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Abstract. Let R be any real closed field expanded by some o-minimal structure. Let f : A — R4
be a definable and continuous mapping defined on a definable, closed, bounded subset A4 of R”. Let
& be a finite family of definable subsets of R” contained in A. Let p be any positive integer. We
prove that then there exists a finite simplicial complex 7 in R™ and a definable homeomorphism
h:|T|— A, where |T|:=J T, such that for each simplex A € T, the restriction of & to its relative
interior A is a €7 -embedding of Ainto R" and moreover both / and f o h are of class €7 in the
sense that they have definable €7 -extensions defined on an open definable neighborhood of ||
in R™. We then call a pair (T, 1) a strict €P -triangulation of A. In addition, this triangulation can
be made compatible with & in the sense that for each £ € &, h~1(E) is a union of some Ao, where
A € 7. We also give an application to approximation theory.

Keywords. O-minimal structure, semialgebraic set, €2 -triangulation, strict €2 -triangulation,
capsule, detector

1. Introduction and Main Theorem

We will work with an arbitrary fixed o-minimal expansion of any real closed field R,
e.g. the field R of real numbers with semialgebraic subsets of R” spaces, where n € N.
O-minimal geometry (see [4,21] for fundamental notions and results) is a far-reaching gen-
eralization of semialgebraic and subanalytic geometries (presented in [2,3,8,11,15,19]).
We will deal only with subsets of R” and mappings f : A — R™, where A C R", which
are definable in this structure (the mapping f is called definable if the graph of f is a
definable subset of R”*™). Therefore, as a rule we will skip the adjective “definable”.
We adopt the following general definition. If K is any family of subsets of a set X,
then by a refinement of K we understand any family &£ of subsets of X such that each
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L € £ is contained in some K € K and each K € X is the union | £’ of some subfamily
£’ C £. The term “refinement” will also be used in another sense: if ¥ is a family of
functions defined on a set X we will say that a family § of functions defined on X is a
refinement of ¥ if simply ¥ C §.

If K is any family of subsets of a set X, then we will denote by |X | the union of all
those subsets.

The interior of a subset A of a tolgological space will in general be denoted int A, but
often we find the Bourbaki notation A more handy, while for the closure of A we will use
either A or cl A.

We adopt the standard definition of a simplex of dimension k in R" as the convex hull
of k + 1 points ay, . .., ai affinely independent in R"; i.e.

k k
A =ag,...,ar] = {Zaiai ca; >0(3G €{0,...,k}), Zai = l}.
i=0

i=0
If 0 <ip <iy <--+ <ij <k, then the simplex [a;,, ..., a;] is called a face of A of
dimension /. The points ay, . . ., ay are called vertices of A. The boundary 0A of A is the

union of all faces of A of dimension < k. Its relative interior is by definition

k k
A= A\ DA = (ap, ..., ax) i= {Zaiai Lo >0 (€ {0, k), Y o = 1}.
i=0

i=0

It will be convenient for us to use a more general notion of a convex polyhedron in R",
which is defined as the convex hull of any finite subset of R". All polyhedra considered
in this paper are assumed to be convex. It is clear that the notions of dimension, faces,
boundary, vertices and relative interior generalize to all polyhedra and that polyhedra are
definable in PL-geometry. For a polyhedron P in R” and ! € {0, ..., n} we will denote
by PO its [-dimensional skeleton, i.e. the union of all its faces of dimension < /.

By a polyhedral complex in R" we will always understand a finite family & of (con-
vex) polyhedra in R” such that for each P € £ all faces of P belong to & and for each
pair Py, P, € &, P1 N P, is empty or a common face of both P; and P,. A polyhedral
complex consisting of simplexes is called a simplicial complex. In fact, we will restrict
our considerations to polyhedral complexes & such that || is a polyhedron of constant
dimension n. Then a polyhedral complex can be defined as a finite family of polyhedra
of dimension #n such that the intersection of any two of them is their common face, if not
empty. We will use this identification for simplicial complexes as well.

Throughout the paper, p denotes a positive integer.

Definition 1. Let A be any definable, bounded, closed subset of R". A €?-triangulation
of A is a pair (T, h), where 7 is a simplicial complex in R" and £ is a definable hom-
eomorphism of |7| onto A such that for each simplex A € T the restriction h|Ao is a
€?-embedding of Ainto R". If € is any finite family of definable subsets of A we say
that the triangulation (77, /) is compatible with & if for each E € & the inverse image
h~Y(E) is a union of some AO where A € 7. A €P-triangulation of A will be called a
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strict €P-triangulation of A if the mapping & : |T| — R" is of class €7 in the sense of
the following definition.

Definition 2. If f : B — R? is any definable mapping defined on a definable subset
B C R" we say that f is of class €7 if it admits an extension f : U — R¢ of class €7
defined on an open definable neighborhood U of B in R".

Main Theorem. Let R be any real closed field expanded by some o-minimal structure.
Let f: A— R? be a definable and continuous mapping defined on a definable, closed,
bounded subset A of R". Let & be a finite family of definable subsets of R" contained
in A. Let p be any positive integer.

Then there exists a strict €P-triangulation (T, h) of A compatible with & and such
that f o his of class €P.

In fact, we prove a more precise theorem that an arbitrary definable triangulation of the
set A can be refined to a strict € -triangulation at the same time smoothing the mapping f
to the class €7. Namely, we have the following (compare Corollary 8.7).

Strict €7-Refinement Theorem. Under the assumptions of the Main Theorem, let P
be a polyhedral complex in R" and let g : |P| — A be any definable homeomorphism.
Then there exists a strict €P -triangulation (T , h) of |P| such that T is a refinement of P,
h(I') =T forany face I' of any polyhedron P € P and g o h is a strict €P -triangulation
of A compatible with the family & and such that f o g o h is of class €P.

The proof of both theorems is an interplay between PL- and o-minimal geometries.
The general idea comes from our earlier paper about €7 -parametrizations of sets defin-
able in o-minimal structures [12]. In that paper we parametrized definable sets by €7-
mappings defined on cubes (similarly to the classical analytic rectilinearization theorem
for subanalytic sets [2, 11]), which inevitably spoils injectivity of the parametrization.
Similarly, blowing-up operations evidently spoil injectivity. Instead of cubes or blowings-
up we propose to use simplexes as in the classical triangulation theorem [21, Chapter 8],
which can be adapted to give €”-triangulations (cf. [10]). The problem is to make a tri-
angulating homeomorphism (extendable to) a €”-mapping. Our procedure of smoothing
is based on the case of dimension 1, that is, on the Main Theorem for n = 1, the proof of
which we will briefly explain now, assuming for simplicity that d = 1.

Without any loss of generality we can assume that f : [a, b] — R is a continuous
definable function defined on a bounded, closed interval. There exists a finite sequence
co=a<cy <---<cgy+1 =bsuchthatforeachi € {0,...,s}, the restriction f|(c;,ci+1)
is of class €271 and either | /| < 1 on (c;,ci+1) or | f'| > 1 on (¢;.ci+1). Now we use
a simple but beautiful trick of Coste—Reguiat [5] reducing the problem to that where
|/l <1onJa,b]\{co,...,cs+1}. Namely, we define g : [¢, b] — R by an inductive
formula. First, we put g(a) = g(co) = f(a). Then we define g on [c;, ¢;+1] depending
on the following two cases:

CaseI: If | f'| < 1on]c;,cit1], then we put g(x) := g(c;) + x — ¢; for x € [¢;, Cit1].
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CaseIl: If | f’| > 1 on [c;, ci+1], then we put g(x) := g(c;) + | f(x) — f(ci)| for
X € [ci, cig]-

Put d; = g(c;) fori € {0,...,s + 1}. Observe that g : [co, cs+1] = [do, ds+1] is a
strictly increasing homeomorphism such that g’(x) > 1 for x € [cq, ¢s+1] \ {cos- - ., Cs+1}-
Take now the inverse h := g~ ! : [do, ds+1] — [co. cs+1]. Then 0 < A'(y) < 1 and
|[(f oh)(y)| <1 foreach y € (d;,di+1), where i € {0, ...,s}. Now we use a trick of
Yomdin—Gromov (see Lemma 4.1 and Corollary 4.2 below and compare with [9,22,23]).
Passing perhaps to a finer subdivision one can assume that on each of the intervals
(d;,d; 1) each of the derivatives A and (f o h)™, where v € {2,..., p + 1}, exists and
has a constant sign. It follows that there exists a piecewise polynomial strictly increasing
function  : [yo, Y2s5] = [do, ds] of class €P, where yg < Y1 < --- < Y25, sSuch that

di—1 + d;

o(y2i) =d;i (i €{0,....s}), o(y2i-1)= 7

Gell,....s)).

w is p-flat at each y; and such that # o w and f o (h o w) are €”-functions flat at
Yos---5V2s-

For n > 1 we use the same smoothing procedure but with parameters. In order to
make it possible we introduce two devices: capsules which are cells without vertical
line segments in the boundary (see Section 2) and detectors which are special differ-
entiable functions of choice (see Section 3). A capsule in R" can be treated as a fam-
ily parametrized by an open subset D of R"~! of vertical line segments shrinking to
points when approaching the boundary of D. To these line segments we apply the above
described smoothing procedure of our function f (cf. Lemma 5.1). This gives us €7-

smoothing, but only in one (vertical) direction, say in the direction of the x,-axis. More
v f

precisely, the partial derivative extends continuously by zero to the boundary of the

oxp
capsule. It is important that we obtain this by substituting in f a homeomorphism which
is of the form @ (x', x,,) = (h(x"), o(x’, x,,)), where x’ = (x1,...,x,—1) and / is a homeo-

morphism of D. Now we want to control the other partial derivatives, which may a priori
be unbounded at the boundary. Consider first ij;—pf_% We want to control it from the
level of the space R”~!. For this purpose, we find a function @ : D — R which detects
in every vertical fiber a point at which the maximum of |M_all(;—pf_%| over the fiber is
attained (up to a factor 1/2). Such a detector can be found as smooth as we want and
since it is contained in a capsule, it automatically extends continuously to the boundary.

We apply the previous step to the function

oP—1 f Pl f
1 (' o(x) = P (" xn-1, 0(x", xn-1)),
Xn Xn
where x” = (x1,..., x4—2) and x,,—; now plays the role of a “vertical variable”. Hence,

there exists a homeomorphism of the form

W(x", xn1) = (g(x"), ¥ (x”, xn-1))
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such that

DT ey, ), 0867, W 0)

0xp—1 [ 9x2~! ’ e ’ o

extends continuously by zero to the boundary of D (in fact, D has to be represented as a
union of capsules beforehand). But

9 [9r1
3x —1 |:axp—j: (g(x”)7 1//()(”, xn—l), CU(g(x”), I//'(XN’ xn_l)))]
a? ;
- #(g(x"), Y (x", xp—1) 0(g(x"), 1/f(x”,xn—l)))axwl
n—1 n .
a? f Iz ” ” Y 9 ., )
+ a V4 (g(x )7 "//(x ,xn—l), w(g(-x )7 W(x ,xn_l)))a w(g(x )71//()(: ,Xn_l)),
o Xn—1

and the last line represents a function which is already known to have continuous exten-
sion by zero to the boundary. Hence the previous one has this property as well. It follows
that

0P
8_)(: 8_xp_l [f(g(x//)7 Ip.('x//vx}'l—l)s-xn):l
n—1UAn

a? a

= #(g(x”)v W(x//vxn—l)axn)) axwl
n—10An n—

a7 a

<2 ax—;;,_l(g(x“), V(" xnm1), (g ("), ¥ (X", xu-1))) ax‘” :

n—1UAn n—

has continuous extension by zero to the boundary. Repeating a similar reasoning we are
able to achieve that 32x,1_8:73{v*2xn has continuous extension by zero to the boundary, and
so on (cf. Propositions 8.2 and 8.3). We stop this procedure when we are able to apply the
following Basic €P-Extension Lemma, which we here state in a slightly simplified form

(compare Lemma 5.4):

Let P be a convex polyhedron in R" of dimension n, let X be its face of dimension k

such that ¥ C {(x1,...,X) € R" 1 xXpy1 =+-=x, =0}andlet f : P\ X — Rbea
€2 -function such that all the partial derivatives
a7 f
IxTT gyln (la| = o1+ +an = p)

k+1

have continuous extensions to X.
Then there exists a closed subset E of X of dimension < k such that f extends to a
€P-function defined on P \ E.

At the beginning of the proof we can assume without any loss of generality that in the
Main Theorem, instead of any definable A, we have a big convex polyhedron P in R”"
containing A, because of the definable version of the Tietze Theorem (see [ 1, Lemma 6.6],
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[21, Chapter 8, (3.10)]). The next initial reduction is that by the classical €#-triangulation
theorem (see [10], [21, Chapter 8]) there exists a €P-triangulation (77, g) of P compatible
with A such that T is a simplicial complex in R", || = P and f o g|Ao is of class €7
for any A € 7. We will be working under the inductive hypothesis that our theorems are
true in dimensions < n and use descending induction on the dimension k of a face of a
polyhedron as described above.

We should stress that the above sketch of proof is oversimplified. For example, in
general we have to use a number of detectors rather than one.

The advantage of our method of desingularization is that it works for an arbitrary
o-minimal structure, including in particular the following two examples:

(1) the o-minimal structure of R-subanalytic sets and mappings, i.e. the structure gener-
ated on the ordered field R of real numbers by real analytic bounded subsets of R”
(n € N) and all power functions (0, 00) 3 ¢ > t* € (0, co) with real irrational o (for
a €P-rectilinearization and uniformization theorems in this structure see [18]),

(2) an o-minimal structure of Le Gal and Rolin [14] which does not admit € cell
decompositions.

These examples explain why in our Main Theorem we deal with finite differentiability
classes rather than €. Besides, the €°°-analogue of the theorem, if taken literally, is not
true even in the semialgebraic case, as shown by the example of the function f(¢) = |t|.
Indeed, if there existed a semialgebraic €°°-homeomorphism g of a neighborhood of 0
onto a neighborhood of 0 such that g(0) = 0 and f o g were €%, then g would be
analytic, so g ~ ¥ for some positive odd integer k; hence h o g ~ |¢|¥, a contradiction.

The case p = 1 has already been proved in a slightly weaker form for semialgebraic
category by Ohmoto and Shiota [16], who used strict €!-triangulations to develop inte-
gration on sets with singularities. Our Main Theorem for p = 1 in full extent has been
proved by Czapla and Pawtucki [6].

If R =R is the field of real numbers, versions of our Main Theorem for locally
definable sets and mappings are possible. They will be a subject of a separate article.

Throughout the paper we use the linear projections

ap t R" 3 (x1,...,xn) > (X1,...,Xp) € R”

where m < n.

2. Capsules

We define two special notions which will play an essential role in the proof of the Main
Theorem. These are capsules studied in the present section and detectors to which the
next section is devoted.

A capsule in R"T1 is a subset K of R*T! of the form

K={(x,t)e DxR:a(x) <t < B(x)}
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where D is a subset of R” such that D = int D, int D is bounded, connected and «, 8 :
D — R are continuous functions such that« < S onint D and @ = § on dD.
Proposition 2.1. For any subset E of R"*! the following conditions are equivalent:
(2.1.1) E is a finite union of capsules in R* 1.

(2.1.2) E = int E is bounded and OE does not contain any nontrivial line segment par-
allel to the t-axis.

(2.1.3) E is a finite union of capsules in R"*! whose interiors are pairwise disjoint.

Proof. Obviously (2.1.1) implies (2.1.2). Assume now (2.1.2) satisfied. Let 7 : Rl 5
(x,t) > x € R". Since int E is bounded and 7 (E) is closed,

n(E)=n(ntE) = n(intE) Cintx(E) C n(E),

hence 7(E) = int w(E). Take a cell decomposition of R"*! compatible with int E and
with 0F (cf. [21, Chapter 3, (2.11)]). This allows us to represent int £ as a finite union of
pairwise disjoint cells of the form

(. ¥) :={(x.0) 1 x €8, p(x) <t <Y (x)},

where S C n(int E), ¢, ¥ : S — R are continuous, ¢ < ¥ on S and the graphs' of ¢ and
Y are contained in 0E. Applying classical triangulation to s(int £) and all S (see [21,
Chapter 8, (1.7)]) we can additionally assume that S = 7 (@, ¥) satisfies Lojasiewicz’s
(s)-condition (see [15, Section 25]): each point @ € S \ S admits a neighborhood basis
U in R" such that the trace U N S of each U € U on S is connected. Then the set of all
limit values of ¢ at each pointa € S \ S can be identified with

PNnayx Ry ={a}yx [ {eUNS):U e U,

which is a nonempty, connected subset of the vertical line {a} x R and of JF at the
same time, hence a singleton. Consequently, both ¢ and ¥ have continuous extensions
©.% : S — R to S and next, by the Tietze Theorem, to the whole 7 (E). Using all these
extensions and min and max functions we can find a sequence of continuous functions

ap < Zap:7(E)—> R

such that

(2.1.4) foreach x € m(int E) the fiber (int £) is a union of some intervals (c; (x), o (X)),
where i < j,

(2.1.5) 7~ (z(int E)) N 9E C |J; o;.

Refining the sequence ayq, ..., «), by some extra functions we can assume that all the sets

(i aiqq) ={(x,t) :x e w(E), aj(x) <t < aj+1(x)}

'We identify mappings with their graphs, denoting both by the same letter.
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are connected and nonempty. It follows from (2.1.5) that if (o;, o; 1) Nint E # @, then
(o, 1) CintE. Let{i; <--- <ig} ={i : (0j,®;4+1) C int E}. Then by (2.1.4),

(ctiy 0, 41) U+ U (o, i 41)

is dense in int £, hence in E. Let P, := nw(e;,, %, +1). Now if x € Fv\ P, and x €
n(int E), then of course a;, (x) = a;,+1(x) and if x € P, \ P, and x ¢ n(int E), then
{x} % [o, (x), @i, +1(x)] C OF, hence again o;, (x) = o4, +1(x). However, (@i, , ¢, +1)
may not be a capsule yet because the condition int P, = P, may not be satisfied. To solve
this problem we prove the following lemma.

Lemma. Let P be a bounded open subset of R and let o, f : P — R be two continuous
Sfunctions such that o <  on P and @ = B on 0P. Then (a, B) can be represented as a
finite union of capsules with pairwise disjoint interiors.

Proof of Lemma. Without any loss of generality we can assume that o = 0. Next,
using classical triangulation we reduce the problem to PL-geometry. Then the subset
A := (int P) \ P is contained in a finite number Hi, ..., H, of affine hyperplanes,
with ¢ minimal possible. We argue by induction on ¢g. By an affine change of coor-
dinates in R", we can assume that H; = {(x1,..., Xs) : X, = 0}. Then the function
y(x) := M x,, with | M | large enough, cuts the cell (0, 8) into two (0, max(0, min(y, 8)))
and (max (0, min(y, 8)), B), for each of which ¢’ < ¢. |

This ends the proof of Proposition 2.1.

Remark 2.2. If E fulfills the conditions of Proposition 2.1 and A; : w(E) — R (j €
{1,...,r}) is a given finite family of continuous functions, then there exists a finite family
of continuous functions &y <--- <y : R” — R such that E is a union of some capsules of
the form (e;, &; +-1) which are compatible with every A; in the sense that either A; (x) < ¢
forall (x,7) € (o;, ;4+1), 0or Aj(x) >t forall (x,t) € (o0, 0ti41).

Remark 2.3. If Ko, K1, ..., K, are capsules in R"*! and K, C Ko when 1 <v < p,
then there exists a finite family of continuous functions &y <--- < &g : R" — R such that
(aj,i41) (i €{0,...,5 — 1}) is a family of capsules which is a refinement of Ko, ..., K.

Corollary 2.4. For any finite family X of capsules in R* ! there exists a finite family £
of capsules in R"*! which is a refinement of X and the interiors of capsules from £ are
pairwise disjoint.

Proposition 2.5. Let K be any capsule in R"*' and let 'V be a finite family of open
subsets of int K covering the whole int K. Then there exists a finite family £ of capsules
in R"* whose interiors are pairwise disjoint, \ ] £ = K and for each L € & there exists
V eV suchthatint L C V.

Proof. Put K = {(x,t) € D x R:a(x) <t < B(x)}. There are two parts of the proof.

Part I. We first prove by induction on k that if A is any subset of int D of dimension k,
then there exists a finite family &£ of capsules in R"*1 such that for each L € &£ there
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exists I € 'V containing int L and for each a € A there exist L € £ and ¢ > 0 such that
{a} x (a(a),a(a) + &) Cint L.

Applying a triangulation of D compatible with A, we can assume that A is an open
subset of R* = {(x1,...,X,) : Xx41 = -+ = x, = O}. Partitioning A, using the induction
hypothesis and cell decomposition, we can assume that A is connected, and there exists
one IV € 'V and a function

n:A— (0,00)

such that {a} x (a(a), a(a) + n(a)] C V for each a € A. Replacing n by 7j(a) :=
min {n(a), d(a, A\ A)}, we can assume that n(a) — 0 when d(a, A\ A) — 0. For
each t € [a(a), a(a) + n(a)] put p(a,t) := %d((a, t), K\ V). Since for each a € 4,
pla,a(a)) = 0and p(a,t) > 0 when ¢t > a(a), we can modify 7 in such a way that

(a(a),a(a) +n(a)] 3t = p(a,1) € (0,00)
is strictly increasing. Again by partitioning A and using the induction hypothesis we can
assume that 7 is continuous, and replacing 1 by 7(a) := min {n(a),d(a, A \ A)}, we can
assume that 17(a) — 0 when d(a, A \ A) — 0. It follows from the definition of p that for
eacha € Aandt € (x(a),a(a) + n(a)],
{(Xteeexmt) ta = (X1, xk), (2, + o+ xD)V2 < pla, 1)} C V.
Now we define the desired capsule. Put

E:={(x1,....,xp):a=(x1,...,xx) € A, (x,f+1 +---+x5)1/2 < pla,a(a) +n(a))}

and

L:={(x1,....%p.1) s (X1,...,xn) € E,
P (Xts e X, (3 e H XDV <t <alrr, . xg) F G X))
where p~! denotes the inverse of p with respect to the last variable.

Part II. According to Part I, there exists a finite family &£ of capsules in R”*! such that
for each L € £ there exists V' € 'V containing int L and for each a € D there exist L € £
and & > 0 such that {a} x (a(a),a(a) + &) C int L and there exist M € £ and 6 > 0 such
that {a} x (B(a),B(a) —0) Cint M.

By Corollary 2.4 there exists a finite family &£’ of capsules in R”*! which is a refine-
ment of £ U {K} and consists of capsules with pairwise disjoint interiors. It follows that
if L’ € £’ and L’ is not contained in any of the capsules from &£, then L’ is of the form

L'={(x,t):x € Q, y(x) <t <8(x)},

where V is an open covering of L'|int Q = {(x,¢) : x € int Q, y(x) <t < §(x)}. Thus
to finish the proof it suffices to prove the following.

IFK={(x,t)eD x R:a(x) <t <B(x)}isacapsulein R*"T1, K*:= K N (0D x R),
V is a finite family of open subsets of R" ™1 such that K \ K* C |V and A is a subset
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of int D of dimension k, then there exists a finite family £ of capsules in R"*! contained
in K such that |\ J £ \ K* is a neighborhood of K|A in K \ K* and for each L € £ there
exists V€ 'V suchthat L\ K* C V.

We proceed again by induction on k. Take a cell decomposition € of |_J 'V compatible
with each V' € 'V and with K|A. Let

{Bi,...,Bs} ={n(C):C €€, C C K|A, dimn(C) = k}.
Now we apply the induction hypothesis to
E:=[A\(BiU---UBy)JU (B, NintD \ By)U---U (Bg Nint D \ By).

There exists a finite family &£ of capsules in R”*! contained in K such that | J &£ \ K*
is a neighborhood of K|E in K \ K* and for each L € £ there exists V € 'V such that
L\ K* C V.Fixone B, = B. Then

KB = [yo.y1]U U [Vm—1.Vml

where y, : B— R (v €{0,...,m}) are continuous, yg < -+ < Vm, Yo = &|B, ym = B|B
and each [y, yy+1] is contained in some V' € V. There is an open subset Ty of B such
that To Nint D C B and | J &£ \ K* is a neighborhood of K|(B \ Ty). Take also open
subsets T1, T of B such that T; Nint D C T; C T; Nint D C Bif 0 <i < j < 2. By
the Tietze Theorem for each v € {1,...,m} there exists a continuous function

)71; . Tz — R
such that 7,|T1 = y,|T1, 741072 = y»—1|8T2 and y,—1 < 7, <y, on T5. Then
m
bl 9]\ K
v=1

is a neighborhood of K|Tp Nint D in K \ K*. We build a similar neighborhood over
every B,,. Applying Proposition 2.1 we finish the proof. ]

Remark 2.6. The reader will easily check that Propositions 2.1 and 2.5 as well as Rem-
arks 2.2 and 2.3 hold true in the PL-structure.

In Section 8 we will need the following lemma.

Lemma 2.7. Every PL-capsule in R"*! is a finite union of convex PL-capsules whose
interiors are pairwise disjoint.

Proof. The boundary 9S of any PL-capsule S is contained in a finite number of graphs
of affine functions,
S C g1 U---U gy,

where s is the smallest possible. We argue by induction on the number g of ¢, such that S
is not contained in just one closed half-space cut by ¢,,. If ¢ = 0, then clearly S is convex.
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Otherwise there is v such that
Ty :=cl{(x,y)eintS : y < gy(x)} and T, :=cl{(x,y) €intS :y > ¢,(x)}

are finite unions of PL-capsules, for which the number ¢ is smaller. The lemma follows.
]

3. Detectors

In this section we will need €7 -partitions of unity. Although it is well-known that €7-
partitions of unity exist in any o-minimal structure, for the reader’s convenience and to
make the paper self-contained, we give a short proof in the first two lemmas.

Lemma 3.1. Ler Q be an open subset of R" and let A and B be two closed, disjoint
subsets of Q2. Then there exists a €P-function ¢ : Q@ — [0, 1] such that ¢ = 1 on A and
¢ =0on B.

Proof. By the Whitney extension theorem in the version from [13], there exists a €7-
function ¥ : & — R such that ¥ = 1 on A and ¥ = 0 on B. Now it suffices to put
@ := Aoy, where A : R — [0, 1] is a €”-function such that A(0)) =0 and A(1) = 1. =

Lemma 3.2. Let Q be an open subset of R" and let Ay, ..., Ay be a finite family of
closed and pairwise disjoint subsets of Q. Then there exist €P-functions ¢; : Q — [0, 1]
(j €{1,...,m}) such that

m
D ej(x)=1 forallxeQ,
j=1

and for each j € {1,...,m}, ¢; = 1on A;.

Proof. Induction on m. Let m > 1. By the induction hypothesis there are V1, ..., Yy,—1 :
Q — [0, 1] of class €7 such that

m—1

Z Yi(x) =1 forallx € Q,

i=1
and ¥; = 1 on A4;. By Lemma 3.1 there exists a €7-function o7 : 2 — [0, 1] such that
01 =1o0n A, ando; =0on A; U---U A,_;. There exists an open neighborhood U
of A, in Q suchthato; >0onU andU C Q\ (A; U---U A,,—1). By Lemma 3.1 there
exists a €P-function 05 : 2 — [0, 1] such that o, = 1 on Q2 \ U and 0, = 0 on A,,. Then
the €7 -function

o1 +03:2—(0,2]

is positive on €2, so we can build the following €”-functions on 2:

A= ram M YT 0 f e



W. Pawtucki 3874

Of course, p1(x) + p2(x) =1, p; =00n A; U--- U A1, while p, = 0 on A,,; hence
pr=1onA,andp, =1on Ay U---U A,,_;. Finally, we put 91 :=¥102,...,0m—1 :=
Ym—1p02 and @, 1= p1. [
Proposition 3.3. Let Q be an open subset of R", E a closed subset of Q2 of dimension k,

and C a convex, closed bounded subset of R™ such that intC # 0. Let f : E x C —
[0, 00) be a continuous function and define

g(x):=sup f(x,y) forxe€kE.
yeC

Assume that g(x) > Oforall x € E. Let p € N.
Then there exists a family w; : @ — intC (j €10, ...,k}) of €P-mappings such that

%g(x) < sup f(x,wj(x)) forallx € E.
J

The mappings w; will be called detectors of class €7 for f over E.

Proof. Induction on k. If k = 0 it suffices to know that there exists a €-mapping o :
2 — C which has prescribed values at a finite number of points, which is an immediate
consequence of existence of definable €7 -partitions of unity (Lemma 3.2).

Suppose now that k > 0. By definable choice there exists a mapping w : E — intC
such that

(3.3.1) %g(x) < f(x,wg(x)) forallx € E.

There exists a closed subset E; of E of dimension / < k such that E \ E; is a €7-
submanifold of R” of dimension k and wg|E \ E; is a €”-mapping. Moreover, by [13]
we can assume that £ \ E; can be represented as a finite union

(3.3.2) E\NE =L

of pairwise disjoint k-dimensional €”-submanifolds each of which, in some linear coor-
dinate system, is the graph

Ly ={(x1. o X Ve Ot oo X))o Y (1o XE)) (X1, LX) € Dy},
of a €P-mapping y” = (Y s+ Vn) : Dy — R"* defined on some open subset
D, C R*.

Via the natural projection
D, x R" % 5 (X1, xn) > (X1, X, YV (X1, .. xk)) € T,

wi |y can be extended to a €7-mapping on a neighborhood of I',; hence wy|E \ E;
can be extended to a €”-mapping defined on a neighborhood of E \ E;. Consequently,
wi|E \ Ej extends to a €7-Whitney field defined on E \ E;. By the induction hypothesis,
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there exist €”-mappings w; : @ — intC (j € {0,...,k — 1}) such that

(3.3.3) %g(x) < sup f(x,wj(x)) forallx e E;
J

There exists an open neighborhood W of E; in © such that (3.3.3) holds true for all
x € WN E. Then E \ W is a closed subset of Q2 contained in £ \ E;. By the Whitney
Extension Theorem, there exists a €7-mapping F : @ — R™ which extends w |(E \ W).
Then U := F~!(int C) is an open neighborhood of E \ W in . By Lemma 3.2, there
exist €2 -functions ¢1, ¢, : Q2 — [0,1] suchthat; + ¢, =1, =1on E\ Wand g, =1
on 2\ U. Choose any cg € int C and put @y := @1 F + ¢aco. Then wy, . .., 0g_1, @ is
the desired sequence for E. ]

Example 3.2. The following example shows that the assumption g(x) > 0 forall x € E
in Proposition 3.3 cannot be omitted. Put

E:={(x1,x2) € R?:x? +x2 <1/4) and C =[0,1].

Consider f : E x C — [0, co) defined in the following way:

|x1] [x2]
X1,%2,y) =0 when x? + x7 > 0 and <
f(x1,x2,) 1+ X VS )
S, x2,y) =y — _allvl when x7 + x5 > 0 and

2(x? + x3)
llval _ o bl

———5- < +x? + x2;
2(xf + x%) r = 2(x1 ) ! 2

X1,X2,Y =2(x%? +x2) - |x1||x2| when x? + x2 > 0 and
1 2 T 202 1 12 x2) 1 2
X1
|x1] |2 X1 |x2| 2 2
b XT A XS <y < o+ 2(x] + X3);
202+ ! VS gy AT
f(x1,%2,9) =0 whenx? +x2 >0a d%+2(1+x2)<)}<1
X1

f(x1,%2,) =0 whenx? +x3 =0.

Clearly, g(x1, x2) = x% + x% and f does not admit continuous detectors over E.

4. Yomdin—Gromov trick and a smoothing homeomorphism o

The aim of this section is to present a method of smoothing functions of one variable
(Corollary 4.5), mimicking Yomdin and Gromov (cf. [9, Section 4.1], [22, 23]), which
appeared useful to get smooth parametrizations of subsets definable in o-minimal struc-
tures (see [12]). It is crucial in the proof of our basic Lemma 5.1 in the next section. We
will come to Corollary 4.5, starting from a more elementary lemma.
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Lemma 4.1. Let A : (a,b) — R be a definable €+ -function, where p € N, p > 1,
defined on an open interval (a,b) C R such that, for eachv € {2,...,p+ 1}, A\’ >0
on (a,b) or A\"") <0 on (a,b). Then, for any closed interval [t —r,t + r] C (a,b), where
re Randr > 0,

AP @) <2372 qup |A|—
[t—r,t+r]

Proof. The same as the proof of [12, Lemma 2.1]. ]
Applying Lemma 4.1 to A’ in place of A and u — 1 in place of p, we have

Corollary 4.2. Under the assumptions of Lemma 4.1, where p > 2,

(w) - -
AW = Cp sup W
forall t € (a, a+b] and i € {2, ..., p}, where C, 1= 2"3N=2 particular, if A is
bounded, i.e. |\'| < M, where M € R and M > 0, then

b
“2.1) W@ <M forallt € (a, %} wel2,.... ph

|t —alt—t

Lemma4.3. Let A : (a,c] — R be a definable €P -function, where a,c € R, a < ¢, such
that

(4.3.1) AW @) <L forallt € (a,c], pe{l,....p),

[t —al#—1

where L € R is a positive constant. Fixm € N, m > p + 1. Fixany a € R. Put ¢(7) :=
AMa + (t —a)™) for T € (a, B], where B = o + "V/c —a.

Then there exists a positive constant M depending only on L and m such that
(1) < M|t —a|™ " for all T € (a, Bl and € {1, ..., p}. Consequently, ¢ has
a unique extension to a €P-function ¢ : [o, ] — R, p-flat at «.

Proof. Without any loss of generality we can assume that a = 0 = «. Then ¢(t) = A(z™).
Foreach u € {1,..., p},

e (1) = a1, " TFA (@) 4 ag, TR (T™) + as, P EAG) (o)

4ot auutum—u«/\(u)(fm),

where a;,, are positive integers defined inductively by

m! . "
aip = m ajyp = maj—y—1 + ((m—p+ Da; -1, ap, =m".
By (4.3.1), it follows that
L L L
() m—u 2m—p = 3m—p_— 4 wm—p
o (0)] < arut L+ay,t o +as,t —om +odauut —m

= Layu+---+au)t™ " "
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It will be convenient to have the p-flatness of a parametrization of the interval [a, c]
at the right end as well. That is why we use the following increasing parametrization of
[, B], p-flat at the right end:

Ti=a+ Ve—a—(§—-s)",
where y € R is arbitrary, s € [y,8] and § = y + ?¥/c — a. This leads us to the following.

Corollary 44. Let A : (a,b) — R be a €1 _function, where p € N, p > 1, defined
on (a,b) C R such that A is bounded and, for each v € {2,..., p + 1}, A0 >0 on
(a,b) or A <0 on (a,b). Let m € N, m > p + 1. Fix any yo € R and let y; :=
Yo+ (b —a)/2 y2i=y1+ */(b—a)/2=yo + 273/ (b—a)/2 Put

a+[Wb—-a)/2—G1—9"" ifselyo.nl
b—[Vb—-a)/2—(s—y)™]" ifselnrl

Then o : [yo, y2] — [a, b] is an increasing homeomorphism such that w(yy) = a,

o(y1)= “;b, w(y2) = b and A o w extends uniquely to a €P-function A o w : [yo, y2] > R

p-flat at yo, y1 and y».

w(a,b;s) .= {

Corollary 4.5. Let yo < y1 <--- <y, be (at most) r + 1 pointsin R. Let A : [yo, yr] =
R be a continuous function such that, for each i € {0,...,r — 1}, if yi < yiy1, then
A (yi, yi+1) satisfies the assumptions of Corollary 4.4. Let m € N, m > p + 1. Define a
sequence

Yo=<V1=-=Vor

of points in R inductively: yo € R arbitrary, y2i+1:= Yai + *V/(Vi+1 — Vi)/2, V2it2 :=

Vaivr + NV (it1 —i)/2 (G €{0,...,r —1}). Put

vi + [V Git1= /2= Qais1 —s)"]" if s € [y2i, V2i+1]s
Vie1= [ Giv1 =) /2= (s —y2is)"|" i 5 € [y2is1. V2ital.

fori €{0,...,r —1} and

a)(yo,...,y,;s):z{

yo—(yo—s)" if s € (=00, yol.

O(Yo, ..., yr;8) = ‘
’ {yr + (s —y2r)" i s € [y2r,0).

Then @ : R — R is an increasing homeomorphism of class €2 such that w(y,;) = y; and
o(Y2i41) = Jﬂ# (i€{0,....,r—1}),and L ow : [yo, y2r] = Ris of class €P, p-flat
at yo, ..., Y2r-

5. Basic lemmata

In this section we prove three lemmata of technical importance, each of which is of a
different nature.



W. Pawtucki 3878

5.1. Smoothing with a parameter

Lemma 5.1 below is a first version with parameter of the one-dimensional smoothing
described in the Introduction, which will be enhanced later in Proposition 8.1.

Lemma 5.1. Let D be a bounded subset of R" 1 such that D = int D, and let m, p be
positive integers such thatm > p + 1. Let

o <a;<-+<a,:D—->R

be a finite sequence of continuous functions such that X = {(a;, aj 1) :i €{0,...,r—1}}
is a family of capsules in R". Let X1 C K and put A := | K| and Ay := |K1|. Let
f=(fi..... f1) : Ay = R? be a continuous mapping such that for each K € X there
exist continuous partial derivatives

3 (f1K)

axo foroe{l,...,p+1}.

Then there exists a finite sequence of continuous functions
805815"-§8k1D—>R

and a homeomorphism @ : [y, 8;] — [0, or] such that:
(5.1.1) @ is of the form ®(x',&,) = (x', p(x',&,)), where x’ = (x1,...,Xn—1).
(5.1.2) Foreach j €{0,..., k — 1} the derivatives
%
3

exist and are continuous in (8;,8;+1) and have continuous extensions by zero to

foroe{l,...,p+1}

(8j,8j+1); moreover,

d¢
— >0 8:,8i41).
9%, on ( j j+1)
(5.1.3) The sequence 6;(x') := @(x',§;(x")), where x’ € D and j €{0,...,k}, isa
refinement of g, . . ., &y, in particular, g = 0y and o, = 0.

(5.1.4) £:={(;.6;+1): j €{0,...,k —1}} is a family of capsules in R" such that
{@(L) : L € £} is a family of capsules which is a refinement of K.

(5.1.5) Put £, :={L e £:P(L) C K forsome K € K1}. Foreach L € £, there exist
continuous partial derivatives
07(f 0 IL)
3

and those for o € {1, ..., p} extend continuously by zero to L.

(e{l.....p+1})
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(5.1.6) On each capsule L € £ the function ¢ is of the form either
2"+ ar(xE T 4+ aam (X)),
where ay, ...,azm : D — R are continuous (in particular when L ¢ £1), or

7000 EE2 4 a (NEET 4+ aam (X)),

where ay, ...,dzm : D — R are continuous and where x € {1, ...,d} and f%_l
denotes the inverse of f, with respect to the variable x, on the capsule @ (L) on
which

f

> ¢~ ' with some constant ¢ > 1.

daxp

Proof. Fix any ¢ > 1. By Proposition 2.5, passing perhaps to a refinement of K one can
assume that for each K € K we have either

d o
(5.1.7) J <c inKforallx e{l,...,d},
0x,
or
0 o
(5.1.8) af” >c¢7! inK forsomex e {l,...,d},
Xn

and in the second case among f,, satisfying (5.1.8) there is one, denote it by fx, such that

3fu/%

<cf inlgforall}f e{l,...,d}.
00X, 0x,
Now we define a function A : [ag, @] — R inductively as follows. Put first

(5.1.9)

A(x, oo (X)) := ap(x’) forx’ € D.
We define A on [, ;1] according to the following two cases.

Case I. If (o, ;41) ¢ Kq orif (o, ai41) € K7 and (5.1.7) is satisfied on (o, & 41),
then put

A xp) = A 0 () 4+ xp —a; (X)) for (X', xp) € [, 0 41].
Casell. If K = (a;,aj41) € K7 and (5.1.8) is satisfied on (¢;, @ +1), then put
A", xp) 1= A 0 (x7) + [ fr (X xn) — fr (X i (x7)] - for (x', xn) € [0, 1]

(Compare the description of the one-dimensional case in our introduction.)

Put A(x', x,) := (x’, A(x’, x,))). Then A is a homeomorphism of [, ;] onto
[Bo. Brl. where Bi(x') := A(x', a;(x")) (x" € D,i €{0,....r}) and (Bi,Bi+1)
(i €{0,...,r —1}) are capsules in R".
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The partial derivatives

%A

o
0x8

(Ge{l,....p+1})

: : . A A -1 .
exist and are continuous in every (o;, ;1) and T =1lor g2 >¢7" on (o, 0i41);

hence A : [ag, @] — R is continuous, strictly increasing with respect to x,. Let

¥ [Bo.Br] > (x.Gn) > (X Y (X, 8n)) € [0, o]
denote the inverse homeomorphism to A. Then
1

a—l// / = < X =
0< aé_n()c,é,,)— %(x’,lﬂx’,{n)) <max{l,c} =c

on every (B;, Bi+1)- Fix now any K = (o, a;41) € K.
If K is as in Case I, then for each (x', {,) € (Bi, Bi+1),

Bi(x) + ¥ (X', 8n) —ai(x") = Cu, hence Y (x',8n) = n — Bi(x') + i (x');
consequently, if K € K, then for each x € {1,...,d},

I fxo¥),
T(X 2 Cn)

If K € K is as in Case II, then for each (x', ;) € (Bi, Bi+1)»

Bi(x) + | fx (X" Y (¥, &) — S (' oi ()] = G,

8 x / /
= ‘%(x,llf(x,in)) <c.
Xn

hence
V(X' 8n) = fx (X R (G — Bi (X)) + fx(x i (x));
consequently, for each x € {1,...,d},
(fxo¥) / _ 0/ ’ ’ afk ’ ’ < qd
)| = ‘E“‘ W) /‘E(X W) < e,

By Corollary 2.4, passing to a refinement (y;, yj+1) (j € {0,...,s — 1}) of the capsules
(Bi, Bi+1), where yop <y; <--- < ysisarefinement of o <--- < f8,, we can additionally

assume that foreach j € {0,...,s — 1} andeach o € {2, ..., p + 1} we have either

Y,
(5.1.10) 3t (x".Cn)| <c on(yj.vj+1).

n
or
%y _

(5.1.11) 5% )= on(yj.yi41).

n
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and similarly, for each x € {1,..., d}, either
3 (fxo¥)
(5.1.12) J;T(x,én) <c on(y.¥j+1),
n
or
37 (fy o W) -
(5.1.13) a’é—(,(X’,En) > on (v, yj41)-

Notice that (5.1.13) implies a constant sign of the partial derivative involved on (y;, ¥ +1).
Finally, we modify the homeomorphism ¥ with respect to the variable ¢, by means
of the smoothing homeomorphism @ with a parameter (Corollary 4.5):

O(x' &) = U (x 0o (x). ... ys(x"):8n)).

where (x', &,) € [80,0825] and §g < --- < 825 : D — R is a sequence of continuous func-
tions. ]

5.2. Polyhedrization of a cell by a €?-homeomorphism

The next lemma explains under what conditions a cell based on a simplex and bounded
from below and above by €”-functions can be “straightened” to a polyhedron based on
the same simplex by a homeomorphism of class €#. This together with Corollary 6.5 of
the next section will be an efficient tool.

Lemma 5.2. Let A C R" be a simplex of dimension n, p a positive integer and let
Bo=Pr=--=Pr:A—>R

be €P-functions such that for every face S of A and each j € {0, ...,k — 1} either
Bi+1—Bj #0on S or Bi+1 —Bj =0 o0n S, and in the latter case let Bj11 — B; be
p-flaton S. Let

Aofklffkkﬂ—)R

be continuous PL-functions such that for every face S of Aand j € {0, ...k}, A;|S is
affine and

(5.2.1) Bi=Biv1onS <= Aj=Ajpy10onS (jel{0,....k—1}).
Then the formula

(s g (B () = B 0) + B () if A (a0) < A1),
(. B () if Ay () = A1 (),

for (u, %) € [A;, Aj41], defines a homeomorphism of [Ao, Ax] onto [Bo, Br] such that
Y(u,Aj(u)) = (u,B;(m)) forue A, j€{0,...,k}, and for each j € {0,... .k —1},
U\[Aj, Ajy1] is of class €P.

Y(u.f) = {
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o
Proof. Assume that A; < A;11 on A. By a linear change of coordinates we can assume
that

n
A={ueR”:uVEO(ve{l,...,n}),Zuvfl}
v=1

and
S:={ueA:d;u)=1+1(u)}
={ueAd:fi) =)} ={ueAiug = =u, =0}

Then for each u € A,

n
Ajp1(m) —A;(u) = Z cyuy, wherec, >0@we{l+1,...,n}).
v=I[+1

We want to check that
glol+e [ =2 (u)
ouoaLP [ A1 (u) —Aj(u)
when (A;,4;41) > (4, 8) = (uo, Aj(up)) € S xR, 0 e N, pe Nand|o|+p < p.
In view of the Leibniz formula, it suffices to check that

(Y (u))D“[

(Bia1 1) — B; (u))} ~0

m](u)m(ﬁf“ — Bj) () — 0

wheno,p € N”, |o| + |p| < p and (4, {) — (uo, A (up)), and
1
D[ | B B — 0
JH1 A
wheno,p € N”, 0| + |p| = p—1and (u, ) — (uo. A (uo)).

In the first case, by the Taylor formula,

¢ —Aj(u»D"[ ](u)DP(ﬁ,-H )W)

C
(Aj+1(u) = A (u))lol+1

1
x Y =@ DION By — B () + O — (W),

18|=p—lol "

= —=1;w)

where C > 0, 7(u) = (u1,...,u;,0,...,0) and 8 € (0, 1). Consequently, with some
constant C’ > 0,

'(Z—/\j(u))l)”[ ](”)Dp(ﬂj+l —Bj)w)

Aj+1 =4

Cc’ " p—lol
< S e (v;l uv) gi‘g{] |IDH(Bj+1 — Bj)(w(u) + 0(u — (u)))l,

which tends to 0 as ¥ — u¢; and similarly in the second case. [
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5.3. Basic €?-extension lemma

The aim of this subsection is to prove Lemma 5.4 below which is a natural generalization
of the extension lemma mentioned in the Introduction. To prove it we first recall the
following €!-extension theorem (cf. [17, Proposition 2]).

Theorem 5.3 (€!-extension theorem). Let f : S — R be a €'-function defined on a
cell
S={',xp) € R":x' € G, p(x") < xp < ¥(x)}

in R such that G is an open subset of R*™ ' and ¢ < : G — R are of class €. Assume
that af has a finite limit value® at (almost) each point of ¢ (for example, when i is
bounded).

Then there is a closed nowhere dense subset Z of ¢ such that f extends to a €'-
function

f:SU@\Z)— R

where S U (¢ \ Z) is a €'-submanifold of R" with boundary ¢ \ Z.

Proof. With no loss of generality we can assume that ¢ = 0, i.e. ¢ = G x {0}. For each
a € G the set

Lim 9f (x)
x—(a,0) axn
of all finite limit values of S, at (a,0) is a closed nonempty interval, because S satisfies
the Lojasiewicz (s)- condltlon at points of ¢. Since
f of | of
a} x Lim
U{ } x—(a,0) 8 ( ) axn \ an

acG

is of dimension n — 1, it follows that there exists a closed nowhere dense subset £ of G
such that a finite limit

exists foreacha € G\ E.
x—>(a 0) 8

This implies in particular that for each x’ € G \ E a finite limit
(5.3.1) g(x):= lim f(x',x,) €R
xn—0

exists. There exists a closed nowhere dense subset Z of G containing E such that g is of
class €! on G \ Z. Hence, without any loss of generality we can assume that g = 0 and
Z = (. Repeating the previous dimensional argument we conclude that after removing a
closed nowhere dense subset from G, f extends by 0 to a continuous function on S U ¢.

2An element « € R is a limit value of a function g : S — R at a € S if there is an arc y :
(0,1) — S such that lim;—¢ y(t) = a and lim;—¢ g(y(?)) = «.
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Now, we will show that for any i € {1,...,n — 1} the partial derivative df/dx; extends
by 0 to a continuous function defined on S \ E, where £ C ¢ and dim £ < n — 1. With
no loss of generality we assume that i = n — 1. First we will show that

5.3.2 0e Li
( ) x—)l(fzr,lO) an,l

(x) foralla € G.

To check this fix any 1 > 0 such that B(a,n) := {u € R"~': |u —a| < n} C G and any
& > 0. There exists § > 0 such that | f(x’, x,)| < en when x’ € B(a, n) and x, € (0, §).
By the Mean Value Theorem there exists 8 € (0, 1) such that

f

0xn—1

_ fla,an—1 +n,x0) — f(a,xn) < 2.
n

(a,an—1 + 01, x5)

where a = (a, a,—1). This ends the proof of (5.3.2). Repeating the previous argument we
conclude that

of

533
( ) x—(a,0) Bx,,,l

x)=0

fora € G \ Z, where Z is a closed subset of G of dimension < n — 1. This ends the proof
of the theorem. ]

Lemma 5.4 (Basic €?-Extension Lemma). Ler Q C RF be an open subset, where
k €{0,...,n— 1}, and let p be a positive integer. Let

® Oki1, Yik+1 o 2 — R be €P-functions such that g1 < V1,

® Ort2, Wk+2 : [@r+1, Vi+1) = R be €P-functions such that

Pk+2 < Vik+2 on (Qr+1,Yi+1) and  Qry2 = Yiky2 0N Qpyrs

Ok+3s V43 : [0k 425 Vit2] = R be €P-functions such that

Pk+3 < Yr+3  on(Px+2, Yi+2) and  Qri3 = Yri3 0N Qri2|Prt1s

Ons U o [0n—1, Yn—1] = R be €P-functions such that

On <VYn on(@u—1,¥n-1) and @, =Yy oneu_1|(... (Qkt2|Pes1)-..)-

Put
o= (X1 ) €2X RF 1gi(xr, . xjm) =5 (G etk + 1L n))

Let f : [¢n, Yu] \ ¥ — R be a €P-function such that all the partial derivatives

(54.1) % (lo| = @g+1 + -+ + o = p) have continuous extensions to X.
0 4 L 0x "

Then there exists a closed subset E of X of dimension < k such that f extends to a

€P-function defined on [¢n, Yu] \ E.
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Remark. Geometrically [¢,, ¥, ] can be considered as a generalized curvilinear n-dimen-
sional angle with the k-dimensional “vertex” ¢n|(... (@x+2|@k+1) -..). Notice that
[Pk+1,> Wi+1) is assumed only left-closed, while the others are closed at both sides.

Proof of Lemma 5.4. First assume that p = 1. With no loss of generality we can assume
that

(5.4.2) k1 =0, @ri2lprr1 =0, .o ol (@rr2l@r41) ) =0,

in other words, ¥ = £2 x {0}* k.

Puty := (Xg+1,...,Xp). For any a € £2 the function f; : [¢, ¥nla \ {0} — R defined
by fa(y) := f(a.y) on the set [pn. Yula \ {0} := {y # 0: (a, ) € [pn, Yul} isa €'-
function with bounded first order partial derivatives near 0. Since [¢,, ¥, ]4 \ {0} is quasi-
convex® near 0, this implies that the limit

g(a) := lim fa(y)
y—0

exists in R (cf. [17, Proposition 1]). Since there exists a closed subset E of £2 of dimension
< k such that g is of class €1 on £2 \ E, we can assume with no loss of generality that g
is €! and then that g = 0.

For each a € §2 the set Limy_,4,0) f(x) of all finite limit values of f at (a,0) is a
closed interval containing 0, because [¢,, V¥,] \ X satisfies the Fojasiewicz (s)-condition
at points of X'. We want to show that Limy_,,,0) f(x) = {0} for almost all a € £2. Sup-
pose otherwise. Then there exists a nonempty open subset G of 2 and ¢ > 0 such that
[0, ] C Limy_(q,0) f(x) (or [—¢,0] C Limy_,(4,0) f(x)) foreacha € G.

Then G x {0}" % C f~1(¢/2, 00). It follows by an analogue of the Whitney Wing
Lemma (cf. [15, Section 19]) or directly by the Cell Decomposition Theorem that there
exists a € G such that {0}" %  f~1(g/2,00), = f;1(g/2, 00), a contradiction.

It follows that we can assume that f extends by O to a continuous function defined on
[@n, ¥n]. Now, we will show that for any i € {1, ..., k} the partial derivative df/dx;
extends by O to a continuous function defined on [¢y, ¥,] \ E, where E C ¥ and
dim E < k. With no loss of generality we assume that i = k. Suppose it is not so. Then
there exists a nonempty open subset G of £2 such that

(5.4.3) Lim i(x) # {0} foralla € G.
x—(a,0) 8xk

It follows that there there exists a nonempty open subset G of §2 and & > 0 such that

S
G x {0y % c (i) e, 00)
8xk

3A subset A of R™ is called quasi-convex if there is a positive integer M such that for any
two points a1, ap € A there exists a (definable) continuous arc A : [0, [a; — az|] — A such that
A0) = ay, AM|lay —az|) = az and |A'(r)] < M for any ¢ € [0, |a; — az|] such that A'(¢) exists.
(Then A is necessarily piecewise €1.)
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or

-1
G x {0y % c (i) (—o00, —].
axk

By an analogue of the Whitney Wing Lemma or directly by the Cell Decomposition The-
orem there exist a nonempty open subset G’ of G and § > 0 such that G’ x [0,5) C
[@k+1, Yk +1), and a continuous mapping

/ of \7'
(5.4.4) a:G x[0,8) > =—] [e&,00)
X
such that
(5.4.5) (U, Xg41) = (U X1, Q2 (U Xpt1), -+ o5 A (U, Xg1))s

where oj (u,0) = 0 foreach j € {k +2,...,n} and u € G’, because of (5.4.2). Since

P2, Xp+1) < U2 (U, Xp1) < Yo (U, Xgg1)s

and

@j+1(U, X1, k42U, Xg1)s - oo s 0 (U, Xge1)) < 1 (U, Xgt1)
< Yjp1(, Xgq1, k2 (U Xgg1)s oo o0 (U, Xgeq1))  forj elk +2,...,m},
it follows that

8a]~

(5.4.6) lim

(u,xpy1) €R forallu € G'and j € {k +2,...,n}.
X410 0Xf 41

By Theorem 5.3, at the expense of shrinking G’ and diminishing §, we can assume that
a; are €!-functions on G’ x [0, §); in particular,

(5.4.7) lim —L(u,xk41) =0 forallu e G'and j € {k +2,...,n}.

do;
Xk+1 -0 axk

It follows from (5.4.1) and (5.4.6) that for each u € G’ the derivative
A(f o)

(U, xk+l)
0Xk+1

is bounded when x4 is near 0. Again by Theorem 5.3, after perhaps shrinking G’ and
diminishing § we can assume that (f o a)|G’ x [0, §) is of class €1; in particular,

0
(5.4.8) im YYD =0
Xk+1—0 0

On the other hand,
(foa) af
—— U, Xg 1) = 77—, X1, A2 (U, X 1)+ oo @ (U, Xgey 1)

ox Xk

"9 o i
+ Y U Xt Q2 (U X ) O (U X)) 2 (. X 1),

ox
j=k+2 7 k
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which, in view of (5.4.8), (5.4.1) and (5.4.7), implies that

af
1 (M,Xk+1,0lk+2(u,)€k+1),...,Oln(M,Xk.l,_l)) ZO’
xk+1—>0 a_xk

contradicting (5.4.4). This ends the proof in the case p = 1.

Assume now that p > 1 and the lemma is true for p — 1. Since [¢,, ¥,] \ ¥ is locally
quasi-convex near X “ it suffices to check that all the partial derivatives

o8l £

(5.4.9) —_—
ax'fl ...Bxf”

(Bl:=P1+-+PBu=p)

have continuous extensions to X' \ E, where E is a closed subset of ¥ of dimension
< k (cf. [20, p. 80]). By the induction hypothesis, there exists a closed subset E of X of
dimension < k such that for each j € {k + 1,...,n} all the derivatives

alv! of P olvl
— | =—|=—|7——---), wherel|y|=p—1,
axTt ... Axy (8x_,~) ax; (axfl ...8x,’{") vi=»r
have continuous extensions to X' \ E. It follows from the case p = 1 that there exists a

closed subset E’ of X containing E of dimension < k such that all the derivatives (5.4.9)
have continuous extensions to X \ E’. ]

6. Existence of strict €”-triangulations orthogonally flat along simplexes

We start by making the following definition.

Definition 6.1. Let I" be an open subset of R ={(x1,...,x,) € R" :xp41=+-=x, =0}
C R"andlet f : D — R™ be a €P-mapping defined on a not necessarily open but locally
closed subset D of R" such that D C int D; i.e. there exists an open neighborhood £2 of
D in R" and a €7-mapping f : £2 — R™ such that f|D = f. Assume that I' C D. We
say that f is orthogonally p-flat along I' if

el £ olel 7
—_——(X1,..., X%, 0,...,0) = ——(u,0) =0
8x,‘:]:;' L oxyn ax,‘:]:;' L oxn
forall u = (x1,...,x;) € I and ¢ = (X 41,...,0%,) € N”—k gquch that 1 < lx] < p.

This definition generalizes in a natural way to the case when I" is an open subset of the
affine subspace Aff(I") generated by I" in R”.

Remark 6.2. If f : D — R™ is a €”-mapping orthogonally p-flat along I" C D and
w; € S"!is a vector orthogonal to Aff(I"), then for each j € {0, ..., p} and arbitrary
Wa,...,Wj € ket

a f

— | I'=0.
owy ... 0w;

4This means that each point u € X has arbitrarily small neighborhoods U in R” such that
U N [gn, ¥n] \ X is quasi-convex.
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The main theorem of the present section is the following.

Theorem 6.3. Let K be any finite simplicial complex in R" such that | K| = int|X|.
Then there exists a homeomorphism h : R" — R" of class €? such that

(6.3.1) h|12 "> Tisa €2 -diffeomorphism for each I' € X,
(6.3.2) h is orthogonally p-flat along each simplex I' € K.
In the proof we will need the following lemma.

Lemma 6.4. Let

A={(er,oox) € RS pi(xise o) 2 0G0 €40, k)
be a simplex of dimension k in R, where p; are nonzero affine forms. Put

(o pk)(u)
> (po i) ()

Then there exist constants Cq > 0 (a € Nk ) such that

Cyld(u,0A) < o(u) < Cod(u,dA) forallu € A

o(u):= foru € A.

and

D% (u)| < forallu € A and o € N¥\ {0}.

Co
o(u)lel=1
Proof of Lemma 6.4. Put H; := i_l(O) (i €{0,...,k}). Thend(u,dA) = min; d(u, H;)
and there exists C > 0 such that C ™' p; (1) < d(u, H;) < Cp;(u) for u € A. Hence

C ' min p; (u) < d(u,dA) < C min p; (u).
14 1
For afixed u € A let J be such that p; (u) = min; p; (u). Then
1 1 1 k+1
= + o = ;
pj ()~ po(u) Pre(u) ~ pj(u)

thus
(6.4.1) L min pr () < o) : < min py ()
4. ——minp;(u) < o(u) = — — < min p; (u);
k+1 ww T T
finally,
1
b e <d.8A) < Clk + Do),
G000 = d004) = Ck + Do)

There are constants a; (j € {0,..., k}) such that

(po - - - -Pk)
axv Z Z (,00 . Pk)

1
—(po .. pk)(;]:al 0i )[Z 00 - i...pk]z
e
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By the Leibniz formula,

() - ()G

B=a

o! 1 1
_ . Bl 12 § €
E a; E ﬁ!y!S!e!D ( i)D ( ')D oD¢o.

i#j a=B+y+8+te P Pi

There exist constants Mg (8 € N") such that

1 M
(6.4.2) Dﬂ(—) = b
Pi 0

|
i
By (6.4.1) and (6.4.2) and induction on the degree of the derivative,

po(5e) = Sl X5

B=a

+Z|ai| Z al IMg| |M,| Cs C.

I 18lel BT _[PIHT GII—T glel-1°
7 ampresre P o7

The lemma follows.

Proof of Theorem 6.3. Take a €P-function ¢ : [0, 00) — [0, 1] such that ¢® (0) = 0 for
eachi €{0,...,p},¢'(t) > 0fort € (0,1) and ¢(¢) = 1 for ¢ € [1, 00).

We will prove by induction on k € {0, ...,n — 1} that there exists a homeomorphism
h: R"® — R" of class €2 such that (6.3.1) is satisfied, while (6.3.2) is satisfied just for
simplexes of dimension < k.

I.Letk = 0. Let {a} € KX and fix r, > 0 such that B(a,r,) N |X| C | St{a}. Define

_ 2
ha(x) = ga(M)(x —a)+a forx e R".
ra

Then h, is of class €7 and p-flat at a. Moreover, h, is a homeomorphism and €7 -dif-
feomorphism on R” \ {a}, because

ha(x)—a
lha(x) — al
where ¥ (1) := @(¢%/r2) -t (t € R) is an increasing homeomorphism of R onto R.

It is clear that h,(I") = I" foreach I' € K. Now, ifay,...,a, are all vertices of K,
then we put

for all x € R",

x=a+y " (|ha(x) —al)

h:=hg, 0 0hg,.

II. Assume now that 0 < k& < n — 1 and we have a €”-homeomorphism # satisfying

(1) and (2) for all simplexes of dlmensmn <k.Let A € K and dim A = k. With no loss of
generality we can assume that Aisan open simplex in R = {(x,...,xp) i Xpqp1 =+ =
Xn =0} Putu = (uyq,...,ux) = (x1,...,x)and v = (vl,...,vn_k) = (xk+1,...,x,,).
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Take o : A — (0, 00) as in Lemma 6.4. Since §2 := | J St(A) is an open neighborhood of
A in | K|, there exists (by a Lojasiewicz inequality in PL-structure) a constant r > 0 such
that

{(u,v) € Ax Rk [v| <rocu)}N|K| C $2.

Put G := {(u,v) € A x R" ¥ : |v| < ro(u)}. The mapping

2
(u,w(%) -v)  when (u,v) € G,

gle,v) = {(u, v) when (u,v) € R" \ G,

is a homeomorphism of R" onto R" such that g|1g > isae? -diffeomorphism for
each I € J. Moreover, g is of class €7 on R" \ dA. Now define
H(u,v) := h(g(u,v)) for (u,v) € R".

For any (u,v) € Gandv € {1,...,n — k},

n—k

d oh lv|? 20, lv|?
_H ) = _< ) BV !
v, @, ) 1;1 vy, ! §0(r202(u))v)v,,, r202(u)¢ r202(u)
L Oh (u vf? U) vf?
v, ¢ r202(u) ¢ r2o2(u) )
It follows by induction on |¢| € {1,..., p}, where & = (ay, ..., 0,—), that % can be

expressed as a finite linear combination with real coefficients of the functions

9181y lv|? vY © v|? vo (b [v]? Vil
o (o ) e (o)) o ()]

where || € {1,..., ||}, [B] + 25 —|y| = |a|, vo + -+ vjoy = |B| and vo + v1 + 2, +
s oy < el
Hence in particular

ol H

(6.3.3) o

(u,v) =0 whenue/cl),sz,aEN”_k,lf|a|§p.

Now in general, if « € N”7% and » € N* and || + |x| < p, then the derivative

glel+lxl g
v u*

is a finite linear combination with real coefficients of functions of the form

glBI+IAL, lv|? vY
(6.3.4) dvBour (u <,0(r202(u))v) o4 (u)

Lo (PN [ et (10PN pe Sq
[<p°(r202(u))} ...[go * (r202(u) (Do ())... (Do),
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where 0 < g < |a| + |x|, d 20, |e1] > 0,...,|eq| >0, A + &1 + -+ &4 = 2,
Bl+d [yl = lal + g vo = 0..... Vgl = 0.d = |yl.

Assume now that (1, v) € G and (u, v) tends to (1, 0) along some (definable) arc,
where ug € dA. Let Iy € K and uq € Ig o- By an orthogonal change of coordinates
Ui,..., U one can assume that

du,dA) = du,T") = |uy|,

where I' € X,dimI" =k — 1, C{(uy,....ux) € R¥ :uy =0} and I'y C {(uy,...,ur):
up=--=u; =0} e{l,...,k}).

When o # 0, in a product (6.3.4) we necessarily have 8 # 0, therefore by the Taylor
formula,

3|ﬁ|+|)t|h( |v|2 )
guBaur ¢ r202(u) 0
oIAIFIAlp o2 9IBI+IA,
B ‘ ovP dut (“"p(ﬂoZ(u))”)  JuBaut (0’“2~--,uk,0)’
» L 2 T
ool 1P\ 202()

o+lpl=
y 0Ph 0 P lv]?
wBreourgus \ 2 PO\ F202 ()

p—I1B1-1Al

for some 6 € (0, 1). Hence

91BI+IAly, [v|?
avPaur \"'? r202(u) v

where (1, v) — 0 when (u, v) — (g, 0). Thus, there exists a constant M > 0 such that

< (o(u)? Py, v),

1
(6.3.4)] < Mop—\m—mu%(,—WH  gleqlt
- o

= Mo P BI-AIHly =dta—lerl=—leal = ppygp-lei=lx _

when (u, v) — (ug,0).
Suppose now that « = 0 and x # 0. Then, for each (u,v) € G,

o H B 2
au—x(u, v) = T (u,go(%)v) + an R-linear combination

of functions of the form (6.3.4), where 8 # 0.

It follows that

ol H 3 [v|? o
li ,V) = li , = ——(uyp,0).
(u,v)gr(luo,o) ou* (. ) (u,v)gr(luo,o) ou* (u (p(rzoz(u))v) du* (0. 0)

We have just checked that H is of class €7 and is orthogonally p-flat along Iy, and
(6.3.3) shows that it is orthogonally p-flat along A. We repeat the above construction for
every simplex of dimension k.
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Corollary 6.5. Let K be a finite simplicial complex in R" such that | K| = int | K| and
let f:|K|— A C R" be a homeomorphism such that for each A € K, f|A is of class
€? and f|/§ ‘A R'isa €?-embedding. Let h : R" — R" be a homeomorphism
described in Theorem 6.3. Then (K, f o h) is a strict €P -triangulation of A orthogonally
p-flat along simplexes and such that f(A) = (f o h)(A) for each A € K.

7. Regular cells, regular 0 -cells, (k, f, q)-proper regular 6 -cells and convex
polyhedra (k, f, q)-well situated in R"

In this section we introduce a few auxiliary notions of technical character needed in the
proof of the Main Theorem in Section 8.

Definition 7.1. A subset C of R” is called a regular cell in R" if C is a closed bounded
interval [a, b], where a,b € R, a < b, whenn = 1 and

C = on_1,Bn1] ={(x",xp) e "' x R:x" € C', ap_1(x") < xp < Bu_1(x)},

where C' is aregular cell in R* ! and o, _; < B,—1 : C' — R are continuous and o, 1 <
Bn—1onintC’ whenn > 1.

Remark 7.2. If C = [a,—1, Br—1] is a regular cell in R”, then [oj_1, Bj—1] := H;l(C)
(j €{1,...,n)})is aregular cell in R/.

Remark 7.3. If j e {1,....,n — 1} and ¥ : [@j—1, Bj—1] = [@j—1, Bj—1] is a homeo-
morphism, then it induces, for each v € {j + 1,...,n}, a homeomorphism

(@1, Bj—1] X R"™ 3 (x1,..., %) b (W(X1se ey X)) Xl e s Xp)
S [Olj_l,,Bj_l] X Rv_],

which we will denote also by V. It should be clear from the context what v is.
Then ¥~1(C) is a regular cell such that 7" (¥~1(C)) = [ay—1 o ¥, By—1 o ¥] for
ve{j+1...,npand 7 (¥7(C)) = [aj—1, Bj—1].

Remark 7.3. If C is aregular cell in R”, j € {1,...,n — 1} and L is aregular cell in R/

such that L C 7/ (C), then C|L := C N (L x R"7/) is a regular cell in R" contained
inC.

Remark 7.4. Any convex polyhedron in R” of dimension 7 is a regular cell in R”.

Definition 7.5. Any pair (C, 8(C)), where C is a regular cell in R” and 0(C) is a closed
subset of dC, will be called a regular 6-cell in R".

Definition 7.6. Let (C,6(C)) be a regular f-cell in R”, where n > 2, and let f : B — R?
be a continuous mapping defined on a subset B of R” containing C.Letk € {0,...,n —1}
and g € N.
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We will say that (C, 8(C)) is (k, f, q)-proper if dim6(C) < k, f is of class €7 on
C\0(C), (”l’cl+1)_l(”l?+1(9(c))) N C = 6(C) and moreover

7 +110(C) 1 0(C) — R¥*1 s injective.

Observe thatif 77 (C) = lj—1,B8j—1] (j €{1,...,n}), then (C,0(C)) is (k, f,q)-proper
if fisofclass©?onC \ 6(C), (nj’-’(C),n;’(O(C))), foreach j e {k +1,...,n—1},is
a regular f-cell in R/ and

;|7 (0(C)) = B|7j (6(C)) (j elk+1.....n—1}).

Definition 7.7. If P is a convex polyhedron in R" of dimension n and f : B — R% is
a continuous mapping defined in a subset B C R" such that P C B, we will say that P
is (k, f,q)-well situated in R" if there exists a k-dimensional face X' (P) of P such that
(P, X (P)) is aregular O-cell in R", which is (k, f, q¢)-proper.

Definition 7.8. Letn e N,n >2, k€ {0,....,.n—1},q € N,q > p.
We will say that a (k, f, g)-proper regular 6-cell (C, 0(C)) is (I, m)-prepared, where
lelk,...,n—1}andm € {0,..., p}, if all the partial derivatives

A (f1C\ 6(C))

. where x = (%41,...,%n),
8x;‘_ﬁl LLoxpy
|| ;=141 + -+ xn €{1,...,p}, 2141 €40,...,m},
extend continuously by zero to 8(C) and, for each j € {{ + 1,...,n — 1}, the regular

f-cell (7} (C), 7} (O(C))) is (k, (&, B;), g)-proper, where 7 (C) = [atj—1, B;j—1], and
all the partial derivatives

8I((a. B) | (C) \ A (B(C))

x4 %
8xl+l ...8xj

el =41+ -+ 2 €{l,...,p}oppq €{0,...,m},

. wherex = (x141,...,%;),

extend continuously by zero to nj’-’ (6(C)).

8. Proof of the Main Theorem

Roughly speaking, our proof will consist in €7-extending of the triangulating homeo-
morphism to faces of ever greater codimension. Codimension 1 is considered in the
following proposition.

Proposition 8.1. Assume that our Main Theorem is true in dimensions < n. Let P be a
finite polyhedral complex in R" Y and put D := |P|. Letq1,q € Zandq > q1 > p + 1.
Letog < --- <y : D — R be an increasing sequence of continuous PL-functions such
that

K= {(i.cis1) 11 €{0,....r — 1}}
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is a family of capsules in R". Let J{1 C K, A := |K| and Ay := |K1|. Let [ =
(fi,..., fa) : A1 = R? be a continuous mapping such that f|1€ is of class €11 for
each K € K. Let & be any finite family of subsets of D.

Then there exist

(8.1.1) a strict €9-triangulation (M, h) of D compatible with & such that |M| = D and
h(I') =T forevery face I' of each polyhedron P € P,

(8.1.2) an increasing sequence of continuous PL-functions
No<--=<ng:D—R,

which is a refinement of oy, ..., o, such that the family € := {(n;,n;+1) :
j €{0,...,k—1}}is a family of capsules refining the family J,

(8.1.3) a homeomorphism V¥ : [ag, otr] — [ag, @r] of the form

Y(u,ln) = (h(u). ¥ (u.8n))  for (u.8n) € [@o. ar],

such that

(8.1.4) ¥(u,a;j(u)) = (h(u),a;i(h(u))) forue D andi €{0,...,r};

(8.1.5) ifae C € €, where C C K € Ky and f|K is of class €9 in a neighborhood
of W(a) in K, then W|C and f o W|C are of class €9 in a neighborhood of a
inC;

(8.1.6) l1/|Co' and f o l1/|C°' are of class €11 for each C € € suchthat C C K € K,

(8.1.7) W|C is of class €1 for each C € € suchthat C C K € K \ K and

7 (¥1C)
Cle
(8.1.8) if C € € and C C K € Ky, then the derivatives

=0 ondC foroe{l,...,p};

o @|C) e w|C)
0cg 0cg

have continuous extensions by zero to the whole C;

foroe{l,...,p}

(8.1.9) 2 > 0 foreach C € €.

Proof. By a refinement of & one can assume that
(8.1.10) every function ; is affine on each P € P,

(8.1.11) & is compatible with each of the sets {x' € D : o;(x') = o4+1(x')}
(i €{0,...,r —1}),i.e. each of these sets is a union of some P € .

By Lemma 5.1, we get a sequence 8o < --- < §; : D — R of continuous functions and a
homeomorphism @ : [§, §x] — [eo, @] with properties (5.1.1)—(5.1.6).

Now we apply the induction hypothesis. We get a strict €4-triangulation (M, i) of D
such that
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8.1.12) M is a finite simplicial complex in R"~! such that |M| = D
p p

(8.1.13) (M, h) is compatible with each E € & and with each P € P (the latter follows
from (8.1.14) below);

(8.1.14) h(P) = P foreach P € &;hence, each of the sets {x" € D : o; (x') = aj 41 (x')}
(i €{0,...,r —1}) is h-invariant (see (8.1.11));
(8.1.15) 8j0h,0j oh: D — R, where j € {0, ...k}, are of class €¥;

(8.1.16) for all the functions ai, ..., daz, from condition (5.1.6) the compositions
ajoh,...,azmoh: D — R are of class €9,

(8.1.17) (M, h) is compatible with each of the sets {x’ € D : §;(x’) = §;4+1(x')}, where
je{o,....k—1}
By passing to the barycentric subdivision we can have in addition

(8.1.18) foreach j € {0,...,k — 1} and each simplex A € M, if§; oh # §; 41 0oh on
A, then §; (h(w)) < §;4+1(h(w)) for some vertex w of A,

and by Corollary 6.5,
(8.1.19) (M, h) is a strict €?-triangulation orthogonally ¢-flat along simplexes.
Define a homeomorphism
(p* : [50 Oh’sk Oh] - [aOaar]
by
(8.1.20) D, £n) := (h(u), p(h(u), &) = (h(u), 9™ (1. £n)).
Then
(8.1.21) the sequence 0 o h (j € {0,...,k}) is arefinement of wg 0 /1, ...,y 0 hi;
(8.1.22) £* :={(8joh,8j+10h):j €{0,....k — 1}} is a family of capsules in R"
such that {@*(L*) : L* € £*} = {®(L) : L € £} is arefinement of K.
Put £7 :={L* € £* : @*(L*) C K for some K € K}. Then
(8.1.23) for any L* € £*, @*|L* and f o ®*|L* are of class €71 (by (5.1.6) and
(8.1.16)), %‘g > 0 on L* and all the derivatives BJ@;lL*) ( f;;p*lL*) where
o € {1,..., p}, have continuous extensions by zero to L*;

(8.1.24) for any L* € £*\ £7, @*|L* is of class €7, by (5.1.6) and (8.1.16), % a<p >0

3 (*|L*)
057

(8.1.25) if L* € £7,b € 0L* and @*(L*) C K € K and f|K is of class €7! in a
neighborhood of @*(b) in K, then @*|L* and f o @*|L* are of class €4! in a
neighborhood of b in L*.

Now we want to replace the €4-functions §; o & by continuous PL-functions defined
on D by using Lemma 5.2. Therefore we want to find continuous PL-functions, affine
when restricted to any simplex S € M,

on L* and the derivatives foro € {1,..., p} are equal to zero on 8L*;

Mo <--=nk:D—R,
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such that for each j € {0,...,k — 1},

(8.126)  fueD: (o) = Bj+10M)} = {u €D :ni(u) = 141},

For any continuous function 8 : D — R define a continuous PL-function 8# : D — R
by
BF(ovo + -+ + Asv5) 1= 20B(v0) + -+ + AsB(vs),

where (vg, ..., vg5) € M is a simplex with vertices vy, ..., vy and where Ag,...,As >0
and Ag + -+ Ag = 1.
In view of (8.1.17) and (8.1.18),
(8.1.27) §joh(u) <8jr10h(u) <= 0; oh(u) < 6;410h(u)
= (0 0 ) < G410 W),
foranyu € Dand j € {0,...,k —1}.
By (8.1.27), (6; o h)# are continuous PL-functions, affine on simplexes and satisfying

(8.1.26). However, they might not be a refinement of «y, . . ., @, S0 some improvement is
necessary.

By (8.1.21), (6, oh)* (j €{0,...,kY) are a refinement of (e o h)* (i € {0,...,r)}).
By (8.1.14) and (8.1.27), foreachi € {0,...,r — 1},
{weD:(oh)fu) = (ait1 o)} ={u € D: (e oh)(u) = (i1 0h)(w)}
={u €D ai(u)=ai+1(w)}

This shows that we can define homeomorphisms
Hi : [(i o W)*, (i1 0 h)F] = [oi, ctis1].

Hi (u, t((@i1 0 W) () — (e 0 h)*(u)) + (i 0 h)*(w))
= (u, T(@i1 () — @ (1)) + ; (u)),

where 7 € [0,1],7 € {0, ..., r — 1}. Gluing them together gives a homeomorphism
r—1
H = U H; : [(«o Oh)#, (ot Oh)#] — [og, 0]
i=0

strictly increasing with respect to the last variable. Finally, we put

nj = (H((6; o WF)F  (j €{0,....k});
these functions refine «y, . . . , &, according to (8.1.10). [

Corollary 8.2. In addition to the properties stated in Proposition 8.1, the homeo-
morphism W can be found such that W(I') = I for any face I" of any K € XK.

Proof. Indeed, it is enough to assume that the polyhedral complex & is such that for each
P € &P each of the functions «; is affine on P. [ ]
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The next proposition contains the inductive step towards preparation of partial deriva-
tives of the triangulating homeomorphism in order to use the Basic €”-Extension
Lemma 5.4.

Proposition 8.3. Assume that the Main Theorem is true in dimensions < n, where n > 2.
Letk €{0,....n=2},lefk,....n—=2},me{0,...,p—1},geNandg>p—m+ 1.
Let

og<:--<0,:D—->R (r=>=1)

be a sequence of continuous PL-functions defined on a convex polyhedron D in R' of
dimension | such that

K :={(0j.0j41) : j €{0,....r = 1}}

is a family of convex PL-capsules in R'*'. Let X, C K be a subfamily of capsules
such that for each K € K there is a regular 0-cell (C(K), 0(C(K))) in R" such that
n 1 (C(K)) = K and (C(K),0(C(K))) is (k, f.q)-proper and (I, m)-prepared.

Then there exist

(8.3.1) a sequence of continuous PL-functions
m<-+<ns:D—>R (s=r)

refining o9 < -+ < o, suchthat £ :={(n;, nj+1): j €{0,...,5 — 1}} is a family
of convex PL-capsules refining X, and

(8.3.2) a homeomorphism W : |09, 0] = [00, 0, withW(I") = I for any face I" of any
K e X,

such that
(8.3.3) W|L is of class €1 forany L € £ suchthat L C K € X \ K1,
(8.3.4) (~HC(K))|L, ¥~ (O(C(K)))|L), where L € £,L C K € K, is a family of

regular 0-cells which are (k, (f o W,W),q — p + m)-proper and (I, m + 1)-
prepared.

Proof. In this proof we focus on the case where K = JK; = {K} is just one PL-capsule. In
the general case the argument given below should be applied to every PL-capsule K € K
separately, while Proposition 8.1 applied later in the proof will take care of the capsules
K € X\ Xi.Put C := C(K). Clearly, 7} (6(C)) C JK.

For any » = (%j45,...,%,) such that |x| =xj4p + -4+ x,€{l,....p—m—1}
andany j € {{ +1,...,n — 1}, the following functions defined on K \ ;' ; (6(C)) are
all continuous:

(8.3.5)
8m+1+|)f|f

m+1 2142 xn
ale 8xl+2 ... 0Xp

', x141) = sup{‘ O X1 x| (X x) € C},
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(8.3.6)
, am+1+|x|aj , ,
(x', xj41) — sup{ T g (" X141, x)| 1 (X, X)) € n]’-‘(C)},
1+1 %iy2 - 04
8.3.7)
’ am+l+|x|ﬂj / /
(X', xj41) sup{ S AT g X141, x) (X x)) € n}'(C)}.
I+1 42 0

By Proposition 2.5, Remark 2.6 and Lemma 2.7, there exists a refinement K’ of X
into convex PL-capsules such that on each K’ € K’ each of the functions (8.3.5)—(8.3.7)
is either bounded by 2 from above (case (I)) or bounded by 1 from below (case (II)).
Without any loss of generality we will assume that KX’ = K = {K}; hence, for each of
the functions (8.3.5)—(8.3.7) we have either case (I) or case (II) on K.

Observe that in case (II) for (8.3.5) we can have detectors on K \ 7}, (6(C)) (cf.
Proposition 3.3) which are €7-mappings, because «;, 8; (j € {{ +1,...,n —1}) are
of class €7 on JT]’-’ )\ nj’? (6(C)). Hence, there are a finite number of €7-mappings
{outy = {(@u,1425 .-, ®p.n)}y such that

K\ 7T1n+1(9(c)) > (X', x141) (x/,x1+1,a)u(x/,x1+1)) eC

and
am+l+\%|f
/
(8.3.8) T T g (X X1 41> X[ 425 - - Xp)
X141 OXpqp -+ - 0Xn
3m+1+\x|f
< / /
= 2mﬂz}x PR PR (", X141, 0u (X7, X141))
141 9%42 -+ 0Xn

for any (x', x;41, Xj42,...,Xn) € C\ 6(C).
Similarly, if for (8.3.6) (respectively, (8.3.7)) we have case (II), then

am+l+\x|aj
/

(839) % % (X ,X[+1,)Cl+2,...,)€j)
XML I42 g
1+1 I+2 7%

am+1+|x|a,
J / /
§2ml'ilx PNCESPI Ea T (", xp41, 0p(x7, x741))
Xy 0x L5 .. 0x;

(respectively, with §; in place of &) for any (x', X741, ...,%;) € n]’-’ (C)\ n}’ 8(C)).
Notice that since

o (x', X141, 042 (X X141, -0 (X X141))

<o j+1(x x141) < Bi (X xip1  0p 142 (X X141), L 0 (X X141)s

and o; = B on n} (6(C)), all w, have continuous extensions to 7}’ (6(C)).
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The next step is to apply Proposition 8.1 to all the following mappings of class
€a—ptmtlon K\ 1 (6(C)) and extending continuously by zero to 7', , (6(C)):

oy J
(' xp41) > ST g (' X410 (X', X141)) € RY,
142 -+ 0Xn
8‘}"0{]'
(X/, Xl+l) = W(X/,X]+1,wu(x/,)€]+1)) € R,
142 -+ 0X;
/ 3|%|13j ’ ’
(", x141) W(X X1, 0p (X X141)) € R
I42 = %%

and all (x', x;41) = w,; (x’, x;41) € R. Hence, denoting K = [0, 01], where 0 < 07 :
D — R, there exists a strict €7-triangulation (M, i) of D such that |[M| = D, there
exists a refinement

ogo=N<m=:--<n=01:D—->R ofoyg <o

such that £ := {(ny, ny+1) : v € {0, ..., s — 1}} is a family of convex PL-capsules
refining K, and there exists a homeomorphism ¥ : K — K of the form ¥ (u, §11) =
(h(u), ¥ (u,&41)) such that ¥(I') = I' for any face I" of K, ¥ is of class €4—P+m+1
onL\LN llf_l(nl"H(Q(C))) for each L € £, and all the mappings

PWIL) 9 (wyoW|L)

(pef{l,....q — p+m}),

By I3
z gm+1 3\x|f N N
> 08141) = [ g (0 Y00 ) |

extend continuously by zero to L D L N ¥~ 1(0(C)) = ¥~ 1(6(C))|L.
Hence, if we have case SH) for (8.3.5), then in view of our assumption of (/, m)-prepar-
ation, for any (u,&;41) € L,

am+1 |: alu\f
o Loxih2 . axy

3m+1+|x|f

= m+1 x]4+2 xn
8xl+1 8xl+2 ... 0Xxp

+ a function extending continuously by zero to dL.

(h(u), ¥ (. §141), wy (h(u), Y (u, Sz+1)))]

81// m+1
(h(u)v W(uv El-l—l)s wV(h(u)s ¢(u,§l+1)))|:3§1+11|

Consequently,

am+1+|x|f

m+1q %42 %
8xl+1 8xl+2 ... 0Xxp

0y
08141

m+1
(‘1’(%é§l+1)~wv(‘1’(u,§l+1)))|: (Ua§l+1)]

extends continuously by zero to dL, and by (8.3.8),

am+1+|x\f aw m+1
Y (u, JX[42s e Xn) | — (u,
T V) )[aml( §1+1):|
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for (u, 41, X142,....xz) € W~HC)|L \ ¥~1(6(C))|L extends continuously by zero to
I O(O))IL.
On the other hand, by (/, m)-preparation,

8m+1+|z\
8.3.10 Y (u, S X[42s ey X
am+l+\x|f 81// m+1
= (lp(usgl ),XI seeen X )|:_(u7§l )i|
E)xl”ﬁlaxlxj;z LLoxpm A2 e EE i
+ a function extending continuously by zero to ¥~ (6(C))|L.
It follows that

rHE(f o w)

m+1 x]+42 Xn
08, 0x; 57 .. Oxy

(u’§l+l’xl+27 .. 7xn)

extends continuously by zero to &1 (9(C))|L.
If we have case (I) for (8.3.5), there is no need to employ detectors. Again by (I, m)-
preparation we can write (8.3.10), from which we conclude that

3m+1+\xl(f o)

m+1 x4+ % (u’gl+1ﬂxl+2""7xn)
080X, 157 L 0xy”

extends continuously by zero to ¥~1(0(C))|L, because of the factor
al// m+1
(u,& )} .
[ 0141 .

A similar argument concerns the functions «; and ;. The proof of Proposition 8.3 is
now complete. ]

In the next proposition we describe the procedure of passing from / to — 1.

Proposition 8.4. Assumethatn e N,n>2,ke{0,...,.n—1},le{k+1,...,n},geN
andq > p. Letag <--- <0, : D — R (r > 1) be a sequence of continuous PL-functions
defined on a convex polyhedron D in R' of dimension [ such that

K :={(0i,0i41) :i €{0,....r — 1}}

is a family of convex PL-capsules in R'*'. Let X C K be a subfamily of capsules
such that for each K € K there is a regular 0-cell (C(K), 8(C(K))) in R" such that
n/' 1 (C(K)) = K and (C(K),0(C(K))) is (k, f,q)-proper and (I, p)-prepared.

Then, after an arbitrarily small linear change of coordinates in R, there exists a
sequence §g < --- <85 : D" — R (s > 1) of continuous PL-functions defined on a convex
polyhedron D' in R'™" such that

K = {(8j,5j+1)1j € {0,...,5—1}}

is a family of convex PL-capsules in R' such that
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8.4.1) X' =D’;

(8.4.2) foreach K' € XK' andi €{0,...,r}, oi is affine on K’';

(8.4.3) N :={(0i|K".0;11|K') : K' € X', 0i < i1 0n Ig’} is a family of regular cells
in R, refining X and such that for each K € X1 and N € N, if N C K, then
(C(K)|N,0(C(K))|N) is (k, f,q)-proper and (I — 1,0)-prepared.

Proof. Let T be a simplicial (or any polyhedral) complex in R’ such that |7'| = D and
each o; is affine on each A € 7. Then, for eachi € {0,...,r — 1} and A € T, either
0; < 0j41 on Ao or 0; = 0j+1 on A. Then all A € T will become convex PL-capsules
in R, after perhaps a small linear change of coordinates in R'. Now we use Remark 2.3.

|

As a result of iterative application of Proposition 8.3 interlaced with Proposition 8.4
we get the required €7 -extension, but the final homeomorphism is not defined on a poly-
hedron of a simplicial complex, but on some regular cell in R”, and now the task is to
build a strict €”-triangulation of this regular cell through a simplicial complex refining
the initial polyhedral complex and in such a way that the triangulating homeomorphism
composed with the previous one transforms any face of any initial polyhedron onto itself.
Roughly speaking, this is done by the induction hypothesis that our theorems are true
for n — 1 and precisely described in the proof of Proposition 8.5 below. Recall that for
any convex polyhedron P in R” and k € {0, ..., n}, P® stands for the k-dimensional
skeleton of P.

Proposition 8.5. Assume that the Main Theorem is true in dimensions < n, where n > 2.
Fix integers k € {0,....n—1}, g > (n—1—-k)()+ p+ 1 and G > q. Let P be a
polyhedral complex in R" such that Dy, := |P| is a convex polyhedron of dimension n
and let Py C P be such that |Py| is of constant dimension n. Assume that f : |P;| — R?
is a continuous mapping such that each P € P is (k, f, q)-well situated in R".

Then there exists a €P-triangulation (T, h) of D, such that T is a refinement of P;
for each A € T of dimensionn, if A C P € Py, then (f o h,h)|A\ A®~D isof class €P;
ifAC P e®P\ Py, then h|Ais of class €9; and finally h(I') = T for any face I of any
Ped

Proof. After an arbitrarily small linear change of coordinates, all P € & become
PL-capsules, so by Remark 2.6 and Lemma 2.7, there exists a sequence of continuous
PL-functions

Op—1,0 =" = On—1,rp_1 - D,_1 — R (rn—l > l)s

where D, 1 = m,_,(Dy), such that

JCn = {(Un—l,jagn—l,j+1) : ] € {0, ey Ip—1 — 1}}

is a family of convex capsules refining &°. By Proposition 8.1, there exists a sequence of
continuous PL-functions

M-1,0 <" < Mn—t,5y_y : Dn1 > R (Sp—1>1)
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and a homeomorphism ¥, : D, — D, such that

Ly 1= {(nn—l,v» Mn—1,v+1) 1V €40, ..., 5p—1 — 1}}

is a family of capsules refining K, ¥, (A) = A for any face A of any K, € K, (hence
also ¥, (A) = A for any face A of any P € P), ¥, |L, is of class €17 for any L, € £, such
that L, C P € # \ &1, while foreach L, € £, suchthat L, C P € 1, (L,, X(P)N Ly)
is aregular (k, (f o ¥, ¥,), q)-proper 6-cell in R” and

FWu|l)  3°(f o Wull)

axl axLt

, forpef{l,...,q—1},

extend continuously by zero to 0L, D X(P) N L,.
After a small linear change of coordinates in R"~!, we can find a sequence of contin-
uous PL-functions

Op—2,0="""=0p=2,,_» : Dy - R (rp—=>1),

where D,,_» = m)}_,(Dy), such that

an—l = {(Un—Z,jaUn—Z,j+l) . ] € {0, ey Ip—2 — 1}}

is a family of convex PL-capsules in R"~! such that every n,_;, is affine on each
Kn—l € Jcn—b

Notice that (L, |K;—1,0(Ly)|Ky—1), where (L) :== ¥ (P)N Ly, L, C P € P1,is
a(k,(f oW,,¥,), q)-proper O-cell, (n — 1, p)-prepared.

Now, using Proposition 8.3 interlaced with Proposition 8.4, we continue by descend-
ing induction defining sequences &£,—1, Kn—2, Kn—3, Ln—3,..., Kk+1, Lr+1 of families
of convex PL-capsules and homeomorphisms

Uy_1:Dy—1 = Dp_1,.... W41 : Dky1 = D41 (where D; := 7] (Dy))

such that

Ki = {(0i-1,j.0i-1,j+1) 1 j €{0,....ricy — 1}},
Li = {Mi—1p,Ni—1,v+1) v €{0,...,5i—1 — 1}},

&, refines K, | K;| = Dj, every n;—1,, is affineoneach K;_; € K;_y,and ¥;(I") = I
for any face I" of any K; € K;. Moreover,

(wrl(- W (L) L) ) L T (o (@ (B(Ln) L) - ..)|Ll~)

is a regular O-cell, (k, (f oW oWy_yo---0 W Wy oW, _yo---0¥;),q—(n—i)(}))-
proper and (i — 1, p)-prepared, whenever

Li Cal™ (Liy1). Lis1 C w3 (Lisa)..... Ln—y C7)_{(Lyn).Ln C P € P,
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while if
Li Cat " (Lit1), Lis1 C w3 (Liga)e ... Ly—y C7)_{(Ln).Lyn C P € P\ Py,
then ¥, o W,_; o --- o ¥ is of class €4 on
e (W (L) | Ly—1) - )| L

(In fact, each ¥; (i e {n — 1,...,k + 1}) is a composition of appropriate p homeo-
morphisms.)

It will also be convenient to take a family K of convex PL-capsules in R¥ partition-
ing Dy = m}/(Dy) in such a way that every 7, is affine on each Ki € K} and then for
any Kj € Kj we have either g, < ng 41 on Kok Of Nky = Nk,v+1 on K.

Now we apply the Basic €”-Extension Lemma 5.4. It follows that the mapping

(foWpoWp_yo--oWpi,WpoWy_10--0Wy),

when restricted to
Ued (o (2 (L) Ly—1) <) Lk,
is of class €7 on
Veti (- (B2 L)) Ln-1) - ) Lk,

off an exceptional closed subset of the latter of dimension < k, which can be identified
with a closed subset of dL . Hence, by our induction assumption, we can find a strict
©4-triangulation (7%, hx) of Dy, compatible with (the projections nlljﬂ to Dy of) all
these exceptional subsets. Additionally, we assume that 7% is a refinement of K and
hy is orthogonally g-flat along simplexes (see Section 6), and hy (A) = A for any face A
of any K € K.

It follows that if T}, € J%, dim T = k and

hie(T) € mfH (WEdy (o @ O L) ) L )

then
(foWpoWy_qo0--oWjohg,WpyoWy_0---0Wyyohy),

when restricted to
H (Y o G W)l Laen) ) s ) T
is of class €7 on
B (W (- (G O L) ) L ) T

Now we want to extend the triangulation (7%, 4z ) to a €9-triangulation of the domain
of the homeomorphism ¥, o ¥,,_j o --- 0 ¥y 1 o hy which is a regular cell in R”. To this
end, we put

Uit = Wi+1°“'°‘1/k+1°hk for i E{k,...,fl—l}.
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Then li/l‘_H . D~i+1 — Di+1, where
Diy1 = {(.&r1. ... Eip1) € D x RVHE - (@ (u. Epqr. . &) Ei1) € Diga}
and j’k = hk.

For each i € {k,...,n — 1}, we will define a strict €4-triangulation (71, hj+1),
where h; 41 @ Dijy1 — Djyq, such that 74 is a refinement of £;41, (¥i+1 0 hiy1)(I")
= I" for any face I" of any K; 11 € K41, and moreover ¥; 41 o h; 11 is of class €7 when
iefk,...,.n—2}.

Fori = k, we first put

(8.5.1)
Pie1 (s T ) + (1= D1 (W) := (0, Ty (e () + (1= D)1 1 (e (),
where v € {0,...,sx — 1}, u € Dy and t € [0, 1]. Observe that the definition is correct,

because if u € Dy and ng, (1) = 1k v+1(u), then there exists a face I" of some Ki € K
such that u € 19' Since Nk, < Nkv+1 and Mgy, Nkv41 are affine on I', it follows that
Nkv = Nk,v+1 00 550 Ny (h (1)) = Nk p41(he(w)) since hg () =T

Now observe that for any face A of any polyhedron [nk,. Nk,v+1]| Kk, we have
(hg o hg41)(A) = A.Indeed, then I" := n,’f“(A) is a face of K, A = [Nk, Nk,v+1]|17
and hi (") = I'; hence, (hy o hg4+1)(A) = A in view of (8.5.1). It follows that for
any face A of any Ky 1, (Wg+1 0 hg+1)(A) = Wgp1(hg 0 hg1(A)) = Y1 (A) = A,
because K1 is a union of some polyhedra [ngy. Nk,v+1]| Kk-

In order to turn /g into a €9-triangulation of Dy, we take a simplicial complex
Tk+1 refining all polyhedra [nky, Mk v+1]| Tk, Where Ty € T. It is clear that this triangu-
lation is compatible with all Ly, € £x41 and is of class €7 on simplexes. To make it
strict €4 and orthogonally G-flat along simplexes we apply Corollary 6.5.

Notice that if T € T+ is a simplex of dimension k + 1 and 70 hig+1)(Tr41) C
Li+1 € Lg+1 and

Lig+1 C ﬂ,filz(LkH), vees Lyy Cw)_((Lp), L,CPes,
then
(f oW oWyt 0--0Wgohgys WyoWy_yo--0Wgohryr),
when restricted to
heb (T (- @ @) L) ) T,

is of class €7 except possibly on the faces of T4, of dimension < k.

We continue by induction. Suppose we have already defined a strict €Z-triangulation
(Tig1, hiy1) of Di+1, where 7;41 is a refinement of all [n;y, i v+1]|T;, with T; € T3,
such that &; 4, is orthogonally g-flat along simplexes, ¥ o h;y1 is compatible with all
Liyi € £ir1, W 1ohiyyisofclass €7 ifi e {k,....n =2}, Wiy1 0 Hiy)(I) =T
for any face I" of any K;4+; € K41, and finally

(foWnoWy 10-0Wyiohiyy, WyoW 10--0Wiohiyy),
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when restricted to
b (P (- @ O Lamr) ) ) T,
is of class €27 except possibly on the faces of 741 of dimension < k when
(Wi ohiy1)(Tis1) C Ligr. Livs Cmjf{(Lig2).....Ly—1 C 7y (Ly). Ly C P € P

Now we define h; 45 : D; 15 — D;, first by the formula

hit2(w, tni+1,0(W) + (1 = O)Nit1,04+1(W))
i= (his1 (). T0i410 W1 (hix1 (W) + (1 — DN 1,041 (Fig1 (hig1(w)))).

where w € Djyq,v €{0,...,s;+1 — 1} and t € [0, 1]. We check easily, by the same argu-
ment as for hig 41, that ;1 ,, after appropriate modifications analogous to those for sz 41,
satisfies all the required conditions.

Consequently, we obtain a strict ‘6‘7—triangu1ation (T, hyp) with by, : D, — D,, such
that ¥,_ o h, is of class €4, T; is a refinement of £, (so of K, as well), U,_q 0 hy is
of class €4, ¥,_; o hy, is compatible with £,,, (¥, o h,)(I") = I for any face I" of any
face K, € KX, and

(fo (lj/n o hy), @, o hn)

is of class €7 when restricted to any T, € 75, except on the faces of T;, of dimension < k,
assuming that (&,_; o h,)(T,) C P € ;.

Finally, observe that if (¥,_1 0 h,)(T,) C P € P\ Py, then ¥, o h,|T, = ¥, o
(W1 0 hy)| Ty, is of class €4. Now the proof of Proposition 8.5 is complete. ]

Corollary 8.6. Assume that the Main Theorem is true in dimensions < n, where n > 2.
Letk €{0,...,n— 1} and let ¢ > (n — 1 —k)(p) + p + 1 be an integer. Let P be a
polyhedral complex in R™ such that |P| is a convex polyhedron of dimension n. Let f :
|| = R? be a continuous mapping such that for each P € P the restriction f|P \ P®
is of class €1.

Then there exists a €P-triangulation (T, h) of |P| such that T is a reﬁnement of P
h(I") = I for any face I" of any P € P, and for each simplex A € T the restrictions
AN\ ARD | £ oh|A\ A%~V are of class €P.

Proof. By barycentric subdivision we reduce to the situation where for each P € P of
dimension n, there exists a face X' (P) of P of dimension k such that f|P \ X (P) is of
class €4. There are a finite number of orthogonal bases vy, ..., vy in R” such that each
P e P is (k, f,q)-well situated in R” with respect to some ba51s vi (i €{1,...,s}). Thus,
we can represent (the set of all polyhedra of dimension 7 belonging to) & as a pairwise
disjoint union

P=PU---UPs,

where each P € ; is (k, f, q)-well situated in R” with respect to v;.
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By Proposition 8.5, there exists a €”-triangulation (77, #1) of || such that 77 is a
refinement of P, for each Ay € 77 of dimension n, if A; C P € &1, then the restrictions

k— k—
hila\ ASD fony|a\ A%

are of class €7, if Ay C P € & \ &, then the restriction h1|A; is of class C?, and
hi(I") = I for any face I" of any P € P.
Put

i = {Al €T :dimA; =n, Ay CPE:?,’} (l E{l,...,S}).

Observe that if Ay € 77;, where i > 2 and A; C P € #;, then picking X' (A;) to be a
k-dimensional face of A; which contains A; N X' (P), we see that

hilA1\ (A1),  fohi|Ar\ X(4y)

are of class €7; hence, A is (k, (h1, f o hy), g)-well situated in R" with respect to the
basis v;.

By Proposition 8.5, there exists a €2 -triangulation (72, h,) of || such that 73 is a
refinement of 77, for each A, € 75 of dimension n, if A, C Ay € T, then

(6.8.1) hiohy|Ax\ AY ™D fohyohylay\ a¥Y

are of class €7, while if Ay C Ay € 77 \ T12 the restriction /5| A, is of class €9, and
ho(I) = I for any face Iy of any A; € 77. Clearly, the mappings (6.8.1) are of class
€P? when A, C Ay € T7;1 as well.

Put

T = {AzETdeimAz =n, Ay C A4 ET],‘} (l E{l,...,s}).

Observe that if A € T3;, where i > 3, then A, is (k, (f o hy o hy, hy o hy), g)-well
situated in R with respect to the basis v;.
It is clear how to continue the above process, which at the final s-th step gives the

required triangulation (77, h) = (J5, hy o --- o hy). |
Corollary 8.7. Let p be a positive integer and let q1, . . ., qn be integers such that

qlz(n—l)(§)+p+l, qzz(n—2)(q21)+q1+1,...,
qdn—1
%20( 5 )+Qn—1+1=‘In—l+1-

Let P be a polyhedral complex in R" such that || is a convex polyhedron of dimension n.
Let f :|P| — R? be a continuous mapping such that for each P € P the restriction
FIP\ POV is of class €.

Then there exists a strict €P-triangulation (T, h) such that T is a refinement of P,
h(I') =T foranyface I' of any P € P, and f o h is of class €?.
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Proof. By Corollary 8.6 applied n times we obtain a €”-triangulation (77, ) of || such
that 7 is a refinement of , h(I") = I" for any face I" of any P € &, and for each simplex
A € T of dimension 7 the restrictions 2| A and f o h|A are of class €7. We now improve
h using Corollary 6.5. L]

Corollary 8.7 ends the proof of the Main Theorem as well as of the Strict €7-
Refinement Theorem, since it is classical that there exists a €9 -triangulation (77, h) of
A = dom(f) such that f o h|A is of class €9 for each simplex A € T .

9. An application to approximation theory

Fernando and Ghiloni [7] proved the following approximation theorem.

Theorem 9.1 ([7, Corollary 1.5]). Let A be a definable, closed, bounded subset of R"
and let T be a finite simplicial complexin R™. Let f : A — |T | be a definable continuous
mapping.

Then for any positive integer p and any € € R such that € > 0 there exists a €P-
mapping g . A — |T | such that

| f(x)—g(x)| <& forallx € A,

where |(y1, ..., ym)| := (0L, y2)V2.

In fact, [7] contains the proof of Theorem 9.1 only in the semialgebraic case and
R =R (the field of real numbers), but it is easy to check that the same proof, with obvious
modifications, holds true in our general context.

The existence of strict €”-triangulations allows us to improve the last theorem.

Theorem 9.2. Let A and B be any definable, closed bounded subsets of R" and of R™,
respectively. Let f : A — B be a definable continuous mapping.

Then for any positive integer p and any € € R such that € > O there exists a €7-
mapping g : A — B such that

|f(x)—g(x)| <e forallx e A.

Proof. Let (7, h) be a strict €P-triangulation of B; hence h : || — B is a homeo-
morphism of class €7. Since 4 is uniformly continuous, there exists § > 0 such that for
each pairu, w € |T|, if |[u — w| < 4§, then |h(u) — h(w)| < e. By Theorem 9.1 there exists
a €P-mapping g : A — |T| such that

Ih™'o f(x)—g(x)| <8 forall x € A.

Hence,
|f(x)—hog(x)|<e forallx € A4,

and hog: A— Bisof class €7 as a composition of two €7 -mappings.
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