expressed
in Weierstrass form as

E ={y*+aixy + a3y = x> + a;x> + a4x + as}
with discriminant A. Denote by
hg : E(F) — [0, 00)
a Néron-Tate canonical height function; it can be defined by

hep) = L fim PP

2 n—o00 n2

where £ is the naive Weil height on P! and x : E — P! is the degree 2 projection to the
x-coordinate.

For each v € Mg, recall that %, denotes the completion of ¥ with respect to | - |,
and C, denotes the completion of the algebraic closure of #;. The canonical height has a
decomposition into local heights, as

. 1 .
he(P) = Gal(7 /%) P| > > rAes(Q)

Q€Gal(F /¥)-P vEM 5

for all P € E(f{‘f:) \ {O}, with r, defined by (2.2) in the number field case, and r, = 1
for function fields. The local heights Ag , are characterized by the three properties [31,
Chapter 6, Theorem 1.1]:

(1) A E.v is continuous on E(C,) \ {O} and bounded on the complement of any v-adic
neighborhood of O;

(2) the limit of )A&E,U(P) — %1og |x(P)|y exists as P — O in E(Cy);
(3) forall P = (x,y) € E(Cy) with2P # O,

AEow(2P) = 4hg o(P) —log |2y + arx + asly + log|Al,.  (3.1)
Property (3) may be replaced with the quasi-parallelogram law

AEw(P + Q)+ Ago(P — Q) = 2)g o (P) + 2A£ (Q)
—log|x(P) —x(Q)ly + £ log|Aly (3.2)
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under the assumption that none of P, Q, P 4+ Q,or P — Q is equal to O. Note that iE,v
is independent of the choice of Weierstrass equation for £ over . It is useful to recall
also the triplication formula: if 3P # O, then

AEw(3P) = 9Ag »(P) —log |(3x* + bax® + 3bax? + 3bex + bg)(P)|y — 2 log |Aly,
(3.3)

where b; are the usual Weierstrass quantities; see, e.g., [31, p. 463].

3.2. Metrized divisors for elements of E (k)

Fix a non-torsion P € E (k). Define

Dp = Z iE,ordy(P)[y]'
y€B(K)

We remark that /A\E,Ordy (P) € Q [19, Chapter 11, Theorem 5.1], so Dp is a Q-divisor
on B. As P is defined over K, the divisor is Gal(K /K )-invariant.

In [14, Theorem 1.1] we established that Dp can be equipped with an adelic, semi-
positive, continuous and normalized metrization

Dp := (Dp.{Apv}vemy) (3.4)

over the number field K, where Ap, denotes the extension of ¢ — A E,v(Pr) to Bi". It
follows that the associated height functions satisfy

hp(t) :=hp, (t) = he,(P)

for all # € B(K) for which E, is smooth. Both minima e; (Dp) and e>(Dp) (defined in
§2.4) are equal to O [14, Proposition 4.3]; this allowed us to conclude that Dp-Dp =0
from Theorem 2.3.
For O € E(k), we set
50 = (0’ 0)7

the trivial divisor with all functions g, equal to 0. For torsion points 7 # O € E(k),
the metrized divisor D7 can also be defined by (3.4), with A7, () := A E,.v(Ty) for all
t € B(K) with E; smooth. The following proposition is key for the passage from E (k)
to E(k) @ R.

Proposition 3.1. The metrized divisor Dp is well defined for P in E(k)/E (k)wrs, up to
isomorphism. Moreover, for each m > 1 and any set of independent points Py, ..., Py, €
E (k) and integers ay, . .., am, the following metrized divisors are isomorphic:

m
5a1P1+~~~+aum ~ Z(alz —da; Zaj)ﬁpi + Z aiajﬁpi+pj. (3.5)
i=1

J#i 1<i<j<m



L. DeMarco, N. M. Mavraki 3652

Remark 3.2. The proposition implies, in particular, that the functions

m
t I—)Z(aiz—aizaj))tpi,v(l‘)‘i‘ Z aiajAP,-+P_,-,v([)
i=1

J#i 1<i<j<m

are subharmonic on BJ" (away from the points ¢ where Ap, (¢) or Ap, 1 p; (1) is equal
to 00), for all choices of a; € Z, and at every place v of K.

We begin with a lemma (cf. [31, Exercise 6.4]):

Lemma 3.3. Fixa P € E(k). For each non-zero m € Z with |m| > 2 such that mP # O,
there exist h € K(B) and a constant ¢ € Q such that

AE,w(mP) = m?*Ag, o (P;) + clog |h(1)],

at every place v and for each t € B(K) such that E; is smooth. If P is torsion of order
m > 2, we have

A0 (Pe) = clog [h(0)]y
for some ¢ € Q and h € K(B).

Proof. Upon replacing P by — P, it suffices to prove the statement for m > 2. The dupli-
cation formula (3.1) provides the desired result for m = 2, assuming that 2P # O. Now fix
any m > 3 and P € E(k), and assume thatmP # O, (m —1)P # O and (im —2)P # O.
Then the quasi-parallelogram law (3.2) implies

AE,w(mP) = 23 g, »((m = 1)Pt) + 24k, (Pr) — A, »((m —2) P;)
—log|x((m — 1) P;) — x(Py)|, + Llog|A¢l, (3.6)

for each t € B(C,) such that E; is smooth and mP; # O;, (m — 1) P, # O, and
(m — 2)P; # O, and therefore for all t € B(C,) by the continuity of the local height
te> A E,v(P:) € RU {£o0}. The desired relation, for all non-torsion points and for all
m > 3, then follows from (3.6) by an easy induction.

Now suppose that 2P = O with P # O. Then 3P = P # O, and the triplication
formula (3.3) implies that

AE,w(3P:) = 9Ag, o (P;) —clog [h(t)]y = Ag, v (Py)

for a constant ¢ € Q and & € K(B) and for all but finitely many ¢. The equation then holds
for all t € B(C,) by the continuity of the local heights, and it implies that A E,v(Pr) =
Slog [h(1)]y.

For a torsion point P of order 3, we have 2P = —P # O, so we may apply the
duplication formula (3.1) to see that

Mg, 0 (2P) = 4dg, o (P) — clog |h(0)]y = Ag, o(—P;) = AE, »(Py)

for a constant ¢ € Q and & € K(B). It follows that /A\Et,v(P,) = S log |h(t)]y.
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Finally, suppose that P is torsion of order #n > 4, and note that (n — 1) P = —P # O,
(n—2)P # O and (n — 3) P # O. We infer from (3.6) with 3 < m < n — 1 inductively
that

Mg (1 =D P) = (n = DA, 0 (Py) = clogh(t)]y = Ag,0(=Pr) = A0 (Pr)
for a rational function 7 € K(B) and ¢ € Q, so that /AXE,,U(Pt) = ﬁ log |h(t)]y. =
Proof of Proposition 3.1. Lemma 3.3 implies that

Dp ~ Do
for every torsion point P € E (k). Furthermore, for any non-torsion point P, Lemma 3.3

also implies that
Dap ~ a2 Dp

for all a € Z, demonstrating (3.5) for m = 1. Therefore, if P is non-torsion and Q is
torsion of order n > 2, we have

_ 1 — 1 — _
Dpig ~ n_2Dn(P+Q) = n_anP ~ Dp.

This proves that the metrized divisors depend only on the class in E(k)/E (k) up to
isomorphism.

Now fix any m > 2, and any collection of independent points P;,..., P, € E(k) and
integers @i, . .., an. Define a divisor on B by
m
D/=Z(ai2_aizaj)DPi + Z aiajDPl.+p/.,
i=1 j#1 1<i<j<m

and consider the metrization on D’ defined by

m

gu(t) = Z(aiz —a; Zaj))tpi,v(f) + Z aiajAp;+p;v(1).

i=1 j#1 1<i<j<m

To prove the proposition, we will use the quasi-parallelogram law (3.2) to show that there
exists a rational function f € K(B) such that

gu(t) — j’Et,U(alpl,t + o+ am Pmy) = log | f(D]v (3.7
at all places v of K and for all but finitely many ¢t € B(C,).

Lemma 3.4. Let P, Q, R € E(k) be independent points defined over K. Then there is a
rational function fp o r € K(B) such that

Mg, o(Pi4+ Qi+ Ry) = Ag, o(Pr + Re) + Ag, o(Pr + Q1) + Ak, »(Q: + Ry
—AE w(P) = 2B, 0(Q0) — A, v (R:) —log | fp,0.8()]w

forallt € B(K) such that E, is smooth and all v € M.
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Proof. The proof follows by applying the quasi-parallelogram law (3.2) for the pairs
{P+R,0},{P,R—Q},{P + Q, R} and {R, Q} and taking an alternating sum as
in [34, Theorem 9.3]. [

Lemma 3.5. Fix independent P, Q € E (k). For each (a,b) € Z* \ {(0,0)}, there is a
rational function h, p, € K(B) such that
Mg w(@Py +b0Qy) = (@* —ab)Ag, o (Py) +ablp, o (Pr + O1)
+ (b — ab)g, 0(Q1) —10g lhaply

forallt € B(K) such that E, is smooth and all v € M.

