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Abstract. Let R be any real closed field expanded by some o-minimal structure. Let f W A! Rd

be a definable and continuous mapping defined on a definable, closed, bounded subset A of Rn. Let
E be a finite family of definable subsets of Rn contained in A. Let p be any positive integer. We
prove that then there exists a finite simplicial complex T in Rn and a definable homeomorphism
h W jT j !A, where jT j WD

S
T , such that for each simplex� 2 T , the restriction of h to its relative

interior V� is a Cp-embedding of V� into Rn and moreover both h and f ı h are of class Cp in the
sense that they have definable Cp-extensions defined on an open definable neighborhood of jT j
in Rn. We then call a pair .T ; h/ a strict Cp-triangulation of A. In addition, this triangulation can
be made compatible with E in the sense that for each E 2 E , h�1.E/ is a union of some V�, where
� 2 T . We also give an application to approximation theory.

Keywords. O-minimal structure, semialgebraic set, Cp-triangulation, strict Cp-triangulation,
capsule, detector

1. Introduction and Main Theorem

We will work with an arbitrary fixed o-minimal expansion of any real closed field R,
e.g. the field R of real numbers with semialgebraic subsets of Rn spaces, where n 2 N.
O-minimal geometry (see [4,21] for fundamental notions and results) is a far-reaching gen-
eralization of semialgebraic and subanalytic geometries (presented in [2, 3, 8, 11, 15, 19]).
We will deal only with subsets of Rn and mappings f W A! Rm, where A � Rn, which
are definable in this structure (the mapping f is called definable if the graph of f is a
definable subset of RnCm/. Therefore, as a rule we will skip the adjective “definable”.

We adopt the following general definition. If K is any family of subsets of a set X ,
then by a refinement of K we understand any family L of subsets of X such that each
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L 2L is contained in someK 2K and eachK 2K is the union
S

L0 of some subfamily
L0 � L. The term “refinement” will also be used in another sense: if F is a family of
functions defined on a set X we will say that a family G of functions defined on X is a
refinement of F if simply F � G .

If K is any family of subsets of a set X , then we will denote by jKj the union of all
those subsets.

The interior of a subset A of a topological space will in general be denoted intA, but
often we find the Bourbaki notation VA more handy, while for the closure of A we will use
either A or clA.

We adopt the standard definition of a simplex of dimension k in Rn as the convex hull
of k C 1 points a0; : : : ; ak affinely independent in Rn; i.e.

� D Œa0; : : : ; ak � WD
° kX
iD0

˛iai W ˛i � 0 .i 2 ¹0; : : : ; kº/;

kX
iD0

˛i D 1
±
:

If 0 � i0 < i1 < � � � < il � k, then the simplex Œai0 ; : : : ; ail � is called a face of � of
dimension l . The points a0; : : : ; ak are called vertices of�. The boundary @� of� is the
union of all faces of � of dimension < k. Its relative interior is by definition

V� WD � n @� D .a0; : : : ; ak/ WD
° kX
iD0

˛iai W ˛i > 0 .i 2 ¹0; : : : ; kº/;

kX
iD0

˛i D 1
±
:

It will be convenient for us to use a more general notion of a convex polyhedron in Rn,
which is defined as the convex hull of any finite subset of Rn. All polyhedra considered
in this paper are assumed to be convex. It is clear that the notions of dimension, faces,
boundary, vertices and relative interior generalize to all polyhedra and that polyhedra are
definable in PL-geometry. For a polyhedron P in Rn and l 2 ¹0; : : : ; nº we will denote
by P .l/ its l-dimensional skeleton, i.e. the union of all its faces of dimension � l .

By a polyhedral complex in Rn we will always understand a finite family P of (con-
vex) polyhedra in Rn such that for each P 2 P all faces of P belong to P and for each
pair P1; P2 2 P , P1 \ P2 is empty or a common face of both P1 and P2. A polyhedral
complex consisting of simplexes is called a simplicial complex. In fact, we will restrict
our considerations to polyhedral complexes P such that jP j is a polyhedron of constant
dimension n. Then a polyhedral complex can be defined as a finite family of polyhedra
of dimension n such that the intersection of any two of them is their common face, if not
empty. We will use this identification for simplicial complexes as well.

Throughout the paper, p denotes a positive integer.

Definition 1. Let A be any definable, bounded, closed subset of Rn. A Cp-triangulation
of A is a pair .T ; h/, where T is a simplicial complex in Rn and h is a definable hom-
eomorphism of jT j onto A such that for each simplex � 2 T the restriction hj V� is a
Cp-embedding of V� into Rn. If E is any finite family of definable subsets of A we say
that the triangulation .T ; h/ is compatible with E if for each E 2 E the inverse image
h�1.E/ is a union of some V�, where � 2 T . A Cp-triangulation of A will be called a
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strict Cp-triangulation of A if the mapping h W jT j ! Rn is of class Cp in the sense of
the following definition.

Definition 2. If f W B ! Rd is any definable mapping defined on a definable subset
B � Rn we say that f is of class Cp if it admits an extension Qf W U ! Rd of class Cp

defined on an open definable neighborhood U of B in Rn.

Main Theorem. Let R be any real closed field expanded by some o-minimal structure.
Let f W A! Rd be a definable and continuous mapping defined on a definable, closed,
bounded subset A of Rn. Let E be a finite family of definable subsets of Rn contained
in A. Let p be any positive integer.

Then there exists a strict Cp-triangulation .T ; h/ of A compatible with E and such
that f ı h is of class Cp .

In fact, we prove a more precise theorem that an arbitrary definable triangulation of the
setA can be refined to a strict Cp-triangulation at the same time smoothing the mapping f
to the class Cp . Namely, we have the following (compare Corollary 8.7).

Strict Cp-Refinement Theorem. Under the assumptions of the Main Theorem, let P

be a polyhedral complex in Rn and let g W jP j ! A be any definable homeomorphism.
Then there exists a strict Cp-triangulation .T ; h/ of jP j such that T is a refinement of P ,
h.� /D � for any face � of any polyhedron P 2P and g ı h is a strict Cp-triangulation
of A compatible with the family E and such that f ı g ı h is of class Cp .

The proof of both theorems is an interplay between PL- and o-minimal geometries.
The general idea comes from our earlier paper about Cp-parametrizations of sets defin-
able in o-minimal structures [12]. In that paper we parametrized definable sets by Cp-
mappings defined on cubes (similarly to the classical analytic rectilinearization theorem
for subanalytic sets [2, 11]), which inevitably spoils injectivity of the parametrization.
Similarly, blowing-up operations evidently spoil injectivity. Instead of cubes or blowings-
up we propose to use simplexes as in the classical triangulation theorem [21, Chapter 8],
which can be adapted to give Cp-triangulations (cf. [10]). The problem is to make a tri-
angulating homeomorphism (extendable to) a Cp-mapping. Our procedure of smoothing
is based on the case of dimension 1, that is, on the Main Theorem for n D 1, the proof of
which we will briefly explain now, assuming for simplicity that d D 1.

Without any loss of generality we can assume that f W Œa; b� ! R is a continuous
definable function defined on a bounded, closed interval. There exists a finite sequence
c0 D a < c1 < � � �< csC1 D b such that for each i 2 ¹0; : : : ; sº, the restriction f j.ci ; ciC1/
is of class CpC1 and either jf 0j � 1 on .ci ; ciC1/ or jf 0j > 1 on .ci ; ciC1/. Now we use
a simple but beautiful trick of Coste–Reguiat [5] reducing the problem to that where
jf 0j � 1 on Œa; b� n ¹c0; : : : ; csC1º. Namely, we define g W Œa; b�! R by an inductive
formula. First, we put g.a/ D g.c0/ D f .a/. Then we define g on Œci ; ciC1� depending
on the following two cases:

Case I: If jf 0j � 1 on Œci ; ciC1�, then we put g.x/ WD g.ci /C x � ci for x 2 Œci ; ciC1�.
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Case II: If jf 0j > 1 on Œci ; ciC1�, then we put g.x/ WD g.ci / C jf .x/ � f .ci /j for
x 2 Œci ; ciC1�.

Put di D g.ci / for i 2 ¹0; : : : ; s C 1º. Observe that g W Œc0; csC1�! Œd0; dsC1� is a
strictly increasing homeomorphism such that g0.x/� 1 for x 2 Œc0; csC1� n ¹c0; : : : ; csC1º.
Take now the inverse h WD g�1 W Œd0; dsC1� ! Œc0; csC1�. Then 0 < h0.y/ � 1 and
j.f ı h/0.y/j � 1 for each y 2 .di ; diC1/, where i 2 ¹0; : : : ; sº. Now we use a trick of
Yomdin–Gromov (see Lemma 4.1 and Corollary 4.2 below and compare with [9,22,23]).
Passing perhaps to a finer subdivision one can assume that on each of the intervals
.di ; diC1/ each of the derivatives h.�/ and .f ı h/.�/, where � 2 ¹2; : : : ;pC 1º, exists and
has a constant sign. It follows that there exists a piecewise polynomial strictly increasing
function ! W Œ0; 2s�! Œd0; ds� of class Cp , where 0 < 1 < � � � < 2s , such that

!.2i / D di .i 2 ¹0; : : : ; sº/; !.2i�1/ D
di�1 C di

2
.i 2 ¹1; : : : ; sº/;

! is p-flat at each j and such that h ı ! and f ı .h ı !/ are Cp-functions flat at
0; : : : ; 2s .

For n > 1 we use the same smoothing procedure but with parameters. In order to
make it possible we introduce two devices: capsules which are cells without vertical
line segments in the boundary (see Section 2) and detectors which are special differ-
entiable functions of choice (see Section 3). A capsule in Rn can be treated as a fam-
ily parametrized by an open subset D of Rn�1 of vertical line segments shrinking to
points when approaching the boundary of D. To these line segments we apply the above
described smoothing procedure of our function f (cf. Lemma 5.1). This gives us Cp-
smoothing, but only in one (vertical) direction, say in the direction of the xn-axis. More
precisely, the partial derivative @pf

@x
p
n

extends continuously by zero to the boundary of the
capsule. It is important that we obtain this by substituting in f a homeomorphism which
is of the form˚.x0;xn/D .h.x

0/;'.x0;xn//, where x0D .x1; : : : ;xn�1/ and h is a homeo-
morphism of D. Now we want to control the other partial derivatives, which may a priori
be unbounded at the boundary. Consider first @pf

@xn�1@p�1xn
. We want to control it from the

level of the space Rn�1. For this purpose, we find a function ! W D ! R which detects
in every vertical fiber a point at which the maximum of j @pf

@xn�1@p�1xn
j over the fiber is

attained (up to a factor 1=2). Such a detector can be found as smooth as we want and
since it is contained in a capsule, it automatically extends continuously to the boundary.
We apply the previous step to the function

@p�1f

@x
p�1
n

.x0; !.x0// D
@p�1f

@x
p�1
n

.x00; xn�1; !.x
00; xn�1//;

where x00 D .x1; : : : ; xn�2/ and xn�1 now plays the role of a “vertical variable”. Hence,
there exists a homeomorphism of the form

	.x00; xn�1/ D .g.x
00/;  .x00; xn�1//
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such that

@

@xn�1

�
@p�1f

@x
p�1
n

�
g.x00/;  .x00; xn�1/; !.g.x

00/;  .x00; xn�1//
��

extends continuously by zero to the boundary of D (in fact, D has to be represented as a
union of capsules beforehand). But

@

@xn�1

�
@p�1f

@x
p�1
n

�
g.x00/;  .x00; xn�1/; !.g.x

00/;  .x00; xn�1//
��

D
@pf

@xn�1@x
p�1
n

�
g.x00/;  .x00; xn�1/; !.g.x

00/;  .x00; xn�1//
� @ 

@xn�1

C
@pf

@x
p
n

�
g.x00/;  .x00; xn�1/; !.g.x

00/;  .x00; xn�1//
� @

@xn�1
!.g.x00/;  .x00; xn�1//;

and the last line represents a function which is already known to have continuous exten-
sion by zero to the boundary. Hence the previous one has this property as well. It follows
thatˇ̌̌̌

@p

@xn�1@x
p�1
n

�
f
�
g.x00/;  .x00; xn�1/; xn

��ˇ̌̌̌
D

ˇ̌̌̌
@pf

@xn�1@x
p�1
n

�
g.x00/;  .x00; xn�1/; xn/

� @ 

@xn�1

ˇ̌̌̌
� 2

ˇ̌̌̌
@pf

@xn�1@x
p�1
n

�
g.x00/;  .x00; xn�1/; !.g.x

00/;  .x00; xn�1//
� @ 

@xn�1

ˇ̌̌̌
has continuous extension by zero to the boundary. Repeating a similar reasoning we are
able to achieve that @pf

@2xn�1@p�2xn
has continuous extension by zero to the boundary, and

so on (cf. Propositions 8.2 and 8.3). We stop this procedure when we are able to apply the
following Basic Cp-Extension Lemma, which we here state in a slightly simplified form
(compare Lemma 5.4):

Let P be a convex polyhedron in Rn of dimension n, let ˙ be its face of dimension k
such that ˙ � ¹.x1; : : : ; xn/ 2 Rn W xkC1 D � � � D xn D 0º and let f W P n˙ ! R be a
Cp-function such that all the partial derivatives

@pf

@x
˛kC1
kC1

: : : @x
˛n
n

.j˛j D ˛kC1 C � � � C ˛n D p/

have continuous extensions to ˙ .
Then there exists a closed subset E of ˙ of dimension < k such that f extends to a

Cp-function defined on P nE.

At the beginning of the proof we can assume without any loss of generality that in the
Main Theorem, instead of any definable A, we have a big convex polyhedron P in Rn

containingA, because of the definable version of the Tietze Theorem (see [1, Lemma 6.6],



W. Pawłucki 3868

[21, Chapter 8, (3.10)]). The next initial reduction is that by the classical Cp-triangulation
theorem (see [10], [21, Chapter 8]) there exists a Cp-triangulation .T ; g/ of P compatible
with A such that T is a simplicial complex in Rn, jT j D P and f ı gj V� is of class Cp

for any � 2 T . We will be working under the inductive hypothesis that our theorems are
true in dimensions < n and use descending induction on the dimension k of a face of a
polyhedron as described above.

We should stress that the above sketch of proof is oversimplified. For example, in
general we have to use a number of detectors rather than one.

The advantage of our method of desingularization is that it works for an arbitrary
o-minimal structure, including in particular the following two examples:

(1) the o-minimal structure of R-subanalytic sets and mappings, i.e. the structure gener-
ated on the ordered field R of real numbers by real analytic bounded subsets of Rn

.n 2 N/ and all power functions .0;1/ 3 t 7! t˛ 2 .0;1/ with real irrational ˛ (for
a Cp-rectilinearization and uniformization theorems in this structure see [18]),

(2) an o-minimal structure of Le Gal and Rolin [14] which does not admit C1 cell
decompositions.

These examples explain why in our Main Theorem we deal with finite differentiability
classes rather than C1. Besides, the C1-analogue of the theorem, if taken literally, is not
true even in the semialgebraic case, as shown by the example of the function f .t/ D jt j.
Indeed, if there existed a semialgebraic C1-homeomorphism g of a neighborhood of 0
onto a neighborhood of 0 such that g.0/ D 0 and f ı g were C1, then g would be
analytic, so g � tk for some positive odd integer k; hence h ı g � jt jk , a contradiction.

The case p D 1 has already been proved in a slightly weaker form for semialgebraic
category by Ohmoto and Shiota [16], who used strict C1-triangulations to develop inte-
gration on sets with singularities. Our Main Theorem for p D 1 in full extent has been
proved by Czapla and Pawłucki [6].

If R D R is the field of real numbers, versions of our Main Theorem for locally
definable sets and mappings are possible. They will be a subject of a separate article.

Throughout the paper we use the linear projections

�nm W R
n
3 .x1; : : : ; xn/ 7! .x1; : : : ; xm/ 2 R

m

where m � n.

2. Capsules

We define two special notions which will play an essential role in the proof of the Main
Theorem. These are capsules studied in the present section and detectors to which the
next section is devoted.

A capsule in RnC1 is a subset K of RnC1 of the form

K D ¹.x; t/ 2 D �R W ˛.x/ � t � ˇ.x/º;
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where D is a subset of Rn such that D D intD, intD is bounded, connected and ˛; ˇ W
D ! R are continuous functions such that ˛ < ˇ on intD and ˛ D ˇ on @D.

Proposition 2.1. For any subset E of RnC1 the following conditions are equivalent:

(2.1.1) E is a finite union of capsules in RnC1.

(2.1.2) E D intE is bounded and @E does not contain any nontrivial line segment par-
allel to the t -axis.

(2.1.3) E is a finite union of capsules in RnC1 whose interiors are pairwise disjoint.

Proof. Obviously (2.1.1) implies (2.1.2). Assume now (2.1.2) satisfied. Let � W RnC1 3
.x; t/ 7! x 2 Rn. Since intE is bounded and �.E/ is closed,

�.E/ D �.intE/ D �.intE/ � int�.E/ � �.E/;

hence �.E/ D int�.E/. Take a cell decomposition of RnC1 compatible with intE and
with @E (cf. [21, Chapter 3, (2.11)]). This allows us to represent intE as a finite union of
pairwise disjoint cells of the form

.';  / WD ¹.x; t/ W x 2 S; '.x/ < t <  .x/º;

where S � �.intE/, '; W S ! R are continuous, ' <  on S and the graphs1 of ' and
 are contained in @E. Applying classical triangulation to �.intE/ and all S (see [21,
Chapter 8, (1.7)]) we can additionally assume that S D �.';  / satisfies Łojasiewicz’s
.s/-condition (see [15, Section 25]): each point a 2 S n S admits a neighborhood basis
U in Rn such that the trace U \ S of each U 2 U on S is connected. Then the set of all
limit values of ' at each point a 2 S n S can be identified with

' \ .¹aº �R/ D ¹aº �
\
¹'.U \ S/ W U 2 Uº;

which is a nonempty, connected subset of the vertical line ¹aº � R and of @E at the
same time, hence a singleton. Consequently, both ' and  have continuous extensions
';  W S ! R to S and next, by the Tietze Theorem, to the whole �.E/. Using all these
extensions and min and max functions we can find a sequence of continuous functions

˛1 � � � � � p̨ W �.E/! R

such that

(2.1.4) for each x 2�.intE/ the fiber .intE/x is a union of some intervals .˛i .x/; j̨ .x//,
where i < j ,

(2.1.5) ��1.�.intE// \ @E �
S
i ˛i .

Refining the sequence ˛1; : : : ; p̨ by some extra functions we can assume that all the sets

.˛i ; ˛iC1/ WD ¹.x; t/ W x 2 �.E/; ˛i .x/ < t < ˛iC1.x/º

1We identify mappings with their graphs, denoting both by the same letter.
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are connected and nonempty. It follows from (2.1.5) that if .˛i ; ˛iC1/ \ intE ¤ ;, then
.˛i ; ˛iC1/ � intE. Let ¹i1 < � � � < isº D ¹i W .˛i ; ˛iC1/ � intEº. Then by (2.1.4),

.˛i1 ; ˛i1C1/ [ � � � [ .˛is ; ˛isC1/

is dense in intE, hence in E. Let P� WD �.˛i� ; ˛i�C1/. Now if x 2 P� n P� and x 2
�.intE/, then of course ˛i� .x/ D ˛i�C1.x/ and if x 2 P� n P� and x … �.intE/, then
¹xº � Œ˛i� .x/; ˛i�C1.x/� � @E, hence again ˛i� .x/ D ˛i�C1.x/. However, .˛i� ; ˛i�C1/
may not be a capsule yet because the condition intP� D P� may not be satisfied. To solve
this problem we prove the following lemma.

Lemma. Let P be a bounded open subset ofRn and let ˛;ˇ W P !R be two continuous
functions such that ˛ < ˇ on P and ˛ D ˇ on @P . Then .˛; ˇ/ can be represented as a
finite union of capsules with pairwise disjoint interiors.

Proof of Lemma. Without any loss of generality we can assume that ˛ � 0. Next,
using classical triangulation we reduce the problem to PL-geometry. Then the subset
A WD .int P / n P is contained in a finite number H1; : : : ; Hq of affine hyperplanes,
with q minimal possible. We argue by induction on q. By an affine change of coor-
dinates in Rn, we can assume that Hq D ¹.x1; : : : ; xn/ W xn D 0º. Then the function
.x/ WDMxn, with jM j large enough, cuts the cell .0; ˇ/ into two .0;max.0;min.; ˇ///
and .max.0;min.; ˇ//; ˇ/, for each of which q0 < q.

This ends the proof of Proposition 2.1.

Remark 2.2. If E fulfills the conditions of Proposition 2.1 and �j W �.E/ ! R .j 2

¹1; : : : ; rº/ is a given finite family of continuous functions, then there exists a finite family
of continuous functions ˛1 � � � � � ˛s WRn!R such thatE is a union of some capsules of
the form .˛i ; ˛iC1/ which are compatible with every �j in the sense that either �j .x/ � t
for all .x; t/ 2 .˛i ; ˛iC1/, or �j .x/ � t for all .x; t/ 2 .˛i ; ˛iC1/.

Remark 2.3. If K0; K1; : : : ; Kp are capsules in RnC1 and K� � K0 when 1 � � � p,
then there exists a finite family of continuous functions ˛1 � � � � � ˛s W Rn! R such that
.˛i ; ˛iC1/ .i 2 ¹0; : : : ; s � 1º/ is a family of capsules which is a refinement ofK0; : : : ;Kp .

Corollary 2.4. For any finite family K of capsules in RnC1 there exists a finite family L

of capsules in RnC1 which is a refinement of K and the interiors of capsules from L are
pairwise disjoint.

Proposition 2.5. Let K be any capsule in RnC1 and let V be a finite family of open
subsets of intK covering the whole intK. Then there exists a finite family L of capsules
in RnC1 whose interiors are pairwise disjoint,

S
LD K and for each L 2 L there exists

V 2 V such that intL � V .

Proof. Put K D ¹.x; t/ 2 D �R W ˛.x/ � t � ˇ.x/º. There are two parts of the proof.

Part I. We first prove by induction on k that if A is any subset of intD of dimension k,
then there exists a finite family L of capsules in RnC1 such that for each L 2 L there
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exists V 2 V containing intL and for each a 2 A there exist L 2 L and " > 0 such that
¹aº � .˛.a/; ˛.a/C "/ � intL.

Applying a triangulation of D compatible with A, we can assume that A is an open
subset ofRk D ¹.x1; : : : ; xn/ W xkC1 D � � � D xn D 0º. Partitioning A, using the induction
hypothesis and cell decomposition, we can assume that A is connected, and there exists
one V 2 V and a function

� W A! .0;1/

such that ¹aº � .˛.a/; ˛.a/ C �.a/� � V for each a 2 A. Replacing � by Q�.a/ WD
min ¹�.a/; d.a; A n A/º, we can assume that �.a/ ! 0 when d.a; A n A/ ! 0. For
each t 2 Œ˛.a/; ˛.a/ C �.a/� put �.a; t/ WD 1

2
d..a; t/; K n V /. Since for each a 2 A,

�.a; ˛.a// D 0 and �.a; t/ > 0 when t > ˛.a/, we can modify � in such a way that

.˛.a/; ˛.a/C �.a/� 3 t 7! �.a; t/ 2 .0;1/

is strictly increasing. Again by partitioning A and using the induction hypothesis we can
assume that � is continuous, and replacing � by Q�.a/ WD min ¹�.a/; d.a; A n A/º, we can
assume that �.a/! 0 when d.a; A n A/! 0. It follows from the definition of � that for
each a 2 A and t 2 .˛.a/; ˛.a/C �.a/�,

¹.x1; : : : ; xn; t / W a D .x1; : : : ; xk/; .x
2
kC1 C � � � C x

2
n/
1=2
� �.a; t/º � V:

Now we define the desired capsule. Put

E WD ¹.x1; : : : ; xn/ W a D .x1; : : : ; xk/ 2 A; .x
2
kC1 C � � � C x

2
n/
1=2
� �.a; ˛.a/C �.a//º

and

L WD
®
.x1; : : : ; xn; t / W .x1; : : : ; xn/ 2 E;

��1
�
x1; : : : ; xk ; .x

2
kC1 C � � � C x

2
n/
1=2
�
� t � ˛.x1; : : : ; xk/C �.x1; : : : ; xk/

¯
;

where ��1 denotes the inverse of � with respect to the last variable.

Part II. According to Part I, there exists a finite family L of capsules in RnC1 such that
for each L 2 L there exists V 2 V containing intL and for each a 2D there exist L 2 L

and " > 0 such that ¹aº � .˛.a/; ˛.a/C "/� intL and there existM 2L and � > 0 such
that ¹aº � .ˇ.a/; ˇ.a/ � �/ � intM .

By Corollary 2.4 there exists a finite family L0 of capsules in RnC1 which is a refine-
ment of L [ ¹Kº and consists of capsules with pairwise disjoint interiors. It follows that
if L0 2 L0 and L0 is not contained in any of the capsules from L, then L0 is of the form

L0 D ¹.x; t/ W x 2 Q; .x/ � t � ı.x/º;

where V is an open covering of L0jintQ D ¹.x; t/ W x 2 intQ; .x/ � t � ı.x/º. Thus
to finish the proof it suffices to prove the following.

IfKD¹.x; t/2D �R W˛.x/� t �ˇ.x/º is a capsule inRnC1,K� WDK \ .@D �R/,
V is a finite family of open subsets of RnC1 such that K nK� �

S
V and A is a subset
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of intD of dimension k, then there exists a finite family L of capsules in RnC1 contained
inK such that

S
L nK� is a neighborhood ofKjA inK nK� and for each L 2 L there

exists V 2 V such that L nK� � V .

We proceed again by induction on k. Take a cell decomposition C of
S

V compatible
with each V 2 V and with KjA. Let

¹B1; : : : ; Bsº D ¹�.C / W C 2 C ; C � KjA; dim�.C / D kº:

Now we apply the induction hypothesis to

E WD ŒA n .B1 [ � � � [ Bs/� [ .B1 \ intD n B1/ [ � � � [ .Bs \ intD n Bs/:

There exists a finite family L of capsules in RnC1 contained in K such that
S

L n K�

is a neighborhood of KjE in K nK� and for each L 2 L there exists V 2 V such that
L nK� � V . Fix one B� D B . Then

KjB D Œ0; 1� [ � � � [ Œm�1; m�;

where � WB!R .� 2 ¹0; : : : ;mº/ are continuous, 0 < � � �< m, 0 D ˛jB , m D ˇjB
and each Œ� ; �C1� is contained in some V 2 V . There is an open subset T0 of B such
that T0 \ intD � B and

S
L n K� is a neighborhood of Kj.B n T0/. Take also open

subsets T1; T2 of B such that Ti \ intD � Tj � Tj \ intD � B if 0 � i < j � 2. By
the Tietze Theorem for each � 2 ¹1; : : : ; mº there exists a continuous function

Q� W T2 ! R

such that Q� jT1 D � jT1, Q� j@T2 D ��1j@T2 and ��1 � Q� � � on T2. Then

m[
�D1

Œ��1jT2; Q� � nK
�

is a neighborhood of KjT0 \ intD in K n K�. We build a similar neighborhood over
every B�. Applying Proposition 2.1 we finish the proof.

Remark 2.6. The reader will easily check that Propositions 2.1 and 2.5 as well as Rem-
arks 2.2 and 2.3 hold true in the PL-structure.

In Section 8 we will need the following lemma.

Lemma 2.7. Every PL-capsule in RnC1 is a finite union of convex PL-capsules whose
interiors are pairwise disjoint.

Proof. The boundary @S of any PL-capsule S is contained in a finite number of graphs
of affine functions,

@S � '1 [ � � � [ 's;

where s is the smallest possible. We argue by induction on the number q of '� such that S
is not contained in just one closed half-space cut by '� . If q D 0, then clearly S is convex.
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Otherwise there is � such that

T1 WD cl ¹.x; y/ 2 intS W y < '�.x/º and T2 WD cl ¹.x; y/ 2 intS W y > '�.x/º

are finite unions of PL-capsules, for which the number q is smaller. The lemma follows.

3. Detectors

In this section we will need Cp-partitions of unity. Although it is well-known that Cp-
partitions of unity exist in any o-minimal structure, for the reader’s convenience and to
make the paper self-contained, we give a short proof in the first two lemmas.

Lemma 3.1. Let � be an open subset of Rn and let A and B be two closed, disjoint
subsets of �. Then there exists a Cp-function ' W �! Œ0; 1� such that ' D 1 on A and
' D 0 on B .

Proof. By the Whitney extension theorem in the version from [13], there exists a Cp-
function  W � ! R such that  D 1 on A and  D 0 on B . Now it suffices to put
' WD � ı  , where � W R! Œ0; 1� is a Cp-function such that �.0/ D 0 and �.1/ D 1.

Lemma 3.2. Let � be an open subset of Rn and let A1; : : : ; Am be a finite family of
closed and pairwise disjoint subsets of �. Then there exist Cp-functions 'j W �! Œ0; 1�

.j 2 ¹1; : : : ; mº/ such that

mX
jD1

'j .x/ D 1 for all x 2 �;

and for each j 2 ¹1; : : : ; mº, 'j D 1 on Aj .

Proof. Induction on m. Let m > 1. By the induction hypothesis there are  1; : : : ;  m�1 W
�! Œ0; 1� of class Cp such that

m�1X
iD1

 i .x/ D 1 for all x 2 �;

and  i D 1 on Ai . By Lemma 3.1 there exists a Cp-function �1 W �! Œ0; 1� such that
�1 D 1 on Am and �1 D 0 on A1 [ � � � [ Am�1. There exists an open neighborhood U
of Am in� such that �1 > 0 on U and U �� n .A1 [ � � � [Am�1/. By Lemma 3.1 there
exists a Cp-function �2 W �! Œ0; 1� such that �2 D 1 on� nU and �2 D 0 on Am. Then
the Cp-function

�1 C �2 W �! .0; 2�

is positive on �, so we can build the following Cp-functions on �:

�1.x/ WD
�1.x/

�1.x/C �2.x/
and �2.x/ WD

�2.x/

�1.x/C �2.x/
:
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Of course, �1.x/C �2.x/ � 1, �1 D 0 on A1 [ � � � [ Am�1, while �2 D 0 on Am; hence
�1 D 1 on Am and �2 D 1 on A1 [ � � � [Am�1. Finally, we put '1 WD  1�2; : : : ; 'm�1 WD
 m�1�2 and 'm WD �1.

Proposition 3.3. Let� be an open subset ofRn,E a closed subset of � of dimension k,
and C a convex, closed bounded subset of Rm such that intC ¤ ;. Let f W E � C !
Œ0;1/ be a continuous function and define

g.x/ WD sup
y2C

f .x; y/ for x 2 E:

Assume that g.x/ > 0 for all x 2 E. Let p 2 N.
Then there exists a family !j W�! intC .j 2 ¹0; : : : ; kº/ of Cp-mappings such that

1
2
g.x/ < sup

j

f .x; !j .x// for all x 2 E:

The mappings !j will be called detectors of class Cp for f over E.

Proof. Induction on k. If k D 0 it suffices to know that there exists a Cp-mapping ! W
�! C which has prescribed values at a finite number of points, which is an immediate
consequence of existence of definable Cp-partitions of unity (Lemma 3.2).

Suppose now that k > 0. By definable choice there exists a mapping !k W E ! intC
such that

.3:3:1/ 1
2
g.x/ < f .x; !k.x// for all x 2 E:

There exists a closed subset E1 of E of dimension l < k such that E n E1 is a Cp-
submanifold of Rn of dimension k and !kjE n E1 is a Cp-mapping. Moreover, by [13]
we can assume that E nE1 can be represented as a finite union

.3:3:2/ E nE1 D
[
�

��

of pairwise disjoint k-dimensional Cp-submanifolds each of which, in some linear coor-
dinate system, is the graph

�� D
®�
x1; : : : ; xk ; 

�
kC1.x1; : : : ; xk/; : : : ; 

�
n .x1; : : : ; xk/

�
W .x1; : : : ; xk/ 2 D�

¯
;

of a Cp-mapping � D .�
kC1

; : : : ; �n / W D� ! Rn�k defined on some open subset
D� � R

k .
Via the natural projection

D� �R
n�k
3 .x1; : : : ; xn/ 7! .x1; : : : ; xk ; 

�.x1; : : : ; xk// 2 �� ;

!kj�� can be extended to a Cp-mapping on a neighborhood of �� ; hence !kjE n E1
can be extended to a Cp-mapping defined on a neighborhood of E n E1. Consequently,
!kjE nE1 extends to a Cp-Whitney field defined onE nE1. By the induction hypothesis,
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there exist Cp-mappings !j W �! intC .j 2 ¹0; : : : ; k � 1º/ such that

.3:3:3/ 1
2
g.x/ < sup

j

f .x; !j .x// for all x 2 E1

There exists an open neighborhood W of E1 in � such that (3.3.3) holds true for all
x 2 W \ E. Then E nW is a closed subset of � contained in E n E1. By the Whitney
Extension Theorem, there exists a Cp-mapping F W�!Rm which extends !kj.E nW /.
Then U WD F �1.intC/ is an open neighborhood of E nW in �. By Lemma 3.2, there
exist Cp-functions '1;'2 W�! Œ0;1� such that '1C '2� 1, '1D 1 onE nW and '2D 1
on � n U . Choose any c0 2 intC and put Q!k WD '1F C '2c0. Then !0; : : : ; !k�1; Q!k is
the desired sequence for E.

Example 3.2. The following example shows that the assumption g.x/ > 0 for all x 2 E
in Proposition 3.3 cannot be omitted. Put

E WD ¹.x1; x2/ 2 R
2
W x21 C x

2
2 � 1=4º and C D Œ0; 1�:

Consider f W E � C ! Œ0;1/ defined in the following way:

f .x1; x2; y/ D 0 when x21 C x
2
2 > 0 and y �

jx1j jx2j

2.x21 C x
2
2/
I

f .x1; x2; y/ D y �
jx1j jx2j

2.x21 C x
2
2/

when x21 C x
2
2 > 0 and

jx1j jx2j

2.x21 C x
2
2/
� y �

jx1j jx2j

2.x21 C x
2
2/
C x21 C x

2
2 ;

f .x1; x2; y/ D 2.x
2
1 C x

2
2/ �

�
y �

jx1j jx2j

2.x21 C x
2
2/

�
when x21 C x

2
2 > 0 and

jx1j jx2j

2.x21 C x
2
2/
C x21 C x

2
2 � y �

jx1j jx2j

2.x21 C x
2
2/
C 2.x21 C x

2
2/;

f .x1; x2; y/ D 0 when x21 C x
2
2 > 0 and

jx1j jx2j

2.x21 C x
2
2/
C 2.x21 C x

2
2/ � y � 1I

f .x1; x2; y/ D 0 when x21 C x
2
2 D 0:

Clearly, g.x1; x2/ D x21 C x
2
2 and f does not admit continuous detectors over E.

4. Yomdin–Gromov trick and a smoothing homeomorphism !

The aim of this section is to present a method of smoothing functions of one variable
(Corollary 4.5), mimicking Yomdin and Gromov (cf. [9, Section 4.1], [22, 23]), which
appeared useful to get smooth parametrizations of subsets definable in o-minimal struc-
tures (see [12]). It is crucial in the proof of our basic Lemma 5.1 in the next section. We
will come to Corollary 4.5, starting from a more elementary lemma.
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Lemma 4.1. Let � W .a; b/! R be a definable CpC1-function, where p 2 N, p � 1,
defined on an open interval .a; b/ � R such that, for each � 2 ¹2; : : : ; p C 1º, �.�/ � 0
on .a; b/ or �.�/ � 0 on .a; b/. Then, for any closed interval Œt � r; t C r� � .a; b/, where
r 2 R and r > 0,

j�.p/.t/j � 2.
pC2
2 /�2 sup

Œt�r;tCr�

j�j
1

rp
:

Proof. The same as the proof of [12, Lemma 2.1].

Applying Lemma 4.1 to �0 in place of � and � � 1 in place of p, we have

Corollary 4.2. Under the assumptions of Lemma 4:1, where p � 2,

j�.�/.t/j � Cp sup
.a;b/

j�0j
1

jt � aj��1

for all t 2 .a; aCb
2
� and � 2 ¹2; : : : ; pº, where Cp WD 2.

pC1
2 /�2. In particular, if �0 is

bounded, i.e. j�0j �M , where M 2 R and M > 0, then

.4:2:1/ j�.�/.t/j � CpM
1

jt � aj��1
for all t 2

�
a;
aC b

2

�
; � 2 ¹2; : : : ; pº:

Lemma 4.3. Let � W .a; c�! R be a definable Cp-function, where a; c 2 R, a < c, such
that

.4:3:1/ j�.�/.t/j � L
1

jt � aj��1
for all t 2 .a; c�; � 2 ¹1; : : : ; pº;

where L 2 R is a positive constant. Fix m 2 N, m � p C 1. Fix any ˛ 2 R. Put '.�/ WD
�.aC .� � ˛/m/ for � 2 .˛; ˇ�, where ˇ D ˛ C m

p
c � a.

Then there exists a positive constant M depending only on L and m such that
j'.�/.�/j � M j� � ˛jm�� for all � 2 .˛; ˇ� and � 2 ¹1; : : : ; pº. Consequently, ' has
a unique extension to a Cp-function ' W Œ˛; ˇ�! R, p-flat at ˛.

Proof. Without any loss of generality we can assume that aD 0D ˛. Then '.�/D �.�m/.
For each � 2 ¹1; : : : ; pº,

'.�/.�/ D a1��
m���0.�m/C a2��

2m���00.�m/C a3��
3m���.3/.�m/

C � � � C a���
�m���.�/.�m/;

where ai� are positive integers defined inductively by

a1� D
mŠ

.m � �/Š
; ai� D mai�1;��1 C .im � �C 1/ai;��1; a�� D m

�:

By (4.3.1), it follows that

j'.�/.�/j � a1��
m��LCa2��

2m�� L

�m
Ca3��

3m�� L

�2m
C� � �Ca���

�m�� L

� .��1/m

D L.a1�C� � �Ca��/�
m��:
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It will be convenient to have the p-flatness of a parametrization of the interval Œa; c�
at the right end as well. That is why we use the following increasing parametrization of
Œ˛; ˇ�, p-flat at the right end:

� WD ˛ C m
p
c � a � .ı � s/m;

where  2 R is arbitrary, s 2 Œ; ı� and ı D  C 2m
p
c � a. This leads us to the following.

Corollary 4.4. Let � W .a; b/! R be a CpC1-function, where p 2 N, p � 1, defined
on .a; b/ � R such that �0 is bounded and, for each � 2 ¹2; : : : ; p C 1º, �.�/ � 0 on
.a; b/ or �.�/ � 0 on .a; b/. Let m 2 N, m � p C 1. Fix any 0 2 R and let 1 WD
0 C

2m
p
.b � a/=2, 2 WD 1 C 2m

p
.b � a/=2 D 0 C 2

2m
p
.b � a/=2. Put

!.a; bI s/ WD

´
aC

�
m
p
.b � a/=2 � .1 � s/

m
�m if s 2 Œ0; 1�;

b �
�
m
p
.b � a/=2 � .s � 1/

m
�m if s 2 Œ1; 2�:

Then ! W Œ0; 2� ! Œa; b� is an increasing homeomorphism such that !.0/ D a,
!.1/D

aCb
2

,!.2/D b and � ı! extends uniquely to a Cp-function � ı! W Œ0;2�!R

p-flat at 0; 1 and 2.

Corollary 4.5. Let y0 � y1 � � � � � yr be .at most/ r C 1 points inR. Let � W Œy0; yr �!
R be a continuous function such that, for each i 2 ¹0; : : : ; r � 1º, if yi < yiC1, then
�j.yi ; yiC1/ satisfies the assumptions of Corollary 4.4. Let m 2 N, m � p C 1. Define a
sequence

0 � 1 � � � � � 2r

of points inR inductively: 0 2R arbitrary, 2iC1 WD 2i C 2m
p
.yiC1 � yi /=2, 2iC2 WD

2iC1 C
2m
p
.yiC1 � yi /=2 .i 2 ¹0; : : : ; r � 1º/. Put

!.y0; : : : ;yr Is/ WD

´
yi C

�
m
p
.yiC1�yi /=2� .2iC1� s/

m
�m if s 2 Œ2i ; 2iC1�;

yiC1�
�
m
p
.yiC1�yi /=2� .s�2iC1/

m
�m if s 2 Œ2iC1; 2iC2�;

for i 2 ¹0; : : : ; r � 1º and

!.y0; : : : ; yr I s/ WD

´
y0 � .0 � s/

m if s 2 .�1; 0�;

yr C .s � 2r /
m if s 2 Œ2r ;1/:

Then ! W R! R is an increasing homeomorphism of class Cp such that !.2i /D yi and
!.2iC1/D

yiCyiC1
2

.i 2 ¹0; : : : ; r � 1º/, and � ı ! W Œ0; 2r �! R is of class Cp , p-flat
at 0; : : : ; 2r .

5. Basic lemmata

In this section we prove three lemmata of technical importance, each of which is of a
different nature.
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5.1. Smoothing with a parameter

Lemma 5.1 below is a first version with parameter of the one-dimensional smoothing
described in the Introduction, which will be enhanced later in Proposition 8.1.

Lemma 5.1. Let D be a bounded subset of Rn�1 such that D D intD, and let m; p be
positive integers such that m � p C 1. Let

˛0 � ˛1 � � � � � ˛r W D ! R

be a finite sequence of continuous functions such that K WD ¹.˛i ; ˛iC1/ W i 2 ¹0; : : : ; r�1ºº

is a family of capsules in Rn. Let K1 � K and put A WD jKj and A1 WD jK1j. Let
f D .f1; : : : ; fd / W A1! Rd be a continuous mapping such that for eachK 2K1 there
exist continuous partial derivatives

@� .f j VK/

@x�n
for � 2 ¹1; : : : ; p C 1º:

Then there exists a finite sequence of continuous functions

ı0 � ı1 � � � � � ık W D ! R

and a homeomorphism ˚ W Œı0; ık �! Œ˛0; ˛r � such that:

.5:1:1/ ˚ is of the form ˚.x0; �n/ D .x
0; '.x0; �n//, where x0 D .x1; : : : ; xn�1/.

.5:1:2/ For each j 2 ¹0; : : : ; k � 1º the derivatives

@�'

@��n
for � 2 ¹1; : : : ; p C 1º

exist and are continuous in .ıj ; ıjC1/ and have continuous extensions by zero to
.ıj ; ıjC1/; moreover,

@'

@�n
> 0 on .ıj ; ıjC1/:

.5:1:3/ The sequence �j .x0/ WD '.x0; ıj .x
0//, where x0 2 D and j 2 ¹0; : : : ; kº, is a

refinement of ˛0; : : : ; ˛r ; in particular, ˛0 D �0 and ˛r D �k .

.5:1:4/ L WD ¹.ıj ; ıjC1/ W j 2 ¹0; : : : ; k � 1ºº is a family of capsules in Rn such that
¹˚.L/ W L 2 Lº is a family of capsules which is a refinement of K .

.5:1:5/ Put L1 WD ¹L 2 L W ˚.L/ � K for someK 2K1º. For each L 2 L1, there exist
continuous partial derivatives

@� .f ı ˚ j VL/

@��n
.� 2 ¹1; : : : ; p C 1º/

and those for � 2 ¹1; : : : ; pº extend continuously by zero to L.
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.5:1:6/ On each capsule L 2 L the function ' is of the form either

�2mn C a1.x
0/�2m�1n C � � � C a2m.x

0/;

where a1; : : : ; a2m W D ! R are continuous .in particular when L … L1/, or

˙f �1~ .x0;˙�2mn C a1.x
0/�2m�1n C � � � C a2m.x

0//;

where a1; : : : ; a2m W D ! R are continuous and where ~ 2 ¹1; : : : ; dº and f �1~
denotes the inverse of f~ with respect to the variable xn on the capsule ˚.L/ on
which ˇ̌̌̌

@f~

@xn

ˇ̌̌̌
� c�1 with some constant c > 1:

Proof. Fix any c > 1. By Proposition 2.5, passing perhaps to a refinement of K one can
assume that for each K 2K we have either

.5:1:7/

ˇ̌̌̌
@f~

@xn

ˇ̌̌̌
� c in VK for all ~ 2 ¹1; : : : ; dº;

or

.5:1:8/

ˇ̌̌̌
@f~

@xn

ˇ̌̌̌
� c�1 in VK for some ~ 2 ¹1; : : : ; dº;

and in the second case among f~ satisfying .5:1:8/ there is one, denote it by fK , such that

.5:1:9/

ˇ̌̌̌
@f~

@xn

ˇ̌̌̌.ˇ̌̌̌@fK
@xn

ˇ̌̌̌
� cd in VK for all ~ 2 ¹1; : : : ; dº:

Now we define a function � W Œ˛0; ˛r �! R inductively as follows. Put first

�.x0; ˛0.x
0// WD ˛0.x

0/ for x0 2 D:

We define � on Œ˛i ; ˛iC1� according to the following two cases.

Case I. If .˛i ; ˛iC1/ … K1 or if .˛i ; ˛iC1/ 2 K1 and (5.1.7) is satisfied on .˛i ; ˛iC1/,
then put

�.x0; xn/ WD �.x
0; ˛i .x

0//C xn � ˛i .x
0/ for .x0; xn/ 2 Œ˛i ; ˛iC1�:

Case II. If K D .˛i ; ˛iC1/ 2K1 and (5.1.8) is satisfied on .˛i ; ˛iC1/, then put

�.x0; xn/ WD �.x
0; ˛i .x

0//C jfK.x
0; xn/ � fK.x

0; ˛i .x
0//j for .x0; xn/ 2 Œ˛i ; ˛iC1�:

(Compare the description of the one-dimensional case in our introduction.)
Put �.x0; xn/ WD .x0; �.x0; xn///. Then � is a homeomorphism of Œ˛0; ˛r � onto

Œˇ0; ˇr �, where ˇi .x
0/ WD �.x0; ˛i .x

0// .x0 2 D; i 2 ¹0; : : : ; rº/ and .ˇi ; ˇiC1/

.i 2 ¹0; : : : ; r � 1º/ are capsules in Rn.
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The partial derivatives

@��

@x�n
.� 2 ¹1; : : : ; p C 1º/

exist and are continuous in every .˛i ; ˛iC1/ and @�
@xn
� 1 or @�

@xn
� c�1 on .˛i ; ˛iC1/;

hence � W Œ˛0; ˛r �! R is continuous, strictly increasing with respect to xn. Let

	 W Œˇ0; ˇr � 3 .x
0; �n/ 7! .x0;  .x0; �n// 2 Œ˛0; ˛r �

denote the inverse homeomorphism to �. Then

0 <
@ 

@�n
.x0; �n/ D

1
@�
@xn
.x0;  .x0; �n//

� max ¹1; cº D c

on every .ˇi ; ˇiC1/. Fix now any K D .˛i ; ˛iC1/ 2K .
If K is as in Case I, then for each .x0; �n/ 2 .ˇi ; ˇiC1/,

ˇi .x
0/C  .x0; �n/ � ˛i .x

0/ � �n; hence  .x0; �n/ D �n � ˇi .x
0/C ˛i .x

0/I

consequently, if K 2K1, then for each ~ 2 ¹1; : : : ; dº,ˇ̌̌̌
@.f~ ı 	/

@�n
.x0; �n/

ˇ̌̌̌
D

ˇ̌̌̌
@f~

@xn
.x0;  .x0; �n//

ˇ̌̌̌
� c:

If K 2K1 is as in Case II, then for each .x0; �n/ 2 .ˇi ; ˇiC1/,

ˇi .x
0/C jfK.x

0;  .x0; �n// � fK.x
0; ˛i .x

0//j � �n;

hence
 .x0; �n/ D f

�1
K .x0;˙.�n � ˇi .x

0///C fK.x
0; ˛i .x

0//I

consequently, for each ~ 2 ¹1; : : : ; dº,ˇ̌̌̌
@.f~ ı 	/

@�n
.x0; �n/

ˇ̌̌̌
D

ˇ̌̌̌
@f~

@xn
.x0;  .x0; �n//

ˇ̌̌̌.ˇ̌̌̌@fK
@xn

.x0;  .x0; �n//

ˇ̌̌̌
� cd :

By Corollary 2.4, passing to a refinement .j ; jC1/ .j 2 ¹0; : : : ; s � 1º/ of the capsules
.ˇi ; ˇiC1/, where 0 � 1 � � � � � s is a refinement of ˇ0 � � � � � ˇr , we can additionally
assume that for each j 2 ¹0; : : : ; s � 1º and each � 2 ¹2; : : : ; p C 1º we have either

.5:1:10/

ˇ̌̌̌
@� 

@��n
.x0; �n/

ˇ̌̌̌
� c on .j ; jC1/;

or

.5:1:11/

ˇ̌̌̌
@� 

@��n
.x0; �n/

ˇ̌̌̌
� c�1 on .j ; jC1/;
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and similarly, for each ~ 2 ¹1; : : : ; dº, either

.5:1:12/

ˇ̌̌̌
@� .f~ ı 	/

@��n
.x0; �n/

ˇ̌̌̌
� c on .j ; jC1/;

or

.5:1:13/

ˇ̌̌̌
@� .f~ ı 	/

@��n
.x0; �n/

ˇ̌̌̌
� c�1 on .j ; jC1/:

Notice that (5.1.13) implies a constant sign of the partial derivative involved on .j ; jC1/.
Finally, we modify the homeomorphism 	 with respect to the variable �n by means

of the smoothing homeomorphism ! with a parameter (Corollary 4.5):

˚.x0; �n/ WD 	
�
x0; !.0.x

0/; : : : ; s.x
0/I �n/

�
;

where .x0; �n/ 2 Œı0; ı2s� and ı0 � � � � � ı2s W D ! R is a sequence of continuous func-
tions.

5.2. Polyhedrization of a cell by a Cp-homeomorphism

The next lemma explains under what conditions a cell based on a simplex and bounded
from below and above by Cp-functions can be “straightened” to a polyhedron based on
the same simplex by a homeomorphism of class Cp . This together with Corollary 6.5 of
the next section will be an efficient tool.

Lemma 5.2. Let � � Rn be a simplex of dimension n, p a positive integer and let

ˇ0 � ˇ1 � � � � � ˇk W �! R

be Cp-functions such that for every face S of � and each j 2 ¹0; : : : ; k � 1º either
ǰC1 � ǰ ¤ 0 on VS or ǰC1 � ǰ � 0 on S , and in the latter case let ǰC1 � ǰ be
p-flat on S . Let

�0 � �1 � � � � � �k W �! R

be continuous PL-functions such that for every face S of � and j 2 ¹0; : : : ; kº, �j jS is
affine and

.5:2:1/ ǰ � ǰC1 on S ” �j � �jC1 on S .j 2 ¹0; : : : ; k � 1º/:

Then the formula

	.u; �/ D

´ �
u;

���j .u/

�jC1.u/��j .u/
. ǰC1.u/ � ǰ .u//C ǰ .u/

�
if �j .u/ < �jC1.u/;

.u; ǰ .u// if �j .u/ D �jC1.u/;

for .u; �/ 2 Œ�j ; �jC1�, defines a homeomorphism of Œ�0; �k � onto Œˇ0; ˇk � such that
	.u; �j .u// D .u; ǰ .u// for u 2 �, j 2 ¹0; : : : ; kº, and for each j 2 ¹0; : : : ; k � 1º,
	 jŒ�j ; �jC1� is of class Cp .
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Proof. Assume that �j < �jC1 on V�. By a linear change of coordinates we can assume
that

� D
°
u 2 Rn W u� � 0 .� 2 ¹1; : : : ; nº/;

nX
�D1

u� � 1
±

and

S WD ¹u 2 � W �j .u/ D �jC1.u/º

D ¹u 2 � W ǰ .u/ D ǰC1.u/º D ¹u 2 � W ulC1 D � � � D un D 0º:

Then for each u 2 �,

�jC1.u/ � �j .u/ D

nX
�DlC1

c�u� ; where c� > 0 .� 2 ¹l C 1; : : : ; nº/:

We want to check that

@j� jC�

@u�@��

�
� � �j .u/

�jC1.u/ � �j .u/
. ǰC1.u/ � ǰ .u//

�
! 0

when .�j ; �jC1/ 3 .u; �/! .u0; �j .u0// 2 S �R, � 2 Nn, � 2 N and j� j C � � p.
In view of the Leibniz formula, it suffices to check that

.� � �j .u//D
�

�
1

�jC1 � �j

�
.u/D�. ǰC1 � ǰ /.u/! 0

when �; � 2 Nn, j� j C j�j � p and .u; �/! .u0; �j .u0//, and

D�

�
1

�jC1 � �j

�
.u/D�. ǰC1 � ǰ /.u/! 0

when �; � 2 Nn, j� j C j�j � p � 1 and .u; �/! .u0; �j .u0//.
In the first case, by the Taylor formula,

.� � �j .u//D
�

�
1

�jC1 � �j

�
.u/D�. ǰC1 � ǰ /.u/

D .� � �j .u//
C

.�jC1.u/ � �j .u//j� jC1

�

X
jıjDp�j�j

1

ıŠ
.u � �.u//ıD�C.0;ı/. ǰC1 � ǰ /.�.u/C �.u � �.u///;

where C > 0, �.u/ D .u1; : : : ; ul ; 0; : : : ; 0/ and � 2 .0; 1/. Consequently, with some
constant C 0 > 0,ˇ̌̌̌
.� � �j .u//D

�

�
1

�jC1 � �j

�
.u/D�. ǰC1 � ǰ /.u/

ˇ̌̌̌
�

C 0

.
Pn
�DlC1 c�u�/

j� j

� nX
�DlC1

u�

�p�j�j
sup
j�jDp
�2Œ0;1�

jD�. ǰC1 � ǰ /.�.u/C �.u � �.u///j;

which tends to 0 as u! u0; and similarly in the second case.
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5.3. Basic Cp-extension lemma

The aim of this subsection is to prove Lemma 5.4 below which is a natural generalization
of the extension lemma mentioned in the Introduction. To prove it we first recall the
following C1-extension theorem (cf. [17, Proposition 2]).

Theorem 5.3 (C1-extension theorem). Let f W S ! R be a C1-function defined on a
cell

S D ¹.x0; xn/ 2 R
n
W x0 2 G; '.x0/ < xn <  .x

0/º

inRn such thatG is an open subset ofRn�1 and ' <  WG!R are of class C1. Assume
that @f

@xn
has a finite limit value2 at .almost/ each point of ' . for example, when @f

@xn
is

bounded/.
Then there is a closed nowhere dense subset Z of ' such that f extends to a C1-

function
f W S [ .' nZ/! R

where S [ .' nZ/ is a C1-submanifold of Rn with boundary ' nZ.

Proof. With no loss of generality we can assume that ' � 0, i.e. ' D G � ¹0º. For each
a 2 G the set

Lim
x!.a;0/

@f

@xn
.x/

of all finite limit values of @f
@xn

at .a; 0/ is a closed nonempty interval, because S satisfies
the Łojasiewicz (s)-condition at points of '. Since[

a2G

¹aº � Lim
x!.a;0/

@f

@xn
.x/ D

@f

@xn
n
@f

@xn

is of dimension n � 1, it follows that there exists a closed nowhere dense subset E of G
such that a finite limit

lim
x!.a;0/

@f

@xn
.x/ exists for each a 2 G nE:

This implies in particular that for each x0 2 G nE a finite limit

.5:3:1/ g.x0/ WD lim
xn!0

f .x0; xn/ 2 R

exists. There exists a closed nowhere dense subset Z of G containing E such that g is of
class C1 on G nZ. Hence, without any loss of generality we can assume that g � 0 and
Z D ;. Repeating the previous dimensional argument we conclude that after removing a
closed nowhere dense subset from G, f extends by 0 to a continuous function on S [ '.

2An element ˛ 2 R is a limit value of a function g W S ! R at a 2 S if there is an arc  W
.0; 1/! S such that limt!0 .t/ D a and limt!0 g..t// D ˛.
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Now, we will show that for any i 2 ¹1; : : : ;n� 1º the partial derivative @f=@xi extends
by 0 to a continuous function defined on S n E, where E � ' and dimE < n � 1. With
no loss of generality we assume that i D n � 1. First we will show that

.5:3:2/ 0 2 Lim
x!.a;0/

@f

@xn�1
.x/ for all a 2 G:

To check this fix any � > 0 such that B.a; �/ WD ¹u 2 Rn�1 W ju � aj � �º � G and any
" > 0. There exists ı > 0 such that jf .x0; xn/j � "� when x0 2 B.a; �/ and xn 2 .0; ı/.
By the Mean Value Theorem there exists � 2 .0; 1/ such thatˇ̌̌̌

@f

@xn�1
. Qa; an�1 C ��; xn/

ˇ̌̌̌
D

ˇ̌̌̌
f . Qa; an�1 C �; xn/ � f .a; xn/

�

ˇ̌̌̌
� 2";

where a D . Qa; an�1/. This ends the proof of (5.3.2). Repeating the previous argument we
conclude that

.5:3:3/ lim
x!.a;0/

@f

@xn�1
.x/ D 0

for a 2G nZ, whereZ is a closed subset ofG of dimension< n� 1. This ends the proof
of the theorem.

Lemma 5.4 (Basic Cp-Extension Lemma). Let � � Rk be an open subset, where
k 2 ¹0; : : : ; n � 1º, and let p be a positive integer. Let

� 'kC1;  kC1 W �! R be Cp-functions such that 'kC1 <  kC1;

� 'kC2;  kC2 W Œ'kC1;  kC1/! R be Cp-functions such that

'kC2 <  kC2 on .'kC1;  kC1/ and 'kC2 D  kC2 on 'kC1;

� 'kC3;  kC3 W Œ'kC2;  kC2�! R be Cp-functions such that

'kC3 <  kC3 on .'kC2;  kC2/ and 'kC3 D  kC3 on 'kC2j'kC1;

. . .

� 'n;  n W Œ'n�1;  n�1�! R be Cp-functions such that

'n <  n on .'n�1;  n�1/ and 'n D  n on 'n�1j.: : : .'kC2j'kC1/ : : : /:

Put

˙ WD
®
.x1; : : : ; xn/ 2 ˝ �R

n�k
W 'j .x1; : : : ; xj�1/ D xj .j 2 ¹k C 1; : : : ; nº/

¯
:

Let f W Œ'n;  n� n˙ ! R be a Cp-function such that all the partial derivatives

(5.4.1) @pf

@x
˛kC1
kC1

:::@x
˛n
n

.j˛j D ˛kC1 C � � � C ˛n D p/ have continuous extensions to ˙ .

Then there exists a closed subset E of ˙ of dimension < k such that f extends to a
Cp-function defined on Œ'n;  n� nE.
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Remark. Geometrically Œ'n; n� can be considered as a generalized curvilinear n-dimen-
sional angle with the k-dimensional “vertex” 'nj.: : : .'kC2j'kC1/ : : : /. Notice that
Œ'kC1;  kC1/ is assumed only left-closed, while the others are closed at both sides.

Proof of Lemma 5.4. First assume that p D 1. With no loss of generality we can assume
that

.5:4:2/ 'kC1 � 0; 'kC2j'kC1 � 0; : : : ; 'nj.: : : .'kC2j'kC1/ : : : / � 0;

in other words, ˙ D ˝ � ¹0ºn�k .
Put y WD .xkC1; : : : ; xn/. For any a 2˝ the function fa W Œ'n; n�a n ¹0º!R defined

by fa.y/ WD f .a; y/ on the set Œ'n;  n�a n ¹0º WD ¹y ¤ 0 W .a; y/ 2 Œ'n;  n�º is a C1-
function with bounded first order partial derivatives near 0. Since Œ'n; n�a n ¹0º is quasi-
convex3 near 0, this implies that the limit

g.a/ WD lim
y!0

fa.y/

exists inR (cf. [17, Proposition 1]). Since there exists a closed subsetE of˝ of dimension
< k such that g is of class C1 on ˝ nE, we can assume with no loss of generality that g
is C1 and then that g � 0.

For each a 2 ˝ the set Limx!.a;0/ f .x/ of all finite limit values of f at .a; 0/ is a
closed interval containing 0, because Œ�n;  n� n˙ satisfies the Łojasiewicz (s)-condition
at points of ˙ . We want to show that Limx!.a;0/ f .x/ D ¹0º for almost all a 2 ˝. Sup-
pose otherwise. Then there exists a nonempty open subset G of ˝ and " > 0 such that
Œ0; "� � Limx!.a;0/ f .x/ (or Œ�"; 0� � Limx!.a;0/ f .x/) for each a 2 G.

Then G � ¹0ºn�k � f �1."=2;1/. It follows by an analogue of the Whitney Wing
Lemma (cf. [15, Section 19]) or directly by the Cell Decomposition Theorem that there
exists a 2 G such that ¹0ºn�k � f �1."=2;1/a D f �1a ."=2;1/, a contradiction.

It follows that we can assume that f extends by 0 to a continuous function defined on
Œ'n;  n�. Now, we will show that for any i 2 ¹1; : : : ; kº the partial derivative @f=@xi
extends by 0 to a continuous function defined on Œ'n;  n� n E, where E � ˙ and
dimE < k. With no loss of generality we assume that i D k. Suppose it is not so. Then
there exists a nonempty open subset G of ˝ such that

.5:4:3/ Lim
x!.a;0/

@f

@xk
.x/ ¤ ¹0º for all a 2 G.

It follows that there there exists a nonempty open subset G of ˝ and " > 0 such that

G � ¹0ºn�k �

�
@f

@xk

��1
Œ";1/

3A subset A of Rm is called quasi-convex if there is a positive integer M such that for any
two points a1; a2 2 A there exists a (definable) continuous arc � W Œ0; ja1 � a2j�! A such that
�.0/ D a1, �.ja1 � a2j/ D a2 and j�0.t/j � M for any t 2 Œ0; ja1 � a2j� such that �0.t/ exists.
(Then � is necessarily piecewise C1.)
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or

G � ¹0ºn�k �

�
@f

@xk

��1
.�1;�"�:

By an analogue of the Whitney Wing Lemma or directly by the Cell Decomposition The-
orem there exist a nonempty open subset G0 of G and ı > 0 such that G0 � Œ0; ı/ �
Œ'kC1;  kC1/, and a continuous mapping

.5:4:4/ ˛ W G0 � Œ0; ı/!

�
@f

@xk

��1
Œ";1/

such that

.5:4:5/ ˛.u; xkC1/ D .u; xkC1; ˛kC2.u; xkC1/; : : : ; ˛n.u; xkC1//;

where j̨ .u; 0/ D 0 for each j 2 ¹k C 2; : : : ; nº and u 2 G0, because of (5.4.2). Since

'kC2.u; xkC1/ < ˛kC2.u; xkC1/ <  kC2.u; xkC1/;

and

'jC1.u; xkC1; ˛kC2.u; xkC1/; : : : ; j̨ .u; xkC1// < j̨C1.u; xkC1/

<  jC1.u; xkC1; ˛kC2.u; xkC1/; : : : ; j̨ .u; xkC1// for j 2 ¹k C 2; : : : ; mº;

it follows that

.5:4:6/ lim
xkC1!0

@ j̨

@xkC1
.u; xkC1/ 2 R for all u 2 G0 and j 2 ¹k C 2; : : : ; nº:

By Theorem 5.3, at the expense of shrinking G0 and diminishing ı, we can assume that
j̨ are C1-functions on G0 � Œ0; ı/; in particular,

.5:4:7/ lim
xkC1!0

@ j̨

@xk
.u; xkC1/ D 0 for all u 2 G0 and j 2 ¹k C 2; : : : ; nº:

It follows from (5.4.1) and (5.4.6) that for each u 2 G0 the derivative

@.f ı ˛/

@xkC1
.u; xkC1/

is bounded when xkC1 is near 0. Again by Theorem 5.3, after perhaps shrinking G0 and
diminishing ı we can assume that .f ı ˛/jG0 � Œ0; ı/ is of class C1; in particular,

.5:4:8/ lim
xkC1!0

@.f ı ˛/

@xk
.u; xkC1/ D 0:

On the other hand,

@.f ı ˛/

@xk
.u; xkC1/ D

@f

@xk
.u; xkC1; ˛kC2.u; xkC1/; : : : ; ˛n.u; xkC1//

C

nX
jDkC2

@f

@xj
.u; xkC1; ˛kC2.u; xkC1/; : : : ; ˛n.u; xkC1//

@ j̨

@xk
.u; xkC1/;
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which, in view of (5.4.8), (5.4.1) and (5.4.7), implies that

lim
xkC1!0

@f

@xk
.u; xkC1; ˛kC2.u; xkC1/; : : : ; ˛n.u; xkC1// D 0;

contradicting (5.4.4). This ends the proof in the case p D 1.
Assume now that p > 1 and the lemma is true for p � 1. Since Œ'n;  n� n˙ is locally

quasi-convex near ˙ 4 it suffices to check that all the partial derivatives

.5:4:9/
@jˇ jf

@x
ˇ1
1 : : : @x

ˇn
n

.jˇj WD ˇ1 C � � � C ˇn � p/

have continuous extensions to ˙ n E, where E is a closed subset of ˙ of dimension
< k (cf. [20, p. 80]). By the induction hypothesis, there exists a closed subset E of ˙ of
dimension < k such that for each j 2 ¹k C 1; : : : ; nº all the derivatives

@j j

@x
1
1 : : : @x

n
n

�
@f

@xj

�
D

@

@xj

�
@j j

@x
1
1 : : : @x

n
n

�
; where j j D p � 1;

have continuous extensions to ˙ n E. It follows from the case p D 1 that there exists a
closed subset E 0 of˙ containing E of dimension < k such that all the derivatives (5.4.9)
have continuous extensions to ˙ nE 0.

6. Existence of strict C p-triangulations orthogonally flat along simplexes

We start by making the following definition.

Definition 6.1. Let � be an open subset ofRkD¹.x1; : : : ; xn/2Rn WxkC1D� � �DxnD0º
�Rn and let f WD!Rm be a Cp-mapping defined on a not necessarily open but locally
closed subset D of Rn such that D � intD; i.e. there exists an open neighborhood ˝ of
D in Rn and a Cp-mapping Qf W ˝ ! Rm such that Qf jD D f . Assume that � � D. We
say that f is orthogonally p-flat along � if

@j˛jf

@x
˛kC1
kC1

: : : @x
˛n
n

.x1; : : : ; xk ; 0; : : : ; 0/ D
@j˛jf

@x
˛kC1
kC1

: : : @x
˛n
n

.u; 0/ D 0

for all u D .x1; : : : ; xk/ 2 � and ˛ D .˛kC1; : : : ; ˛n/ 2 Nn�k such that 1 � j˛j � p.
This definition generalizes in a natural way to the case when � is an open subset of the
affine subspace Aff.� / generated by � in Rn.

Remark 6.2. If f W D ! Rm is a Cp-mapping orthogonally p-flat along � � D and
w1 2 Sn�1 is a vector orthogonal to Aff.� /, then for each j 2 ¹0; : : : ; pº and arbitrary
w2; : : : ; wj 2 Sn�1,

@jf

@w1 : : : @wj

ˇ̌̌̌
� � 0:

4This means that each point u 2 ˙ has arbitrarily small neighborhoods U in Rn such that
U \ Œ'n;  n� n˙ is quasi-convex.
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The main theorem of the present section is the following.

Theorem 6.3. Let K be any finite simplicial complex in Rn such that jKj D int jKj.
Then there exists a homeomorphism h W Rn ! Rn of class Cp such that

.6:3:1/ hj V� W V� ! V� is a Cp-diffeomorphism for each � 2K ,

.6:3:2/ h is orthogonally p-flat along each simplex � 2K .

In the proof we will need the following lemma.

Lemma 6.4. Let

� D ¹.x1; : : : ; xk/ 2 R
k
W �i .x1; : : : ; xk/ � 0 .i 2 ¹0; : : : ; k/º

be a simplex of dimension k in Rk , where �i are nonzero affine forms. Put

�.u/ WD
.�0 : : : �k/.u/P

j .�0 : : : O�j : : : �k/.u/
for u 2 V�:

Then there exist constants C˛ > 0 .˛ 2 Nk/ such that

C�10 d.u; @�/ � �.u/ � C0d.u; @�/ for all u 2 V�

and
jD˛�.u/j �

C˛

�.u/j˛j�1
for all u 2 V� and ˛ 2 Nk

n ¹0º:

Proof of Lemma 6.4. PutHi WD ��1i .0/ .i 2 ¹0; : : : ; kº/. Then d.u; @�/Dmini d.u;Hi /
and there exists C > 0 such that C�1�i .u/ � d.u;Hi / � C�i .u/ for u 2 �. Hence

C�1 min
i
�i .u/ � d.u; @�/ � C min

i
�i .u/:

For a fixed u 2 V� let j be such that �j .u/ D mini �i .u/. Then

1

�j .u/
�

1

�0.u/
C � � � C

1

�k.u/
�
k C 1

�j .u/
I

thus

.6:4:1/
1

k C 1
min
i
�i .u/ � �.u/ D

1
1

�0.u/
C � � � C

1
�k.u/

� min
i
�i .u/I

finally,
1

C.k C 1/
�.u/ � d.u; @�/ � C.k C 1/�.u/:

There are constants aj .j 2 ¹0; : : : ; kº/ such that

@�

@x�
D

X
i

ai
.�0 : : : O�i : : : �k/P
j .�0 : : : O�j : : : �k/

� .�0 : : : �k/

�X
i¤j

ai
1

�i�j
�0 : : : �k

�
1

Œ
P
i �0 : : : O�i : : : �k �

2

D

X
i

ai

�i
� � �

X
i¤j

ai
1

�i�j
�2:
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By the Leibniz formula,

D˛

�
@�

@x�

�
D

X
i

ai
X
ˇ�˛

�
˛

ˇ

�
Dˇ

�
1

�i

�
D˛�ˇ�

�

X
i¤j

ai
X

˛DˇCCıC�

˛Š

ˇŠŠıŠ�Š
Dˇ

�
1

�i

�
D

�
1

�j

�
Dı�D��:

There exist constants Mˇ .ˇ 2 Nn/ such that

.6:4:2/ Dˇ

�
1

�i

�
D

Mˇ

�
jˇ jC1
i

:

By (6.4.1) and (6.4.2) and induction on the degree of the derivative,ˇ̌̌̌
D˛

�
@�

@x�

�ˇ̌̌̌
�

X
i

jai j
X
ˇ�˛

�
˛

ˇ

�
jMˇ j

�
jˇ jC1
i

C˛�ˇ

� j˛j�jˇ j�1

C

X
i¤j

jai j
X

˛DˇCCıC�

˛Š

ˇŠŠıŠ�Š

jMˇ j

�
jˇ jC1
i

jM j

�
j jC1
j

Cı

� jıj�1
C�

� j�j�1
:

The lemma follows.

Proof of Theorem 6.3. Take a Cp-function ' W Œ0;1/! Œ0; 1� such that '.i/.0/ D 0 for
each i 2 ¹0; : : : ; pº, '0.t/ > 0 for t 2 .0; 1/ and '.t/ D 1 for t 2 Œ1;1/.

We will prove by induction on k 2 ¹0; : : : ; n � 1º that there exists a homeomorphism
h W Rn ! Rn of class Cp such that .6:3:1/ is satisfied, while .6:3:2/ is satisfied just for
simplexes of dimension � k.

I. Let k D 0. Let ¹aº 2K and fix ra > 0 such that B.a; ra/\ jKj �
S

St¹aº. Define

ha.x/ WD '

�
jx � aj2

r2a

�
.x � a/C a for x 2 Rn:

Then ha is of class Cp and p-flat at a. Moreover, ha is a homeomorphism and Cp-dif-
feomorphism on Rn n ¹aº, because

x D aC  �1.jha.x/ � aj/
ha.x/ � a

jha.x/ � aj
for all x 2 Rn;

where  .t/ WD '.t2=r2a / � t .t 2 R/ is an increasing homeomorphism of R onto R.
It is clear that ha.� / D � for each � 2K . Now, if a1; : : : ; am are all vertices of K ,

then we put
h WD ham ı � � � ı ha1 :

II. Assume now that 0 < k � n � 1 and we have a Cp-homeomorphism h satisfying
(1) and (2) for all simplexes of dimension< k. Let� 2K and dim�D k. With no loss of
generality we can assume that V� is an open simplex inRk D ¹.x1; : : : ; xn/ W xkC1 D � � � D
xn D 0º: Put uD .u1; : : : ; uk/D .x1; : : : ; xk/ and v D .v1; : : : ; vn�k/D .xkC1; : : : ; xn/.
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Take � W V�! .0;1/ as in Lemma 6.4. Since ˝ WD
S

St.�/ is an open neighborhood of
� in jKj, there exists (by a Łojasiewicz inequality in PL-structure) a constant r > 0 such
that

¹.u; v/ 2 V� �Rn�k W jvj � r�.u/º \ jKj � ˝:

Put G WD ¹.u; v/ 2 V� �Rn�k W jvj < r�.u/º. The mapping

g.u; v/ WD

´
.u; '

�
jvj2

r2�2.u/

�
� v/ when .u; v/ 2 G,

.u; v/ when .u; v/ 2 Rn nG;

is a homeomorphism of Rn onto Rn such that gj V� W V� ! V� is a Cp-diffeomorphism for
each � 2K . Moreover, g is of class Cp on Rn n @�. Now define

H.u; v/ WD h.g.u; v// for .u; v/ 2 Rn:

For any .u; v/ 2 G and � 2 ¹1; : : : ; n � kº,

@

@v�
H.u; v/ D

n�kX
�D1

@h

@v�

�
u; '

�
jvj2

r2�2.u/

�
v
�
v�

2v�

r2�2.u/
'0
�
jvj2

r2�2.u/

�
C
@h

@v�

�
u; '

�
jvj2

r2�2.u/

�
v
�
'

�
jvj2

r2�2.u/

�
:

It follows by induction on j˛j 2 ¹1; : : : ; pº, where ˛ D .˛1; : : : ; ˛n�k/, that @
j˛jH
@v˛

can be
expressed as a finite linear combination with real coefficients of the functions

@jˇ jh

@vˇ

�
u; '

�
jvj2

r2�2.u/

�
v

�
v

r2s�2s.u/

�
'.0/

�
jvj2

r2�2.u/

���0
: : :

�
'.j˛j/

�
jvj2

r2�2.u/

���j˛j
;

where jˇj 2 ¹1; : : : ; j˛jº, jˇj C 2s � j j D j˛j, �0C � � � C �j˛j D jˇj and �0C �1C 2�2C
� � � C j˛j�j˛j � j˛j.

Hence in particular

.6:3:3/
@j˛jH

@v˛
.u; v/ D 0 when u 2 V�, v D 0, ˛ 2 Nn�k , 1 � j˛j � p.

Now in general, if ˛ 2 Nn�k and ~ 2 Nk and j˛j C j~j � p, then the derivative

@j˛jCj~jH

@v˛@u~

is a finite linear combination with real coefficients of functions of the form

.6:3:4/
@jˇ jCj�jh

@vˇ@u�

�
u; '

�
jvj2

r2�2.u/

�
v

�
v

�d .u/

�

�
'.0/

�
jvj2

r2�2.u/

���0
: : :

�
'.j˛jCj~j/

�
jvj2

r2�2.u/

���j˛jCj~j
� .D"1�.u// : : : .D"q�.u//;
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where 0 � q � j˛j C j~j, d � 0, j"1j > 0; : : : ; j"qj > 0, � C "1 C � � � C "q D ~,
jˇj C d � j j D j˛j C q, �0 � 0; : : : ; �j˛jCj~j � 0, d � j j.

Assume now that .u; v/ 2 G and .u; v/ tends to .u0; 0/ along some (definable) arc,
where u0 2 @�. Let �0 2 K and u0 2 V�0. By an orthogonal change of coordinates
u1; : : : ; uk one can assume that

d.u; @�/ D d.u; � / D ju1j;

where � 2K , dim� D k � 1, � � ¹.u1; : : : ;uk/2Rk W u1D 0º and �0� ¹.u1; : : : ;uk/ W
u1 D � � � D ul D 0º .l 2 ¹1; : : : ; kº/.

When ˛ ¤ 0, in a product (6.3.4) we necessarily have ˇ ¤ 0, therefore by the Taylor
formula,ˇ̌̌̌
@jˇ jCj�jh

@vˇ@u�

�
u; '

�
jvj2

r2�2.u/

�
v
�ˇ̌̌̌

D

ˇ̌̌̌
@jˇ jCj�jh

@vˇ@u�

�
u; '

�
jvj2

r2�2.u/

�
v
�
�
@jˇ jCj�jh

@vˇ@u�

�
0; u2; : : : ; uk ; 0

�ˇ̌̌̌
D

ˇ̌̌̌ X
�Cj�jD
p�jˇ j�j�j

1

�Š�Š
u�1

�
'

�
jvj2

r2�2.u/

�
v

��
�

@ph

@vˇC�@u�@u�1

�
�u1; u2; : : : ; uk ; �'

�
jvj2

r2�2.u/

�
v

�ˇ̌̌̌
for some � 2 .0; 1/. Henceˇ̌̌̌

@jˇ jCj�jh

@vˇ@u�

�
u; '

�
jvj2

r2�2.u/

�
v

�ˇ̌̌̌
� .�.u//p�jˇ j�j�j�.u; v/;

where �.u; v/! 0 when .u; v/! .u0; 0/. Thus, there exists a constantM > 0 such that

j.6:3:4/j �M�p�jˇ j�j�j�
� j j

�d
��j"1jC1 : : : ��j"q jC1

DM��p�jˇ j�j�jCj j�dCq�j"1j�����j"q j DM��p�j˛j�j~j ! 0

when .u; v/! .u0; 0/.
Suppose now that ˛ D 0 and ~ ¤ 0. Then, for each .u; v/ 2 G,

@j~jH

@u~
.u; v/ D

@j~jh

@u~

�
u; '

�
jvj2

r2�2.u/

�
v

�
C an R-linear combination

of functions of the form (6.3.4), where ˇ ¤ 0.

It follows that

lim
.u;v/!.u0;0/

@j~jH

@u~
.u; v/ D lim

.u;v/!.u0;0/

@j~jh

@u~

�
u; '

�
jvj2

r2�2.u/

�
v

�
D
@j~jh

@u~
.u0; 0/:

We have just checked that H is of class Cp and is orthogonally p-flat along �0, and
(6.3.3) shows that it is orthogonally p-flat along �. We repeat the above construction for
every simplex of dimension k.
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Corollary 6.5. Let K be a finite simplicial complex in Rn such that jKj D int jKj and
let f W jKj ! A � Rn be a homeomorphism such that for each � 2 K , f j� is of class
Cp and f j V� W V� ! Rn is a Cp-embedding. Let h W Rn ! Rn be a homeomorphism
described in Theorem 6.3. Then .K; f ı h/ is a strict Cp-triangulation of A orthogonally
p-flat along simplexes and such that f .�/ D .f ı h/.�/ for each � 2K .

7. Regular cells, regular �-cells, .k; f; q/-proper regular �-cells and convex
polyhedra .k; f; q/-well situated in Rn

In this section we introduce a few auxiliary notions of technical character needed in the
proof of the Main Theorem in Section 8.

Definition 7.1. A subset C of Rn is called a regular cell in Rn if C is a closed bounded
interval Œa; b�, where a; b 2 R, a < b, when n D 1 and

C D Œ˛n�1; ˇn�1� WD ¹.x
0; xn/ 2 R

n�1
�R W x0 2 C 0; ˛n�1.x

0/ � xn � ˇn�1.x
0/º;

where C 0 is a regular cell inRn�1 and ˛n�1 � ˇn�1 W C 0!R are continuous and ˛n�1 <
ˇn�1 on intC 0 when n > 1.

Remark 7.2. If C D Œ˛n�1; ˇn�1� is a regular cell in Rn, then Œ j̨�1; ǰ�1� WD �
n
j .C /

.j 2 ¹1; : : : ; nº/ is a regular cell in Rj .

Remark 7.3. If j 2 ¹1; : : : ; n � 1º and 	 W Œ j̨�1; ǰ�1� ! Œ j̨�1; ǰ�1� is a homeo-
morphism, then it induces, for each � 2 ¹j C 1; : : : ; nº, a homeomorphism

Œ j̨�1; ǰ�1� �R
��j
3 .x1; : : : ; x�/ 7! .	.x1; : : : ; xj /; xjC1; : : : ; x�/

2 Œ j̨�1; ǰ�1� �R
��j ;

which we will denote also by 	 . It should be clear from the context what � is.
Then 	�1.C / is a regular cell such that �n� .	

�1.C // D Œ˛��1 ı 	; ˇ��1 ı 	� for
� 2 ¹j C 1; : : : ; nº and �nj .	

�1.C // D Œ j̨�1; ǰ�1�.

Remark 7.3. If C is a regular cell in Rn, j 2 ¹1; : : : ; n� 1º and L is a regular cell in Rj

such that L � �nj .C /, then C jL WD C \ .L � Rn�j / is a regular cell in Rn contained
in C .

Remark 7.4. Any convex polyhedron in Rn of dimension n is a regular cell in Rn.

Definition 7.5. Any pair .C; �.C //, where C is a regular cell in Rn and �.C / is a closed
subset of @C , will be called a regular � -cell in Rn.

Definition 7.6. Let .C;�.C // be a regular � -cell inRn, where n� 2, and let f WB!Rd

be a continuous mapping defined on a subsetB ofRn containingC . Let k 2 ¹0; : : : ;n� 1º
and q 2 N.
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We will say that .C; �.C // is .k; f; q/-proper if dim �.C / � k, f is of class Cq on
C n �.C /, .�n

kC1
/�1.�n

kC1
.�.C /// \ C D �.C / and moreover

�nkC1j�.C / W �.C /! RkC1 is injective:

Observe that if �nj .C /D Œ j̨�1; ǰ�1� .j 2 ¹1; : : : ; nº/, then .C; �.C // is .k; f; q/-proper
if f is of class Cq on C n �.C /, .�nj .C /; �

n
j .�.C ///, for each j 2 ¹k C 1; : : : ; n� 1º, is

a regular � -cell in Rj and

j̨ j�
n
j .�.C // D ǰ j�

n
j .�.C // .j 2 ¹k C 1; : : : ; n � 1º/:

Definition 7.7. If P is a convex polyhedron in Rn of dimension n and f W B ! Rd is
a continuous mapping defined in a subset B � Rn such that P � B , we will say that P
is .k; f; q/-well situated in Rn if there exists a k-dimensional face ˙.P / of P such that
.P;˙.P // is a regular � -cell in Rn, which is .k; f; q/-proper.

Definition 7.8. Let n 2 N; n � 2, k 2 ¹0; : : : ; n � 1º, q 2 N; q � p.
We will say that a .k; f; q/-proper regular � -cell .C; �.C // is .l; m/-prepared, where

l 2 ¹k; : : : ; n � 1º and m 2 ¹0; : : : ; pº, if all the partial derivatives

@j~j.f jC n �.C //

@x
~lC1
lC1

: : : @x
~n
n

; where ~ D .~lC1; : : : ; ~n/;

j~j WD ~lC1 C � � � C ~n 2 ¹1; : : : ; pº, ~lC1 2 ¹0; : : : ; mº;

extend continuously by zero to �.C / and, for each j 2 ¹l C 1; : : : ; n � 1º, the regular
� -cell .�nj .C /; �

n
j .�.C /// is .k; . j̨ ; ǰ /; q/-proper, where �nj .C / D Œ j̨�1; ǰ�1�, and

all the partial derivatives

@j~j.. j̨ ; ǰ /j�
n
j .C / n �

n
j .�.C //

@x
~lC1
lC1

: : : @x
~j
j

; where ~ D .~lC1; : : : ; ~j /;

j~j WD ~lC1 C � � � C ~j 2 ¹1; : : : ; pº, ~lC1 2 ¹0; : : : ; mº;

extend continuously by zero to �nj .�.C //.

8. Proof of the Main Theorem

Roughly speaking, our proof will consist in Cp-extending of the triangulating homeo-
morphism to faces of ever greater codimension. Codimension 1 is considered in the
following proposition.

Proposition 8.1. Assume that our Main Theorem is true in dimensions < n. Let P be a
finite polyhedral complex in Rn�1 and putD WD jP j. Let q1; q 2 Z and q � q1 � pC 1.
Let ˛0 � � � � � ˛r W D ! R be an increasing sequence of continuous PL-functions such
that

K WD
®
.˛i ; ˛iC1/ W i 2 ¹0; : : : ; r � 1º

¯
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is a family of capsules in Rn. Let K1 � K; A WD jKj and A1 WD jK1j. Let f D
.f1; : : : ; fd / W A1 ! Rd be a continuous mapping such that f j VK is of class Cq1 for
each K 2K1. Let E be any finite family of subsets of D.

Then there exist

.8:1:1/ a strict Cq-triangulation .M; h/ ofD compatible with E such that jMj DD and
h.� / D � for every face � of each polyhedron P 2 P ,

.8:1:2/ an increasing sequence of continuous PL-functions

�0 � � � � � �k W D ! R;

which is a refinement of ˛0; : : : ; ˛r , such that the family C WD ¹.�j ; �jC1/ W

j 2 ¹0; : : : ; k � 1ºº is a family of capsules refining the family K ,

.8:1:3/ a homeomorphism 	 W Œ˛0; ˛r �! Œ˛0; ˛r � of the form

	.u; �n/ D .h.u/;  .u; �n// for .u; �n/ 2 Œ˛0; ˛r �,

such that

.8:1:4/ 	.u; ˛i .u// D .h.u/; ˛i .h.u/// for u 2 D and i 2 ¹0; : : : ; rº;

.8:1:5/ if a 2 C 2 C , where C � K 2 K1 and f jK is of class Cq1 in a neighborhood
of 	.a/ in K, then 	 jC and f ı 	 jC are of class Cq1 in a neighborhood of a
in C ;

.8:1:6/ 	 j VC and f ı 	 j VC are of class Cq1 for each C 2 C such that C � K 2K1;

.8:1:7/ 	 jC is of class Cq for each C 2 C such that C � K 2K nK1 and

@� . jC/

@��n
D 0 on @C for � 2 ¹1; : : : ; pº;

.8:1:8/ if C 2 C and C � K 2K1, then the derivatives

@� .	 j VC/

@��n
and

@� .f ı 	 j VC/

@��n
for � 2 ¹1; : : : ; pº

have continuous extensions by zero to the whole C ;

.8:1:9/ @. j VC/
@�n

> 0 for each C 2 C .

Proof. By a refinement of P one can assume that

.8:1:10/ every function ˛i is affine on each P 2 P ,

.8:1:11/ P is compatible with each of the sets ¹x0 2 D W ˛i .x0/ D ˛iC1.x
0/º

.i 2 ¹0; : : : ; r � 1º/, i.e. each of these sets is a union of some P 2 P .

By Lemma 5.1, we get a sequence ı0 � � � � � ık W D ! R of continuous functions and a
homeomorphism ˚ W Œı0; ık �! Œ˛0; ˛r � with properties (5.1.1)–(5.1.6).

Now we apply the induction hypothesis. We get a strict Cq-triangulation .M; h/ ofD
such that
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.8:1:12/ M is a finite simplicial complex in Rn�1 such that jMj D D;

.8:1:13/ .M; h/ is compatible with each E 2 E and with each P 2 P (the latter follows
from .8:1:14/ below);

.8:1:14/ h.P /D P for each P 2P ; hence, each of the sets ¹x0 2D W ˛i .x0/D ˛iC1.x0/º
.i 2 ¹0; : : : ; r � 1º/ is h-invariant (see .8:1:11/);

.8:1:15/ ıj ı h; �j ı h W D ! R, where j 2 ¹0; : : : ; kº, are of class Cq ;

.8:1:16/ for all the functions a1; : : : ; a2m from condition .5:1:6/ the compositions
a1 ı h; : : : ; a2m ı h W D ! R are of class Cq ,

.8:1:17/ .M; h/ is compatible with each of the sets ¹x0 2 D W ıj .x0/ D ıjC1.x0/º, where
j 2 ¹0; : : : ; k � 1º.

By passing to the barycentric subdivision we can have in addition

.8:1:18/ for each j 2 ¹0; : : : ; k � 1º and each simplex � 2M, if ıj ı h 6� ıjC1 ı h on
�, then ıj .h.w// < ıjC1.h.w// for some vertex w of �,

and by Corollary 6.5,

.8:1:19/ .M; h/ is a strict Cq-triangulation orthogonally q-flat along simplexes.

Define a homeomorphism

˚� W Œı0 ı h; ık ı h�! Œ˛0; ˛r �

by

.8:1:20/ ˚�.u; �n/ WD .h.u/; '.h.u/; �n// D .h.u/; '
�.u; �n//:

Then

.8:1:21/ the sequence �j ı h .j 2 ¹0; : : : ; kº/ is a refinement of ˛0 ı h; : : : ; ˛r ı h;

.8:1:22/ L� WD ¹.ıj ı h; ıjC1 ı h/ W j 2 ¹0; : : : ; k � 1ºº is a family of capsules in Rn

such that ¹˚�.L�/ W L� 2 L�º D ¹˚.L/ W L 2 Lº is a refinement of K .

Put L�1 WD ¹L
� 2 L� W ˚�.L�/ � K for some K 2K1º. Then

.8:1:23/ for any L� 2 L�1 , ˚�j VL� and f ı ˚�j VL� are of class Cq1 (by .5:1:6/ and

.8:1:16/), @'
�

@�n
> 0 on VL� and all the derivatives @

� .˚�j VL�/
@��n

, @
� .f ı˚�j VL�/

@��n
, where

� 2 ¹1; : : : ; pº, have continuous extensions by zero to L�;

.8:1:24/ for any L� 2 L� nL�1 , ˚�jL� is of class Cq , by .5:1:6/ and .8:1:16/, @'
�

@�n
> 0

on VL� and the derivatives @
� .˚�jL�/
@��n

for � 2 ¹1; : : : ; pº are equal to zero on @L�;

.8:1:25/ if L� 2 L�1 , b 2 @L� and ˚�.L�/ � K 2 K1 and f jK is of class Cq1 in a
neighborhood of ˚�.b/ in K, then ˚�jL� and f ı ˚�jL� are of class Cq1 in a
neighborhood of b in L�.

Now we want to replace the Cq-functions ıj ı h by continuous PL-functions defined
on D by using Lemma 5.2. Therefore we want to find continuous PL-functions, affine
when restricted to any simplex S 2M,

�0 � � � � � �k W D ! R;
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such that for each j 2 ¹0; : : : ; k � 1º,

.8:1:26/ ¹u 2 D W .ıj ı h/.u/ D .ıjC1 ı h/.u/º D ¹u 2 D W �j .u/ D �jC1.u/º:

For any continuous function ˇ WD! R define a continuous PL-function ˇ] WD! R

by
ˇ].�0v0 C � � � C �svs/ WD �0ˇ.v0/C � � � C �sˇ.vs/;

where .v0; : : : ; vs/ 2M is a simplex with vertices v0; : : : ; vs and where �0; : : : ; �s � 0
and �0 C � � � C �s D 1.

In view of (8.1.17) and (8.1.18),

.8:1:27/ ıj ı h.u/ < ıjC1 ı h.u/ ” �j ı h.u/ < �jC1 ı h.u/

” .�j ı h/
].u/ < .�jC1 ı h/

].u/;

for any u 2 D and j 2 ¹0; : : : ; k � 1º.
By (8.1.27), .�j ı h/] are continuous PL-functions, affine on simplexes and satisfying

(8.1.26). However, they might not be a refinement of ˛0; : : : ; ˛r , so some improvement is
necessary.

By (8.1.21), .�j ı h/] .j 2 ¹0; : : : ; kº/ are a refinement of .˛i ı h/] .i 2 ¹0; : : : ; rº/.
By (8.1.14) and (8.1.27), for each i 2 ¹0; : : : ; r � 1º,

¹u 2 D W .˛i ı h/
].u/ D .˛iC1 ı h/

].u/º D ¹u 2 D W .˛i ı h/.u/ D .˛iC1 ı h/.u/º

D ¹u 2 D W ˛i .u/ D ˛iC1.u/º:

This shows that we can define homeomorphisms

Hi W Œ.˛i ı h/
]; .˛iC1 ı h/

]�! Œ˛i ; ˛iC1�;

Hi
�
u; �..˛iC1 ı h/

].u/ � .˛i ı h/
].u//C .˛i ı h/

].u/
�

D .u; �.˛iC1.u/ � ˛i .u//C ˛i .u//;

where � 2 Œ0; 1�, i 2 ¹0; : : : ; r � 1º. Gluing them together gives a homeomorphism

H WD

r�1[
iD0

Hi W Œ.˛0 ı h/
]; .˛r ı h/

]�! Œ˛0; ˛r �

strictly increasing with respect to the last variable. Finally, we put

�j WD .H..�j ı h/
]//] .j 2 ¹0; : : : ; kº/I

these functions refine ˛0; : : : ; ˛r , according to (8.1.10).

Corollary 8.2. In addition to the properties stated in Proposition 8.1, the homeo-
morphism 	 can be found such that 	.� / D � for any face � of any K 2K .

Proof. Indeed, it is enough to assume that the polyhedral complex P is such that for each
P 2 P each of the functions ˛i is affine on P .
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The next proposition contains the inductive step towards preparation of partial deriva-
tives of the triangulating homeomorphism in order to use the Basic Cp-Extension
Lemma 5.4.

Proposition 8.3. Assume that the Main Theorem is true in dimensions< n, where n� 2.
Let k 2 ¹0; : : : ; n� 2º, l 2 ¹k; : : : ; n� 2º,m 2 ¹0; : : : ; p � 1º, q 2N and q � p �mC 1.
Let

�0 � � � � � �r W D ! R .r � 1/

be a sequence of continuous PL-functions defined on a convex polyhedron D in Rl of
dimension l such that

K WD
®
.�j ; �jC1/ W j 2 ¹0; : : : ; r � 1º

¯
is a family of convex PL-capsules in RlC1. Let K1 � K be a subfamily of capsules
such that for each K 2 K1 there is a regular � -cell .C.K/; �.C.K/// in Rn such that
�n
lC1

.C.K// D K and .C.K/; �.C.K/// is .k; f; q/-proper and .l; m/-prepared.
Then there exist

.8:3:1/ a sequence of continuous PL-functions

�0 � � � � � �s W D ! R .s � r/

refining �0 � � � � � �r such that L WD ¹.�j ; �jC1/ W j 2 ¹0; : : : ; s � 1ºº is a family
of convex PL-capsules refining K , and

.8:3:2/ a homeomorphism 	 W Œ�0; �r �! Œ�0; �r � with 	.� / D � for any face � of any
K 2K ,

such that

.8:3:3/ 	 jL is of class Cq for any L 2 L such that L � K 2K nK1,

.8:3:4/ .	�1.C.K//jL; 	�1.�.C.K///jL/, where L 2 L; L � K 2 K1, is a family of
regular � -cells which are .k; .f ı 	; 	/; q � p C m/-proper and .l; m C 1/-
prepared.

Proof. In this proof we focus on the case where K DK1D¹Kº is just one PL-capsule. In
the general case the argument given below should be applied to every PL-capsuleK 2K1

separately, while Proposition 8.1 applied later in the proof will take care of the capsules
K 2K nK1. Put C WD C.K/. Clearly, �n

lC1
.�.C // � @K.

For any ~ D .~lC2; : : : ; ~n/ such that j~j D ~lC2 C � � � C ~n 2 ¹1; : : : ; p �m � 1º
and any j 2 ¹l C 1; : : : ; n � 1º, the following functions defined on K n �n

lC1
.�.C // are

all continuous:

.8:3:5/

.x0; xlC1/ 7! sup
²ˇ̌̌̌

@mC1Cj~jf

@xmC1
lC1

@x
~lC2
lC2

: : : @x
~n
n

.x0; xlC1; : : : ; xn/

ˇ̌̌̌
W .x0; : : : ; xn/ 2 C

³
;
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.8:3:6/

.x0; xlC1/ 7! sup
²ˇ̌̌̌

@mC1Cj~j j̨

@xmC1
lC1

@x
~lC2
lC2

: : : @x
~j
j

.x0; xlC1; : : : ; xj /

ˇ̌̌̌
W .x0; : : : ; xj / 2 �

n
j .C /

³
;

.8:3:7/

.x0; xlC1/ 7! sup
²ˇ̌̌̌

@mC1Cj~j ǰ

@xmC1
lC1

@x
~lC2
lC2

: : : @x
~j
j

.x0; xlC1; : : : ; xj /

ˇ̌̌̌
W .x0; : : : ; xj / 2 �

n
j .C /

³
:

By Proposition 2.5, Remark 2.6 and Lemma 2.7, there exists a refinement K 0 of K

into convex PL-capsules such that on each K 0 2 K 0 each of the functions (8.3.5)–(8.3.7)
is either bounded by 2 from above (case (I)) or bounded by 1 from below (case (II)).
Without any loss of generality we will assume that K 0 D K D ¹Kº; hence, for each of
the functions (8.3.5)–(8.3.7) we have either case (I) or case (II) on K.

Observe that in case (II) for (8.3.5) we can have detectors on K n �n
lC1

.�.C // (cf.
Proposition 3.3) which are Cq-mappings, because j̨ ; ǰ .j 2 ¹l C 1; : : : ; n � 1º/ are
of class Cq on �nj .C / n �

n
j .�.C //. Hence, there are a finite number of Cq-mappings

¹!�º� D ¹.!�;lC2; : : : ; !�;n/º� such that

K n �nlC1.�.C // 3 .x
0; xlC1/ 7! .x0; xlC1; !�.x

0; xlC1// 2 C

and

.8:3:8/

ˇ̌̌̌
@mC1Cj~jf

@xmC1
lC1

@x
~lC2
lC2

: : : @x
~n
n

.x0; xlC1; xlC2; : : : ; xn/

ˇ̌̌̌
� 2max

�

ˇ̌̌̌
@mC1Cj~jf

@xmC1
lC1

@x
~lC2
lC2

: : : @x
~n
n

.x0; xlC1; !�.x
0; xlC1//

ˇ̌̌̌
for any .x0; xlC1; xlC2; : : : ; xn/ 2 C n �.C /.

Similarly, if for (8.3.6) (respectively, (8.3.7)) we have case (II), then

.8:3:9/

ˇ̌̌̌
@mC1Cj~j j̨

@xmC1
lC1

@x
~lC2
lC2

: : : @x
~j
j

.x0; xlC1; xlC2; : : : ; xj /

ˇ̌̌̌
� 2max

�

ˇ̌̌̌
@mC1Cj~j j̨

@xmC1
lC1

@x
~lC2
lC2

: : : @x
~j
j

.x0; xlC1; !�.x
0; xlC1//

ˇ̌̌̌
(respectively, with ǰ in place of j̨ ) for any .x0; xlC1; : : : ; xj / 2 �nj .C / n �

n
j .�.C //.

Notice that since

j̨ .x
0; xlC1; !�;lC2.x

0; xlC1/; : : : ; !�j .x
0; xlC1//

� !�;jC1.x
0; xlC1/ � ǰ .x

0; xlC1; !�;lC2.x
0; xlC1/; : : : ; !�j .x

0; xlC1//;

and j̨ D ǰ on �nj .�.C //, all !� have continuous extensions to �n
lC1

.�.C //.
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The next step is to apply Proposition 8.1 to all the following mappings of class
Cq�pCmC1 on K n �n

lC1
.�.C // and extending continuously by zero to �n

lC1
.�.C //:

.x0; xlC1/ 7!
@j~jf

@x
~lC2
lC2

: : : @x
~n
n

.x0; xlC1; !�.x
0; xlC1// 2 R

d ;

.x0; xlC1/ 7!
@j~j j̨

@x
~lC2
lC2

: : : @x
~j
j

.x0; xlC1; !�.x
0; xlC1// 2 R;

.x0; xlC1/ 7!
@j~j ǰ

@x
~lC2
lC2

: : : @x
~j
j

.x0; xlC1; !�.x
0; xlC1// 2 R

and all .x0; xlC1/ 7! !�j .x
0; xlC1/ 2 R. Hence, denoting K D Œ�0; �1�, where �0 � �1 W

D ! R, there exists a strict Cq-triangulation .M; h/ of D such that jMj D D, there
exists a refinement

�0 D �0 � �1 � � � � � �s D �1 W D ! R of �0 � �1

such that L WD ¹.�� ; ��C1/ W � 2 ¹0; : : : ; s � 1ºº is a family of convex PL-capsules
refining K, and there exists a homeomorphism 	 W K ! K of the form 	.u; �lC1/ D

.h.u/;  .u; �lC1// such that 	.� / D � for any face � of K, 	 is of class Cq�pCmC1

on L n L \ 	�1.�n
lC1

.�.C /// for each L 2 L, and all the mappings

@�.	 j VL/

@�
�

lC1

;
@�.!� ı 	 j VL/

@�
�

lC1

.� 2 ¹1; : : : ; q � p Cmº/;

VL 3 .u; �lC1/ 7!
@mC1

@�mC1
lC1

�
@j~jf

@x
~lC2
lC2

: : : @x
~n
n

.h.u/;  .u; �lC1/; !�.h.u/;  .u; �lC1///

�
extend continuously by zero to @L � L \ 	�1.�.C // D 	�1.�.C //jL.

Hence, if we have case (II) for (8.3.5), then in view of our assumption of .l;m/-prepar-
ation, for any .u; �lC1/ 2 VL,

@mC1

@�mC1
lC1

�
@j~jf

@x
~lC2
lC2

: : : @x
~n
n

.h.u/;  .u; �lC1/; !�.h.u/;  .u; �lC1///

�
D

@mC1Cj~jf

@xmC1
lC1

@x
~lC2
lC2

: : : @x
~n
n

.h.u/;  .u; �lC1/; !�.h.u/;  .u; �lC1///

�
@ 

@�lC1

�mC1
C a function extending continuously by zero to @L.

Consequently,

@mC1Cj~jf

@xmC1
lC1

@x
~lC2
lC2

: : : @x
~n
n

.	.u; �lC1/; !�.	.u; �lC1///

�
@ 

@�lC1
.u; �lC1/

�mC1
extends continuously by zero to @L, and by (8.3.8),

@mC1Cj~jf

@xmC1
lC1

@x
~lC2
lC2

: : : @x
~n
n

.	.u; �lC1/; xlC2; : : : ; xn/

�
@ 

@�lC1
.u; �lC1/

�mC1
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for .u; �lC1; xlC2; : : : ; xn/ 2 	�1.C /jL n	�1.�.C //jL extends continuously by zero to
	�1.�.C //jL.

On the other hand, by .l; m/-preparation,

.8:3:10/
@mC1Cj~j

@�mC1
lC1

@x
~lC2
lC2

: : : @x
~n
n

Œf .	.u; �lC1/; xlC2; : : : ; xn/�

D
@mC1Cj~jf

@xmC1
lC1

@x
~lC2
lC2

: : : @x
~n
n

.	.u; �lC1/; xlC2; : : : ; xn/

�
@ 

@�lC1
.u; �lC1/

�mC1
C a function extending continuously by zero to 	�1.�.C //jL.

It follows that

@mC1Cj~j.f ı 	/

@�mC1
lC1

@x
~lC2
lC2

: : : @x
~n
n

.u; �lC1; xlC2; : : : ; xn/

extends continuously by zero to 	�1.�.C //jL.
If we have case (I) for (8.3.5), there is no need to employ detectors. Again by .l; m/-

preparation we can write (8.3.10), from which we conclude that

@mC1Cj~j.f ı 	/

@�mC1
lC1

@x
~lC2
lC2

: : : @x
~n
n

.u; �lC1; xlC2; : : : ; xn/

extends continuously by zero to 	�1.�.C //jL, because of the factor�
@ 

@�lC1
.u; �lC1/

�mC1
:

A similar argument concerns the functions j̨ and ǰ . The proof of Proposition 8.3 is
now complete.

In the next proposition we describe the procedure of passing from l to l � 1.

Proposition 8.4. Assume that n 2N, n� 2, k 2 ¹0; : : : ;n� 1º, l 2 ¹kC 1; : : : ;nº, q 2N
and q � p. Let �0 � � � � � �r WD! R .r � 1/ be a sequence of continuous PL-functions
defined on a convex polyhedron D in Rl of dimension l such that

K WD
®
.�i ; �iC1/ W i 2 ¹0; : : : ; r � 1º

¯
is a family of convex PL-capsules in RlC1. Let K1 � K be a subfamily of capsules
such that for each K 2 K1 there is a regular � -cell .C.K/; �.C.K/// in Rn such that
�n
lC1

.C.K// D K and .C.K/; �.C.K/// is .k; f; q/-proper and .l; p/-prepared.
Then, after an arbitrarily small linear change of coordinates in Rl , there exists a

sequence ı0 � � � � � ıs WD0! R .s � 1/ of continuous PL-functions defined on a convex
polyhedron D0 in Rl�1 such that

K 0 D
®
.ıj ; ıjC1/ W j 2 ¹0; : : : ; s � 1º

¯
is a family of convex PL-capsules in Rl such that
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.8:4:1/
S

K 0 D D0;

.8:4:2/ for each K 0 2K 0 and i 2 ¹0; : : : ; rº, �i is affine on K 0;

.8:4:3/ N WD ¹.�i jK 0; �iC1jK 0/ W K
0 2K 0, �i < �iC1 on VK 0º is a family of regular cells

in Rl , refining K and such that for each K 2 K1 and N 2 N , if N � K, then
.C.K/jN; �.C.K//jN/ is .k; f; q/-proper and .l � 1; 0/-prepared.

Proof. Let T be a simplicial (or any polyhedral) complex in Rl such that jT j D D and
each �i is affine on each � 2 T . Then, for each i 2 ¹0; : : : ; r � 1º and � 2 T , either
�i < �iC1 on V� or �i � �iC1 on �. Then all � 2 T will become convex PL-capsules
in Rl , after perhaps a small linear change of coordinates in Rl . Now we use Remark 2.3.

As a result of iterative application of Proposition 8.3 interlaced with Proposition 8.4
we get the required Cp-extension, but the final homeomorphism is not defined on a poly-
hedron of a simplicial complex, but on some regular cell in Rn, and now the task is to
build a strict Cp-triangulation of this regular cell through a simplicial complex refining
the initial polyhedral complex and in such a way that the triangulating homeomorphism
composed with the previous one transforms any face of any initial polyhedron onto itself.
Roughly speaking, this is done by the induction hypothesis that our theorems are true
for n � 1 and precisely described in the proof of Proposition 8.5 below. Recall that for
any convex polyhedron P in Rn and k 2 ¹0; : : : ; nº, P .k/ stands for the k-dimensional
skeleton of P .

Proposition 8.5. Assume that the Main Theorem is true in dimensions< n, where n� 2.
Fix integers k 2 ¹0; : : : ; n � 1º, q � .n � 1 � k/

�
p
2

�
C p C 1 and Qq � q. Let P be a

polyhedral complex in Rn such that Dn WD jP j is a convex polyhedron of dimension n
and let P1 � P be such that jP1j is of constant dimension n. Assume that f W jP1j ! Rd

is a continuous mapping such that each P 2 P1 is .k; f; q/-well situated in Rn.
Then there exists a Cp-triangulation .T ; h/ of Dn such that T is a refinement of P ;

for each� 2 T of dimension n, if�� P 2P1, then .f ı h;h/j� n�.k�1/ is of class Cp;
if� � P 2 P nP1, then hj� is of class C Qq; and finally h.� /D � for any face � of any
P 2 P .

Proof. After an arbitrarily small linear change of coordinates, all P 2 P become
PL-capsules, so by Remark 2.6 and Lemma 2.7, there exists a sequence of continuous
PL-functions

�n�1;0 � � � � � �n�1;rn�1 W Dn�1 ! R .rn�1 � 1/;

where Dn�1 D �nn�1.Dn/, such that

Kn WD
®
.�n�1;j ; �n�1;jC1/ W j 2 ¹0; : : : ; rn�1 � 1º

¯
is a family of convex capsules refining P . By Proposition 8.1, there exists a sequence of
continuous PL-functions

�n�1;0 � � � � � �n�1;sn�1 W Dn�1 ! R .sn�1 � 1/
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and a homeomorphism 	n W Dn ! Dn such that

Ln WD
®
.�n�1;� ; �n�1;�C1/ W � 2 ¹0; : : : ; sn�1 � 1º

¯
is a family of capsules refining Kn, 	n.�/ D � for any face � of any Kn 2 Kn (hence
also	n.�/D� for any face� of anyP 2P ),	njLn is of class C Qq for anyLn 2Ln such
thatLn�P 2P nP1, while for eachLn 2Ln such thatLn�P 2P1, .Ln;˙.P /\Ln/
is a regular .k; .f ı 	n; 	n/; q/-proper � -cell in Rn and

@�.	nj VL/

@x
�
n

;
@�.f ı 	nj VL/

@x
�
n

; for � 2 ¹1; : : : ; q � 1º;

extend continuously by zero to @Ln � ˙.P / \ Ln.
After a small linear change of coordinates in Rn�1, we can find a sequence of contin-

uous PL-functions

�n�2;0 � � � � � �n�2;rn�2 W Dn�2 ! R .rn�2 � 1/;

where Dn�2 D �nn�2.Dn/, such that

Kn�1 WD
®
.�n�2;j ; �n�2;jC1/ W j 2 ¹0; : : : ; rn�2 � 1º

¯
is a family of convex PL-capsules in Rn�1 such that every �n�1;� is affine on each
Kn�1 2Kn�1.

Notice that .LnjKn�1; �.Ln/jKn�1/, where �.Ln/ WD ˙.P /\Ln, Ln � P 2 P1, is
a .k; .f ı 	n; 	n/; q/-proper � -cell, .n � 1; p/-prepared.

Now, using Proposition 8.3 interlaced with Proposition 8.4, we continue by descend-
ing induction defining sequences Ln�1;Kn�2;Kn�3;Ln�3; : : : ;KkC1;LkC1 of families
of convex PL-capsules and homeomorphisms

	n�1 W Dn�1 ! Dn�1; : : : ; 	kC1 W DkC1 ! DkC1 .where Di WD �ni .Dn//

such that

Ki WD
®
.�i�1;j ; �i�1;jC1/ W j 2 ¹0; : : : ; ri�1 � 1º

¯
;

Li WD
®
.�i�1;� ; �i�1;�C1/ W � 2 ¹0; : : : ; si�1 � 1º

¯
;

Li refines Ki , jKi j D Di , every �i�1;� is affine on each Ki�1 2Ki�1, and 	i .� / D �
for any face � of any Ki 2Ki . Moreover,�

	�1i
�
: : : .	�1n�1.Ln/jLn�1/ : : :

�
jLi ; 	

�1
i

�
: : : .	�1n�1.�.Ln//jLn�1/ : : :

�
jLi

�
is a regular � -cell,

�
k; .f ı 	n ı 	n�1 ı � � � ı 	i ; 	n ı 	n�1 ı � � � ı 	i /; q � .n � i/

�
p
2

��
-

proper and .i � 1; p/-prepared, whenever

Li � �
iC1
i .LiC1/; LiC1 � �

iC2
iC1 .LiC2/; : : : ; Ln�1 � �

n
n�1.Ln/; Ln � P 2 P1;
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while if

Li � �
iC1
i .LiC1/; LiC1 � �

iC2
iC1 .LiC2/; : : : ; Ln�1 � �

n
n�1.Ln/; Ln � P 2 P nP1;

then 	n ı 	n�1 ı � � � ı 	i is of class C Qq on

	�1i
�
: : : .	�1n�1.Ln/jLn�1/ : : :

�
jLi :

(In fact, each 	i .i 2 ¹n � 1; : : : ; k C 1º/ is a composition of appropriate p homeo-
morphisms.)

It will also be convenient to take a family Kk of convex PL-capsules in Rk partition-
ing Dk D �nk .Dn/ in such a way that every �k� is affine on each Kk 2 Kk and then for

any Kk 2Kk we have either �k� < �k;�C1 on VKk or �k� � �k;�C1 on Kk .
Now we apply the Basic Cp-Extension Lemma 5.4. It follows that the mapping

.f ı 	n ı 	n�1 ı � � � ı 	kC1; 	n ı 	n�1 ı � � � ı 	kC1/;

when restricted to
	�1kC1

�
: : : .	�1n�1.Ln/jLn�1/ : : :

�
jLkC1;

is of class Cp on
	�1kC1

�
: : : .	�1n�1.�.Ln//jLn�1/ : : :

�
jLkC1;

off an exceptional closed subset of the latter of dimension < k, which can be identified
with a closed subset of @LkC1. Hence, by our induction assumption, we can find a strict
C Qq-triangulation .Tk ; hk/ of Dk , compatible with (the projections �kC1

k
to Dk of) all

these exceptional subsets. Additionally, we assume that Tk is a refinement of Kk and
hk is orthogonally Qq-flat along simplexes (see Section 6), and hk.�/ D � for any face �
of any Kk 2Kk .

It follows that if Tk 2 Tk , dimTk D k and

hk.Tk/ � �
kC1
k

�
	�1kC1

�
: : : .	�1n�1.�.Ln//jLn�1/ : : :

�
jLkC1

�
then

.f ı 	n ı 	n�1 ı � � � ı 	kC1 ı hk ; 	n ı 	n�1 ı � � � ı 	kC1 ı hk/;

when restricted to

h�1k

�
	�1kC1

�
: : : .	�1n�1.Ln/jLn�1/ : : :

�
jLkC1

�
j VTk ;

is of class Cp on

h�1k

�
	�1kC1

�
: : : .	�1n�1.�.Ln//jLn�1/ : : :

�
jLkC1

�
j VTk :

Now we want to extend the triangulation .Tk ; hk/ to a C Qq-triangulation of the domain
of the homeomorphism 	n ı	n�1 ı � � � ı	kC1 ı hk which is a regular cell in Rn. To this
end, we put

Q	iC1 WD 	iC1 ı � � � ı 	kC1 ı hk for i 2 ¹k; : : : ; n � 1º:
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Then Q	iC1 W QDiC1 ! DiC1, where

QDiC1 WD ¹.u; �kC1; : : : ; �iC1/ 2 Dk �R
iC1�k

W . Q	i .u; �kC1; : : : ; �i /; �iC1/ 2 DiC1º

and Q	k WD hk .
For each i 2 ¹k; : : : ; n � 1º, we will define a strict C Qq-triangulation .TiC1; hiC1/,

where hiC1 W DiC1 ! QDiC1, such that TiC1 is a refinement of LiC1, . Q	iC1 ı hiC1/.� /
D � for any face � of anyKiC1 2KiC1, and moreover Q	iC1 ı hiC1 is of class C Qq when
i 2 ¹k; : : : ; n � 2º.

For i D k, we first put

.8:5:1/

hkC1
�
u; ��k�.u/C .1 � �/�k;�C1.u/

�
WD
�
u; ��k�.hk.u//C .1 � �/�k;�C1.hk.u//

�
;

where � 2 ¹0; : : : ; sk � 1º, u 2 Dk and � 2 Œ0; 1�. Observe that the definition is correct,
because if u 2 Dk and �k�.u/ D �k;�C1.u/, then there exists a face � of someKk 2Kk

such that u 2 V� . Since �k� � �k;�C1 and �k� ; �k;�C1 are affine on � , it follows that
�k� � �k;�C1 on � ; so �k�.hk.u// D �k;�C1.hk.u// since hk.� / D � .

Now observe that for any face � of any polyhedron Œ�k� ; �k;�C1�jKk , we have
.hk ı hkC1/.�/ D �. Indeed, then � WD �kC1

k
.�/ is a face of Kk , � D Œ�k� ; �k;�C1�j�

and hk.� / D � ; hence, .hk ı hkC1/.�/ D � in view of (8.5.1). It follows that for
any face � of any KkC1, . Q	kC1 ı hkC1/.�/ D 	kC1.hk ı hkC1.�// D 	kC1.�/ D �,
because KkC1 is a union of some polyhedra Œ�k� ; �k;�C1�jKk .

In order to turn hkC1 into a C Qq-triangulation of QDkC1, we take a simplicial complex
TkC1 refining all polyhedra Œ�k� ; �k;�C1�jTk , where Tk 2 Tk . It is clear that this triangu-
lation is compatible with all LkC1 2 LkC1 and is of class C Qq on simplexes. To make it
strict C Qq and orthogonally Qq-flat along simplexes we apply Corollary 6.5.

Notice that if TkC1 2 TkC1 is a simplex of dimension kC 1 and . Q	k ı hkC1/.TkC1/�
LkC1 2 LkC1 and

LkC1 � �
kC2
kC1

.LkC2/; : : : ; Ln�1 � �
n
n�1.Ln/; Ln � P 2 P1;

then

.f ı 	n ı 	n�1 ı � � � ı Q	kC1 ı hkC1; 	n ı 	n�1 ı � � � ı Q	kC1 ı hkC1/;

when restricted to

h�1kC1

�
Q	�1kC1

�
: : : .	�1n�1.�.Ln//jLn�1/ : : :

��
jTkC1;

is of class Cp except possibly on the faces of TkC1 of dimension < k.
We continue by induction. Suppose we have already defined a strict C Qq-triangulation

.TiC1; hiC1/ of QDiC1, where TiC1 is a refinement of all Œ�i� ; �i;�C1�jTi , with Ti 2 Ti ,
such that hiC1 is orthogonally Qq-flat along simplexes, Q	i ı hiC1 is compatible with all
LiC1 2 LiC1, Q	iC1 ı hiC1 is of class C Qq if i 2 ¹k; : : : ; n � 2º, . Q	iC1 ıHiC1/.� / D �
for any face � of any KiC1 2KiC1, and finally

.f ı 	n ı 	n�1 ı � � � ı Q	iC1 ı hiC1; 	n ı 	n�1 ı � � � ı Q	iC1 ı hiC1/;
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when restricted to

h�1iC1

�
Q	�1iC1

�
: : : .	�1n�1.�.Ln//jLn�1/ : : :

��
jTiC1;

is of class Cp except possibly on the faces of TiC1 of dimension < k when

. Q	i ı hiC1/.TiC1/ � LiC1;LiC1 � �
iC1
iC1 .LiC2/; : : : ;Ln�1 � �

n
n�1.Ln/;Ln � P 2 P1:

Now we define hiC2 W DiC2 ! QDiC2 first by the formula

hiC2.w; ��iC1;�.w/C .1 � �/�iC1;�C1.w//

WD
�
hiC1.w/; ��iC1�. Q	iC1.hiC1.w///C .1 � �/�iC1;�C1. Q	iC1.hiC1.w///

�
;

where w 2DiC1, � 2 ¹0; : : : ; siC1 � 1º and � 2 Œ0; 1�. We check easily, by the same argu-
ment as for hkC1, that hiC2, after appropriate modifications analogous to those for hkC1,
satisfies all the required conditions.

Consequently, we obtain a strict C Qq-triangulation .Tn; hn/ with hn W Dn ! QDn such
that Q	n�1 ı hn is of class C Qq , Tn is a refinement of Ln (so of Kn as well), Q	n�1 ı hn is
of class C Qq , Q	n�1 ı hn is compatible with Ln, . Q	n ı hn/.� / D � for any face � of any
face Kn 2Kn, and

.f ı . Q	n ı hn/; Q	n ı hn/

is of class Cp when restricted to any Tn 2 Tn, except on the faces of Tn of dimension< k,
assuming that . Q	n�1 ı hn/.Tn/ � P 2 P1.

Finally, observe that if . Q	n�1 ı hn/.Tn/ � P 2 P n P1, then Q	n ı hnjTn D 	n ı

. Q	n�1 ı hn/jTn is of class C Qq . Now the proof of Proposition 8.5 is complete.

Corollary 8.6. Assume that the Main Theorem is true in dimensions < n, where n � 2.
Let k 2 ¹0; : : : ; n � 1º and let q � .n � 1 � k/

�
p
2

�
C p C 1 be an integer. Let P be a

polyhedral complex in Rn such that jP j is a convex polyhedron of dimension n. Let f W
jP j !Rd be a continuous mapping such that for each P 2P the restriction f jP nP .k/

is of class Cq .
Then there exists a Cp-triangulation .T ; h/ of jP j such that T is a refinement of P ,

h.� / D � for any face � of any P 2 P , and for each simplex � 2 T the restrictions
hj� n�.k�1/; f ı hj� n�.k�1/ are of class Cp .

Proof. By barycentric subdivision we reduce to the situation where for each P 2 P of
dimension n, there exists a face ˙.P / of P of dimension k such that f jP n˙.P / is of
class Cq . There are a finite number of orthogonal bases v1; : : : ; vs in Rn such that each
P 2P is .k;f; q/-well situated inRn with respect to some basis vi .i 2 ¹1; : : : ; sº/. Thus,
we can represent (the set of all polyhedra of dimension n belonging to) P as a pairwise
disjoint union

P D P1 [ � � � [Ps;

where each P 2 Pi is .k; f; q/-well situated in Rn with respect to vi .
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By Proposition 8.5, there exists a Cp-triangulation .T1; h1/ of jP j such that T1 is a
refinement of P , for each �1 2 T1 of dimension n, if �1 � P 2 P1, then the restrictions

h1j�1 n�
.k�1/
1 ; f ı h1j�1 n�

.k�1/
1

are of class Cp , if �1 � P 2 P n P1, then the restriction h1j�1 is of class C q , and
h1.� / D � for any face � of any P 2 P .

Put

T1i WD ¹�1 2 T1 W dim�1 D n; �1 � P 2 Piº .i 2 ¹1; : : : ; sº/:

Observe that if �1 2 T1i , where i � 2 and �1 � P 2 Pi , then picking ˙.�1/ to be a
k-dimensional face of �1 which contains �1 \˙.P /, we see that

h1j�1 n˙.�1/; f ı h1j�1 n˙.�1/

are of class Cq ; hence, �1 is .k; .h1; f ı h1/; q/-well situated in Rn with respect to the
basis vi .

By Proposition 8.5, there exists a Cp-triangulation .T2; h2/ of jP j such that T2 is a
refinement of T1, for each �2 2 T2 of dimension n, if �2 � �1 2 T12, then

.6:8:1/ h1 ı h2j�2 n�
.k�1/
2 ; f ı h1 ı h2j�2 n�

.k�1/
2

are of class Cp , while if �2 � �1 2 T1 n T12 the restriction h2j�2 is of class Cq , and
h2.�1/ D �1 for any face �1 of any �1 2 T1. Clearly, the mappings (6.8.1) are of class
Cp when �2 � �1 2 T11 as well.

Put

T2i WD ¹�2 2 T2 W dim�2 D n; �2 � �1 2 T1iº .i 2 ¹1; : : : ; sº/:

Observe that if �2 2 T2i , where i � 3, then �2 is .k; .f ı h1 ı h2; h1 ı h2/; q/-well
situated in Rn with respect to the basis vi .

It is clear how to continue the above process, which at the final s-th step gives the
required triangulation .T ; h/ D .Ts; h1 ı � � � ı hs/.

Corollary 8.7. Let p be a positive integer and let q1; : : : ; qn be integers such that

q1 � .n � 1/

�
p

2

�
C p C 1; q2 � .n � 2/

�
q1

2

�
C q1 C 1; : : : ;

qn � 0

�
qn�1

2

�
C qn�1 C 1 D qn�1 C 1:

Let P be a polyhedral complex inRn such that jP j is a convex polyhedron of dimension n.
Let f W jP j ! Rd be a continuous mapping such that for each P 2 P the restriction
f jP n P .n�1/ is of class Cqn .

Then there exists a strict Cp-triangulation .T ; h/ such that T is a refinement of P ,
h.� / D � for any face � of any P 2 P , and f ı h is of class Cp .
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Proof. By Corollary 8.6 applied n times we obtain a Cp-triangulation .T ; h/ of jP j such
that T is a refinement of P , h.� /D � for any face � of any P 2P , and for each simplex
� 2 T of dimension n the restrictions hj� and f ı hj� are of class Cp . We now improve
h using Corollary 6.5.

Corollary 8.7 ends the proof of the Main Theorem as well as of the Strict Cp-
Refinement Theorem, since it is classical that there exists a Cqn -triangulation .T ; h/ of
A D dom.f / such that f ı hj V� is of class Cqn for each simplex � 2 T .

9. An application to approximation theory

Fernando and Ghiloni [7] proved the following approximation theorem.

Theorem 9.1 ([7, Corollary 1.5]). Let A be a definable, closed, bounded subset of Rn

and let T be a finite simplicial complex inRm. Let f WA! jT j be a definable continuous
mapping.

Then for any positive integer p and any " 2 R such that " > 0 there exists a Cp-
mapping g W A! jT j such that

jf .x/ � g.x/j � " for all x 2 A;

where j.y1; : : : ; ym/j WD .
Pm
iD1 y

2
i /
1=2:

In fact, [7] contains the proof of Theorem 9.1 only in the semialgebraic case and
RDR (the field of real numbers), but it is easy to check that the same proof, with obvious
modifications, holds true in our general context.

The existence of strict Cp-triangulations allows us to improve the last theorem.

Theorem 9.2. Let A and B be any definable, closed bounded subsets of Rn and of Rm,
respectively. Let f W A! B be a definable continuous mapping.

Then for any positive integer p and any " 2 R such that " > 0 there exists a Cp-
mapping g W A! B such that

jf .x/ � g.x/j � " for all x 2 A:

Proof. Let .T ; h/ be a strict Cp-triangulation of B; hence h W jT j ! B is a homeo-
morphism of class Cp . Since h is uniformly continuous, there exists ı > 0 such that for
each pair u;w 2 jT j, if ju�wj � ı, then jh.u/� h.w/j � ". By Theorem 9.1 there exists
a Cp-mapping g W A! jT j such that

jh�1 ı f .x/ � g.x/j � ı for all x 2 A:

Hence,
jf .x/ � h ı g.x/j � " for all x 2 A;

and h ı g W A! B is of class Cp as a composition of two Cp-mappings.
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