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Generic properties of 3-dimensional Reeb flows:
Birkhoff sections and entropy

Vincent Colin, Pierre Dehornoy, Umberto Hryniewicz, and Ana Rechtman

Abstract. In this paper we use broken book decompositions to study Reeb flows on closed
3-manifolds. We show that if the Liouville measure of a non-degenerate contact form can be
approximated by periodic orbits, then there is a Birkhoff section for the associated Reeb flow.
In view of Irie’s equidistribution theorem, this is shown to imply that the set of contact forms
whose Reeb flows have a Birkhoff section contains an open and dense set in the C1-topology.
We also show that the set of contact forms whose Reeb flows have positive topological entropy
is open and dense in the C1-topology.

1. Introduction and results

The notion of a Birkhoff section (see Definition 2.4) is a classical tool to study
flows on 3-manifolds, going back to Poincaré. When a flow admits such a section,
its dynamics can be reduced to the dynamics of the first-return map on the section –
a much simpler data. Birkhoff sections are particularly convenient for studying topo-
logical and dynamical properties of the flow. In contact topology, work of Giroux [25]
implies that every contact structure on a closed 3-manifold admits a supporting open
book decomposition. In particular, every contact structure is defined by a contact form
whose Reeb vector field has a global surface of section, i.e., an embedded Birkhoff
section. However for a given contact form – hence a given Reeb vector field – deciding
if Birkhoff sections exist is difficult.

Not every flow on a closed 3-manifold admits Birkhoff sections. For example a
flow which is not a suspension and has no periodic orbits does not have one. Notice
however that such a flow cannot be Reeb in view of the result of Taubes [50] asserting
that every Reeb vector field on a closed 3-manifold has a periodic orbit. On the other
hand, many Reeb flows do admit Birkhoff sections. A large class of examples is pro-
vided by a striking result due to Hofer, Wysocki and Zehnder [28] which contains, as a
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special case, the fact that Hamiltonian flows on 3-dimensional strictly convex compact
energy levels possess disk-like global surfaces of section. As a consequence, Hofer,
Wysocki and Zehnder proved that on such an energy level there are two or infinitely
many periodic orbits. Another class consists of geodesic flows on closed, orientable
and connected Riemannian 2-manifolds such that the curvature has a definite sign.
When the curvature is everywhere negative, this is implied by a result of Fried [23]
asserting that transitive Anosov flows have Birkhoff sections. When the curvature is
everywhere positive this is covered by a classical result of Birkhoff [8].

Consider a non-singular vector fieldX on a compact 3-manifoldM tangent to @M.
If 
 WR=TZ ! M is a periodic orbit of period T > 0, parametrized by the flow,
then 
� Leb =T is an invariant Borel probability measure, where Leb denotes the
Lebesgue measure on R=TZ. This measure is independent of the choice of period.
The set of invariant Borel probability measures is a convex subset of the topologi-
cal dual of the space of continuous real-valued functions on M equipped with the
supremum norm. A Borel probability measure is said to be approximated by periodic
orbits if it is the weak* limit of a sequence of finite convex combinations of measures
induced by periodic orbits.

When M is oriented, and X is the Reeb vector field of a positive contact form �

with helicity

vol.�/ D
Z
M

� ^ d� > 0;

then we say that the Liouville measure can be approximated by periodic orbits if
.� ^ d�/= vol.�/ can be approximated by periodic orbits as above. A periodic orbit
is non-degenerate if its transverse linearized Poincaré map has no root of unity as an
eigenvalue. The contact form is non-degenerate if every periodic Reeb orbit is non-
degenerate. Birkhoff sections and @-strong Birkhoff sections are defined in Section 2;
@-strong Birkhoff sections are, in particular, also Birkhoff sections. Our main result
reads as follows.

Theorem 1.1. If the Liouville measure of a non-degenerate contact form on a closed
3-manifold can be approximated by periodic Reeb orbits, then the Reeb flow admits a
@-strong Birkhoff section.

A result due to Irie [35] asserts that the set of non-degenerate contact forms on a
closed 3-manifold whose Liouville measures can be approximated by periodic orbits
is residual, in particular dense, with respect to theC1-topology. Together with Propo-
sition 5.1 we obtain the following statement.

Corollary 1.2. On any closed 3-manifold, the set of contact forms such that the Reeb
flow admits a @-strong Birkhoff section spanned by non-degenerate periodic orbits is
open and dense in the C1-topology.
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The main key ingredient of the proof of Theorem 1.1 is the existence result found
in [11] for broken book decompositions carrying the Reeb vector field of a non-
degenerate contact form on any closed 3-manifold. These are special kinds of folia-
tions on the complement of a finite set of periodic orbits, the so-called binding orbits,
and whose leaves are transverse to the Reeb vector field. One of the main appli-
cations of broken book decompositions obtained in [11] is the statement that every
non-degenerate Reeb flow on a closed 3-manifold has either two or infinitely many
periodic orbits, generalizing a previous result by Cristofaro-Gardiner, Hutchings and
Pomerleano [14] for cases where the first Chern class of the contact structure is tor-
sion. All these results rely on the machinery of Embedded Contact Homology as
defined by Hutchings [34].

Remark 1.3. A result of Sigmund [48] implies that the Liouville measure of an
Anosov Reeb flow can be approximated by periodic orbits. This fact and Theorem 1.1
together prove that Anosov Reeb flows have Birkhoff sections. This is a special case
of Fried’s results from [23].

While writing this article, we learned that similar results were independently
obtained by Contreras and Mazzucchelli [12].

Theorem 1.4 (Contreras and Mazzucchelli [12]). The Reeb flow of a non-degenerate
contact form on a closed 3-manifold admits a Birkhoff section provided that the stable
and unstable manifolds of all hyperbolic periodic Reeb orbits intersect transversely.

A contact form whose Reeb flow satisfies the assumptions of the above result will
be called here strongly non-degenerate, and were said to satisfy the Kupka–Smale
condition in [12]. Their argument takes the path suggested in [11], see Remark 1.6,
which is different from the one followed in this article. Both ways still start from a
common crucial input: the existence result for broken book decompositions from [11].
In Appendix C we sketch an argument using the strategy elaborated in [11] and prior
to the present work as well as to [12], but which leads to a generic existence result
only valid in C 1-topology, see Theorem C.1. It relies on the machinery developed
by Arnaud, Bonatti and Crovisier [4, 9] and involves the proof of the Lift axiom
(Lemma C.2) for Reeb flows. In turn, the Lift axiom and the derived connecting
lemma (Theorem C.3) also imply Theorem C.4: the set of transitive Reeb vector fields
is C 1-generic, in dimension 2nC 1 with n � 1.

Broken book decompositions generalize the finite-energy foliations obtained for
non-degenerate Reeb flows on the tight 3-sphere by Hofer, Wysocki and Zehnder in
their pioneering work [29]. The analysis from [29] led to major breakthroughs in
the study of Reeb dynamics, as well as in the development of pseudo-holomorphic
curve theory in symplectic cobordisms. In particular, Hofer, Wysocki and Zehnder
were able to prove that a strongly non-degenerate Reeb flow on the tight 3-sphere has
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two or infinitely many periodic orbits, leading them to first conjecture that the 2=1
dichotomy must hold for all Reeb flows on the tight 3-sphere.

The literature is full of results with sufficient existence conditions for Birkhoff
sections, going back a century. Let us comment on the problem of finding global sec-
tions spanned by given periodic orbits, with no genericity assumptions. The simplest
example is Birkhoff’s theorem [8]. Closed geodesics on oriented surfaces determine
immersed annuli on the unit tangent bundle, made of unit vectors along the closed
geodesic pointing “to one of the sides”. This is called a Birkhoff annulus. It is proved
in [8] that Birkhoff annuli over embedded closed geodesics on positively curved
spheres are global surfaces of section for the geodesic flow. This result is interest-
ing because it gives strong dynamical conclusions out of geometric assumptions that
can be checked in concrete examples. The analogue of Birkhoff’s result in the context
of convex energy levels is found in [30], where the periodic orbits that span disk-
like global surfaces of section are characterized. The convexity assumption was first
dropped in [32], eventually leading to the generalization of Birkhoff’s result to Reeb
flows via pseudo-holomorphic curves in [33], where it is shown that certain linking
assumptions on invariant measures, well known to be sufficient for global sections of
general flows ([31, Theorem 1.3]), can sometimes be reduced to linking assumptions
on periodic orbits.

It is also interesting to try to measure the minimal complexity that a Birkhoff
section of a Reeb flow can have. For instance, Fried showed that geodesic flows
on hyperbolic surface always admit torus-like Birkhoff sections [23] and this was
recently extended to hyperbolic 2-dimensional orbifolds [15, 16]. On the other hand,
van Koert constructed Reeb flows on S3 without disk-like global surfaces of sec-
tion [51].

Our second result concerns the topological entropy of Reeb flows in dimension
three. It is already known that a non-degenerate Reeb vector field with zero topolog-
ical entropy admits a Birkhoff section [11]. In the absence of elliptic periodic orbits
the techniques of Koropecki, Le Calvez and Nassiri [40], and of Le Calvez and Sam-
barino [41], that we adapt to diffeomorphisms of surfaces with boundary, imply that
the topological entropy of the flow is positive. When the flow has an elliptic periodic
orbit, we can perturb the flow in a neighborhood of this orbit to obtain the following
statement.

Theorem 1.5. Let M be a closed 3-manifold and � � TM be a co-orientable con-
tact structure. The set of contact forms on M defining � such that the Reeb flow has
positive topological entropy is open and dense in the set of all contact forms on M
defining �, with respect to the C1-topology.

This result can be seen as a generalization of the fact that the geodesic flow on
a closed surface has positive topological entropy C1-generically on the metric. For
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surfaces of negative Euler characteristic the geodesic flow always has positive topo-
logical entropy regardless of the Riemannian metric, as follows from the results by
Dinaburg [18, Section 4]. In the case of the torus, consider the case of a bumpy Rie-
mannian metric, meaning that the geodesic flow is non-degenerate. From the work
of Hedlund [27] (we also refer to [6] for a more modern treatment), one can con-
sider the geodesics on the torus lifted to R2. Following Bangert’s terminology in [6],
in R2 periodic minimal geodesics correspond to closed geodesics in the torus that
have minimal length in their free homotopy class (there are called periodic class A
geodesics by Hedlund). A result of Hedlund [27, Theorem XVI], or equivalently [6,
Theorem 6.8], implies that in R2 a strip between two periodic minimal geodesics c�

and cC, that does not contains other periodic minimal geodesic, contains oriented
minimal geodesics a and b such that a (respectively, b) is positively asymptotic to c�

(respectively, cC) and negatively asymptotic to cC (respectively, c�). Observe that the
projections of c� and cC might be the same closed geodesic on the torus. This pro-
vides the existence of a heteroclinic cycle or a homoclinic orbit for the geodesic flow
of the torus. In either case, if the intersections of the stable and unstable manifolds of
the orbits that correspond to c˙ along the heteroclinic cycle or the homoclinic orbit
are not transverse, the arguments of Donnay [19] allow to locally perturb the met-
ric to make them transverse, thus obtaining a geodesic flow with positive topological
entropy. The difficult case of the sphere is treated by Knieper and Weiss [38]. Our
proof follows essentially the same path as in [38]: they used the pseudo-holomorphic
curves of Hofer, Wysocki and Zehnder [29] to produce Birkhoff sections, dealing
with the extra constraint of perturbing the metric instead of the flow among its Reeb
neighbors.