Proof. The assertion follows from the quasi-parallelogram law by an easy induction.
Lemma 3.3 provides the desired result if @ or b is 0. Next we will show that for each
n € Z there is a rational function g € K(B) such that

AE 0P+ Q) = (% —n)AE, o (Py) + nhg, o (P + Q)
+ (1 =n)dg, 0(Q) —log |glo. (3.8)

Replacing P by —P we may assume that n > 1. For n = 1 the statement is clear. For
n > 1, the quasi-parallelogram law (3.2) implies that

A, o0+ 1DP + Qp) = Ag, o (nPr + (P + Q):)
=24, 0 (nP;) + 225, 0 (Pt + Q1) — Ag, o((n — 1) Pr — Q)
—log|x(nPr) —x(Pr + Op)lv + é10g|A|U

and (3.8) follows inductively from Lemma 3.3. Using (3.8) we now have a rational func-
tion & € K(B) such that

AE,w@P +b0,) = (@ —a)kg, o(P) + akg, o(P  +b0,)
+ (A —a)kg, »(bQ;) —log |hly. (3.9)

The lemma then follows by another application of (3.3) and (3.8), exchanging the roles
of P and Q. ]

Finally, a simple induction using Lemmas 3.4 and 3.5 implies that for any m > 2, and
for any integers a1, . . ., am, the equality (3.7) holds for some rational f. This completes
the proof of Proposition 3.1. ]

3.3. Metrized divisors for elements of E(k) ® R

Fix anon-zero X € E(k) ® R. Choose independent points Py,..., Py, € E(k) that define
a basis for E(k) ® R, and write X = x{ Py + --- + X Py with x; € R. With a slight
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abuse of notation, we identify the two isomorphic metrized divisors in Proposition 3.1
and define an adelically metrized R-divisor on B(K), over the number field K, by

m
Dy =Y (x=x> %)Dp + Y. xixDpr, (3.10)

i=1 J#i 1<i<j<m

for the Dp defined by (3.4) when P € E (k). It defines a height function

m

hy(t) = Z(X,Z - X; ij)/’;E, (Piy) + Z xixj]:lEt(Pi,t + Pj;) (3.11)

i=1 J#i 1<i<j<m
at all points ¢ € B(K) for which E; is smooth.

Theorem 3.6. Fix a non-zero X € E(k) ® R. The metrized divisor Dx of (3.10) is con-
tinuous, adelic, semipositive and normalized. The degree of the underlying R-divisor Dx
is hg (X) > 0. Its associated height function satisfies

hx (1) = hE, (X;) (3.12)

forall t € B(K) with smooth fiber E;. Further, up to isomorphism, Dy is independent of
the choice of basis for E (k).

Proof. Fix x1,...,x, € R and choose sequences of rational numbers a, ; /a,,o — x; for
i =1,...,m. From Proposition 3.1 we know that the functions
1 m
2
—— (Z(an,i —dp, Z%,j)/\Pj,v(l) + Z an,ian,ijﬁPj,v(l))
4no0 21 J#i 1<i<j<m

are continuous, subharmonic functions on Bi" (away from their logarithmic singularities),
. .. . . _2 ~ . .

because they define a metrized divisor isomorphic to a,, 4 Da,, | Py +-+ay y Py, - The limit

as n — oo clearly exists as a continuous, semipositive, adelic metrization on an R-divisor

m
DX:Z(xiz_xinj)DPi + Z xiijpi+p_/.

i=1 J#1 1<i<j<m
To see that D x 1s normalized, recall that by [14, Theorem 1.1] we have

Ban.1P1+"'+an.lan : Ban.1P1+"'+an.um = O
for all n € N. In view of Proposition 3.1 we then have

| RPN _ _ 2
T(Z(‘Zn,i —dn,i Zan,j)DPj + Z An,idn,j DPi+Pj) =0

n0 21 j#i 1<i<j<m

for all n € N. Letting n — oo we get Dy - Dy = 0.
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Equation (3.12) follows from the properties of h E, as a quadratic form on each smooth
fiber E;. Specifically, we have

ﬁE;(Pt +0:) = ]’;Er(Pt) +2(P;, Q¢)E, + ﬁEt(Qt)

for the Néron—Tate bilinear form (P, Q;) g, and for any pair of points P, Q € E(k) and
t € B(K) with E; smooth. It follows that

};E,(J’Pt +20;4)
= y2hg, (P) + yz(hg,(Py + Q1) — hg, (P) — hg,(Q1)) + 22hE, (Q1)
= (y2 = y2)hg,(P) + yzhe, (P, + Q1) + (22 = y2)hE, (1)

for all y, z € R. Therefore, by induction, we deduce that

};E;(xlpl,t + - +mem,t)

m
= inzhEt(Pi,t) + szixj(Pi,t, Pit)E,

i=1 i<j
m A A
= Z(X,z — X; ij)hE, (Pis) + Z XixXjhg,(Pis + Pjs)
i=1 J#1 1<i<j<m
for any collection Py, ..., P, € E(k) and real numbers xq, ..., X;, so that

hx (t) = hg, (X;)

for all + € B(K) with E; smooth. That Dy does not depend on its presentation or the
choice of basis follows easily from Proposition 3.1. ]

3.4. Bilinearity
For X,Y € E(k) ® R, consider the metrized R-divisor
Dxy) = 3(Dx+y — Dx — Dy) (3.13)
on the base curve B, of degree equal to the Néron—Tate inner product of X and Y,
(X.Y)g = 5(he(X +Y) —hg(X) = hp ().
Note that 5< x,y) is symmetric in X, Y € E(k) ® R. Itis also bilinear, in the sense that
D(xay+bz) = 3(Dxtav+bz — Dx — Day+bz)
~ (1 —a-b)Dx + (a®> —a—ab)Dy + (b* —b —ab) Dy
+ ClEX.Hf + b5X+Z + abﬁy+z — BX
—[(@* —ab)Dy + (b> —ab)Dz + abDy +7])
= 2(a[Dx+y — Dx — Dy| + b[Dx+z — Dx — Dz])
=aDxy) +bDx,z), (3.14)
from (3.10) and Theorem 3.6. Moreover, we have Dy ~ E(X’X) forall X € E(k) @ R.



Elliptic surfaces and intersections of adelic R-divisors 3657

4. Small sequences

As before, we let & — B be a non-isotrivial elliptic surface defined over a number field K,
and let E be the corresponding elliptic curve over the field k = K(B). In §3.3, we con-
structed metrized R-divisors Dy and associated height functions hy for each element
X € E(k) ® R. In this section, we look at the sets of “small” points for the height hx.
We conclude the section with a proof of Theorem 1.4.

4.1. Small sequences exist

For an adelic, continuous, semipositive, and normalized metrized R-divisor D with ample
D on the curve B, an infinite sequence {¢,} C B(K) is said to be small if

hp(ty) =0 asn — oo.

Proposition 4.1. For every non-zero X € E(k) ® R, there exist small sequences for Dy,
so that the essential minimum is 61(5)() = 0. More precisely, write X = x1 Py + -+ +
Xm Pm for x; € R and independent P; € E(k), and choose integers a; , fori =1,...,m
andn € N so that [ay, : -+ Gmp] = [X1 1+ 1 Xm] as n — 00 in the real projective
space RP™™Y. Then there exists an infinite non-repeating sequence of points t,, € B(K)
at which

(al,nPI + e+ am,an)tn

is torsion in the fiber E,, (K). Moreover, for any such sequence {t,} C B(K) we have
hx(t,) =0 asn — oo.

To prove Proposition 4.1, we begin with a well-known statement that follows from
Silverman’s specialization theorem [29].

Lemma 4.2. Fix any set of independent points Py, ..., Py in E(k), and let h be any Weil
height function on B associated to a divisor of degree 1. The set of all t for which there
exist integers ay, . . ., Ay, not all zero, such that

a1P1,t +--- +aum,t = 0
in E; has bounded h-height.

Proof. For each non-torsion point Q € E (k) we have (see [29])

he (Q))

s hey E(@) >0

so the set {t € B(K) : ﬁE, (Q:) = 0} has bounded A-height. Since det({(P;, P;)g)i,; > 0,
it follows that the set
R(Py.....Py) ={t € B(K) : det({P; . Pj):) = 0}

also has bounded height. This set R( Py, ..., Py) contains the set of # at which the points
become linearly dependent. ]
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Proof of Proposition 4.1. Write X = x; P + -+ + X Py, for independent Pq,..., Py, €

E(k) and x1, ..., x;,; € R. Fix a sequence of positive integers M, — 0o as n — 0o. For
i =1,...,m, choose any sequence of integers a; , such that a; ,/ M, — x; asn — oo,
and set

Qn = al,nPI + - +am,an € E(k)v

so that MLHQ,, — X in E(k) ® R.
Consider the set

Tor(Q,) = {t € B(K) : Qn is torsion in E,}.

For each n, the set Tor(Q,) is infinite; in fact, it is dense in B(C) [14, Proposition 6.2],
[44, §II1.2 and Notes to Chapter III]. Moreover, from Lemma 4.2, this set has bounded
height in the base curve B with respect to any chosen Weil height %, and the height is
bounded independently of n. Therefore, from [29, Theorem A], we can find H > 0 such
that

hp;(t) <H and hpyp,(t) < H

forallt € |, Tor(Q,) and for all i, j.

