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Staircase patterns in Hirzebruch surfaces

Nicki Magill, Dusa McDuff, and Morgan Weiler

Abstract. The ellipsoidal capacity function of a symplectic four manifold X measures how
much the form on X must be dilated in order for it to admit an embedded ellipsoid of eccen-
tricity z. In most cases there are just finitely many obstructions to such an embedding besides
the volume. If there are infinitely many obstructions, X is said to have a staircase. This paper
gives an almost complete description of the staircases in the ellipsoidal capacity functions of
the family of symplectic Hirzebruch surfaces Hb formed by blowing up the projective plane
with weight b. We describe an interweaving, recursively defined, family of obstructions to sym-
plectic embeddings of ellipsoids that show there is an open dense set of shape parameters b
that are blocked, i.e. have no staircase, and an uncountable number of other values of b that do
admit staircases. The remaining b-values form a countable sequence of special rational num-
bers that are closely related to the symmetries discussed in Magill–McDuff (arXiv:2106.09143).
We show that none of them admit ascending staircases. Conjecturally, none admit descending
staircases. Finally, we show that, as long as b is not one of these special rational values, any
staircase in Hb has irrational accumulation point. A crucial ingredient of our proofs is the new,
more indirect approach to using almost toric fibrations in the analysis of staircases by Magill
(arXiv:2204.12460). In particular, the structure of the relevant mutations of the set of almost
toric fibrations on Hb is echoed in the structure of the set of blocked b-intervals.
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1. Introduction

1.1. Overview and statement of main theorem

The ellipsoidal capacity function cX W Œ1;1/!R for a general four-dimensional target
manifold (X;!/ is defined by

cX .z/ WD inf
®
� j E.1; z/

s
,! �X

¯
;

where z � 1 is a real variable, �X WD .X; �!/, the ellipsoid E.c; d/ � C2 is the set

E.c; d/ D

²
.�1; �2/ 2 C2

j �
�
j�1j

2

c
C
j�2j

2

d

�
< 1

³
;

and we write E
s
,! �X if there is a symplectic embedding of E into �X .

It is straightforward to see that cX .z/ is bounded below by the volume constraint
function

VX .z/ D

s
volE.1; z/
vol.X; !/

:

Using techniques developed in McDuff [19], McDuff–Schlenk [22] gave the first
complete computation of this function for the case when X is the standard 4-ball,
or, equivalently, CP2. They found that the graph of this function has infinitely many
nonsmooth points at values of z that are ratios of Fibonacci numbers. The results
of [19] were generalized by Cristofaro-Gardiner [3], whose work implies that if .X;!/
is a four-dimensional toric manifold or rational convex toric domain the function
z 7! cX .z/ is piecewise linear when not identically equal to the volume constraint
curve. When, as in the case of the ball, its graph has infinitely many nonsmooth points
lying above the volume curve, .X; !/ is said to have a staircase.1

Four manifolds with staircases seem rather rare: Frenkel–Muller [10] used the
methods of [22] to find a staircase for the monotone product .S2˚ S2; ! � !/, while
in [7], Cristofaro-Gardiner–Holm–Mandini–Pires used methods from ECH (embed-
ded contact homology) to find staircases for the monotone blowup of CP2 by up to
four points. Their conjecture [7, Conj. 1.23] proposes (among other things) that these
are the only rational toric four manifolds with staircases. In contrast, Usher [24] found
infinitely many irrational ˇ such that the nonmonotone product

.S2 � S2; ! ˚ ˇ!/

admits a staircase.

1This is often referred to as an infinite staircase in the literature, but we presuppose that
a staircase has infinitely many steps. On the other hand a staircase need not contain all the
nonsmooth points in a neighborhood of the accumulation point.
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The analogous question for the family of Hirzebruch surfaces

Hb WD CP2.1/ # CP
2
.b/; 0 � b < 1;

was first investigated by Bertozzi, Holm, Maw et al. in [1], with work continued
in Magill–McDuff [17]. The current paper completes this circle of ideas and pro-
vides an almost complete answer to the question of which Hb admit staircases. Our
main result, Theorem 1.1.1 below, is the key to the proof of a special case of [7,
Conj. 1.23] that is given in the forthcoming Magill–Pires–Weiler [18]. Finally, the
structure explained here will, we hope, provide a guide for classifying the ellipsoidal
capacity functions for more general toric blowups, see Remark 1.2.10.

Throughout, we denote by Hb the one-point blowup of CP2 with line of area 1
by a ball of capacity b.2 Its volume constraint is

Vb.z/ D

r
z

1 � b2
;

where 1 � b2 is the appropriately normalized volume of Hb . A key result from [7,
Thm. 1.13] is that if cHb has a staircase, then the steps (i.e. nonsmooth local maxima)
of this staircase accumulate to the unique solution z D acc.b/ > 1 of the following
quadratic equation involving b:

z2 �

�
.3 � b/2

1 � b2
� 2

�
z C 1 D 0: (1.1.1)

Note that the coefficient of z in this equation is determined by the shape of the moment
polytope: 1 � b2 is its normalized volume, while 3 � b is the affine length of its
perimeter. The function b 7! acc.b/ is 2-to-1 in general and takes its minimum value

amin D 3C 2
p
2

at b D 1=3, the only positive rational value of b that is known to admit a staircase;
see Figure 1.1. We say a staircase is ascending (resp. descending) if its steps have
increasing (resp. decreasing) z-coordinates.

Another key point proved in [7] is that when Hb has a staircase, there is no
obstruction at its accumulation point, i.e.

cHb .acc.b// D Vb.acc.b//: (1.1.2)

More generally, a pair .z; b/ with z D acc.b/ such that cHb .acc.b// D Vb.acc.b// is
called unobstructed; otherwise .z; b/ (or simply z or b) is said to be blocked.

2Since Hb is a rational four manifold, its symplectomorphism class is unique; see [21,
Ex. 7.1.16].
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Figure 1.1. This plot found in [1, Fig. 1.1.4] shows the location of the accumulation point
.z; �/ D .acc.b/; Vb.acc.b/// for 0 � b < 1. The blue point with b D 0 is at .�4; �2/ and
is the accumulation point for the Fibonacci stairs defined in [22]. The green point with z D
3C 2

p
2DW amin; b D 1=3 is the accumulation point for the stairs inH1=3, and is the minimum

of the function b 7! acc.b/. The black point with z D 6; b D 1=5 is the place where Vb.acc.b//
takes its minimum.

Here is our main result.

Theorem 1.1.1. The following statements hold.

(i) The set

Block WD
®
b 2 Œ0; 1/ j cHb .acc.b// > Vb.acc.b//

¯
;

is an open dense subset of Œ0; 1/ that is invariant under the action of the symmetries
defined below.

(ii) All other b-values, except possibly for those where acc.b/ is one of the special
rational points 6; 35=6; 204=35; : : : in (1.1.3) below, admit staircases. If b ¤ 1=3 is
not an endpoint of a connected component of Block, then b admits both an ascending
and a descending staircase; while if b is an endpoint of a connected component of
Block, then b admits either an ascending or descending staircase with steps lying
outside the corresponding blocked z-interval.

(iii) For n � 0 define

BlockŒ2nC6;2nC8� WD
°
b 2 Block j acc.b/ 2 Œ2nC 6; 2nC 8�; b >

1

3

±
:

For each n � 0 there is a homeomorphism of BlockŒ2nC6;2nC8� onto the complement
Œ�1; 2� X C of the middle third Cantor set C � Œ0; 1�.
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(iv) The only rational numbers z D p=q that might be staircase accumulation
points are the special rational points. Any such staircase would have to be descending.

The symmetries studied in [1, 17] are an integral part of the structure of the set
Block and its disjoint counterpart

Stair WD
®
b 2 Œ0; 1/ j Hb has a staircase

¯
:

These symmetries stem from the arithmetic properties of the quadratic function given
in (1.1.1), and their existence reduces the problem of calculating Block and Stair to
calculating the restriction of these sets to b 2 Œ5=11; 1/, in other words to b with
acc.b/ D z > 7. The sequence of points

z D 6;
35

6
;
204

35
; : : : (1.1.3)

given by the images of z D 6 under repeated applications of the shift symmetry
S Wp=q 7! .6p � q/=p play a special role. These are called the special rational points,
as are the b-values that correspond to these points via the function b 7! acc.b/. These
b-values are also rational by [17, Lem. 2.1.1], and are described more fully in equa-
tion (2.3.4). A definition of the symmetries can be found in Section 2.3. They are
generated by the shift S and a reflection R.

The proof of Theorem 1.1.1 (i) and (iii) is completed in Section 4.2, while those
of (ii) and (iv) are completed in Section 3.2 and Section 4.3, respectively. Since this
work, the further developments in [18] finish the cases of Theorem 1.1.1 (ii) and
(iv), thus giving a complete computation of Stair. We also expect Theorem 1.1.1 to
generalize to other toric domains. Evidence of this has been seen in the case of the
polydisk in Farley–Holm–Magill et al. [9] and [24], and a two-fold blowup of CP2

in Magill [16]. See Remark 1.2.10 for more details.

The main work of the paper lies in constructing the set Block and in computing
infinitely many values of cb.z/ for each b claimed to be in Stair. As explained in detail
in Section 1.2, specific homology classes in various blowups of CP2, called excep-
tional classes and denoted E, give lower bounds �E;b.z/ � cb.z/ for the embedding
function. These obstructions �E;b.z/ vary continuously in b and z: We find particu-
lar exceptional classes E called perfect blocking classes such that there is a maximal
interval JE � Œ0; 1/ where for all b 2 JE;

Vb.acc.b// < �E;b.z/:

Thus, because �E;b.z/ is a lower bound of cb.z/, it follows from (1.1.2) that JE �

Block.
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We calculate Block by finding all such perfect blocking classes; see Proposi-
tion 1.2.2 for a precise statement. These are built from the sequence of perfect block-
ing classes found in [1, Thm. 56]. In Section 2.1, we organize these into triples of
classes called generating triples that satisfy various compatibility conditions, and then
define a way to mutate these triples to produce new triples in a recursive structure; see
Example 1.2.4 for an illustration. We then use the existence of this whole family of
perfect blocking classes to show that each JB forms a connected component of Block.
The argument here relies on the use by Magill [15] of almost toric fibrations to con-
struct full fillings3 of Hb by ellipsoids E.1; acc.b// when b is the lower endpoint
of JE. Thus these values of b are unobstructed, and by Lemma 3.1.4 this implies that
all the classes obtained by mutation are exceptional classes. Hence, by the results
of [17] quoted in Proposition 3.1.7, infinitely many of these classes are live (that is,
the corresponding obstructions are visible in the capacity function cHb ) at the relevant
limiting b value b1.

Theorem 1.2.6 states how the triples are generated and how each triple corre-
sponds to two staircases. The structure of these triples allow us to conclude that
BlockŒ2nC6;2nC8� is homeomorphic to the complement of the Cantor set. One crucial
compatibility condition is called adjacency, which expresses the relation of a staircase
to the perfect blocking class that blocks an interval ending at its accumulation point;
see Remark 2.1.4.

Remark 1.1.2. (i) Theorem 1.1.1 (iii) implies that for each n there is an order-pres-
erving bijection from the centers of the steps in Œ6; 8� to those in Œ2n C 6; 2n C 8�
that takes staircases with accumulation points in Œ6; 8� (and b > 1=3) to those with
accumulation points in Œ2n C 6; 2n C 8�. However, this bijection does not seem to
have a natural extension to a homeomorphism. It is better thought of as an algebraic
move (with an arithmetic description in terms of continued fractions) that is related to
the process of v-mutation described in [15]; see Section 1.3.

(ii) Our conjecture that no special rational point has a staircase is related to the
question of whether bD1=3 has a descending staircase. It is shown in [17, Lem. 2.2.12]
that when b D 1=3 either there is a descending staircase or there is " > 0 so that for
acc.b/ < z < acc.b/C " the capacity function cHb .z/ equals the obstruction from the
class

E D 3L �E0 � 2E1 �E2;:::;6:

This obstruction plays a special role because, by [1, Ex. 32] and [17, Lem. 2.2.7],
it goes through the accumulation point for all special rational b except for 1=5. We
extend the conjecture in Theorem 1.1.1 (iv) by claiming that for all such special b as

3that is, symplectic embeddings intE.1; acc.b//
s
,! Hb
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well as b D 1=3 the capacity function should be given by this obstruction at points
just above the corresponding special rational z. (This result is now proven in [18].)

(iii) Our staircases need not be sharp in the sense of Casals–Vianna [2]; in other
words the inner corners between the staircase steps need not lie on the volume obstruc-
tion z 7! Vb.z/. In fact, descending stairs with z-accumulation points < 6 are never
sharp because of the obstruction coming from the class ED 3L�E0 � 2E1 �E2;:::;6;
see [1, Ex. 32 and Fig. 5.3.1]. We did not explore this property for the other stair-
cases. However, it is known that the Fibonacci staircase is sharp while the staircase
at b D 1=3 is not; see [7]. Notice also that, although [15] does use almost toric fibra-
tions to construct a full filling at the lower endpoint z1 of a blocked z-interval, this
full filling occurs for the corresponding b-value acc�1" .z1/ rather than at one of the
b-values for which the blocking class is a staircase step.

1.2. Further results

After summarizing some definitions and foundational results from [1,17], we state the
other main results of this paper. Note that there are two approaches to calculating cHb .
One is to work with ECH capacities as in [7], which corresponds to identifying the
J -holomorphic curves in X XE.1; z/ counted by the ECH cobordism map. Here, we
instead work with closed curves in a blowup ofHb , which in many cases neck-stretch
to the ECH curves (see [5] and Section 4.4).

By [19], an ellipsoid E.1; z/ with rational eccentricity z D p=q embeds into �Hb
if and only if a certain finite collection tniD1B

4.wi / of balls embeds into �Hb . This
sequence .wi / is called the weight expansion of p=q, see (A.5). By [20], the embed-
ding of balls exists if and only if there is a symplectic form ! on the n-fold blowup

Hb # nCP
2
D CP2 # .nC 1/CP

2

of Hb that takes the value � on the line, �b on the exceptional sphere E0 of Hb ,4

and w1; : : : ; wn on the other exceptional spheres E1; : : : ; En. Thus ! should lie in
the class ˛, where ˛.L/ D �, ˛.E0/ D �b, ˛.Ei / D wi . As explained more fully
in [19], it follows from [14] that a class ˛ 2H 2.CP2 # .nC 1/CP

2
/ has a symplectic

representative if and only if

• the volume is positive: ˛2 > 0,

• the integral ˛.E/ of ˛ over every exceptional class E in CP2 # .n C 1/CP
2

is
positive.

4This is the embedded 2-sphere with self-intersection �1 obtained by blowing CP2 up
once, that is by removing an open 4-ball and collapsing its boundary to a 2-sphere via the Hopf
map; see [21, Ch. 7.1] for more detail.
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Thus the significant constraints on the class ˛ come from the exceptional classes,
which are defined to be the set of elements in H2.CP2 # .nC 1/CP

2
/ that are rep-

resented by symplectically embedded spheres of self-intersection �1. These classes,
denoted by

E D dL �mE0 �
nX
iD1

miEi ;

are characterized by the fact that they satisfy the Diophantine equations

3d �m D
X
i

mi C 1 and d2 �m2 D
X
i

m2i � 1;

(these record certain restrictions on their first Chern class and self-intersection), and
also reduce correctly under Cremona moves; see [22, Def. 1.2.11 ff].

Since ˛.E/ D .d � mb/� �
P
miwi , the condition ˛.E/ > 0 implies that each

exceptional class E with center p=q determines an obstruction

�E;b

�p
q

�
WD

P
miwi

d � bm

such that �E;b.p=q/ � �. Therefore,

cHb

�p
q

�
� �E;b

�p
q

�
for all exceptional E. These obstruction functions extend to nearby z and, as in (1.2.1)
below, are piecewise linear. Moreover, the above discussion implies that

cHb .z/ D sup
E exceptional

¹�E;b.z/; VHb .z/º:

We say that an exceptional class E is live at z; b if it achieves this supremum, i.e.
�E;b.z/ D cHb .z/. Further, E is called obstructive at z; b if �E;b.z/ > Vb.z/.

It turns out that the most relevant obstructions are given by exceptional classes E
whose coefficients m D .mi / equal the integral weight expansion .q; : : : / of some
rational number p=q. We call such classes perfect classes and say that p=q is their
center. If such a class is only known to satisfy the Diophantine equations, we say the
class is quasi-perfect.

If E is quasi-perfect, [1, Lem. 16] shows that the obstruction function5 in the
neighborhood of p=q for which �E;b.z/ > VHb .z/ is given by the formula

�E;b.z/ D
qz

d �mb
; z �

p

q
; �E;b.z/ D

p

d �mb
; z �

p

q
: (1.2.1)

5Although we call this the obstruction function, we only know that �E;b.z/ � cHb .z/ for
perfect classes E.
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These obstructions are illustrated in Figure 1.2. These functions are piecewise linear
with break point (i.e. nonsmooth point) at the center z D p=q. But note that until we
know that a given quasi-perfect class E is in fact perfect, we cannot claim that

�E;b.z/ � cHb .z/:

Our staircases are formed by infinite sequences of perfect classes whose break points
zn (often called step centers or simply steps) converge. Here are the key facts about
these classes.

Lemma 1.2.1. The following statements hold.

(i) If E is perfect, �E;b is live at its center z D p=q (i.e. cHb .p=q/D�E;b.p=q/)
when b � m=d .

(ii) If E is quasi-perfect, �E;b is obstructive at z D p=q if and only if

jbd �mj <
p

1 � b2:

Proof. The claim in (i) is proved in [1, Prop. 21]; (ii) is proved in [1, Lem. 15].

We observed in [17, §2.2] that the degree coordinates of all quasi-perfect classes
have the following more precise form

d D
1

8

�
3.p C q/C "t

�
; m D

1

8

�
p C q C 3"t

�
; " 2 ¹˙1º; (1.2.2)

where the positive integer t is defined by t WD
p
p2 � 6pq C q2 C 8, and " D 1 if

and only if m=d > 1=3.6 For example, if p=q D Œ7I 4� D 29=4, then m D .4�7; 1�4/,
t D 13 and .d; m/ D .14; 9/. Thus we often describe a quasi-perfect class by an
ordered subset of the ordered 6-tuple .d; m; p; q; t; "/. We will also use the notation
ECF.p=q/, whereCF refers to the continued fraction. Conflating the notions of perfect
classes, centers, and step centers, we will also refer to quasi-perfect classes as steps.

By [17, Prop. 2.2.9], a quasi-perfect class E with center7 p=q > 3C 2
p
2 DW amin

is always a blocking class, i.e. the corresponding obstruction �E;b.z/ is always non-
trivial at its center point z D p=q when b D acc�1" .p=q/.

8 This implies that the
interval

JE WD
®
b j �E;b.acc.b// > Vb.acc.b/

¯

6No perfect class has m=d D 1=3 by [17, Lem. 2.2.13].
7Note that 3C 2

p
2 is the minimum value of b 7! acc.b/.

8Here we take the branch of the inverse acc�1 given by the value of "; thus acc�1" .p=q/ >

1=3 exactly if m=d > 1=3.
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is an open neighborhood of acc�1" .p=q/. We call this the b-blocked interval of E,
and define @C.JE/ WD supJE and @�.JE/ WD infJE: The interval IE WD acc.JE/ is the
corresponding z-blocked interval.

We prove the following result in Section 4.2.

Proposition 1.2.2. Block � Œ0; 1/ is the disjoint union of the intervals JE as E ranges
over the set of all perfect classes with centers > amin D 3C 2

p
2.

Remark 1.2.3. The proof of Proposition 1.2.2 allows us to find all perfect classes
with center>amin; see Corollary 4.2.3. In Lemma 4.3.1, we show that the only perfect
classes with centers < amin are those appearing in the staircase of cH1=3.z/.

As noted in Theorem 1.1.1, when E is perfect and with center>amin the endpoints
of JE admit staircases. We now give an example of how the structure of the blocking
classes relate to the staircases at the endpoints.

Example 1.2.4. This example is visualized in Figure 1.2. As proved in [1], there are
two perfect classes BU0 D .d;m; p; q/ D .3; 2; 6; 1/ with t D 3 and BU1 D .4; 3; 8; 1/
with t D 5 that both block an interval of b-values. The b-values at the left (resp. right)
endpoint of these intervals have ascending (resp. descending) staircases. Let bu

Œ6�
WD

@C.JBU
0
/ and b`

Œ8�
WD @�.JBU

1
/: For each of these b-values, there is an infinite sequence

of perfect classes .Ek/k�0, which are shown in [1] to be live for cb.z/. The centers of
these classes pk=qk are determined by a recursion parameter � and initial conditions
p0=q0, p1=q1 such that for x D p; q:

xkC1 D �xk � xk�1:

For the staircase at bu
Œ6�

(which is called �Uu;0 in [1]), the initial conditions are BU1 ,
EŒ7I4� with � D 3 (note � D 3 is the t -parameter of BU0 ); and for the staircase at b`

Œ8�

(called �U
`;1

in [1]) the initial conditions are BU0 ;EŒ7I4� with � D 5; (note � D 5 is the
t -parameter of BU1 ). The obstructive functions are live and have a nonsmooth point at
the center z D p=q: See Figure 1.2 to visualize this.

Key features of these staircases are:

• the step centers BU1 ;EŒ7I4�; : : : of �Uu;0 decrease to acc.bu
Œ6�
/. When b D bu

Œ6�
, the

class BU0 is live to the left of the accumulation point;

• the step centers BU0 ;EŒ7I4�; : : : of �U
`;1

increase to acc.b`
Œ8�
/. When b D b`

Œ8�
, the

class BU1 is live to the right of the accumulation point;

• the staircases share the step EŒ7I4�.

The features can be described using “adjacency” and “t -compatibility” properties.
When such classes satisfy these properties, we say they form a generating triple and
notate this as T WD .BU0 ; EŒ7I4�; BU1 /. These properties are defined and discussed
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Vbu
Œ6�

Œ6� acc.bu
Œ6�
/

Œ7; 5; 2�

Œ7; 4� Œ8�

V
b`
Œ8�

Œ6� Œ7; 4� Œ7; 3; 6� acc.b`
Œ8�
/ Œ8�

V
b`
Œ7;4�

Œ6� Œ7; 5; 2�

Œ7; 5; 3; 1; 6�

acc.b`
Œ7;4�

/

Œ7; 4� Œ8�

Figure 1.2. We have depicted part of three staircases to illustrate Example 1.2.4: the descend-
ing staircase with b D @C.JEŒ6�/ and the ascending staircases with b D @�.JBU1

/ and b D
@�.JEŒ7I4�/. The orange curve is the volume obstruction and steps of the same color are given
by the obstruction from the same perfect class, labeled by the continued fraction of its center.
Note we only prove that the embedding function equals the solid lines on a neighborhood of
the nonsmooth point, and we are not claiming that between those intervals there are no other
obstructions (in fact, we know that there are).
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in Section 2.1. This triple contains all of the necessary information to prove there
are staircases at bu

Œ6�
, b`
Œ8�

. For the notation in Theorem 1.2.6, we let �`
T
WD �U

`;1

(resp. �u
T
WD �Uu;0) denote the staircase at b`

Œ8�
(resp. bu

Œ6�
).

It turns out that the shared step EŒ7I4� is also a blocking class, and by using the
formulas for the x-mutation and y-mutation defined above Proposition 2.1.9, we can
mutate the triple to get two new generating triples:

xT WD
�
BU0 ;EŒ7I5;2�;EŒ7I4�

�
and yT WD

�
EŒ7I4�;EŒ7I3;6�;BU1

�
:

Here, the middle entry EŒ7I5;2� in xT is the third step in the staircase �Uu;0 at bu
Œ6�

, while
the middle entry EŒ7I3;6� in yT is the third step in the staircase at b`

Œ8�
. Just as before,

each of these new triples determines two staircases that share one step, and this allows
us to propagate each triple to two new triples. This process continues forever.

Finally, we explain the effect of the symmetries. Applying the shift

S W
p

q
7!

6p � q

p

to the centers of each of the classes in the triple T D .BU0 ;EŒ7I4�;B
U
1 / gives three new

classes:
S].T / WD

�
S].BU0 /; S

].EŒ7I4�/; S].BU1 /
�
:

In fact, S].T / is a generating triple as the symmetry preserves the compatibility
conditions of a triple. As described above, this generating triple has two associated
staircases, which were first shown to be live in [1, Cor. 60 (iii)]. By repeatedly apply-
ing the shift, the triples .S i /].T / are also generating triples for all i � 0. There is
another symmetry, the reflection R, that also sends generating triples to generating
triples, but this relationship is a little more complicated to explain sinceR is not glob-
ally defined and acts on z by an order reversing transformation; see Section 2.3 for
more details.

We now make some definitions which are generalizations from the example to
state Theorem 1.2.6.

Definition 1.2.5. A sequence of quasi-perfect classes Ek D ..dk; mk; pk; qk//k�0 is
said to form a pre-staircase if there are numbers z1 > 1 and b1 2 Œ0; 1/ such that
pk=qk ! z1 and mk=dk ! b1. The pre-staircase is said to be live if, for some
k0 � 0, the obstructions from the classes Ek; k � k0; are live at b1, so that they form
a staircase in cHb1 .

Thus a staircase is a live pre-staircase. A pre-staircase is called fake if its classes
are known not to be perfect; for examples see Remark 2.1.15. As noted in Lem-
ma 2.1.16, z1 D acc.b1/ for any pre-staircase.
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As explained in Example 1.2.4, the staircases found it [1,17] consist of a sequence
� WD .Ek/k�0 of perfect classes (with " constant) whose coefficients xk WD pk; qk; dk;
mk; tk satisfy a recursion of the form

xkC1 D �xk � xk�1; k � 1; � � 3:

Thus the steps are determined by the two initial classes (called seeds) together with
the recursion coefficient �. We proved that these pre-staircases are live for b WD b1 D
limk mk=dk and have accumulation point acc.b1/ WD z1 D limk pk=qk . Finally, it
turned out that each staircase � is associated to a blocking class B with blocked b-
interval JB and corresponding blocked z-interval IB D acc.JB/ in the following way:

• for an ascending staircase, the limit point .b1; z1/ has z1 equal to the lower
endpoint @�.IB/ (so that, if m=d > 1=3, b1 D @�.JB/, while if m=d < 1=3,
b1 D @

C.JB/);

• for a descending staircase, the limit point .b1; z1/ has z1 equal to the upper
endpoint @C.IB/ (so that, if m=d > 1=3, b1 D @C.JB/, while if m=d < 1=3,
b1 D @

�.JB/);

• the recursion parameter � of the staircase equals the t -coordinate of B.

Here @C, resp. @�, denotes the supremum (resp. infimum) of an open interval JB

or IB. Notice that if JB � .1=3; 1/ then acc sends @C.JB/ to @C.IB/ and @�.JB/ to
@�.IB/; otherwise it switches them. (For no B do we have JB 3 1=3 because cH1=3
has a staircase [7].)

In [17, Cor. 3.2.3] we defined the staircase family �U to consist of the blocking
classes

BUn WD .nC 3; nC 2; 2nC 6; 1; 2nC 3/

for n � 0, together with the two seeds9

EU`;seed WD .1; 1; 1; 1; 2/; EUu;seed WD .�2; 0;�5;�1; 2/;

and the associated staircases:

for each n � 1, the ascending staircases �U`;n with seeds EU`;seed;B
U
n�1I

for each n � 0, the descending staircases �Uu;n with seeds EUu;seed;B
U
nC1:

(1.2.3)

As observed in [17, Rmk. 3.2.4 (ii)] for each n the staircases �Uu;n and �U
`;nC1

share
exactly one step EŒ2nC7I2nC4� with center at Œ2nC 7I 2nC 4�. This is the next step
after the two seeds. These are the classes seen in Example 1.2.4 for n D 0 and n D 1.

9These seeds satisfy the conditions in (1.2.2) and should be considered as formally perfect,
though clearly EUu;seed does not correspond to a geometric class; see also Remark 2.1.14.
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z
p�
q�

px�
qx�

p�
q�

py�
qy�

p�
q�

Figure 1.3. This schematic figure shows the graph of the function z 7! Vb.z/ together with the
obstruction functions given by a triple T and its left and right mutations for some appropriate
value of b.

The main result in [17] was that there is a set of symmetries S iRı , i � 0, ı 2 ¹0; 1º
that act on z D p=q by fractional linear transformations and fix t , so that the action
extends to the d;m coordinates of perfect classes. Here S is the shift

p

q
7!

p � 6q

q

that fixes the point amin D 3C 2
p
2, and R is the reflection

p

q
7!

6p � 35q

p � 6q

that fixes 7. Both S and R change the sign of ". We showed that the image of �U

under each of these transformations T is another staircase family; in particular T
takes blocking classes to blocking classes, and staircases to staircases. (For example,
the reflection R takes the descending stairs �Uu;0 to the Fibonacci stairs in CP2 DH0;
see [17, Rmk. 3.2.4 and Cor. 3.2.7].) This reduces the study of staircases to those with
6 < acc.b/ and b > 1=3.

A central result of the current paper can be stated as follows; the required defini-
tions and the proof of (i), (ii) may be found in Section 2.1 and Section 2.3, while (iii)
is proved in Section 4.2.
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Theorem 1.2.6. The following statements hold.

(i) Each triple10 of classes

T n
� WD

�
E�;E�;E�

�
WD
�
BUn ;EŒ2nC7I2nC4�;B

U
nC1

�
is a generating triple and generates two other triples called its left and right mutations

xT n
� WD

�
E�;Ex�;E�

�
; yT n

� WD
�
E�;Ey�E�

�
;

which also are generating triples, and hence can be mutated further to form new
triples T . Moreover, each such triple T determines two staircases,

• an ascending staircase �T
`

with seeds E�;E� and blocking class E�,

• a descending staircase �T
u with seeds E�;E� and blocking class E�.

(ii) The symmetries act on these triples. Moreover, the symmetries are compati-
ble with mutation. More precisely, if a symmetry takes T to T 0 and preserves (resp.
reverses) the order on the z-axis, then it takes xT ; yT to xT 0; yT 0 (resp. yT 0; xT 0).

(iii) Every perfect class with center > amin is a step in at least one ascending and
one descending staircase that is the image under an appropriate symmetry of one of
the staircases �T

`
; �T
u in (i) above.

See Figure 1.3 to visualize the obstruction functions in a triple. In view of this
result, we make the following definition.

Definition 1.2.7. The complete family C�U consists of the staircase family �U def-
ined as above, plus all staircases �T

`
; �T
u determined as in Lemma 2.1.12 by any

triple T derived from one of the basic triples .BUn ;EŒ2nC7I2nC4�;BUnC1/. Any staircase
that is the image of �T

`
or �T

u under a symmetry S iRı , where i � 0; ı 2 ¹0; 1º, is
called a principal staircase.

Theorem 1.2.6 (ii) and (iii) imply that each perfect class with center>amin belongs
to a unique family .S iRı/].C�U /. We will see later that the principal staircases are
distinguished from those described in Remark 1.2.8 (ii) below by the fact that each is
recursively defined and has a blocking class.

Remark 1.2.8. (i) Instead of thinking of the complete family as a set of intercon-
nected staircases, we can think of it as a countable family of classes ordered according
to the position of their centers, labeled by ternary decimals; for details see Section 2.2.
As explained in [15], one can associate to each triple T in C�U an almost toric fibra-
tion whose base diagram is a quadrilateral QT in such a way that there is direct

10Here the subscripts �;�; � stand for ‘left’, ‘middle’ and ‘right’.
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correspondence between the left/right derived triples xT ; yT and two of the possible
mutations ofQT . This fact is a key step in the proof that the tuples ED .d;m;p; q; t/
we consider do in fact correspond to perfect classes that are represented by excep-
tional spheres.

(ii) (Further staircases) Once we give finite decimal labels to the classes in C�U ,
it becomes clear that they can be organized into different convergent sequences, one
for each infinite ternary decimal whose expansion does not contain the digit 1. For a
precise description, see Definition 2.2.7. The principal staircases �T

`
; �T
u described

above are those that exist at the endpoints of the intervals in Block, while these new
staircases correspond to all of the uncountably many other unblocked b-values in
the Cantor-type set Œ0; 1/ X Block except the special rational points. We will prove
in Section 3.2 that all the steps in the new ascending pre-staircases are live for the
limiting b-value, while in the descending case all but finitely many are live for the
limiting b-value.

Remark 1.2.9 (Properties of staircases). (i) The capacity functions cHb .z/; b 2 Œ0; 1/;
are not entirely determined by perfect classes, since there are other obstructions given
by exceptional classes that are not perfect. For instance, the exceptional class

B D 6L � 3E0 �

7X
iD1

2Ei

is not a perfect class even though the coefficients of theEi are multiples of the weights
of 7. One can check that this class is live at z D 7 for some values of b. Furthermore, it
is a blocking class, but the b-interval that it blocks is contained in the interval blocked
by the perfect class

BU0 D 3L � 2E0 �
6X
iD1

Ei :

See Remark 4.2.2 for more discussion. Because it is not clear how nonperfect excep-
tional classes relate to the symmetries, we cannot claim that the capacity functions
themselves are invariant under the symmetries, but only that the images of the perfect
staircase classes remain live. This question can also phrased in terms of ECH capac-
ities: is it possible to understand the action of the symmetries from the point of view
of ECH capacities?