There are many results available in the literature providing conditions that force
a Reeb flow to have positive topological entropy. In [11] it was proved that if the
3-manifold is not graphed – for example if it is hyperbolic – then every non-degenerate
Reeb vector field has positive topological entropy. Symplectic topological methods
for studying positive topological entropy of Hamiltonian systems have now been
vastly used, going back to Polterovich [44], Frauenfelder and Schlenk [21] and others.
In [1] a condition on the fractional Dehn twist coefficients of a supporting open book
decomposition is given to guarantee that every Reeb vector field, possibly degenerate,
for the given supported contact structure has positive topological entropy. Alves and
Pirnapasov [3] proved that any contact 3-manifold admits transverse links that force
positive topological entropy when realized as periodic Reeb orbits. Alves and Meiwes
obtain in [2] contact structures in higher-dimensional spheres such that the Reeb flows
of all defining contact forms have positive topological entropy.

We end this introduction with a rough outline of the proof of Theorem 1.1.
Given a flow in a closed manifold M and given a class y in H 1.M/; in [47,

Section 7], Schwartzman gave a necessary and sufficient condition for the flow to
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admit a Birkhoff section with empty boundary dual to y: for every invariant Borel
probability measure � the intersection of � with y, see Section 3.3 for a definition,
must be positive. This criterion can be adapted to the existence of a Birkhoff section
with prescribed boundary, via Schwartzman–Fried–Sullivan theory [22,47,49]. It was
already known to specialists for some time but we provide an explicit statement as
Theorem A.1: given a link L made of periodic orbits and a class y in H 1.M n L/,
there exists a @-strong Birkhoff section if every invariant measure supported inM nL
intersects y positively and on every component of L the flow winds positively with
respect to y. A refinement for global surfaces of section can be found in [31].

It is shown in [11] that when a contact form is non-degenerate its Reeb vector
field is supported by a broken book decomposition .K;F / in a special manner. Here
K is a link formed by periodic orbits, called binding orbits, and F is a special smooth
foliation of M n K, see Definition 2.7 for a precise description. The binding splits
into special sublinks K D Kr [ Kb , the components Kb are the so-called broken
binding orbits. It follows from definitions that when Kb D ;, the broken book is a
rational open book decomposition whose pages are Birkhoff sections for the Reeb
flow. Hence we proceed assuming that Kb ¤ ;.

In this case the foliation F contains a finite set of special leaves, called rigid
leaves, see Section 3.2, which almost meet the conditions of Theorem A.1. In the
positive side, their union SRF

intersects all or almost all orbits of the flow and the
orbits that do not intersect SRF

are asymptotic to Kb . On the negative side, it is not
true that the flow winds positively with respect to SRF

, see Figure 1 right. In order
to enforce these properties, one would like to find a surface transverse to the flow,
bounded by periodic orbits in M nKb , that intersects all the orbits asymptotic to Kb
and all the components of Kb positively. Then one could “add it” to the surface SRF

,
thus obtaining the desired Birkhoff section, using a process that can be traced back to
Fried’s work [23], see also [11].

We do not find directly such a transverse surface. However we remark that it is
enough to find a surface bounded by periodic orbits and which intersects the broken
binding orbits positively – the point being that this surface needs not be positively
transverse to the flow in its interior as is required in Fried’s process. Indeed, denoting
by Sb this surface, we remark that the “sum” nSRF

C Sb intersects positively all
invariant measures when n is large enough, and that the flow winds positively with
respect to it along the broken binding orbits.

At the technical level, it is easier to find the Poincaré dual to this surface Sb :
we will find an additional link of periodic orbits K 0 � M n Kb and a cohomology
class y0 2H 1.M nK 0IR/ which essentially plays the role of the Poincaré dual of Sb .
Once this task is done, Theorem 1.1 is a direct consequence of Theorem 2.10, stated
in Section 2 and proved in Section 3. It uses the fine structural dynamical information
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revealed by the broken book decomposition in order to check the assumptions of
Theorem A.1.

We are then left with the task of finding K 0 and y0, which is the content of Propo-
sition 2.11. For this we need to establish a small modification of the Action-Linking
Lemma from [7]. This lemma relates the intersection number between a given sur-
face and the Liouville measure (a topological data) to the contact area of the surface.
Hence, if the Liouville measure can be approximated by periodic orbits then the
contact area is re-obtained as the limit of intersection numbers of weighted links of
periodic orbits with the surface. The link K 0 is found among those links.

In the special case where M is a homology 3-sphere, we can make the argument
explicit and short: denoting by Ik a sequence of weighted links that approximate the
Liouville measure, and by h1; : : : ; hn the broken binding orbits, the Action-Linking
Lemma implies that the linking LK.hi ; � ^ d�/ equals the action T .hi /, which is
positive. Since LK.hi ; �^ d�/ is the limit of the sequence LK.hi ; Ik/ when k!1,
we obtain that for k large enough, all linking numbers LK.hi ; Ik/, i D 1; : : : ; n, are
positive. This implies that Ik links positively with all broken binding orbits. Therefore
we can take K 0 D Ik and y0 D LK.�; Ik/.

This argument is special to homology 3-spheres, in general it needs to be replaced
by a refined one found in Section 4. Once these tools are in place, Theorem 1.1 has
the following simple proof.

Proof of Theorem 1.1. By [11, Theorem 1.1] we know that the Reeb vector field of a
non-degenerate contact form is strongly carried by a broken book decomposition, see
Definition 2.7 and Remark 2.8. An application of Proposition 2.11 with L D Kb tells
us that the hypotheses of Theorem 2.10 are satisfied.

Remark 1.6. Contreras and Mazzucchelli studied in [12] the closure of the invari-
ant manifolds of the broken binding orbits, and found many homoclinic connections.
Once enough such homoclinic connections are found, the strategy described in [11]
and also implemented in the proof of Theorem C.1 applies. It is possible to show that
there are additional periodic orbits spanned by transverse surfaces that intersect the
broken binding orbits. In [11, Theorem 4.13] it is then explained that these additional
surfaces can be “added” to form a new broken book decomposition carried by the con-
tact form, but with strictly less broken binding orbits. After a finite number of steps,
one gets a rational open book decomposition whose pages are Birkhoff sections. A
key contribution from [12], which seems surprising and of independent interest, is
that under the strong non-degeneracy assumption the closure of stable and unstable
manifolds of the broken binding orbits coincide. Using this fact, the desired addi-
tional transverse surfaces can be constructed and the strategy described above can be
applied. At this point of the argument, these additional surfaces provide precisely the
data K 0; y0 and the reduction process can be replaced by our Theorem 2.10.
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2. Broken book decompositions

2.1. Rotation numbers along periodic orbits

Let M be any orientable smooth 3-manifold, and let X be a smooth vector field
onM . Consider a periodic orbit 
 �M n @M of X , with primitive period T > 0, as a
knot oriented by X . This orientation and the ambient orientation together co-orient 
 .
Denote by �t the local flow near 
 . Consider a small compact neighborhood N of 
 ,
and an orientation preserving diffeomorphism

‰WN ! R=TZ �D (1)

satisfying ‰.�t .p0// D .t; 0/ for some p0 2 
 . Here the closed unit disk D � C and
the circle R=TZ are oriented by the canonical orientations of C and R respectively,
and R=TZ �D gets the product orientation. On N n 
 we have coordinates

.t; r; �/ 2 R=TZ � .0; 1� �R=2�Z; ‰�1.t; rei� / ' .t; r; �/ (2)

loosely referred to as tubular polar coordinates around 
 . Consider the vector bun-
dle E
 D TM j
=T 
 ! 
 oriented by the co-orientation of 
 , and denote by E�
 the
complement of its zero section. The total space of the circle bundle E�
 =RC ! 
 is
a torus, which can be equipped with global coordinates .t; �/ 2 R=TZ � R=2�Z

induced by ‰. The linearized flow D�t along 
 descends to a flow on E�
 =RC repre-
sented as the flow of a vector field of the form

@t C b.t; �/@� (3)

on this torus. The smooth function b.t; �/ is .TZ � 2�Z/-periodic.

Definition 2.1. If y 2H 1.N n 
 IR/ is cohomologous to pdt C q d� , with constants
p; q 2 R, then define the rotation number of 
 relative to y as

�y.
/ D
T

2�

�
p C q lim

t!C1

�.t/

t

�
;

where � WR! R is any solution of P�.t/ D b.t; �.t//.

Remark 2.2. The rotation number �y.
/ does not depend on the choice of ‰, or on
the choice of the solution �.t/; see [31, Section 2] for details.

Remark 2.3. If 
 �M n @M as above is a component of some link L �M and y 2
H 1.M n LIR/, then we may identify y with the element of H 1.N n 
 IR/ obtained
by pulling y back via the inclusion map N n 
 ,! M n L. We still write �y.
/ for
the corresponding rotation number, with no fear of ambiguity.
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2.2. Broken books and Birkhoff sections

Consider a closed, connected, orientable and smooth 3-manifold M with a smooth
non-singular vector field X . The flow of X is denoted by �t .

Definition 2.4. A section for the flow of X is an immersion �WS ! M defined on a
compact surface S such that:

(i) if @S ¤ ;, then �.@S/ is a link consisting of periodic orbits of X ;

(ii) ��1.�.@S//D @S and � defines an embedding S n @S ,!M n �.@S/ transverse
to X .

A Birkhoff section, or rational global surface of section, for the flow of X is a section
such that:

(iii) for every p 2M there exist t� < 0 < tC such that �t˙.p/ 2 �.S/.

If � is simultaneously an embedding and a Birkhoff section, then �.S/ is called a global
surface of section for the flow of X .

If 
 is a periodic orbit of X , then E
 D TM j
=T 
 is a vector bundle over 
 .
Hence,

PC
 D .E
 n 0/=RC ! 


is a circle bundle. Note that the linearized flow D�t j
 determines a smooth flow
on PC
 . We call this flow the linearized flow on PC
 , with no fear of ambiguity.
If �W S ! M is a section for the flow of X and c is a connected component of @S
such that �.c/ D 
 , then � defines a smooth map �c� W c ! PC
 as follows: choose
any smooth vector field n of S along c pointing outwards, so that d�.n/ is a map
c ! TM j
 , and define �c� to be the map obtained by composing d�.n/ with the quo-
tient map TM j
 n T 
 ! PC
 . The definition of �c� does not depend on the choice
of n. The trace of � along c is defined as the image of the map �c� , in particular it is a
subset of PC
 .

Definition 2.5. Let �WS !M be a section for the flow of X .

• We call � a @-strong section if its trace along every connected component c � @S
is an embedding transverse to the linearized flow on PC
 ; here 
 is the periodic
orbit in �.@S/ that contains �.c/.

• If � is a Birkhoff section then we call � a @-strong Birkhoff section if it is a @-strong
section, and if for every connected component c � @S its trace along c defines a
global section for the linearized flow on PC
 ; here 
 is the periodic orbit that
contains �.c/.

Remark 2.6. When the @-strong Birkhoff section is a global surface of section, then
we get a @-strong global surface of section as in [20, Definition 1.6].