From the formula for the height 4y given in (3.11) and the formula for the height
of O, appearing in Proposition 3.1, we have the following. For any given ¢ > 0, there
exists N > 0 such that

1 m a? ai a:
hx () = 5 5ho, (1] = Z(xf—xinj —% + M" > A;”)hpi(z)
n P : n n . Mp
i=1 J#1 J#i
ai nd;j
+ ( Z XiXj — 1;4;’”)/’!1)!.4_13]. ®)) <e
1<i<j<m n

foralln > N and for all t where hp, (t) < H and hpl.+Pj (t) < H foralli, j.In particular,
the estimate holds for all t € | ,,..; Tor(Q,).

For each n and every ¢ € Tor_(Q,,), we have hg, (t) = 0. Choosing any sequence of
distinct points #, € B(K) so that Q, ,, is torsion in E,, , we may conclude that hx (t,) — 0
asn — oo. (]

4.2. Characterization of small sequences

Here, we observe that small sequences for real points X € E (k) ® R always arise from a
construction similar to that of Proposition 4.1, where relations between the generators are
“almost” satisfied. We will use this next proposition in the proof of Theorem 6.4.

Proposition 4.3. Let M be a torsion-free subgroup of E(k) of rank m, generated by
St,....Sm. Set hag () = det((S;;, Sj:):), for the Néron—Tate bilinear form {-,-); on the
fiber E{(K). For a non-repeating infinite sequence t, € B(K), the following are equiva-
lent:

(1) iminfy_oo has (tn) = O;
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(2) thereis anon-zero X € M ® R such that liminf, o hx (t,) = 0;
(3) there are sequences of points s; , € Ey, (K), fori = 1,...,m, satisfying

lim inf (max h, (si,,,)) =0
1

n—>oo

and such that the points
Sl,t,, —S1,nse e Sm,t,, — Sm,n
satisfy a linear relation over 7, in E,, (K).

This proposition relies heavily on Silverman’s specialization results [29, Theorems A
and B]. We point out that [29, Theorem B] holds for real points X € E(k) ® R by the
bilinearity of the Néron—Tate pairing. We begin with a lemma.

Lemma 4.4. Assume we are in the setting of Proposition 4.3. Assume further that there
are sequences of points s; n € Ey, (K), fori = 1,...,m, satisfying

sup(max hEg,, (si,n)> < 0
n i

for which the points
Sl,tn —S1,mree s Sm,tn — Sm,n

satisfy a linear relation over 7, in E,,(K). Then the sequence {t,} will have bounded
height in B(K) with respect to any Weil height on B.

Proof. Fix any Weil height 4 on B(K) of degree 1. Consider the m x m matrix
An = ((Sity = Sins Sty — Sjn)ta)inj

where (-, ), is the Néron—Tate inner product on the fiber £, (K). Our assumption implies
that
det4, =0

for all n. Assume that /(#,,) — oo. Then by Silverman’s specialization theorem [29, The-
orem B] we have
(Si,tn ’ Sjstn )fn
DRI
h(tn)
asn — oo foralli, j = 1,...,m. On the other hand, the bounded height of the perturba-
tions s; , and the Cauchy—Schwarz inequality for (-, -);, imply that

(Si,Si)E.

(Si,n’ sj,n)tn S \/]:Z\Ef,, (Si,n)ﬁE;n (Sj,l’l) N 0
h(tn) h(tn)

Using Silverman’s specialization [29, Theorem A] we also have

\/ﬁE,,, (Sita)hE,, (57m)
S — O
h(tn)

' (Si,ln ’ Sj,”)t;z
h(tn)
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Combining these estimates, we obtain
_ det 4,,
(h(tn))™

which is a contradiction. [ ]

0 — det({(Si, Sj)E)i,j # 0,

Proof of Proposition 4.3. Assume condition (2). Let X € M ® R be non-zero and {t,} a
sequence for which liminf, oo hx (¢;,) = 0. Write X = x1S1 + --- + x¢S; for x; € R
not all equal to 0. After reordering the points S; we may assume that x; # 0. Notice that

hAEtn (th) Ath’ S2Jn> <th’ S(atl’l)
(S2.40> X1,)  hEL, (S2.0,) -+ (S2.05 Stet)
det , " . = x2hp(tn),
<S£,tn’th) (Sz,fn’ SZJVI) e hEtn (S[atn)
which easily follows by subtracting from the first column the sum of x; times the j-th
column over all j = 2,..., £ and then subtracting from the first row the sum of x; times
the i-th row over all i = 2, ..., £. Expanding the determinant along the first column we
get
¢
XPhat (ta) = hx (tn) frn + Y (Sjus X0,) Fin: (4.1)
Jj=2

where for all n € N the f; , are polynomial functions of the quantities (S;;,, X;,) and
(SjtnsSk.r,) for j,k=2,..., L. Passing to a subsequence of {t,} we see limy, o0 hix (k)
= 0. In particular, since X is non-trivial, [29, Theorem B] implies that {/ (%, )}neN is
a bounded sequence. Using then [29, Theorem A], the functoriality of heights and the
Cauchy—Schwarz inequality we get

max{| fik,ls s [ Sk, 1} = L (4.2)
for some L > 0. Moreover, forall j = 2,...,f and all n € N we have
Stk Xeg, ) < Iy (Sjn )i, (X)) < Lhx (ig,) = 0. 4.3)

Our assumption on X together with (4.1)—(4.3) yields
liminf Ay (t,) = 0,
n—o00

proving that condition (1) holds.
Now assume (1). Let A; = ({(Si. Sj,))i,j, so that hps(¢) = det A;, and consider the
family of quadratic forms

(It(z) = },I\E[ (ZISI,t + et + ZmSm,[)

m
= Z ZthE, (Sko) + ZZZiZj(Si,h Sju) =ZAZT
k=1

i<j
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forZ = (z1,...,zm) € R™, indexed by ¢ € B(I?) where E; is smooth. Since ¢; > 0 for
all ¢, we find that A; has non-negative eigenvalues. Our assumption is that

liminfdet A;, =0,
n—>oo

so if A, is the smallest eigenvalue of A4;,, then

liminfA, = 0.
n—>o00
Let Uy = (V145 - -, Um.n) # 0be an eigenvector of A,, corresponding to A,. Then

UnAs, By = AnllOn ]

so that

. Un .
liminfgq,, | —— | = liminfA, = 0. 4.4)
n—>00 |V || n—00

Passing to a subsequence of the {#,}, we have lim,_, o hps(¢,) = 0, and passing to a
further subsequence, we may set

Un_ g \ {0}.

=
n—00 ||vn ||

By [29, Theorem B], the height of {#,} is bounded with respect to any choice of Weil
height on B (because det({S;, Sj)£) # 0). In view of [29, Theorem A], the sequences
{(Sits Sjin)tn fori, j =1,..., £ are bounded. Thus (4.4) yields

lim ¢, (X) = 0.
n—oo

In other words, for X = x1S1 + -+ + x,» S, we have lim,_, o hx (¢;,) = 0, providing
condition (2).

Assuming (2), we now prove (3). Reordering the points and rescaling X if necessary,
we may assume that x; = 1. Passing to a subsequence, we have

hE, (St + %2824, + -+ XmSmy,) — 0 (4.5)

asn — oo. Let az 4, ..., am,, be infinite sequences of integers satisfying a; ,/n — Xx;
foreachi =2,...,m. As ﬁE(X) # 0, by Silverman specialization [29, Theorem B]
the sequence {t,} has bounded height in B. Invoking [29, Theorem A] we find that all
sequences {(S; s, Sj,) E,, }nen are bounded. Using the fact that each h Ey, () defines a
quadratic form on E,, (K), line (4.5) yields

~ 1
hEm (Sl,t,, + ;(QZ,nSZ,t,l + e+ al,nsé,tn)) — 0. (4.6)

Since K is algebraically closed we may find s, € E tn (K) such that

Sy = az Sy, + -+ agnSe,- 4.7
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Letting $1,, := S1,5,, + Sn and s; , := Oy, foralli = 2,...,m, equation (4.6) yields
hAE[,, (sin) = 0

foreachi = 1,...,m. Moreover by (4.7) the set {S1 s, — S1,n. S2,1,» - - -, St 1, } is linearly
dependent in E;, for every n.
Last, we assume condition (3) and prove (2). We pass to a subsequence such that

lim (maxﬁEtn (s,-,n)) =0.
n—00 i
We choose sequences of integers a; , fori = 1,...,m, not all 0, such that
ain (Sl,zn - Sl,n) +-tamn (Sm,tn - Sm,n) = Otn

for all n. Now, letting M,, = max; a; ,, we can pass to a further subsequence such that

ain

—x; €R
n

as n — oo for each i, with at least one x; non-zero. This implies that

~ 1
hE,n (E(al,nSl,tn + -+ am,nSm,tn))

N 1
= hEz,, (v(al,nsl,n +--- 4 am,nsm,n)) —0 4.8)
n

as n — oo. Finally, set
X=x1851+ 4+ xnSnm.

From Lemma 4.4, we know that the sequence {z,} has bounded height and by [29, The-
orem A] we know that the sequences {hg, (Sis,)}n are bounded. Therefore, from the
definition of hy in (3.11), line (4.8) implies that hy (t,) — O. [ ]

4.3. Height 0

As we shall see, it follows from Theorem 1.1 that, although small sequences exist as in
Proposition 4.1, we do not always have sequences with height 0:

Proposition 4.5. Fix non-zero X € E(k) ® R. There exist infinitely many t € B(K) for
which hx (t) = 0 if and only if there exists a real ¢ > 0 such that ¢ X is represented by an
element of E (k).