(ii) It turns out that if Hb has a staircase then it has one whose steps are given by
perfect classes, as long as b is not a special rational point. Moreover, if b is blocked,
it is blocked by a perfect class. As we show in Proposition 4.4.3, the argument in [5]
then applies to show that such staircases stabilize, at least to dimension 6. Thus the
function

cHb ;1.z/ D inf
®
� j E.1; z/ �R2

s
,! �Hb �R2

¯
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has a staircase for each b … Block that is not one of the special rational points, and
has no staircase if b 2 Block. It would be interesting to explore how this fits in with
the stabilized folding construction in [6, 12] for example. In the case of the ball or
the monotone polydisk, the staircases ascend and the stabilized embedding function
is conjectured to exhibit a ‘phase change’ at the accumulation point of the staircase.
For example in the case of the ball it is conjectured to agree with the folding curve

z 7!
3z

1C z

for z > �4. Notice that in this case the folding curve crosses the volume constraint
precisely at the accumulation point. However, there are some Hb with descending
stairs that stabilize, and so something rather different must happen in this case.

Remark 1.2.10 (Further developments and possible generalizations). (i) Since this
paper was first posted, there have been further developments about the Hirzebruch
surface. In [18], the authors prove that bD 1=3 admits only an ascending staircase and
that the special rational points do not have descending infinite staircases. These points
complete the leftover cases of Theorem 1.1.1 (ii) and (iv). Furthermore, they prove the
only quadratic irrational numbers that might be staircase accumulation points are the
endpoints of connected components of Block. By the fact that the accumulation point
function is the root of a quadratic equation, this proves that b D 0; 1=3 are the only
rational values of b with infinite staircases, proving [7, Conj. 1.20] for Hirzebruch
surfaces.

(ii) The connections between the Hirzebruch surface and the polydisk have also
become more clear. In [9] following work of [24], the authors provide evidence that
the structure of Theorem 1.1.1 also occurs for S2.1/ � S2.ˇ/. In [24], Usher con-
sidered ellipsoid embeddings into the polydisk P.1; b/ (which by [7, Thm. 1.4] is
equivalent to S2.1/ � S2.ˇ/). While he did not use the language of blocking classes,
we have verified that the staircases that he found do lie at the endpoints of blocked
intervals determined by perfect classes. Looking at a few examples, it seems that the
other endpoint of the blocked interval has a corresponding descending staircase. (Note
that Usher only considered ascending staircases.) He also found symmetries arising
from the relevant Diophantine equation that are closely related to those of [17] that are
discussed in Section 2.3 below. The further work about the polydisk in [9] suggests:

• Given a staircase in cHb , there should be an infinite staircase for S2.1/ � S2.ˇ/,
where

ˇ D acc�1
S2
ıCF � ı acc :

Here acc�1
S2

denotes the accumulation point function for S2.1/ � S2.ˇ/ and CF �

denotes the operation which sends a number with continued fraction Œs0; : : : ; sn�
to Œs0 � 1; : : : ; sn � 1�.
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• In the cases that he studied, Usher conjectured in [24, Conj. 4.23] a complete
description of the ellipsoidal capacity function of S2.1/ � S2.ˇ/ below the accu-
mulation point. The method of proof in [9] via almost toric mutations suggests that
this conjecture is true, and that a similar description holds for the ascending principal
staircases of Hb .

This provides evidence that the work done here to find all perfect classes is easily
generalizable to the case of the polydisk.

(iii) In [16], a similar structure is found for embeddings into

Xa;b WD CP2.1/ # CP
2
.a/ # CP

2
.b/;

where 0 < a � b and a C b < 1. In this example, rather than having blocked inter-
vals, there are blocked regions of a; b values, and staircases have been found on their
boundaries. Now, the regions blocked by two different perfect classes may intersect, in
contrast with the disjointness found in Proposition 4.2.1. Thus, the curve that bounds
a particular blocked region is not entirely made up of b-values with staircases: indeed
it seems that the set of such parameter values with staircases has much the same struc-
ture that we find for z-intervals such as Œ6; 8�. Preliminary work suggests that there
is an analogous definition of a generating triple, which we can mutate to find more
generating triples resulting in a similar fractal of staircases.

(iv) More generally, we expect our results to generalize to the examples in [7]
that compactify to a k-fold blowup of CP2, where k � 4 and we allow for irrational
blowups. Simple extensions of these situations are still mysterious. It remains unclear
if there are any staircases in a five-fold blowup of CP2 or in a convex toric domain
such as an irrational ellipsoid E.1; x/, x 2 RXQ; with irrational normal vectors. For
forthcoming work on these questions, see Cristofaro-Gardiner–Magill–McDuff [8].

(v) It would also be interesting to know whether echoes of the combinatorial
structures discovered here can be perceived in other situations. For example, Casals–
Vianna develop in [2] another approach to some of the staircases considered in [7]
via almost toric fibrations, emphasizing the relation to tropical geometry and quiver
combinatorics. Even though we are not working in a monotone manifold, it is possible
that the structure of the generating triples developed here, with their tight connections
to the almost toric fibrations in [15], have repercussions in these areas.

1.3. Nature of the proofs

The proofs involve two kinds of arguments; algebraic/arithmetic to show that the
classes E do satisfy all the required compatibility conditions, and geometric to show
that the corresponding obstruction functions �E;b are live for the appropriate b-value.
The point here is that a quasi-perfect class .d;m; p; q; t/ may not have E � E0 � 0 for
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every class E0 ¤ E that is represented by an exceptional sphere; see Corollary 3.1.3.
If E fails this test,11 then although the function �E;b is obstructive at its center p=q
for b D m=d (i.e. �E;m=d .z/ > cHm=d .p=q/) there is no guarantee that

(a) it gives the maximal obstruction at b D m=d; z D p=q, or that

(b) it still gives the maximal obstruction at z D p=q when b D b1, the limiting
b-value of the proposed staircase.

In fact, once we know (a) for all its steps, then (at least in the case of the principal
pre-staircases) results that can be quoted from [17] imply that the pre-staircase is live
provided that the slope estimate (3.1.3) holds. Moreover, by Lemma 1.2.1 we can
establish (a) by showing that E is perfect. The standard way to do this is to show
as in [1, 17] that its components reduce to those of a known exceptional class under
Cremona transformations. It turns out (see [17, §4.1]) that the symmetries act very
nicely on these components, so that it suffices to prove this for the staircases in the
family C�U . This was done by hand in [1] for the staircases with blocking classes BUn ,
n � 0. However, this approach seems impractical in the current context, since the
coefficients of the staircase classes in the complete family C�U increase so rapidly
and the reduction process does not seem to behave nicely under mutations.

Instead we first develop a more efficient way to determine when a quasi-perfect
class in the complete family C�U is perfect. Namely, we show in Lemma 3.1.4 that a
class E with m=d > 1=3 is perfect provided that the lower endpoint z�1 WD @

�.IE/ is
unobstructed, i.e. cHb�1 .z

�
1/ D Vb�1.z

�
1/, where acc.b�1/ D z

�
1. We then apply the

main result in Magill [15] which shows that these points are unobstructed by using
almost toric fibrations to construct a full filling for these values of b and z. This
is possible because there is an ascending sequence of quasi-perfect classes in C�U

(i.e. a pre-staircase) with limit .b�1; z
�
1/. To do this, one starts with the toric model

of Hb and performs a sequence of mutations at three of its corners. There are three
possibilities here: when suitably iterated, a mutation at the corner in the first quadrant
(called a v-mutation) corresponds to the translation Œ6; 8�! Œ2nC 6; 2nC 8�, while
mutations at the points on the x- and y- axis turn out to correspond precisely to the
corresponding moves for the triples T that are described in Proposition 2.1.9.

The upshot is that we use the existence of the whole interweaving family of quasi-
perfect classes to prove inductively that all the classes in the family are in fact perfect.
One then needs additional arguments to show that the staircase steps are live at the

11Although there certainly are plenty of fake classes (i.e. quasi-perfect classes that are not
perfect), Remarks 2.1.15 and 2.3.8 give intriguing hints that one might be able to express the
distinction in purely arithmetic terms. For example, there may be no set of (integral) fake classes
that satisfy all the compatibility conditions required of a generating triple.
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limiting b-value. This turns out to be straightforward in the case of the ascending stair-
cases, but more problematic for the descending ones; see Section 3.1 and Section 3.2.
It is important in several places of our arguments that the limiting values .b1; z1/ of
the principal staircases are both irrational.

2. Description of the classes

This is the algebraic heart of the paper. We define the notion of a generating triple
in Definition 2.1.6 and show that they propagate under left/right mutations in Propo-
sition 2.1.9. Along with Lemma 2.1.12, this allows us to prove Theorem 1.2.6 (i). In
Section 2.2 we describe the structure of the ensuing set of interwoven classes, and
prove in Proposition 2.2.6 that they block a dense set of z-values (and hence a dense
set of b-values). The nonrecursive pre-staircases are described in Definition 2.2.7.
Finally, we show in Proposition 2.3.2 that the symmetries from [17] act on the set of
generating triples, and hence on the set of pre-staircases.

2.1. Generating triples

All staircase classes E are quasi-perfect; that is, they are given by tuples .d;m; p; q/,
where

E D dL �mE0 �
X
i�1

miEi ; .m1; m2; : : : / D W
�p
q

�
;

whereW.p=q/ is the integral weight expansion of p=q; see [1, Ex. 8] or (A.3) below.
It is easy to check that if x WD .p; q; t/ satisfies the equation p2 � 6pq C q2C 8D t2

and t > 0, then the quantities .d;m/ defined by

d WD
1

8

�
3.p C q/C "t

�
; m WD

1

8

�
.p C q/C 3"t

�
; " 2 ¹˙1º (2.1.1)

satisfy the basic identities

3d D mC p C q and d2 �m2 D pq � 1

that correspond to c1.E/D 1, E �ED�1; see [1, §2.1] Moreover, by [17, Prop. 2.2.9]
the class is uniquely determined by p=q. In other words, given p; q; t satisfying

p2 � 6pq C q2 C 8 D t2;

the expressions for d;m in (2.1.1) are integral for at most one value of ". Thus we can
think of E as an integral point on the quadratic surface

XZ WD
®
x 2 Z3 j xTAx D 8

¯
;
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where A is the symmetric matrix

A WD

0B@�1 3 0

3 �1 0

0 0 1

1CA ; x WD

0B@pq
t

1CA : (2.1.2)

Such classes E are center-blocking12 if p=q > 3C 2
p
2 D amin by [17, Prop. 2.2.9].

Moreover, because the case "D 1 corresponds to values ofm=d > 1=3 while "D �1
corresponds to m=d < 1=3, we often omit " from the notation.13

Definition 2.1.1. Two quasi-perfect classes

E WD .d;m; p; q; t; "/; E0 WD .d 0; m0; p0; q0; t 0; "0/

are said to be adjacent if " D "0 and if after renaming so that p=q < p0=q0 (if neces-
sary), the following relation holds:

.p C q/.p0 C q0/ � t t 0 D 8pq0: (2.1.3)

Further, they are called t 00-compatible if " D "0 and

t t 0 � 4t 00 D pp0 � 3.pq0 C qp0/C qq0; i.e. xTAx0 D 4t 00: (2.1.4)

We make corresponding definitions for a pair x; x0 2 XZ to be t 00-compatible or adja-
cent. Further we write x < x0 (or E < E0) to denote that14 p < p0; q < q0; t < t 0; and
say that x 2 XZ is positive if p; q; t > 0.

Here is a useful result about the relation between adjacency and t -compatibility.

Lemma 2.1.2. The following statements hold.

(i) Suppose that the points x0;x1 2 XZ are t -compatible for some t � 3 and have
x0 < x1. Then x2 WD tx1 � x0 is positive and in XZ. Also, x1 < x2 and the pair
x1; x2 is t -compatible. Further, if x0; x1 are adjacent, so are x1; x2. Thus, if E0;E1
satisfy p0 < p1; q0 < q1; t0 < t1 and are adjacent and t -compatible, then so are
the components of all successive pairs in the sequence obtained from E0; E1 by t -
recursion.

(ii) The adjacency condition for classes with p=q < p0=q0 can also be written in
the following equivalent forms:

.3m0 � d 0/d D .m0 � q0/p Cm0q; or

d 0d �m0m D pq0:
(2.1.5)

12that is, �E;b.p=q/ > Vb.p=q/ when acc.b/ D p=q.
13By [17, Lem. 2.2.13], there are no perfect classes with m=d D 1=3.
14Note that this condition has nothing to do with the relative size of the ratios p=q; p0=q0.
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(iii) If E;E0 are adjacent, then they are t 00-compatible exactly if

jp0q � pq0j D t 00:

Proof. Since A is symmetric,

.tx1 � x0/TA.tx1 � x0/ D t2xT1 Ax1 � 2txT1 Ax0 C xT0 Ax0 D 8

exactly if 8t2 D 2txT1 Ax0, which holds by (2.1.4). Thus x2 2 XZ. Further, (2.1.4)
holds for x2 WD tx1 � x0; x1 because

.tx1 � x0/TAx1 D 8t � xT0 Ax1 D 4t;

again by (2.1.4). Thus x1; x2 are t -compatible.
To see that they are adjacent, it is useful to introduce15 the matrix

B WD

0B@�1 7 0

�1 �1 0

0 0 1

1CA :
Then A D 1

2
.B C BT / and it is easy to check the following:

• the class represented by x WD .p; q; t/T is quasi-perfect if and only if xTBx D 8;

• the classes represented by x; x0 are adjacent if and only if, when ordered so that
p=q < p0=q0, we have xTBx0 D 0; and

• the classes represented by x; x0 are t 00-compatible if and only if xT .B C BT /x0 D
8t 00.

Thus if p0=q0 < p1=q1, the points x0; x1 are adjacent precisely if xT0 Bx1 D 0. But
then p1=q1 < p2=q2 and the adjacency condition for E1;E2 is xT1 Bx2 D 0, which
holds because

xT1 Bx2 D xT1 B.tx1 � x0/ D 8t � xT1 Bx0 D 8t � xT0 .B
T
C B/x1 D 0

since x0 < x1 and x0; x1 are adjacent and t -compatible. This proves (i).
Now consider (ii). To see that the two conditions in (2.1.5) are equivalent use the

relation p C q D 3d �m to obtain

.3m0 � d 0/d D .m0 � q0/p Cm0q

D m0.3d �m/ � pq0;

15Here we are following a suggestion of Ana Rita Pires, exhibiting the adjacency condition
as an asymmetric version of the equation xTAxD 8 that defines the set of quasi-perfect classes.
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and then simplify. Next use the formulas in (2.1.1) to obtain

64.d 0d �m0m/ D
�
3.p C q/C "t

��
3.p0 C q0/C "t 0

�
�
�
.p C q/C 3"t

��
.p0 C q0/C 3"t 0

�
D 8.p C q/.p0 C q0/ � 8t t 0:

It follows easily that (2.1.3) is equivalent to the conditions in (2.1.5).
Finally, to prove (iii), we may assume without loss of generality that p=q < p0=q0.

Then rewrite the left-hand side t t 0 � 4t 00 of (2.1.4), using the expression for t t 0 from
(2.1.3) and simplify.

The following remarks explain the geometric significance of the t -compatibility
and adjacency conditions.

Remark 2.1.3 (Pre-staircases). (i) If E0;E1 are t 0-compatible for some t 0 � 3 and
E0 < E1, then by Lemma 2.1.2 the tuples obtained from them by the recursion

xkC1 D t
0xk � xk�1; where x D d;m; p; q; t ; (2.1.6)

are integral, and also satisfy the Diophantine identities;16 moreover, all successive
pairs Ek;EkC1 are t 0-compatible. Thus, this collection of classes forms a pre-staircase
in the sense of Definition 1.2.5.17 and we say that E0;E1 are its seeds. Further, by [17,
Lem. 3.1.4], there is � D �.t 0/ > 1 such that for each x D d; m; p; q; t , there are
constants X D D;M;P;Q; T such that xk D X�k C xX��k . Here we write

X WD X 0 CX 00
p
� 2 Q.

p
�/;

where � D .t 0/2 � 4, and define xX WD X 0 �X 00
p
� . Moreover,X 0;X 00 2Q are deter-

mined by x0; x1 via the formulas

X 0 D
x0

2
; X 00 D

2x1 � t
0x0

2�
: (2.1.7)

In particular, this implies that the ratios pk=qk ,mk=dk convergeO.��2k/ to the limits
P=Q, M=D. Further, in the limit the Diophantine equations satisfied by

.dk; mk; pk; qk/

16The linear identity 3d �mDpC q is automatic for any such recursively defined sequence,
but the quadratic identity d2 � m2 D pq � 1 holds only under the t -compatibility condition;
see [1, Lem. 65] for a similar result.

17In [1, Def. 46], a pre-staircase is defined to consist of a recursively defined sequence of
quasi-perfect classes that satisfy a linear relation (or equivalently are all adjacent to a fixed class
called its blocking class). The definition in [17, §1.2] is very similar, though the requirement for
the linear relation is stated separately. Our current use of the word is more general.
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simplify to
3D �M D P CQ; D2

�M 2
D PQ: (2.1.8)

Note also that, if t 0 � 3 then � D .t 0/2 � 4 is not a perfect square, and it follows
from [17, Cor. 3.1.5] that the limits z1 D P=Q, b1 DM=D are irrational provided
only that the sequences pk=qk; mk=dk are not constant. This condition holds for
all the sequences considered here: indeed pk=qk is always assumed to be noncon-
stant, while the adjacency condition (2.1.5) that we impose on the initial terms E0;E1
implies that mk=dk is nonconstant.

(ii) Note that for the staircase at b D 1=3 there are three separate strands, which
cannot be combined into one recursion. Each of these strands has t 2 ¹1; 2º constant
and has alternating values for ". Thus the definitions of adjacency and t -compatibility
do not apply, so that this staircase is of rather different nature from the others. Further-
more, for these strands d;m do not satisfy homogeneous recursions, and hence, (2.1.6)
does not hold. Its properties are discussed in Section 4.3. See also [17, Ex. 2.3.7].

Remark 2.1.4 (The adjacency condition). (i) In the language of [17], the condition

.3m0 � d 0/d D .m0 � q0/p Cm0q

in (2.1.5) says that E satisfies the lower (i.e. the one for ascending stairs) linear relation
given by E0. Notice that by [17, Lem. 3.3.5 (ii)] if p=q < p0=q0 then E satisfies the
lower linear relation given by E0 if and only if E0 satisfies the upper linear relation
given by E.

(ii) We saw in [1, Prop. 52] that if all the classes Ek D .dk;mk; pk; qk; tk; "/ in an
ascending pre-staircase are adjacent to E0 D .d 0;m0;p0; q0; t 0; "/ and if pk=qk < p0=q0

for all k then the limit point

.b1; z1/ D
�

lim
mk

dk
; lim

pk

qk

�
D

�M
D
;
P

Q

�
has the property that z1 D acc.b1/ is the lower endpoint @�.IE0/ of the z-interval
blocked by E0. Similarly, if E00

k
is a descending pre-staircase with pk=qk > p0=q0

for all k that consists of classes that are adjacent to E0, then its accumulation point
P 00=Q00 is the upper endpoint @C.IE0/ of the E0-blocked z-interval. In each case, we
call E0 the associated blocking class of the pre-staircase.

(iii) We will see in Section 4.1 that the adjacency condition has quite different
consequences as well. In fact, if we look only at perfect classes whose centers p=q
are not integral (i.e. if q > 1/, then every pair of adjacent classes E;E0 is orthogonal
with respect to the intersection pairing, i.e. E � E0 D 0; see Proposition 4.1.3. This
gives us information about the continued fraction expansions of the centers of the
steps.
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(iv) Finally, notice that the adjacency relation for the classes E;E0 was phrased
so that the order of the pair is irrelevant, though the condition itself depends on the
relation of the centers p=q, p0=q0. However, although the t 00-compatibility condition
does not depend on the order of the inputs, we are interested in the staircase classes
generated by t 00-recursion with the (ordered!) seeds E;E0. Note that the ordering here
is numerical, depending only on the size of entries in x; x0, not on their ratios. Thus
the staircase classes themselves may ascend or descend.

Remark 2.1.5. (i) Since the basic inequalities involve the z-variable, while the func-
tion b 7! acc.b/ can reverse orientation, we will often work below with the z-interval
IE0 blocked by E0 rather than the possibly more natural blocked b-interval JE0 . Note
also that the center p0=q0 of E0 always lies in IE0 , while m0=d 0 never lies in JE0 . In
fact, [17, Lem. 2.2.11] shows that acc.m0=d 0/ > @C.IE0/ in all cases.

(ii) If xk; yk; k � 0; are recursively defined as in (2.1.6) then the difference
xkC1yk � xkykC1 is constant. Thus one can tell if the ratios xk=yk increase or
decrease with k by looking at the first two terms.

Here is our main definition.

Definition 2.1.6. The quasi-perfect classes

E� D .d�; m�; p�; q�; t�; "/;
E� D .d�; m�; p�; q�; t�; "/;
E� D .d�; m�; p�; q�; t�; "/;

with p�=q�<p�=q�<p�=q� and t�; t�, t� � 3, are said to form a generating triple T

if

(a) E�;E� are adjacent;

(b) E�;E� are adjacent and t�-compatible, i.e. t� D q�p� � p�q�;

(c) E�;E� are adjacent and t�-compatible, i.e. t� D q�p� � p�q�;

(d) t�t� � t� D q�p� � p�q�;

(e) acc.m�=d�/; acc.m�=d�/ > acc.m�=d�/.

Here the letters �;�; � stand for ‘left’, ‘middle’, and ‘right’.

Example 2.1.7. The basic examples of generating triples are the triples

T n
� WD

�
BUn ;E

1
n;B

U
nC1

�
; n � 0;

where
BUn D .nC 3; nC 2; 2nC 6; 1; 2nC 3/; " WD 1;
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are the blocking classes for the �U family and, for each n, E1n denotes the shared first
step of the staircases18 �U

`;nC1
and �Uu;n. As we see from (2.1.10), E1n has center

p1n
q1n
D Œ2nC 7I 2nC 4�

with parameters

.d1n ; m
1
n; p

1
n; q

1
n; t

1
n / WD

�
2n2 C 11nC 14; 2n2 C 9nC 9;

4n2 C 22nC 29; 2nC 4; 4n2 C 16nC 13
�
I (2.1.9)

we sometimes denote it by EŒ2nC7I2nC4�. Further both the ascending staircase �U
`;nC1

and descending staircase �Uu;n have decreasing ratiosmk=dk , and, by Remark 2.1.4 (ii)
these ratios converge to the appropriate endpoint of the blocked b-intervals. In partic-
ular, the ratios for the ascending staircase �U

`;nC1
satisfy

m0n
d0n

>
m1n
d1n

> @�
�
JBU
nC1

�
:

Therefore, because b 7! acc.b/ preserves orientation for b>1=3, the required inequal-
ities

acc
�m0nC1
d0nC1

�
; acc

�m0n
d0n

�
> acc

�m1n
d1n

�
hold. For later reference, the centers of the steps of staircases �U

`;n
and �Uu;n and their

accumulation points are

pU
`;n;i

qU
`;n;i

D
�
¹2nC 5; 2nC 1ºi ; endn

�
; i � 0;

pUu;n;i

qUu;n;i
D
�
2nC 7I ¹2nC 5; 2nC 1ºi ; endn

�
; i � 0;

(2.1.10)

where endn D 2nC 4 or .2nC 5; 2nC 2/, with limits

zU`;n;1 D
�
¹2nC 5; 2nC 1º1

�
;

zUu;n;1 D
�
2nC 7I ¹2nC 5; 2nC 1º1

�
:

18The convention is that staircases with label ` D ‘lower’ are ascending and converge to
the lower endpoint of the corresponding blocked interval, while those label u D ‘upper’ are
descending. In the current paper the steps are indexed by k (while [17] used both k and � for
reasons explained in [17, §3.1].) The other decorations in the label of �U

`;n
for example describe

the family (namely, U ) and the blocking class, in this case BUn .
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Note that here we use i as the indexing label for the staircase steps because, for ease
of writing, we have written each of the two strands19 of the staircase separately. These
strands are intertwined; thus the steps in �U

`;1
when written in ascending order have

centers at
Œ6�; Œ7I 4�; Œ7I 3; 6�; Œ7I 3; 7; 4�; Œ7I 3; 7; 3; 6�; : : :

(For an explanation of how to order continued fractions, see Appendix A.)

Remark 2.1.8. (i) An important fact about quasi-perfect classes .d; m; p; q/ with
m=d > 1=3 is that

p

q
< acc

�m
d

�
I

see [17, Lem. 2.2.11]. This is relevant in a variety of contexts, for example in Lem-
ma 4.2.5 that analyzes the relations between two different perfect classes. Notice also
that the definition of a generating triple requires control over the relative positions
of the points acc.m�; d�/; acc.m�=d�/ and acc.m�=d�/. One consequence of this
hypothesis is that the ratios m=d decrease for all our staircases with b > 1=3, which,
as pointed out in Proposition 3.1.7, is important in the proof that these pre-staircases
are live.

We also showed in [17, Lem. 2.3.5] that for the �U family, we have

acc
�m0n
d0n

�
<
p0nC1

q0nC1
D 2nC 8; 8 n � 0: (2.1.11)

Because m1n=d
1
1 < m

0
n=d

0
n , we also have

acc
�m1n
d11

�
<
p0nC1

q0nC1
:

In fact, it follows from Lemma 2.1.10 (applied to the quasi-triples20 .EU
`;seed;B

U
n;BUnC1/

and their images under the symmetries) that all the generating triples that we encoun-
ter have the property that acc.m�=d�/ < p�=q�. We did not put this property in the
definition for the sake of simplicity.

(ii) The triples T n
� all have t� < t� and " D 1. However this inequality is reversed

when we consider triples with b < 1=3. For example, the reflection R defined in

19As remarked earlier, we use the word ‘staircase’ rather loosely to refer to any sequence of
classes, infinitely many of which are live for some limiting b-value. A subset of these classes
whose continued fraction can be described by a single formula is called a strand; see [17, §3.1]
for further discussion. In the case of the staircases �U

`;n
; �Uu;n, these strands are distinguished

by the ending of the continued fractions of their centers p=q.
20See Remark 2.1.14.
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Section 2.3 below takes the �U staircase family (with b > 1=3, " D 1) to the �L

family (with b < 1=3, "D �1). It fixes t but reverses the z-orientation. We will prove
in Proposition 2.3.2 that the action ofR preserves generating triples. For example, the
three classes

BL2 D R
].BU2 / D

�
10; 1; 25; 4; 7;�1

�
;

R].E12/ D
�
48; 5; 120; 19; 33;�1

�
;

BL1 D R
].BU1 / D

�
5; 0; 13; 2; 5;�1

�
also form a generating triple. Note that the image byR of the basic triple .BU0 ;E

1
1;B

U
1 /

whose classes have centers .6; Œ7I 4�; 8/ requires special treatment because the point
R.6/ is undefined; see Remark 2.3.6.

We show below that any generating triple T has two associated principal pre-
staircases, a descending pre-staircase �T

u with seeds (i.e. first two steps) E�;E�, and
an ascending pre-staircase �T

`
with seeds E�;E�. In order to prove this we will use our

main result, which states that if T WD .E�;E�;E�/ is a generating triple, there are two
associated generating triples xT WD .E�;Ex�;E�/ and yT WD .E�;Ey�;E�/. Here
the new class Ex� in the first triple xT is what will be the third step of the descending
pre-staircase �T

u while the middle entry in yT is the third step Ey� of �T
`

. We some-
times call these the left (resp. right) derived triples, with x denoting a move to the
left and y a move to the right. We will also call xT (resp. yT ) the left (resp. right)
mutation of T . See Figure 2.1 to visualize the left versus right move.

Proposition 2.1.9. Suppose that

E� WD .d�; m�; p�; q�; t�; 1/;
E� D .d�; m�; p�; q�; t�; 1/;
E� WD .d�; m�; p�; q�; t�; 1/

form a generating triple T . Then

(i) if Ex�D .dx�;mx�;px�; qx�; tx�; 1/ is the class obtained by one t�-iteration
from E�;E� then the classes .E�;Ex�;E�/ form a generating triple xT ;

(ii) similarly, if Ey� D
�
dy�; my�; py�; qy�; ty�; 1

�
is the class obtained by one

t�-iteration from E�;E�, then .E�;Ey�;E�/ form a generating triple yT .

Proof. To prove (i), we must check that conditions (a) through (e) hold for xT . Con-
dition (a) states that E�; E� are adjacent, which holds by hypothesis.

The first step in the proof of (b) is to check that the classes E�;Ex�;E� satisfy
the order condition

p�

q�
<
px�

qx�
<
p�

q�
:
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Now px�=qx� < p�=q�, because p�=q� < p�=q�; see Remark 2.1.5 (ii). Further,
p�=q� < px�=qx� if p�.t�q� � q�/ < .t�p� � p�/q�, that is, if

q�p� � p�q� < t�.q�p� � p�q�/ D t�t�;

where the equality holds by condition (b) in Definition 2.1.6. But

q�p� � p�q� D t�t� � t�

by (d), and t� � 3 by hypothesis. Therefore, this order condition holds.
It follows that the new class Ex� is adjacent to E�, because it is a linear com-

bination of the two classes E�;E� which are both adjacent to E�, and the condition
in (2.1.3) for classes with centers > p�=q� to be adjacent to E� is linear in the vari-
ables p0=q0. Further, E�;Ex� are t�-compatible because

q�px� � p�qx� D q�.t�p� � p�/ � p�.t�q� � q�/

D t�t� � .t�t� � t�/ D t�

by conditions (b) and (d) for T . Therefore, (b) holds for xT .
Condition (c) requires that Ex�;E� be adjacent and t�-compatible, which holds

by Lemma 2.1.2 (i).
Condition (d) requires that t�t� � tx� D q�p� � p�q�. But

t�t� � tx� D t�t� � .t�t� � t�/ D t� D q�p� � p�q�;

where the last equality holds by condition (c) for the initial triple T .
Finally, we must check the inequalities for acc.mx�=dx�/. Lemma 2.1.10 below

shows that
acc
�mx�
dx�

�
<
p�

q�
:

(Note that px� > 2p�, because px� D tp� � p� for some t � 3.) Because E� is a
quasi-perfect class, [17, Lem. 2.2.11] implies that

p�

q�
< acc

�m�
d�

�
:

Further, acc.m�=d�/ < acc.m�=d�/ by assumption (e) for T . Therefore, we have

acc
�mx�
dx�

�
< acc

�m�
d�

�
; acc

�m�
d�

�
:

This completes the proof of (i).
The proof of (ii) is very similar. Again condition (a) is automatic, while to prove

condition (b), we must first check that the centers of the classes are correctly ordered,
i.e. we need

p�

q�
<
py�

qy�
<
p�

q�
:
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The first inequality holds by construction, while the second holds if .t�p� � p�/q� <
.t�q� � q�/p�, that is, if

q�p� � p�q� < t�.q�p� � p�q�/ D t�t�:

But this holds because q�p� � p�q� D t�t� � t� by hypothesis.
The rest of the proof follows as before; again we use Lemma 2.1.10 to check (e).

The next lemma applies to any pair of classes E; E0 that are adjacent and t 00-
compatible for some t 00 � 2 with decreasing centers p=q > p0=q0 and with p < p0.
Hence, in particular, it applies to any pair of adjacent steps in a descending pre-
staircase.

Lemma 2.1.10. Let E D .d;m;p; q; t; 1/, E0 D .d 0;m0; p0; q0; t 0; 1/ be quasi-perfect
classes with 3C 2

p
2 < p0=q0 < p=q that are adjacent and t 00-compatible for some

t 00 � 2. Assume further that
p
2p0 > p. Then

w0 WD acc
�m0
d 0

�
<
p

q
:

Proof. To prove this it suffices to show that

w0 C
1

w0
<
p

q
C
q

p
:

Since .d;m; p; q/ is quasi-perfect, w0 WD acc.m0=d 0/ satisfies the equation

w0 C
1

w0
D
.3 �m0=d 0/2

1 � .m0=d 0/2
� 2

D
.3d 0 �m0/2 � 2..d 0/2 � .m0/2/

.d 0/2 � .m0/2
D
.p0/2 C .q0/2 C 2

p0q0 � 1
:

Thus we must show that

.p0/2 C .q0/2 C 2

p0q0 � 1
<
p

q
C
q

p
; (2.1.12)

or equivalently
.p C q/2

pp0qq0
<
p2 C q2

pq
�
.p0/2 C .q0/2

p0q0
:

Consider the function h.z/D zC 1=z. This is an increasing function for z > 1 whose
derivative increases to 1 as z !1. Therefore, for z > z0, we have

h.z/ � h.z0/ > h0.z/.z � z0/;
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so that it suffices to show that

h0
�p0
q0

��p
q
�
p0

q0

�
>
.p C q/2

pp0qq0
;

or equivalently�
1 �

� q0
p0

�2�
.pq0 � p0q/ >

.p C q/2

pp0
D

�
1C

q

p

�2 p
p0
:

But pq0 � p0q D t 00 � 2, so because p=q; p0=q0 > 3C 2
p
2 it suffices to check that

2

�
1 �

1

.3C 2
p
2/2

�
>

�
1C

1

3C 2
p
2

�2
p

p0
”

p
2 >

p

p0
;

which holds by hypothesis.

Corollary 2.1.11. In any generating triple .E�;E�;E�/ that is derived by mutation
from one of the basic triples .BUn ;E1n;BUnC1/ in Example 2.1.7, we have

acc
�m�
d�

�
<
p�

q�
:

Proof. We observed in Remark 2.1.8 (i) that this holds for the triples .BUn ;E1n;BUnC1/.
We can also deduce this from Lemma 2.1.10 because BUnC1;E

1
n are adjacent steps in

the descending staircase �U
`;n

. It holds for all derived triples by induction. In the case
of .E�;Ex�;E�/ this is immediate because E�;Ex� are adjacent steps in a descending
pre-staircase. In the case of .E�;Ey�;E�/ it holds because acc.m�=d�/ < p�=q� by
the inductive hypothesis, and E�; Ey� are steps in an ascending pre-staircase with
decreasing ratios mk=dk , so that acc.my�=dy�/ < acc.m�=d�/.

Lemma 2.1.12. If .E�;E�;E�/ form a generating triple T , then

(i) the pre-staircase �T
`

with recursion parameter t� and seeds E�;E� ascends
and has blocking class E�;

(ii) the pre-staircase �T
u with recursion parameter t� and seeds E�;E� descends

and has blocking class E�;

(iii) in both cases the sequence acc.mk=dk/ decreases and the limits

z1 D lim
pk

qk
and b1 D lim

mk

dk

are irrational.
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Proof. The pre-staircase �T
`

has first two steps E�;E� with subsequent steps Eyk�,
k � 1: It follows from Proposition 2.1.9 (ii) that all these steps lie below E�, and
are adjacent to E�. Hence, as explained in Remark 2.1.4 (ii), E� is the blocking class
for this pre-staircase. In particular, this implies that this pre-staircase accumulates at
.b1; z1 D acc.b1//, where b1 D @�JE� . Similarly, the subsequent steps Exk�,
k � 1; of the descending pre-staircase �T

u lie above E�, and are all adjacent to
it. Thus this pre-staircase accumulates at the upper endpoint @CJE� of the interval
blocked by E�. Finally, to check (iii) notice that the first two terms of these sequences
decrease because we assume acc.m�=d�/;acc.m�=d�/ > acc.m�=d�/. Therefore, the
sequences decrease by Remark 2.1.5 (ii). Finally, the irrationality claims follow from
Remark 2.1.3 (i).

Proof of Theorem 1.2.6 (i). This follows immediately from Example 2.1.7, Proposi-
tion 2.1.9, and Lemma 2.1.12.

Remark 2.1.13. (i) In view of Corollary 2.1.11 we could have sharpened the last
condition acc.m�=d�/; acc.m�=d�/ > acc.m�=d�/ in the definition of a generating
triple by adding the requirement

acc
�m�
d�

�
<
p�

q�
:

We did not do this to keep the definition as simple as possible. Note however that, as
we shall show later (for example in Lemma 3.2.1), the value ofm=d is relevant to the
behavior of the corresponding obstruction �E;b as b varies.

(ii) It follows from Lemma 2.1.12 that all the pre-staircases in the complete fam-
ily C�U have decreasing ratios mk=dk . This is a crucial ingredient in the proof that
these pre-staircases are all live; see Proposition 3.1.7.

(iii) The fact that all the pre-staircases in C�U , whether ascending or descending,
have ratiosmk=dk that decrease with k is rather paradoxical, since one would naively
expect that these ratios would increase for ascending pre-staircases. Indeed, given two
classes E D .d;m; p; q; t/ and E0 D .d 0; m0; p0; q0; t 0/, we have

m

d
<
m0

d 0
”

.p C q/C 3t

3.p C q/C t
<
.p0 C q0/C 3t 0

3.p0 C q0/C t 0

” t .p0 C q0/ < t 0.p C q/”
t

p C q
<

t 0

p0 C q0
:

However, if we ignore the integer 8 that appears in the definition of t and denote
z WD p=q, we have

t2

.p C q/2
�
p2 � 6pq C q2

.p C q/2
D
z2 � 6z C 1

.z C 1/2
;
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which is an increasing function of z for z > 1. Given p=q < p0=q0, this rough estimate
suggests that we should also have

t

p C q
<

t 0

p0 C q0
;

and hence m=d < m0=d 0; but this is not the case. Thus, even though the number 8 is
very small compared to the eventual size of p; q its influence in the relevant formulas
cannot be ignored.

Remark 2.1.14 (Quasi-triples). As noted in (1.2.3) above, in [17] the staircase �U
`;n

was defined to have blocking class BUn and seeds EU
`;seed D .1; 1; 1; 1; 2/ and BUn�1:

Using the recursion parameter for BUn ; the next step in the staircase following EU
`;seed,

BUn�1 is EŒ2nC7;2nC4� as expected from Example 2.1.7. For all n, this first seed EU
`;seed

is independent of n: Similarly, for �Uu;n; the seed EUu;seed D .�2; 0;�5;�1; 2/ plays
a similar role. In [17], these seeds were especially useful because they behave well
under symmetries and also, because their entries are independent of n; they made
many computations simpler.

Because the two seeds EU
`;seed and EUu;seed together with the blocking class BUn

generate recursive staircases as described above, the triads

T n
`;seed WD

�
EU`;seed;B

U
n ;B

U
nC1

�
; T n

u;seed WD
�
BUn ;B

U
nC1;E

U
u;seed

�
;

satisfy the adjacency and t -compatibility conditions (a), (b), (c) for a generating triple.
It is also easy to check that (d) holds. Further, if we define their x- and y-mutations
as in Proposition 2.1.9, we have

yT n
u;seed D T nC1

u;seed; xT n
`;seed D T n�1

`;seed;

while

xT n
u;seed D T n

� ; yT n
`;seed D T n

� :

We will say that triples such as T n
`;seed; T

n
u;seed that satisfy conditions (a), (b), (c),

and (d) of Definition 2.1.6 are quasi-triples. They do not satisfy condition (e). Also
neither of the seeds are blocking classes; indeed the upper seed has negative entries,
so it is not even a geometric class.

As explained in [17, §3.3], both EU
`;seed and �EUu;seed D S

]EU
`;seed are steps in the

third strand of the staircase at b D 1=3; indeed this strand has the single seed EU
`;seed

and has steps given the images of this seed under the shifts Sk , k � 1: Further, as
we show in Section 4.3, the classes in this strand obstruct the existence of ascending
staircases at the special rational b. The other two strands of this staircase are given
by the images by the shift Sk , k � 1, of the classes BU�2 D .1; 0; 2; 1; 1;�1/ and
BU�1 D .2; 1; 4; 1; 1; 1/. Moreover, by replacing the t entries in BU�2 and BU�3 by "t ,
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we can think of BU�3 D .0; �1; 0; 1; 3; �1/ and BU�2 as the first two terms of the
sequence BUn ; n � �3 with recursion parameter t D 2. The results in [15] show that
this iteration corresponds to the notion of v-mutation in the toric model. Thus the
whole configuration of perfect classes found in this paper is generated by the staircase
at b D 1=3 together with mutations and symmetries.

Remark 2.1.15 (Fake pre-staircases and pseudo-triples). To give perspective on the
problem, we now explain some properties of a family of Diophantine classes that
share many of the properties of the classes described above but which are ‘fake’, i.e.
they do not reduce properly under Cremona moves, and are not live.21 These classes
have the formulas described in Example 2.1.7, but with parameters in 1

2
Z X Z, so

that only half of the them have integral entries and hence correspond to obstructive
classes. For example, the tuple BU

1=2
D .7=2; 5=2; 7; 1; 4/ has center 7, and of course

does not represent an obstructive class. For clarity, we will call such a tuple a pseudo-
class. Similarly, none of the tuples BU

n�1=2
, n 2N, have integral values for .d;m/. On

the other hand, the tuples E1
n�1=2

are integral for all integers n, though one can check
that none of them are exceptional divisors; for example they do not Cremona reduce
correctly and also have negative intersection with exceptional classes such as BU0 .

Note that the triples

T 0n WD Tn�1=2 WD
�
BUn�1=2;E

1
n�1=2;B

U
nC1=2

�
satisfy all the numeric conditions to be a generating triple (except the requirement to
be integral!), and half of the tuples in the ascending ‘staircase’ generated by BU

n�1=2
,

E1
n�1=2

by t0
nC1=2

-recursion are integral. For example, when n D 0, the class

E1
�1=2 D .9; 5; 19; 3; 6/;

p

q
D Œ6I 3�

is a step in an ascending fake pre-staircase with centers Œ6I ¹2; 6ºk; 3�. These are the
odd-placed terms in the pre-staircase with seeds BU

�1=2
;E1
�1=2

and recursion param-
eter � D t0

1=2
D 4 and hence form one of the strands of this ascending pseudo pre-

staircase. As explained in [17, Lem.3.3.1], we can consider this sequence to have
recursion parameter � D �2 � 2 D 14, and to be generated22 by E1

�1=2
and the third

term in this sequence which is

E0 D .125; 69; 265; 41; 83/;
p

q
D Œ6I 2; 6; 3�:

21In fact, the very first pre-staircase that we found when working on [1] actually was fake,
and is the image under S of one of the pre-staircases described here. See [1, Ex. 28 (iii)]. Also
see [17, §4.1] for an explanation of Cremona reduction.

22In fact, we can take the initial seed to be the class EU
`;seed D .1; 1; 1; 1; 2/ in Remark 2.1.14.



Staircase patterns in Hirzebruch surfaces 471

Thus this fake pre-staircase has only one strand. It satisfies the linear relation given
by the pseudo-class BU

�1=2
. By Lemma 2.1.16 below, for sufficiently large k the

classes Ek D .dk; mk; pk; qk; tk/ in this fake pre-staircase are obstructive when b D
limmk=dk . However, they are not live because the obstruction from BU0 is larger. Fur-
ther, one can check that BU0 � B

U
�1=2

D �1; in fact, BU0 � E < 0 for all elements E in
this sequence.

Similarly, only one strand of the corresponding descending sequence of tuples is
integral, and it also consists of fake classes. For example, when nD 1 this strand of the
descending sequence generated by E0

3=2
and E1

1=2
with recursion parameter t0

1=2
and

pseudo-blocking class E0
1=2

can be taken to have seeds EUu;seed D .�2; 0;�5;�1; 2/

and E1
1=2
D .20; 14; 41; 5; 22/ with recursion parameter .t0

1=2
/2 � 2 D 14, and hence

the next step
E D .282; 196; 579; 71; 306/;

p

q
D Œ8I 6; 2; 5�:

Thus, the general step has centers at Œ8I ¹6; 2ºk; 5�, k � 0, and lies in the interval
blocked by BU1 , though it satisfies the linear relation given by the pseudo-blocking
class E0

1=2
. Again, BU1 � E

1
1=2

< 0.
The reader can check that there is an analogous descending pseudo-staircase with

centers in the interval blocked by BU0 . This one satisfies the linear relation determined
by E0

�3=2
with t D 2 and is generated numerically by EUu;seed and E1

�1=2
with recursion

parameter t2 � 2 D 2 D �. This sequence consists of the tuples

E00`;k WD .�2C 11k; 5k;�5C 24k;�1C 4k; 2C 4k/; k � 1; pk=qk D Œ6I 4k � 1�;

and its continued fraction expansion is ‘degenerate’ in the sense that it does not
contain repeated digits.23 Further, one can check that at the limiting b-value b1 D
acc�1U .6/ D 5=11 all these classes E00

`;k
fail to be obstructive at their centers since the

requirement

jdkb1 �mkj <

q
1 � b21

evaluates to 10=11 <
p
96=11, which is false.

Lemma 2.1.16. Let Ek D .dk;mk; pk; qk; tk/, k � 0, be a sequence of quasi-perfect
classes with E0 < E1 and whose entries satisfy a recursion xkC1 D �xk � xk�1 with
� � 3. Then, if b1 WD limmk=dk , there is k0 such that

�Ek ;b1

�pk
qk

�
> cHb1

�pk
qk

�
; k � k0:

Hence, acc.b1/ D limk pk=qk .

23This happens because this sequence converges too slowly: indeed, � D 2 is too small for
the argument outlined in Remark 2.1.3 to apply.
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Proof. By [1, Lem. 15 (iii)], a quasi-perfect class E D .d; m; p; q/ is obstructive
at p=q for some b (that is, has �E;b.p=q/ > cHb .p=q/) if and only if

jdb �mj <
p

1 � b2:

As we noted in Remark 2.1.3, when � � 3 there is � > 1 such that the ratios
mk=dk , pk=qk converge to M=D, P=Q at the rate O.��2k/. Further,ˇ̌̌

dk
M

D
�mk

ˇ̌̌
D

1

D
jM xD �D xM j��2k <

r
1 �

M 2

D2

for sufficiently large k. Thus, for sufficiently large k the function �Ek ;b1 is obstruc-
tive at pk=qk , which proves the first claim.

The second claim then follows from [7, Thm. 1.13]. Notice that the statement
of this theorem assumes the existence of a staircase at b1, i.e. a sequence of live
classes – however, the proof given there only uses the fact the classes are obstructive
at b1.

2.2. The pattern of derived classes

We now describe the set EŒ6;8� formed by all the blocking classes that are derived from
the foundational triple

T 0
� WD

�
BU0 ;EŒ7I4�;B

U
1

�
defined in Example 2.1.7. The main result is Proposition 2.2.6 stating that the union
of the corresponding blocked z-intervals intersects the interval Œ6; 8� in a dense, open
subset. Finally, we assign an infinite ternary decimal label to each point z 2 Œ6; 8� that
is not blocked, and state in Proposition 2.2.8 a more detailed version of the claims in
Theorem 1.1.1 (ii) about the associated pre-staircases.

For simplicity, we will only discuss in detail the case when z 2 Œ6; 8�. However,
the pattern formed by the classes with centers in the intervals Œ2nC 6; 2nC 8�; n > 0
is precisely the same; see Remark 2.2.5. In particular, the density result holds for all n.

We first introduce a ternary decimal label ı for the classes Eı 2 EŒ6;8�.

Lemma 2.2.1. Each class in EŒ6;8� can be given a ternary decimal label ı such that
the following hold:

(i) We define E0 WD BU0 , E:1 WD EŒ7I4�, E1 WD BU1 , and call the corresponding
triple either T:1 or T 0

� . All other classes have labels of the form

ı D :a1 � � � ak�11;

where ai 2 ¹0; 2º.
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Level 0

Level 1

Level 2

Level 3

Level 4

T:01 T:21

T:1

E:0001 E:0021 E:0201 E:0221 E:2001 E:2021 E:2201 E:2221

E:001 E:021 E:201 E:221

E:01 E:21

E:1

E0 E1

Figure 2.1. The edges of the main recursion are in yellow (given by ı.w/! ı.xw/, ı.yw/),
with the other edges of the triples in dotted grey; none of these edges cross the vertical green
lines that represent the blocked intervals IE.

(ii) If ı D :a1 � � �ak�11, then Eı lies on the kth level, i.e. it is the middle class E�
in a generating triple Tı formed from T:1 by k � 1 steps.

(iii) The labeling respects order: if ı < ı0, then the z-blocked interval IEı lies to
the left of IEı0 .

Proof. The label is assigned inductively: if the triple Tı WD .E�;E� D Eı ;E�/ with
ı WD :a1 � � � ak�11 is already labeled, then the middle classes Ex�; Ey� of its two
derived triples are labeled

Ex� D E:a1���ak�101; Ey� D E:a1���ak�121;

so that the corresponding triples are

xT:a1���ak�11 WD T:a1���ak�101; yT:a1���ak�11 WD T:a1���ak�121:

It is evident that this labeling has the properties claimed; see Figure 2.1. Note that for
k � 1, there are 2k�1 classes at level k.

We next consider the properties of the graph whose vertices ı D ı.w/ consist of
finite ternary decimals in .0; 1/ with precisely one occurrence of 1 at the end, together
with the edges joining ı.w/ to ı.xw/ and ı.yw/. The edges of this graph are colored
yellow in Figure 2.1; the initial vertex is E:1 at level 1. The augmented graph is
obtained from this one by adding the remaining edges in the triples; these are dotted
grey in the figure.
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Proposition 2.2.2. This labeling has the following properties.

(i) Each class Eı (where ı … Z) is the middle entry in a unique triple Tı .

(ii) The entries in ı record in reverse order the sequence of moves x; y needed to
mutate from T:1 to Tı . For example, T:0022201 D xyyyxxT:1.

(iii) Except in the initial case ı D :1, the other two elements Eı.w/;�; Eı.w/;�
in Tı lie on different levels with exactly one of them on the immediately preceding
level. Further, Eı.w/;� lies on a higher level than Eı.w/;� if and only if ı ends in 01,
so that the last mutation was via x.

(iv) Let w WD xm1yn1 � � � xmj ynj be a word in x; y with all mi ; ni > 0 except
possibly for m1; nj which may be 0, and let ı.w/ WD :2nj 0mj � � � 2n10m11 be the cor-
responding ternary decimal. Then, assuming w is nonempty, the other entries in the
triple wT:1 WD Tı.w/ are Eı.w/;�; Eı.w/;�, where

Eı.w/;� D

´
Eı.w0/;� if w D xw0;

Eı.w0/ DW Eı.w0/;� if w D yw0;

Eı.w/;� D

´
Eı.w0/ DW Eı.w0/;� if w D xw0;

Eı.w0/;� if w D yw0:

(2.2.1)

(v) In particular, in the triple wT:1 the words in x; y that describe the other two
elements consist of suitable initial segments ofw. More precisely, there is a triple with
vertices ı�; ı�; ı� if and only if one of the following conditions hold:24

• If ı� D ı.w/ where w D xm1 � � �ynj andm1 > 0, then ı� D ı.xm1�1 � � �ynj / and
ı� D ı.y

n1�1 � � �ynj /.

• If ı� D ı.w/ where w D yn1 � � �ynj and n1 > 0, then ı� D ı.yn1�1 � � �ynj / and
ı� D ı.x

m2�1 � � �ynj /.

(vi) The two pre-staircases generated by the triple Tı D .Eı;�;Eı ;Eı;�/, where
ı D ı.w/ consist of the classes Eı.xjw/, j � 0 (descending) with recursion parame-
ter tı;�, and Eı.yjw/, j � 0, (ascending) with recursion parameter tı;�.

(vii) Each edge � in the augmented graph is a lower edge (i.e. one with an end-
point at the middle vertex E�) in a unique triple T� , and can be associated to the
unique vertex in T� that is not one of its endpoints; thus the two classes at the end-
points of � are part of a recursion whose recursion parameter is the t component of
the third class in T� .

Proof. The proof is a straightforward induction that is left to the reader.

24Here we assume w is not empty, but otherwise allow empty words as necessary.



Staircase patterns in Hirzebruch surfaces 475

Example 2.2.3. Here are some examples of the recursive formula in (2.2.1).

• If w D x3yx, then

Eı.x3yx/;� D Eı.yx/;� D Eı.x/; i.e. E:020001;� D E:01,

while

Eı.x3yx/;� D Eı.x2yx/; i.e. E:020001;� D E:02001:

• If w D x3y, then

Eı.x3y/;� D Eı.y/;� D Eı.;/; i.e. E:20001;� D E:1;
while

Eı.x3y/;� D Eı.x2y/; i.e. E:20001;� D E:2001:

The above notation allows us to recognize the generating triples and pre-staircases.
Notice first that the set of triples T (or equivalently, the set of classes Eı that form
their middle entries) is partially ordered, with order relation generated by the elemen-
tary steps Eı.w/ < Eı.xw/ and Eı.w/ < Eı.yw/. This order relation has the property
that each element Eı.w/ has precisely two successors, Eı.xw/, Eı.yw/ that are the mid-
dle elements in the triples xT , yT respectively (where T WD Tı.w/), but (whenw¤;)
exactly one predecessor pre.Eı.w// that lies in T . Further, pre.Eı.w// is the middle
entry of a triple pre.T / DW T 0 that has one other vertex, called ppre.Eı.w//, in com-
mon with T . Indeed, the construction implies that T equals either xT 0 or yT 0; and the
two triples T 0, xT 0 share the vertices T 0

�
, T 0�, while T 0, yT 0 share the vertices T 0� , T 0�.

Notice that in both cases, the three classes E, pre.E/, ppre.E/ form a triple (when
appropriately ordered) with E as the middle entry, and that these three classes lie on
different levels, first ppre.E/, then pre.E/, and then E: Further, the classes pre.E/
and E belong to a pre-staircase with recursion parameter tppre.E/. Note also that the
two classes ppre.E/, pre.pre.E// are usually different.

We then inductively assign an integer `C� .Eı/ (called its C�-length) to each ver-
tex Eı as follows:

• `C� .E0/ D `C� .E1/ D 1, `C� .E:1/ D 2;

• if C�-lengths are already assigned to all the vertices on level k, then we assign
C�-length to those on level k C 1 as follows:

`C� .Eı/ D `C� .pre.Eı//C `C� .ppre.Eı//: (2.2.2)

Thus the classes E:01, E:21 on level three have C�-length 3, while those on level
four divide into two types: we have

`C� .E:001/ D `C� .E:01/C `C� .E0/ D `C� .E:1/C 2`C� .E0/ D 4;
`C� .E:021/ D `C� .E:01/C `C� .E:1/ D `C� .E0/C 2`C� .E:1/ D 5:
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Another way to understand the formula (2.2.2) is to assign C�-lengths recursively to
the edges � of the augmented graph giving them the same C�-length as the corre-
sponding vertex (see Proposition 2.2.2 (vii)). In this language, it reads

`C� .Eı/ D `C� .pre.Eı//C `C� .�/; (2.2.3)

where � is the edge joining the two vertices pre.Eı/, Eı .

Conjecture 2.2.4. We conjecture that the following rules hold.25

(i) The continued fraction expansion of the center p=q of the class Eı has CF -
length `C� .Eı/.

(ii) The steps of the two staircases associated to Eı have periodic continued frac-
tions with periodic part of length 2.`C� .Eı//. Moreover, these periodic parts
have reverse cyclic order.

For example, the class E:1 has C�-length 2 and center Œ7I 4�. Its two staircases are
periodic of period 4 with steps

Œ¹7; 5; 3; 1ºk; end�; k � 0; where end D 6, or .7; 5; 2/, ascending;

Œ7; 3; ¹5; 7; 1; 3ºk; end�; k � 0; where end D 6, or .5; 7; 2/, descending:

Further, the reverse of the periodic part 7; 5; 3; 1 of the ascending staircase is 1; 3; 5; 7,
which agrees with the periodic part 5; 7; 1; 3 of the descending staircase, modulo a
cyclic permutation. See Remark 4.1.10 for a different perspective on these results.

Proposition 4.1.3 explains what we know about the continued fraction expansions
of the centers of a pair of adjacent steps Eı ; Exı or Eı ; Eyı , while Proposition 4.1.6
establishes what we can prove about the related notion of the weight length of the step
centers; see (A.2).

Remark 2.2.5. (i) To keep things simple, above we only considered the classes with
centers in the interval Œ6; 8�. However, we saw in Example 2.1.7 that for each n the
classes .BUn ;EŒ2nC7;2nC4�;BUnC1/ form a generating triple. It follows that, for each
n> 0, the set EŒ2nC6;2nC8� of all quasi-perfect classes with centers in Œ2nC 6;2nC 8�
has precisely the same structure as EŒ6;8�. Indeed, we may assign to the classes in the
initial triple T n

� WD .BUn ;EŒ2nC7I2nC4�;BUnC1/ the labels 0n, :1n, 1n, and then label
the derived classes by ın, where ı is a ternary decimal as before. Thus the center
classes of the first two derived triples xT n

� and yT n
� have labels ın:01, ın:21, and so on.

Conjecture 2.2.4 should hold for all n.

25The notion of CF -length is defined in (A.2).
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(ii) Finally, we observe that the C�-length of a vertex can be given the following
interpretation. The coefficients of the classes are polynomials in n: by (2.1.10), the
classes BUn are at level zero and have coefficients p; t that are linear in n, while q D 1
is constant. Further the p; t coefficients of the classes at level 1 are quadratic in n.
Thus in these initial cases the degree of p; t as a function of n is just the C�-length
assigned to this class. One can then easily prove by induction that the C�-length of a
vertex is the degree of p; t as a function of n. The C�-length of an edge (see (2.2.3))
can then be understood as the degree of the recursion variable for the pre-staircase
with first two steps given by its endpoints.

This interpretation fits in with the above conjecture since in the cases we have
calculated the periodic part of the ascending stairs has entries of the form 2n C i

for i 2 ¹1; 3; 5; 7º, and the degree of the corresponding recursion is half the length
of this periodic part. For example, by (2.1.9) the ascending staircase with blocking
class En:1 D Œ2nC 7I2nC 4� has periodic part .2nC 7; 2nC 5; 2nC 3; 2nC 1/ with
recursion variable t D 4n2 C 16nC 13.

(iii) For further comments on these matters, see Remark 4.1.10. In the table given
there, we write the staircase accumulation points in a form that is slightly different
(but equivalent) to that conjectured above, in order to emphasize the relation to the
blocking class.

We are now in a position to prove that the blocked z-intervals form a dense subset
of Œ6;1/. Recall that for each quasi-perfect class E, the interval IE WD acc.JE/ is
defined to be the set of z such that

�E;acc�1" .z/.z/ > Vacc�1" .z/.z/;

where acc�1" is the appropriate inverse to the accumulation function. (In the current
situation we take the inverse with values in .1=3;1/ since all the classes E of relevance
here have m=d > 1=3.) Note that the claim in the following proposition about the
length of the blocked interval IBUn was proved in [1] by direct calculation. The current
proof is computationally much easier.

Proposition 2.2.6. Let EŒ6;1/ be the set of all quasi-perfect classes with centers
in Œ6;1/. Then they block a dense subset of Œ6;1/; more precisely,

BlockŒ6;1/ WD
[

E2EŒ6;1/

IE \ Œ6;1/ is a dense subset of Œ6;1/:

Moreover, the length of the interval blocked by the class BUn converges to 2 as n!1.

In fact, all the above intervals IE lie entirely in Œ6;1/ except for E D BU0 .

Proof. Since it suffices to prove the first claim for each n � 0, we will begin with
the case n D 0. Thus, consider the subset EŒ6;8�;` of classes in EŒ6;8� with level � `.
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We will show by induction that the set

BlockŒ6;8�;` WD
[

E2EŒ6;8�;`

IE \ Œ6; 8�; ` � 0;

is 2�.`C1/-dense26 in Œ6; 8�. When ` D 0; 1 this is clear since 71
4
D Œ7I 4� is the center

of EŒ7I4� and all the points < 7 or > 71
2

are blocked by either E6 or E8. We will prove
the following:

• Any recursively defined parameter at least doubles as one moves from one level to
the next. In particular, the q coefficient of all classes at level ` � 1 is at least 2`C1.

• If T is any triple with E� at level `, then in each of the two associated pre-
staircases �T

`
, �T
u (see Lemma 2.1.12):

– the distance between the centers of the second27 and third steps is at most
1=2`C1;

– the distance from the center of the third step to the pre-staircase limit is <
1=2`C1.

Since the pre-staircase limit is in the closure of BlockŒ6;8�;`, it follows that for any
point in the interval between the centers of E� and E� the distance between that point
and BlockŒ6;8�;` is at most 1=2`C1.

We argue by induction. The first point is clear since all recursion parameters are
at least 3 (which is the t coefficient for BU0 ). Since the q-coefficient of E:1 D EŒ7I4�
at level one is 4, it must at least double as one goes from level to level. To prove the
second point, notice that if p=q and p0=q0 are the centers of successive steps in a
pre-staircase with recursion parameter t 00, then because these steps are adjacent and
t 00-compatible, we have ˇ̌̌p

q
�
p0

q0

ˇ̌̌
D

t 00

qq0

by Lemma 2.1.2 (iii). Both pre-staircases �T
`
;�T
u have second step E�, which lies on

level `, and so by hypothesis has q � 2`C1. Further, because the third step lies on a
deeper level than the second we can estimate

t 00

qq0
D

t 00

q.t 00q � q0/
<
1

q
�

1

2`C1
;

where q0 comes from the previous step and we have used the obvious fact that

t 00q � q0 > t
00;

or equivalently t 00.q � 1/ > q0.

26This constant could definitely be improved; but it is all we need in the current context.
27This step is E� itself.
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Finally, we need to check the distance from the center p3=q3 WD p0=q0 of the third
step to the limit a1. This distance decomposes as a sum that we estimate as follows:ˇ̌̌p3

q3
� a1

ˇ̌̌
D

X
k�3

ˇ̌̌pkC1
qkC1

�
pk

qk

ˇ̌̌
�

X
k�3

t 00

qkqkC1

�
t 00

q23

�1
2
C
1

22
C
1

23
C � � �

�
(since qkC1 > 2qk)

�
t 00

q3.t 00q2 � q1/
�
1

q3
�

1

2`C1
: (2.2.4)

This completes the proof when n D 0.
The same argument works for general n, except that now we can get better esti-

mates since the recursion parameter is at least n C 3, so that at each stage each
recursively defined parameter increases by a factor of at least n C 2. In particular,
because the q-coefficient of the level one class En:1 is 2nC 4, the q-coefficient of each
class at level ` in EŒ2nC6;2nC8� is at least 2.2C n/`. Hence the distance jp3=q3 � a1j
estimated in (2.2.4) has upper bound 1=.2.2C n/`/ and hence converges to 0 for each
fixed ` � 1 as n!1. In particular, when ` D 1 this says that the distance between
the centers of the third steps En:01;E

n
:21 and the limits @CIŒ2nC6�; @�IŒ2nC8� converges

to zero. But the joint second step has center at Œ2n C 7I 2n C 4� which converges
to 2nC 7 as n!1. Further the distance between this joint second and the third step
of each pre-staircase also converges to zero. Hence, the distances @CIŒ2nC6� � 2nC 7
and @�IŒ2nC8� � 2nC 7 both converge to zero, which implies that the length of each
interval IŒ2nC6� must converge to 2.

We now define the rest of the staircases mentioned in Theorem 1.1.1, using the
notation for symmetries introduced in Section 2.3; see in particular (2.3.1), (2.3.3).
For " 2 ¹˙1º and ı 2 ¹0; 1º, write

yZ WD yZC1 [ yZ�1; yZ" WD
[

¹.i;ı/ W .�1/iCıD "º

yZi;ı ;

yZi;ı WD
®
S iRı.z/ j z 2 Œ6;1/; acc�1C1.z/ … Block

¯
;

and defineZ" � yZ" to consist of all points that are not endpoints of blocked intervals.
Thus yZ is a countable union of Cantor sets, while Z is the complement of the set of
endpoints. It is convenient to assign ternary decimal labels to the points in yZ in the
following way, where as before we simplify notation by describing it for the steps
in Œ6; 8�, with the understanding that n is added if z 2 Œ2n C 6; 2n C 8�, and extra
decorations .i; ı/ 2 NC � ¹0; 1º are added for the points in yZ \ .S iRı.Œ6;1///.

Consider the triple Tı with E� D Eı , where ı D :a1a2 : : : ai1. The ascending
principal pre-staircase �T

`
has steps .E

ı
C

k

/k�0, where ı`;k D 0:a1a2 : : : ai2�k1, and
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hence has limit with infinite decimal label ı`;1 D 0:a1a2 : : : ai2
�1. Similarly, the

limit of the descending principal pre-staircase can be given the decimal label ıu;1 D
0:a1a2 : : : ai0

�1. More generally, if ˛1 D 0:a1a2 : : : ai � � � is any infinite decimal
with entries from ¹0; 2º then we claim that there is a corresponding sequence of
classes �˛1 D

�
E˛k

�
k�1

; where ˛k D 0:a1a2 : : : ak1. Note that, unless ˛1 ends in
repeated 0s or 2s, the corresponding sequence of step centers contains both increasing
and decreasing subsequences because ˛k < ˛1 (resp. ˛k > ˛1) for all k such that
akC1 D 2 (resp. akC1 D 0). Further, there is a bijection between these decimals and
sequences of vertices in the graph illustrated in Fig. 2.1 that go down one level at each
step.

The next definition defines the monotonic pre-staircases �˙1˛1 by picking out par-
ticular subsequences of steps. Note that there are many ways of doing this, all of
which would work equally well.

Definition 2.2.7. For each ˛1 2 Z, we define b˛1 to be the limit of the ratios
m˛k=d˛k of the degree coordinates of E˛k . Further we define the ascending pre-
staircase �C˛1 to have steps at ˛nk , where .˛nk /k�0 is the maximal subsequence such
that

ank D 0; ankC1 D 2:

Similarly, the descending pre-staircase ��˛1 has steps at ˛nk , where .˛nk /k�0 is the
maximal subsequence such that

ank D 2; ankC1 D 0:

In this definition (as in Definition 1.2.5) we use the word pre-staircase to refer to
this sequence of perfect classes whose center points pk=qk converge to a limit z1,
since the word staircase should be reserved for a sequence of classes that are live
at the limiting b-value. Thus this notion of pre-staircase does not assume that when
b D acc�1.z1/ the corresponding functions �Ek ;b are even obstructive at the center
points pk=qk , let alone live. Note also that it is considerably more general than that
in [17, §1.2], since the steps are no longer required to be recursively defined.

Here is our main result about these pre-staircases.

Proposition 2.2.8. The following statements hold.

(i) For each ˛1 2 Z, all the steps in the ascending pre-staircase �C˛1 are live at
b D b˛1 .

(ii) For each staircase family .S iRı/#.C�U \ Œ2nC 6; 2nC 8�/, there is a con-
stant D0 such that each step in each descending pre-staircase ��˛1 of degree
� D0 is live at b D b˛1 .
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Here is an immediate consequence.

Corollary 2.2.9. Every b that is not in the special rational sequence is either blocked
or has a staircase. Moreover, unless b is in the closure of a blocked interval, it admits
both an ascending and a descending staircase.

The special rational b are described in (2.3.4). The proofs are given in Section 3.2.

2.3. Effect of symmetries

We explain how two symmetry operations from [17] act on perfect classes and hence
on triples, and prove several key facts about this action, including Theorem 1.2.6 (ii)
in Corollary 2.3.4. The action of these symmetry operations S]; R] is illustrated in
Figure 2.2. Since this is rather complicated, we begin with a brief recap of some
results in [17].

The symmetries act on the .p; q; t/ coordinates by

x WD .p; q; t/T 7! x0 WD .p0; q0; t 0/T

via the matrices S;R given by

S WD

0B@6 �1 0

1 0 0

0 0 1

1CA ; R WD

0B@6 �35 0

1 �6 0

0 0 1

1CA : (2.3.1)

Thus t is fixed, while S;R induce the following action on the z-coordinate:

S W .amin;1/! .amin; 6/;
p

q
7!

6p � q

p
;

RW .6;1/! .6;1/;
p

q
7!

6p � 35q

p � 6q
:

Thus S is a shift to the left, while R is a partially defined reflection that fixes the
point 7. If we define the yi and vi recursively by

vi D
yi

yi�1
; y0 D 0; y1 D 1; yiC1 D 6yi � yi�1; i � 1; (2.3.2)

we have S.vi / D viC1; note that vi ! amin D 3C 2
p
2. It is also useful to consider

the points

wi WD
yiC1 C yi

yi C yi�1
D S.wi�1/; i � 1;

given by the sequence 7; 41=7; : : :
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R
S S S

w5 w4 w3 w2 w1

v5 v4 v3 v2 v1 D1

v5 v4 v3 v2 D 6 v1 D1

w5 w4 w3 w2 w1 D 7

b < 1
3

b > 1
3

Figure 2.2. The complete family C�U consists of classes with centers in .w1;1/; the reflec-
tion R takes this to a complete family with centers in .v2; w1/ and b < 1=3, and S i shifts
every such family i units to the left, changing the sign of " by .�1/i . Note that R reverses z-
order, while S preserves it. The blue intervals ŒwiC2;wiC1� are blocked by the blocking classes
.S i /].BU

0
/ for the appropriate b-value.

By [17, Lem. 2.1.1], we have

b";iC1 WD acc�1"
�yiC1
yi

�
D

yiC1 C yi C 3"

3yiC1 C 3yi C "
; (2.3.3)

where " D ˙1, and we write acc�1" for the appropriate branch of the inverse; thus
acc�1" has image in .1=3; 1/ if " D 1 and in .0; 1=3/ if " D �1. It is shown in [17,
Rmk. 1.2.5] that for all i � 0, when b > 1=3, the class .S2i /].BU0 / blocks v2iC2, while
when b < 1=3, .S2iC1/].BU0 / blocks v2iC3 (we define the action of a symmetry on a
quasi-perfect class below). Thus b";iC1 is blocked when either " D 1 and i is odd or
when "D�1 and i is even. However, the following b-values are not blocked, because
they are in the closure of Stair by [17, Thm. 1.1.1]:

1

5
;
59

179
; : : : ; b�1;2i ; : : : ;

11

31
;
349

1045
; : : : ; b1;2iC1; : : : (2.3.4)

These values of b with " D .�1/i will be called the special rational b, and denoted
by

bi WD b.�1/i�1;i ; so that b2; b3; b4; � � � D
1

5
;
11

31
;
59

179
; : : : (2.3.5)

We will see that each such b is the limit point of both ascending and descending se-
quences of b-values with staircases and hence is unobstructed; see Remark 2.3.6 (iii).
However, none of the steps of these staircases remain live at one of these special b-
values; indeed, according to [7, Conjecture 1.2], these special b-values should not
admit any staircases at all.

We extend the action of S;R to quasi-perfect classes E D .d;m;p; q; t; "/ via the
formulas in (2.1.1) that define d;m as functions of p; q; t; ", noting that both S and R
preserve t and act on " by " 7! �". We denote this image by .S iRı/].E/. The main
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result of [17] is that for each i � 0; ı 2 ¹0; 1º the transformation S iRı takes the seeds
and blocking classes in the staircase family �U to the seeds and blocking classes of a
staircase family that we denote .S iRı/].�U /. (See Remark 2.3.6 for a discussion of
the slightly anomalous case R].�U / DW �L.) Moreover, for all such i; ı the image of
a perfect tuple by .S iRı/] is perfect.

We now extend this result by showing that these symmetries take each generating
triple with centers in .7;1/ to another generating triple.

Lemma 2.3.1. Let T D S iRı for some i � 0, ı 2 ¹0; 1º, and let

E0 WD .d0; m0; p0; q0; t0; "/; E1 WD .d1; m1; p1; q1; t1; "/:

(i) If E0;E1 are adjacent, then so are T ].E0/, T ].E1/.

(ii) If E0;E1 are t -compatible, then so are T ].E0/, T ].E1/.

Proof. Suppose first that T D S and that p0=q0 < p1=q1. Write

S].Ei / WD .d 0i ; m
0
i ; p
0
i ; q
0
i ; t
0
i /; i D 0; 1:

Since S preserves order, to prove (i) we must show that

.p0 C q0/.p1 C q1/ � t0t1 D 8p0q1 H) .p00 C q
0
0/.p

0
1 C q

0
1/ � t

0
0t
0
1 D 8p

0
0q
0
1:

But t 00t
0
1 D t0t1, and

.p00 C q
0
0/.p

0
1 C q

0
1/ � 8p

0
0q
0
1 D .7p0 � q0/.7p1 � q1/ � 8.6p0 � q0/p1

D p0p1 C q0p1 � 7p0q1 C q0q1

D .p0 C q0/.p1 C q1/ � 8p0q1;

as required. Thus the action of S , and hence of S i , preserves adjacency.
Since R reverses order, we must show that, with R].Ei / WD .d 0i ; m

0
i ; p
0
i ; q
0
i ; t
0
i /,

we have

.p0 C q0/.p1 C q1/ � t0t1 D 8p0q1 H) .p00 C q
0
0/.p

0
1 C q

0
1/ � t

0
0t
0
1 D 8p

0
1q
0
0:

This holds because

.p00 C q
0
0/.p

0
1 C q

0
1/ � 8p

0
1q
0
0 D .7p0 � 41q0/.7p1 � 41q1/

� 8.6p1 � 35q1/.p0 � 6q0/

D .p0 C q0/.p1 C q1/ � 8p0q1:

Now consider (ii). This holds because STASDRTARDA forA defined in (2.1.2).
In other words, this holds because S;R preserve t2.
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Proposition 2.3.2. Let .E�;E�;E�/ be a generating triple whose classes have centers
in .7;1/. Then for any i � 1, the classes�
.S i /].E�/; .S i /].E�/; .S i /]..E�/

�
;

�
.S iR/].E�/; .S iR/].E�/; .S iR/].E�/

�
also form generating triples.

Notice here that because the action of R on the z-axis is orientation reversing, the
order of the three entries in the second triple above is reversed.

Proof. By Lemma 2.3.1 the action of T D S iRı preserves t and hence the required
adjacency and t -compatibility conditions. Since the t values are unchanged by these
symmetries, the equalities among them are preserved. Next observe that

detS D 1 D � detR:

Hence, expressions such as q�p� � p�q� are unchanged by S . Thus .S i /] preserves
the three identities expressing t as a function of the relevant p; q. The reader can
check that R] also preserves these identities since the minus sign in the determinant
is compensated for by the fact that R] interchanges the first and last elements of the
triple.

It remains to check that the image triple .E�;E�;E�/ satisfies the last condition,
namely

acc
�m�
d�

�
; acc

�m�
d�

�
> acc

�m�
d�

�
: (2.3.6)

Notice that

m

d
D

p C q C 3"t

3.p C q/C "t
>
m0

d 0
D

p0 C q0 C 3"t 0

3.p0 C q0/C "t 0
” "t.p0 C q0/ > "t 0.p C q/:

Therefore, because the function b 7! acc.b/ reverses orientation precisely if " D �1,
we may conclude that

acc
�m
d

�
> acc

�m0
d 0

�
” t .p0 C q0/ > t 0.p C q/:

In particular, in the initial triple .E�;E�;E�/, we have

acc
�m�
d�

�
; acc

�m�
d�

�
> acc

�m�
d�

�
;

so that
t�

t�
>
p� C q�

p� C q�
;

t�

t�
>
p� C q�

p� C q�
;

p�

q�
<
p�

q�
<
p�

q�
:

It follows from the formulas in [17] that if .p; q/T D S iRı.p; q/T , then

p C q D rp � sq
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for some integers r; s > 0. Therefore, because the symmetries preserve the t -coord-
inate,

p� C q�

p� C q�
>
p� C q�

p� C q�
H) acc

�m�
d�

�
> acc

�m�
d�

�
;

But
p� C q�

p� C q�
D
rp� � sq�

rp� � sq�
<
p� C q�

p� C q�

if s.p�q� � q�p�/ < r.q�p� � p�q�/, which always holds since q�p� � p�q� > 0
by hypothesis. A similar argument proves that acc.m�=d�/ > acc.m�=d�/. This com-
pletes the proof.

Corollary 2.3.3. Let � be a pre-staircase for b D b1 that is the image by some
symmetry S iRı of a pre-staircase in the complete family C�U . If b1 > 1=3, then
the ratios mk=dk decrease, while if b1 < 1=3 then the ratios mk=dk increase. In all
cases, acc.mk=dk/ decreases.

Proof. If � is a principal pre-staircase in C�U , then this holds by Lemma 2.1.12 (iii).
It therefore holds for all principal pre-staircases by (2.3.6) and the fact that the func-
tion accW Œ0; 1/! Œamin;1/ preserves order on the interval .1=3; 1/ and reverses it
on .0; 1=3/. We can interpret these order relations as saying that if the levels (in
the sense of Lemma 2.2.1) of the classes Ek strictly increase, then the correspond-
ing ratios mk=dk decrease when mk=dk > 1=3 (resp. increase when mk=dk < 1=3).
This suffices to prove the lemma, since the levels of the classes in any of the new
pre-staircases in Definition 2.2.7 strictly increase.

Corollary 2.3.4. Theorem 1.2.6 (ii) holds. Moreover, for every class E 2 C�U , and
every symmetry T D S iRı , we have IT ].E/ D T .IE/.

Proof. In light of Proposition 2.3.2, the first claim will follow once we prove that S
commutes with mutation and R switches x-mutation to y-mutation and vice versa.
This is straightforward, e.g. to show S].Ex�/ is the middle entry of xS].T /, we
compute

S].t�p� � p�; t�q� � q�/ D
�
6.t�p� � p�/ � .t�q� � q�/; t�p� � p�

�
D
�
t�.6p� � q�/ � .6p� � q�/; t�p� � p�

�
:

The remaining cases, including the analogous facts for the left and right entries, are
left to the reader.

To prove the second claim, suppose that E is the middle entry E� in the triple T .
Then the end points of the blocked z-interval IE are the accumulation points of the
principal pre-staircases �xT

`
and �

yT
u . The symmetry T takes the steps, and hence

accumulation points, of these pre-staircases to the steps and accumulation points of
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the pre-staircases with blocking class T ].E/. Hence, it takes the end points of IE to
those of IT ].E/.

28

Corollary 2.3.5. The image of each quasi-triple T n
`;seed, T nu;seed under a symmetry

S iRı is another quasi-triple.

Proof. By the definition in Remark 2.1.14, a quasi-triple satisfies all the condition
of a triple except for (e). Therefore, this holds by the first paragraph of the proof of
Proposition 2.3.2.

Remark 2.3.6. (i) The complete family R].C�U / is somewhat anomalous because
the class R].BU0 / is not geometric, since the reflection RW z 7! .6z � 35/=.z � 6/

is not defined at z D 6. On the other hand, R.6=1/ D 1=0, and if we define d; m
via (2.1.1), we obtain the tuple

.d;m; p; q; t; "/ D .0;�1; 1; 0; 3;�1/:

As pointed out in [17, Rmk. 2.3.4 (ii)], this is a numerically meaningful replacement
for the classR].BU0 /. For example, there is a descending staircase with blocking class

R].BU1 / D R
].EŒ8�/ D .5; 0; 13; 2; 5;�1/

(and hence recursion parameter 5) that is generated by the tuples

R].BU0 / D R
].EŒ6�/ D .0;�1; 1; 0; 3;�1/; R].EŒ7I4�/ D .13; 0; 34; 5; 13;�1/:

Its third step has center 169=25 and degree variables .d; m/ D .65; 1/. This is the
descending staircase �Lu;1 associated to the triple R].T 0

� /. The corresponding ascend-
ing staircase �L

`;0
with first two steps R].BU1 /, R

].EŒ7I4�/ is the Fibonacci staircase.
All the steps of the latter staircase have m D 0, and there is no geometric blocking
class. However, because by Proposition 2.3.2 the three classes in R].T 0

� / satisfy all
the numeric conditions to be a generating triple, we may define the complete family
R].C�U /, as before. Note that all its elements except for the steps in the Fibonacci
staircase have m > 0. Further, with the sole exception of R].BU0 /, they all have non-
negative entries with p=q > amin and so are blocking classes.

However, it is important to note that R].BU0 / is not geometrically meaningful,
and so certain results do not apply to it. For example, the analysis of the steepness
of a staircase following Proposition 3.1.7 (used to rule out potentially overshadowing
classes) cannot apply to this class because it does not form an actual step for any cHb .
In particular, any technique relying on m=d cannot be used with this class, because
m=d D �1=0.

28For further discussion of the action of the symmetries on Block see the end of [17, §1.2].
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(ii) Figure 2.2 illustrates the fact that the intervals Œw2iC2; w2iC1�, i � 0; are
blocked when b > 1=3 while their complements Œw2iC1; w2i �, i � 1, are blocked
when b < 1=3. To see that BU0 blocks Œw2; w1� one only needs to observe that the
accumulation point z1 of the descending staircase �Uu;0 is Œ7I ¹1; 5º1� > 7 D w1, and
that the reflection SR] fixes the class BU0 . It follows that w2 D SR.w1/ is greater
than the limit point of the ascending staircase .SR/].�Uu;0/, so that Œw2;w1� is blocked
by BU0 . Then the rest of this claim follows by applying the symmetries.

(iii) The fact that the centers of the blocking classes BUn converge to v1 WD 1
as n!1 implies that the images of these classes under R and S have centers con-
verging to v2 WD 6. These classes have ratios m=d < 1=3 that converge to 1=5 as
n!1. However, they do not form staircases at b D 1=5 because (as is easy to
check),29 the step corners are not visible at b D 1=5 since they fail the test

jbd �mj <
p

1 � b2

at b D 1=5; see Lemma 1.2.1. Similarly, none of the classes in the complete families
S].C�U /; R].C�U / are live at b D 1=5, since for each such class both d and the
quantity jb �m=d j are larger than they are for the appropriate blocking class. How-
ever, these classes do organize into staircases whose accumulation points .b1; z1/
converge to .1=5; v2/, both from the left (in the family S].C�U /) and from the right
(in the familyR].C�U /). Because the shifts S i act on these staircases, a similar claim
holds for the points v2i with b < 1=3 and for v2iC1 for b > 1=3. These are the only
rational points on the z-axis that might be accumulation points of staircases, since all
the others are blocked by Corollary 4.1.9. In Section 4.3, we show that these rational
points vi ; i � 3; do not have ascending staircases, but it remains unknown if they have
descending staircases. Similarly, we do not know if there is a descending staircase at
b D 1=3.

We will show in Proposition 4.1.3 that for any pair of adjacent classes E;E0, we
have E �E0 D 0. Since the symmetries preserve adjacency, this implies that any pair of
successive steps in any principal pre-staircase have zero intersection. In fact, as seen
in the following lemma, regardless of adjacency, the symmetries T WD S iRı preserve
intersection number.

Lemma 2.3.7. The following statements hold.

(i) For quasi-perfect classes E1 and E2 with center greater than 5, we have

S].E1/ � S].E2/ D E1 � E2:

29Formulas for the .p; q; t/ entries for the blocking classes BLn D R].BUn / are given
in (3.1.9); they have .d; m/ D .5n; n � 1/. Using (1.2.2) allows us to similarly compute the
d;m coordinates of S].BUn /.
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(ii) For classes E1 and E2 with centers greater than 7,

R].E1/ �R].E2/ D E1 � E2:

Proof. For (i), consider

S].E1/ D S].d1; m1; p1; q1/ D .D1;M1; P1;Q1/;

S].E2/ D S].d2; m2; p2; q2/ D .D2;M2; P2;Q2/:

Then, by [17, Lemma 2.1.5], for i D 1; 2, we have30

W.Pi ;Qi / D W.6pi � qi ; pi / D .p
�5
i ; pi � qi / tW.pi � qi ; qi /;

where by definition W.pi � qi ; qi / is W.pi ; qi / with the first entry qi removed. As

E1 � E2 D d1d2 �m1m2 � q1q2 �W.p1 � q1; q1/ �W.p2 � q2; q2/;

we want to show

d1d2 �m1m2 � q1q2 D D1D2 �M1M2 � 5p1p2 � .p1 � q1/.p2 � q2/:

To check this, we use the formulas for di ,mi ,Di ,Mi in terms of pi and qi , except that
rather than the usual notation of including " explicitly, we account for " by letting t1; t2
be either positive or negative. Thus, we have S W t1 7! �t1 and S W t2 7! �t2. We then
obtain

d1d2 �m1m2 � q1q2 D
1

8

�
.p1 C q1/.p2 C q2/ � t1t2

�
� q1q2

D
1

8
.p1p2 � 7q1q2 C q1p2 C q2p1 � t1t2/

D
1

8

�
.7p1 � q1/.7p2 � q2/ � t1t2

�
� 5p1p2 � .p1 � q1/.p2 � q2/

D D1D2 �M1M2 � 5p1p2 � .p1 � q1/.p2 � q2/:

This completes (i). The proof of (ii) is similar and left to the reader.

Remark 2.3.8. (i) Let XZ D ¹.p; q; t/ 2 ZC j p2 � 6pq C q2 C 8 D t2º. It is not
known whether there is an element A 2 GL.3; Z/ that induces a map XZ ! XZ

that does not fix t . Since there are integral triples .p; q; t/ 2 XZ for which neither
pair of numbers .d; m/ defined by (1.2.2) are integral, one might also require that A

30See (A.3) for the definition of the weight decomposition W.p; q/ WD W.p=q/.
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preserve the integrality of the appropriate pair .d; m/. The symmetries considered
above are the only elements of this group that fix t (or equivalently fix the quadratic
form p2 � 6pq C q2); see [17, Lem. 2.1.3]. Further, by [17, Lem. 2.2.4] they also
preserve integrality.

(ii) We now discuss the properties of a ‘symmetry’ A that is not in GL.3;Z/ but
has some interesting features.

Denote by C the set of integral tuples .d;m;p; q; t/ with t > 0 (but possibly with
some negative entries) that satisfy the numeric conditions to be a quasi-perfect class
with " D 1, i.e. p2 � 6pq C q2 C 8 D t2 and d;m satisfy (2.1.1). The subset with all
entries nonnegative is denoted CC.31 Consider the transformation

A]WCC ! C ; .d;m; p; q; t/! .mC 3Q; d CQ;p � q C 5Q;Q; p C q/;

whereQ WD 1
2
.p � q � t /. It is not hard to check that pC qC t is even for all E 2 E 0,

so that A.E/ is always integral. One can check that it also satisfies the requirements
to be in C . Notice that

A].1; 1; 1; 1; 2/ D .�2; 0;�5;�1; 2/;

i.e. A].EU
`;seed/ D EUu;seed, and

A].nC 3; nC 2; 2nC 6; 1; 2nC 3/ D .nC 5; nC 4; 2nC 10; 1; 2nC 7/;

i.e. A].BUn / D BUnC2. Thus A] acts on the seeds and blocking classes of the staircase
family �U . Because it is linear it therefore takes all steps in the ascending stair-
case �U

`;n
(that has blocking class BUn and seeds EU

`;seed;B
U
n�1) to the corresponding

descending staircase �Uu;n with blocking class BUn and seeds EUu;seed; BUnC1. In par-
ticular, for all n it takes the step EŒ2nC7;2nC4� that �U

`;n
shares with �Uu;nC1 to the

corresponding shared step EŒ2nC9;2nC6� of the staircases �U
`;nC1

and �Uu;nC2. How-
ever, although A] takes each of the three classes in the generating triple�

BUn ;EŒ2nC7;2nC4�;B
U
nC1

�
to another perfect class, the image classes BUnC2, EŒ2nC9;2nC6�, BUnC3 do not form a
generating triple. Correspondingly there are many classes descended from�

BUn ;EŒ2nC7;2nC4�;B
U
nC1

�
;

31Although CC � XZ, the two sets are different sinceXZ contains elements for which d;m
are not integers.
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whose image under A] is not perfect. For example, consider the step EŒ7I5;2� after
EŒ7I4� in the descending staircase �Uu;0. Since EŒ7I5;2� D .38; 24; 79; 11; 34/, we have

A].38; 24; 79; 11; 34/ D .75; 55; 153; 17; 90/;

with center 153=17 D 9, and hence corresponding quasi-perfect class

E D 75L � 55E0 � 17E1;:::;9:

This class is not perfect because E � BU1 D E � .4L � 3E0 � E1;:::;8/ D �1. See also
Remark 2.1.15.

3. The pre-staircases are live

In Section 3.1 we develop a criterion for a quasi-perfect class to be perfect and then
apply it, together with the results from [15] to prove in Corollary 3.1.5 that all the
classes in the complete family C�U , as well as their images under the symmetries
are perfect. Proposition 3.1.7 then explains why the principal pre-staircases are live.
The proof here needs a new slope estimate that is proved in Lemmas 3.1.8 and 3.1.10.
We extend these arguments in Section 3.2 to show that there are both ascending and
descending staircases at every unblocked b, except possibly for the special rational b.

3.1. The principal pre-staircases are live

We first establish some useful sufficient conditions for a quasi-perfect class to be an
exceptional class and hence perfect. The following result is extracted from the proof
of [1, Prop. 42].

Lemma 3.1.1. Let E D .d; m; p; q/ be a quasi-perfect class such that �E;b.p=q/ is
live for all b in an open set J � Œ0; 1/. Then E is perfect.

Proof. Because, by [1, Lem. 15 (ii)], cHb .p=q/ is the maximum of the obstructions
given by exceptional classes, for each b 2 J there must be a exceptional class E0

b

such that �E;b.p=q/ D �E0
b
;b.p=q/. We saw in [1, Lem. 15 (i)] that if the degree

coordinates of E0
b

are .d 0; m0/, where jbd 0 �m0j <
p
1 � b2, then

Vb.z/ < �E0
b
;b.z/ � Vb.z/

s
1C

1

.d 0/2 � .m0/2
:

One can get from this an upper bound for d 0 in terms of the ratio�E;b.p=q/=Vb.p=q/:

Therefore, there can only be finitely many such classes E0
b
, which implies that there
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is an exceptional class E0 D .d 0; m0Im0/ and an open subset Jb of JE such that

�E0;b

�p
q

�
D �E;b

�p
q

�
8 b 2 Jb:

Then we may write m0 D �m C n, where m D W.p=q/ is the weight expansion
of p=q (i.e. the coordinates of E) and m � n D 0. Since

m0 � w.p=q/
d 0 �m0b

D
�p

d 0 �m0b
D

p

d �mb

for all b 2 Jb , we must have d 0 D �d , m0 D �m for some � > 0. The identities

m0 �m0 � 1 D .d 0/2 � .m0/2 D �2.d2 �m2/ D �2.pq � 1/;
m0 �m0 � 1 D �2m �mC knk2 � 1 D �2pq C knk2 � 1

then imply that knk2 D 1 � �2. Therefore, unless n0 D 0 so that E0 D E, we must
have 0 < � < 1. Further,

E0 � E D d 0d �m0m �m0 �m D �.d2 �m2 �m �m/ D ��:

But E0 � E is an integer. It follows that E0 D E, so that E is perfect, as claimed.

We next show that every quasi-perfect class that intersects nonnegatively with
every exceptional class is perfect. Although this follows from the general theory of
exceptional curves in blowups of CP2, the proof below is self-contained, using only
the positivity of intersections of distinct exceptional classes. It is based on the fol-
lowing version of [1, Prop. 21 (i)]. It shows that, for b less than and sufficiently close
to m=d , the obstruction �E;b.p=q/ from a quasi-perfect class E at its center is larger
than any other that is defined by an exceptional class with which it intersects nonneg-
atively.

Lemma 3.1.2. Suppose that the quasi-perfect class E D .d; m; p; q/ has nonnega-
tive intersection with the exceptional class E0. Then �E;b.p=q/ > �E0;b.p=q/ for all
b 2 .m

2�1
md

; m
d
�.

Proof. Because E � E0 � 0, we have

dd 0 �mm0 �m �m0 � 0:

Therefore, if b � m=d , we have

�E0;b.a/ D
m0 � w.p=q/
d 0 �m0b

�
m0 �m

q.d 0 �m0m=d/
(since b � m=d )

�
d.dd 0 �mm0/

q.dd 0 �mm0/
D
d

q
:
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On the other hand, because w.a/ � w.a/ D p=q,

�E;b

�p
q

�
D

m � w.a/
d �mb

D
p

d �mb
>
d

q
if pq > d2 � dmb:

Since pq D d2 �m2 C 1, this will also hold if

dmb > d2 � pq D m2 � 1;

i.e. b > .m2 � 1/=dm. Hence, when

m2 � 1

dm
� b <

m

d
;

we have �E;b.p=q/ > �E0;b.p=q/.

Corollary 3.1.3. A quasi-perfect class E such that E � E0 � 0 for all E0 2 E X E is
perfect.

Proof. By Lemma 3.1.2, �E;b is live at p=q for all b in an open set. Hence, this
follows from Lemma 3.1.1.

The next result is key to the proof that all the classes considered here are perfect.

Lemma 3.1.4. Let E D .d; m; p; q; t/ be a quasi-perfect class such that one of the
endpoints of the associated blocked b-interval JE is unobstructed and irrational.
Then E is perfect.

Proof. We suppose that m=d > 1=3, leaving the case m=d < 1=3 to the reader.
Suppose first that the lower endpoint b1 2 @JE is unobstructed and irrational, and

let z1 WD acc.b1/. Thus

cHb1 .z1/ D Vb1.z1/;

because z1 is unobstructed, while

Vb1.z1/ D �b1.z1/ D
qz1

d �mb1

where the second equality holds by (1.2.1), and the first holds by continuity since z1
is the lower endpoint of IE D acc.JE/. Therefore, by the scaling property32 we must
have

cHb1 .z/ D
qz

d �mb1
D �E;b1.z/; z 2

h
z1;

p

q

i
: (3.1.1)

Thus E is live on .z1; p=q� for b D b1. By Lemma 3.1.1, it suffices to show that E
is live at a D p=q on some interval Œb1; b1 C "/.

32This says that for any target X and � > 1, cX .�z/ � �cX .z/; see [1, eq. (1.1.1)].
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If this is not true, there is an exceptional class E0 D .d 0; m0;m0/ such that

�E0;b1

�p
q

�
D �E;b1

�p
q

�
;

while �E0;b.p=q/ > �E;b.p=q/ for b 2 .b1; b1 C "/. By [1, eq. (2.1.6)] and [22,
Prop. 2.3.2], a general obstruction function has the form

�E0;b.z/ D
AC Cz

d 0 �m0b
;

on the closure of any interval consisting of points z such that `wt .z/ > `wt .m0/.33

Since E0 is obstructive at p=q, we know that

`wt .m0/ � `wt
�p
q

�
by [1, Lem. 14], while the fact that E is obstructive on Œz1; p=q� implies that

`wt

�p
q

�
� `wt .z/

for all z 2 Œz1; p=q�. Therefore the above formula describes �E0;b.z/ on the whole
interval Œz1; p=q�.

Next notice that the slope of the function �E0;b1.z/ for z 2 .p=q � "; p=q/
must agree with that of �E;b1.p=q/: if it were smaller, �E0;b1.z/ would overwhelm
�E;b1.z/ for z < p=q, while if it were larger the scaling property would be violated
when z > b1. Therefore, the constant A above must vanish.

Thus if we now fix z D p=q and b D b1, we have

�E0;b1

�p
q

�
D

Cp

q.d 0 �m0b1/
D �E;b1

�p
q

�
D

p

d �mb1
;

which implies that
C.d �mb1/ D q.d

0
�m0b1/:

Since b1 is irrational by Remark 2.1.3 (i), this is impossible unless Cm D qm0,
Cd D qd 0. Hence,

�E0;b

�p
q

�
D

Cp

q.d 0 �m0b/
D �E;b

�p
q

�
D

p

d �mb
for all b;

and in particular for b � b1. Therefore, �E;b.z/ is live at p=q for b 2 Œb1; b1 C "/,
so that E is perfect by Lemma 3.1.1.

33Because in this paper we use two notions of the length of a continued fraction, we here
write `wt .p=q/ (rather than `.p=q/) to denote

Pn
iD0 `i , where p=q D Œ`0I : : : ; `n�, and call

it the weight length of p=q. Further, `wt .m0/ is simply the number of elements in the tuple m0;
see Appendix A.
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This proves the lemma when the lower endpoint is unobstructed. The proof when
.b1; z1/ is the higher endpoint is essentially the same. Again, we first argue that
�E;b1.z/ is live on Œp=q; z1/ and then show that if �E0;b.p=q/ is live for b 2
.b1 � "; b1�, the function z 7! �E0;b1.z/must be constant on Œp=q; z1/, and hence
(by the irrationality of b1) be given by the same formula as �E;b1.z/. It follows that
the two obstructions must be equal as b varies.

Corollary 3.1.5. Let E be a quasi-perfect class in the complete family C�U or in one
of its images under a symmetry S iRı . Then E is perfect.

Proof. The results of [15] show that for every class E in C�U the lower endpoint bE

of the corresponding blocked b-interval JE is unobstructed. Therefore E is perfect
by Lemma 3.1.1. The proof of the first claim is completed by [17, Lemmas 4.1.2
and 4.1.3] that show that the image by the shift S (resp. R) of a perfect class whose
coefficients .d; m; p; q/ satisfy (1.2.2) is another perfect class whose coefficients
.d; m; p; q/ satisfy (1.2.2). Note that in the case of R we restrict consideration to
classes with p=q > 7; see the discussion in Remark 2.3.6 (i).

Corollary 3.1.6. Let E be a perfect class that occurs as a step in a principal pre-
staircase. Then both endpoints of the corresponding blocked b-interval JE are unob-
structed.

Proof. Our assumptions imply that for each endpoint b1 of JE there is a sequence of
perfect classes Ek with pk=qk ! z1, mk=dk ! b1, where z1 D acc.b1/. More-
over, because these classes form a staircase rather than a pre-staircase, the corre-
sponding obstructions are live at the limiting b-value b1. Then [1, Lem. 27] implies
that cHb1 .z1/ is the limit of the obstructions �Ek ;mk=dk .pk=qk/. Moreover, because
dk !1 this limit is Vb1.z1/.

We next turn to the proof that the principal pre-staircases are live. By [1, Thm. 51],
there are three reasons why a sequence of perfect classes whose steps pk=qk converge
to z1 may not form a staircase at b1 D acc�1" .z1/.

(i) The convergence mk=dk ! b1 may be so slow that there is no k0 such that
the classes Ek; k � k0; are obstructive at their centers when b D b1.

(ii) There may be a sequence of obstructive classes each of which obscures a finite
number of steps.

(iii) There may be an overshadowing class, i.e. a class E0 whose obstruction
function z 7! �E0;b1 goes through the accumulation point .z1; Vb1.z1// with suf-
ficiently steep slope to obscure the step corners at .pk=qk; pk=.dk �mkb1// for all
k � k0.
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Here we say that the class E0 obscures the step at pk=qk given by Ek if there is
" > 0 such that �E0;b1.z/ > �Ek ;b1.z/ either for z 2 .pk=qk � "; pk=qk/ or for z 2
.pk=qk; pk=qk C "/. Thus if a pre-staircase inHb1 is live, infinitely many of its step
classes Ek are live for b D b1 and z in some neighborhood of the step center pk=qk .

By [17, Cor. 4.2.3], problems (i), (ii) never happen for a recursively defined pre-
staircase because there is an upper bound on the degree of a class that could obscure
a step corner. On the other hand there could be an overshadowing class. In particular,
recall the following identity (from [1, (2.2.5)] or [17, Lem. 2.2.7]):

Vb.acc.b// D
1C acc.b/
3 � b

: (3.1.2)

When b 2 .1=5; 5=11/, so that acc.b/ < 6, the function

z 7!
1C z

3 � b

is the obstruction from the special exceptional class E00 D 3L � E0 � 2E0 � E1;:::;6
when z < 6. Therefore, this obstruction always goes through the accumulation point
.acc.b/; Vb.acc.b//.

If � ascends, then this class causes no difficulties because

1C z

3 � b
< Vb.z/

when z < acc.b/. However, we do need to check that this slope of this function
is not steep enough to overshadow the steps of a descending pre-staircase � with
limit z1 < 6. Now, the slope sk.�/ of the line segment from the accumulation point
.acc.b/; Vb.acc.b/// to the outer corner .pk=qk; pk=.dk �mkb// of the kth step is

sk.�/ WD
pk=.dk �mkb1/ � .1C acc.b1//=.3 � b1/

pk=qk � acc.b1/
:

Therefore, limk sk.�/ > 1=.3 � b1/ exactly if

b1
�
mk.pk C qk/ � pkqk

�
> dk.pk C qk/ � 3pkqk for k � k0: (3.1.3)

If this holds and if the pre-staircase has a blocking class, then as explained in the next
result, we can use an arithmetic argument from [17] to rule out the existence of an
overshadowing class. The case of nonrecursive � is more complicated and is treated
in Section 3.2.

Proposition 3.1.7. Let � WD.EkD.dk;mk;pk; qk; tk//k�0 be a sequence of recursive-
ly defined perfect classes such that mk=dk decreases with irrational limit b1>1=3.
Assume � is associated to a blocking class B with tB � 3, and that, if � descends,
the inequality (3.1.3) holds for some k0. Then � is live, i.e. Hb1 has a staircase with
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steps .Ek/k�k0 . The same result holds if the mk=dk increase with irrational limit
b1 < 1=3.

Proof. Since Ek is perfect, it is live at its center pk=qk for b D mk=dk; see Lem-
ma 1.2.1. To prove the claim about � , we must show that for large k, Ek remains live
at the limiting value b1:As explained above, by [17, Thm. 4.2.1 and Cor. 4.2.3] it suf-
fices to rule out the existence of an overshadowing class. This obstruction must be dif-
ferent from z 7! .1C z/=.3� b/; this holds for descending pre-staircases by assump-
tion, and holds for ascending pre-staircases because the line z 7! .1C z/=.3 � b/

cuts through the volume curve from below and so is too steep. Therefore, the three
lines given by the obstructions from the overshadowing class, the blocking class, as
well as the graph of z 7!.1C z/=.3� b1/ are distinct and all go through the accumul-
ation point .b;acc.b//D.b1; z1/. But b1; z1 are both irrational by Remark 2.1.3 (i).
In [17, Prop. 4.3.7] an arithmetic argument is used to show that such an overshad-
owing class cannot exist. This argument also crucially uses the fact that the mk=dk
decrease when b > 1=3 and increase when b < 1=3, which holds by Corollary 2.3.3.

It remains to prove that the principal pre-staircases satisfy (3.1.3). It is shown in
[17, Lemma 4.2.7] that this estimate holds for all descending pre-staircases associated
to the base triples .S iRı/#.T n

� /, except T 0
� . Rather than extending that asymptotic

argument to cover more cases, we will prove that in most (but not all cases) the
inequality in (3.1.3) holds with k0 D 0, since that will be useful in Section 3.2 where
we prove Proposition 2.2.8. Although its main steps are given below, the proof also
relies on some formulas and estimates that are established in Appendix B. To simplify
our formulas we will denote the sum p� C q� by r�.

Lemma 3.1.8. Let � be a descending principal pre-staircase with steps .dk; mk; pk;
qk; tk; "/, k � 0, and write rk WD pk C qk . Then, the inequality (3.1.3) holds for a
given k0 � 0 if, for all k � k0, one of the following equivalent conditions holds:

t2
kC1
� 8

tkC1rkC1
>
t2
k
� 8

tkrk
; (3.1.4)

or
rkC1

tk
�

rk

tkC1
>
1

8
.tkrkC1 � tkC1rk/: (3.1.5)

Proof. Notice first that (3.1.3) holds exactly if�
mk.pk C qk/ � pkqk

�
b1 > dk.pk C qk/ � 3pkqk : (3.1.6)
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If we substitute for mk; dk in terms of pk; qk using (1.2.2), we obtain

8dk.pk C qk/ � 24pkqk D 3.t
2
k � 8/C "tkrk;

8mk.pk C qk/ � 8pkqk D .t
2
k � 8/C 3"tkrk :

Since, by Lemma B.1 (iii), rk � 3tk � 3 when "D �1, these expressions are negative
exactly when " D �1. Thus the condition in (3.1.6) is equivalent to

b1 >
3.t2

k
� 8/C tkrk

.t2
k
� 8/C 3tkrk

D 3 �
8tkrk

.t2
k
� 8/C 3tkrk

if " D 1;

b1 <
tkrk � 3.t

2
k
� 8/

3tkrk � .t
2
k
� 8/

D 3 �
8tkrk

3tkrk � .t
2
k
� 8/

if " D �1:

(3.1.7)

As k !1, the ratio
dk.pk C qk/ � 3pkqk

mk.pk C qk/ � pkqk

converges to

D.P CQ/ � 3PQ

M.P CQ/ � PQ
D
D.3D �M/ � 3.D2 �M 2/

M.3D �M/ � .D2 �M 2/
D
M

D
D b1;

where we use the identities in (2.1.8). Therefore, the result will hold if we prove that
for k � k0 the sequence on the right-hand side of (3.1.7) is increasing when " D 1
and decreasing when " D �1.

Thus, when " D 1, we need the sequence

tkrk

.t2
k
� 8/C 3tkrk

to decrease with k, or equivalently the sequence .t2
k
� 8/=tkrk to increase with k.

Similarly, when "D�1 the condition still is that .t2
k
� 8/=tkrk should increase with k.

This proves the claim about condition (3.1.4). Finally, the inequality (3.1.5) is just a
rearrangement of (3.1.4).

Lemma 3.1.9. Let T D .E�;E�;E�/ be any triple. Then

(i) if (3.1.5) holds for the first two terms E�;E� in the associated descending
pre-staircase �T

u , then it also holds for these terms in �xT
u ;

(ii) if (3.1.4) holds for the first two terms E�;E� in the associated descending
pre-staircase �T

u , then it also holds for these terms in �
yT
u .

Proof. We must show that if the inequality

r�

t�
�
r�

t�
>
1

8
.t�r� � t�r�/
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holds for T then it also holds for xT . Under this mutation the right-hand side remains
the same. Hence, it suffices to check that

t�r� � r�

t�
�

r�

t�t� � t�
>
r�

t�
�
r�

t�
:

When we multiply throughout by t�.t�t� � t�/t�, the terms that are products of three
factors cancel, and after dividing the remaining terms by t�, we obtain the inequality

t�t�t�r� � t�t�r� � t
2
� r� > t

2
�r� � t�t�r�:

Now cancel the term t�t�r� from both sides and divide by r� to obtain the inequality
in Lemma B.1 (v). This proves (i).

Now consider (ii). We must show that the inequality

t2� � 8

t�r�
>
t2� � 8

t�r�

persists under a y-mutation. Since the right-hand side remains unchanged, it suffices
to show that the left-hand side increases, i.e.

.t�t� � t�/
2 � 8

.t�t� � t�/.t�r� � r�/
>
t2� � 8

t�r�
:

After simplifying, this reduces to the inequality

t�.t�t� � t�/.t�r� � t�r�/ < 8
�
t2� t�r� � .t�r� C t�r�/t� C t�r� � t�r�

�
:

Simplify and increase the left-hand side of this inequality by using the fact that

t�r� � t�r� D 8q� <
4

3
r�:

Here the equality holds by Lemma B.1 (iv), while the inequality holds because p�=q�
> amin > 5, so that q� < r�=6Next simplify and decrease the right-hand side by ignor-
ing the term Ct�r� and replacing �.t�r� C t�r�/t� by �2t�r�t�, which is smaller
because r� < r�; t� < t� (see Lemma B.1 (ii)). These manoeuvres show that, after
canceling the common factor of t�, it suffices to prove

1

6
r�.t�t� � t�/ < .t

2
� � 2t� � 1/r�:

We now show that this inequality holds even without the term�1
6
r�t� on the left-hand

side. Indeed, after omitting this term and then rearranging, we find that it suffices to
prove

1

6

r�

t�

�
1 �

2

t�
�
1

t2�

��1
<
r�

t�
:
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But because t� � 3,

1 �
2

t�
�
1

t2�
>
2

9
;

so it suffices to check that
3

4

r�

t�
�
r�

t�
:

But this holds by Corollary B.2.

Finally, we claim in Lemma 3.1.10 that the inequality (3.1.4) holds for the base
cases. Its statement is complicated by the fact that (3.1.4) does not hold for T 0

� or
its image by R. We give the proof now in the ‘easy’ cases that do not involve these
triples; the proof is completed in Lemma B.3.

Recall from (2.1.9) that the entries .p; q; t/ in each of the classes in the base
triple T n

� , n � 0, are

E� W .p; q; t/ WD .2nC 6; 1; 2nC 3/;
E� W .4n2 C 22nC 29; 2nC 4; 4n2 C 16nC 13/;

E� W .2nC 8; 1; 2nC 5/:

(3.1.8)

Since R.p=q/D .6p � 35q/=.p � 6q/ and R fixes t while interchanging E�;E�, the
corresponding entries for the triples R].T n

� /; n � 0; are

E� W .p; q; t/ W .12nC 13; 2nC 2; 2nC 5/;
E� W .24n2 C 62nC 34; 4n2 C 10nC 5; 4n2 C 16nC 13/;

E� W .12nC 1; 2n; 2nC 3/:

(3.1.9)

Lemma 3.1.10. The following statements hold.

(i) Let T be any triple of the form .S iRı/].T n
� /; i � 0; ı 2 ¹0; 1º; or one of

the form yxkT 0
� for all k � 0. Then, provided that T ¤ T 0

� , R].T 0
� /, the

inequality (3.1.4) holds for the first two terms in the associated descending
pre-staircase �T

u .

(ii) The inequality (3.1.4) holds for the second and third terms in the descending
pre-staircases associated to ykR].T 0

� /, k � 0.

Proof. Consider (i). When T D T n
� or R].T n

� /, n > 0, we can check that inequal-
ity (3.1.4) holds directly from the formulas in (3.1.8), (3.1.9) above. Next note that
because S.p=q/ D .6p � q/=p, the entries in S].T 0

� / and .SR/].T 0
� / are

for S].T 0
� / W E� D .35; 6; 3/; E�D .170; 29; 13/; E�D .47; 8; 5/I

for .SR/].T 0
� / W E�D .76; 13; 5/; E�D .165; 34; 13/; E� D .6; 1; 3/:

It is again easy to check that (3.1.4) holds for S].T 0
� / and .SR/].T 0

� /.
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We next claim that if (3.1.4) holds for a triple T then it also holds for S].T /.
Since S fixes the parameter t , by rearranging (3.1.4) so that the t terms are on one
side and the r terms on the other, one finds that S preserves (3.1.4) provided that it
decreases the ratio r�=r�. Thus, we need

7p� � q�

7p� � q�
<
p� C q�

p� C q�
;

which holds because
p�

q�
<
p�

q�
:

This completes the proof of (i) except for the claims about the yxk-mutations of
the exceptional triple T 0

� . For these details and the proof of (ii), see Lemma B.3.

Corollary 3.1.11. Every descending principal pre-staircase � except for

�Uu;0 and �
ykR].T 0� /
u ;

satisfies the inequality (3.1.3) with k0 D 0, and the pre-staircases �
ykR].T 0� /
u satisfy

(3.1.3) with k0 D 1. Hence, every principal pre-staircase is live, and hence is a stair-
case.

Proof. We proved that �Uu;0 is live in [1, Ex. 70]. All other descending pre-staircases
are associated to some triple which is a mutation of one of the basic triples listed in
Lemma 3.1.10. Therefore, it follows from that result together with Lemmas 3.1.8
and 3.1.9 that the inequality (3.1.3) holds (with k0 D 0 for all triples except for
ykR].T 0

� /, where k0 D 1). This proves the first claim. It now follows from Proposi-
tion 3.1.7 that every principal pre-staircase (both ascending and descending) is live.

3.2. Uncountably many staircases

We now prove Proposition 2.2.8. We first discuss the ascending pre-staircases, which
turn out to be relatively easy to deal with. As explained in Definition 2.2.7, we denote
by �˙˛1 any (ascending or descending) pre-staircase with limit point at ˛1 2 Z, for
simplicity omitting the decorations n; i; ı that specify more precisely where it is.

In this case, the key to our argument is the following lemma, that explains the
influence of the ratio m=d on the behavior of the corresponding obstruction. This
result applies to any pair of obstructive classes E, E0. These have the form

E WD dL �mE0 �
X

miEi
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(abbreviated as .d;m;m/), where

3d �m �

NX
iD1

mi D 1; d2 �m2 �

NX
iD1

m2i D �1:

The corresponding obstruction function �E;b is piecewise linear, with the form

z 7!
AC Cz

d �mb

in any interval consisting of points z with `wt .z/ >
PN
iD1mi ; see (A.2) and [1, §2.1].

Moreover, if z0 is fixed, there is a constant A0 D A.z0/ such that as a function of b
the obstruction �E;b.z0/ has the form b 7! A0=.d �mb/.

Lemma 3.2.1. Let E WD .d;m;m/, E0 D .d 0;m0;m0/ be obstructive classes as above.
Then

(i) if �E;b0.z0/ D �E0;b0.z0/ � Vb0.z0/ for some b0; z0, then

m0

d 0
<
m

d
”

@

@b

ˇ̌̌
bDb0

�E0;b.z0/ <
@

@b

ˇ̌̌
bDb0

�E;b.z0/:

(ii) if m0=d 0 < m=d and �E0;b0.z0/ < �E;b0.z0/ for some b0, then

�E0;b.z0/ < �E;b.z0/

for all b > b0.

Proof. As explained above, we may write

�E;b.z0/ D
A0

d �mb
; �E0;b.z0/ D

A00
d 0 �m0b

:

But
@

@b

ˇ̌̌
bDb0

�E;b.z0/ D
A0

d �mb0

m

d �mb0
D

1

d=m � b0
�E;b0.z0/:

Note here that d=m > 1 while b0 < 1. Therefore,

1

d=m � b0
>

1

d 0=m0 � b0

if and only if d=m < d 0=m0, which happens if and only if m0=d 0 < m=d . This
proves (i).

The calculation above also implies that if �E;b0.z0/ > �E0;b0.z0/ and m=d >
m0=d 0, then �E;b.z0/ increases faster than �E0;b.z0/ as b increases. Hence, (ii) also
holds.
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Lemma 3.2.2. Let T be any triple with center class E�. Then

(i) if b > 1=3 the obstruction�E�;b.p�=q�/ is live for all b 2 Œ@�.JE�/;m�=d��,
and hence for all b 2 Œ@�.JE�/; @

�.JE�/�.

(ii) if b < 1=3 the obstruction�E�;b.p�=q�/ is live for all b 2 Œm�=d�;@C.JE�/�,
and hence for all b 2 Œ@C.JE�/; @

C.JE�/�.

Proof. First suppose that b > 1=3. Because cHb is unobstructed for b 2 @JE� by
Corollary 3.1.5, we can apply [1, Prop. 42] to show that the obstruction�E�;b.p�=q�/

is live for b in the blocked interval JE� . It is also live at the lower endpoint @�JE�
by (3.1.1). Next note that �E�;b.p�=q�/ is live for b D m�=d� by [1, Prop. 21],
where m�=d� > @C.JE�/ by [17, Lem. 2.2.11]. If it were not live at some b0 2
Œ@C.JE�/; m�=d�/, there would be some exceptional class E0 with degree coordi-
nates .d 0; m0/ such that

�E0;b0

�p�
q�

�
> �E�;b0

�p�
q�

�
:

Therefore, there would have to be b1 < b2 with

@C.JE�/ < b1 < b0 < b2 <
m�

d�
;

at which point the two obstructions are equal, with �E0;b.p�=q�/ growing faster than
�E�;b.p�=q�/ at bD b0 and slower at bD b2. But this contradicts Lemma 3.2.1. Now
note that m�=d� > @�.JE�/, because E� is a step in a pre-staircase for b D @�.JE�/

with decreasing m=d values. This completes the proof.
A similar argument follows for b < 1=3, where the order of b is reversed. In

particular, the interval JE� lies to the left of JE� , and the sequence mk=dk increases
for all principal pre-staircases by Lemma 2.1.12 (iii) with limit @C.JE�/. Therefore,
we always have m�=d� < @C.JE�/. Further details are left to the reader.

Corollary 3.2.3. All the steps in each ascending pre-staircase �C˛1 are live at their
centers when b equals the limiting value b˛1 .

Proof. Let E be a step in some ascending pre-staircase �C˛1 , and denote by T the
unique triple with middle step E� D E. By construction the z-limit point of �C˛1 is
at most @�.IE�/. Therefore if b > 1=3 the corresponding b-value is � @�.JE�/, and
�E;b.p�=q�/ is live at b by Lemma 3.2.2 (i). On the other hand if b < 1=3 then the
b-value corresponding to the z-limit point of �C˛1 is � @C.IE�/, and the conclusion
now follows from Lemma 3.2.2 (ii).

The descending pre-staircases ��˛1 present a more complicated problem. Accord-
ing to the discussion before Proposition 3.1.7, the first step in the proof is to show that
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the steps are obstructive at the limiting b-value b˛1 . This is a consequence of the next
lemma that shows that each class E� is obstructive on the whole of the b-interval

JT WD acc�1" .IT /; where IT D
�
@C.IE�/; @

�.IE�/
�
; (3.2.1)

that lies between JE� and JE� .

Lemma 3.2.4. Each step E of each descending pre-staircase ��˛1 for ˛1 2 Z is
obstructive at its center at the limiting b-value b˛1 . Moreover, the obstruction

z 7!
1C z

3 � b

does not overshadow any step in ��˛1 .

Proof. Since .1C z/=.3 � b/ > Vb.z/ for z > acc.b/, the first claim follows imme-
diately from the second. To show the second, first suppose that b > 1=3. We know
from Lemma 3.1.10 that the inequality (3.1.3) holds for all steps (except possibly the
first) of all descending principal staircases. Each step E in ��˛1 is the center step E�
of a unique triple T . By definition, the next step in ��˛1 may be written Eykxi�,
where i; k � 1. Thus its center lies strictly to the right of the lower endpoint @C.IE�/

of IT , as do the centers of all subsequent steps. Hence the inequality (3.1.3), which
holds for b1 D @C.IE�/, continues to hold for b˛1 > b1.

When b < 1=3 both sides of (3.1.3) are negative, and a corresponding argument
applies.

The second step in the proof is to find, for each descending pre-staircase ��˛1 , a
uniform bound for the degree of a class that could obstruct any one of its steps Ek ,
k � 0. We will treat the case b > 1=3 in detail; the changes needed for the case b < 1=3
are discussed in Remark 3.2.6. In the following we use the notion of the level of a step
that was defined in Lemma 2.2.1.

Lemma 3.2.5. The following statements hold.

(i) Let ED .d;m;p; q/ be a perfect class such that for some 0 < x < b1 <m=d ,
we have

m

d
> x

�
1C

1

d2

�
and

A.m; d; x/ WD
m.m � xd/ � 1

d.m � xd/ � x
< b1 <

m

d
: (3.2.2)

Then if E0 is any other perfect class with degree d 0 > 1=.b1 � x/, we have

�E;b1

�p
q

�
> �E0;b1

�p
q

�
:
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(ii) If x0 < b1 < y0 WD m0=d 0 < y WD m=d < x1, then

A.m; d; x0/ < A.m
0; d 0; x0/ (3.2.3)

provided that, with f .y/ D .1 � x0y/=.y � x0/, y > x0, we have

md 0 �m0d <
�d 0
d
�
d

d 0

�
f .x1/; (3.2.4)

d 0

d

�
f .y0/ � f .y/

�
<
�d 0
d
�
d

d 0

��
f .y0/ � f .x1/

�
: (3.2.5)

(iii) Let � be any descending principal staircase in

.S iRı/]
�
C�U \ Œ2nC 6; 2nC 8�

�
; n � 0

with recursion parameter t� > 3 and with i C ı even so that b > 1=3. Denote by bmin,
bmax the infimum (resp. supremum) of the b-values for these staircases. Then there are
constants

x0 < bmin < bmax < x1

and a level ` such that conditions (3.2.4), (3.2.5) hold whenever .d; m/, .d 0; m0/ are
the degree coordinates of a pair of adjacent steps in � at level � `.

Proof. It is shown in [1, Prop. 21 (iii)] if this inequality for x D r=s is satisfied any
class E0 such that

�E;b1

�p
q

�
< �E0;b1

�p
q

�
must have m0=d 0 < r=s. Since in this case �E0;b1 is obstructive, we must have

jb1d
0
�m0j < 1

by [1, Lem. 15], which readily gives the bound on d 0. This proves (i).
The inequality (3.2.3) states that even though m=d decreases to b1 along the

staircase, the quantity A.m; d; x0/ (which also has limit b1) increases, a fact that is
key to the argument in Corollary 3.2.7. Now, it is straightforward to check that (3.2.3)
is equivalent to the inequality

md 0 �m0d <
d 0 � x0m

0

m � x0d
�
d � x0m

m0 � x0d 0
when 0 < md 0 �m0d:

Since x0 < b1 < y0 WD m0=d 0 < y WD m=d < x1, we have

d 0 � x0m
0

m � x0d
�
d � x0m

m0 � x0d 0
D
d 0

d

1 � x0y
0

y � x0
�
d

d 0
1 � x0y

y0 � x0

>
d 0

d

1 � x0y

y � x0
�
d

d 0
1 � x0y

0

y0 � x0
:
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Therefore, since f .y/ is decreasing, we have

d 0 � x0m
0

m � x0d
�
d � x0m

m0 � x0d 0
>
�d 0
d
�
d

d 0

�
f .y0/ �

d 0

d

�
f .y0/ � f .y/

�
>
�d 0
d
�
d

d 0

�
f .x1/ (by (3.2.5)):

Therefore, (3.2.3) holds if, in addition, (3.2.4) holds. This proves (ii).
Next we consider part (iii). For simplicity, we begin by considering the family

C�U \ Œ6; 8�. Since each principal staircase is recursively defined, as was observed
in [17, Cor. 4.2.3] there always is a constant x < bmin such that (3.2.2) holds for all
classes in that particular staircase. As we shall see in Corollary 3.2.7, the existence
of such a constant x is enough to show that the pre-staircase is live unless it is over-
shadowed by a class of low degree.34 The difficulty is that we want to find a single
constant that applies to all staircases in this family. It turns out that the descending
staircase with blocking class BU0 (and recursion parameter 3) is exceptional and that
we get better estimates if we exclude it. Thus we will find constants x00; x1; ` such that
conditions (3.2.4), (3.2.5) hold for any pair of adjacent steps at level � ` in � D �T

u

and where T has p�=q� > 7, and then take x0 D max.x00; x
00
0/, where x000 is the lower

constant for the exceptional staircase. Note that the value of p� is relevant to the
question at hand because, by Lemma B.1 (iii), the ratio

md 0 �m0d D m�d� �m�d� > 0

is fixed for all adjacent pairs of steps and equals p�.
We first claim that for any x1 > bmax, there is ` D `.x1/ such that (3.2.5) holds

for all adjacent steps at levels � `. This holds because

• the ratio d 0=d is� t� � 1, where t� � 13 is the recursion parameter of the staircase
and f decreases, so that it suffices to show

f .y0/ � f .y/ <
�
1 �

� d
d 0

�2��
f .y0/ � f .x1/

�
�
143

144

�
f .b1/ � f .x1/

�
WD C

whenever y; y0 are m=d -values for two successive steps in the staircase;

• for some c1; c2 > 0, we have �c1 � f 0.y/ � �c2 < 0 when y 2 Œb1; x1� so that

jf .y0/ � f .y/j < c1jy
0
� yjI

34Our earlier proof that the principal pre-staircases are live used a different argument.
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• we saw in (2.2.4) that adjacent steps p=q at level � ` are less than a distance 1=2`

apart; a similar argument applies to the ratios m=d , where we use the formula in
Lemma B.1 (iii) instead of the adjacency relation jp=q � p0=q0j D t 00=qq0.

Further details are left to the reader.
Next observe that by Lemma B.4,

d�

d�
�
d�

d�
> t� � 1:

Therefore, by (ii), (3.2.3) will hold for a given x0 < b1 if we also choose x1, so that

p�

t� � 1
<
1 � x0x1

x1 � x0
: (3.2.6)

Now, for every class E� under present consideration, we have 7 < p�=q� < 8, so that

t2
�

p2
�

D 1 � 6
q�

p�
C

� q�
p�

�2
C

� 8
p�

�2
�
1

7
:

Therefore, because we also have t� � 5,

p�

t� � 1
D
p�

t�

�1 � 1
t�

��1
<
p
7
5

4
< 4:

On the other hand, we know by (2.1.11) that

1

2
< @C

�
JBU
0

�
� b1 <

2

3
;

where 2=3D m=d for BU0 . Moreover, all step classes except BU1 havem=d < 2=3 by
Lemma 2.1.10. But if x0 D 1=2, x1 D 2=3, we have

1 � x0x1

x1 � x0
D 4:

Therefore, in this case, (3.2.4) holds with x0 D 1=2, x1 D 2=3.
To establish (iii) in the general case (still with b > 1=3), we first need to choose

suitable upper and lower bounds x0; x1 for b1, which is done in Corollary B.6.
Next notice that for any such family we always have d 0=d > t�, and again we can
assume t� � 13 by omitting the staircase with smallest z-accumulation point. Hence,
for given x0, x1, there always is a level ` such that (3.2.5) holds for all staircases in
the family. We then show in Lemma B.8 that (3.2.6) holds for x0; x1 as chosen above.
The argument given above then extends to complete the proof of (iii).

Remark 3.2.6. Lemma 3.2.5 extends to the case b < 1=3 as follows. If a staircase
has b < 1=3 then the ratiosm=d increase to b1 and we have the following analogues
to the claims in this lemma:
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(i0) If E D .d;m; p; q/ is a perfect class such that for some 0 < m=d < b1 < x,
we have

m

d
< b1 <

m.xd �m/C 1

d.xd �m/C x
DW A0.m; d; x/;

then for any other perfect class E0 with degree d 0 > 1=.x � b1/, we have

�E;b1

�p
q

�
> �E0;b1

�p
q

�
:

(ii0) If x0 < y WD m=d < y0 WD m0=d 0 < b1 < x1, then

A.m0; d 0; x0/ < A.m; d; x0/

provided that, with f .y/ D .1 � x0y/=.y � x0/, where y > x0 as before,

m0d �md 0 <
�d 0
d
�
d

d 0

�
f .x1/;

d 0

d

�
f .y/ � f .y0/

�
<
�d 0
d
�
d

d 0

��
f .y0/ � f .x1/

�
:

(3.2.7)

(iii0) There are constants x0 < bmin < bmax < x1 < 1=3 (where bmin, bmax are the
minimum, resp. maximum, of the b-values for these staircases) and a level ` such that,
if � is any descending principal staircase in

.S iRı/]
�
C�U \ Œ2nC 6; 2nC 8�

�
; n � 0;

where t� > 5 and i C ı is odd so that b < 1=3, the above inequalities hold when
.d;m/, .d 0;m0/ are the degree coordinates of any two adjacent steps in � at level� k.

The proofs of (i0) and (ii0) are analogous to those in the case b > 1=3 and are
left to the reader. As for (iii0), for fixed x0; x1 one can always choose ` so that the
second inequality above holds. Also, just as before, the inequality (3.2.7) follows
from (3.2.6). Therefore, to complete the proof it remains to establish (3.2.6), which is
accomplished in Lemma B.8. The fact that the values of x0; x1 in those lemmas are
bounds for b1 again follows from Corollary B.6.

Corollary 3.2.7. A descending pre-staircase ��˛1 is live unless it is overshadowed.

Proof. First suppose that m=d > 1=3, and consider a pre-staircase ��˛1 in the family

.S iRı/].C�U / \ Œ2nC 6; 2nC 8�

with steps Ek and i C ı even, and choose x0; x1; ` as in Lemma 3.2.5 (iii). Then
x0 < bmin, where bmin is the minimum of the b-values for the staircases in the family
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.S iRı/].C�U / \ Œ2nC 6; 2nC 8�. Therefore, because mk=dk > b˛1 � bmin > x0,
there is a constant dx0 that depends only on x0 such that

mk

dk
> x

�
1C

1

d2
k

�
;

whenever dk � dmin. Further, because there are only finitely many classes in this
whole family that have level less than any fixed number `, we may suppose that Ek has
level � `. Since the sequence mk=dk decreases with limit b˛1 , it then follows from
Lemma 3.2.5 (ii), (iii) and our choice of x0 that the sequence A.mk; dk; x0/ increases,
and it is easy to check that its limit is also b˛1 . Therefore, the inequality (3.2.2) with
b1 D b˛1 holds for all steps with dk � dx and level � `. Hence, Lemma 3.2.5 (i)
implies that the degree d 0 of any class E0 with �E0;b˛1 .pk=qk/ � �Ek ;b˛1 .pk=qk/

must be bounded above by

1

b˛1 � x
�

1

bmin � x
:

But there are only finitely many exceptional classes of any given degree. Therefore,
��˛1 is live unless there is one class (whose obstruction would have to go through
the accumulation point) that obscures infinitely many of its steps. Such a class is an
overshadowing class.

The proof when b < 1=3 is very similar, with the statements in Remark 3.2.6
replacing those of Lemma 3.2.5. Further details are left to the reader.

Proposition 3.2.8. Every descending pre-staircase � WD ��˛1 is live. Moreover, if �

belongs to the family .S iRı/].C�U / \ Œ2nC 6; 2nC 8�, there is a constant D0 that
depends only on n; i; ı such that any step in � of degree > D0 is live.

Proof. By Lemma 3.2.5 (iii), � is live unless it is overshadowed. We will show that
any class that overshadows � must be a blocking class, and hence cannot exist since
there are unblocked values of b on both sides of b˛1 . For clarity, we will consider
the cases b > 1=3, b < 1=3 separately. Hence, let us first suppose that ˛1 2 ZC1, so
that � is a pre-staircase for some b˛1 > 1=3.

Suppose that at b D b˛1 , the obstruction

�E0;b.z/ D
AC Cz

d 0 �m0b

from some class E0 goes through the accumulation point .˛1; Vb˛1 .˛1//. If E0 over-
shadows � , then we must have C > A since, by Lemma 3.2.4, the obstruction is
steeper than the function

z 7!
1C z

3 � b
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mentioned in (3.1.2) above. Let w D w.b/ be the z-coordinate of the point of inter-
section of the line �E0;b.z/ D .AC Cz/=.d

0 �m0b/ with the line .1C z/=.3 � b/.
Then

w D
.d 0 � 3A/ � b.m0 � A/

.3C � d 0/ � b.C �m0/
;

so that
@w

@b
D

�.C � A/.3m0 � d 0/

..d 0 � 3C / � b.m0 � C//2
:

If 3m0 � d 0 � 0, then @w
@b
� 0 for all b, and so is < @

@b
.acc.b//, which is > 0 when

b > 1=3. Therefore, because w.b/ D acc.b/ when b D b˛1 , we must have w.b/ <
acc.b/ when b > b˛1 . But then the class E0 blocks all b in some nonempty interval
.b˛1 ; b˛1 C ı/, since the graph of �E0;b crosses the line z 7! .1C z/=.3� b/ before
this line crosses the volume curve, so that

�E0;b.acc.b// > Vb.acc.b//:

But this is impossible, since by hypothesis there are unobstructed points arbitrarily
close to b˛1 and on both sides of it. Similarly, if @w

@b
> @

@b
.acc.b//, the class E0 will

block b in an interval of the form .b˛1 � ı; b˛1/, which is again impossible.
Therefore, it remains to consider the case when @w

@b
D

@
@b
.acc.b//, which can

happen only if 3m0 � d 0 < 0. In this case E0 will block some b near b˛1 unless
w.b/ � acc.b/ for all b near b˛1 . We show below that in fact when the first deriva-
tives agree, we always have

@2w

@b2

ˇ̌̌
bDb˛1

<
@2 acc.b/
@b2

ˇ̌̌
bDb˛1

:

But this implies that w.b/ < acc.b/ for b 2 .b˛1 ; b˛1 C ı/, so that as above such E0

would have to be a blocking class, and hence cannot exist.
To begin the argument, notice that we can assume that

1

3
< b <

5

11
D acc�1C .6/:

Indeed, otherwise b > 0:61 so that the condition jd 0b �m0j < 1 implies that d 0 � 3,
and there are no potential overshadowing classes of such low degree. Next observe
that, by Lemma 1.2.1, because E0 is obstructive at b˛1 , we have

0 < 3.d 0b˛1 �m
0/ D d 0.3b˛1 � 1/C d

0
� 3m0 < 3:

Therefore, because d 0 � 3m0 > 0 by assumption, we must have d 0 � 3m0 D 1 or 2,
and if we write " WD d 0 � 3m0, we have

w.b/ D
.3 � b/.m0 � A/C "

.3 � b/.C �m0/ � "
:
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Since m0 � A, C � m0 are integers and w.b/ > 5, the terms .3 � b/.m0 � A/ and
.3� b/.C �m0/, if nonzero, dominate " and hence must have the same sign. Further,
because 0� A< C andw.b/ > amin > 5, we cannot havem0 D A. Indeed, ifm0 D A,
then because b � 5=11 and " D 1; 2, we have

w.b/ D
"

.3 � b/.C � A/ � "
�

"

3 � b � "
< 5:

Next observe that, since "=.C �m0/ � 2, we have

@w

@b
D

.C � A/"�
.3 � b/.C �m0/ � "

�2
and

@2w

@b2
D
@w

@b

2.C �m0/

.3 � b/.C �m0/ � "
�
@w

@b

2

.3 � b/ � "=.C �m0/
<
@w

@b

2

1 � b
:

On the other hand, if z.b/ WD acc.b/, then differentiating the equation

z C
1

z
D
.3 � b/2

1 � b2
� 2;

we obtain �
1 �

1

z2

�@z
@b
D
2.3b � 1/.3 � b/

.1 � b2/2
DW F.b/

and
2

z3

�@z
@b

�2
C

�
1 �

1

z2

�@2z
@b2
D F 0.b/:

Now solve the second equation for @
2z
@b2

, and simplify the term .1 � 1=z2/�1F 0.b/ by
using the identity

1

.1 � b2/.1 � 1=z2/
D

1

2.3b � 1/.3 � b/

@z

@b
;

to obtain

@2z

@b2
D

�
2.1 � b2/.5 � 3b/C 4b.3 � b/.3b � 1/

.1 � b2/2.3 � b/.3b � 1/
�
@z

@b

2

z.z2 � 1/

�
@z

@b
:

Now suppose that @z
@b
D

@w
@b

for some value of b < 5=11. Then, because z > amin one
can check that

@2z

@2b
>
@2w

@b2
;

because
2.5 � 3b/

.1 � b2/.3 � b/.3b � 1/
>

20

.3 � b/.1 � b2/
>

2

1 � b
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and
4b

.1 � b2/2
>
@z

@b

2

z.z2 � 1/
D
4z.3b � 1/.3 � b/

.z2 � 1/2.1 � b2/2
:

This completes the proof in the case b > 1=3.
The argument when b < 1=3 is similar, except that now b˛1 is smaller than

the recursively defined b1 for the staircase �
Tk
u that contains Ek , while both sides

of (3.1.3) are negative. Therefore, as before, this inequality continues to hold at b˛1 .
Further details are left to the reader.

Corollary 3.2.9. Proposition 2.2.8 (i), (ii) holds.

Proof. Claim (i) is proved in Corollary 3.2.3, while (ii) follows immediately from
Lemma 3.2.8.

4. Proof of main theorems

We first develop some arithmetic properties of continued fractions, as preparation for
the proofs of Theorems 1.1.1 parts (i), (ii), (iii) and Theorem 1.2.6 in Section 4.2.
After a short discussion of stabilization in Section 4.4, Corollary 4.3.5 gives the proof
of Theorem 1.1.1 (iv).

4.1. Arithmetic properties of perfect classes

Recall that from Lemma 2.1.2 (ii) that two quasi-perfect classes ED .d;m;p; q; t; "/,
E0 D .d 0;m0; p0; q0; t 0; "/ (with the same "-value) are said to be adjacent if and only if

dd 0 �mm0 D min.pq0; p0q/:

Our first aim in this section is to translate this condition into information on the
continued fraction expansions of the centers p=q, p0=q0. We will use the notations
and results from Appendix A; in particular, W.p=q/ denotes the weight decomposi-
tion (A.3) of p=q.

Lemma 4.1.1. Let p=q;p0=q0 > 1, and write CF.p=q/D Œs0I : : : ; sn�, CF.p0=q0/D
Œs00I : : : ; s

0
n0 �.

(i) If the inequality

W
�p
q

�
�W

�p0
q0

�
� min.pq0; p0q/; (4.1.1)
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holds for p=q D Œs0I : : : ; sn� and p0=q0 D Œs00I : : : ; s
0
n0 �, then it also holds for

P

Q
WD

kp C q

p
D ŒkI s0; : : : ; sn�;

P 0

Q0
WD

kp0 C q0

p0
D ŒkI s00; : : : ; s

0
n0 �:

Moreover, there is equality in (4.1.1) for p=q; p0=q0 if and only if there is
equality for P=Q and P 0=Q0.

(ii) The inequality (4.1.1) holds for all pairs p=q and p0=q0.

(iii) There is equality in (4.1.1) only if s˛ D s0˛ for 0 � ˛ � min.n; n0/ � 1.

Proof. If we write

W
�
Œs0; : : : ; sn�

�
D
�
q
�s0
0 ; : : : ; q�snn

�
; W

�
Œs00; : : : ; s

0
n0 �
�
D
�
.q00/

�s0
0 ; : : : ; .q0n/

�s0n
�
;

then we have

W
�
Œk; s0; : : : ; sn�

�
D
�
p�k; q

�s0
0 ; : : : ; q�snn

�
;

W
�
Œk; s00; : : : ; s

0
n0 �
�
D
�
.p0/�k; .q00/

�s0
0 ; : : : ; .q0n/

�s0n
�
:

Let us suppose that p=q < p0=q0, so that

P

Q
D
kp C q

p
>
P 0

Q0
D
kp0 C q0

p0
:

Then, assuming that (4.1.1) holds for p=q; p0=q0, we have

W
�
Œk; s0; : : : ; sn�

�
�W

�
Œk; s00; : : : ; s

0
n0 �
�
D kpp0CW

�
Œs0; : : : ; sn�

�
�W

�
Œs00; : : : ; s

0
n0 �
�

� kpp0Cpq0 D p.kp0 C q0/ D QP 0

D min.QP 0; PQ0/:

Thus (4.1.1) holds for P=Q; P 0=Q0, and we either have equality in both cases or
neither. This proves (i).

Now consider (ii). By (i) it suffices to consider the case when s0 ¤ s00, and we
may assume that s0 < s00, so that p0=q0 < p00=q

0
0. Then by (A.4),

W
�
Œs0; : : : ; sn�

�
�W

�
Œs00; : : : ; s

0
n�
�
D
�
q
�s0
0 ; : : : ; q�snn

�
�
�
.q00/

�s0
0 ; : : : ; .q0n/

�s0n
�

� s0q0q
0
0 C q1q

0
0

D .s0q0 C q1/q
0
0 D p0q

0
0:

This proves (ii).
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Now consider (iii). Again, by (i) it suffices to consider the case when s0 ¤ s00 and,
by renaming if necessary, we may assume s0 < s00. We must show that equality holds
only if either n D 0 or n0 D 0. If q1 D 0, then p D s0, q D 1, and

W
�
Œs0�

�
�W

�
Œs00; : : : ; �

�
D s0s

0
0 D pq

0
D min.pq0; qp0/:

Otherwise, the weight decompositionW.Œs0; : : : ; sn�/must have at least s0C 2 terms,
which means that there is equality only if s00 D s0 C 1 and s01 D 0. Thus n0 D 0, as
required.

Corollary 4.1.2. Suppose that there is equality in (4.1.1) and that p=q < p0=q0. Then
si D s

0
i for 0 � i � min.n; n0/ � 1 and

(i) if min.n; n0/ is even, one of the following three possibilities occurs:

• n D n0 and sn < s0n, or

• n < n0 and sn � s0n, or

• n > n0 and sn0 D s0n0 � 1;

(ii) if min.n; n0/ is odd, one of the following three possibilities occurs:

• n D n0 and sn > s0n, or

• n < n0 and s0n D sn � 1, or

• n > n0 and sn0 � s0n0 .

Proof. Consider (i). As in the proof of Lemma 4.1.1, we may suppose that

min.n; n0/ D 0:

Notice because we are forgetting an even number of terms, we still have p=q < p0=q0.
Therefore, if n D 0 � n0, then q D 1, p D s0, and

W
�
Œs0�

�
�W

�
Œs00; : : : �

�
D s0q

0
0 D pq

0:

Thus the first two cases are clear. If n > n0 D 0, then s0 < s00, q0 D 1, and

W
�
Œs0; s1; : : : �

�
�W

�
Œs00�

�
D
�
q
�s0
0 ; q

�s1
1 ; : : : �

�
� .1�s

0
0/

� s0q0 C q1 D p D pq
0:

Moreover, by our conventions about continued fractions W.p=q/ must have at least
two terms after the initial block q�s00 , there is equality only if s00 D s0 C 1. This
proves (i). The proof of (ii) is similar, and is left to the reader.

Proposition 4.1.3. Let E D .d; m; p; q; t; "/, E0 D .d 0; m0; p0; q0; t 0; "/ be perfect
classes. If E, E0 are adjacent, then W.p=q/ � W.p0=q0/ D min.pq0; p0q/ and the
conditions in Corollary 4.1.2 hold. Further, E � E0 D 0.
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Proof. A quasi-perfect class cannot be adjacent to itself because each such class sat-
isfies d2 � m2 D pq � 1 ¤ pq. Therefore, we have E ¤ E0, and hence E � E0 � 0,
because the classes are assumed to be perfect. Thus,

0 � E � E0 D dd 0 �mm0 �W
�p
q

�
�W

�p0
q0

�
D min.pq0; p0q/ �W

�p
q

�
�W

�p0
q0

�
;

where the last equality holds by Lemma 2.1.2 (ii). By (4.1.1) this is possible only if
min.pq0; p0q/ D W.p=q/ �W.p0=q0/, so that the conditions in Corollary 4.1.2 hold.
Further, E � E0 D 0.

Lemma 4.1.4. Let T be a triple in C�U , and let pk=qk D Œsk;0I : : : ; sk;nk �, k � 0,
be the step centers in one of the associated staircases � D �T

`
or �T

u . Write

W
�pk
qk

�
D Œq

�sk;0
k;0

; : : : ; q
�sk;nk
k;nk

�; k � 0:

Then

(i) the numbers nk WD `CF .pk=qk/ strictly increase;35

(ii) for all k � 0 and i < nk , we have skCj;i D sk;i for all j � 1. Moreover, for
each ` and i � n`, the weights qk;i satisfy the recursion

qkC2;i D tqkC1;i � qk;i ; k � `;

where t is the recursion parameter of �;

(iii) the accumulation point of � has infinite continued fraction Œs�
0 I : : : ; s

�
i ; : : : �.

Further, each step satisfies

CF
�pk
qk

�
D Œs�

0 I : : : ; s
�
nk�1

; s�
nk
C ı�

for some ı ¤ 0, where ı D C1 if either � ascends and nk is odd, or �

descends and nk is even.

Proof. Consider a pair of steps pk=qk , pkC1=qkC1. Since they are adjacent, Lem-
ma 4.1.1 (iii) shows that their continued fractions of lengths nk; nkC1 agree until the
term in the nth place, where n D min.nk; nkC1/. We want to rule out the possibility
that n WD nkC1 � nk . Because the steps are adjacent and t -compatible, the recursion
parameter t is given by t D jpkC1qk � qkC1pkj; and we may assume t � 5, since

35Here, `CF is the length of the continued fraction defined in (A.2)
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the only staircase in C�U with t D 3 is the descending stair with blocking class BU0 ,
which has the property in question here. We will carry out the argument assuming that
that the staircase ascends, so that pk=qk < pkC1=qkC1, leaving the descending case
to the reader.

We argue by contradiction. Thus, suppose that n WD nkC1 � nk , and write

W
�pk
qk

�
D
�
q
�s0
k;0
; : : : ; q

�sn�1
k;n�1

; q
�sn
k;n
; : : :

�
;

W
�pkC1
qkC1

�
D
�
.q0kC1;0/

�s0 ; : : : ; .q0kC1;n�1 D m/
�sn�1 ; 1�m

�
:

If n is odd, then Corollary 4.1.2 (ii) implies that sn � m. But then qk;n�1 � m, which
implies that qk;0 � q0k;0, contrary to our hypothesis. Hence, n is even.

Next observe that there is a 2 � 2 matrix A with detA D 1 such that 
pkC1 pk
qkC1 qk

!
D A

 
m qk;n�1
1 qk;n

!
; A D

n�1Y
iD0

 
si 1

1 0

!
D

 
x y

z w

!
:

Therefore, because pkC1 D tpk � pk�1 > .t � 1/pk , we have

pkC1 D xmC y > .t � 1/.xqk;n�1 C yqk;n/:

Since the entries of A are nonnegative and y < .t � 1/yqk;n, we must have

xm > .t � 1/xqk;n�1; i.e. m > .t � 1/qk;n�1:

But also because detA D 1 and t D pkC1qk � qkC1pk , we know that

t D mqk;n � qk;n�1:

Thus, writing qk;n�1 D a, qk;n D b for simplicity, we have t D mb � a and m >

.t � 1/a, so that
aC t D mb > .t � 1/ab:

But b � 1, so that we need t > .t � 2/a. Since t � 5 and a � 2 this cannot occur.
This completes the proof when the staircase ascends. The case of a descending

staircase is essentially the same, except that n is now odd and det A D �1. This
proves (i).

The first claim in (ii) holds by (i) and Lemma 4.1.1 (iii). Then the second claim
holds because, by (A.3), if p=q D Œs0; : : : ; sn� the i th weight qi of p=q depends only
on p; q D q0.p=q/ and sj for j < i . Thus, because the relevant sj do not depend
on k � k0, the weights qk;i , i � nk0 ; satisfy the defining recursion of � . Thus (ii)
holds.
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Towards (iii), note first that as explained in Remark 2.1.3 (i), the accumulation
point of � is irrational, and hence has infinite continued fraction. Next, consider two
adjacent terms

pk

qk
D Œsk;0I : : : ; sk;nk �;

pkC1

qkC1
D ŒskC1;0I : : : ; skC1;nk ; skC1;nkC1; : : : �:

Since Ek , EkC1 are adjacent, there is equality in (4.1.1) so that we may apply Corol-
lary 4.1.2. Therefore, skC1;i D sk;i for i < nk . Similarly, we have

skC1;nk D skC2;nk D skC`;nk D s
1
nk
; ` � 1:

Thus the general formula in (iii) holds, and we just have to check that ı D 1 in
the two given circumstances. Suppose first that � ascends, and that nk is odd. Then,
in the language of Corollary 4.1.2, we have

p

q
D
pk

qk
<
p0

q0
D
pkC1

qkC1
;

so that n D nk < n0 D nkC1. Then by part (ii), we have sn D s0n C 1, which gives

sk;nk D skC1;nkC1 C 1 D s
1
n C 1;

as claimed. Similarly, if � descends, and nk is even, we have

p

q
D
pkC1

qkC1
<
p0

q0
D
pk

qk

and n > n0 D nk . Hence, by (i), we have

s0n0 D sn;k D sn0 C 1 D sn;kC1 C 1 D s
1
n C 1;

as claimed.

Corollary 4.1.5. Let � D .Ek/k�1 be any principal36 staircase in the complete family
C�U or one its images under a symmetry. If � has recursion parameter t � 3, then

Ek � EkC1 D 0; Ek � EkC2 D 1;
Ek � EkCjC1 D tEk � EkCj � Ek � EkCj�1; 8 j � 1; k � 0:

36Technically every staircase in C�U is principal by Definition 1.2.7, but we include “prin-
cipal” here to highlight that these are not the staircases �˛1 of Definition 2.2.7, which for
˛1 2 Œ6; 8� consist of perfect classes in C�U .
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Proof. Since the symmetries preserve adjacency by Lemma 2.3.1, we know every pair
of classes Ek , EkC1 are adjacent by Proposition 2.1.9. Therefore, by Lemma 4.1.4 (ii),
when j � 1, we have

qkCjC1;˛ D tqkCj;˛ � qkCj�1;˛; ˛ � `CF

�pk
qk

�
:

Since these are the only terms in W.pkCj =qkCj / involved in computing Ek � EkCj ,
and dkCj ; mkCj satisfy the same recursion, we always have

Ek � EkCjC1 D tEk � EkCj � Ek � EkCj�1; j � 1:

In particular, when j D 1, Proposition 4.1.3 implies that

Ek � EkC2 D tEk � EkC1 � Ek � Ek D 0 � .�1/ D 1:

This completes the proof.

Given a blocking class E� ; � D �; � we denote the corresponding blocked z-
interval by .@�� ; @

C
� / WD IE� . We now show that in any derived triple T the center

point of the middle class E� has the minimal weight length among all points in
.p�=q�; p�=q�/ that are not blocked by E� or E�. (We can expand the interval IT

in the conclusion of Proposition 4.1.6 to .p�=q�; p�=q�/ by the fact that the center of
a perfect class E has shortest weight length amongst points in IE by the fact that IE is
contained in the interval on which E is nontrivial, and on this interval the center has
shortest weight length by [7, Lem. 2.28 (1)].)

Proposition 4.1.6. Let T WD .E�;E�;E�/ be any triple derived from one of the basic
triples .BUn ; EŒ2nC7I2nC4�; BUnC1/. Then the weight length of the center p�=q� is
strictly less than the weight length of any other point p=q 2 IT .37

Proof. Let p=q be any rational number lying between the centers of E� and E�. Write

CF
�p
q

�
D Œa0; : : : ; a`�; CF

�p�
q�

�
D Œs0; : : : ; sn�;

and assume that

`wt

�p
q

�
D

X̀
˛D1

a˛ < `wt

�p�
q�

�
D

nX
˛D1

s˛:

We aim to show that p=q must either be < @C
�

or > @�� . Note that, if we define ˛0 WD
min¹˛ j a˛ ¤ s˛º, then we must have ˛0 � n.

37The interval IT D .@
C.IE�/; @

�.IE� // is defined in (3.2.1).
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Suppose first that ˛0 < n. Then we claim that p=q is either < @C
�

or > @�� . This
holds because, by Lemma 4.1.4 (iii), these limit points have infinite continued frac-
tions with first nk � 1 terms equal to those of p�=q�. Thus, for example, if ˛0 is odd
and a˛0 < s˛0 then p=q > @�� , while if ˛0 is odd and a˛0 > s˛0 then p=q < @C

�
. The

other cases are similar.
Next suppose that ˛0 D n. Then, because `wt .p=q/ < `wt .p�=q�/, we must

have an < sn. We consider the cases n even or odd separately. Suppose that n is
even. Then p=q < p�=q�, and so we need to check that p=q is smaller than the accu-
mulation point @C

�
of the descending staircase � D �T

u . We saw in Lemma 4.1.4 (iii)
that in this case the last entry sn in CF.p�=q�/ satisfies sn D s�

n C 1. Therefore,
an � s

�
n . But an is the last element in CF.p=q/, while CF.@C

�
/ is infinite. Therefore,

p=q < @C
�

by (A.1).
The argument when n is odd is similar, except that now one compares with the

ascending staircase. Therefore such p=q cannot exist.

Example 4.1.7. Here are some simple examples to illustrate the argument in Propo-
sition 4.1.6. Consider the basic triple

T 0
� WD

�
BU0 ;EŒ7I4�;B

U
1

�
;

and take p=q D Œ7I 3�. Then @C
�
D Œ7I ¹5; 1º1�, @�� D Œ¹7; 3º

1� by (2.1.10). Since in
this case nD 1 is odd, we should have p=q > Œ¹7;3º1�, which can be readily checked.
Similarly, in the triple

xT 0
� D

�
BU0 ;EŒ7I5;2�;EŒ7I4�

�
one can calculate that the limit of the ascending staircase is Œ¹7; 5; 3; 1º1� so that, for
example, Œ7I 5� > Œ¹7; 5; 3; 1º1� is blocked by EŒ7I4�.

Lemma 4.1.8. Every rational point in Œ6;1/ lies in some IE for E 2 C�U . In par-
ticular, no staircase with b > 1=3 accumulates to a rational point in Œ6;1/.

Proof. Fix n � 0 and consider the classes Eı that belong to a triple with centers in
Œ2nC 6; 2nC 8�. Define

!k WD min
°
`wt

�p
q

�
j
p

q
is the center of some Eı of level k

±
:

Thus,
!1 D `wt

�
Œ2nC 7I 2nC 4�

�
D 4nC 11 � 4nC 1:

Since each center p=q of a class Eı at level k C 1 is adjacent to a center at
level k, it follows from Lemma 4.1.4 and Corollary 4.1.2 that !kC1 � !k C 1. Indeed,
Lemma 4.1.4 (i) shows that the CF-length of p=q is at least one more than that of the
centers at level k and, even if ı D �1, the last entry of CF.p=q/ is � 2; thus the
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weight length increases by at least 1. Hence, !k � 4nC k. In other words the weight
lengths of the centers at level k (which are minimal among the unblocked weight
lengths) are all at least 4nC k, so that all rational numbers of weight length< 4nC k
are blocked by classes at level < k. In particular, if p=q is any rational number with
`wt .p=q/ D K, then p=q is blocked by some class in C�U at level < K.

Recall the sequence y0 D 0, y1 D 1, y2 D 6, : : : ; yiC1 D 6yi � yi�1, and the
associated points

v1 D1; v2 D 6; v3 D
35

6
; : : : ; vk D

yk

yk�1
D Sk�2.v2/; : : :

from (2.3.2). The points

wk D
yk C yk�1

yk�1
D 7;

41

7
; : : :

are also relevant; see Figure 2.2.

Corollary 4.1.9. The following statements hold.

(i) Every rational point in .3C 2
p
2;1/ is blocked by a class with m=d > 1=3,

except for the points v2iC1, i � 1 which are unobstructed.

(ii) Every rational point in .3C 2
p
2; �4/ is blocked by a class with m=d < 1=3,

except for the points v2i , i � 1 which are unobstructed.

Proof. The symmetry

RW
p

q
7!

6p � 35q

p � 6

maps the interval Œ7;1/ D Œw1; v1/ to the interval .6; 7� D .v2; w1�, and hence takes
the complete family C�U to a complete family R].C�U /, whose blocking classes
have m=d < 1=3 and block all rational points in .6; 7� \ acc.Œ0; 1=3//. Similarly, the
symmetry

SRW
p

q
7!

6p � 35q

p � 6

maps the interval Œ7;1/D Œw1; v1/ to the interval .v3;w2�D .35=6; 41=7�, and hence
takes the complete family C�U to a complete family .SR/].C�U / whose block-
ing classes have m=d > 1=3 and block all rational points in .v3; w2�. We proved
in [17, Lem. 3.4.6] that the class .S i /].BU0 / blocks the interval ŒwiC1;wi � for b < 1=3
when i is odd, and for b > 1=3 when i is even. Hence, the families .S2i /].C�U / and
.S2iC1R/].C�U / for i � 0 together block all rational points for b > 1=3 except for
the points v3; v5; and so on; see Figure 2.2. Notice that the points v2iC1 are unob-
structed since they are limits of accumulation points of staircases, which necessarily
are unobstructed.
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Similarly, the families .S2iC1/].C�U / and .S2iR/].C�U / for i � 0 together
block all rational points for b < 1=3 except for the points v2; v4; and so on. Again,
these points are unobstructed.

We end this subsection with an extended remark on the combinatorics and arith-
metic properties of the family C�U on the interval Œ6; 8�, since they are so similar to
those of Farey sequences.

Remark 4.1.10 (Farey description of the blocking classes). We suppose that p=q 2
Œp1=q1; p2=q2� has q > q1; q2. The first Farey sequence38 containing p=q consists
of all rational numbers p0=q0 in the interval Œp1=q1; p2=q2� with q0 � q, arranged in
increasing order. For example, in the case of Œ7I 4� 2 Œ7; 8� the sequence is is

Œ7�; Œ7I 4�; Œ7I 3�; Œ7I 2�; Œ7I 1; 2�; Œ7I 1; 3�; Œ8�I

similarly, the first Farey sequence between Œ7� and Œ7I 4� containing Œ7I 5; 2� is

Œ7�; Œ7I 11�; Œ7I 10�; Œ7I 9�; Œ7I 8�; Œ7I 7�; Œ7I 6�; Œ7I 5; 2�; Œ7I 5�; Œ7I 4; 2�; Œ7I 4�:

This sequence has the property that any three adjacent terms p0=q0;p=q;p00=q00 satisfy
the identity39

p

q
D
p0 C p00

q0 C q00
DW

p0

q0
˚
p00

q00
:

Moreover, it turns out that the sequence can be constructed by repeatedly taking the
Farey sum of two adjacent elements, discarding any with too large a denominator.

Proposition 4.1.6 implies that given any triple in C�U the nearest neighbors to
p�=q� in the first Farey sequence between p�=q� and p�=q� that contains ��=q� lie
in the blocked intervals IE� , IE� . Thus p�=q� is the Farey sum of these numbers. For
example,

Œ7I 4� D
29

4
D
7C 22

1C 3
DW Œ7�˚ Œ7I 3�; Œ7I 5; 2� D Œ7I 6�˚ Œ7I 5�:

and Œ7�; Œ7I 6� 2 IBU
0

while Œ7I 3� 2 IBU
1

and Œ7I 5� 2 IEŒ7I4� .

Thus the class E� can be viewed as a type of Farey sum of E� and E�: given
the blocked intervals IE� and IE� , there is a unique rational number between them
with shortest weight decomposition, which will also be the center of a blocking class.
In this language, the first part of Conjecture 2.2.4 claims that the C�-length of the

38A subsequence of this sequence is relevant to the construction of the weight decomposition
of p�=q�; see the Appendix to [22].

39This expression is called the Farey sum of p0=q0, p00=q00.
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class Eı is precisely the continued fraction length `CF of its center. In particular, this
would imply that

`CF .E�/C `CF .E�/ D `CF .E�/;

which experimentally seems to be true. In fact, there seems to be more internal struc-
ture here that comes from the relation of the adjacency condition to weight expansions
explained in Lemma 4.1.1. For example, if a principal staircase has blocking class E�
with center Œs0I s1; : : : ; sn� then in (almost) all cases we have calculated 40 the limit has
the form Œs0I s1; : : : ; sn�1; P

1
� � where the periodic part P� has length 2.nC 1/ and

is a combination in some order of the periodic parts P�; P� associated to E� and E�.
We give examples in Table 4.1.1.

center @�.IE/ @C.IE/

E0 D Œ6� Œ¹5; 1º1� Œ7; ¹5; 1º1�

E1 D Œ8� Œ¹7; 3º1� Œ9I ¹7; 3º1�

E:1 D Œ7I 4� Œ7I ¹5; 3; 1; 7º1� Œ7I ¹3; 5; 7; 1º1�

E:01 D Œ7I 5; 2� Œ7I 5; ¹1; 3; 5; 1; 7; 5º1� Œ7I 5; ¹3; 1; 5; 7; 1; 5º1�

E:21 D Œ7; 3; 6� Œ7I 3; ¹5; 7; 3; 1; 7; 3º1� Œ7I 3; ¹7; 5; 3; 7; 1; 3º1�

Table 4.1.1. The table gives examples of the relationship between the continued fraction of the
center of a perfect class and the continued fractions of the endpoints of the blocked z-interval.

This pattern can be depicted just as the Farey diagram is recorded, and the two
ways of depicting the Farey diagram (as in [11, §1.2]) emphasize two different fea-
tures of the set of centers of our blocking classes. In the first diagram in Figure 2.1,
classes lying on the same horizontal line have equal level (see Section 2.2). In Fig-
ure 4.1, however, classes lying on the same diagonal line lie in the same principal
staircase, and classes lying on the same horizontal line have equal C�-length, thus
equal CF -length (by Conjecture 2.2.4).

Remark 4.1.11. If b is rational, then the accumulation point formula forces acc.b/ to
be at worst a quadratic irrational, and hence to have periodic continued fraction. By
Corollary 4.1.9 no rational number greater than six can be an accumulation point of a
staircase. If we knew enough about the numerics of the principal staircases, then by
extending the arguments in Section 3.2 one might be able to conclude that the only
unblocked points z with periodic continued fraction are the endpoints of the blocked

40The descending stairs associated to the blocking classes BUn are the only exceptions we
have found.
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Œ6� Œ8�

Œ7; 5; 3; 1; 6� Œ7; 3; 5; 7; 2�

Œ7; 5; 1; 4� Œ7; 3; 7; 4�

Œ7; 5; 2� Œ7; 3; 6�

Œ7; 4�

Figure 4.1. This diagram depicts the blocking classes between 6 and 8 through level five. The
horizontal black lines represent the interval Œ6; 8�. Each vertical line through level four is labeled
with the continued fraction of a number between 6 and 8 which is the center of a blocking class.
To obtain the vertical line representing E� from that of E� and E�, draw a diagonal (gray)
line from the top of the line representing E� to the bottom of the line representing E�, and vice
versa. The vertical line dropped from the intersection of these two diagonals representsE�. Any
unbroken gray “V” shape represents a generating triple. Each gray diagonal line represents a
principal staircase associated to the blocking class at its lower endpoint; the steps are the classes
whose upper endpoints are on the given diagonal. Classes on the same horizontal line have the
same CF -length, while classes whose upper endpoints are on the same level are depicted in the
same color.

intervals. Since none of these correspond to a rational b by Remark 2.1.3, it would
follow that the only possible rational b with staircases are b D 0; 1=3 or the special
rational b corresponding to the z in (1.1.3).

4.2. Proof of Theorem 1.1.1

Our arguments are based on the following result.

Proposition 4.2.1. Let E be a perfect class with p=q > amin such that the end-
points @JE are unobstructed, and let E0¤E be another perfect class with p0=q0>amin.
Then JE \ JE0 D ;.
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Remark 4.2.2. As noted in Remark 1.2.9 (i), the class

B D 6L � 3E0 �

7X
iD1

2Ei

is an exceptional class since it Cremona reduces to .0;�1; 0; : : :/, but not a perfect
class because the coefficients of theEi are twice those of the integer weight expansion
of its center. This class illustrates the importance of the assumptions in Proposi-
tion 4.2.1 since, as we now show, B is a blocking class such that ; ¤ JB � JBU

0
.

Note first that by [1, Thm. 1], we have

JBU
0
D

�
3 �
p
5

2
;
3.7C

p
5/

44

�
� .0:382; 0:63/;

IBU
0
D
�
Œ¹5; 1º1�; Œ7I ¹5; 1º1�

�
:

(4.2.1)

Further, because the coefficients of E1; : : : ; E7 in B are a constant multiple of the
weight expansion of 7=1, the proof of [1, Prop. 21 (i)] (see also Lemma 3.1.2) adapts
to show that B is live at z D 7 for an interval of b that includes .4=9; 10=19/ �
.0:44; 0:526/; in other words

cHb .7/ D �B;b.7/ D
14

6 � 3b

for these b’s. We may also directly compute that

�B;acc�1
C1
.7/.7/ � 3:368 > 3:354 � VHacc�1

C1
.7/
.7/:

Thus B blocks acc�1C1.7/ � 0:614, which is contained in JBU
0

by (4.2.1). On the other

hand, the class BU0 has

�BU
0
;b.7/ D

6

3 � 2b
;

so that �BU
0
;b.7/ D �B;b.7/ for b D 3=5. By comparing the ratios of m=d , it follows

from Lemma 3.2.1 (i) above that the obstruction function for BU0 grows faster at z D 7
than that of B as b increases from 3=5 to @C.JBU

0
/. Since both these obstruction

functions are constant for z � 7 and

�BU
0
;b.z/ D VHb .z/ at z D @C.IBU

0
/ > 7 and b D @C.JBU

0
/ > 3=5;

it follows that the class B is no longer obstructive at these values of z, b.
The argument that @�.JBU

0
/ < @�.JB/ and that for z < 7 we have �B;b.z/ <

�BU
0
;b.z/ is easier, since for z < 7 the obstruction �B;b lies on the line through the

origin and .7; 14=.6 � 3b//, while �BU
0
;b is constant for z 2 Œ6; 7� and for z < 6 lies

on the line from the origin to .6; 6=.3 � 2b//.
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Another exceptional class which is not perfect, yet is live and blocking, is

73L � 46E0 � 22E1 � 21E2;:::;7 � 4E8;:::;12 � 1E13;:::;16;

with center 151=21 and whose blocked interval is nested inside that of EŒ7I4�. Again
because the coefficients of E1; : : : ;E16 are closely related to the entries in the weight
expansion of its center, we may use [1, Prop. 21 (i)] to find an interval on which this
class is live and an argument similar to the one above to show that JEŒ7I4� contains
its blocked interval. We expect there are many such classes. This is in contrast to, for
example, the class

5L �E0 � 2E1;:::;6 �E7;

which is live for b � 1=5 as explained in [1, Ex. 34], but is not a blocking class
by [1, (2.2.6)].

Since in Proposition 4.2.1 we assume that the endpoints of JE are unobstructed,
the two intervals JE and JE0 cannot overlap, and the key point of the proof is to show
that they are not nested: in other words we cannot have JE0 � JE. The arguments
to prove this are somewhat delicate. Hence, we will begin the discussion by using
Proposition 4.2.1 to deduce the main results stated in Section 1. We begin with a
simple corollary of Proposition 4.2.1.

Corollary 4.2.3. The following statements hold.

(i) Every perfect class E0 with center in .7;1/ is derived by mutation from one
of the basic generating triples .BUn ;EŒ2nC7I2nC4�;BUnC1/, n � 0 and so is a
member of the complete family C�U .

(ii) Every other perfect class with center > amin is the image of a perfect class
in C�U by a symmetry S iRı for some i � 0, ı 2 ¹0; 1º with i C ı > 0.

Proof. Consider the union J of the intervals JE that are blocked by some class E
in the complete staircase family C�U . Since all these classes are perfect by Corol-
lary 3.1.5, Proposition 3.1.7 implies that all the associated pre-staircases are live.
Hence, by Corollary 3.1.6, both endpoints of the corresponding blocked b-interval JE

are unobstructed.41 We proved in Proposition 2.2.6 that J is an open dense set of

acc�1U .Œ6;1// D Œ5=11; 1/:

Therefore, the interval JE0 must have nonempty intersection with J. But this is pos-
sible only if JE0 is contained in a component JE of J. Proposition 4.2.1 then shows

41In the proof that the classes are perfect we used the fact that the lower endpoint of JE is
unobstructed; now we have a similar result for the upper endpoint.
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that JE0 D JE, which implies that IE0 D IE. But then the two classes have the same
breakpoint (since this is the point of shortest length in IE, see Lemma 4.2.4), and
hence coincide by the uniqueness result in [17, Lem. 2.2.1]. This proves (i).

To prove (ii), notice that, as illustrated in Figure 2.2, the set of z-values blocked by
perfect classes with m=d > 1=3 and in some family .S iRı/].C�U / with i C ı even
is dense in the interval .amin;1/. Hence, the set of blocked b-values is also dense, and
it follows as above that there are no other perfect classes with m=d > 1=3. A similar
argument applies to perfect classes with m=d < 1=3.

Proof of Theorem 1.2.6 (iii). By Corollary 4.2.3 (ii), it is sufficient to consider per-
fect classes in the complete family C�U . Besides the classes BUn , each perfect class
in C�U is the middle entry in a unique triple and so a step in both the ascending
staircase �T

`
(live by Proposition 3.1.7) and the descending staircase �T

u (live by
Corollary 3.1.11). For n � 1, BUn is a member of both the descending staircase and
the ascending staircase denoted by �

T n�1�
u and �

T n�
`

, respectively. The class BU0 is
a member of the ascending staircase and the descending staircase denoted by �

T 0�
`

and �
.SR/]T 0�
u , respectively.

Proof of Proposition 1.2.2. We must show that Block � Œ0; 1/ is the disjoint union of
the sets JE as E ranges over all perfect classes with centers>amin: By Corollary 4.2.3,
the class E must belong to one of the families .S iRı/].C�U /, and hence its endpoints
are unobstructed. Therefore all these sets JE are disjoint by Proposition 4.2.1.

The statements in the first three parts of Theorem 1.1.1 are also now easy to prove.

Proof of Theorem 1.1.1 parts (i), (ii), (iii). We must show that

(i) Block is an open dense subset of Œ0; 1/ that is invariant under the action of the
symmetries;

(ii) there are staircases at each end of each connected component of Block;

(iii) for n � 0, define

BlockŒ2nC6;2nC8� WD
®
b 2 Block j acc.b/ 2 Œ2nC 6; 2nC 8�; b > 1=3

¯
:

For each n � 0, there is a homeomorphism of BlockŒ2nC6;2nC8� onto the
complement Œ�1; 2� X C of the middle third Cantor set C � Œ0; 1�.

By Propositions 1.2.2 and 4.2.1,

Block D
[®

JE j E 2 .S iRı/].C�U /; i � 0; ı 2 ¹0; 1º
¯
:

Since each class E in C�U is the center of a generating triple, it has two associated
staircases that converge to the end points of @JE. Therefore (ii) holds for the fam-
ily C�U , and hence it also holds for the image of this family under any symmetry.
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Next notice that (i) follows from Proposition 2.2.6 and the fact that the image of the
interval Œ6;1/ under the symmetries ¹S iRı W i C ı is evenº is dense in .amin;1/ D

acc..1=3; 1//, while the image under the symmetries ¹S iRı W i C ı is oddº is dense
in .amin; �

4/ D acc..0; 1=3//. Finally, we construct the homeomorphism in (iii) in the
case n D 0 so that it takes the half-open intervals IBU

0
\ Œ6; 8� and IBU

1
\ Œ6; 8� onto

Œ�1; 0/ and .1; 2�, respectively, and more generally, takes the elements of IEı onto the
interior of the interval consisting of all x 2 Œ0; 1� whose ternary decimal expansion
starts with the entries in the decimal ı. Here we are using the decimal notation intro-
duced in Lemma 2.2.1. Thus, EŒ7I4� D E:1 has image .1=3;2=3/, while EŒ7I5;2� D E:01
has image .1=9; 2=9/. The definition for the case n > 0 is analogous.

It remains to prove Proposition 4.2.1. Our first lemma describes useful properties
of the elements p0=q0 2 IE WD acc.JE/.

Lemma 4.2.4. Let E D .d; m; p; q/. Then for all p0=q0 2 IE, we have p0 � p and
q0 � q.

Proof. It is proved in [7, §2] (see also [22, §2.2], or [1, Lem. 14]) that `wt .p=q/ <
`wt .p

0=q0/ for all (rational) p0=q0 2 IE X ¹p=qº. In other words, p=q is the unique
point of shortest (weight) length in IE. Suppose that p0=q0 2 IE and write

CF
�p
q

�
D Œs0I s1; : : : ; sn�; CF

�p0
q0

�
D Œs00I s

0
1; : : : ; s

0
n; : : : �; sn � 2:

We make the following claims.

Claim 1. si D s0i for all i < n.

This holds because otherwise at least one of the points Œs0I s1; : : : ; si C "�, where
"D 1; 0;�1 would lie strictly between p0=q0 and p=q and hence be in the interval IE,
even though its length is < `wt .p=q/. For example,42 if

p

q
D Œ1I 3; 1; 2� and

p0

q0
D Œ1I 2; 8�;

then
p

q
< Œ1I 3� < Œ1I 2; 8�:

Claim 2. s0n � sn � 1, and if s0n D sn � 1, thenX
i>n

s0i � 2:

Hence, p0 > p; q0 > q.

42See the beginning of Section 4.1 for further information on ordering continued fractions.
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If s0n � sn � 2 we can argue as before that the point Œs0I s1; : : : ; sn � 1� lies strictly
between p=q and p0=q0. Further, we cannot have

p0

q0
D Œs0I s1; : : : ; sn � 1�

(since this has shorter weight length than p=q), and so the sum of the subsequent
entries X

i>n

s0i

must be at least two by our convention that the last entry in any continued fraction is
at least 2.

Thus, CF.p0=q0/ has the stated form. Therefore, at least one of the entries of
W.p0=q0/ that correspond to the last block 1�sn ofW.p=q/ is>1. It now follows from
the recursive definition of the weight sequence (where we construct it starting from
the last block) that each entry in W.p0=q0/ is at least as large as the corresponding
entry in W.p=q/. The result now holds because p=q ¤ p0=q0.

Lemma 4.2.5. Let E;E0 be distinct perfect classes such that JE0 � JE, and suppose
also that both points in @JE are unobstructed. Then

(i) we must have p0=q0 2 IE and m=d < m0=d 0;

(ii) further, p=q < p0=q0.

Proof. Because E0 is center-blocking by [17, Prop. 2.2.9], acc�1U .p
0=q0/ 2 JE0 � JE

so that p0=q0 2 IE0 � IE, as claimed. Further, because m0=d 0 > JE0 , we know that
m0=d 0 > @�.JE/.

Now suppose that p0=q0 < p=q. Because @JE is unobstructed, �E;b� is live on the
interval z 2 IE, z � p=q for b� WD @�.JE/ by [1, Prop. 42]. Therefore, we must have

�E0;b�.z/ � �E;b�.z/

for bD b� and z close to p0=q0. Moreover, because�E0;b�.z/ is constant for z >p0=q0

while �E;b�.z/ is not, this inequality is strict when z > p0=q0. On the other hand,
Lemma 3.1.2 shows that �E0;b dominates �E;b for z near p0=q0 when b is suffi-
ciently close tom0=d 0. Therefore,�E0;b.p

0=q0/must grow faster than�E;b.p
0=q0/ as b

increases to m0=d 0. Hence, Lemma 3.2.1 (ii) shows that we must have m0=d 0 > m=d ,
as claimed in (i).

We next prove (i) when p0=q0 > p=q. If also m0=d 0 � m=d , then the obstruction
�E0;b.p

0=q0/ changes no faster than �E;b.p
0=q0/. Also, we have

�E0;b

�p0
q0

�
� �E;b

�p0
q0

�
; when b D @CJE;
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while

�E0;b

�p0
q0

�
> �E;b

�p0
q0

�
; when b � m0=d 0:

It follows that we must have m0=d 0 < @CJE, otherwise the obstruction �E0;b.p
0=q0/,

which dominates at m0=d 0, still dominates as b decreases from m0=d 0 to @CJE since
it decreases more slowly than �E;b.p

0=q0/ as b decreases. (Note thatm0=d 0 is rational
and so cannot equal @CJE, which is irrational.) Next observe that since p=q < p0=q0,
we have

0 � E � E0 D dd 0 �mm0 � qq0w
�p
q

�
� w
�p0
q0

�
� dd 0 �mm0 � pq0:

by Lemma 4.1.1.
Thus we find that

�E;m0=d 0
�

acc
�m0
d 0

��
D

p

d �m.m0=d 0/

> Vm0=d 0
�

acc
�m0
d 0

��
(since �E;m0=d 0 blocks m0=d 0 2 JE)

D
1C acc.m0=d 0/
3 �m0=d 0

>
1C p0=q0

3 �m0=d 0
;

where the last inequality uses the fact that p0=q0 < acc.m0=d 0/; see Remark 2.1.8.
This simplifies to the strict inequality

q0p

dd 0 �mm0
>

p0 C q0

3d 0 �m0
:

However,
p0 C q0

3d 0 �m0
D 1;

while dd 0 �mm0 � pq0 by positivity of intersections. Hence, this is impossible, so
we must have m0=d 0 > m=d . This proves (i).

It is straightforward to check that the condition m0=d 0 > m=d implies that

t 0.p C q/ > t.p0 C q0/;

i.e. �
.p0/2 � 6p0q0 C .q0/2 C 8

�
.p C q/2 > .p2 � 6pq C q2 C 8/.p0 C q0/2:

This simplifies to

.p0 C q0/2pq � p0q0.p C q/2 > .p0 C q0/2 � .p C q/2;
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or equivalently

.pp0 � qq0/.p0q � q0p/ > .p0 C q0/2 � .p C q/2:

If p0=q0 < p=q, then p0q � q0p < 0. On the other hand, Lemma 4.2.4 (i) implies that

p0 C q0 > p C q;

and pp0 � qq0 > 0 because p > q; p0 > q0. Hence, we must have p=q < p0=q0. This
proves (ii).

Proof of Proposition 4.2.1. Since the endpoints of JE are unobstructed, this interval
must either be disjoint from JE0 or contain it. If the latter, Lemma 4.2.5 shows that it
suffices to consider the case when p=q < p0=q0 andm=d < m0=d 0. Since �E0;b is live
at p0=q0 when b Dm0=d 0 while �E;b is live at p0=q0 at the smaller value b1 D @CJE,
there is some b 2 .b1; m0=d 0/ where the two obstruction functions agree. Thus, we
have

p

d �mb
D

p0

d 0 �m0b
; i.e. b D

p0d � pd 0

p0m � pm0
:

If p0d � pd 0 > 0, then p0m � pm0 > 0, and we have

p0d � pd 0

p0m � pm0
<
m0

d 0
H) p0dd 0 � p.d 0/2 < mm0p0 � p.m0/2

H) p0.dd 0 �mm0/ < p..d 0/2 � .m0/2/

H) p0pq0 < p.p0q0 � 1/ (by (4.1.1));

which is impossible. Hence, p0d � pd 0 < 0, p0m � pm0 < 0, which implies

p0

p
<
d 0

d
;

p0

p
<
m0

m
:

With � WD p0=p, write d 0 D .�C "/d; m0 D .�C "0/m, where "; "0 > 0, and notice
that because p0=q0 > p=q, we also have q0 D .� � "00/q for some "00 > 0. Then

3.�d C "d/ D �p C �mC "0mC �q � "00q;

so that 3"d D "0m � "00q, which implies that "0m > 3"d . Further,

pd 0 � p0d

pm0 � p0m
D

p.�d C "d/ � �pd

p.�mC "0m/ �m�p
D

"d

"0m
:

Thus, because "0m > 3"d , we find that

b1 <
"d

"0m
<
"d

3"d
D
1

3
;

which is impossible since b1 > 1=3. This completes the proof.
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Proof of Proposition 2.2.8 (i), (ii). Claim (i) is proved in Corollary 3.2.3. To prove (ii)
it remains to consider the possibility that all but finitely many of the steps .Ek/k�0
of some descending pre-staircase ��˛1 are not live at the limiting b-value b˛1 . Since
there are no overshadowing classes by Lemma 3.2.8, this can happen only if there are
infinitely many exceptional classes .E0

k
/k�0; that are live at b˛1 , each of which ob-

scures a finite number of the step centers of ��˛1 . But this new set of classes .E0
k
/k�0

forms a staircase for this b-value. Indeed, the break points of these obstructions must
converge to ˛1 by [7, Thm. 1.13].

Remark 4.2.6. It seems likely that all but finitely many of the steps in ��˛1 are live
at b˛1 . However, we have not analyzed the properties of exceptional, but nonperfect,
classes in enough detail to be able to make this claim.

4.3. The special rational b

By arguing as in Remark 2.3.6 (iii), one can show that if bi is a special rational value
with acc.bi /D vi as in (2.3.5) then none of the perfect classes with centers> amin are
obstructive at bi . However, there are other exceptional classes that affect the capacity
function. For example,

E D 3L �E0 � 2E1 �E2;:::;6 D .3; 1Im/

with m D .2; 1�5/ is such a class, which seems to be live for 1=5 < b < 5=11 on
various intervals above the accumulation point acc.b/; see [17, Rmk. 2.3.8] for a
discussion of its properties. Thus there could be some as yet undiscovered staircases
that accumulate at these bi from above.

We now show that these points .bi ; vi / cannot be limits of ascending staircases.
The proof hinges on the properties of the third strand43 of the staircase at b D 1=3

that accumulates at amin. This staircase is discussed in detail in [17, Example 2.3.7];
see also Remark 2.1.14. It has a rather different structure from the staircases with
accumulation points> amin discussed above, since it has three intertwined strands, all
ascending but with alternating values of ", so that successive steps need not be adja-
cent. Moreover, the three strands cannot be assembled into one ascending, recursively
defined staircase.

We are mostly concerned here with the third strand that has initial seed E1 D
.2; 0; 5; 1/ with center g1=g0 D 5=1 and .t; "/ D .2;�1/, and subsequent steps Ei ,
i � 2, with

centers S i�1
�g1
g0

�
D

gi

gi�1
; t D 2; " D .�1/i ; i � 2: (4.3.1)

43See Example 2.1.7 for the definition of a strand of a staircase.
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As usual the degree coordinates d;m are determined by (1.2.2); see [17, eq. (3.3.2)].
Since there seems to be no convenient reference in the literature we begin with the
proof that all the classes in this staircase are perfect. We also show that these are the
only perfect classes with centers < amin.

Lemma 4.3.1. The classes that form the steps of the staircase of H1=3 are perfect
classes. Moreover, these are the only perfect classes with centers < amin.

Proof. As shown in [17, Example 2.3.7], the three seed classes for H1=3 are

Eseed;0 D .1; 0; 2; 1; 1;�1/;

Eseed;1 D .2; 1; 4; 1; 1; 1/;

Eseed;2 D .2; 0; 5; 1; 2;�1/:

The centers of the subsequent classes are given by applying S , so that the next classes
in the first two strands are .5; 2; 11; 2; 1; 1/ and .10; 3; 23; 4; 1;�1/. One can easily
check that these classes Cremona reduce.44 Thus, the initial classes are perfect. Fur-
thermore, the rest of the classes Ej are formed by applying the shift S to Ej . We then
apply [17, Lem. 4.1.2], which states that S preserves Cremona equivalence provided
that the centers of the classes considered are � 5. Thus the rest of the classes Ej also
Cremona reduce, and hence are perfect.

Now suppose that E D .d; m; p; q/ is a perfect class with center < amin. Taking
b D 1=3 and using (1.2.1), we obtain the inequality

cH1=3

�p
q

�
�

3p

3d �m
D

3p

p C q
D

3z

1C z
: (4.3.2)

On the other hand, the function cH1=3.z/; z 2 Œ1; amin�; was fully calculated in [7,
Prop. 1.19]. It is piecewise linear with outer corners at the step centers on the graph
of

z 7!
3z

1C z
;

and inner corners lying strictly below this graph. Therefore the class E must have its
center p=q at one of the steps of this staircase. Since perfect classes are determined
by their centers by [17, Lem. 2.2.1], this implies that E must be one of these steps.

44An integral class E such that c1.E/D 1;E �ED�1 is exceptional if and only if it Cremona
reduces. This is a transformation on the coefficients of the classes, which for a specific class is
easily computed. More details about this process can be found in [22, Prop. 1.2.12] and [17,
§4.1].
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We saw in [1, Ex. 22] that the obstruction function given by the class E1 D
.2; 0; 5; 1/ is constant and equal to �E1;b.z/ D 5=.2 � b/ for z > 5, and when evalu-
ated at b D 1=5 goes through the point .6; 5=2/D .6;V1=5.6//. Therefore, it obstructs
the existence of an ascending staircase at z D 6, b D 1=5. One might wonder how
the function �E1;b behaves when b � 1=5 since we know from [1] that there are
sequences of values of b that converge to 1=5 from both sides that do admit ascending
staircases.45 However, it turns out that for all b ¤ 1=5, the graph of the function

z 7! �E1;b.z/;

which is constant for 5 < amin < z, meets the volume curve .z;Vb.z// at a point z0.b/
that is strictly < acc.b/, and hence is not obstructive. We now apply S to show that a
similar phenomenon occurs at all the special points vi , i � 2.

Proposition 4.3.2. For each i � 1, the class Ei in (4.3.1) is not a blocking class,
though its obstruction does go through the point .acc.b/; Vb.acc.b// where b is the
special rational point biC1D acc�1" .viC1/;where "D .�1/i . In particular, the special
rational b have no ascending staircase.

Remark 4.3.3. By (4.3.1), the class Ei has mi=di > 1=3 exactly if i is even so that
the corresponding rational b is biC1 > 1=3.

We begin the proof with the following lemma.

Lemma 4.3.4. Let ED .d;m;p;q/ be a perfect class such that�E;b.z/ is constant on
the interval Œp=q;p0=q0�, and suppose that p=q < acc.b/ < p0=q0 for some b. Then E
blocks b only if zE

b
> acc.b/, where

zE
b D

.3p � d/ � b.p �m/

d �mb
: (4.3.3)

Proof. Our assumptions imply that the function

.b; z/ 7! �E;b.z/ D
p

d �mb

does not depend on z near z D acc.b/, so that we can think of �E;b.z/ as a function
of b only. For each b, the graph of

z 7! Vb.z/ D

r
z

1 � b2

45These are the staircases in the �E and �L families constructed in [1, Thms. 54, 58]. This
behavior generalizes to the other special rational b as shown in [17].



Staircase patterns in Hirzebruch surfaces 533

meets the graph of

z 7!
1C z

3 � b

at the point z D acc.b/. It is easy to check that at this point the line has larger slope
than the volume curve. Thus if E blocks b, the point zE

b
, where

p

d �mb
D
1C z

3 � b

must be larger than acc.b/. But this point is precisely given by (4.3.3).

Proof of Proposition 4.3.2. Notice first that gi=gi�1 < viC1 D yiC1=yi for all i � 1.
Indeed this holds when i D 1 since g1=g0 D 5=1 and v2 D 6=1, and therefore it holds
for all larger i since the shift S preserves orientation and increases the index i by 1
on each side. A similar argument shows that gi D yiC1 � yi . We next claim that

`wt

� gi

gi�1

�
< `wt

�yiC1
yi

�
for all i , since it holds when i D 1 and the calculation

S
�
Œ5I x�

�
D S

�5x C 1
x

�
D
29x C 6

5x C 1
D Œ5I 1; 4; x�;

where x D Œx0Ix1; : : : � � 0, shows that applying S increases the weight length of any
two numbers z; z0 2 Œ5; 6/ by the same amount. Since gi=gi�1 < amin, the hypothe-
ses of Lemma 4.3.4 holds. Therefore, the obstruction from the perfect class Ei D
.di ; mi ; gi ; gi�1/ in (4.3.1) with center gi=gi�1 is constant near viC1. Hence, by
Lemma 4.3.4 it suffices to show that zE

b
� acc.b/, where

zE
b D

.3.yiC1 � yi / � di / � b..yiC1 � yi / �mi /

di �mib
:

By (4.3.1), 8di D 3.yiC1 � yi�1/C ", 8mi D .yiC1 � yi�1/C 3", where " D .�1/i

is as in (2.3.5). Further, because acc.b/ is the solution to the equation

acc.b/C
1

acc.b/
D
.3 � b/2

1 � b2
� 2;

then zE
b
� acc.b/ exactly if

zE
b C

1

zE
b

�
.3 � b/2

1 � b2
� 2:

That is, if
.zE
b
C 1/2

zE
b

�
.3 � b/2

1 � b2
:
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Since

zE
b C 1 D

3.yiC1 � yi / � di / � b..yiC1 � yi / �mi /C di �mib

di �mib

D
3.yiC1 � yi / � b.yiC1 � yi /

di �mib
D
.3 � b/.yiC1 � yi /

di �mib
;

this simplifies to the inequality

.di �mib/
�
3.yiC1 � yi / � di � b..yiC1 � yi / �mi /

�
� .yiC1 � yi /

2.1 � b2/ � 0: (4.3.4)

We claim that this inequality is equivalent to .b � biC1/2 � 0, where biC1 is as
in (2.3.5). Thus we must show that for some constant C , the coefficients of b2, b, 1
in (4.3.4) are, respectively,

C.3yiC1 C 3yi C "/
2;

�2C.3yiC1 C 3yi C "/.yiC1 C yi C 3"/;

C.yiC1 C yi C 3"/
2:

Since di , mi are given by linear expressions in the yi and the yi are even-placed Pell
numbers, these are quadratic expression in the Pell numbers. But by [10, Lem. 6.6],
these hold in general if and only if they hold for three distinct values of i . (Note that
because the yi correspond to even-placed Pell numbers the sign .�1/s in this result is
alwaysD 1.) But when i D 1; 2; 3, the quantities .di ; mi ; yiC1; yi ; "/ are equal to

.2; 0; 6; 1;�1/; .13; 5; 35; 6; 1/; .74; 24; 204; 35;�1/;

and it is straightforward to check that the required identities hold with C D 1=16. This
completes the proof.

Corollary 4.3.5. Theorem 1.1.1 (iv) holds.

Proof. This states that the only rational numbers that can be accumulation points of
staircases are the points vi , i � 2, and if there is such a stair it must descend. The first
claim is proved in Corollary 4.1.9, while the second is proved in Proposition 4.3.2.

Remark 4.3.6. Observe that Proposition 4.3.2 only considers the third strand of the
staircase at H1=3. The other two strands of the staircase at H1=3 have seeds Eseed;0 D

.1; 0; 2; 1/ and Eseed;1 D .2; 1; 4; 1/: The rest of the classes are determined by taking

.Sk/].Eseed;i /: The classes in these two strands are also not blocking classes, but
unlike the third strand, the obstructions from these strands do not go through the
point .acc.b/; Vb.acc.b// for any b. Thus, these perfect classes do not obstruct either
ascending or descending staircases for any value of b.
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The proof that b2 D 1=5 has no descending staircase in [1, Thm. 94] shows that
for some ı > 0 and z 2 Œ6; 6C ı/, the capacity function c1=5.z/ equals the obstruction
from the 19th ECH capacity, or equivalently, from the nonperfect exceptional class

.d;mIm/ D .5; 1I 2�6; 1/:

Experimental evidence suggests that the class .3; 1I 2; 1�5/ plays this role for all
higher i .

Conjecture 4.3.7. For i > 2, cHbi has no descending staircase. Furthermore, for
some ı > 0 and z 2 Œvi ; vi C ı/, the capacity function cHbi .z/ equals the obstruction
from the 8th ECH capacity, or equivalently, from the nonperfect exceptional class
.3; 1I 2; 1�5/.

4.4. Stabilization

We now show that all the staircases found in this paper stabilize.
Consider the stabilized embedding function

cHb ;s.z/ D inf
®
� j E.1; z/ �R2s

s
,! �Hb �R2s

¯
; s � 0:

We always have cHb .z/ D cHb ;0.z/ � cHb ;1.z/ � cHb ;2.z/ � � � � , because by taking
the product with the identity idR2 any embedding

�WE.1; z/ �R2s ! �Hb �R2s

extends to an embedding

� � idR2 WE.1; z/ �R2sC2 ! �Hb �R2sC2:

Remark 4.4.1. We will base our discussion on the arguments in [5] that consider the
stabilized embedding function for CP 2. These arguments extend to the semipositive
case, that is to arbitrary six-manifolds and to monotone manifolds of any dimension.
Thus, unless b D 1=3, we consider only the case s D 1. However, this restriction is
purely technical, and our results should hold for all s.

Lemma 4.4.2. Let ED .d;m;p;q/ be a perfect class. Then, cHb ;s.p=q/��E;b.p=q/

for s D 1 and all b 2 Œ0; 1/. When b D 1=3, this holds for all s � 1.

Proof. The analogous result was proved in [4] in the case of the target CP2, that is
when b D 0. A rather different proof of this result was outlined in [5, Rem. 3.1.8 (ii)].
The latter methods extend almost immediately to the current situation. One sim-
ply needs to replace the ambient manifold CP2 by the blowup Hb in the basic
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stabilization result [5, Prop. 3.6.1] that specifies when an immersed curve in a four-
dimensional cobordism of both genus and Fredholm index zero persists under stabi-
lization.46

One important point is that the statement in [5, Prop. 3.6.1] permits both the multi-
plication of the target by R2 and the perturbation of the symplectic form on the target.
This holds because the crucial compactness statement applies to a generic path Jt in
the space J.T /, where .Jt /t2Œ0;1� is a path of admissible almost complex structures
that are compatible with a path !t of symplectic forms on the target In particular, one
can change b during this deformation. However, it is important that the form remain
semipositive, since otherwise one would need to use virtual techniques to control the
possible degenerations. Thus we must either fix b D 1=3 or take s D 1.

To apply [5, Prop. 3.6.1], it suffices to produce a suitable curve in the negative
completionXb0 of �Hb0 X �.E.1;p=qC ı// in class dL�mE0 that has one negative
end on the p-fold cover of the short orbit ˇ1 on @E.1; p=q C ı/, where b0 2 Œ0; 1/ is
any suitable value and ı is a suitably small constant. This curve necessarily has genus
zero because it is constructed by neck-stretching an exceptional sphere.

We will construct this curve for b0 D m=d , where .d; m/ are the degree coordi-
nates of E, by using the method explained in [5, §3.1]. As we will see, the argument
given there is much simplified by the fact that when b D m=d the class E is live
at z D p=q, so that the capacity function cHm=d .p=q/ is equal to the obstruction
�E;m=d .p=q/. Geometrically this means that, for any " > 0, there is a symplectic
embedding �WE.1; p=q C ı/! �Hm=d , where ı > 0 is sufficiently small and

� WD cHb

�p
q

�
C " D

p

d �m2=d
C " D

pd

pq � 1
C ";

where we use Lemma 1.2.1 (i) and the identities in (1.2.1).
Let .m1; : : : ; mn/ D .q; : : : ; 1/ be the integral weight expansion of p=q. By [5,

Prop. 2.1.2] for any ı; ı0 > 0, we may embed the disjoint union of n balls of capacities
.1 � ı0/m1; : : : ; .1 � ı

0/mn into the interior of �.E.1; p=q C ı// and then blow them
up to obtain a symplectic form z! on Hm=d # nCP

2
in the class Poincaré dual to

�
�
L � .m=d/E0

�
� .1 � ı0/

X
i

miEi :

We now consider what happens to the unique representative CE of the class E in
this blowup manifold as we stretch the neck around the boundary @.�.E.1; p=q C ı///
of the ellipsoid. As described in [5, §3.1], the curve CE converges to a limiting build-
ing, whose top component CU lies in the negative completion Xm=d of Hm=d X
�.E.1; p=q C ı//.

46A detailed proof of a generalized version of this result that applies explicitly to the semi-
positive case will appear in a forthcoming paper by McDuff–Siegel [23].
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Thus CU has negative end on some orbit set ¹.ˇ1; k/º [ ¹.ˇ2; `/º, where this
notation means that the ends on the short orbit ˇ1 have total multiplicity k, while
those on the long orbit ˇ2 have total multiplicity `. Our aim is to show that (when
"; ı; ı0 are all sufficiently small) there is only one possibility for CU , namely CU must
be connected, embedded, and have one negative end on ˇ1 of multiplicity p. Granted
this, the result follows from [5, Prop. 3.6.1].

For all ı; " > 0, the energy �.d �m2=d/ � .k C `.p=q C ı// of the top part CU
is positive but arbitrarily small. Hence, because

� D
p

d �m2=d
C ";

we must have the equality

p

d �m2=d

�
d �

m2

d

�
D k C `

�p
q

�
; i.e. p D k C `

�p
q

�
:

Since p; q are relatively prime and k; ` � 0, the only possibilities are: k D p; ` D 0
or k D 0, ` D q. Further, if CU were disconnected or multiply covered, there would
be d 0 < d , m0 < m and either k < p or ` < q such that

p

d �m2=d

�
d 0 �

m0m

d

�
D k or

p

d �mb

�
d 0 �

m0m

d

�
D `

�p
q

�
:

Since d2 �m2 D pq � 1, the first of these equations simplifies to

p.dd 0 �mm0/ D k.pq � 1/;

which implies pjk and hence has no solution. Similarly, the second equation implies
that qj`, so that it also has no solution. Therefore, CU must be connected and some-
where injective.

We can now appeal to the properties of the ECH index I.C /. As explained in the
survey article [13, §3.4], this index I.C / is a generalization of the quantity

c1.A/C A � A

for a curve in a closed manifold of homology class A, and has the property that
I.C / � 0 for any immersed curve C . Moreover, by [5, (2.2.28)] and [4, (2.4) ff],
if the above curve CU has negative end on ¹.ˇ1; k/º [ ¹.ˇ2; `/º, then

I.C / D d2 �m2 C 3d �m � gr.ˇk1ˇ
`
2/;

where gr.ˇk1ˇ
`
2/ is twice the number of lattice points .m; n/ that lie in the nonneg-

ative quadrant of the plane and (strictly) below the line through .k; `/ with slope
�q=.p C ı/. Thus, when gcd.p; q/ D 1,

gr.ˇp1 / D pq C p C q � 1; gr.ˇq2 / D pq C p C q C 1:
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Since
d2 �m2 C 3d �m D pq � 1C p C q;

there can be no curve in Xm=d in class dL � mE0 with negative end on ˇq2 , since
such a curve would have I.C / < 0. Moreover, curves in this class with negative end
on ˇp1 have I.C / D 0. By [13, §3.9], this implies that it must have ECH partitions,
which in the current situation means that it has one negative end: see, for example, [5,
Rmk. 2.2.1 ff]. The fact that CU has Fredholm index zero follows from [13, (3.1)],
[5, (2.2.28)], and the computation of the monodromy angle of ˇ1 (called 
1) below [5,
(2.2.23)]. This completes the proof.

Proposition 4.4.3. The following statements hold.

(i) For all b … Block except the special rational b, the stabilized embedding
function cHb ;1 has a staircase. If, in addition, b … @.Block/ and b ¤ 1=3,
then cHb ;1 has both ascending and descending staircases.

(ii) cH1=3;s.z/ D cH1=3.z/ for all s � 1 and all 1 � z � amin.

Proof. We always have cHb ;s.z/� cHb .z/, because any embedding �WE.1;z/! �Hb
extends to an embedding

� � idWE.1; z/ �R2s ! �Hb �R2s:

Lemma 4.4.2 implies that if Hb has a staircase with steps given by perfect classes Ek
with centers at the points pk=qk then the stabilized function cHb ;1.z/ must equal
cHb .z/ at the step centers, and for z � p=q have cHb .z/ as an upper bound. But by
the remarks about overshadowing classes before (3.1.2), we know that

cHb .z/ D �Ek ;b.z/

for z � p=q. Thus cHb .z/ is determined for z � p=q by the scaling property

cHb ;1.�z/ � �cHb ;1.z/

(as in [7, Prop. 2.1]), and by monotonicity (i.e. the fact that cHb ;1.z/ is nondecreas-
ing). Since cHb ;1.z/ also has these properties for each s it follows that

cHb ;1.z/ D cHb .z/

in some neighborhood of each step center. Thus all the staircases that we have found
stabilize. This proves (i).

The argument (i), now applied with any s � 1, shows that the staircase in H1=3
stabilizes. Thus for each s,

cH1=3;s.z/ D cH1=3.z/
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in a neighborhood of the centers of the steps of the 1=3 staircase. Since elsewhere

cH1=3;s.z/ � cH1=3.z/;

it follows from scaling and monotonicity that these functions must coincide on the
whole interval 1 � z � amin. This proves (ii).

Although the calculation of cHb ;s for an arbitrary b 2 .0; 1/ seems out of reach at
present, the monotone case is more approachable. Indeed, Hind’s folding construction
in [12] implies that

cH1=3;s.z/ �
3z

1C z
; z � 1; s � 1: (4.4.1)

As in the case when the target is a ball, the graph of z 7! 3z=.1 C z/ crosses the
volume constraint at the staircase accumulation point amin D 3C 2

p
2, and one can

conjecture that

cH1=3;s.z/ D
3z

1C z
; z � amin; s � 1:

This is known as the stabilized embedding conjecture for H1=3.

Corollary 4.4.4. The stabilized embedding conjecture holds for the monotone Hirze-
bruch surfaceH1=3 on the closure of the set of all points z > amin that are the centers
of perfect classes.

Proof. For all perfect classes E D .d;m; p; q/, we saw in the proof of Lemma 4.3.1
that Proposition 4.4.3 and equation (4.3.2) imply that

cH1=3;s.z/ �
3z

1C z

when z D p=q. Hence, by (4.4.1), we must have equality at these points. The state-
ment in the lemma then follows by continuity.

Remark 4.4.5. (i) The set of z for which we know that

cH1=3;s.z/ D
3z

1C z

has quite complicated structure because the function b ! acc.b/ is two-to-one; and
it is probably best understood via Figure 2.2. For example, even though the only step
center in the interval Œw2;w1�D Œ41=7; 7� with b > 1=3 is 6, there are infinitely many
step centers corresponding to classes with b < 1=3; indeed all the steps centers in
the complete families S#.C�U / and R#.C�U /. Nevertheless, one can check that it is
nowhere dense.
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(ii) It may well not be true that, whenHb has a staircase, cHb .z/D cHb ;1.z/ for z
in some neighborhood of z1 WD acc.b/ since the capacity function cHb .z/ might be
determined near z1 by curves that do not stabilize. For example, when acc.b/ < 6,
figures such as [1, Fig. 5.3.1] seem to show that the obstruction

z 7!
1C z

3 � b

from the (nonperfect) class E0 WD 3L �E0 � 2E1 �E2;:::;6 is b-live for some values
of z > acc.b/ that are arbitrarily close to acc.b/. However, because

1C z

3 � 1=3
>

3z

1C z

when z > amin, it follows from (4.4.1) that this obstruction does not stabilize when
bD 1=3. Hence the curve that gives this embedding obstruction does not persist under
stabilization for any b since curves that do stabilize are not sensitive to changes in the
parameter b.

An explicit example of this kind was worked out in [5] in the case of H0 (or the
ball) and the class E00 D 3L� 2E1 �E2;:::;7. This class, which obstructs the capacity
function cH0 of the ball for z 2 .�4; 7�, definitely does not stabilize. Indeed, if one
blows H0 up seven times inside the ellipsoid E.1; 7C ı/ and stretches the neck as
in the proof of Lemma 4.4.2, one can show that the top component of the resulting
building has two negative ends, one on the long orbit and one on the short orbit, so
that the stabilization result [5, Prop. 3.6.1] does not apply. Further, (4.4.1) implies that
cH0;s.7/ � 21=8, while the obstruction from E00 at z D 7, if it did stabilize, would be
the larger value 8=3.

(iii) Here is another example of an obstruction that does not stabilize even though
it is given by the “nearly perfect” class E D 6L� 3E0 � 2E1;:::;7. (See Remark 4.2.2
for further discussion of this class.) When b D 1=3, we have

�E;1=3.7/ D
14

5
>
21

8
D cH1=3;k.7/:

Therefore, the obstruction from this class cannot stabilize. Note that the proof of
Lemma 4.4.2 breaks down because we would be considering trajectories with neg-
ative end on the short orbit of @E.1; 7C/ with total multiplicity 14, and in this case
the ECH partition is .7; 7/. Thus these curves do not have a single negative end.

A. Continued fractions

For the convenience of the reader, we here collect together some useful facts about
continued fractions. Each rational number a > 1 has a continued fraction represen-
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tation Œs0I s1; : : : ; sn�, where si is a positive integer, and n > 0 unless a 2 Z. By
convention, the last entry in a continued fraction is always taken to be > 1, since

Œs0I s1; : : : ; sn; 1� D Œs0I s1; : : : ; sn C 1�I

for example

Œ1I 3; 1� D 1C
1

3C 1
1

D 1C
1

4
D Œ1I 4�:

Order properties. If n is odd, then Œs0I s1; : : : ; sn� > Œs0I s1; : : : ; sn C 1�, in other
words, if the last place is odd, increasing this entry decreases the number represented.
For example, because 2=13 < 3=19, we have

Œ1I 3; 6; 2� D 1C
1

3C 1

6C 12

D 1C
1

3C 2
13

> Œ1I 3; 6; 3� D 1C
1

3C 1

6C 13

D 1C
1

3C 3
19

:

Further, although increasing an even place usually increases the number represented,
the opposite is true if one increases an even place47 from 0 to a positive number. For
example,

Œ1I 4� D 1C
1

4
> Œ1I 4; 2� D 1C

1

4C 1
2

D 1C
2

9
> Œ1I 4; 1� D Œ1I 5� D 1C

1

5
:

Similarly, if one increases an odd place from 0, the corresponding number increases
even if the new entry sn is 1. Thus,

Œs0I s1; : : : ; sn�1� < Œs0I s1; : : : ; sn� if n is odd 8 sn � 1: (A.1)

For example, 2 < Œ2I 1; 2� < Œ2I 1� D 3.

Length. There are two natural notions of the length of a continued fraction, namely

`CF
�
Œs0I : : : ; sn�

�
WD nC 1; `wt

�
Œs0I : : : ; sn�

�
WD

nX
iD0

si : (A.2)

The first notion is common in the theory of continued fractions, while in our previous
papers we used the second notion since this describes the length of (or number of

47This place would necessarily be the one just after the last; and notice that the initial place
is labeled 0, and hence is considered to be even.
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nonzero entries in) the corresponding weight expansion W.p=q/ and hence plays a
central role in the theory; witness the fact proved in [7, Prop. 2.30] that if the function
z 7! �E;b.z/ is obstructive (that is, greater than the volume) on some interval I , then
there is a unique point48 z0 2 I of minimal weight length at which its slope changes.
Since we will now use both these notions, for clarity we will call `CF .p=q/ the CF-
length of p=q, while `wt .p=q/ is its weight length.

Notice that by Remark 2.1.3 (i), the accumulation points of our staircases are
quadratic irrationals and therefore have infinite continued fractions that are eventu-
ally periodic.

Weight decomposition. The integral weight decomposition W.p=q/ of a rational
number p=q D Œs0I : : : ; sn� is an array of numbers that are recursively defined49 as
follows:

W
�p
q

�
D
�
q
�s0
0 ; q

�s1
1 ; : : : ; q�snn

�
; (A.3)

where

q0 D q; q1 D p � s0q0; : : : ; q˛ D q˛�2 � s˛�1q˛�1; ˛ � 2; qn D 1:

For example, 5=3 D Œ1I 1; 2� and W.5=3/ D .3I 2; 1; 1/ DW .3I 2; 1�2/. If W.p=q/ is
.w1; : : : ; wN / then

NX
iD1

wi D p C q � 1;

NX
iD1

w2i D pq; w1 D q; wN D 1:

Using the fact that the first entry of W.p=q/ is q, we can interpret the other entries
as the denominators q˛ of the ˛th “tail” p˛=q˛ of p=q D Œs0I : : : ; sn�. Namely, if we
define p˛=q˛ WD Œs˛I : : : ; sn�, then we have

W
�p˛
q˛

�
WD W

�
Œs˛I : : : ; sn�

�
D
�
q�s˛˛ ; : : : ; q�snn

�
; 0 � i � n: (A.4)

Moreover, qn D 1, qn�1 D sn, and the other terms qn�1; qn�2; : : : can be calculated
from the recursion qn�˛�1 D sn�˛qn�˛ C qn�˛C1. In particular,

q D q0; p D p0 D s0q0 C q1:

Each group of terms q�s˛˛ is called a block.

48In the case of a quasi-perfect class, this point is the center; cf. the formulas in (1.2.1).
49Note that this recursion can be read either as defining q˛C1 in terms of q˛; q˛�1, or as

defining q˛�1 in terms of q˛; q˛C1, where the last nonzero entry is 1.
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Note that the entries of W.p=q/ are integers. We also sometimes use the weight
decomposition of p=q defined as follows:

w
�p
q

�
WD

1

q
W
�p
q

�
D

�
1; : : : ;

1

q

�
: (A.5)

More generally, the weight expansion of z � p=q is defined by the same recursion
that defines w.p=q/. For example, if 6 < z < 7, then

w.z/ D .1�6; z � 6; : : : /:

For more information, see [22, Lem. 2.2.1].

B. Computations on triples

We now gather together various computations that are needed for the main argument.
Note that for any index � D �;�; �, we define r� WD p� C q�.

Lemma B.1. The following identities and inequalities hold in any triple T .

(i) t�r� � t�r� D 8p�;

(ii) t�d� � t�d� D 3p�, t�d� � t�d� D 3q�;

(iii) m�d� �m�d� D "p�, m�d� �m�d� D "q�;

(iv) t�r� � t�r� D 8q�;

(v) t�t� < 2t�; in particular, 3 � t�; t� < t�.

Proof. The formulas (i) and (iv) are proved in [15, Lem.4.6] by direct computation
using the adjacency and t -compatibility conditions.50 Formulas (ii) and (iii) can be
deduced from (i) since 8d� D 3r� C "t�, while 8m� D r� C 3"t� by (1.2.2).

Using the formulas in (3.1.8), it is straightforward to check that (v) holds for the
basic triples in C�U . Moreover, (v) continues to holds under mutation. Indeed, if (v)
holds for T then it holds for xT , provided that

.t�t� � t�/
2
C t2� < t�.t�t� � t�/t�:

But this simplifies to t2� < t�.t�t� � t�/, which holds by assumption. A similar argu-
ment works for the mutation yT . Therefore, (v) holds for all triples in C�U . It follows
that (v) holds for all triples since the variable t� is preserved by the symmetries S;R
and the given expression is symmetric in �; � (which are interchanged by R).

50One could also check them for the basic triples T n� , n� 0, and show that they are preserved
by symmetries and mutations.
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Corollary B.2. Let T be any triple and denote r� WD p� C q�: Then

r�

t�
> max

�r�
t�
;
r�

t�

�
; (B.1)

except in the case of ykR].T 0
� /, when we have

r�

t�
D
r�

t�
D 3 >

r�

t�
D
1

3
: (B.2)

Proof. The inequality (B.1) follows from Lemma B.1 (i), (iv), whenever p�; q� > 0.
This holds in all cases except for the triples ykR].T 0

� / since they have q� D 0. But
they satisfy (B.2); indeed, this holds for R].T 0

� / by the formulas in (3.1.9), and the
fact that q� D 0 in R].T 0

� / implies that the ratio r=t is constant for all terms in the
ascending stairs in this triple.

We next turn to the details need to complete the proof of Lemma 3.1.10. To this
end, we must verify the inequality (3.1.4):

t2
kC1
� 8

tkC1rkC1
>
t2
k
� 8

tkrk
;

where k labels the staircase step, in the situations stated below.

Lemma B.3. The following statements hold.

(i) The inequality (3.1.4) holds for the first two steps in the descending pre-
staircases associated to yxiT 0

� , i � 0.

(ii) The inequality (3.1.4) holds for the second and third steps in the descending
pre-staircases associated to yiR].T 0

� /, i � 0.

Proof. To prove (i), first note that it holds for i D 0 since the first two steps in �
Ty
u

are BU1 , EŒ7I3;6� with .r; t/D .9; 5/; .158; 62/. In general, the descending staircase �U0
has steps Exi Œ7I4�, i � 0, and we denote their .r; t/ coefficients as .ri ; ti /. They satisfy
a recursion with parameter 3 and seeds .9; 5/; .r0; t0/ D .33; 13/, so that

.r1; t1/ D .90; 34/; .r2; t2/ D .237; 89/:

By Remark 2.1.5 (ii), the ratios ri=ti increase, and using (2.1.7) one finds that, for
i � 2,

5

2
<
237

89
<
ri

ti
< lim

ri

ti
DW

R

T
D
45C 39

p
5

25C 11
p
5
<
8

3
: (B.3)

When i � 1, the descending pre-staircase associated to yxiT 0
� has first two steps

Exi�1Œ7I4�, Eyxi Œ7I4�, where the .r; t/ components of Eyxi Œ7I4� are�
ti�1ri � 7; ti�1ti � 3

�
:
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Thus it suffices to show that

.ti�1ti � 3/
2 � 8

.ti�1ti � 3/.ti�1ri � 7/
>
tiC1

riC1
>
t2i�1 � 8

ti�1ri�1
:

We now prove by induction on i � 1 that each of these inequalities holds.
The base case i D 1 is readily checked. With i � 2, we assume these inequalities

known for i � 1. To simplify notation, let us write

t 00 WD ti ; t 0 WD ti�1; t WD ti�2;

so that
tiC1 D 3t

0
� t D 8t 0 � 3t;

and similarly for r . Then the second inequality is equivalent to

.8t 0 � 3t/t r > .8r 0 � 3r/.t2 � 8/; i.e. 64r 0 � 24r > 3t 0.t r 0 � rt 0/ D 144t 0;

where we have used the fact that t r 0 � rt 0 D ti�2ri�1 � ri�2ti�1 is constant and equal
to 48. This will hold if

8r 0 � 3r > 18t 0; i.e. if 8ri�1 � 3ri�2 > 18ti�1:

It is easy to check that

ri�2 <
2

5
ri�1

for all i , so that

8ri�1 � 3ri�2 >
34

5
ri�1:

Thus it suffices to verify that
34

5
ri�1 � 18ti�1

for i � 2. But this holds when i D 2, and holds for i > 2 because ri=ti increases.
Now consider the first inequality, which in the current notation is equivalent to

.3r 00 � r 0/
�
.t 0t 00 � 3/2 � 8

�
> .3t 00 � t 0/.t 0t 00 � 3/.t 0r 00 � 7/:

Putting the terms of highest order on the left and simplifying the left-hand side as
above, we obtain

.t 0/2t 00
�
.3r 00 � r 0/t 00 � .3t 00 � t 0/r 00

�
D 48.t 0/2t 00

> .3r 00 � r 0/.6t 0t 00 � 1/ � .3t 00 � t 0/.7t 0t 00 C 3t 0r 00 � 21/:

By (B.3), we have

ti >
3

8
ri >

15

16
ti
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for all i . Therefore,

3r 00 � r 0 <
8

3
.3t 00 � t 0/

(since xiC1 D 3x00 � x0) and

7t 00 C 3r 00 >
29

2
t 00:

Hence,

.3r 00 � r 0/.6t 0t 00 � 1/ � .3t 00 � t 0/.7t 0t 00 C 3t 0r 00 � 21/

< .3t 00 � t 0/
�
16t 0t 00 �

29

2
t 0t 00 C 21

�
< 2.3t 00 � t 0/t 0t 00 < 48.t 0/2t 00;

where the first inequality forgets the �1, the second holds because t 0, t 00 � 5 and the
last holds because t 00 < 3t 0.

To prove (ii), note first that the descending stairs in yiR].T 0
� / has first two steps

with .p; q; t/ coordinates .2; 0; 3/ and .pi ; qi ; ti / and recursion parameter ti�1, where
.pi ; qi ; ti / is defined recursively with recursion parameter 3 and first two terms

.p�1; q�1; t�1/ D .13; 2; 5/; .p0; q0; t0/ D .34; 5; 13/:

Therefore, we need to show that

.ti�1ti � 3/
2 � 8

.ti�1ti � 3/.ti�1ri�1/
>
t2i � 8

tiri
:

It suffices to show that the left-hand side is always greater than 1=3 and the right-
hand side is always less than 1=3. The latter is immediate from the fact that ti D 3ri
by (B.2). For the former, again using the fact that ti�1 D 3ri�1, we need to show

.ti�1ti � 3/
2
� 8 > .ti�1ti � 3/.t

2
i�1/;

or equivalently,
t2i�1t

2
i � 6ti�1ti C 1 > t

3
i�1ti � 3t

2
i�1:

It suffices to show the much weaker inequality

t2i�1t
2
i � 6ti�1ti > t

3
i�1ti ;

or equivalently,
ti�1.ti � ti�1/ > 6:

But this holds because tk � 5 and tk � tk�1 > 1. This completes the proof.

The next inequalities are needed in the proof of Lemma 3.2.5.



Staircase patterns in Hirzebruch surfaces 547

Lemma B.4. The following inequality holds for all triples:

d�

d�
�
d�

d�
> t� � 1: (B.4)

Proof. We first check that this holds for T �n ;R
].T n/; n� 0, where in the first case we

may use the formulas in (2.1.9), and in the second we use that, by (1.2.2) and (3.1.9),
the .d; t/ coordinates of R].T n/ are

.d�; t�/ D
�
5.nC 1/; 2nC 5

�
;

.d�; t�/ D .5n; 2nC 3/;

.d�; t�/ D .10n
2
C 25nC 13; 4n2 C 16nC 13/:

To see that they hold for the images of the symmetries, first consider .S i /].T �n /,
so t� D 2nC 3. Letting x WD d� and y WD d� of .S i /].T �n /, (B.4) is equivalent to

x2 � y2 � xy.2nC 2/ > 0:

Considering this as a quadratic in x for fixed y; this holds if

x >
�
nC 1C

p
n2 C 2nC 2

�
y: (B.5)

Further, by Remark 2.1.14, we have that

x D .2nC 3/y � dseed;

where dseed is the degree coordinate of .S i /].EUseed;u/ D .S i /].�2; 0;�5;�1/, and
hence dseed < 0: Therefore, (B.5) is equivalent to

.2nC 3/y � dseed > .nC 1C
p
n2 C 2nC 2/y;

.2C n �
p
n2 C 2nC 2/y > dseed;

which holds as dseed is negative and the left hand size is positive. A similar argument
holds for .S iR/].T �n /:

Finally, we check that they remain true under mutation. If (B.4) holds for T , then
for xT , we have

t�d� � d�

d�
�

d�

t�d� � d�
D t� �

d�

d�
�

d�

t�d� � d�
> t� � 1;

where the inequality holds because each of the last two terms is < 1=2. To show this,
notice that any two degree values of sequential classes E, E’, E00 in a staircase satisfy

d 00 D td 0 � d
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for t � 3 (see Lemma B.1 (v)) and d < d 0. This is even true if E0 is the first geometric
step in the staircase, thinking of .S iRı/].EU

`=u;seed/ as the algebraic first step E if
necessary (see Remark 2.1.14).

For yT , we need

t�d� � d�

d�
�

d�

t�d� � d�
> t� � 1:

But t�d� � t�d� D 3p� by Lemma B.1 (ii). So by similar reasoning, we have

t�d� � d�

d�
�

d�

t�d� � d�
D
3p� � d�

d�
C t� �

d�

t�d� � d�
> t� � 1;

because for any triple 3p � d > 0 by combining (1.2.2), the fact that p=q > 5, and
induction using Corollary B.2, where we prove the base case r=t > 1=3 using the
formulas for .S iRı/.2nC 6; 1/ in terms of the yi in the proof of Lemma B.8.

We next find suitable constants x0, x1 to use in Lemma 3.2.5 (iii).

Lemma B.5. The following statements hold.

(i) For each n � 0 and i � 0, the limiting b1-values of the descending stair-
cases � in the family .S i /].C�U \ Œ2nC 6; 2nC 8�/ satisfy

acc
�mi;n�1
di;n�1

�
< acc.b1/ < acc

�mi;n
di;n

�
;

where di;n and mi;n are the degree components of Ei;n WD .S i /].BUn /. Here
E0;�1 D BU�1 D .2; 1; 4; 1; 1; 1/.

(ii) Similarly, the limiting b1-values of the descending staircases in the family
.S iR/].C�U \ Œ2nC 6; 2nC 8�/ satisfy

acc
�m0i;nC2
d 0i;nC2

�
< acc.b1/ < acc

�m0i;nC1
d 0i;nC1

�
;

where d 0i;n and m0i;n are the degree components of E0i;n WD .S
iR/].BUn /.

Proof. Notice that we have

pi;n

qi;n
< @C.IEi;n/ � acc.b1/ < @�.IEi;nC1/; (B.6)

because acc.b1/ is the limit of the step centers of a descending staircase. To obtain the
upper bound in case (i), notice that the class Ei;n is a step in a staircase accumulating
to @�.IEi;nC1/ > acc.b1/. By Corollary 2.3.3, for every staircase (whether b > 1=3
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or b < 1=3) the values acc.mk=dk/ always descend to the z-coordinate acc.b/ of the
accumulation point, thus

acc.b1/ < @�.IEi;nC1/ < acc
�mi;n
di;n

�
:

To obtain the lower bound in (i), we would like to apply Lemma 2.1.10 to E0 the
middle and E the right entry of

.S i /]
�
EU`;seed;B

U
n�1;B

U
n

�
D
�
.S i /].EU`;seed/;Ei;n�1;Ei;n

�
:

Thus, we would obtain

acc
�mi;n�1
di;n�1

�
<
pi;n

qi;n
< acc.b1/;

where for the second inequality we use (B.6). The only hypothesis of Lemma 2.1.10
that does not automatically hold for E; E0 (because they are the middle and right
entries of a quasi-triple, the other hypotheses hold) is

p
2p0 < p. Since

S i .2nC 6; 1/ D .2nyiC1 C yiC2; 2nyi C yiC1/;

this holds if
p
2
�
2.n � 1/yiC1 C yiC2

�
> 2nyiC1 C yiC2” nyiC1 > .

p
2 � 1/yiC1 C

1

2
yi :

Therefore, if n � 1, we obtain the lower bound acc.mi;n�1=di;n�1/ < pi;n=qi;n.
When n D 0, it is not true that acc.m0;�1=d0;�1/ < 6, where 6 D p0;0=q0;0, so

we instead show
acc
�mi;�1
di;�1

�
< S i .7; 1/ < acc.b1/: (B.7)

For the first inequality in (B.7), the analogue of (2.1.12) with .pi ; qi / D S i .7; 1/ D
.yiC2 C yiC1; yiC1 C yi / is

p2i;�1 C q
2
i;�1 C 2

pi;�1qi;�1 � 1
<
.yiC1 C yiC2/

2 C .yi C yiC1/
2

.yi C yiC1/.yiC1 C yiC2/
:

We may use the fact that t2 D p2 � 6pq C q2 C 8 and ti;�1 D 1 to simplify the
left-hand side to

6C
1

pi;�1qi;�1 � 1
:

Now because p2 � 6pq C q2 is invariant under S and

.y1 C y2/
2
� 6.y1 C y2/.y0 C y1/C .y0 C y1/

2
D 8;
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subtracting 6 from both sides gives us

1

.�2yiC1 C yiC2/.�2yi C yiC1/ � 1
<

8

.yi C yiC1/.yiC1 C yiC2/
;

which simplifies to

yiC1yi C 2y
2
iC1 � 1C yiC2yiC1 < 32yiC1yi � 32y

2
iC1 C 8yiC2yiC1 C 8;

where in the second line we have used y2iC1 D yiC2yi C 1, which is easy to prove by
induction. It is enough to show a stronger inequality with the constants removed, thus
we can divide by yiC1 to obtain

yi C 2yiC1 C yiC2 < 32yi � 32yiC1 C 8yiC2; i.e. 34yiC1 < 7yiC2 C 31yi ;

which follows immediately from the definition of the yi sequence.
For the second inequality, in (B.7), it suffices to show that .S i /].BU0 / D Ei;0

blocks S i.7;1/. This is shown in the second conclusion of Corollary 2.3.4; see also [17,
Cor. 4.1.5]. In case (ii), notice that

p0i;nC1

q0i;nC1
< @C.IE0

i;nC1
/ � acc.b1/ < @�.IE0

i;n
/: (B.8)

We obtain

acc.b1/ < acc
�m0i;nC1
d 0i;nC1

�
as in (i): notice that E0i;nC1 is a step in a staircase accumulating to @�.IE0

i;n
/ >

acc.b1/; finish as in the proof of the analogous inequality in (i).
To obtain

acc.b1/ > acc
�m0i;nC2
d 0i;nC2

�
;

we can apply Lemma 2.1.10 with E0 the left and E the middle entry of

.S iR/]
�
EU`;seed;B

U
nC1;B

U
nC2

�
D
�
E0i;nC2;E

0
i;nC1; .S

iR/].EU`;seed/
�
:

Because
S iR.2nC 6; 1/ D .2nyiC2 C yiC1; 2nyiC1 C yi /;

the p coordinates satisfy p0 > p, which is stronger than the hypothesis
p
2p0 > p of

Lemma 2.1.10. Because

p0i;nC1

q0i;nC1
< @C

�
IE0
i;nC1

�
� acc.b1/

by (B.8), we obtain the desired inequality.
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Corollary B.6. Let di;n and mi;n be the degree coordinates of .S i /].BUn /, let d 0i;n
and m0i;n be the degree coordinates of .S iR/].BUn /, and let b1 be as in Lemma B.5.

(i) If i is even, then

mi;n�1

di;n�1
< b1 <

mi;n

di;n
;

m0i;nC1

d 0i;nC1
< b1 <

m0i;nC2

d 0i;nC2
:

(ii) If i is odd, then

mi;n

di;n
< b1 <

mi;n�1

di;n�1
;

m0i;nC2

d 0i;nC2
< b1 <

m0i;nC1

d 0i;nC1
:

Proof. The conclusions follow immediately from Lemma B.5 and the fact that acc is
orientation preserving/reversing according to whether b > 1=3 or < 1=3, or equiva-
lently, according to whether i C ı is even/odd.

Our final results complete the proof of Lemma 3.2.5 (iv).

Lemma B.7. Given two classes E D .d;m; p; q; t; "/ and E0 D .d 0; m0; p0; q0; t 0; "/,
let x D m=d and x0 D m0=d 0.

(i) If .E�;E0;E/ is a quasi-triple, then

1 � xx0

x0 � x
D
"p0q

p�
I

while

(ii) if .E;E0;E�/ is a quasi-triple, then

1 � xx0

x0 � x
D �

"pq0

q�
:

Proof. We have
1 � .m=d/.m0=d 0/

m0=d 0 �m=d
D
dd 0 �mm0

m0d �md 0
:

If .E�;E0;E/ is a quasi-triple, then we have (2.1.5), and Lemma B.1 (iii) gives

dd 0 �mm0 D p0q and m0d �md 0 D "p�:

Similarly, if .E;E0;E�/ is a quasi-triple, we have

dd 0 �mm0 D pq0

and, by Lemma B.1 (iii),
m0d �md 0 D �"q�:
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Lemma B.8. The following statements hold.

(i) For fixed i > 0 and n � 0, let

.S i /]BUn WD .d1; m1; p1; q1/; .S i /]BUn�1 WD .d0; m0; p0; q0/;

and xj D mj =dj , j D 0; 1. Assume .p�; q�; t�/ 2 .S i /].C�Un / is such that
.p�; q�/ ¤ S

i .2nC 6; 1/. Thenˇ̌̌̌
1 � x0x1

x1 � x0

ˇ̌̌̌
>

p�

t� � 1
: (B.9)

(ii) For fixed i , n, let

.S iR/].2nC 8; 1/ WD .d0; m0; p0; q0/;

.S iR/].2nC 10; 1/ WD .d1; m1; p1; q1/;

and set xj D mj =dj , j D 0; 1. Then, the inequality (B.9) also holds for any
.p�; q�; t�/ 2 .S

iR/].C�Un /.

Proof. By Remark 2.1.14, we have ..S i /].1; 1/; .S i /].2nC 6; 1/; .S i /].2nC 8; 1//
is a quasi-triple. Applying Lemma B.7, we haveˇ̌̌̌

1 � x0x1

x1 � x0

ˇ̌̌̌
D

p0q1

yiC1 � yi

since .S i /.1; 1/ D .yiC1 � yi ; yi � yi�2/: It remains to show that

p0q1

yiC1 � yi
>

p�

t� � 1
:

By assumption, we have

S i
�
2nC

7

1

�
< p�=q� < S

i
�
2nC

8

1

�
:

Further,

S i .2nC 7; 1/ D S i .w1/

D .2nyiC1 C yiC2 C yiC1; 2nyi C yiC1 C yi / WD .p
0; q0/

by (2.3.2). Let r D p0=q0, so r < p�=q�. We have

t2
�

p2
�

D 1C
q2
�

p2
�

�
6q�

p�
C 8 > 1 �

6

r
C
1

r2
D
r2 � 6r C 1

r2
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as 1� 6=r C 1=r2 is an increasing function for r > amin. A proof by induction verifies
that

r2 � 6r C 1 D
4n2 C 16nC 8

.q0/2
;

so
t2
�

p2
�

>
4n2 C 16nC 8

.p0/2
:

Therefore,
p�

t� � 1
<

p0
p
4n2 C 16nC 8

�
2nC 3

2nC 2
:

It remains to show that

p0q1

yiC1 � yi
>

p0
p
4n2 C 16nC 8

�
2nC 3

2nC 2
:

Substituting in

p0 D 2.n � 1/yiC1 C yiC2; q1 D 2nyi C yiC1; p0 D 2nyiC1 C yiC2 C yiC1;

and simplifying by taking nD 0 to the terms on the right-hand side that decrease in n,
this is equivalent to�
2.n� 1/yiC1 C yiC2

�
.2nyi C yiC1/ >

3

4
p
2
.2nyiC1 C yiC2 C yiC1/.yiC1 � yi /:

This holds as for n � 0; we have 2nyi C yiC1 > yiC1 � yi and

2.n � 1/yiC1 C yiC2 >
3

4
p
2
.2nyiC1 C yiC2 C yiC1/:

This proves (i).
Towards (ii), notice that ..S iR/].2nC8; 1/; .S iR/].2nC6; 1/; .S iR/].1; 1; 1; 1//

is also a quasi-triple, so that ˇ̌̌̌
1 � x1x0

x1 � x0

ˇ̌̌̌
D

p1q0

yiC2 � yi
:

Further, we have

S iR
�
2nC

8

1

�
<
p�

q�
< S iR

�
2nC

6

1

�
;

where

.S iR/.2nC 8; 1/ D
�
2.nC 1/yiC2 C yiC1; 2.nC 1/yiC1 C yi

�
:

The rest of the argument is very similar to (i) and is again left to the reader.
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