V. Colin, P. Dehornoy, U. Hryniewicz, and A. Rechtman 566

Definition 2.7 ([11]). Assume now thatM is oriented. The vector fieldX is said to be
strongly carried by a broken book decomposition .K;F /, where the binding K �M
is a link consisting of periodic orbits and F is a smooth foliation of M n K, if the
following conditions are satisfied:

(I) The binding K, which is oriented by the flow, splits into two sublinks as K D
Kr t Kb , where Kr is called the radial part of the binding and Kb the broken part
of the binding. The leaves of F are transverse to and co-oriented by X , and oriented
by the orientation ofM and this co-orientation. In particular, trajectories intersect the
leaves positively.

(II) For every leaf ` of F there exists a compact connected oriented surface S
with non-empty boundary, and a section �WS!M for the flow such that �jSn@S defines
an orientation preserving diffeomorphism S n @S ! `, and �j@S defines a (not neces-
sarily surjective) submersion @S ! K. Let c be a connected component of @S with
�.c/ D 
 � K, in which case we say that 
 is in the boundary of `. Let k 2 Z n ¹0º

be the degree of �jc W c ! 
 , and let `� 2 H 1.M nKIR/ be the class dual to `.

(a) If 
 2 Kr then �`
�

.
/ > 0.

(b) If 
 2 Kb then jkj 2 ¹1; 2º, �`
�

.
/ D 0, 
 is hyperbolic and its transverse
linearized Poincaré map has real eigenvalues ˛ < ˇ. If jkj D 1 then 
 is
positive hyperbolic in the sense that 0 < ˛ < 1 < ˇ. If jkj D 2 then 
 is
negative hyperbolic in the sense that ˛ < �1 < ˇ < 0.

(III) If 
 � Kr then the intersection of the leaves of F with a small disk D
transverse to 
 defines a radial foliation of D n 
 centered at D \ 
 .

(IV) If 
 � Kb then the intersections of the leaves of F with a small disk D
transverse to 
 divideD n 
 into eight sectors centered atD \ 
 . Four of these sectors
do not intersect W s.
/[W u.
/, are radially foliated and might have empty interior.
These are intercalated by four open sectors containing .W s.
/[W u.
//\ .D n 
/,
which are foliated by hyperbola.

Remark 2.8. In [11] it is defined that a contact form is carried by the broken book
decomposition .K;F / if all the properties in Definition 2.7 hold for the Reeb vector
field X , except for (II (a)). Without further assumptions, one gets a non-strict inequal-
ity �`

�

.
/ � 0 for all 
 �Kr and for all leaves `. But if �`
�

.
/D 0 for some 
 �Kr
and some leaf ` that has 
 on the boundary, then some iterate of 
 is degenerate in the
sense that 1 is an eigenvalue of the corresponding transverse Poincaré map. Hence,
if � is a non-degenerate contact form carried by .K;F / as in [11], then its Reeb vector
field is strongly carried by .K;F / as in Definition 2.7.

Remark 2.9. The finite-energy foliations obtained by Hofer, Wysocki and Zehnder
for a non-degenerate Reeb flow on the standard contact 3-sphere are R-invariant
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Figure 1. A broken book decomposition strongly carrying a vector fieldX in a neighborhood of
a broken binding component 
 . On the left, the transversal view: the intersection of the broken
book with a disk transverse to X . The rigid leaves are bolded. Some orbits of X are represented
with green dotted lines. In particular, the four local stable/unstable manifolds lie in four different
hyperbolic sectors. In the center the 3d-view. On the right, the dynamics on the blown-up broken
binding orbit PC
 and the rigid leaves (purple): they are transverse to the projectivized flow
and intersect all its orbits, except those corresponding to the stable and unstable manifolds. This
manifests the fact that the rotation number of the flow along a broken binding component with
respect to the union of the rigid leaves �`

�

.
/ is zero.

foliations of R � S3 whose leaves are pseudo-holomorphic curves with finite Hofer
energy, all of which have genus zero and precisely one positive puncture. They induce
a broken book decomposition .K;F / as above with several special properties. The
R-invariant cylinders over the orbits of K are precisely the R-invariant leaves of the
finite-energy foliation, the other leaves project to the leaves of F . Moreover, all orbits
in K have self-linking number equal to �1, all orbits in Kb are positive hyperbolic,
and each of the four radially foliated sectors in (IV) consists of a single ray. There are
several other special additional properties. The reader is referred to [29, Section 1.4].

Theorem 2.10. Suppose that X is strongly carried by a broken book decomposition
.K D Kb tKr ;F /, and that there exists a link K 0 �M nKb consisting of periodic
orbits and a class y0 2H 1.M nK 0IR/ satisfying hy0; 
i > 0 for every 
 �Kb . Then
there is a @-strong Birkhoff section for the flow of X with boundary in K [K 0.

Let � be a positive contact form on M . Consider the space C 0.M/ of continuous
real-valued functions onM . It becomes a Banach space with the supremum norm. As
described in the introduction, we shall say that the Liouville measure can be approxi-
mated by periodic orbits if there exists a sequence of weighted links of periodic Reeb
orbits �

¹
nj º; ¹p
n
j º
�
; j D 1; : : : ; N.n/;
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where each 
nj is a periodic Reeb orbit with primitive period T .
nj / > 0 and the
weights pnj 2 .0; 1� satisfy

P
j p

n
j D 1, such that

lim
n!1

X
j

pnj
.
nj /� Leb

T .
nj /
D
� ^ d�

vol.�/
:

Here the orbits are seen as maps 
nj WR=T .

n
j /Z ! M parametrized by the flow,

“Leb” denotes Lebesgue measure on R=T .
nj /Z,

vol.�/ D
Z
M

� ^ d�;

and the limit is taken in the weak* topology of the topological dual C 0.M/0 of
C 0.M/.

Proposition 2.11. Suppose that X is the Reeb vector field of a positive contact form
on M such that � ^ d� can be approximated by periodic Reeb orbits. Let L �M be
a link consisting of periodic Reeb orbits. Then there exists a link K 0 � M n L and
y0 2 H 1.M nK 0IR/ such that K 0 consists of periodic Reeb orbits, and hy0; 
i > 0
for every 
 � L.

3. From linking with the broken binding to Birkhoff sections

The goal of this section is to prove Theorem 2.10. Throughout this section we consider
a broken book decomposition .K;F / strongly carrying a smooth vector field X on a
closed, connected and oriented 3-manifold M as in Definition 2.7. The flow of X is
denoted by �t .

Note that Kb D ; if, and only if, the broken book decomposition is a rational
open book decomposition as defined in [5], whose pages are Birkhoff sections. In this
case, let y 2 H 1.M nKIR/ be Poincaré dual to the class of a page in H2.M;KIZ/.
Assumption (ii) in Theorem A.1 follows from (II (a)) in Definition 2.7. Assumption (i)
in Theorem A.1 follows from the fact that the return time back to a page is uniformly
bounded; (II (a)) in Definition 2.7 plays an important role here. Theorem A.1 provides
the desired @-strong Birkhoff section.

Remark 3.1. The notion of @-strong transverse surfaces from [20] was incorporated
in [11]. It is shown by [11, Theorem 1.1] that a non-degenerate Reeb vector field on
a closed 3-manifold is strongly carried by a broken book decomposition whose pages
are @-strong sections. For the purposes of proving Theorem 1.1, it suffices to prove
a version of Theorem 2.10 where one starts from a vector field strongly carried by
a broken book decomposition with this additional property. Hence, the pages of a
broken book are @-strong Birkhoff sections when Kb D ;.

Hence we proceed assuming that Kb ¤ ;.
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3.1. Blowing up periodic orbits

The discussion here makes no use of the broken book decomposition. We consider any
link L �M made of periodic orbits of �t , oriented by the flow. For each orbit 
 � L
denote by T
 > 0 its primitive period, and let N
 be a small tubular neighborhood
of 
 with an orientation preserving diffeomorphism‰
 WN
 ! R=T
Z�D as in (1).
On N
 n 
 we have tubular polar coordinates .t; r; �/ 2 R=T
Z � .0; 1� � R=2�Z,
‰�1
 .t; rei� / ' .t; r; �/ as in (2). One can blow the link L up to construct a smooth
3-manifold ML defined as

ML WD

²
M n L t

G

�L

R=T
Z � .�1; 1� �R=2�Z

³ .
�; (4)

where .t; r; �/ in R=T
Z� .0; 1��R=2�Z gets identified with‰�1
 .t; rei� /. OnML

there are #�0.L/ smoothly embedded tori

†
 D R=T
Z � ¹0º �R=2�Z (5)

with coordinates .t; �/ 2 R=T
Z � R=2�Z, and ML contains a smooth compact
domain

DL D

²
M n L t

G

�L

R=T
Z � Œ0; 1� �R=2�Z

³ .
� (6)

satisfying
@DL D

G

�L

†
 :

Note thatDL n @DLDM nL. Note also that .t; r;�/ 7!‰�1
 .t; rei� / defines a smooth
diffeomorphism from R=T
Z � .0; 1� �R=2�Z to N
 n 
 .

It follows from arguments originally due to Fried [22] that X can be smoothly
extended from M n L to a vector field XL on ML, whose flow we denote by �tL. The
restriction of XL to DL is unique, and XL is tangent to @DL. The details we need
on Fried’s construction can be found below; for more details, see [31, Section 3]. In
particular, it is important to know that there is a precise relation between the dynam-
ics of XL on †
 and the linearized dynamics of X along 
 . To see this, denote by
Z D .‰
 /�X the representation of X in R=T
Z � D. By the fundamental theorem
of calculus, we get that

Z.t; 0/ D

 
1

0

!
) Z.t; rei� / D

 
1

0

!
C A.t; rei� /rei� ;

where

A.t; rei� / D

Z 1

0

D2Z.t; � re
i� / d� D

 
A1.t; re

i� /

A2.t; re
i� /

!
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and D2 stands for the partial derivative in the D-factor. Note also that

D2Z.t; 0/ D

 
A1.t; 0/

A2.t; 0/

!
:

Now consider the smooth map

ˆWR=T
Z � Œ0; 1� �R=2�Z! R=T
Z �D .t; r; �/ 7! .t; rei� /:

Note that ˆ defines a diffeomorphism

R=T
Z � .0; 1� �R=2�Z ' R=T
Z �
�
D n ¹0º

�
that can be used to pull ZjR=T
Z�.Dn¹0º/ back to a vector field W . Since

Dˆ�1.t; rei� / D

0B@1 0

0

 
cos � sin �

�r�1 sin � r�1 cos �

!1CA ;
it follows that

W.t; r; �/ D Dˆ�1.t; rei� /Z.t; rei� /

D .1C A1.t; re
i� /rei� /@t

C hei� ; A2.t; re
i� /rei� i@r C hie

i� ; A2.t; re
i� /ei� i@�

extends smoothly to R=T
Z � Œ0; 1� � R=2�Z. Since at r D 0 the component in @r
vanishes, we conclude that the extension XL of X from M n L to DL is tangent
to @DL. The restriction of XL to †
 is then of the form

@t C b.t; �/@� ; b.t; �/ D hiei� ; A2.t; 0/e
i�
i:

With the above formula, the relation between the dynamics of XL on @DL and the
linearized dynamics along the various orbits 
 � L becomes precise, since b.t; �/ is
exactly the same as the function appearing in (3). A solution 

a.t/

u.t/

!
D D�t .t0; 0/

 
a0

u0

!
; u0 D ju0je

i�0 ¤ 0

along 
 must satisfy

u.t/ D ju.t/jei�.t/; P�.t/ D b.t C t0; �.t//; �.t0/ D �0:
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3.2. Rigid leaves

The set of rigid leavesRF was considered in [11, Definition 2.8]. By definition, every
leaf of a broken book decomposition is an open surface embedded in M .

Definition 3.2. A leaf L of a broken book .K;F / that belongs to the interior of a
1-parameter family of pages of the form L � Œ0; 1� is called regular. On the other
hand, a leaf that is not in the interior of such a 1-parameter family is called rigid.

We have Kb ¤ ; ) RF ¤ ;, in fact, leaves in the local model of (IV) Defini-
tion 2.7 that divide radial sectors from sectors foliated by hyperbola are rigid.

Lemma 3.3. If Kb ¤ ; then for every 
 � Kr there is at least one rigid leaf with an
end in 
 .

Proof. We haveRF ¤ ; sinceKb ¤ ;. LetE be the union of the closures of the rigid
leaves. Assume, by contradiction, that no rigid leaf has an end at a given 
 � Kr .
Any neighborhood of 
 contains a compact subset Q with non-empty and connected
interior U , such that E \Q D ; and U contains a loop � transverse to F jU .

A leaf having a boundary component in 
 is regular and Definition 3.2 implies
that it belongs to a local 1-parameter family of regular leaves. Thus the connected
component of M n E containing 
 can be foliated by a maximal 1-parameter family
of regular leaves, parametrized by an open interval or a circle. The existence of the
loop � , implies that this family of regular leaves is parametrized by a circle. Since M
is connected this is the only family of regular leaves and it foliates M nK, implying
that there are no rigid leaves. This contradiction concludes the argument.

Combining the lemma with the fact that Kb � E, we have that K � E.

Lemma 3.4. Assume that RF ¤ ;. If U �M is a connected open set whose closure
does not intersect the union of closures of rigid leaves, then F jU is given by the fibers
of a submersion U ! R.

Proof. As before, letE be the union of the closures of the rigid leaves. Since a regular
leaf belongs to a local 1-parameter family of regular leaves, each of the finitely many
connected components ofM nE can be foliated by a maximal 1-parameter family of
regular leaves, parametrized by an open interval or a circle. If one of these maximal
families is a circle, we conclude as in the proof of Lemma 3.3, that there are no rigid
leaves, contrary to the hypothesis. Hence, each maximal family is parametrized by an
interval. The parameter of such a family defines a submersion U ! R whose fibers
define F jU .

Assume Kb ¤ ;. On each connected open set U whose closure is at a positive
distance from the leaves in RF , the foliation F jU is defined by a submersion to R.
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Such a submersion gives a function that is strictly increasing or strictly decreasing
along segments of orbits ofX contained inU . In the arguments that follow we assume,
without loss of generality, that such functions are strictly increasing.

Lemma 3.5. Fix any metric on M . For every ı > 0 there exists Tı > 0 such that the
following holds: if p 2 M nK satisfies dist.�Œ�Tı ;Tı�.p/; Kb/ � ı, then there exists
t� 2 Œ�Tı ; Tı � such that �t�.p/ belongs to some leaf in RF .

Proof. We give a proof by contradiction. Assume that there exists some ı > 0 such
that the conclusion of the lemma is false. There is a sequence of points pn 2 M nK
and a sequence tn 2 R tending to infinity as n!1, such that

dist
�
�Œ�tn;tn�.pn/;Kb

�
� ı and �Œ�tn;tn�.pn/ \ .

[
`2RF

`/ D ;:

Modulo passing to a subsequence, pn converges to some point p1 such that

dist
�
�R.p1/;Kb

�
� ı:

As above, consider the compact set E D K [ .
S
`2RF

`/.
We claim that dist.�R.p1/;E/ > 0. First suppose, by contradiction, that �R.p1/

contains points arbitrarily close to Kr . There exist sm 2 R and 
 � Kr such that

dist
�
�sm.p1/; 


�
! 0 as m!C1:

By (II (a)) in Definition 2.7, there is an open neighborhood W of 
 and some L > 0
such that �Œ0;L�.q/ intersects every leaf with an end at 
 , for every q 2 W n 
 . Fix m
such that �sm.p1/ 2 W . There exists n0 such that

n � n0 ) �sm.pn/ 2 W n 
:

Hence, by Lemma 3.3, �Œ0;smCL�.pn/ intersects some rigid leaf provided n� n0. This
is in contradiction to the existence of n1 � n0 such that tn1 > sm C L. We showed
that dist.�R.p1/;Kr/ > 0, from where it follows that

dist
�
�R.p1/;K

�
> 0:

Again by contradiction, we assume that �R.p1/ contains points arbitrarily close
to
S
`2RF

`. Using the transversality of the flow with the leaves and the fact that
�R.p1/ is at a positive distance to K, we find an intersection between �R.p1/ and
some rigid leaf. As before, this implies that �Œ�tn;tn�.pn/ intersects some rigid leaf,
an absurd. We are done with the proof of dist.�R.p1/; E/ > 0.

It follows that the !-limit set of p1 satisfies dist.!.p1/; E/ > 0, hence !.p1/
is a compact subset of some connected open set U compactly contained in M n E.
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With the help of [37, Corollary 3.3.7] we can choose a recurrent point q 2 !.p1/.
By Lemma 3.4 there is a continuous function f WU ! R strictly increasing along the
segments of orbits inU , in particular along the orbit of q. This leads to a contradiction:
a continuous function cannot be strictly increasing along a recurrent orbit.

3.3. Invariant measures and intersection numbers

As in the previous section, we consider a link L �M tangent to X , with the orienta-
tion induced by X . We use the notation and the constructions from Section 3.1.

Denote by P�.M nL/ the set of �t -invariant Borel probability measures onM nL,
and by P�.DL/ the set of �tL-invariant Borel probability measures on DL. If � 2
P�.M nL/ and y 2H 1.M nLIR/ then we may choose a closed 1-form ˇ onM nL
representing y such that �Xˇ is bounded, and define

� � y D

Z
MnL

�Xˇ d�

called the intersection number of � and y. The existence of ˇ as above can be seen
with the help of polar tubular coordinates, and is implicitly contained in Section 3.1,
see [31, Section 2.1] for more details. The independence on the choice of ˇ can be
seen by showing that there exists f�;y 2 L1.�/ and a Borel set E �M nL such that:

• �.E/ D 1 and all points in E are recurrent;

• if p 2 E and V �M n L is an open contractible neighborhood of p, then

T �1n hy; k.Tn; p/i ! f�;y.p/ as n!1;

where Tn!C1 is any sequence such that �Tn.p/!p, and k.Tn;p/ are choices
of loops obtained by concatenating to �Œ0;Tn�.p/ a path from �Tn.p/ to p inside V ;

• the identity

� � y D

Z
MnL

f�;y d�

holds.

These facts can be proved with a direct application of the ergodic theorem, for more
details see [31, Section 2.1].

Similarly, for any � 2 P�.DL/ and y 2 H 1.DLIR/ one defines

� � y D

Z
DL

�XLˇ d�

where ˇ is a closed 1-form on DL representing y. Independence of ˇ is easier in this
case since DL is compact.
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We may freely identify H 1.DLIR/ ' H 1.M nLIR/ via pull-back by the inclu-
sion map M n L D DL n @DL ,! DL, as in the statement below.

Lemma 3.6 ([31, Lemma 3.6]). If 
 is a component of L, � 2 P�.DL/ satisfies
supp.�/ � †
 , and y is a class inH 1.DLIR/, then � � y D 2�

T

�y.
/, where T
 > 0

is the primitive period of 
 .

3.4. First estimates of intersection numbers

The cohomology class

y0 D
X
`2RF

`� 2 H 1.M nKIR/ ' H 1.DK IR/; (7)

dual to the rigid leaves, plays a key role in our arguments.

Lemma 3.7. If � 2 P�.M nK/ is ergodic, then � � y0 > 0.

Proof. Any 
 �Kb is a hyperbolic orbit, hence isolated as an invariant set. Moreover,
by hyperbolicity and condition (IV), we can find an isolating compact neighbor-
hoodN
 of 
 inside any neighborhood of 
 fixed a priori, and some � > 0 depending
onN
 , such that the following holds: If p 2M n .K [W u.
/[W s.
// and if ! ¤;
is a connected component of ¹t 2 R j �t .p/ 2 N
º, then ! D Œa; b� is a compact
interval with non-empty interior, �Œa��;a/[.b;bC��.p/ \ N
 D ;, and 9t� 2 ! such
that �t�.p/ belongs to some leaf in RF .

DenoteW u.Kb/D
S

�Kb

W u.
/ andW s.Kb/D
S

�Kb

W s.
/. Taking unions
of various small N
 as above, we find an isolating compact neighborhood Nb for Kb
inside any neighborhood ofKb fixed a priori, and some � > 0 depending onNb , with
the following property:

(�) If p 2 M n .K [W u.Kb/ [W
s.Kb// and ! is a non-empty connected compo-

nent of ¹t 2R j �t .p/ 2Nbº, then !D Œa;b� is a compact interval with non-empty
interior, �Œa��;a/[.b;bC��.p/\Nb D ;, and 9t� 2 ! such that �t�.p/ 2

S
`2RF

`.

Fix 'WM ! Œ0; 1� continuous such that ' is identically equal to 1 near Kb , and
is supported on a neighborhood U of Kb satisfying �.U n Kb/ < 1

2
. We can pro-

ceed assuming, without loss of generality, that Nb � '�1.1/. Since � is ergodic, the
following hold simultaneously for �-almost all points p 2M nK:

lim sup
T!C1

1

T
Leb

�
¹t 2 Œ0; T � j �t .p/ 2 Nbº

�
� lim
T!C1

1

T

Z T

0

'.�t .p// dt

D

Z
MnK

' d� <
1

2
; (8)
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� � y0 D lim
T!C1

1

T
#¹t 2 Œ0; T � j �t .p/ 2 ` for some ` 2 RF º: (9)

From now on we fix such p, and denote

J D ¹t 2 R j �t .p/ 2 Nbº:

If we fix an auxiliary metric on M , and choose ı > 0 such that dist.�; Kb/ > ı on
M n Nb , then by Lemma 3.5 we find T� > 0 such that if �Œc;d�.p/ � M n Nb and
d � c � T�, then �Œc;d�.p/ intersects some leaf in RF .

By (�), for every T > 0 we write J \ Œ0; T � as a finite union of n.T / maximal
compact intervals, which are all at least � apart from each other. We list these intervals
as h1; : : : ; hn.T / in an increasing fashion:

sup hj � inf hjC1:

It follows that inf hjC1 � sup hj � �. Note that only h1 and hn.T / may not be con-
nected components of J .

Consequently, we can write Œ0; T � n J as a finite union ofm.T /maximal intervals
which are open relatively to Œ0; T �, with jn.T /�m.T /j � 1, all of which have length
at least equal to �. Denote by !C1 ; : : : ; !

C

mC.T /
those intervals with length � T�.

Denote by !�1 ; : : : ; !
�
m�.T /

those intervals with length < T�. We have

m.T / D mC.T /Cm�.T /

and
Œ0; T � n J D !C1 [ � � � [ !

C

mC.T /
[ !�1 [ � � � [ !

�
m�.T /

:

Denote H.T / D #¹t 2 Œ0; T � j �t .p/ 2
S
`2RF

`º, i.e., H.T / is the number of
hitting times between �Œ0;C1/.p/ and the union of the union of leaves in RF up to
time T . By (9), we have

T �1H.T /! � � y0 as T !C1:

Our constructions so far imply that there is at least one hitting time on each !C1 ; : : : ;
!C
mC.T /

and, by (�), at least one hitting time on each h2; : : : ; hn.T /�1. In particular,

H.T / � n.T / � 2:

We split the remaining arguments into two cases.

Case 1. lim infT!C1 T �1n.T / > 0. In this case we are done since

� � y0 D lim
T!C1

H.T /

T
� lim inf
T!C1

n.T /

T
> 0:
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Case 2. lim infT!C1 T �1n.T / D 0. In this case we can find Tj ! C1 such that
T �1j n.Tj /! 0 as j !C1. Note that

1 D
Leb.J \ Œ0; Tj �/

Tj
C

Leb.Œ0; Tj � n J /
Tj

D
Leb.J \ Œ0; Tj �/

Tj
C

1

Tj

mC.Tj /X
sD1

Leb.!Cs /C
1

Tj

m�.Tj /X
sD1

Leb.!�s /: (10)

Moreover, if j � 1 then T �1j Leb.J \ Œ0; Tj �/ < 1
2

by (8), and

1

Tj

m�.Tj /X
sD1

Leb.!�s / � T�
m�.Tj /

Tj
� T�

m.Tj /

Tj
� T�

n.Tj /C 1

Tj
! 0:

Plugging in (10), we get

j � 1 )
1

Tj

mC.Tj /X
sD1

Leb.!Cs / �
1

2
:

Consider �j the maximal number of intervals of length T� that fit inside the union of
the !Cs . Note that ˇ̌̌̌

T��j �

mC.Tj /X
sD1

Leb.!Cs /
ˇ̌̌̌
� T�mC.Tj /:

Hence, for j large enough we compute

1

2
�
1

Tj

mC.Tj /X
sD1

Leb.!Cs / �
T��j

Tj
C
T�mC.Tj /

Tj
:

Since mC.Tj /=Tj ! 0, we get lim infj!1 �j =Tj � 1=2T�. Hence,

H.Tj /

Tj
�
�j

Tj
�

1

4T�

for all j large enough. Inequality � � y0 � 1=4T� > 0 follows.

3.5. Further estimates of intersection numbers

Let the broken book decomposition .K D Kr t Kb;F /, the link of periodic orbits
K 0 � M n Kb and the cohomology class y0 2 H 1.M n K 0IR/ be as in the state-
ment of Theorem 2.10. As in Section 3.1, we may blow K [K 0 up to obtain a new
manifold MK[K0 with a smooth compact domain DK[K0 such that

DK[K0 n @DK[K0 DM n .K [K
0/:
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There is a boundary torus †
 (5) for each orbit 
 � K [K 0 and the vector field X
extends smoothly from M n .K [ K 0/ to DK[K0 . As agreed before, we may freely
identify H 1.M n .K [K 0/IR/ with H 1.DK[K0 IR/.

We pull y0 back to a cohomology class

y00 2 H 1.M n .K [K 0/IR/ ' H 1.DK[K0 IR/ (11)

via the inclusion M n .K [K 0/ ,! M nK 0. Similarly, we pull the class y0 defined
in (7) back to a cohomology class

y000 2 H
1.M n .K [K 0/IR/ ' H 1.DK[K0 IR/ (12)

via the inclusion M n .K [K 0/ ,!M nK. We denote

@bDK[K0 D
[

�Kb

†
 : (13)

Lemma 3.8. If � 2 P�.DK[K0/ satisfies supp.�/ � @bDK[K0 then � � y000 D 0 and
� � y00 > 0.

Proof. In the construction of DK[K0 explained in Section 3.1 we fix a diffeomor-
phism ‰
 as in (1) from a small tubular neighborhood N
 of 
 � K [ K 0 onto
R=T
Z �D, with induced tubular polar coordinates

.t; r; �/ 2 R=T
Z � Œ0; 1� �R=2�Z:

These coordinates model a smooth neighborhood in DK[K0 of the torus component
†
 D ¹r D 0º � @DK[K0 . If 
 � Kb and 0 < "� 1, then since Kb \K 0 D ;, the
loop

t 2 R=T
Z 7! .t; "; 0/ 2 DK[K0 n @DK[K0 DM n .K [K
0/

is homologous to 
 in M nK 0, and the loop � 2 R=2�Z 7! .0; "; �/ is homologous
to zero in M nK 0. Hence, if we write y00 � p dt C q d� in N
 n 
 , then

p D
hy00; Œt 7! .t; "; 0/�i

T

D
hy0; 
i

T

> 0

and

q D
hy00; Œ� 7! .0; "; �/�i

2�
D
hy0; Œ� 7! .0; "; �/�i

2�
D 0:

Identifying H 1.DK[K0 IR/ ' H 1.M n .K [ K 0/IR/, we can apply Lemma 3.6 to
get

� � y00 D
2�

T

�y
00

.
/ D
hy0; 
i

T

> 0:
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We now prove that � � y000 D 0. Fix ` 2 RF and its dual `� 2 H 1.M n KIR/.
Pulling `� back toH 1.M n .K [K 0/IR/ via the inclusionM n .K [K 0/ ,!M nK,
we get a class

y00` 2 H
1.M n .K [K 0/IR/ ' H 1.DK[K0 IR/:

In N
 n 
 , with 
 � Kb , we have y00
`
� p dt C q d� � `� for constants p; q 2 R, as

above. If ` does not contain 
 in its boundary, then p D q D 0, and � � y00
`
D 0. If `

contains 
 in its boundary, then

� � y00` D
2�

T

�`
�

.
/ D 0

by (II (b)) in Definition 2.7. Here Lemma 3.6 was used. Since y000 D
P
`2RF

y00
`

, the
desired conclusion follows.

3.6. Obtaining the Birkhoff section

The space C 0.DK[K0/ becomes a Banach space with the sup norm. Its topological
dual C 0.DK[K0/0 is a Banach space with the corresponding dual norm, and its unit
ball is a compact metrizable space when equipped with the weak* topology; here
it was used C 0.DK[K0/ is a separable Banach space. The set P�.DK[K0/ can be
seen as a convex subset of the unit ball of C 0.DK[K0/0, and the Riesz representation
theorem implies that P�.DK[K0/ is closed in weak*. Hence, P�.DK[K0/ with the
weak* topology is a compact metric space.

Consider E � P�.DK[K0/ the subset of ergodic measures. Let Eb be the set of
those � 2 E satisfying �.@bDK[K0/ D 1. Here @bDK[K0 is the invariant set (13).
Then E1 D E n Eb is the set of those � 2 E satisfying �.@bDK[K0/ D 0. In general,
the sets E;Eb;E1 might be non-compact in weak*.

Every cohomology class ˛ 2 H 1.DK[K0 IR/ defines a function

� 2 P�.DK[K0/ 7! � � ˛ 2 R;

which is weak* continuous. This is so since, by definition of intersection numbers,
� � ˛ is an integral of some function in C 0.DK[K0/ with respect to �. Consider the
classes y00 and y000 defined in (11) and in (12), respectively.

Let� 2 E1. By ergodicity, either�.M n .K [K 0//D 1 or�.M n .K [K 0//D 0.
In the former case, � restricts toM n .K [K 0/ as an ergodic measure for the flow �t

on M n .K [K 0/, and Lemma 3.7 implies that � � y000 > 0. In the latter case, we find
a component 
 � Kr [K 0 such that supp.�/ is contained on the boundary torus †
 .
If 
 � Kr then Lemma 3.6 implies � � y000 > 0. Here (II (a)) from Definition 2.7 is
also used. If 
 � K 0 n Kr then we get � � y000 > 0 from the fact that 
 is a periodic
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orbit in the complement of K, as such it has to intersect some rigid page and every
intersection point is transverse and positive. Summarizing, we proved that

� 2 E1 ) � � y000 > 0: (14)

By compactness of P�.DK[K0/, we get

c D sup
�2P�.DK[K0 /

j� � y00j < C1:

Consider
Z D xE1 \ ¹� 2 P�.DK[K0/ j � � y

00
0 D 0º

where xE1 denotes the weak* closure. Note that Z is compact in weak* since it is a
closed subset of the compact set P�.DK[K0/.

Lemma 3.9. If � 2 Z, then � � y00 > 0.

Proof. Fix � 2 Z. By the ergodic decomposition theorem [26, p. 84], we can find a
Borel probability measure P� on E such that

� � ˛ D

Z
E

� � ˛ dP�.�/ (15)

holds for every ˛ 2 H 1.DK[K0 IR/. Apply this formula to y000 in combination with
the definition of Z and with Lemma 3.8 to get

0 D � � y000 D

Z
E

� � y000 dP�.�/

D

Z
Eb

� � y000 dP�.�/C

Z
E1

� � y000 dP�.�/ D

Z
E1

� � y000 dP�.�/:

Now (14) implies that � � y000 > 0 for all � 2 E1, and we conclude that P�.E1/ D 0.
Hence 1 D P�.Eb/. Substituting ˛ D y00 in (15) we finally get

� � y00 D

Z
Eb

� � y00 dP�.�/ > 0

since by Lemma 3.8 the integrand is pointwise strictly positive.

By compactness of Z and Lemma 3.9, we find an open neighborhood U of Z
in P�.DK[K0/ such that � � y00 > 0 for all � 2 U . Moreover, since (14) implies that
� � y000 � 0 for every � 2 xE1, we get � � y000 > 0 for every � in Z0 D xE1 n U . By the
compactness of Z0,

d D inf
�2Z0

� � y000 > 0:
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Finally, choose a > 0 large enough so that ad > c and compute the following:

• If � 2 Eb , then
� � .ay000 C y

00/ D � � y00 > 0:

• Assume that � 2 E1. If � 2 U , then

� � .ay000 C y
00/ D a� � y000 C � � y

00;

and both � � y000 and � � y00 are strictly positive. If � 2 E1 n U � Z
0, then

� � .ay000 C y
00/ � ad � c > 0:

This proves that the class y00� D ay
00
0 C y

00 2 H 1.DK[K0 IR/ satisfies � � y00� > 0 for
all � 2 E . The ergodic decomposition theorem implies that � � y00� > 0 must also hold
for all � 2 P�.DK[K0/. Let y� 2 H 1.M n .K [ K 0/IR/ be the class obtained by
pulling y00� back via the inclusion

M n .K [K 0/ D DK[K0 n @DK[K0 ,! DK[K0 :

Then � � y� > 0 holds for all � 2 P�.M n .K [K
0//, and Lemma 3.6 implies that

�y�.
/ > 0 for all 
 � K [K 0. Hence we can apply Theorem A.1 to find the desired
@-strong Birkhoff section.

4. Finding orbits that link the broken binding

Our goal here is to prove Proposition 2.11. Let � be a contact form on a closed, con-
nected and oriented 3-manifold M satisfying � ^ d� > 0, with Reeb vector field X .
We consider a sequence of weighted links of periodic Reeb orbits .¹
nj º; ¹p

n
j º/, 1 �

j � N.n/, as in the introduction, and the associated Borel invariant probability mea-
sures

�n D
X
j

pnj
.
nj /� Leb

T .
nj /
:

In Proposition 2.11 it is assumed that .¹
nj º; ¹p
n
j º/ as above can be found so that

�n !
� ^ d�

vol.�/

in the weak* topology of C 0.M/0. If we denote I n D 
n1 [ � � � [ 

n
N.n/

, then there is
no loss of generality to assume that

I n � I nC1 8n: (16)
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Moreover, since L has measure zero with respect to �^ d�, there is no loss of gener-
ality to further assume that

I n �M n L 8n:

For every open set U � M and p � 0, let �p.U / be the space of differential
p-forms equipped with the C1loc -topology, and the space Cp.U / of p-currents with
compact support in U is the topological dual of �p.U / with the associated weak*
topology. Boundary operators

@�WC�.U /! C��1.U /

are defined as adjoints of exterior derivatives. Elements in Zp.U / D ker @p are called
cycles, and the elements of Bp.U / D im@pC1 � Zp.M/ are called boundaries. The
quotient space Zp.U /=Bp.U / is canonically isomorphic to Hp.U IR/.

Let us enumerate the components of L as h1; : : : ; hm. They can also be seen as
maps hk WR=T .hk/Z!M parametrized by the flow, where T .hk/> 0 is the primitive
period of hk . In this way, each hk defines a cycle in C1.M/ by the formula

! 2 �1.M/ 7!

Z
R=T .hk/Z

h�k!:

This cycle is also denoted by hk , with no fear of ambiguity.

Lemma 4.1. Let x1; : : : ; xm 2 Z be such that c D
Pm
kD1 xkhk 2 B1.M/. Choose

an oriented rational Seifert surface f W S ! M for c, i.e., S is an oriented compact
surface, f is an immersion, and

• f j@S defines a submersion @S ! L covering each hk exactly xk times,

• f jSn@S defines an embedding S n @S !M n L.

Then

lim
n!1

X
j

pnj
vol.�/ int.
nj ; f /

T .
nj /
D

Z
S

f � d� D

mX
kD1

xkT .hk/;

where int.
nj ; f / 2 Z denotes the algebraic intersection number between 
nj and f .

Proof. Consider the 3-manifold ML obtained from M and L via the blow-up con-
struction explained in Section 3.1. It contains a special smooth domain DL � ML

such that DL n @DL D M n L (see (6)). The vector field X extends smoothly from
M n L to DL tangentially to @DL. The extended vector field is still denoted here
by X , for simplicity. It is not difficult to show that also � extends smoothly to DL.
Unfortunately, � does not define a contact form on DL since d� vanishes on TyDL
for every y 2 @DL. The rest of this proof is a small modification of the proof of the
Action-Linking lemma [7, Lemma 1.12].



V. Colin, P. Dehornoy, U. Hryniewicz, and A. Rechtman 582

Consider the map � WDL ! M defined by collapsing each boundary torus †hk
to hk (see (5)). This map is smooth since in tubular polar coordinates .t; r; �/ near
†hk D ¹r D 0º, as in (2), the map is represented by

.t; r; �/ 7! .t; rei� /:

After a C1-small perturbation of f , we can assume that f D �jS for an embedded
surface S � DL that intersects @DL transversely; in particular, @S D S \ @DL.

Consider a compact neighborhood U of S diffeomorphic to Œ�1; 1� � S in such a
way that ¹0º � S ' S . Denote by z the coordinate on Œ�1; 1�. If � is a positive area
form on S then there is no loss of generality to assume that � ^ dz > 0 on U . Fix
any non-negative test function ' on R such that supp.'/ � Œ�1; 1� and

R
R ' D 1. For

every ı 2 .0; 1/, set
'ı.x/ D ı

�1'.ı�1x/:

Hence supp.'ı/ � Œ�ı; ı� and
R

R 'ı D 1. Note that 'ı.z/ dz defines a closed 1-form
supported in the interior of U and, as such, it can be smoothly extended as a closed
1-form ˇı on DL. It represents the cohomology class dual to S . Consider smooth
functions f; gWU ! R defined by f D iX dz and � ^ d� D g � ^ dz. ThenZ

DL

iXˇı� ^ d� D

Z
U'Œ�1;1��S

'ı.z/f .z; q/g.z; q/ � ^ dz

D

Z
U'Œ�1;1��S

'ı.z/
�
f .0; q/g.0; q/C ".z; q/

�
� ^ dz

D

Z
S

f .q; 0/g.q; 0/ � C

Z
U'Œ�1;1��S

'ı.z/".z; q/ � ^ dz:

One finds c > 0 such that supq2S j".z;q/j � cjzj holds for all .z;q/2 Œ�1;1��S 'U .
This follows from the fundamental theorem of calculus. Henceˇ̌̌Z

DL

iXˇı � ^ d� �

Z
S

f .0; q/g.0; q/�
ˇ̌̌
� cı

�Z
S

�

��Z
Œ�1;1�

'ı.z/ dz

�
D cı

Z
S

�:

Since all ˇı ’s are cohomologous, the integral
R
DL
iXˇı �^ d� does not depend on ı.

Taking the limit as ı ! 0,Z
DL

iXˇı0 � ^ d� D

Z
S

fg � 8ı0 2 .0; 1/: (17)

The identity d� D iX .� ^ d�/ is valid on DL n @DL D M n L, and hence is also
valid on DL with the smooth extensions of X , � and d�. On U one computes

d� D iX .� ^ d�/ D iX .g � ^ dz/ D fg �C � ^ dz
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for some 1-form �. Since dz vanishes tangentially to S we get from (17) thatZ
DL

iXˇı � ^ d� D

Z
S

d� D

mX
kD1

xkT .hk/ 8ı 2 .0; 1/:

Finally, once ı 2 .0; 1/ is fixed arbitrarily, the function iXˇı is bounded on M n L
since it is continuous on the compact space DL � DL n @DL DM n L. HenceZ

DL

iXˇı � ^ d� D

Z
MnL

iXˇı � ^ d�

D vol.�/ lim
n!1

Z
MnL

iXˇı d�
n

D vol.�/ lim
n!1

X
j

pnj
int.
nj ; f /

T .
nj /
:

Here we used the assumption that �n ! .� ^ d�/= vol.�/ in weak* topology of
C 0.M/0 in combination with Lemma B.1.

Let H D span¹h1; : : : ; hmº � Z1.M/. Then dimH D m and ¹h1; : : : ; hmº is a
basis of H . The space H contains a compact convex set

C D

² mX
kD1

akhk j ak � 0 8k;

mX
kD1

ak D 1

³
:

Choose a basis e1; : : : ; eR of H \ B1.M/. Hence Œer � D 0 in H1.M IR/.
The universal coefficients theorem tells us thatH2.M;LIR/'H2.M;LIQ/˝R.

Hence, for every r we can find finitely many ysr 2 R and oriented rational Seifert
surfaces f sr as in Lemma 4.1 such that

er D @
X
s

ysrf
s
r ;

where the f sr are seen in C2.M/.

Lemma 4.2. If n is large enough then C \ B1.M n I
n/ D ;.

Proof. There is no loss of generality to assume that vol.�/ D 1. On the space H we
have the norm 



 mX

kD1

akhk





 D mX
kD1

jakj;

and on H \ B1.M/ we have the norm



 RX
rD1

brer






0

D

RX
rD1

jbr j:
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The norm on H \ B1.M/ obtained by restricting k � k to H \ B1.M/ is denoted
by k � k1. Since these are norms on a finite-dimensional vector space, we find � > 0
such that k � k0 � �k � k1. Choose � > 0 satisfying � � maxr;s jysr j. It is important to
note that both � and � are independent of n. By Lemma 4.1,

n� 1 )

ˇ̌̌̌X
j

pnj
int.
nj ; f

s
r /

T .
nj /
� hf sr ; d�i

ˇ̌̌̌
<

1

2��
min
k
T .hk/ 8r:

If n is large enough and c 2 C \ B1.M/, write

c D

mX
kD1

akhk D

RX
rD1

brer with
mX
kD1

ak D 1

and estimateˇ̌̌̌X
j;r;s

bry
s
rp

n
j

int.
nj ; f
s
r /

T .
nj /
�

mX
kD1

akT .hk/

ˇ̌̌̌
D

ˇ̌̌̌X
r;s

bry
s
r

�X
j

pnj
int.
nj ; fr/

T .
nj /
� hf sr ; d�i

�ˇ̌̌̌

�

� 1

2��
min
k
T .hk/max

r;s
jysr j

� RX
rD1

jbr j �
� 1
2�

min
k
T .hk/

�
kck0

�

�1
2

min
k
T .hk/

�
kck1 D

�1
2

min
k
T .hk/

� mX
kD1

ak D
1

2
min
k
T .hk/:

Combining with
mX
kD1

akT .hk/ � .min
k
T .hk//

mX
kD1

ak D min
k
T .hk/

and using the triangle inequality, we conclude that

n� 1 )

X
j;r;s

bry
s
rp

n
j

int.
nj ; f
s
r /

T .
nj /
�
1

2
min
k
T .hk/:

Let ‚n be a closed 2-form on M representing the Poincaré dual in H 2.M IR/ of
the class in H1.M IR/ represented by the cycle †j pnj T .


n
j /
�1 
nj . Observe that for

any fixed closed 1-form ˛ on M we can compute

lim
n!1

Z
M

˛ ^‚n D lim
n!1

X
j

pnj

T .
nj /

Z

n
j

˛ D lim
n!1

Z
M

iX˛ d�
n

D
1

vol.�/

Z
M

iX˛ � ^ d� D
1

vol.�/

Z
M

˛ ^ d� D 0:
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In particular, this can be applied to the closed 1-form ˛ representing the Poincaré dual
of the class in H2.M IR/ induced by an arbitrary S 2 Z2.M/, thus giving

lim
n!1
hS;‚ni D 0:

To every A 2 C2.M/ satisfying @A 2 H we can linearly associate yA defined by

@A D
X
r

brer ) yA D
X
r;s

bry
s
rf

s
r :

Here we used @A 2 H \ B1.M/. In particular, @ yA D
P
r brer and @.A � yA/ D 0.

To prove the lemma we now argue by contradiction, and assume that we can find
nj !1 and cj 2 C \ B1.M n I

nj /. Let Aj 2 C2.M n I nj / satisfy @Aj D cj . By
what was proved above, we can select further subsequences and assume, with no loss
of generality, that

jhAj � yAj ; ‚njC1ij <
1

4
min
k
T .hk/; h yAj ; ‚njC1i �

1

2
min
k
T .hk/:

It follows that
hAj ; ‚njC1i >

1

4
min
k
T .hk/ 8j: (18)

If m � l then hAm; ‚nl i D 0 since Am is supported in M n I nm � M n I nl .
Here we used (16). Each Aj induces a class ŒAj � 2 H2.M; LIR/. Since the dimen-
sion of H2.M; LIR/ is finite, we can find j� such that all ŒAj � are in the span of
¹ŒA1�; ŒA2�; : : : ; ŒAj� �º. Write ŒAj � D dj1ŒA1�C � � � C djj� ŒAj� �. We will now argue
to prove that

j > j� ) ŒAj � D 0:

Consider j > j�. Then j � 2 and with the help of (18) one gets

0 D hAj ; ‚n2i D dj1hA1; ‚n2i ) dj1 D 0:

We are done if j� D 1. If j� > 1, then j � 3 and 0 D hAj ; ‚n3i D dj2hA2; ‚n3i

implies that dj2D 0. We are done if j�D 2, and if not then j � 4, and one argues sim-
ilarly to conclude that dj3 D 0, and so on. This inductive process shows that djs D 0
for every 1 � s � j�. This proves that ŒAj � vanishes in H2.M;LIR/ when j is large
enough, in contradiction to hAj ; ‚njC1i > 0.

To conclude the proof of Proposition 2.11, fix n so large that C\B1.M n I n/D;.
This is possible by the previous lemma. We invoke the Hahn–Banach theorem to
obtain a continuous linear functional 'nWC1.M n I n/! R satisfying

'njC > 0 and 'njB1.MnIn/ � 0: (19)
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By reflexivity [17, §17], we find !n 2�1.M n I n/ such that 'n.�/D h�;!ni. Since 'n
vanishes on B1.M n I n/, we get d!n D 0. Since all hk belong to C, we get from (19)
that Z

hk

!n > 0 8k D 1; : : : ; m:

The cohomology class of !n in H 1.M n I nIR/ is the class we were looking for, and
the proof of Proposition 2.11 is complete.

5. Openness of the supporting condition

Proposition 5.1. Let X be a smooth vector field on a smooth closed 3-manifold M
that has a @-strong Birkhoff section �W S ! M , such that �.@S/ consists of non-
degenerate periodic orbits. There exists a C 1-neighborhood N .X/ of X such that
every smooth vector field X 0 2 N .X/ has a @-strong Birkhoff section isotopic to �.

Proof. Denote K D �.@S/, ` D �.S n @S/, and let `� 2 H 1.M nKIR/ be the dual
class. As in Section 3.1, we blow M up along K to get the compact manifold with
boundary DK . There is a smooth projection P WDK !M represented as

.t; r; �/ 7! .t; rei� /

with the aid of appropriate polar tubular coordinates (2). The map P defines a dif-
feomorphism DK n @DK ! M nK and collapses †
 to 
 . The vector field X jMnK
extends smoothly to DK as a non-singular vector field tangent to @DK . The extended
vector field is denoted by zX . In fact, there is a boundary torus †
 � @DK associ-
ated to every orbit 
 � K, and the tubular polar coordinates .t; �/ are global periodic
coordinates on †
 ' PC
 that represent the projection to 
 as

.t; �/ 7! t:

In these coordinates zX assumes the form @t C b.t; �/@� and its dynamics is precisely
linearized dynamics on PC
 .

It is straightforward to construct a smooth map z�W S ! DK satisfying � D P ı z�.
The assumption that � is @-strong implies that, up to a C1-small perturbation, z�.S/
is an embedded surface in DK transverse to @DK . Any vector field X 0 on M that
coincides with X onK extends smoothly to a vector field zX 0 onDK , tangent to @DK .
Moreover, if X 0 is C 1-close to X , then zX 0 is C 0-close to zX . This follows from the
construction in Section 3.1. In fact, referring back to the notation established in Sec-
tion 3.1, if A1.t; rei� /, A2.t; rei� / and A01.t; re

i� /, A02.t; re
i� / are the functions

corresponding to X and X 0, respectively, then the C k-norm of Aj �A0j on a compact
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neighborhood of some component ofK is controlled by the C kC1-norm ofX �X 0. It
follows thatz�.S/ is transverse to zX 0 up to @DK and there is a smooth (hence bounded)
return time toz�.S/ for the dynamics of zX 0. It follows that � is a @-strong Birkhoff sec-
tion for X 0 provided that X 0 is C 1-close enough to X .

Now take a transverse disk sectionD
 near a component 
 ofK, where 
 appears
as an isolated fixed point of the first return map. By the implicit function theorem, this
fixed point varies slightly under C 1-small perturbations of X and defines a periodic
orbit 
 0 for the perturbed vector field, C 2-close to 
 . Combined with the “extension
of isotopies” theorem, we obtain that for every " > 0 there exists a C 1-small neigh-
borhood N".X/ of X such that for every smooth vector field X 0 2 N".X/ there is an
"-small (in C 2) smooth isotopy .�t /t2Œ0;1�, �0 D idM , of M taking 
 to a periodic
orbit 
 0 D �1.
/ of X 0, and similarly for the other binding components. This isotopy
can be taken supported near K. By further multiplying by a function h "-close to 1
in C 1, the vector fields .�1/�X and hX 0 get to agree on �1.K/. Our work shows
that � is a @-strong Birkhoff section for .�1/�.hX 0/. It follows that �1 ı � is a @-strong
Birkhoff section for X 0 when X 0 2 N".X/.

6. Genericity of positive entropy

Let �t WM !M be a flow on a closed 3-manifold. The topological entropy htop.�
t / is

a non-negative number that measures the complexity of the flow. We review a defini-
tion, originally introduced by Bowen [10]. We first endow M with a metric d . Given
T > 0, we define

dT .x; y/ D max¹d.�t .x/; �t .y// W t 2 Œ0; T �º

for any couple of points x;y 2M . A subset S �M is .T; "/-separated if for all x ¤ y
in S we have that dT .x; y/ > ". Let N.T; "/ be the maximal cardinality of a .T; "/-
separated subset of M . The topological entropy is defined as

htop.�
t / D lim

"!0
lim sup
T!1

1

T
log.N.T; "//:

IfM has dimension 3 and the flow is at least C 2, deep results of Katok [36] adapted to
the case of flows by Lima and Sarig [42], imply that having positive entropy is equiv-
alent to the existence of a transverse homoclinic connection: an intersection between
the stable and unstable manifolds of a hyperbolic periodic orbit that is transverse.
Thus, having positive topological entropy is an open condition in the C1-topology.
Consequently, to establish Theorem 1.5 it remains to show that every contact form on
a fixed closed contact 3-manifold can be arbitrarily well C1-approximated by a con-
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tact form that defines the same contact structure, and whose Reeb flow has positive
topological entropy.

6.1. Input from topological surface dynamics

In this section we review results on the dynamics of surface homeomorphisms due to
Mather [43], Koropecki [39], Koropecki, Le Calvez and Nassiri [40], and Le Calvez
and Sambarino [41], as well as some basic notions in Carathéodory’s theory of prime
ends.

In this section S is an orientable surface without boundary. A boundary represen-
tative of S is a sequence P1 � P2 � P3 : : : of connected, unbounded (not relatively
compact), open sets such that @Pi is compact for every i , and such that for every
K � S compact there exists nK such that i > nK implies Pi \ K D ;. Here @Pi
denotes the topological boundary of Pi relative to S . Two boundary representatives
¹Piº and ¹P 0i º are equivalent if for every n there exists m such that Pm � P 0n, and
vice versa. An ideal boundary point is an equivalence class of boundary representa-
tives. The set of ideal boundary points of S , also called the ideal boundary of S , is
denoted by bIS . The ideal completion of S is defined by cIS D S t bIS , with the
topology generated by the open subsets of S , and sets of the form V [ V 0 where V
is an open subset of S whose boundary relatively to S is compact, and V 0 � bIS
consists of points that admit a boundary representative ¹Piº satisfying Pi � V for
every i . If f WS ! S is a homeomorphism then there is an induced homeomorphism
fS W cIS ! cIS . If bIS is finite then cIS is an orientable compact surface without
boundary.

Let U � S be open. The impression of p 2 bIU in S is the set

Z.p/ D
\

V�cIU open
p2V

clS .V \ U/

where clS denotes closure relative to S . Note that Z.p/ is closed in S and contained
in the topological boundary @U of U relative to S . If S has finite genus then an ideal
boundary point p 2 bIU is said to be regular if p is isolated in bIU and Z.p/ has
more than one point.

A compact set K � S is called a continuum if it is connected and has at least two
points. A continuum K is said to be cellular if K D \n2NDn where each Dn � S
is a closed disk, and DnC1 is contained in the interior of Dn, for every n. Cellular
continua are contractible in S , see [40, p. 411]. A continuum K is said to be annular
if K D \n2NAn, where each An � S is homeomorphic to a closed annulus, AnC1
is contained in the interior of An, and K separates both boundary components of An,
for every n.
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From now on S is assumed to have finite genus. Let U � S be open and p 2 bIU
be regular. In Carathéodory’s theory of prime ends one constructs a space bEpU
homeomorphic to a circle, in such a way that if U is invariant by a homeomorphism
f WS ! S then there is an induced homeomorphism on bEpU . Its Poincaré’s rotation
number is denoted by �.f; p/ 2 R=Z. The reader is referred to [40, Section 3] for a
nice introduction to the theory of prime ends.

From now on let f W S ! S be an orientation preserving homeomorphism. A
1-translation arc 
 for f is defined to be an embedded compact arc from a point x,
which is not a fixed point of f , to f .x/ such that f .
/ \ 
 is either equal to ¹f .x/º
or equal to ¹x; f .x/º, the latter case precisely when x is fixed by f 2. If N � 2,
then a N -translation arc for f is a 1-translation arc such that f k.
/ \ 
 D ; for all
2 � k � N � 1, and f N .
/\ 
 is either equal to ; or to ¹xº, the latter case precisely
when x is fixed by f NC1.

Theorem 6.1 (Special case of [40, Theorem 4.2]). Suppose that S is compact, and
that U � S is an open f -invariant disk such that S n U has more than one point.
Assume that f preserves a Borel measure � on S such that �.W / > 0 for every non-
empty open setW � S , and that �.U n C/ <1 for some compact set C � U . Let p
be the point in bIU and assume that �.f; p/ ¤ 0. Then there exists N 2 N and a
compact set K � U such that every N -translation arc in S nK is disjoint from @U .

The assumption that f preserves a Borel measure that is positive on non-empty
open sets and finite on U n C for some compact C � U , implies that f is @-non-
wandering in the sense [40, Definition 3.10]. The latter property is an assumption
of [40, Theorem 4.2].

Theorem 6.2 ([40, Corollary 7.2]). Suppose that S is compact, f is non-wandering,
U � S is an f -invariant open connected set, and p 2 bIU is regular and fixed.
If �.f; p/ is irrational then either Z.p/ is an annular continuum with no periodic
points, orZ.p/ is a cellular continuum with a unique fixed point and no other periodic
points.

To conclude this section we review the notions of Moser stable and Mather secto-
rial periodic points from [43, Section 5]. Let q be a fixed point of f .

Choose a contracting homeomorphism ˛ of Œ0;C1/, i.e., ˛n.t/! 0 for all t � 0.
The map .s; t/ 7! .˛.s/; ˛�1.t// defines a homeomorphism of Œ0;C1/ � Œ0;C1/
denoted by ˛ � ˛�1. An elementary sector for .f; q/ is a closed subset U � S such
that q 2 @U , q has a neighborhood N in U satisfying f .N / � U and f �1.N / � U ,
and the germ of f jU at q is topologically conjugate to the germ of ˛ � ˛�1 at .0; 0/.
Then q is said to be a Mather sectorial fixed point of f if a neighborhood of q in S
is a finite union of elementary sectors for .f; q/. It turns out that this definition is
independent of the choice of ˛.



V. Colin, P. Dehornoy, U. Hryniewicz, and A. Rechtman 590

The point q is a Moser stable fixed point of f if every neighborhood of q in S
contains an f -invariant diskD with q in its interior, such that f j@D has an orbit dense
in @D.

If q is a periodic point of f , then q is a Mather sectorial periodic point of f if
it is a Mather sectorial fixed point of f n for some n. Similarly, q is a Moser stable
periodic point of f if it is a Moser stable fixed point of f n for some n.

Remark 6.3. Let q be a Mather sectorial periodic point of f . It follows from the
above definitions that there exists n � 1 such that f n.q/ D q, and such that for every
N � 1 there is neighborhood VN of q in S with the following property: every point
in VN n ¹qº belongs to an N -translation arc for f n.

We continue to follow [43, Section 5] closely. A fixed connection of f is an
f -invariant arc 
 � S whose end points are fixed points of f , or an f -invariant
circle 
 such that f j
 is orientation preserving and 
 contains a fixed point of f . A
periodic connection is a fixed connection of f n, for some n.

Let � be a Borel probability measure on S . We denote by A.S; �/ the set of
orientation preserving homeomorphisms f WS!S satisfying f��D�. We denote by
G .S; �/ the subset of A.S; �/ consisting of those homeomorphisms such that every
periodic point is Mather sectorial or Moser stable, and have no periodic connections.

6.2. Applications to return maps of Birkhoff sections

Our goal here is to establish the following result.

Proposition 6.4. Let � be a strongly non-degenerate contact form defined on a closed
and connected 3-manifold M . If its Reeb flow has no elliptic periodic orbits, and has
a @-strong Birkhoff section, then some periodic orbit has a homoclinic connection.

We are now concerned with the proof of Proposition 6.4. The Birkhoff section is
an immersion �W S ! M defined on a compact orientable surface with boundary S
as in Definition 2.4. As explained in Section 3, we can blow the link L D �.@S/ up
and obtain a 3-manifold DL with boundary, whose boundary components consist of
invariant tori. It is straightforward to check that there is a unique immersiony�WS!DL

that agrees with � on PS D S n @S , maps @S to @DL and is transverse to @DL along @S .
As in the proof of Proposition 5.1,y� defines a smooth embedding S ,!DL transverse
to @DL that defines a global section for the extended flow on DL, and is still denoted
by S for simplicity. The return map on S is a smooth diffeomorphism. The space cI PS
is nothing but the closed orientable surface obtained from S by collapsing the bound-
ary components to points. The return map on S induces an orientation preserving
homeomorphism

f W cI PS ! cI PS
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that is smooth on PS , and such that bI PS consists of periodic points. If � is the contact
form defining the Reeb flow onM , then d� defines a finite Borel measure on PS that is
invariant by f j PS . After normalizing, we get an induced Borel probability measure �
on cI PS with the following properties:

• � is f -invariant;

• every non-empty open subset W � cI PS satisfies �.W / > 0;

• � agrees on PS with a constant multiple of the measure induced by d�.

Since every component 
 of L is a hyperbolic periodic orbit of the Reeb flow, the
embedded surface S � DL could be modified in such a way that all points in bI PS
are Mather sectorial periodic points of f , keeping all the other properties described
so far. This follows from a normal form of the Reeb flow near the hyperbolic closed
Reeb orbit 
 . Clearly, every periodic point in PS coming from a periodic orbit of the
Reeb flow in M n L is Mather sectorial, since all closed Reeb orbits are hyperbolic.
Moreover, the strong non-degeneracy assumption implies that there are no periodic
connections. Summarizing, we have f 2 G .cI PS;�/. It follows that f n 2 G .cI PS;�/

for every n 2 Z.
The next statement is a direct application of [43, Theorem 5.1] and of Theo-

rem 6.2. Its proof is extracted from the proof of [40, Theorem 8.3].

Lemma 6.5. Let U � cI PS be an open f -invariant connected set, and let p 2 bIU
be regular and periodic. Then Z.p/ � cI PS is an annular continuum with no periodic
points of f .

Proof. Up to taking powers, there is no loss of generality to assume that U is invari-
ant and p is fixed. A key tool is [43, Theorem 5.1] asserting that if g is an area-
and orientation-preserving homeomorphism of an orientable surface such that every
periodic point is either Moser stable or Mather sectorial with no periodic connec-
tions, if V is a g-invariant open set, and if q 2 bIV is regular and fixed by the map
on cIV induced by g, then �.g; q/ ¤ 0 in R=Z. Applying this fact to U and all iter-
ates of f we conclude that �.f;p/ is irrational. Theorem 6.2 implies that either Z.p/
is an annular continuum with no periodic points, or it is a cellular continuum that has
a fixed point x of f and no other periodic points of f . Note that Z.p/ has empty
interior since it is contained in the boundary of U . Now we reproduce the argument
from [40, Theorem 8.3] with small adaptations, and assume by contradiction that the
latter alternative holds.

The surface cI PS cannot be a sphere. Otherwise cI PS n Z.p/ would be an open
f -invariant disk with irrational prime ends rotation number. The fixed point x inZ.p/
is Mather sectorial. We can use Remark 6.3 to find, for every N , an N -translation
arc 
 for f inside any neighborhood of x, such that 
 intersects Z.p/. This contra-
dicts Theorem 6.1; note that cI PS n U is not a point since Z.p/ is a continuum.
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It follows that the universal covering � WR2 ! cI PS is a plane. Choose a point
zx 2 ��1.x/, and a lift zf of f such that zf .zx/ D zx. Let K be the connected compo-
nent of ��1.Z.p// contained in a disk zD having zx in its interior, and that �j zD is a
homeomorphism onto a neighborhood of Z.p/. Then zf .K/ D K and K has empty
interior. Let S 0 be the one-point compactification of R2, i.e., S 0 is the sphere obtained
from R2 by adding a point at infinity, and let f 0WS 0 ! S 0 be the map induced by zf .
Then U 0 D S 0 nK is an open disk with @U 0 DK (boundary relative to S 0). If p0 is the
(unique) point of bIU 0 then �.f 0;p0/D �.f;p/ is irrational. But zx is Mather sectorial
and we can argue as above, using Remark 6.3, to find, for every N , an N -translation
arc 
 for f 0 inside any neighborhood of zx, such that 
 intersects K. This contradicts
Theorem 6.1.

Corollary 6.6 ([40, Corollary 8.7]). If U � cI PS is an open connected f -periodic set
with #bIU <1, then the boundary ofU is a finite disjoint union of aperiodic annular
continua and periodic points.

Proof. The set bIU consists of finitely many periodic points for the induced map
fU W cIU ! cIU . Moreover, every point in bIU is an isolated point. Indeed, let

p D Œ.Pi /i2N � and q D Œ.Qj /j2N �

be two points in bIU . If there exists i0; j0 such that Pi0 \Qj0 is relatively compact
in S , then there exists i1; j1 such that for every i > i1 and j > j1, Pi \Qj D ;
(since by definition Pi avoids every fixed relatively compact set for i large enough)
and thus p and q are separated. Otherwise, Pi \Qj is unbounded for all i; j .

We decompose

Pi D .Pi n clS .Qj // t .Pi \ @SQj / t .Pi \Qj /:

For i large enough, Pi avoids the compact @SQj and, as Pi is connected, it is con-
tained either in the open set Pi n clS .Qj / or in the open set Pi \Qj . It is necessarily
in Pi \Qj since Pi \Qj is unbounded (hence non-empty), and thus Pi �Qj when
i is large enough. Exchanging the role of p and q we also get that given i , if j is large
enough Qj � Pi . Putting the two inclusions together, we get p D q.

We find n � 1 such that U is invariant by f n, and every point in bIU is fixed
by .fU /n. Let p 2 bIU . If Z.p/ is not a point then p is regular and, by Lemma 6.5,
Z.p/ is an aperiodic annular continuum invariant by f n. IfZ.p/ is a point then it is a
periodic point of f . The conclusion follows since the boundary ofU is

S
p2bIU

Z.p/.

Corollary 6.7 ([40, Corollary 8.9]). Let x 2 PS be a periodic point of f , which is
necessarily hyperbolic. If x belongs to some periodic continuum K � cI PS , then the
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stable and unstable manifolds of x are contained in K. Moreover, all four stable and
unstable branches of x have the same closure in cI PS .

Proof. Let 
 be a branch of x, stable or unstable, such that 
 6� K. Then 
 intersects
a connected component V of cI PS nK such that x 2 @V . The set V is periodic since f
preserves�. By [43, Lemma 2.3], see also [40, p. 457], bIV is finite. By Corollary 6.6,
@V is a disjoint finite union of periodic points and aperiodic annular continua. But
the connected component of @V containing x is not an aperiodic continuum since it
contains the periodic point x. Hence x is an isolated point of @V , in particular also
of K, in contradiction to the fact that K is a continuum.

Let 
1; 
2 be branches of x. The closure K of 
1 in cI PS is a periodic continuum.
Hence, by what was proved above, 
2 � K. It follows that the closure of 
2 is con-
tained in the closure of 
1. The same argument interchanging the roles of 
1 and 
2
concludes the proof.

With the above results in place, we can consider a relation on the set of periodic
points of f contained in PS . Note that, by assumption, all such periodic points are
hyperbolic. Similarly to [41, Section 3], a periodic point x1 is related to a periodic
point x2 if each of the four stable/unstable branches of x1 has the same closure as any
of the four branches of x2. This relation is clearly symmetric and transitive. Reflexiv-
ity is non-trivial and follows from Corollary 6.7. Hence, this is an equivalence relation.
The set of equivalence classes is denoted by E.f /. For a given � 2 E.f / we denote
by K.�/ the closure of one (hence any) of the four branches of a point in �.

Lemma 6.8 ([41, Corollary 3.2]). If � 2 E.f / and x 2 PS is a (hyperbolic) periodic
point such that x 2 K.�/, then x 2 �.

Proof. Let �0 2 E.f / denote the class of x. By Corollary 6.7,K.�0/�K.�/. Suppose
by contradiction thatK.�/ 6�K.�0/. Then there is a periodic connected component V
of cI PS nK.�0/ such that

K.�/ \ V ¤ ;:

Let z 2 �, then its branches intersect V . Since V is periodic, there exists n such that
f n.V / D V , and hence z belongs to the closure of V . Assume that z 2 @V . By [43,
Lemma 2.3], see also [40, p. 457], bIV is finite. In particular, bIV consists of isolated
points, and for every p 2 bIV the set Z.p/ is not a point. It follows from Lemma 6.5
that for every p 2 bIV , the set Z.p/ is an annular continuum with no periodic point.
But for some p the set Z.p/ contains z, proving that z is in the interior of V as well
as all of its branches. This contradiction shows that K.�/ � V . This then implies that

K.�0/ \K.�/ D ;;

again a contradiction since this intersection contains x. Thus K.�/ D K.�0/, from
where it follows that � D �0.
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The above lemma was the last tool we needed to be able to conclude that the
proof of [41, Proposition 5.1] can be reproduced ipsis litteris to establish the following
statement. We do not reproduce the argument here.

Lemma 6.9. Let g be the genus of cI PS . Every set of (necessarily hyperbolic) periodic
points in PS with strictly more than 2g elements contains at least one point that has a
homoclinic connection.

We can now finish the proof of Proposition 6.4. Since the contact form � is non-
degenerate, a result from [11] implies that there are either two or infinitely many
periodic Reeb orbits. If there are exactly two periodic orbits then the results from [13]
imply that both are elliptic. Since we work under the assumption that there are no
elliptic periodic Reeb orbits, it follows that there are infinitely many such periodic
orbits. These give rise to infinitely many periodic points of f in PS . From Lemma 6.9
we get the desired homoclinic connection.

6.3. Proof of Theorem 1.5

Fix a co-orientable contact structure on M . Consider the set ƒ of contact forms
defining � , equipped with the C1-topology. This set is an open subset of the vec-
tor space �1.M/ equipped with the C1-topology. The latter is a topological vector
space whose topology can be defined by a complete metric. