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Abstract. For an arbitrary field K and a K-variety V , we introduce the étale-open topology on the
set V.K/ of K-points of V . This topology agrees with the Zariski topology, Euclidean topology, or
valuation topology whenK is separably closed, real closed, or p-adically closed, respectively. Topo-
logical properties of the étale-open topology correspond to algebraic properties of K. For example,
the étale-open topology on A1.K/ is not discrete if and only if K is large. As an application, we
show that a large stable field is separably closed.
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1. Introduction

We introduce the étale-open topology on the set V.K/ of K-points of a variety V over
a field K, show that this generalizes the natural topology for many choices of K, and
study the relationship between the properties of this topology and algebraic properties
of K. In particular, the étale-open topology is non-discrete if and only if K is large.
Recall that K is large if every smooth K-curve with a K-point has infinitely many K-
points. Separably closed fields, real closed fields, fields which admit non-trivial Henselian
valuations such as Qp and K..t//, quotient fields of Henselian domains, pseudofinite
fields, infinite algebraic extensions of finite fields, PAC fields, p-closed fields, and fields
which satisfy a local-global principle (such as pseudo real closed and pseudo p-adically
closed fields) are all large. Finite fields, number fields, and function fields are not large.
See [24] for a survey of largeness and further examples. All known model-theoretically
tame infinite fields seem to be large.
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We use the étale-open topology to resolve the model-theoretic stable fields conjec-
ture for large fields. Specifically, we prove that large stable fields are separably closed.
The assumption of largeness might be necessary: Scanlon (private communication, 2020)
has recently raised the question of whether the (non-large) field C.t/ is stable, giving
suggestive evidence from arithmetic geometry.

Throughout, K is an infinite field, X , Y , V , and W range over K-varieties (i.e., sepa-
rated schemes of finite type overK),KŒV � is the coordinate ring of V , and V.K/ is the set
ofK-points of V . The notion of an étale morphism was introduced by Grothendieck as the
algebro-geometric counterpart of a local homeomorphism. If V is smooth then f WX! V

is étale if X is smooth and f induces a tangent space isomorphism TpX ! Tf .p/V at
every p 2 X ; see Section 2.1 for the more technical definition when V is not smooth.
A subset U of V.K/ is an étale image in V.K/ if there is an étale morphism X ! V

such that U is the image of the induced map X.K/! V.K/. Standard results about étale
morphisms imply that the collection of étale images in V.K/ is closed under finite inter-
sections and finite unions, and contains all Zariski open subsets of V.K/; see Lemmas 3.3
and 5.1 for details. In particular, this collection is a basis for a topology (in the classical
sense) on V.K/, which we call the étale-open topology on V.K/.

Remark 1.1. We make some comments concerning the relationship between the étale-
open topology and the classical étale topology developed by the Grothendieck school.
Both are defined in terms of étale morphisms and are motivated by similar intuition.
However, we are not aware of a direct connection. The étale topology is a Grothendieck
topology (i.e., a site), whereas the étale-open topology is a topology in the classical sense.
The étale topology has well-behaved sheaf cohomology, and is often “connected” in spirit.
In contrast, the étale-open topology is usually totally disconnected (Theorem 7.15). There
is not even a comparison morphism between the étale site and the étale-open site.

Let EK D ¹EV º be the family consisting of the étale-open topology on V.K/ for each
K-variety V . This family satisfies some natural compatibility conditions which we now
describe.

Suppose TD ¹TV º is a family consisting of a topology on V.K/ for eachK-variety V .
We refer to TV as the T-topology on V.K/.

Definition 1.2. The family T is a system of topologies if for any morphism f W V ! W ,

(1) the induced map V.K/! W.K/ is T-continuous,

(2) if f is a (scheme-theoretic) open immersion, then the induced map V.K/! W.K/

is a T-open embedding,

(3) if f is a (scheme-theoretic) closed immersion, then the induced map V.K/!W.K/

is a T-closed embedding.

Note that a system of topologies determines a functor from the category ofK-varieties
to the category of topological spaces. More precisely, a system of topologies gives a lifting
of the K-points functor (from varieties to sets) along the forgetful functor from topolog-
ical spaces to sets. Two systems of topologies are already familiar: the Zariski system of
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topologies assigns to each variety V the Zariski topology on V.K/. Likewise, any field
topology on K determines a system of topologies over K; see Fact 4.7 below.

Theorem A. The family EK of étale-open topologies is a system of topologies.

Theorem A is an easy consequence of standard results on étale morphisms; see Sec-
tion 5.

WhenK is separably closed, the étale-open topology agrees with the Zariski topology;
see Proposition 6.1. When K is real closed, the étale-open topology is induced by the
order topology; see Corollary 6.12. The étale-open topology is induced by the Henselian
valuation topology when K is a non-separably-closed Henselian valued field such as Qp;
see Corollary 6.13. In particular, if K is a local field other than C, then the étale-open
topology is induced by the usual field topology on K.

More generally, the étale-open topology is closely connected to t-Henselianity. Recall
that a V-topology on K is a non-discrete field topology induced by an absolute value or
valuation. V-topologies can also be characterized intrinsically; see Definition 6.2. We call
a V-topology t-Henselian if it satisfies a topological analogue of Hensel’s lemma; see
Definition 6.4. The usual topology on a local field, the valuation topology on a Henselian
valued field, and the order topology on a real closed field are all t-Henselian. If K is not
separably closed then K admits at most one t-Henselian topology. So we say that K is
t-Henselian ifK admits a t-Henselian field topology, and ifK is not separably closed then
we refer to this canonical topology as “the” t-Henselian topology.

Theorem B. If K is t-Henselian and not separably closed then the étale-open topol-
ogy over K is induced by the t-Henselian topology. If the étale-open topology over K
is induced by a V-topology τ on K then τ .and hence K/ is t-Henselian and K is not
separably closed.

Every t -Henselian field is large. Hence, we can view the étale-open topology as a
natural generalization of the t-Henselian topology to the broader class of large fields. In
general the étale-open topology EK is not induced by a field topology onK; see Section 8.

We expect topological properties of the étale-open topology to correspond to field-
theoretic properties of K. The following theorem is a first step in this direction.

Theorem C. (1) K is large if and only if the étale-open topology on A1.K/ is not dis-
crete if and only if the étale-open topology on V.K/ is non-discrete whenever V.K/
is infinite.

(2) K is not separably closed if and only if the étale-open topology on V.K/ is Hausdorff
for quasi-projective V .

(3) The étale-open topology on A1.K/ is connected if and only if K is separably closed
or isomorphic to R. .More generally: the étale-open topology on A1.K/ is definably
connected if and only if K is separably closed or real closed./

(4) The étale-open topology on A1.K/ is locally compact Hausdorff if and only if K is a
local field other than C.
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We believe that the étale-open topology will be a useful tool in the model theory of
large fields. As evidence of this we offer Theorem D below, a special case of a famous
conjecture.

Theorem D. If K is large and stable then K is separably closed.

Here, “stable” is in the sense of model theory; see [22]. We first proved Theorem D
as a corollary of Theorems A and C, as presented in Section 9.1. Later we extracted a
self-contained proof, in which the étale-open topology only appears implicitly. For the
reader’s convenience, we give this direct proof in Section 3. Our proof of Theorem D in
Section 3 produces an explicit unstable formula in a non-separably-closed virtually large
field.

Theorem D is a partial result towards the conjecture that an infinite stable field is sep-
arably closed. Any separably closed field is stable by work of Ershov [12] and Wood [29].
Macintyre [18] showed that an infinite @0-stable field is algebraically closed. About ten
years later Cherlin and Shelah [5] showed that an infinite superstable field is algebraically
closed. In 1999 Scanlon showed that an infinite stable field is Artin–Schreier closed [17],
and there has been little progress in the past twenty years.

There is another notable model-theoretic conjecture which is open in general but
holds for large fields: the Podewski conjecture that a minimal field is algebraically closed.
Koenigsmann showed that the Podewski conjecture holds for large fields. This also fol-
lows immediately from the fact that the étale-open topology on a large non-separably-
closed field is non-discrete and Hausdorff; see Section 9.2.

We now summarize the content of this paper. In Section 3 we prove Theorem D. In
Section 4 we prove some general facts about systems of topologies. In particular, we show
that if L is an extension of K then any system over L “restricts” to a system over K and
if L is a finite extension of K then any system over K “extends” to a system over L. We
will make extensive use of these operations.

In Section 5 we prove Theorem A and some useful facts about extension and restric-
tion of the étale-open system. In Section 6 we prove the first claim of Theorem B. In that
section we also show that if < is a field order on K then EK refines the system of topolo-
gies induced by <, and if v is a non-trivial valuation on K with non-separably closed
Henselization then EK refines the system of topologies induced by v. In particular, if v is
a non-trivial valuation with either non-algebraically closed residue field or non-divisible
value group then EK refines the system induced by v.

In Section 7 we prove Theorem C and the second claim of Theorem B. Finally, in
Section 8 we give some examples of K such that EK is not a field topology.

We use the Hasse–Weil bounds to show that the EK-topology on K is not a field
topology when K is an infinite non-quadratically-closed algebraic extension of a finite
field. We also give a model-theoretic proof that the étale-open topology on a pseudofinite
field of odd characteristic is not a field topology.
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Notations and conventions

Throughout, n is a natural number, k; l; m are integers, and K is an infinite field. We let
Char.K/ denote the characteristic of K. A variety over K, or K-variety, is a separated
scheme of finite type over K, not assumed to be reduced or irreducible. We let VarK be
the category of K-varieties. We let V.K/ denote the set of K-points of a K-variety V .
We refer to V 7! V.K/ as the K-points functor. Each K-point determines a (scheme-
theoretic) point of V . The Zariski topology on V.K/ is the topology making V.K/! V

be a topological embedding.
An open (closed) immersion is an open (closed) immersion of schemes. An open

(closed) embedding is an open (closed) embedding of topological spaces. If τ is a topology
on a set X we will sometimes write .X; τ/ to denote the topological space. A topological
space X is totally separated if for any a; b 2 X there is a clopen U � X such that a 2 U
and b … U .

We let An and Gm denote the varieties SpecKŒx1; : : : ; xn� and SpecKŒy; y�1�, i.e.,
affine space and the multiplicative group over K. Recall that An.K/ is Kn and Gm.K/

is K�. Given a K-variety V and an extension L=K we let VL D V �SpecK SpecL be the
base change of V and if f W V ! W is a morphism ofK-varieties then fL W VL! WL is
the base change of f . (The base change VL can fail to be reduced when V is reduced and
L=K is purely inseparable; this is why we do not assume that K-varieties are reduced.)

2. Preliminaries

2.1. Algebro-geometric preliminaries

We will need some basic facts on smooth and regular points. We let Vsm and Vreg be the
smooth and regular loci of a K-variety V , respectively.

Fact 2.1. Suppose that V is a K-variety and p 2 V.K/.

(1) Vsm and Vreg are both open subvarieties of V .

(2) p 2 Vsm if and only if p 2 Vreg.

(3) Vreg is non-empty.

Proof. (1) is [27, Lemma 056V, Proposition 07QW], (2) is [27, Lemma 00TV], and (3)
follows as the generic point of an irreducible component of V is regular.

A standard étale morphism is a morphism � WX! V where V is aK-variety,X is the
subvariety of V �A1 given by f D 0, g ¤ 0 for f; g 2 .KŒV �/Œy� such that f is monic,
∂f=∂y ¤ 0 on X , and � is the restriction of the projection V � A1 ! V . A K-variety
morphism is étale if it is locally a standard étale morphism up to isomorphism.

Fact 2.2. (1) Open immersions are étale.

(2) Étale morphisms are closed under composition.
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(3) Étale morphisms are closed under base change.

(4) Open immersions and closed immersions are closed under base change.

(5) If f W V ! W is an étale morphism of K-varieties then the image of f is an open
subvariety of V .

Proof. (1), (2), (3), (5) are [15, Proposition 17.1.3] and (4) is [14, Corollaire (4.3.2)].
Alternatively, (1)–(5) are [27, Lemmas 02GP, 02GN, 02G0, 01JY, 03WT] respectively.

Fact 2.3 is a special case of [15, Proposition 18.1.1].

Fact 2.3. Suppose thatW is aK-variety, V is a closed subvariety ofW ,X is aK-variety,
g W X ! V is an étale morphism, and p is a .scheme-theoretic/ point of X . Then there is
an open subvarietyO ofX with p 2O , aK-variety Y , and an étale morphism h W Y !W

such that O is isomorphic as a V -scheme to the fiber product Y �W V .

We will need some basic results on Weil restriction of scalars. We refer to [9, §A.5]
for a general account of Weil restriction. Let AffK , AffL be the categories of affineK-, L-
varieties, respectively. The Weil restriction functor ResL=K W AffL! AffK is right adjoint
to the base change functor AffK ! AffL; V 7! VL. (An arbitrary non-affine variety need
not have a Weil restriction.) We focus our attention on affine varieties as a system of
topologies is determined by its restriction to affine varieties.

We give an explicit definition of the Weil restriction ResL=K.V / of an affine
L-variety V for the benefit of the reader unfamiliar with this notion. Let V be
Spec LŒx1; : : : ; xn�=.f1; : : : ; fk/. Let yij be a variable for each i 2 ¹1; : : : ; nº and
j 2 ¹1; : : : ; mº. For each i we substitute yi1e1 C � � � C yimem for xi , i.e., for each
l 2 ¹1; : : : ; kº, r 2 ¹1; : : : ; mº let glr 2 KŒyij � be the unique polynomial such that

fl

� mX
jD1

y1j ej ; : : : ;

mX
jD1

ynj ej

�
D gl1e1 C � � � C glmem:

Then ResL=K.V / is SpecKŒyij �=.glr /.
Suppose that V is an affineK-variety. As base change and Weil restriction are adjoint

functors, there is a natural morphism V ! ResL=K.VL/. We give its explicit descrip-
tion under the assumption that e1 D 1. Suppose V D SpecKŒx1; : : : ; xn�=.f1; : : : ; fk/.
Then VL is SpecLŒx1; : : : ; xn�=.f1; : : : ; fk/. Let yij and glr be defined as above, so
ResL=K.VL/ is SpecKŒyij �=.glr /. Let ' be the K-algebra morphism KŒyij �=.glr / !

KŒx1; : : : ; xn�=.f1; : : : ; fk/ given by declaring '.yij / D xi when j D 1 and '.yij / D 0
otherwise. The canonical morphism V ! ResL=K.VL/ is the morphism corresponding to
'. Fact 2.4 below follows from the observation that ' is surjective.

Fact 2.4. Suppose that L is a finite extension of K and V is an affine K-variety. The
canonical morphism V ! ResL=K.VL/ is a closed immersion.

We recall some standard facts about Weil restriction of affine varieties (these facts
hold whenever the Weil restriction exists).
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Fact 2.5. Suppose L is a finite extension of K and ŒL W K� D m.

(1) ResL=K.AnL/ is isomorphic to Amn.

(2) If V is an affine L-variety, there is a canonical bijection .ResL=K.V //.K/! V.L/.

(3) If V;W are affineL-varieties and f W V !W is a morphism then the Weil restriction
ResL=K.f / W .ResL=K.V //.K/! .ResL=K.W //.K/ agrees with f W V.L/!W.L/

under the canonical bijection.

Fact 2.6. Suppose that f W V ! W is a morphism of affine L-varieties. If f is an
open immersion then ResL=K.f / is an open immersion. If f is a closed immersion then
ResL=K.f / is a closed immersion.

See [9, Propositions A.5.2 (4), A.5.5] for a proof of Fact 2.6.

Fact 2.7. If f is an étale morphism between affine L-varieties then ResL=K.f / is étale.

See [9, Proposition A.5.2 (4)] for a proof of Fact 2.7.

2.2. Model-theoretic preliminaries

SupposeK is a definable field in some structure, and X is a definable subset ofK. Recall
that X is additively generic if there is a finite A � K such that X C A D K, X is mul-
tiplicatively generic if there is finite A � K� such that A.X \K�/ D K�, and a partial
unary type p inK is additively .multiplicatively/ generic if every formula in p defines an
additively (multiplicatively) generic set. The following is well-known.

Fact 2.8 ([22, Theorem 5.10]). Suppose that K is stable. Then there is a unique com-
plete additive generic type pC and a unique complete multiplicative generic type p�, and
pC D p�. Moreover, a definable X � K is generic if and only if pC concentrates on X .

We now prove a local version of Fact 2.8. The proof is a straightforward localization
of the usual proof of Fact 2.8. We first recall some facts about local generics in definable
groups. Throughout, G is a definable group in a structure M.

Suppose that ı.x; y/ is a formula such that ˛ 2 G whenever M ˆ ı.˛; b/ for some b.
Then ı is invariant if for any b and ˛ 2 G there is b� such that ˛ı.G; b/ D ı.G; b�/.
Let Defı.G/ be the boolean algebra generated by instances of ı, and Sı.G/ be the set of
complete ı-types. If ı is invariant and X 2 Defı.G/ then ˛X 2 Defı.G/ for any ˛ 2 G.
A subset Y of G is generic if there are ˛1; : : : ; ˛n 2 G such that ˛1Y [ � � � [ ˛nY D G,
and p 2 Sı.G/ is generic if it only contains generic sets. Given p 2 Sı.G/ and ˛ 2 G we
define ˛p D ¹˛X W X 2 pº.

Fact 2.9 ([8, Theorem 2.3]). Suppose that ı.x; y/ is stable and invariant. Then there is
a finite index subgroup G0

ı
of G such that G0

ı
is in Defı.G/ and G0

ı
� H for any finite

index subgroup H 2 Defı.G/ of G. Furthermore:

(1) Every left coset of G0
ı

contains a unique generic ı-type.

(2) If ˛ 2 G and X 2 Defı.G/ then exactly one of ˛G0
ı
\X or ˛G0

ı
nX is generic.
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This is the local version of a well-known result on stable groups. We say that G is
ı-connected if G0

ı
D G.

Corollary 2.10. Suppose that ı.x; y/ is stable and invariant, andG is ı-connected. Then
there is a unique generic type p 2 Sı.G/, and any X 2 Defı.G/ is generic if and only if
p concentrates on X . If X 2 Defı.G/ then exactly one of X or G nX is generic.

We now suppose that K is a definable field in a structure M. Let '.x; y/ be a formula
such that ˛ 2 K whenever M ˆ '.˛; b/ for some b. We say that ' is affine invariant if
for any b, ˛ 2 K�; ˇ 2 K there is b� such that

˛'.K; b/C ˇ D '.K; b�/:

Suppose that ' is affine invariant. We say that p 2 S'.K/ is an additive generic if it is
generic for .K;C/, and is a multiplicative generic if it is generic for K�.

Proposition 2.11. Suppose thatK is an M-definable field and '.x;y/ is stable and affine
invariant. Then there is a unique additive generic pC 2 S'.K/, a unique multiplicative
generic p� 2 S'.K/, and pC D p�.

Proof. We first show that there is a unique additive generic. By Fact 2.9 it suffices to show
that .K;C/ is '-connected. LetH be the connected component .K;C/0' . For any ˇ 2K�,
the group ˇ�1H is in Def'.K/ and has finite index, and so ˇ�1H � H . Equivalently,
ˇH � H . Then H is an ideal, so H D K.

Let pC be the additive generic and p� be any multiplicative generic. We show that
p� D pC. Suppose otherwise. FixX 2 Def'.G/ such that p� concentrates onX , and pC
does not. Then X is multiplicatively generic but not additively generic. Hence there are
˛1; : : : ;˛n 2K

� withK� �
Sn
iD1˛iX . The map x 7! ˛ix is an automorphism of .K;C/,

so no ˛iX is additively generic. Then pC does not concentrate on
Sn
iD1˛iX �K

�, which
is absurd.

3. Direct proof of Theorem D

Theorem D is an easy consequence of Theorems A and C—see Section 9.1 for a half-
page proof. Here, we give a self-contained proof of Theorem D, not using Theorems A
or C, but extracted from our later proof in Section 9.1. In fact, we will prove the following
strengthening of Theorem D:

Theorem 3.1. If K is virtually large and every existential formula is stable, then K is
separably closed.

Here, we say that K is virtually large if some finite extension of K is large. Srini-
vasan [26] constructs a virtually large field which is not large.

We will need local stability theory (Proposition 2.11) to produce an explicit unstable
formula; we do not need this to prove Theorem D.
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We assume the definitions from Section 2.2. Suppose ' is stable and affine invari-
ant. We say that a boolean combination of instances of ' is '-generic if the following
equivalent conditions hold:

� It is additively generic.

� It is multiplicatively generic.

� It contains pC' D p
�
' .

We now gather some field-theoretic lemmas.

Fact 3.2 ([24, Proposition 2.7]). A finite extension of a large field is large.

Let V be a variety over K. Recall from the introduction that an étale image in V.K/
is a set of the form f .X.K// where f W X ! V is an étale morphism of K-varieties.

Lemma 3.3. Let V be a K-variety. The collection of étale images in V.K/ is closed
under finite unions and finite intersections.

Proof. Suppose U0; U1 are étale images in V.K/. For i 2 ¹0; 1º, let fi W Xi ! V be an
étale morphism of K-varieties such that fi .Xi .K// D Ui . Let X[ be the disjoint union
of X0 and X1 and f[ W X[! V be the morphism produced from f0; f1. Then f[ is étale
and the image of the induced map X[ ! V is U0 [ U1. Therefore U0 [ U1 is an étale
image.

Let Y be the fiber productX0 �V X1, and g W Y ! V be the natural map. By Fact 2.2,
g is étale. Then

Y.K/ //

��

X0.K/

f0

��

X1.K/
f1 // V.K/

is a pullback square, so g.Y.K// D f0.X0.K// \ f1.X1.K// D U0 \ U1. Therefore
U0 \ U1 is an étale image.

Lemma 3.4. Let g W V ! W be an isomorphism of K-varieties. If U is an étale image
in V.K/, then g.U / is an étale image in W.K/.

Proof. Let f W X ! V be an étale morphism of K-varieties such that U D f .X.K//.
Then g ı f WX!W is étale, and .g ı f /.X.K//D g.U /, so g.U / is an étale image.

In particular, if U is an étale image in K D A1.K/, and f W K ! K is an affine
transformation f .x/ D ax C b, then the direct image f .U / is an étale image in K.

Lemma 3.5. If K is a large field, then every non-empty étale image in K is infinite.

Proof. Let S be a non-empty étale image in K. There is a K-variety X with X.K/ ¤ ;
and an étale morphism f W X ! A1 with S D f .X.K//. The variety X is smooth of
dimension 1, hence a curve. By largeness, X.K/ is infinite. As f is finite-to-one, S is
infinite.
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Lemma 3.6 below is essentially used in the proof of Macintyre’s theorem on @0-stable
fields. We provide a proof for the sake of completeness.

Lemma 3.6. Suppose thatK is not separably closed. Then there are finite field extensions
L=K and L0=L such that either

(1) L0 is an Artin–Schreier extension of L, or

(2) there is a prime p ¤ Char.K/ such that L contains a primitive pth root of unity and
L0 D L.˛/ for some ˛ 2 L0 such that ˛p 2 L.

Proof. As K is not separably closed, K has a non-trivial finite Galois extension. Take
p > 1 minimal such that there are finite extensions K � L � L0 with L0=L Galois and
p D ŒL0 W L�. Take a prime q dividing p D jGal.L0=L/j, and a subgroup H of order q.
Let L00 be the fixed field of H . Then L0=L00 is Galois and ŒL0 W L00� D q. By minimality,
p D q, and p is prime.

If pDChar.K/ thenL0=L is an Artin–Schreier extension. Suppose that q¤Char.K/.
The extension of L by a primitive pth rooth of unity is a Galois extension of degree
� p � 1. So L contains a primitive pth root of unity by minimality of p. So L0=L is a
Kummer extension, hence L0 D L.˛/ for some ˛ 2 L0 such that ˛p D L.

The following is a famous theorem of Artin and Schreier.

Fact 3.7. If some finite extension of K is separably closed then K is either separably
closed or real closed.

Proof of Theorem 3.1. Suppose that K is virtually large and not separably closed. Let
L0=K be a large extension of minimal degree. If L0 is separably closed then by Fact 3.7,
K is real closed, hence large, which contradicts minimality. So we may suppose that L0 is
not separably closed. Applying Lemma 3.6 we obtain a finite extension L of L0 such that
either

(1) the pth power map L� ! L� is not surjective for some prime p ¤ Char.K/, or

(2) the Artin–Schreier map L! L is not surjective.

Note that L is large by Fact 3.2. Fix a K-basis ˇ1; : : : ; ˇm of L. We identify L

withKm by identifying every .a1; : : : ; am/ 2Km with a1ˇ1C � � � C amˇm. LetCL;�L W
Km �Km ! Km be addition and multiplication in L. Note that CL;�L are both exis-
tentially definable in K. In case .1/ fix such a p and let P be the image of the pth
power map L� ! L�. In case .2/ let P be the image of the Artin–Schreier map L! L.
Note that P is existentially definable in K. Let '.x; y1; y2/ be the existential formula
Œy1 2 L

�� ^ Œx 2 .y1 �L P /CL y2�. Note that ' is affine invariant. We show that ' is
unstable.

Let BL denote the set of étale images in A1.L/ D L. We first make a number of
observations concerning BL and '. By Lemmas 3.3 and 3.4, BL is closed under finite
intersections and affine transformations. The pth power map for p coprime to Char.K/
and the Artin–Schreier map are both étale, so in either case P is in BL. Then every
instance of ' is in BL, by affine symmetry. In case .1/, P is a non-trivial subgroup
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of .L;C/, and in case .2/, P is a non-trivial subgroup of L�; in either case every coset
of P is an instance of '. So we may fix P � � K such that P � is defined by an instance
of ' and P \ P � D ;.

Suppose ' is stable. By Proposition 2.11 either P or P � is not '-generic. Suppose
that P is not '-generic; the other case is similar. Take c 2 P and let P �� D P � c.
Then 0 2 P �� 2 BL, and P �� is not '-generic. Thus, L� n P �� is '-generic in L� by
Proposition 2.11. So there are a1; : : : ; an 2L� such that

Sn
iD1 ai .L

� nP ��/DL�. ThusTn
iD1 aiP

��D¹0º. By Lemma 3.3, ¹0º is in BL. By Lemma 3.5 this contradicts largeness
of L.

The unstable formula ' produced in the proof of Theorem D is existential. Corol-
lary 3.8 follows by this and the fact that separably closed fields are stable.

Corollary 3.8. K is stable when K is virtually large and every existential formula is
stable.

Corollary 3.8 is sharp in that any quantifier free formula in any field is stable.

4. General facts on systems of topologies

It will be useful to know some general facts about systems of topologies (Definition 1.2).
Suppose T and T� are both systems of topologies over K. Then T refines T� (and T� is
coarser than T) if the T-topology on V.K/ refines the T�-topology for any K-variety V .

4.1. Reduction to affine varieties

As every variety is locally affine, any system of topologies over K will be determined
by its restriction to affine K-varieties. This is a consequence of the following trivial but
useful remark.

Remark 4.1. Suppose T is a system of topologies over K, V is a K-variety, .Vi /i2I
is a collection of open subvarieties of V covering V , and A is a subset of V.K/. Then
A � V.K/ is T-open if and only if A \ Vi .K/ is a T-open subset of Vi .K/ for all i 2 I .

Lemma 4.2 shows that it suffices to consider restrictions to affine spaces:

Lemma 4.2. If the T0-topology on An.K/ refines the T-topology on An.K/ for every n
then T0 refines T. If the T0-topology on An.K/ agrees with the T-topology on An.K/ for
every n then T agrees with T0.

Proof. The second claim is immediate from the first. Suppose that the T0-topology
on An.K/ refines the T-topology for every n. As closed immersions induce T-closed
embeddings, the T0-topology on V.K/ refines the T-topology for every affine vari-
ety V.K/. The statement for general V follows from Remark 4.1 and the fact that every
variety is locally affine.
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An affine system of topologies S over K is a choice of a topology SV on V.K/ for
each affine K-variety V such that the conditions of Definition 1.2 hold for morphisms
between affine varieties. Every system of topologies over K restricts to an affine system
of topologies over K. Lemma 4.3 gives us the converse.

Lemma 4.3. Suppose that S is an affine system of topologies over K. Then there is a
unique system of topologies T over K such that the S-topology on V.K/ agrees with the
T-topology on V.K/ for any affine K-variety V .

Proof. Let V be a K-variety. Suppose .Vi /i2I is a cover of V by affine open subvari-
eties. Let TV be the topology on V.K/ such that U � V.K/ is TV -open if and only if
U \ Vi .K/ is SVi

-open for all i . We show that TV does not depend on choice of .Vi /i2I .
Suppose .V 0j /j2J is another cover of V by affine open subvarieties and likewise define T0V
on V.K/. We show that TV agrees with T0V . For each pair Vi ; V 0j , takeOi;j to be Vi \ V 0j .
Then Oi;j is an affine open subvariety of V since V is separated. For any U � V.K/,
U \ Vi .K/ is in SVi

for all i if and only if U \Oi;j .K/ is in SOi;j
for all i; j if and only

if U \ V 0j .K/ is in SV 0
j

for all j .
Let T be the collection TV . It remains to show that T is a system of topologies. We

verify condition (2) of Definition 1.2 and leave the rest to the reader. Let f W V ! W be
an open immersion ofK-varieties. Note that the induced map V.K/!W.K/ is injective
so it suffices to show that V.K/! W.K/ is a T-open map. Suppose that U is a T-open
subset of V.K/; we show that f .U / is T-open. Let .Wi /i2I be a cover of W by affine
open subvarieties. It suffices to show that each f .U / \Wi .K/ is T-open in Wi .K/. For
each Wi let .Vij /i2Ji

be a cover of f �1.Wi / by affine open subvarieties. Then

f .U / \Wi .K/ D
[
j

f .U \ Vi;j .K//:

Note that f jVi;j
W Vi;j ! Wi is T-open as S is an affine system. So the right hand side is

a union of open sets, hence open.

4.2. The Zariski and discrete systems

The Zariski system of topologies is the system of topologies over K that assigns the
Zariski topology on V.K/ to each K-variety V .

Lemma 4.4. Any system of topologies on K refines the Zariski system of topologies.

Proof. Suppose that T is a system of topologies overK, V is aK-variety, and S � V.K/
is a Zariski open subset. Then S D U.K/ for at least one open subvariety U � V . The
inclusion U ,! V is an open immersion, so U.K/ is a T-open subset of V.K/.

There is also a finest system of topologies over K, the discrete system of topologies
over K assigning the discrete topology on V.K/ to any K-variety V .

Proposition 4.5. Suppose T is a system of topologies over K and A1.K/ is T-discrete.
Then T is the discrete system of topologies.
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We first prove a lemma.

Lemma 4.6. Let T be a system of topologies over K, and V1; : : : ; Vn be K-varieties.
Then the T-topology on .V1 � � � � � Vn/.K/ refines the product of the T-topologies on
the Vi .K/.

Proof. Apply the fact that each projection .V1 � � � � � Vn/.K/! Vi .K/ is T-continuous.

Proof of Proposition 4.5. By Lemma 4.6 the T-topology on An.K/ is discrete for all n.
Apply Lemma 4.2.

In Lemma 4.6, the topology on .V1 � � � � � Vn/.K/ need not agree with the product
topology, even when T is the étale-open system: see Section 8.

4.3. Field topologies

Aside from the Zariski system, every previously studied system of topologies of which
we are aware is induced by a field topology on K. A field topology on K is a topology τ

such that inversion K� ! K� is τ-continuous and addition and multiplication K2 ! K

are τ-continuous when K2 is equipped with the product topology. It is well-known and
easy to see that a field topology on K is Hausdorff if and only if it is T0. We henceforth
assume all field topologies are Hausdorff .or equivalently, T0/.

Fact 4.7 below allows us to construct a system of topologies from a field topology; it
is essentially proven in [19, Chapter I.10].

Fact 4.7. Suppose that τ is a field topology on K. There is a unique system of topolo-
gies Tτ overK such that the Tτ-topology on A1.K/ is τ and the Tτ-topology on An.K/ is
the product of the n copies of τ.

We refer to this as the system of topologies over K induced by τ and denote it by Tτ.
Note that if T is a system of topologies over K then the T-topology on A1.K/ is T1, so
Fact 4.7 fails if one allows field topologies to be non-Hausdorff.

Lemma 4.8. Suppose that S is a system of topologies over K and τ is a field topology
on K. Suppose that the S-topology on A1.K/ refines τ. Then S refines Tτ.

Proof. By Lemma 4.6 the S-topology on each An.K/ refines the Tτ-topology. Apply
Lemma 4.2.

The following proposition characterizes systems arising from field topologies:

Proposition 4.9. Suppose T is a system of topologies over K. The following are equiva-
lent:

(1) T is induced by a field topology τ on K.

(2) For any K-varieties V; W the T-topology on .V � W /.K/ is the product of the
T-topologies on V.K/ and W.K/.
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(3) For any n the T-topology on An.K/ is the product of n copies of the T-topology
on A1.K/.

Proof. Fact 4.7 and the definition of the induced topology show that .1/ implies .2/. It is
immediate that .2/ implies .3/. We show that .3/ implies .1/. Suppose .3/. Let τ be the
T-topology on A1.K/. It is easy to see that τ is a field topology. By .3/, the Tτ-topology
agrees with the T-topology on any An.K/. By Lemma 4.2, Tτ D T.

4.4. Hausdorffness and disconnectedness

We will need an elementary topological fact whose verification we leave to the reader.

Fact 4.10. Suppose that S ! T is a continuous injection of topological spaces. If T is
Hausdorff then S is Hausdorff. If T is totally separated then S is totally separated.

A topology on K is affine invariant if it is invariant under affine transformations. If T
is a system of topologies, then the T-topology on A1.K/ D K is affine invariant, by (1)
of Definition 1.2 in the case where f is an affine transformation.

Lemma 4.11. Suppose that τ is an affine invariant topology on K. Then τ is Hausdorff if
and only if there are two non-empty τ-open sets with empty intersection.

This holds because the action of the affine group on K is 2-transitive; we omit the
details.

Proposition 4.12. The following are equivalent for any system T of topologies over K:

(1) There are disjoint non-empty T-open subsets U; V of A1.K/.

(2) The T-topology on A1.K/ is Hausdorff.

(3) The T-topology on V.K/ is Hausdorff for any quasi-projective K-variety V .

Proof. Lemma 4.11 shows that .1/ implies .2/. It is clear that .3/ implies .1/. We show
that .2/ implies .3/. Let V be a quasi-projective K-variety. Then there is a morphism
V ! Pn such that V.K/! Pn.K/ is injective. So by Fact 4.10 we may suppose that
V D Pn. Let a;b be distinct elements of Pn.K/. There is an open immersion ι WAn ,! Pn

such that a; b 2 ι.An.K//. Hence we may suppose that V D An. This case follows by an
application of Lemma 4.6 and the fact that a product of Hausdorff spaces is Hausdorff.

We do not know if Proposition 4.12 generalizes to arbitrary varieties.
We next discuss total separatedness. A clopen subset of S is non-trivial if it is not ;

or S .

Proposition 4.13. The following are equivalent for any system T of topologies over K:

(1) There is a non-trivial T-clopen subset of A1.K/.

(2) The T-topology on A1.K/ is totally separated.

(3) The T-topology on V.K/ is totally separated for any quasi-projective K-variety V .



The étale-open topology and the stable fields conjecture 4047

Again, we do not know if Proposition 4.13 extends to arbitrary varieties.

Proof of Proposition 4.13. We work in the T-topology. It is clear that .3/ implies .1/, and
.1/ implies .2/ as the action of the affine group on A1.K/ is 2-transitive. We show that .2/
implies .3/. We first show that P1.K/ is totally separated. Fix ˛;˛� 2P1.K/with ˛¤˛�.
Every linear fractional transformation gives a homeomorphism P1.K/! P1.K/. As the
action of the group of linear fractional transformations on P1.K/ is 3-transitive, we may
suppose that1 … ¹˛; ˛�º. Let U D P1.K/ n ¹˛�º and V D P1.K/ n ¹1º. Then U and
V are both homeomorphic to A1.K/. Choose clopen subsets O � U and P � V such
that ˛ 2 O ,1 … O , ˛ 2 V , ˛� … V . It is easy to see that O \ P is clopen in P1.K/ and
˛ 2 O \ P , ˛� … O \ P .

We now apply induction to show that Pn.K/ is totally separated for every n � 2. Fix
distinct ˛; ˛� 2 Pn.K/. Take ˇ 2 Pn.K/ not lying on the line through ˛; ˛�. We identify
the set of lines in Pn.K/ through ˇ with Pn�1.K/. Let U D Pn.K/ n ¹ˇº and define
� W U ! Pn�1.K/ by declaring �.b/ to be the line through ˇ; b. Then � is continuous
and �.˛/ ¤ �.˛�/. By induction there is a clopen O� � Pn�1.K/ such that �.˛/ 2 O�,
�.˛�/ … O�. Let O D ��1.O�/. Then O is a clopen subset of U and ˛ 2 O , ˛� … O .
By the same reasoning there is a clopen P � Pn.K/ n ¹˛�º such that ˛ 2 P , ˇ … P . It is
easy to see that O \ P is clopen in Pn.K/ and ˛ 2 O \ P , ˛� … O \ P .

Now suppose that V is a quasi-projective K-variety. Then there is a continuous mor-
phism V ! Pn such that the induced map V.K/! Pn.K/ is injective. Apply Fact 4.10.

4.5. Restriction and extension of systems

Throughout this section, L is an extension of K, TK is a system of topologies over K,
and TL is a system of topologies over L. We will show that TL “restricts” to a system
of topologies over K and if L=K is finite then TK “extends” to a system of topologies
over L. For example, the extension of the order topology over R to C will be the complex
analytic topology, and the restriction of the order topology over R to a subfield K of R
will be the order topology over K.

4.5.1. Restriction. Suppose V is aK-variety; recall that VL is the base change of V . Then
V.K/ is a subset of V.L/ and there is a canonical bijection V.L/! VL.L/. So we will
consider V.K/ to be a subset of VL.L/. Define the ResL=K.TL/-topology on V.K/ to be
the subspace topology induced by the TL-topology on VL.L/.

Proposition 4.14. ResL=K.TL/ .called the restriction of TL to K/ is a system of topolo-
gies over K.

Proof. Suppose that f W V !W is a morphism betweenK-varieties V;W . Then the map
fL W VL.L/! WL.L/ is TL-continuous. Note that f is the restriction of fL to V.K/.
Hence, f is ResL=K.TL/-continuous. It follows that if f W V ! W is an isomorphism
then f W V.K/! W.K/ is a ResL=K.TL/-homeomorphism.
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Suppose that f is an open immersion. We need to show that V.K/ ! W.K/ is a
ResL=K.TK/-open embedding. By the remark at the end of the previous paragraph, we can
assume V is an open subvariety ofW and f is the inclusion. By Fact 2.2, fL W VL! WL
is an open immersion, so we identify VL with an open subvariety of WL. We identify
W.L/ with WL.L/ and consider VL.L/;W.K/, and V.K/ as subsets of WL.L/. Suppose
that U is an ResL=K.TL/-open subset of V.K/. There is a TL-open U � � VL.L/ with
U D U � \ V.K/, hence U � is a TL-open subset of WL.L/. As U D U � \W.K/, U � is
a ResL=K.TL/-open subset of W.K/.

Closed immersions are handled via an identical argument, replacing “open” with
“closed”.

4.5.2. Restriction of Zariski and field topologies

Lemma 4.15. Suppose TK ; TL are the Zariski systems over K; L, respectively. Then
ResL=K.TL/ agrees with TK .

Proof. By Lemmas 4.2 and 4.4, it suffices to show that the ResL=K.TL/-topology on
An.K/ is coarser than the TK-topology. Let Z be a Zariski closed set in Ln; we must
show that Z \Kn is Zariski closed. Fix distinct f1; : : : ; fm 2 LŒx1; : : : ; xn� such that Z
agrees with ¹a 2 Ln W f1.a/ D � � � D fm.a/ D 0º. We easily reduce to the case m D 1.
Let S � L be the K-linear span of the coefficients of f D f1. Let ˇ1; : : : ; ˇd be a K-
linear basis of S . Then we can write f .x1; : : : ; xn/ D

Pd
iD1 ˇigi .x1; : : : ; xn/ for some

g1; : : : ;gd 2KŒx1; : : : ;xn�. The setZ \Kn is cut out by the equations g1D � � � D gd D 0,
so it is Zariski closed.

The following lemma shows that our notion of restriction agrees with the usual notion
over field topologies.

Lemma 4.16. Suppose that τ is a field topology on L and � is the induced subspace
topology on K. Then � is a field topology and ResL=K.Tτ/ agrees with T� .

The proof is easy and left to the reader.

4.5.3. Extension. Suppose L=K is finite. Let ŒL W K� D m and e1; : : : ; em be a K-basis
for L. Our choice of a basis allows us to identify each An.L/ with Amn.K/. We show
below that there is a system of topologies ExtL=K.TK/ on L such that the ExtL=K.TK/-
topology on every An.L/ agrees with the TK-topology on Amn.K/.

Proposition-Definition 4.17. There is a unique system of topologies ExtL=K.TK/ over L
such that if V is an affine L-variety then the ExtL=K.TK/-topology on V.L/ agrees with
the TK-topology on .ResL=K.V //.K/ via the natural bijection

V.L/! .ResL=K.V //.K/:

We call ExtL=K.TK/ the extension of TK to L.

Proposition 4.17 follows from the first two claims of Fact 2.6 and Lemma 4.3.
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Remark 4.18. The Weil restriction of an arbitrary L-variety need not exist, so Propo-
sition 4.17 involves affine varieties instead of arbitrary varieties. However, it can be
easily checked that if the Weil restriction of an L-variety V exists, then the ExtL=K.TK/-
topology on V.L/ agrees with the TK-topology on .ResL=K.V //.K/.

5. The étale-open topology: proof of Theorem A

In this section we prove Theorem A; see Lemmas 5.1–5.3 and Proposition 5.4 below. We
will use the basic properties of étale morphisms listed in Fact 2.2.

Recall that an étale image in V.K/ is a set of the form f .X.K// for some étale
morphism f W X ! V ofK-varieties. When we wish to keep track of the underlying field
we will write “K-étale image in V.K/”.

Lemma 5.1. Let V be aK-variety. The collection of étale images in V.K/ contains every
Zariski open subset of V.K/ and is closed under finite unions and finite intersections.
So the collection of étale images in V.K/ is a basis for a topology refining the Zariski
topology.

Proof. Suppose U � V.K/ is Zariski open. Then there is an open subvarietyO of V such
that U D O.K/. The inclusion O ,! V is an open immersion, hence étale. Thus U is an
étale image. Finite unions and intersections were handled in Lemma 3.3.

For each K-variety V , let EV be the topology on V.K/ with basis the étale images
in V.K/. We call EV the étale-open topology on V . We briefly give a more elementary
definition of the étale-open topology on Kn. Let P be the set of .f; g/ such that f; g 2
KŒx1; : : : ; xn; y�, f is monic in y, and the following equivalent conditions hold (here
Kalg is an algebraic closure of K and L is a field):

� ∂f=∂y does not vanish on the subvariety of An �A1 given by f D 0 ¤ g.

� ∂f=∂y is invertible in .KŒx1; : : : ; xn; y�=.f // Œ1=g�.

� If L extendsK and .˛;ˇ/2Ln�L satisfies f .˛;ˇ/D 0¤ g.˛;ˇ/ then .∂f=∂y/.˛;ˇ/

¤ 0.

� If .˛; ˇ/ 2 .Kalg/n �Kalg satisfies f .˛; ˇ/ D 0 ¤ g.˛; ˇ/ then .∂f=∂y/.˛; ˇ/ ¤ 0.

Then the collection of sets of the form ¹˛ 2 Kn W 9ˇ 2 K Œf .˛; ˇ/ D 0 ¤ g.˛; ˇ/�º for
.f; g/ 2 P forms a basis for the étale-open topology on Kn. This is immediate from the
definitions and the fact that every étale morphism is locally standard étale up to isomor-
phism. We omit the details as we will not require this at present.

We will show that the collection .EV /V 2VarK is a system of topologies such that
.V .K/; EV /! .W.K/; EW / is an open map for any étale morphism V ! W . Specif-
ically, for any K-variety morphism f W V ! W , we will show the following:

(1) f W .V .K/;EV /! .W.K/;EW / is continuous.

(2) If f is étale then f W .V .K/;EV /! .W.K/;EW / is an open map.
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(3) If f is a closed immersion then f W .V .K/;EV /! .W.K/;EW / is a closed embed-
ding.

Note that open immersions are étale (Fact 2.2 (1)), so (2) generalizes condition (2) of
Definition 1.2. We first establish (1) above.

Lemma 5.2. Suppose V ! W is a morphism of K-varieties and let f W V.K/! W.K/

be the induced map. If U is an étale image in W.K/ then f �1.U / is an étale image
in V.K/. Hence, f W .V .K/;EV /! .W.K/;EW / is continuous.

Proof. The second statement is immediate from the first so we only treat the first. Suppose
h W X ! W is an étale morphism of K-varieties and U D h.X.K//. By Fact 2.2 (3), the
map g W X �W V ! V given by the pullback square is étale. As the K-points functor
preserves pullback squares, the diagram

.V �W X/.K/ //

g

��

X.K/

h

��

V.K/
f

// W.K/

is also pullback square. Therefore, .f /�1.U / D g..V �W X/.K// is an étale image.

Next, we verify (2).

Lemma 5.3. Suppose f W V ! W is an étale morphism of K-varieties. If U is an
étale image in V.K/ then f .U / is an étale image in W.K/. Hence, f W .V .K/;EV /!
.W.K/;EW / is an open map.

Proof. Let X be a K-variety, h W X ! V be an étale morphism, and U D h.X.K//. By
Fact 2.2, f ı h W X ! W is étale, so f .U / D .f ı h/.X.K// is an étale image.

Now we check (3).

Proposition 5.4. Let V;W be K-varieties and f W V ! W be a closed immersion. Then
every étale image in V.K/ is the inverse image under f of an étale image in W.K/.
Therefore f W .V .K/;EV /! .W.K/;EW / is a closed embedding.

Proof. Without loss of generality, we may assume that V is a closed subvariety ofW and
f is the inclusion map. Then V.K/ is a closed subset ofW.K/ in the étale-open topology
by Lemma 5.1. As f is continuous with respect to the étale-open topology, the étale-open
topology on V.K/ refines the induced subspace topology.

It remains to show that the subspace topology on V.K/ � .W.K/; EW / refines the
étale-open topology on V.K/. Suppose that U is an étale image in V which is given by
an étale map g W X ! V . Let p be a scheme-theoretic point of X . Then by Fact 2.3, we
get a Zariski open neighborhoodOp of p in X and an étale morphism hp W Yp ! W such
that Op is isomorphic to Yp �W V as V -schemes. For each p, let U 0p � W.K/ be the
image of Yp.K/ under hp . By compactness of the Zariski topology on X , there is a finite
set � � X such that .Op/p2� forms a finite cover over X . Then .U 0p \ V.K//p2� is a



The étale-open topology and the stable fields conjecture 4051

finite cover of U . By Lemma 5.1,
S
p2� U

0
p is an étale image in W , so we get the first

statement. The second statement is immediate.

This completes the proof of Theorem A—the collection .EV /V 2VarK is a system of
topologies. We call this the étale-open system of topologies on K.

If T is a system of topologies overK, say that T turns étale morphisms into open maps
if, for any étale-morphism V ! W , the map V.K/! W.K/ is T-open. By Lemma 5.3,
the étale-open system of topologies turns étale morphisms into open maps.

Proposition 5.5. The étale-open system of topologies is the coarsest system of topologies
which turns étale morphisms into open maps.

Proof. Suppose T turns étale morphisms into open maps. We claim that TV refines EV
for each K-variety V . It suffices to show that every étale-image in V.K/ is T-open. Let
f W W ! V be étale. Then W.K/! V.K/ is a T-open map, so its image is T-open.

Proposition 5.5 is the original reason for the name “étale-open topology”.

Lemma 5.6. Suppose that T is a system of topologies over K. If V.K/ ! W.K/ is
T-open for any étale morphism V ! W of affine K-varieties then V.K/ ! W.K/

is T-open for any étale morphism V ! W of K-varieties.

The proof is similar to that of Lemma 4.3.

5.1. Extension and restriction of the étale-open system of topologies

We prove two useful results about extension and restriction of the étale-open system of
topologies.

Proposition 5.7. Suppose that L=K is finite. Then ExtL=K.EK/ refines EL.

Proof. By Fact 2.7 and Lemma 5.6, V.L/! W.L/ is an ExtL=K.EK/-open map for any
étale morphism V ! W of L-varieties. Therefore any L-étale image is ExtL=K.EK/-
open.

Suppose L is an algebraic extension of K. We show below that EK is the discrete
system of topologies if and only if K is not large. So by Fact 3.2 we see that if EL is
discrete then EK is discrete. The following theorem is therefore a topological refinement
of Fact 3.2.

Theorem 5.8. Suppose that L=K is algebraic. Then EK refines ResL=K.EL/.

We first prove a lemma.

Lemma 5.9. Suppose that L is a finite extension of K, V is a K-variety such that
ResL=K.VL/ exists and U � VL.L/ is an L-étale image. Then U \ V.K/ is a K-étale
image. In particular, if U � AnL.L/ is an L-étale image then U \ An.K/ is a K-étale
image.
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Proof. Let X be an L-variety and h W X ! VL be an étale morphism such that U D
h.X.L//. Let X1; : : : ; Xn be affine open subvarieties of X covering X . Let X� be the
disjoint union of X1; : : : ; Xn and h� be the natural morphism X� ! VL. Then X� is
affine, h is étale, and U D h�.X�.L///. Replacing X with X�, we may assume that X
is affine. This ensures that ResL=K.X/ exists. Let g D ResL=K.h/; this is an étale mor-
phism ResL=K.X/! ResL=K.VL/ by Fact 2.6. As before, we identify .ResL=K.VL//.K/
and VL.L/. Then U is a K-étale image in .ResL=K.VL//.K/. By Fact 2.4 the natural
morphism V ! ResL=K.VL/ is a closed immersion. By Proposition 5.4, U \ V.K/ is a
K-étale image in V.K/.

Proof of Theorem 5.8. The case when L=K is finite follows by Lemmas 4.2 and 5.9.
Suppose that L=K is infinite. By Lemma 4.2 it suffices to fix an affine K-variety V
and show that the EK-topology on V.K/ refines the ResL=K.EL/-topology. Let X be an
L-variety and g W X ! VL be an étale morphism. We show that

U D g.X.L// \ V.K/

is EK-open. Let K � J � L be a finite extension such that X and g are defined over J .
So there is a J -variety Y and a morphism f W Y ! VJ such that X D YL and g D fL.
Then U is the union of the fM .YM .M// \ V.K/ where M ranges over finite extensions
J �M � L. By the finite case each fM .YM .M// \ V.K/ is EK-open.

We will use the following proposition to show that the étale-open topology over a
separably closed field agrees with the Zariski topology.

Proposition 5.10. SupposeL=K is purely inseparable. ThenEK agrees with ResL=K.EL/.

We let k.a/ be the residue field of a scheme-theoretic point a on a K-variety V .

Proof of Proposition 5.10. A purely inseparable extension is algebraic so by Theorem 5.8
it suffices to show that ResL=K.EL/ refines EK . Let f W X ! V be an étale morphism of
K-varieties and U D f .X.K//. We show that U is ResL=K.EL/-open. The base change
fL W XL ! VL is étale by Fact 2.2. Let U 0 D fL.XL.L//. It suffices to show that U D
U 0 \ V.K/. We have U � U 0 \ V.K/ so it is enough to fix a 2 U 0 \ V.K/ and show
that a 2 U . Then a is a point in V with k.a/ D K. Let fa W Xa ! a be the scheme-
theoretic fiber of X over a. Since a is in U 0 and we identify XL.L/ and X.L/, there is
a (scheme-theoretic) point b 2 Xa with k.b/ embeddable into L. Furthermore fa is étale
as it is the base change of an étale morphism. Hence, k.b/ is a separable extension of K.
The only separable extension of K in L is K, so k.b/ D K. Thus b is a K-point of X ,
which implies that a is in U .

6. Classical examples and generalizations

In this section we show that the étale-open topology agrees with known topologies on
separably closed fields and t-Henselian fields. This covers many natural examples.
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6.1. Separably closed fields

By Lemma 4.4 the étale-open topology always refines the Zariski topology. The converse
holds when K is separably closed.

Proposition 6.1. Suppose K is separably closed. Then the étale-open topology on V.K/
agrees with the Zariski topology for any V .

Proof. First suppose thatK is algebraically closed. By Lemma 4.4 it suffices to show that
the Zariski topology refines EV . Let f W X ! V be an étale morphism of K-varieties
and U D f .X.K//. We show that U is Zariski open in V.K/. The image of f W X ! V

(the map on scheme-theoretic points) is an open subset O of V by Fact 2.2 (4), and O
naturally carries the structure of an open subvariety of V . As K is algebraically closed,
we have U D O.K/.

Now suppose that K is separably closed. Fix an algebraic closure L of K. Then EL
is the Zariski topology over L. Furthermore, L is a purely inseparable extension of K, so
EK agrees with ResL=K.EL/ by Proposition 5.10. Apply Lemma 4.15.

6.2. t-Henselian fields

We first recall some definitions.

Definition 6.2. Let τ be a non-discrete field topology on K. A subset B of K is said to
be τ-bounded if for every open neighborhood U of zero there is a non-zero a 2 K such
that a � B � U . It is easy to see that any finite subset of K is bounded and the collection
of bounded sets is closed under finite unions, subsets, and additive and multiplicative
translates. Then τ is a V-topology if .K n U/�1 is bounded for any neighborhood U of
zero.

It is easy to see that the topology on K associated to any field order, non-trivial val-
uation, or non-trivial absolute value is a V-topology. The following converse is due to
Kowalsky and Dürbaum, and independently Fleischer.

Fact 6.3 ([11, Theorem B.1]). Suppose that τ is a field topology onK. If τ is a V-topology
then τ is induced by some absolute value or valuation on K.

We now recall the topological analogue of Henselianity.

Definition 6.4. Let τ be a field topology on K. Then τ is t-Henselian if

(1) τ is a V-topology,

(2) for any n there is a τ-open neighborhood U of 0 such that if ˛0; : : : ; ˛n 2 U then
xnC2 C xnC1 C ˛nx

n C � � � C ˛1x C ˛0 has a root in K.

If K admits a t-Henselian topology then we say that K is t-Henselian.

The concept of t-Henselianity is due to Prestel and Ziegler [25]. A valuation topol-
ogy induced by a non-trivial Henselian valuation is t-Henselian, and so is the order
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topology on a real closed field. Prestel and Ziegler show that if K is elementarily equiv-
alent to a t-Henselian field and is not separably closed then K is t-Henselian, and if
K is @1-saturated and t-Henselian then K admits a non-trivial Henselian valuation. So
a non-separably-closed field is t-Henselian if and only if it is elementarily equivalent
to a Henselian field. They also show that a non-separably-closed field admits at most
one t-Henselian topology. So if K is not separably closed then we refer to the unique
t-Henselian topology on K as the t-Henselian topology.

Theorem 6.5. Suppose that K is t-Henselian and not separably closed. Then the étale-
open system of topologies over K is induced by the t-Henselian topology.

We will need several lemmas. We let Tτ be the system of topologies induced by a field
topology τ on K.

Fact 6.6. Suppose that τ is a t-Henselian topology on K, V and W are K-varieties, and
f W V ! W is an étale morphism. Then f W V.K/! W.K/ is Tτ-open.

Fact 6.6 is essentially [16, Proposition 2.8]. They only state the result for perfect fields,
but their proof goes through exactly as written without the assumption of perfection.

Fact 6.6 and Proposition 5.5 show that Tτ refines EK when τ is t-Henselian. We now
prove some general lemmas which will be used to show the other direction: EK refines Tτ.

Lemma 6.7. Suppose that τ0 is an affine invariant topology on K, τ1 is a non-discrete
field topology on K, and some non-empty X � K is τ0-open and τ1-bounded. Then τ0

refines τ1.

Proof. After translating if necessary we suppose that zero is in X . Let U be a non-empty
τ1-open subset of K. So for every ˇ 2 U there is ˛ˇ 2 K� such that ˛ˇX � U � ˇ. As
τ0 is affine invariant, ˛ˇX C ˇ is τ0-open for all ˇ 2 U . So U D

S
ˇ2U .˛ˇX C ˇ/ is

τ0-open.

Lemma 6.8. Let ι W A1 ,! P1 be the open immersion given by ι.x/ D .x W 1/. Suppose
that τ is a V-topology on K. Then a subset X of A1.K/ is τ-bounded if and only if1 is
not in the Tτ-closure of ι.X/.

We let Cl.X/ be the Tτ-closure of X � P1.K/.

Proof. As τ is a V-topology, X is τ-bounded if and only if zero is not in the closure of
.X n ¹0º/�1. Observe that 0 is not in Cl..X n ¹0º/�1/ if and only if1 is not in Cl.ι.X//.

Lemma 6.9. Suppose that S is a system of topologies overK and τ is a V -topology onK.
Suppose some non-empty S-open U � A1.K/ is not τ-dense in A1.K/. Then S refines Tτ.

Proof. By Lemmas 4.8 and 6.7 it suffices to produce a subset of A1.K/ which is S-open
and τ-bounded. Fix ˛ 2 A1.K/ such that ˛ does not lie in the τ-closure of U . We let
f W P1.K/ ! P1.K/ be given by f .x/ D 1=.x � ˛/. Both the S-topology and the
Tτ-topology on P1.K/ are invariant under linear fractional transformations, so f .U / is
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S-open in P1.K/ and 1 D f .˛/ is not in the Tτ-closure of V . By Lemma 6.8, the set
f .U / � A1.K/ is τ-bounded.

Lemma 6.10. Suppose that τ is a V-topology onK. Suppose f 2KŒx� is such that f 0 6� 0
and f .A1.K// is not τ-dense in A1.K/. Then EK refines Tτ.

Proof. Let U be the open subvariety of A1 given by f 0.x/ ¤ 0. So f gives an étale
morphism U ! A1. Then f .U.K// is an étale image in A1.K/ and f .U.K// is not
τ-dense in A1.K/. An application of Lemma 6.9 shows that EK refines Tτ.

Fact 6.11 ([25, Lemma 7.5]). Suppose that τ is a t-Henselian topology onK and f 2KŒx�
is separable and has no zeros in K. Then zero is not a τ-limit point of f .A1.K//.

Proof of Theorem 6.5. Let τ be the t-Henselian topology on K. By Fact 6.6,
Tτ refines EK . As K is not separably closed, there is a non-constant irreducible sepa-
rable f 2 KŒx�. Then f 0 6� 0. By Fact 6.11, f .A1.K// is not τ-dense. By Lemma 6.10,
EK refines Tτ.

Theorem 6.5 is the first claim of Theorem B. The second claim will be proven in §7.3.

Corollary 6.12. Suppose that K is real closed. Then the étale-open system of topologies
over K is induced by the order topology on K.

Corollary 6.13. Suppose that .K; v/ is a Henselian valued field, and K is not separa-
bly closed. Then the étale-open system of topologies over K is induced by the valuation
topology.

6.3. Field orders and valuations

In this section we show that the étale-open topology on a general field refines several other
kinds of field topologies. We first handle order topologies.

Proposition 6.14. Suppose < is a field order on K. Then EK refines the <-topologies.

Proof. Note that the <-topology is a V-topology. Let f 2 KŒx� be f .x/ D x2. As K is
ordered, Char.K/ D 0 so f 0 6� 0. The set of squares is not <-dense in A1.K/. Apply
Lemma 6.10.

Given a valued field .L; v/ we let �v be the value group, kv be the residue field, and
Tv be the induced system of topologies over L. We refer to [11, Chapter 5] for an account
of the Henselization of a valued field.

Theorem 6.15. Suppose that v is a non-trivial valuation on K and the Henselization of
.K; v/ is not separably closed. Then EK refines Tv .

We first prove a lemma.

Lemma 6.16. Suppose that v is a valuation on K and .L; w/ is an extension of .K; v/.
Then ResL=K.Tw/ refines Tv . If �w D �v then Tv agrees with ResL=K.Tw/.
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Proof. Let τ be the subspace topology on K induced by w. Then τ is a field topology.
By Lemma 4.16, Tτ agrees with ResL=K.Tw/. As w is an extension of v, τ refines the
v-topology on K. By Lemma 4.8, Tτ refines Tv . Now suppose that �v D �w . We show
that Tv refines Tτ. By Lemma 4.8, it suffices to show that the v-topology on K refines τ.
Fix a 2 L, 
 2 �w , and let B be the w-ball ¹a� 2 L W w.a � a�/ > 
º. It suffices to show
that B \K is v-open. We may suppose that B \K is non-empty and fix b 2 B \K. By
the ultrametric triangle inequality, B \K is the set of b� 2 K such that v.b � b�/ > 
 .
As 
 2 �v , we see that B \K is a v-ball, hence is v-open.

Proof of Theorem 6.15. Let .L; w/ be the Henselization of .K; w/. Then EL agrees
with Tw since w is a non-trivial Henselian valuation on L. As .L; w/ is an immediate
extension of .K; v/, ResL=K.EL/ agrees with Tv by Lemma 6.16. As L=K is algebraic,
EK refines ResL=K.EL/ by Theorem 5.8.

Corollary 6.17. Suppose v is a non-trivial valuation on K and either

(1) �v is not divisible, or

(2) kv is not algebraically closed.

Then EK refines Tv . In particular, EK refines Tv for any non-trivial discrete valuation v
on K.

Proof. Suppose that EK does not refine Tv and let .L;w/ be the Henselization of .K; v/.
Then �w D �v and kw D kv . By Theorem 6.15, L is separably closed. A non-trivial
valuation on a separably closed field has divisible value group and algebraically closed
residue field [11, §3.2.11].

In characteristic zero, Corollary 6.17 is equivalent to Theorem 6.15, because a char-
acteristic zero Henselian valued field is algebraically closed if and only if it has divisible
value group and algebraically closed residue field. This fails in positive characteristic.
The field Fphhtii of Puiseux series over the algebraic closure Fp of Fp is Henselian, the
canonical valuation on Fphhtii has value group .Q;C/ and residue field Fp , and Fphhtii
is not separably closed.

We conclude by describing a proof of Proposition 6.14 along the lines of Theo-
rem 6.15. Suppose that < is a field order on K. Let L be the real closure of .K; </.
By Corollary 6.12, EL is induced by the order topology over L. As L=K is algebraic,
EK refines ResL=K.EL/ and ResL=K.EL/ is induced by the order topology on K by
Lemma 4.16.

7. Field-theoretic versus topological properties

We relate topological properties of EK to algebraic properties of K.

7.1. Discreteness

The étale-open topology is only non-trivial over large fields.
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Theorem 7.1. The following are equivalent:

(1) K is not large.

(2) EK is the discrete system of topologies.

(3) There is a K-variety V such that V.K/ is infinite and .V .K/;EK/ is discrete.

(4) There is an irreducible K-variety V of dimension � 1 and a smooth p 2 V.K/ such
that p is EK-isolated in V.K/.

This generalizes Lemma 3.5. The proof requires a few lemmas.

Fact 7.2 ([24, Proposition 2.6]). Suppose that K is large and V is a smooth irreducible
K-variety of dimension at least 1. If V.K/ is non-empty then V.K/ infinite.

If V is aK-variety and S � V.K/, say that S is Zariski dense in V if every non-empty
open subvariety U � V has U.K/ \ S ¤ ;.

Remark 7.3. Let V be aK-variety and S be a subset of V.K/. Let t W V.K/! V be the
map sending aK-point to the corresponding scheme-theoretic point. Let t .S/ � V be the
image, and letW be the closure t .S/ with the reduced induced subvariety structure. Then
W is the smallest closed subvariety of V such that W.K/ � S . We call W the Zariski
closure of S . Note that W is reduced and S is Zariski dense in W.K/.

Lemma 7.4. Let V be a K-variety and suppose that V.K/ is Zariski dense in V . Then
U.K/ is Zariski dense in U for every irreducible component U of V .

Proof. Let U1; : : : ; Un be the distinct irreducible components of W , so in particular
Ui \ Uj ¨ Ui for all i; j . Suppose that U1.K/ is not Zariski dense in U1. Then there
is a proper Zariski closed subset U �1 of U1 containing U1.K/. Then V.K/ is a subset of
U �1 [ U2 [ � � � [ Un. As U �1 and each Ui are Zariski closed, we have V D U �1 [ U2 [
� � � [ Un. Then U1 is a subset of U �1 [ .U1 \ U2/ [ � � � [ .U1 \ Un/. This contradicts
irreducibility of U1.

Lemma 7.5. Let V be an n-dimensional reduced K-variety with V.K/ Zariski dense
in V . Then there is a non-empty open subvariety U � V such that U is smooth of dimen-
sion n.

Proof. Recall thatVsm andVreg are the smooth locus and the regular locus of aK-varietyV ,
respectively. By Fact 2.1, Vsm and Vreg are open subvarieties of V . We claim that dimVsmD

dim V . If not, there is a non-empty open subvariety U � V such that U \ Vsm D ;. By
Fact 2.1, Ureg is non-empty. Then Ureg.K/ ¤ ; as V.K/ is Zariski dense in V . Take
p 2 Ureg.K/. Then p is a regular point of V as well. By Fact 2.1, Vreg.K/ D Vsm.K/.
Therefore, p 2 Vsm.K/. Then Vsm \ U ¤ ;, a contradiction. This shows that dimVsm D

dimV D n. One of the connected components of Vsm is smooth of dimension n.

Proof of Theorem 7.1. .1/).2/. Suppose that K is not large. By Proposition 4.5 it is
enough to show that the étale-open topology on A1.K/ is discrete. As the action of the
affine group on A1.K/ is transitive, it suffices to show that some singleton subset of
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A1.K/ is EK-open. As the EK-topology on A1.K/ is T1, it suffices to produce a non-
empty finite EK-open subset of A1.K/. Let X be a smooth K-variety of dimension 1
such that X.K/ is finite and non-empty. Fix p 2 X.K/. Let f 2 Op be a local coordinate
at p. Then there is an open subvariety U of X containing p such that f gives an étale
morphism U ! A1. So f .U.K// is a non-empty finite étale image in A1.K/.

.2/).3/ is immediate.

.3/).4/. Suppose that V is a K-variety and V.K/ is infinite and EK-discrete. Let
W be the Zariski closure of V.K/ in V . As V.K/ is infinite, dimW � 1. Let W � be a
positive-dimensional irreducible component of W . Then W �.K/ is Zariski dense in W �

by Lemma 7.4. Let O be the smooth locus of W �. Then O is an open subvariety of W �.
By Lemma 7.5,O is non-empty, soO.K/ is non-empty, and any p 2O.K/ is EK-isolated
in W �.K/.

.4/).1/. Suppose that p 2 V.K/ is EK-isolated and smooth. Let O be the smooth
locus of V . Then p is EK-isolated in O.K/ and O is a non-empty open subvariety of V .
By irreducibility of V , one has dimO D dim V . Let X be a K-variety and f W X ! O

be an étale morphism such that f .X.K// D ¹pº. Then dimX D dimO D dim V � 1,
X is smooth asO is smooth, and X.K/ is finite as X.K/! O.K/ is finite-to-one. Apply
Fact 7.2.

7.2. Hausdorffness

Theorem 7.6. The following are equivalent:

(1) K is not separably closed.

(2) The EK-topology on V.K/ is Hausdorff for any quasi-projective K-variety V .

We first gather a few lemmas.

Lemma 7.7. Suppose L=K is finite and the EL-topology on A1L.L/ is Hausdorff. Then
the EK-topology on A1.K/ is Hausdorff.

Proof. The ResL=K.EL/-topology on K is Hausdorff since a subspace of a Hausdorff
space is Hausdorff. By Theorem 5.8, EK refines ResL=K.EL/, so the EK-topology on K
is Hausdorff.

We can now prove Theorem 7.6, following part of the proof of Theorem D.

Proof of Theorem 7.6. Proposition 6.1 shows that .2/ implies .1/. We show that .1/
implies .2/. Suppose that K is not separably closed. By Proposition 4.12 and Lemma 7.7
it suffices to produce a finite extension L of K and a disjoint pair of non-empty EL-open
subsets of A1L.L/. By Lemma 3.6 there is a finite extension L of K such that either

(1) the pth power map L� ! L� is not surjective for some prime p ¤ Char.K/, or

(2) the Artin–Schreier map L! L is not surjective.

In the first case we fix p and let P be the image of the pth power map Gm.L/! Gm.L/,
and in the second case we letP be the image of the Artin–Schreier map A1L.L/!A1L.L/.
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In the first case P is a non-trivial EL-open subgroup of Gm.L/ and in the second case P
is a non-trivial EL-open subgroup of the additive group of L. Fix ˛ 2 Gm.L/ n P . In the
first case let P � D ˛P and in the second case let P � D ˛ C P . In either case P;P � are
non-empty disjoint EL-open subsets of A1L.L/.

Corollary 7.8 below follows from Proposition 6.1 and Theorem 7.6.

Corollary 7.8. The étale-open topology over K agrees with the Zariski topology if and
only if K is separably closed.

7.3. V-topologies

We complete the proof of Theorem B. We first prove a lemma.

Lemma 7.9. Fix n� 2. Then there is an étale image U �AnC1.K/ containing .0; : : : ; 0/
such that xnC2 C xnC1 C ˛nxn C � � � C ˛1x C ˛0 has a root in K for any .˛0; : : : ; ˛n/
2 U .

Proof. Let V be SpecKŒy0; : : : ; yn; x�=.xnC2 C xnC1 C ynxn C � � � C y1x C y0/. So
V is an affine subvariety of AnC2.K/. Let � W V ! AnC1 be the projection onto the first
nC 1 coordinates. We claim that � is étale at .0; : : : ; 0;�1/. As V has dimension nC 1,
it suffices to check that .0; : : : ; 0;�1/ is a regular point and � induces a surjective map
between the tangent spaces. The tangent space of V at .0; : : : ; 0;�1/ is given by

nX
iD0

.�1/iyi C
�
.nC 2/.�1/nC1 C .nC 1/.�1/n

�
.x C 1/ D 0:

Simplifying, we get .�1/nC1.x C 1/C
Pn
iD0.�1/

iyi D 0. So the induced map on the
tangent space is an isomorphism as the coefficient of xC 1 is non-zero. So there is an open
subvarietyW of V containing .0; : : : ; 0;�1/ on which � is étale. Let U be �.W.K//.

Theorem 7.10. Suppose that there is a V-topology τ on K that induces the étale-open
system of topologies EK . Then τ is t-Henselian and K is not separably closed.

Proof. Note that EK is not the Zariski topology, and hence K is not separably closed by
Proposition 6.1. Fix n. As the Tτ-topology on An.K/ is the product topology, Lemma 7.9
implies that there is a τ-open neighborhood U of 0 such that if ˛0; : : : ; ˛n 2 U then
the polynomial xnC2 C xnC1 C ˛nxn C � � � C ˛1x C ˛0 has a root in K. Hence τ is
t-Henselian.

Theorems 6.5 and 7.10 are the two claims of Theorem B.

Theorem 7.11. The following are equivalent:

(1) K is non-separably-closed and t-Henselian.

(2) There is a t-Henselian topology τ on K that induces EK .

(3) There is a V-topology τ on K that induces EK .
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Proof. Theorem 6.5 shows that .1/ implies .2/. T-Henselian topologies are V-topologies
by definition, so .2/ implies .3/. Lastly, .3/ implies .1/ by Theorem 7.10.

Remark 7.12. Theorem 7.11 characterizesK such that EK is induced by a V-topology. It
is an open question to characterizeK such that EK is induced by a field topology. Suppose
R is a Henselian regular local ring of dimension � 2 and L is the fraction field of R.
Pop [23] shows that L is large. Furthermore, ¹˛R C ˇ W ˛ 2 L�; ˇ 2 Lº is a basis for a
field topology on L which is not a V-topology. In forthcoming work we will show that EL
is induced by this field topology. This covers R D F ŒŒx1; : : : ; xn�� for an arbitrary field F
and n� 2. In Section 8 we show that ifK is either pseudofinite of odd characteristic or an
infinite non-quadratically-closed algebraic extension of an odd characteristic finite field
then EK is not induced by a field topology. We believe, more generally, that ifK is pseudo
real closed and not real closed then EK is not induced by a field topology. In particular, if
K is PAC then we believe that EK is not given by a field topology. Likewise, we believe
that if K is pseudo p-adically closed and not p-adically closed, then EK is not induced
by a field topology.

We conclude this section with two corollaries to Theorem B.

Corollary 7.13. Suppose that < is a field order on K. Then the étale-open topology over
K is induced by < if and only if the <-topology on K is t-Henselian.

Corollary 7.13 follows from Theorem 6.5, Theorem 7.10, the fact that the <-topology
is a V-topology, and the observation that an ordered field is not separably closed. Ex-
amples of non-real-closed t-Henselian ordered fields include F..t// for an arbitrary
ordered field F .

Corollary 7.14. Suppose that K is @1-saturated. The following are equivalent:

(1) K is non-separably-closed and Henselian.

(2) EK is induced by a non-trivial Henselian valuation on K.

(3) EK is induced by a non-trivial valuation on K.

Corollary 7.14 follows from Theorem 7.11 and the fact that any t-Henselian topology
on an @1-saturated field is induced by a Henselian valuation [25].

7.4. Connectedness

It is a central idea in real algebraic geometry that an ordered field .L;</ is real closed if
and only if the <-topology is “connected” with respect to polynomial functions. We give
a similar characterization in terms of the étale-open topology. We show that K is neither
separably closed nor real closed if and only if there is a non-trivial EK-clopen étale image
in A1.K/. As a corollary we show that the étale-open topology on A1.K/ is connected if
and only if K is either separably closed or isomorphic to R.

Suppose V is aK-variety. A clopen étale image is an EK-closed étale image in V.K/.
We say that V.K/ is étale connected if the only clopen étale images in V.K/ are ; and
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V.K/, and V.K/ is étale disconnected otherwise. We say V.K/ is étale totally separated
if for any distinct ˛; ˇ 2 V.K/ there is a clopen étale image U in V.K/ such that ˛ 2 U ,
ˇ … U .

Theorem 7.15. Suppose K is not separably closed. The following are equivalent:

(1) A1.K/ is not étale connected.

(2) A1.K/ is étale totally separated.

(3) V.K/ is étale totally separated for any quasi-projective K-variety V .

(4) K is not real closed.

Furthermore, the following are equivalent:

(5) The EK-topology on A1.K/ is not connected.

(6) The EK-topology on A1.K/ is totally separated.

(7) .V .K/;EK/ is totally separated for any quasi-projective K-variety V .

(8) K is not isomorphic to R.

We first gather some lemmas.

Lemma 7.16. Let L be a finite extension of K. If A1L.L/ is étale disconnected then
A1.K/ is étale disconnected.

Proof. Suppose that U is a non-trivial clopen L-étale image in A1L.L/. After applying
an affine transformation A1L ! A1L we suppose that 0 2 U , 1 … U . By Theorem 5.8,
U \ A1.K/ is an EK-clopen subset of A1.K/. By Lemma 5.9, U \ A1.K/ is a K-étale
image.

Lemma 7.17. Suppose n is prime to Char.K/. Then the set of non-zero nth powers is
a clopen étale image in Gm.K/. If K has positive characteristic then the image of the
Artin–Schreier map A1.K/! A1.K/ is a clopen étale image in A1.K/.

Lemma 7.17 follows by the same argument as in the case of a field topology and the
fact that the nth power map is étale when n is prime to Char.K/. We omit the proof.

Lemma 7.18 below will be used to analyze the image of the nth power map. The
frontier of a subset X of a topological space S is the set of closure points p 2 S of X
such that p … X .

Lemma 7.18. Suppose that T is a non-discrete system of topologies over K. Fix n and
let P be the set of non-zero nth powers. Then zero is a T-frontier point of P .

Proof. By Proposition 4.5, the T-topology on A1.K/ is non-discrete. As the T-topology
is invariant under affine transformations, no point of A1.K/ is isolated. LetU be a T-open
neighborhood of zero and f W A1.K/! A1.K/ be given by f .a/ D an. We show that
P \ U ¤ ;. As f is continuous, there is a T-open neighborhood V of zero such that
f .V / � U . By non-discreteness, V n ¹0º is non-empty. As f .V n ¹0º/ � P , we have
P \ U ¤ ;.
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Proof of Theorem 7.15. It is clear that .2/ implies .1/, and .1/ implies .2/ as the action of
the affine group on A1.K/ is 2-transitive and an affine image of an étale image in A1.K/
is an étale image. The implication .3/).2/ is immediate, and .2/).3/ may be proven
by following the proof of Proposition 4.13 and applying Lemma 5.2 when necesssary.

It remains to show that .1/ and .4/ are equivalent. We show that .1/ implies .4/.
Suppose K is real closed. By Corollary 6.12 the étale-open topology agrees with the
order topology on A1.K/. By the Tarski–Seidenberg theorem every étale image in A1.K/
is semialgebraic and is hence a finite union of intervals. It is easy to see that a clopen finite
union of intervals must be either ; or A1.K/.

We show that .4/ implies .1/.

Claim. Suppose p ¤ Char.K/ is prime, the pth power map Gm.K/! Gm.K/ is not
surjective, and �1 is a pth power. Then A1.K/ is étale disconnected.

Proof. We work in the étale-open topology. If A1.K/ is discrete then it is disconnected,
so we suppose that A1.K/ is not discrete. Let P be the set of non-zero pth powers. By
Lemma 7.17, P is an étale image in A1.K/. By Lemma 5.1, P [ .1 C P / is an étale
image in A1.K/. We show that P [ .1 C P / is a non-trivial clopen subset of A1.K/.
It suffices to show that P [ .1 C P / is closed and P [ .1 C P / ¤ A1.K/. We first
show that P [ .1 C P / is closed. By Lemma 7.17, P is clopen in Gm.K/, and so 0
is the only possible frontier point of P . Then 1 is the only possible frontier point of
1C P . Suppose that ˛ 2 A1.K/ is a frontier point of P [ .1C P /. Observe that ˛ … P ,
˛ … 1C P , and ˛ is a limit point of either P or 1C P . So either ˛ D 0 or ˛ D 1. This
is a contradiction as 1 2 P and 0 2 1C P . We now show that P [ .1C P / ¤ A1.K/.
Fix ˇ 2 Gm.K/ n P . As P is clopen in Gm.K/, there is an open neighborhood W of ˇ
such that W \ P ¤ ;. Then W � ˇ is an open neighborhood of 0 so we may fix 
 2
P \ .W � ˇ/, by Lemma 7.18. Note that ˇ C 
 2 W . As �1 2 P , we have �1=
 2 P .
As �1=
 2 P and ˇ;ˇC 
 … P , we have �ˇ=
 … P and �ˇ=
 � 1D�.ˇC 
/=
 … P .
Therefore �ˇ=
 … P [ .1C P /. Claim

Suppose that K is not real closed and let i2 D �1. By Fact 3.7, KŒi� is neither sepa-
rably closed nor real closed. By Lemma 3.6 there is a finite extension L of KŒi� such that
either

(1) the Artin–Schreier map L! L is not surjective, or

(2) there is a prime p¤Char.L/ such that the pth power mapL�!L� is not surjective.

In the first case A1L.L/ is étale disconnected by Lemma 7.17. In the second case an appli-
cation of the Claim shows that A1L.L/ is étale disconnected. Apply Lemma 7.16.

Proposition 4.13 shows the equivalence of (5)–(7). The equivalence of .5/ and .8/
follows by the argument above and the fact that any connected ordered field is isomorphic
to R. This completes the proof of Theorem 7.15.

We now record two model-theoretic corollaries. Recall that if V is a K-variety and
τ is a topology on V.K/ then V.K/ is definably connected if there are no non-trivial
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definable τ-clopen subsets of V.K/, and is definably totally separated if for any distinct
a; b 2 V.K/ there is a definable clopen subset U of V.K/ such that a 2 U , b … U .

Corollary 7.19. The following are equivalent:

(1) A1.K/ is not definably connected.

(2) A1.K/ is definably totally separated.

(3) V.K/ is definably totally separated for any quasi-projective K-variety V .

(4) K is neither separably closed nor real closed.

Corollary 7.19 follows by Theorem 7.15 and the well-known fact that the order topol-
ogy on a real closed field is definably connected.

Corollary 7.20. If there is a non-trivial definable EK-clopen subset of A1.K/ then there
is a non-trivial existentially definable EK-clopen subset of A1.K/.

Corollary 7.20 follows from Theorem 7.15, Corollary 7.19, and the fact that any K-
étale image is existentiallyK-definable. Corollary 7.20 is similar in spirit to Corollary 3.8
and Section 9.2 below.

7.5. Local compactness

IfK is separably closed then EK agrees with the Zariski topology, hence the EK-topology
on the K-points of any K-variety is compact.

Theorem 7.21. Suppose that K is not separably closed. The following are equivalent:

(1) There is a K-variety V and an infinite EK-open subset U of V.K/ such that .U;EK/
is locally compact.

(2) The étale-open topology on A1.K/ is locally compact.

(3) K is a local field, i.e., K admits a locally compact field topology.

We gather some necessary facts.

Fact 7.22. SupposeG is a group and τ is a topology onG such the mapG!G, b 7! b�1,
is τ-continuous and the map G ! G given by a 7! ba and a 7! ab is τ-continuous for
any b 2 G. If τ is locally compact Hausdorff then τ is a group topology.

Fact 7.23. Suppose that S is a topological space. If S is locally Hausdorff and locally
compact then every open subset of S is locally compact.

Fact 7.22 is a theorem of Ellis [10]. Fact 7.23 is a generalization of a familiar fact
about Hausdorff locally compact spaces; see [20, Proposition 3.6] for a proof.

Lemma 7.24. Suppose that T is a system of topologies overK and V;W areK-varieties.
Then the coordinate projection � W .V �W /.K/! V.K/ is T-open.

Proof. Suppose that U is a T-open subset of .V �W /.K/. For each ˇ 2 W.K/ we let
Uˇ DU \ ŒV .K/� ¹ˇº�. We have �.U /D

S
ˇ2W.K/�.Uˇ / so it suffices to fix ˇ 2W.K/



W. Johnson, C.-M. Tran, E. Walsberg, J. Ye 4064

and show that �.Uˇ / is T-open. Note that V � ¹ˇº is a closed subvariety of V �W so
Uˇ is T-open in V.K/ � ¹ˇº. The projection V � ¹ˇº ! V is an isomorphism so the
projection V.K/ � ¹ˇº ! V.K/ is a T-homeomorphism. So each �.Uˇ / is T-open.

Proof of Theorem 7.21. .2/).1/ is clear.
.1/).2/. Suppose that V is a K-variety and U is an infinite locally compact open

subset of V.K/. We claim that A1.K/ is locally compact. As the action of the affine group
on A1.K/ is transitive, it is enough to produce a non-empty open subset of A1.K/ with
compact closure. Note that V.K/ is locally Hausdorff by Theorem 7.6. After possibly
replacing V with the Zariski closure of U in V (see Remark 7.3) we may suppose that
U is Zariski dense in V . As U is infinite, V has dimension � 1. By Lemma 7.5, there
is a non-empty open subvariety O � V such that O is smooth of dimension n D dimV .
Fix p 2 O.K/ \ U . Let f1 : : : ; fn 2 Op be local coordinates at p. There is an open
subvariety W of O such that Ef D .f1; : : : ; fn/ gives an étale morphism W ! An. Let �
be a coordinate projection An ! A1 and g W W ! A1 be g D � ı Ef . By Lemma 7.24,
g gives an open map W.K/ ! A1.K/. By Theorem 7.6 any affine open subset of V
is Hausdorff, so U is locally Hausdorff. By Fact 7.23, U \ W.K/ is locally compact.
After possibly shrinking W we may suppose that W is an affine open subvariety of V ,
so U \W.K/ is locally compact Hausdorff. Therefore there is a non-empty open subset
U 0 of U \W.K/ such that the closure Z of U 0 in U \W.K/ is compact. Then g.U 0/
is open as g W W.K/! A1.K/ is an open map. The open set g.U 0/ is contained in the
compact set g.Z/, so g.U 0/ has compact closure.

.2/).3/. Assume .2/. By Theorem 7.6 the étale-open topology on A1.K/ is Haus-
dorff. For ˛ 2 K, the maps x 7! ˛x, x 7! ˛ C x, and x 7! �x are continuous, because
these maps come from variety morphisms A1! A1. Likewise, the map x 7! 1=x is con-
tinuous on K� as it comes from a morphism Gm ! Gm. By Fact 7.22 the étale-open
topology on A1.K/ is a field topology, so K is a local field.

.3/).2/. Local fields are t-Henselian; apply Theorem 6.5.

8. Another example where the étale-open topology is not a field topology

In this section, we give an example of a field K for which the étale-open system EK
is not induced by a field topology—and in fact, the étale-open topology EA1 on K D
A1.K/ is not even a field topology. We already have one example: separably closed fields
(Proposition 6.1). However, separably closed fields are in many ways exceptional (see
Theorems 7.6 and 7.11), and so it is good to have another example.

Throughout this section, p is a fixed odd prime and Fp is an algebraic closure of Fp .
We take all algebraic extensions of Fp to be subfields of Fp .

Proposition 8.1. Suppose K is an infinite non-quadratically-closed algebraic extension
of Fp . Then ¹.˛;ˇ/ 2A2.K/ W 9c 2K� .˛ � ˇD c2/º is not open in the product topology
on A2.K/ associated to the EK-topology on A1.K/. Hence the EK-topology on K is not
a field topology.
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Note that the EK-topology on K is Hausdorff since K is not separably closed. The
Hasse–Weil estimates imply that any infinite subfield of Fp is PAC (pseudo-algebraically
closed), [13, 11.2.4], and any PAC field is large [24]. As previously mentioned, we believe,
more generally, that EK is not induced by a field topology when K is PAC.

We will make use of the formalism of Steinitz numbers; see [3] for details and proofs.
Let P be the set of prime numbers. A Steinitz number is a formal product s D

Q
q2P q

e.q/

for some function e WP!N [¹1º. We declare valq.s/D e.q/ for all q 2P . Suppose that
s; t are Steinitz numbers. If valq.s/ <1 for all q 2 P and valq.s/ D 0 for all but finitely
many q 2 P then we identify s with a natural number in the natural way. We multiply
Steinitz numbers in the natural way and we say that s divides t if valq.s/ � valq.t/ for all
q 2 P . We declare Fps to be the union of all Fpn with n dividing s. Every subfield of Fp
is of the form Fps for a unique Steinitz number s, and Fpt is a degree d extension of Fps

if and only if t D ds.
For the remainder of this section, K is an infinite non-quadratically-closed subfield

of Fp . Let s be the Steinitz number such that K D Fps . As K is not quadratically closed,
we have val2.s/ <1. Let K0 be Fpm where m D 2val2.s/. So K0 is finite.

Lemma 8.2. Suppose that L is a field with K0 � L � K and ˛ 2 L. Then ˛ is a square
in K if and only if ˛ is a square in L.

Proof. The left to right implication is obvious; we prove the other implication. Let
L D Fpt . We have val2.t/ D val2.s/. Suppose that ˛ is not a square in L and fix ˇ 2 Fp
such that ˇ2 D ˛. As p ¤ 2, ˇ has degree 2 over L so L.ˇ/ D Fp2t . Consequently,
val2.2t/ D 1C val2.t/ > val2.s/. Hence 2t does not divide s, hence L.ˇ/ is not a sub-
field of K. So ˛ is not a square in K.

We now apply the Hasse–Weil bounds to prove two facts about finite fields; neither is
original. Fact 8.3 below follows from the combinatorics of Paley graphs and tournaments;
see for example [6, 7].

Fact 8.3. Suppose that F is a finite extension of K0 and ˇ1; : : : ; ˇk 2 F are pairwise
distinct. Let S be the set of ˛ 2 F such that ˛ � ˇi is a non-zero square in F for all i . If
jF j is sufficiently large then jS j < 21�kjF j.

Proof. Let C be the quasi-affine F -curve given by the equations

x � ˇi D y
2
i ; x � ˇi ¤ 0

for 1 � i � k. Then C is geometrically irreducible, as FpŒx; y1; : : : ; yk �=.x � ˇi � y
2
i W

1 � i � k/ is a domain.1 The Hasse–Weil bounds yield jC.F /j < 2jF j when jF j is suffi-

1IfR is a unique factorization domain, and p1; : : : ;pk are pairwise non-equivalent primes inR,
thenRŒy1; : : : ;yk �=.y2i �pi Wi2¹1; : : : ;kº/ is a domain. To see this, let FDFrac.R/, and use Galois
theory to see that F.

p
p1; : : : ;

p
pk/ has degree 2k over F . Therefore F Œy1; : : : ; yk �=.y2i �pi W

i 2 ¹1; : : : ; kº// is isomorphic as an F -algebra to F.
p
p1; : : : ;

p
pk/. By inspection, the ring S WD

RŒy1; : : : ; yk �=.y
2
i �pi W i 2¹1 : : : ; kº// embeds into F Œy1; : : : ; yk �=.y2i �pi W i 2¹1; : : : ; kº//, and

so S is a domain. In our case, R is the UFD Fp Œx� and pi is the prime x�ˇi for each i .
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ciently large. The set S is the image of C.F / under the projection to the first coordinate.
Because p ¤ 2, the fibers of C.F /! S have cardinality exactly 2k .

The following fact is a special case of the results of [4].

Fact 8.4. Let F be a finite extension of Fp , V be an F -variety with V.F / non-empty, and
f W V ! A1F be an étale morphism. Then there is " > 0 such that if E is a finite extension
of F and jEj is sufficiently large then jfE .VE .E//j � "jEj.

Proof. As f is étale, V is a smooth curve. As V.F / is non-empty, some connected com-
ponent of V is a geometrically irreducible smooth curve.2 The Hasse–Weil bounds imply
jVE .E/j � .1=2/jEj when jEj is sufficiently large. As f is étale, there is k such that
fE is k-to-one for any finite field E extending F . So if jEj is sufficiently large then
jfE .VE .E//j � .1=2k/jEj.

Proof of Proposition 8.1. Given a field L we let EL be the set of .a; b/ 2 L2 such that
a � b is a non-zero square. We show that EK is not P-open. Suppose otherwise. As
EK ¤ ;, there are non-empty étale images U0; U1 in A1.K/ such that U0 � U1 � EK .
Given i 2 ¹0; 1º let Xi be a K-variety and fi W Xi ! A1 be an étale morphism such that
Ui D fi .Vi .K//. Let K1 be a finite subfield of K such that K1 contains K0, each Vi
and fi is defined over K1, and each Vi .K1/ is non-empty. For each field K1 � L � K
and i 2 ¹0; 1º we let Ui .L/ D fi .Vi .L//. Lemma 8.2 shows that if K1 � L � K is a
field then EL D EK \A2.L/, hence U0.L/�U1.L/� EL. Applying Fact 8.4 we obtain
" > 0 such that if K1 � L � K is finite and jLj � n then jU0.L/j; jU1.L/j � "jLj. Fix k
such that 21�k < ". Take K2 finite with K1 � K2 � K and jK2j � n and jU1.K2/j � k.
Take distinct b1; : : : ; bk 2 U1.K2/. Suppose L is finite and K2 � L � K. If a 2 U0.L/,
then .a; bi / 2 EL for i 2 ¹1; : : : ; nº. By Fact 8.3, jU0.L/j � 21�kjLj < "jLj when jLj is
sufficiently large. This contradicts the choice of ".

The set of non-zero squares in A1.K/ is EK-open, because p ¤ 2. Hence the subtrac-
tion map

.A1.K/;EK/ � .A
1.K/;EK/ D .A

2.K/;P/! .A1.K/;EK/

is not continuous, and the EK-topology on A1.K/ is not a field topology.

8.1. Pseudofinite fields

We assume some familiarity with pseudofinite fields.

2Let W be one of the connected components of V containing an F -point q. The base change
WFp

is smooth, so its irreducible components are its connected components. LetX be the connected
component of WFp

containing q, and let Y be the union of the remaining connected components

(possibly empty). The Galois action Gal.Fp=F / fixes q, and therefore fixes X and Y setwise.
Therefore X and Y descend to varieties X� and Y � over F . Then W is the disjoint union of X�

and Y �, soW D X� and Y � D ; becauseW is connected. Finally,X� is geometrically irreducible
because X is irreducible.
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Proposition 8.5. Suppose that K is pseudofinite of odd characteristic. Then the EK-
topology on K is not a field topology.

It is worth recalling that if s is a Steinitz number then Fps is pseudofinite if and only if
valq.s/ <1 for all primes q and s is not a natural number.3 Hence there is some overlap
between Propositions 8.1 and 8.5 but the latter does not imply the former.

The proof is very similar to that of Proposition 8.1 so we only give a sketch. We only
treat the case when K is the ultraproduct of a sequence .Ki W i 2 N/ of finite fields with
respect to a non-principal ultrafilter ω on N; our argument extends to the general case
via routine but somewhat tedious model-theoretic arguments. We let � be the normalized
pseudofinite counting measure on definable subsets of K. That is, if �.x1; : : : ; xnIy/ is a
formula in the language of fields and a 2 Km is given by the sequence .ai 2 Kni W i 2 N/
then we have

�¹b 2 K W K ˆ �.aI b/º D lim
i!ω

j¹b 2 Ki W Ki ˆ �.ai I b/ºj

jKi j
:

Here we regard ω as a point in the Stone–Čech compactification of N and take the limit
i ! ω accordingly. The Lang–Weil estimates imply that if A � K is definable then
�.A/ D 0 if and only if A is finite; see [4]. See [21] for a detailed discussion of such
measures in general and [4] for the construction of the measure on a general pseudofinite
field.

Proof of Proposition 8.5. Let P be the set of non-zero squares in K, and E be the set of
.a; b/ 2 A2.K/ such that a � b 2 P . As above, E is EK-open so it suffices to suppose
that U0; U1 � A1.K/ are non-empty étale images and show that E does not contain
U0 � U1. By Theorem 7.1, U0 and U1 are infinite. Fact 8.3, the definition of �, and a
routine ultraproduct argument together show that if ˇ1; : : : ; ˇk 2 K are pairwise distinct
then

�¹˛ 2 A1.K/ W ˛ � ˇ1; : : : ; ˛ � ˇk 2 P º � 2
1�k :

This yields
�¹˛ 2 A1.K/ W 8ˇ 2 U1 .˛ � ˇ 2 P /º D 0;

so U0 � U1 is not contained in E as �.U0/ > 0.

9. Model-theoretic applications

9.1. A short proof of Theorem D from Theorems A and C

Proof. Suppose K is stable and not separably closed. By Theorem C (2) the étale open
topology on V.K/ is Hausdorff for any quasi-projectiveK-variety V . By Theorem A and

3This follows by Ax’s theorem [1] that a field is pseudofinite if and only if it is perfect, PAC,
and admits a unique extension of each degree and the fact that infinite algebraic extensions of finite
fields are PAC.
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Definition 1.2 (1), the map

.V .K/;EV /! .W.K/;EW /

is continuous for any morphism f W V !W ofK-varieties. Specializing to the case where
V D W D A1 and f is an affine transformation, we see that the étale open topology on
A1.K/ D K is Hausdorff and invariant under affine transformations.

As the topology is Hausdorff, we may take disjoint non-empty basic opensU;U ��K.
The basic open sets in the étale-open topology are definable sets—they are images of mor-
phisms of varieties. ThereforeU;U � are definable. By Fact 2.8 there is a unique additively
and multiplicatively generic type inK. AsU;U � are disjoint, they cannot both contain the
generic type, so we suppose that U is not generic. By affine invariance we may suppose
0 2 U . Then K n U is multiplicatively generic in K�, hence there are a1; : : : ; an 2 K�

with

K� D

n[
iD1

ai � .K n U/:

Equivalently ¹0º D
Tn
iD1 ai �U . By affine invariance of the topology, each ai �U is open,

and so ¹0º is open. By affine invariance again, every singleton is open and the topology is
discrete. By Theorem C.1, K is not large.

9.2. Podewski’s conjecture

Recall that K is minimal if every definable subset of K is finite or co-finite. Podewski’s
conjecture says that an infinite minimal field is algebraically closed. Koenigsmann proved
Podewski’s conjecture for large fields [2]. This follows from what is above. Suppose that
K is large and minimal. If K is not separably closed we can produce U;U � as above and
by largeness U; U � are both infinite, a contradiction. Finally, minimal fields are easily
seen to be perfect, so K is algebraically closed.

Wagner proved Podewski’s conjecture in positive characteristic [28]. He shows that
if Char.K/ ¤ 0 and K is not algebraically closed then there is an infinite and co-infinite
98 definable subset of K. Our proof produces two disjoint existentially definable infinite
subsets of K under the assumption that K is large. This is sharp because a quantifier free
definable subset of K is finite or cofinite.
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