Proof. Suppose first that ¢ X is represented by an element P € E (k) for some real ¢ > 0.
Then hy(t) = Cizhp () for all ¢, so that hy (t) = 0 whenever P; is torsion in E;. This
holds at infinitely many points ¢ € B(K) (see, e.g., [14, Proposition 6.2]).

For the converse, write X = x1 Py + - -+ + x;,, P, for independent Py, ..., Py € E(k)
and x; € R, and assume that iy (¢) = O for infinitely many 7. We can rewrite X as

X=a101+ - +a;0s
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for aq, ..., s € R abasis for the span of {x1,...,x,} over Q and Q1,..., Q5 € E(k).
For s = 1, we see that are we back in the setting where a multiple of X is represented by
an element of E(k), so we may assume s > 1. But, for each ¢ where hx (t) = 0, we must
have X; = 0in E;(Q) ® R. By the choices of the «;, this means that each of the special-
izations Q; ; must be 0 in E,(@) ® R (cf. [24, Lemma 1.1.1]). In other words, the points
Q1,..., Qs are simultaneously torsion at infinitely many ¢. From Theorem 1.1, combined
with (1.4), this implies that each pair Q; and Q; is linearly related. (Alternatively, here
one could use the main results of [21,22].) Thus we infer that X = cQ for some ¢ € R
and Q € E(k). |

4.4. Proof of Theorem 1.4

From Theorem 3.6, we know that BX is a continuous, adelic, semipositive, and normal-
ized metrization on an ample R-divisor. Thus, Corollary A.2 applies to sequences with
small height for ~x. From Proposition 4.1, we have hy (t,) — 0 along any sequence t,
for which >, ri  Piy = O; with r; , € Q satisfying r; , — x;. The formula for wy , at
each place follows from the definition of Dy in (3.10). This completes the proof. ]

5. The intersection number as a biquadratic form on E(k) ® R

Let & — B be a non-isotrivial elliptic surface defined over a number field K, and let
E be the corresponding elliptic curve over the field k = K(B). Recall that, since E (k)
is finitely generated, we can pass to a finite extension of the number field K to ensure
that each section P : B — E is defined over K. For each P € E(k), a metrized divisor
Dp is defined on the base curve B by (3.4). We extended this definition to elements
X € E(k) ® R with the definition (3.10). In this section, we study the basic properties of
the Arakelov—Zhang intersection number

(X,Y)+~ Dx - Dy

defined by (2.5), as a biquadratic form on the finite-dimensional vector space E (k) ® R.
Recall that the metrized R-divisor 5< XY) = %(EXH/ — Dy — Dy) was defined in

§3.4 for X,Y € E(k) ® R. Our goal in this section is to prove

Proposition 5.1. Fix X,Y € E(k) ® R. The following hold:

(1) Dx - Dy = Dy - Dx >0,

(2) Dx - Dxyy = Dx - Dy.

Moreover; for each X € E(k) ® R the map Y v Dy - Dy defines a positive semidefinite

quadratic form on E (k) ® R, induced by the bilinear form (Y, Z) — Dy - ﬁ(y,z).

We begin with a lemma:

Lemma 5.2. We have Dy - Dy > 0 forall X,Y € E(k) ® R.
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Proof. From Theorem 3.6, both EX and 5y are normalized, semipositive, continuous
adelic metrized divisors on B over K, so the lemma follows immediately from Theo-
rem 2.2. Or we can see it as a consequence of Theorem A.1 in the Appendix, because the
height functions satisfy hx, hy > 0 at all points of B(K). L]

The following lemma is a version of the Cauchy—Schwarz inequality.
Lemma 5.3. Foreach X € E(k) @ R, the intersection
(Y,Z)+ Dx - D(y.z)
is bilinear in Y, Z € E(k) ® R. Moreover,
(Dx - Diy,z))*> < (Dx - Dy)(Dx - Dz) forall X,Y,Z € E(k) ® R.

Proof. The bilinearity is an immediate consequence of the bilinearity demonstrated in
(3.14) and the invariance of the intersection number under isomorphism.
Now fix X,Y, Z € E(k) ® R, and consider the function

f(x):=Dx - Dyixz.
By Lemma 5.2 we have f(x) > O for all x € R. From definition (3.10), we have
Dyixz =( —x)Dy + xDyyz + (x> —x)Dz.
Definition (3.13) then yields
f(x) = Dx - Dy +2xDx - Diy,z) + x*Dx - Dz > 0
for all x € R. Thus f is a quadratic polynomial with non-positive discriminant. The
inequality follows. L]

We are now ready to prove the proposition.

Proof of Proposition 5.1. Fix X,Y,Z € E(k) ® R. The symmetry in (1) follows imme-
diately from the symmetry of the intersection number, shown explicitly in (2.4) and
extending to (2.5) by linearity. The non-negativity is the content of Lemma 5.2.
For (2), we use Lemma 5.3 to compute that
(Dx - D(x,v))*> < (Dx - Dx)(Dx - Dy) =0
because EX is normalized. Therefore,
0= 5}( . B(X,Y)
= 1(Dx - Dx+y — Dx - Dx — Dx - Dy)
= 3(Dx - Dx+y — Dx - Dy),
so that
Dy - Dx+y = Dx - Dy.
Finally, since Dy ~ E(Y,y) from §3.4, Lemma 5.3 then implies that ¥ +— Dy - Dy
defines a positive semidefinite quadratic form as claimed. ]
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6. Equivalent formulations of Theorem 1.1

Recall that & — B denotes a non-isotrivial elliptic surface defined over a number field K,
and let E be the corresponding elliptic curve over the field k = K(B). We extend K
so that all sections of & — B are defined over K. In this section, we prove the equiva-
lence of Theorems 1.1 and 1.2. We also provide in Theorem 6.4 a list of five additional,
equivalent ways to express Theorem 1.1. One of these formulations, stated separately as
Theorem 6.1, is inspired by Zhang’s Conjecture in [47, §4].

6.1. Zhang’s Conjecture for families of abelian varieties

In [47], Zhang proposed the investigation of a function on the base curve B that detects
drops in rank of the specializations of a subgroup of E(k): given a finitely generated sub-
group A of E (k) of rank m > 1, if the quotient A / A is generated by Sy,. .., Sy € E(k),
let

hA(l) = det((Si, Sj)t),',j >0 (6.1)
on B(K), whenever defined, where (-, -); is the Néron—Tate bilinear form on the special-
ization A, in the fiber E;.

We propose the following result as the analog of [47, §4 Conjecture] for elliptic sur-
faces; Zhang’s Conjecture was formulated for geometrically simple families of abelian
varieties 4 — B of relative dimension > 1, and it does not hold as stated for elliptic
surfaces [47, §4, Remark 3].

Theorem 6.1. Let & — B be a non-isotrivial elliptic surface defined over a number
field K, and let E be the corresponding elliptic curve over the field k = K(B). Let
A C E(k) be a subgroup of rank m > 2, with the quotient A | A generated by Sy, ..., Sm
€ E(k). Foreachi = 1,...,m, let A; C A be generated by {S1, ..., Sm} \ {Si}. There
is a constant € = €(A) > 0 such that the set

{t € BIK): ha,(t) + -+ ha,, () <&}
is finite.

We prove below that Theorem 6.1 is equivalent to Theorems 1.1 and 1.2.

Remark 6.2. Note that, for rank 1 groups A, the value £ (¢) is the canonical height of the
generating point S; in E;. In general, recall that the Néron—Tate height h E, on a smooth
fiber over t € B(K) defines a positive definite quadratic form in E,(K) ® R; see, e.g.,
[34, Ch. VIII, Prop. 9.6]. Thus, hp will vanishat ¢ € B(K) if and only if rank A; <rank A.
The sum hp, (t) + -+ + ha,, (t) will be zero if and only if the points S} ;,. .., Sy, ¢ satisfy
(at least) two independent linear relations over Z in the fiber E;.

Remark 6.3. The independence of the points Sy, .. ., S;;, € A in Theorem 6.1 is necessary
for the finiteness statement to hold. Indeed, suppose that Sy, is a linear combination of
Si....,Sm—1,and suppose that {t,} C B(K) is any infinite non-repeating sequence for
which &g, (t,) — 0 (for example, we can take ¢, where Sy, ;, is torsion; see, e.g., [14,
Proposition 6.2]). It follows from Proposition 4.3 that ha, (t) 4 -+ + ha,, (t,) — 0.
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6.2. Equivalences
The remainder of this section is devoted to proving

Theorem 6.4. Let & — B be a non-isotrivial elliptic surface defined over a number

field K, and let E be the corresponding elliptic curve over the field k = K(B). Let A be

any subgroup of E (k). The following are equivalent:

(1) the conclusion of Theorem 1.1 holds for all P, Q € A;

(2) the conclusion of Theorem 1.2 holds for all sections C of €% defined by the graph
t = (Oiys,...,Quy) forpoints Qq,..., Q¢ € A, forall £ > 2;

(3) the conclusion of Theorem 6.1 holds for this A;

(4) the biguadratic form (X,Y) — Dx - Dy on A ® R is non-degenerate, meaning that
Dy - Dy = 0ifandonly if X and Y are linearly dependent over R;

(5) for any pair X,Y € A ® R, if the heights satisfy hx (t) = hy (t) for all t € B(K),
then X = £Y;

(6) forany pair X,Y € A @ R, if the Néron—Tate inner product satisfies (X;,Y:)g, =0
forallt € B(K) with E; smooth, then either X or Y is 0;

(7) for any pair X,Y € A ® R, if there exists an infinite (non-repeating) sequence of
points t, € B(K) for which

lim (hy (t,) + hy (ty)) = 0,
n—>00
then X and Y are linearly dependent over R.

For the proof, we rely on the work carried out in Sections 2-5. Specifically, for
each X € E(k) ® R, we can express X as a finite R-linear combination of elements
P1,..., Py € E(k). We appeal to Theorem 3.6 to find that Dy is a well-defined, semipos-
itive, normalized, continuous adelic metrization on B, defined over the number field K.
Further, (X,Y) — Dy - Dy is a well-defined semipositive biquadratic form on E (k) ® R
by Proposition 5.1.

6.3. Intersection number 0

Towards a proof of Theorem 6.4, we first examine the consequences of the existence of a
pair X, Y € E(k) ® R for which Dy - Dy = 0.

Recall that (-, -); denotes the Néron—Tate bilinear form on the fiber E;(K) ® R, and
(-,-) E denotes the corresponding form on E (k) ® R.

Proposition 6.5. Fix non-zero X,Y € E(k) ® R, and assume that Dy - Dy = 0. Then
forall t € B(K) for which the fiber E; is smooth, we have

hg(X) (X.Y)E
l’l = < h and Xt,Yt t = ,\—h .
x (1) Fe D) Y (1) ( ) o) Y (t)

Moreover, Dx: - Dy, = 0 forall X', Y’ € Spang ({X,Y}).
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Proof. Assume that EX . 5y = 0. From Theorem 3.6, each of 5;( and EY 1S a continu-
ous, normalized, semipositive adelic metrization on an R-divisor on B. The degree of Dy
(respectively Dy) is hg (X) (respectively, hg (Y)). The relation between the heights iy
and hy follows immediately from Theorem 2.4.

Using now Proposition 5.1 (2) we infer that our assumption Dy - Dy = 0 implies that
Ex+y . EY = Ex+y . EX = 0, and so

Dxx+yy * Dax+py = ((x* —=xy)Dx + xyDx+y + (y*> — xy)Dy)
- ((a®> —ab)Dx + abDx+y + (b* —ab) Dy)
=0

for all x, y,a, b, € R. In particular, we have

. he(X +Y) -
he, 0+ v = ZEEE DR .
he(Y)
so that
he (Xe +Y:) = hg, (X¢) +(Xe, Q1)e + hE, (Ye)
implies
X, Y
(Xe,Ye)e = (A—)EhY(t)
hge(Y)
for all t € B(K) for which E; is smooth. ]

The following proposition extends the observations of Proposition 4.3 to two indepen-
dent relations.

Proposition 6.6. Let A be a subgroup of E(k) generated by independent, non-torsion
elements Py, ..., Py withm > 2. The following are equivalent:

(1) there exist an infinite, non-repeating sequence t, € B(K) and points Din € Es, (K)
fori =1,....m for which hg, (pin) — 0asn — oo, and the points

Pl,tn —Plpns---s Pm,tn — Pm,n
satisfy two independent linear relations on Ey, ;
(2) there exist independent X,Y € A @ R for which
Dx - Dy = 0.

Proof. Assume first that Dy -Dy =0.Write X =x Py + -+ xpmPpand Y = 1P+
-+« + Ym Py, for linearly independent coefficient vectors X, ¥ € R™. From Proposition 6.5,
we can replace X and Y by linear combinations of X and Y (and relabel the points P;
if needed) and so assume that x; = 1 = y,, and x,;, = y; = 0. From Theorem 3.6, we
know that le and EY are normalized, semipositive, continuous adelic metrizations. By
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Proposition 4.1, we know that el(ﬁx) = 61(5)7) = 0. Theorem 2.4 then implies that
there is an infinite non-repeating sequence {f,} C B(K) such that

hx(ty) + hy(ty) — 0 asn — oo. (6.2)

We now apply Proposition 4.3 to each of hy and Ay to show that small perturbations
of the specializations P;,, must satisfy two independent relations in the fibers E; (K).
More precisely, we choose integers a; , b; » for eachn > 1 and eachi =2,...,m — 1
such that

din bi,n
—x; and —— —y; asn — o0.
n n

As in the proof of Proposition 4.3 (2)=>(3), we choose p, € E;, (K) so that
npn = a2,nP2 +--+ am—l,an—l-

Set p1n = P14, + pn € E;, (K). Then

~ N 1
hEtn (pl,n) = hE;” (Pl,t,l + ;(QZ,nPZ + -+ am—l,an—l)) — 0,

and {P1 s, — P11, P2.ty»- - -+ Pm—1,, ) satisty a linear relation. On the other hand, we can
repeat the same argument with ¥ and find a point ¢, € E;, (K) such that

ndn = b2,nP2 +--- 4 bm—l,an—l

and set py n = Py, + qn- Then

~ N 1
tn n) = n | 02, -1, - stn >
hg (pmn) hE, (n(bZnP2+ + bm—1,nPm 1)+Pmt)_)o

and {P2y,. ..., Pm—1,6,» Pm,t, — Pm.1, ) satisty a linear relation. It follows that the points

sin
{Pi1s, — P1tn> P2ty s Pm—1,ty> Pmiy, — Doty )

satisfy two independent linear relations in E,, (K) for all n.
For the converse direction, we assume there are an infinite, non-repeating sequence
tn € B(K) and points p;, € E;, (K) fori = 1,...,m with hAEtn (pin) > 0asn — oo
and such that
{Pl,tn —Plns--os Pm,tn - Pm,n}

satisfy two independent linear relations on E;,. From Lemma 4.4, we know that the
sequence {f,} must have bounded height. Choose integers a; ,b; , forn > 1 and i =
1,...,m so that the independent relations are expressed as

al,n(Pl,t,l - pl,n) +e 4+ am,n(Pm,t,, - pm,n) = Otn

and
bl,n(Pl,tn - Pl,n) + e bm,n(Pm,t,, - Pm,n) = Otn
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Relabeling the points if necessary, we can rewrite the expressions as

(Priy — P1n) +120(Pay, — pon) + -+ Tmn (P, — Pman) = Oy,

and

ri,n(Pl,tn —Dpin) +oo rr/n_l,n(Pm—l,tn = Pm—1,n) + (Pmty, — Pmn) = Oy,

for bounded sequences of rational numbers 13 ., ..., 'm,, and r{,n, R & Passing

!/
m—1,n*
to a subsequence we may assume that

rin—>xi €R and r], >y €R

for each i. Then, recalling that {#,} has bounded height and that the perturbations p; ,
have heights tending to 0, and using [29, Theorem A] to infer that {hg, (Pi;,)}n are
bounded for each i, we conclude that

hx(t,) > 0 and hy(t;) >0

along this subsequence, for X = Py + xp P, + -+ + xpyPpyand ¥ =y, Py + -+ +
Vm—1Pm—1 + Pp. From Theorem 2.4, we find that Dy - Dy = 0. [

6.4. Proof of Theorem 6.4

Throughout this proof, we fix a finitely generated subgroup A C E(k). Assume it is of
rank m > 1 with A /A generated by Py, ..., P, € E(k).

(1)&(4) Recall that the Néron-Tate height h E on A extends to a positive definite
quadratic form on A ® R. It follows (by Cauchy—Schwarz) that the Néron—Tate regulator

RE(X.Y) = he(X)he(Y) — (X.Y)} >0

extends to a biquadratic form on A ® R satisfying Rg(X,Y) = O if and only if X and Y
are linearly dependent over R. As

F(X,Y):= Dy - Dy

is also biquadratic on A ® R from Proposition 5.1, and it satisfies F (X, X) = 0 for all
X € E(k) ® R, the upper bound on Dy - Dy in Theorem 1.1 follows. Condition (1) is
then equivalent to the statement that F(X, Y) = 0 if and only if X and Y are linearly
dependent over R.

In detail, if we assume (1), andif X = Y /-, x; P;and Y = Y /L, y; P; with P; € A
satisfy Dy - Dy = 0, then we can approximate by rational combinations P, = % > ainP;
— X and 0, = % > bin P — Y with integers a; », b; », and compute that

_ _ 1 — — c
Dp,-Dg, = FDZa,-,,,P,- Dy p, P, = n—4RE (Zai,npivzbi,npz)
= cRg(Py, On).
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Letting n — oo shows that Rg (X, Y) = 0, implying that X, Y are linearly dependent
over R.

Now assume (4), so that F(-, ) is non-degenerate on the finite-dimensional V =
A ® R. Using the inner product (-,-) g on V and associated norm || - | = hg (-)'/2, we have
(by continuity and compactness) uniform positive upper and lower bounds on Dy - Dy
over all pairs X, Y € V satisfying (X,Y)g = 0and || X| = ||Y| = 1. On the other hand,
REg(X,Y) = 1 for all such pairs, and so there is a positive constant ¢ = ¢ (V') such that

cRp(X.Y) < Dx-Dy <c 'Rg(X.,Y) (6.3)

for all pairs X,Y € V satisfying (X,Y)g =0and | X| = ||Y|| = 1. By scaling the points,
this extends to orthogonal pairs of any norm. For an arbitrary pair X,Y € V, we write
Y =Y’ 4+ xX with (Y’, X)g = 0 and x € R, and observe that Dy - Dy = Dy - Dy~
from Proposition 5.1. We also have Rg(X,Y’ + xX) = Rg(X,Y’) and so (6.3) holds
forall X and Y in V.

(4)<(7) Fix any pair X,Y € A ® R, and express X and Y as R-linear combinations of
elements Py, ..., P, € A. Theorem 3.6 shows that ISX and 5y are normalized, continu-
ous, semipositive adelic metrizations on R-divisors, and Proposition 4.1 shows that each
has essential minimum equal to 0. Theorem 2.4 then implies that Dy - Dy = 0 if and only
if the heights Ay and hy have a common small sequence in B(K).

(3)<(7) Assume that (7) holds. We aim to prove the conclusion of Theorem 6.1
for this A. Suppose that there is an infinite, non-repeating sequence , € B(K) with

ha,(t,) = Oforalli =1,...,m. From Lemma 4.3, we may choose X; € A; so that
liminf, o hy, (t,) = 0. We pass to a subsequence such that lim,_, hx, (t,) = 0.
For each i = 2,...,m, we successively apply Lemma 4.3 to find X; € A; for

which liminf, . hx;(t,) = 0 and then pass to a further subsequence such that
lim, o hx; (t,) = 0. In this way, we have an infinite, non-repeating sequence of points
tp € B(K) such that lim,_ o hx, (t,) = 0 for all i. However, as (=, A; = {0}, at least
two of the X; must be independent. This contradicts (7).

Assume now that (3) holds. Fix a pair of independent non-zero points X,Y € A Q R,
and suppose that there is an infinite non-repeating sequence f, € B(K) such that

hx (tn) + hy (tn) — 0.
Then hy (t,) — 0 and hy (¢,) — 0. We write
X=a1P1+---+anPy, Y=b1P1+ -+ byPn,
with a;, b; € R and independent P; € A. We want to show that
liminfhy; (t,) =0 (6.4)
n—>00

foralli = 1,...,m, contradicting (3). Fixi € {1,...,m}.If b; =0,then Y € A; ® R
and (6.4) follows from Lemma 4.3. If on the other hand b; # 0, then X — Z—;Y eA;®R
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and by the parallelogram law we also have
hX—Z—f:Y(tn) — 0.

As before, (6.4) follows by Lemma 4.3.

(7)=(6) Assume that (7) holds. Fix X,Y € A ® R, and suppose that (X;, Y;); = 0 for
all t € B(K) for which the fiber E; is smooth. By Proposition 4.1 there is an infinite
sequence t, € B(K) with hx_y (t,) — 0. Since (Xt Y,)r, = 0 we have

hx (tn) + hy (tn) = hx (tn) — 2(X4,, Y1,) e, + hy (ta) = hx—_y (t,) — 0.

Thus by (7) we infer that either X or Y is O or there are non-zero a, b € R such that
aX = bY . In the latter case, our assumption that (X, Y;); = 0 for all # implies that both
X and Y are 0. The assertion follows.

(6)=(5) Assume that (6) holds. Fix X,Y € A ® R, and suppose hy (t) = hy(t) for all
t € B(K).If X = 0or Y = 0 then our assumption that Ay (t) = hy (¢) for all ¢ implies
that X =Y = 0in A ® R. Thus we may assume that both X and Y are non-zero. Since
h ix (t) = hy(t) for all ¢, Silverman’s specialization theorem [29, Theorem B] implies that
hg (X) = hg (Y). From Theorem 2.4 we know that Dy - Dy = 0, and therefore, from
Proposition 6.5, we have

X, Y
X v = e R v,
hg(Y)
or equivalently
X, Y
<X[ - (,\—)E‘Yt, Yt> = O,
heg(Y) t
for all ¢. By our assumption (6) and since ¥ # 0, we have
X, Y
¥ — (A, E
he(Y)

Recalling that ﬁE(X) = };E (Y),weget X = 1Y in A ® R, as claimed.

(5)<(7) Suppose there exist non-zero X,Y € A ® R and an infinite, non-repeating
sequence f, € B(K) for which hy(t,) + hy(t,) — 0. By Theorem 3.6 we know that
both iy and hy are induced by normalized semipositive adelic metrizations on ample
divisors Dy and Dy on B, of degrees hg (X) and h e (Y), respectively. We may thus
apply Theorem 2.4 to get

E()Y‘;hya) -

h
hX(t) = }'l\

E

forall  in B(K), where x = \/ i;E (X)/ﬁE (Y). Our assumption (5) then yields X = £xY

as claimed.
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(2)<(4) Fix any collection of points Q1,..., Q¢ in A, and let C be the irreducible curve
in &¢ defined by a section (Q1, ..., Q) over B. To say that C is not contained in a flat
subgroup scheme of positive codimension means that the points Q1, ..., Q¢ are linearly
independent. To say that the curve C in &¢ defined by (Q1, ..., Q) intersects the tube
T(&™42} ¢) infinitely often for every € > 0 means that there is an infinite non-repeating
sequence of points ¢, € B(K) and small points g; , € E,, (K) for each n such that the
points {Q1,s, — q1,n+---» e, — Ge.n) satisfy two linear relations in E;,. Therefore the
equivalence of (2) and (4) is the statement of Proposition 6.6.
This completes the proof of the theorem.

7. Equality of measures

In this section we prove Theorem 1.3, which is needed for our proofs of Theorems 1.1
and 1.2. We begin by introducing a complex-geometric perspective on the elements X of
the real vector space E (k) ® R. These points do not necessarily exist as algebraic curves
in the elliptic surface & — B but can be viewed as inducing foliations.

7.1. Real points as holomorphic curves

Given a non-isotrivial elliptic surface & — B defined over the number field K, we fix an
embedding K < C, and let S C B be a finitely punctured Riemann surface such that all
fibers E;(C) are smooth for t € S(C). Write &g for the open subset of & over S. Recall
that each rational point P € E(k) determines a holomorphic section of & — B defined
byt +— P; € E,(C) fort € S(C).

The Betti coordinates of P € E (k) are defined as follows. Passing to the universal
cover 7 : S — S, there is a holomorphic period function

8§ > H
taking values in the upper half-plane and such that the fibers of &g satisfy
Er)(C) = C/(Z & Zx(s))

for all s € §. Passing to the universal cover of Es)(C) for each fiber, we obtain a holo-
morphic line bundle over S, trivialized by sending the generator 1 of the latticeto 1 € C.
For each P € E(k), the corresponding section of & — B lifts to a holomorphic function

Ep . § — C.
The Betti map of P is the real-analytic map Bp : S - R2 given by
Bp(s) = (x(s).y(s)) suchthat £p(s) = x(s) + y(s)z(s).

The coordinates x and y themselves depend on the choices of 7 and &p, but as proved
in [13], we have
wp =dx ANdy, (7.1)
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independent of the choices, for the curvature distribution of Dp at an archimedean place
of K.

Given P € E(k) and a fixed choice of £p, and given a non-zero integer n, the holo-
morphic function

§:= lEP
n

will represent a point Q € E (k) satisfying nQ = P. It descends to a holomorphic curve
in &g that is not necessarily a section over S. Translating £ by elements of %(Z & Zr),
we find all curves corresponding to solutions Q of nQ = P. More generally, we find that
every element of E (k) ® R can be represented by a family of holomorphic curves in &g,
as follows:

Proposition 7.1. Fix a period function t : S — H, and suppose that Py, ..., Py, € E(k)
provide a basis for E(k) ® R. Then there exist Betti coordinates for each X =), x; P; €
E(k) ® R, given by

Bx(s) = (xx(5), yx () = Y _ xiBp,(s) + (a,b)

for s € S, for any choices of Betti coordinates Bp, for the points P; and any constant
(a.b) € R?, such that the curvature distribution for Dy at an archimedean place of K
satisfies

wxy = dxX /\dyX on S.

Note that the archimedean curvature distribution wy for D x , defined in (3.10), is given

by
wx = Z(xlz - inxj)U)P,- + Zx,-xja)pi”j

i JEi i<j
with P; € E(k).

Remark 7.2. Given X € E(k) ® R, the family of holomorphic functions &x (s) := xx (s)
~+ yx (s)7(s) of Proposition 7.1 projects to a family of holomorphic curves in the complex
surface &g. For torsion points of E (k) representing the 0 of E (k) ® R, the holomorphic
curves given by Proposition 7.1 are precisely the leaves of the Betti foliation, because we
allow for arbitrary translation of Bx in R2. By definition, the leaves of the Betti foliation
have constant Betti coordinates; see, e.g., [1, 13,39] for more information. For each non-
zero X € E(k) ® R, there is a corresponding foliation of &s. When an element X is
represented by P € E(k), the foliation is simply the corresponding Betti foliation for the
elliptic surface with P chosen as the zero section.

Proof of Proposition 7.1. Let A, be a sequence in E (k) such that Q, := %An converges
to X in E(k) ® R as n — o0o. We can select the holomorphic lifts £4,, : S — C and £0,
so that the sequence of holomorphic functions £p,, converges locally uniformly in S. This
defines a limit holomorphic function £x. In terms of a basis Py, ..., Py, of E(k), we can
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assume that {
Qn = ;(an,lpl + -+ an,um)

for integers a,,; with a,;/n — x; € R as n — oco. We see that £y — Y, x;Ep, must
be an element of R @ Rz. Making other choices for £4, and §p,, we can obtain all
possible translates of £y by elements of R @ Rt; in other words, we can define Betti
coordinates for X, up to translation by elements of R2. Fix a choice of By = (xx., yx)
and consider the measure vy = dxx A dyy. This measure is clearly independent of the
choices. Furthermore, it is the weak limit of the measures wg,, on S, by formula (7.1) for
wg, and local uniform convergence of £p,, to §x. We already know that wg,, — wy for
the curvature distributions (at a fixed archimedean place), from the definitions given in
§3.3. It follows that vy = wyx. ]

7.2. Proof of Theorem 1.3

Fix X1, X, € E(k) ® R, and let D and D, be the associated metrized R-divisors on B,
defined over the number field K. Fix an archimedean place of K, and let w; and w, be
the curvature measures on B(C) at this place. We assume that w; = w,. As in §7.1, we
fix a period function 7 : S — H. From Proposition 7.1, there exist holomorphic functions
& = x; + yit,i = 1,2, representing the points X; and X», such that

dx1 VAN dyl = d)C2 VAN dyz on § (72)

We break the proof into two steps. In the first, we exploit the holomorphic-antiholo-
morphic trick of [1, §5], applied to a relation between holomorphic functions &;, &, ©
(and their derivatives) and the antiholomorphic functions é 1, 52, and 7 (and their deriva-
tives) coming from (7.2); the result is a relation on the holomorphic input alone. In the
second step, we apply the transcendence result of [7, Théoréme 5] to this relation and
deduce that the points X; and X, must be linearly related in E(k) ® R.

Step 1: Holomorphic-antiholomorphic. We are grateful to Lars Kiihne for teaching us

this step.
Note that
d& =dx; + yidt + tdy;
so that }
d& — yidt) A (dE — yidT) = (T —1)dxi Ndy;.

Writing _
&k
yi = =
T—1

we obtain from (7.2) a relation expressed as
((t = D)dE — (81 — E)dT) A ((t — T)dE — (€1 — E1)d7)
= ((t —D)d& — (82— E)dT)A((t — T)dE — (62 — £2)dT)

as forms on S'.
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Working in coordinates in the simply connected S, this gives

(E1&] — 58) (@ — D)2 — (&1 — ENE| — (82 — E2)E) (r — )T
—(E 8D — (2 —E)E) T — DT + (E1 —&)* — (2 —&)Y)TT =0 (713)

as functions on S. Equation (7.3) can be expressed as

N
Y f(@)gi(x) =0

Jj=1

for holomorphic functions f] € Z[1.6>. £}, &, t, 7] and antiholomorphic functions g; €

Z[&, &, €|, 85,7, 7)inz € §.
For each j, define the holomorphic function g; (w) := g;(w). Then

N
F(z.w) =Y fi(2)g;(w) (7.4)

j=1

is holomorphic on S x § and vanishes identically on the real-analytic subvariety {w = z},
where it coincides with (7.3). It follows that F' must vanish identically on S x S; see
[1, Lemma 5.2]. In particular, if we fix any wq € §, we have F(z,wg) = 0 on S’, and we
obtain a polynomial relation between the holomorphic functions &1, &>, £}, &5, v, 7/ that
holds on all of S.

Step 2: Algebraic independence. Suppose that Py, ..., P, € E(k) define a basis for
E(k) ® R, so that
m
X,’ = Z ai,j PJ
j=1

fora; j € R,i = 1,2. From Proposition 7.1, we know that we can choose §; to satisfy
& =) aijép,
J

for choices of lifts ép; of each point P;. From Step 1, for each wg € S, the function

(7.4) satisfies F (-, wp) = 0 on S, giving a polynomial relation between the holomorphic

functions

Epysee 6Py Eps s Ep, T T

with real coefficients. But the functions §p; come from the linearly independent algebraic
points P; € E(k) in the non-isotrivial £ and so satisfy the hypothesis of [7, Théoreme 5].
As a consequence of [7, Théoréme 5], a non-trivial polynomial relation F (-, wg) = 0
between the functions £p; and their derivatives &; P; (with coefficients in the field C(z, t’))

implies that the points P; must themselves satlsfy a non-trivial linear relation. But this
would contradict our assumption that the P; form a basis for E (k) ® R, so we conclude
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that the polynomial relation must have been trivial. In other words, for any choice of wy,
the coefficients of F(z,wg) — as polynomialsin £p,,...,&p,,. é},l yeees 5},m — must vanish.

Examining the relation (7.3), we can determine these coefficients explicitly. The “con-
stant” term, having no dependence on the £p; or & },j , gives

C1(wo)t’ + Ca(wo)zr’ =0

as a function of z € S , with coefficients Cy, C, that are antiholomorphic functions of wy
on S. For fixed wo, if C1(wp) or C2(wy) is non-zero, this would imply that  is constant,
which is absurd because the elliptic surface & — B is non-isotrivial. This implies that
C>(wg) = 0 for all wy. But, again looking at (7.3), we have

C2(wo) = & (wo)E1 (wo) — & (o)E2(wo) = 0
for all wy. Taking complex conjugates, we get
m
0=§& —&E = ) (ar,a1e—as,;a208p,Ep,.
jt=1

In other words, we find another relation between the holomorphic functions S;,j and ép,
which must therefore be trivial [7, Théoreme 5]. We conclude that either

ai,j =az; forallj,

or
ai,j = —a,j forall j.

In other words, X; = +X5. This completes the proof of Theorem 1.3.

8. Proofs of the main theorems

In this section, we prove our main theorems.

8.1. Proof of Theorem 1.1

Recall that the Néron—Tate height h e on E(k) extends to a positive definite quadratic
form on E (k) ® R because E is non-isotrivial. It follows (by Cauchy—Schwarz) that the
Néron—Tate regulator

Rp(X.Y):=hg(X)he(Y)— (X.Y)} >0

extends to a biquadratic form on E(k) ® R satisfying Rg(X,Y) = 0 if and only if
X and Y are linearly dependent over R. As

F(X,Y):= Dy - Dy

is also biquadratic on E(k) ® R (see Proposition 5.1) and satisfies F (X, X) = 0 for all
X € E(k) ® R, the upper bound on Dy - Dy in Theorem 1.1 follows.
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From Theorem 6.4, we know that Theorem 1.1 holds for & — B if and only if
Dyx - Dy # 0 for all pairs of linearly independent X,Y € E(k) ® R. So assume we
have non-zero elements X, Y € E(k) ® R satisfying Dy - Dy = 0. By scaling X and Y,
we may assume that ﬁE (X) = ﬁE (Y) = 1. We proved in Theorem 3.6 that Dy and Dy
are normalized, semipositive, continuous adelic metrizations on R-divisors on B, each on
divisors of degree 1. Theorem 2.2 then implies that Dy and Dy are isomorphic, so the
curvature forms for Dy and for Dy on B3" must coincide at all places v of the number
field K. Fixing a single archimedean place, we deduce from Theorem 1.3 that X = +7Y.
This completes the proof.

8.2. Proof of Theorem 1.2

Suppose that C is an algebraic curve in & that dominates the base curve B. Passing to a
finite branched cover B’ — B, we may view C as a section C’ of the m-th fibered power
of the pullback elliptic surface & — B’. As Theorem 1.1 holds for & — B’, we apply
Theorem 6.4 to conclude that the intersection of C’ with the tube T'((€")"?} ¢) is con-
tained in a finite union of flat subgroup schemes of positive dimension, for all sufficiently
small € > 0. Projecting back to &™ — B, we can make the same conclusion about the
intersection of C with T(§”+{2} ¢). This completes the proof.

Appendix A. Arithmetic equidistribution for R-divisors

In this Appendix, we show that an equidistribution law holds on projective varieties
defined over a number field, for adelic semipositive metrizations D associated to an ample
R-divisor. Formal definitions, extending those we provided for curves in Section 2, appear
in [24, Chapters 2 and 4]. (Note that our definition of D-Green function differs from the
one in [24] by a factor of 2.) Theorem A.l and Corollary A.2 extend the equidistribu-
tion theorems of Chambert-Loir, Thuillier, and Yuan [10, 37,42] for adelically metrized
line bundles to R-divisors. Our proofs follow a known strategy for equidistribution; we
mimic the presentation of Chambert-Loir and Thuillier [12], while they appeal to results
of Yuan [42] and Zhang [45], building on the ideas that originally appeared in [35]. See
also [43]. We provide the details for completeness. The key ingredient for passing from
Q-divisors to R-divisors is the continuity of the arithmetic volume function on the space
of metrized of R-divisors, proved by Moriwaki [24, Theorem 5.3.1].

Theorem A.1. Let X be a normal and geometrically integral projective variety of dimen-
sion d > 1 over a number field K. Fix an ample R-divisor D on X, equipped with
a continuous, relatively nef. adelic metrization D over K, satisfying d/f%(lsdﬂ) = 0.
Let M be an integrable adelic metrization on an R-divisor M over K. For any generic
sequence x, € X(K) with hi(xn) = 0, we have

deg(D? M)

hi Cn) = =Dy
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A sequence {x,} C X(K) is generic if every subsequence is Zariski dense. The arith-
metic notions of relatively nef and integrable are defined in [24, §4.4], and the multilinear,
symmetric intersection form d/é\g(lj 1 5d+1) is defined in [24, §4.5]. The intersection
coincides with the arithmetic intersection number denoted by ¢ (L1)---c1 (Zd+1) in [45]
when D; is the metrized divisor associated to an adelically metrized line bundle L;: see
Remark 2.1.

For curves X, the hypothesis on D in Theorem A.l simplifies in the language of
Section 2 to being a continuous, semipositive, and normalized metrization. We have
d/(%(ljdﬂ) = D - M as defined in (2.5).

Corollary A.2. Let X be a normal and geometrically integral projective variety of dimen-
sion d > 1 over a number field K. Fix an ample R-divisor D on X, equipped with a
continuous, relatively nef adelic metrization D over K, satisfying deg(Dd'H) = 0. For
each place v of K and for any generic sequence x, € X(K) with h 5 5 (xn) = 0, the discrete
probability measures

1
|Gal(K/K) - xn| yeGal(K/K)-xn

converge weakly in X" to the probability measure

ME,U = VO](D) 1( )

Here, X" denotes the Berkovich analytification of the variety X over the complete
and algebraically closed field C,. The measure c; (51)1) <o Cq (Ed)v is defined in [10] for
integrable, adelically metrized line bundles on X, and the definition extends to R-divisors
by multilinearity. For curves X, we have d = 1 and ¢;(D), = w D,y as defined in §2.2.

A.l. Essential minima

Let X be a normal and geometrically integral projective variety of dimension d > 1 over
a number field K. For any R-divisor D on X defined over K, we set

H(X.D) = {p € K(X): (¢) + D = 0} U {0}.

For ample D € Divz(X), the volume of D is
1D = 1im L dim HO(X. kD
\(o) _kggok_d im H (X, kD).

For a Q-divisor D, the volume can be defined by taking the limit along sequences where
kD € Divgz(B). The volume extends continuously to R-divisors; see, for example, [20,
Theorem 2.2.44].

As in §2.4 and following [45], the essential minimum of the height /1 5 is defined as

eir(D):=sup inf hp(x),
Y xe(X\Y)(K)
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with supremum over all Zariski closed proper subsets ¥ in X of codimension 1, and we
put
eq+1(D) = inf_ hp(x).
x€X(K)
Theorem A.3 ([45, Theorem 1.10]). For any adelic, semipositive metrization D of an
ample R-divisor D on X, we have

@(5d+1)

d+1)volD — d+ 1(61(D) +deg4+1(D)).

6’1(5) = (

Proof. Zhang proved the result for ample line bundles equipped with adelic, semipositive
metrics [45, Theorem 1.10]. It also holds for metrizations of R-divisors because the height
function associated to an R-divisor is a uniform limit of heights associated to Q-divisors,
and the intersection number is multilinear and the volume vol(D) is continuous. ]

A.2. Arithmetic volume

Let X be a normal and geometrically integral projective variety of dimension d > 1 over
anumber field K. The arithmetic volume of an adelically metrized R-divisor D is defined
as follows. We first fix a family of norms on H%(X, D) by

||¢||sup,v = sup |¢)(x)|ve—gv(x)
xEXﬂ"\suppD

for each place v of K. Set

w((H°(X, D) ® Ag)/H®(X, D))
w(I T, Uy)

where A is the ring of adeles, y is a Haar measure on H%(X, D) ® Ak, and U, is the
unit ball in H°(X, D) ® C, in the induced norm. Then

d+1 -
(kd%l)x(k/)).

x(D) = —log

\751)((5) := lim sup
k—o00

In [24, Theorem 5.2.1], Moriwaki proves that \751)( defines a continuous function on
a space of continuous, adelic metrizations on R-divisors. As a consequence, he shows
that for relatively nef metrizations, we have vol - (D) = d/e\g(ljdﬂ) [24, Theorem 5.3.2].
Therefore, Zhang’s inequality (Theorem A.3) implies that

e1(D) = vol, (D)/((d + 1) vol D) (A1)

for all continuous, semipositive, adelic metrizations of R-divisors on B.

Remark A.4. The volume function vol y 1s defined differently than the one studied by
Moriwaki [24], but they coincide. See, for example, [8, Appendix C.2 and p. 615], for the
comparison of an adelic volume to a Euclidean volume.
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Proposition A.5. For all integrable adelic metrizations on an ample R-divisor D, we
have P

e1(D) > M,

(d + 1)vol D

Proof. From (A.1), the inequality holds for relatively nef D. For integrable metrics, we
write D = Dj — D, for relatively nef D; and approximate each D; with relatively nef
adelic metrics on Q-divisors 51-,,, as n — oo. Because D is ample, we can assume that
D1,n — D3, is ample for all n. In that setting, we apply [12, Lemme 5.1]. The result then
follows by uniform convergence of the resulting height functions, so that e is continuous,
and by continuity of the volume function \781)( [24, Theorem 5.2.1] and of the classical
volume. ]

A.3. Proof of equidistribution

Proof of Theorem A.1. Fix an ample R-divisor D, equipped with an adelic, relatively
nef metrization D for which d/e\g(ﬁd +1) = 0. Let x, € X(K) be a generic sequence with
hp(xp) = 0.

Assume first that M is an adelic, arithmetically nef metrization on an ample R-
divisor M, meaning that M is relatively nef and the height & j7 1s non-negative at all
points of X(K); see [24, §4.4]. For each positive integer m, by Zhang’s inequality (The-
orem A.3) applied to (mD) + M, we have

deg((mD + M)a+1)
(d + 1)vol(mD + M)

_ (d + Dm?deg(D? M) + O(m*™")
N (d + 1) vol(mD + M)

liminf(nh 5 (xn) + h g (xn)) =

from the multilinearity of the intersection number and because d/&(ﬁd“) = 0. As the
sequence x, is small for D, this gives

(d + D)m?deg(D? M) + O(m?1)
(d + 1)vol(mD + M)

lbnl,{gfhﬂ(x”) >
for all m. Letting m go to oo, we obtain

. deg(D? M)

For the reverse inequality, we choose m large enough so that mD — M is ample. We
can therefore apply Proposition A.5 to obtain
vol, (mD — M)
iz (xn)) = X
(d + 1) vol(mD — M)

liminf(mh 5 (x,) —
n—>o0
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so that L o
. vol,(mD — M)
| b > X .
imsup g () = ) volm D — M)

(A3)

Fix a place vg of the number field K and ¢ € R, and let D, denote D + (0, {g,}) where
8vo(X) =c¢/ry and gy, (x) = 0 for all v # vy; recall that r, was defined in (2.2). Choosing
¢ large enough, we can assume that D, is arithmetically nef. It follows that

voly(mD. — M) = m¥*'deg(D4+") — (d + )m®deg(D¢ M),

combining [42, Theorem 2.2] with the continuity of \7(?1)( [24, Theorem 5.2.1]; see also
[12, Lemme 5.2].
But note that

voly(mD. — M) = vol,(mD — M) + (d + 1)emvol(mD — M)
from the definition of \70\1)(. Consequently,
voly(mD — M) = m**'deg(DZ*") — (d + 1)m?deg(DZ M)

—(d + )emvol(mD — M)

= m? ' (deg(D?*) + ¢(d + 1) vol(D))
—(d + DYym® (deg(D? M) + dcey (D)4 ey (M)
—(d + 1)emvol(mD — M)

= —(d + Dm%deg(D? M) + O(m“~")

with the last equality because deg(D9+!) = 0. Compare [12, Proposition 5.3].
Therefore, (A.3) gives

lim sup /2 j7 (xn) < — voly(nD — M) _ (d + ym?deg(D* M) + O(m* ™)
n—>oop M\HMn) = (d +1)volimD — M) — (d + 1)vol(mD — M)

for all sufficiently large m. Letting m — oo, we obtain the desired upper bound:

, deg(DI M)
1 h7 <= 7 A4
msuphyy (n) = =05 (a4

Putting the two inequalities (A.2) and (A.4) together, we have

. deg(D M)
lim h g = ——
nglgo M(xn) vol D

Now suppose that M is integrable. By definition, we can write M = M; — M, for
relatively nef M; on ample divisors M;. By adding and subtracting the trivial divisor
with constant metric, we can assume that each M; is arithmetically nef, and we apply the
result above to each M;. We have hy = hth - hﬂz and d/f%(ﬁdlvl) = d/e\g(ljd]VIl) -

d/eE( D9 M5). The theorem is a consequence of this linearity. |



L. DeMarco, N. M. Mavraki 3682

Proof of Corollary A.2. Fix a place v € Mk, and let ¢ be a smooth real-valued function
on X2". By density as in [24, Theorem 3.3.3] it is enough to consider these functions. We
denote by O_¢ the trivial divisor on X equipped with the metrization given by g, = ¢ and
gw = 0 forall w # v in Mg. This metrization is integrable.

Let ut,, denote the probability measure in X:" supported uniformly on the Galois con-
jugates of x,. Note that

h6¢(xn) =T ¢ dpin
X

by the definition of the height function, where r, = [K, : Q,]/[K : Q]. We have

deg(D? 0y) = rv/ per(D)Y.
Xy
Applying Theorem A.1 to M = 5¢, we get

. Iy =.d
lim hg (x =—/ c1(D =r/ dug ,,
00 0¢( n) vol D i ¢ ( )u v i ¢ /“LD,U
demonstrating weak convergence of ji, to i, in B". ]
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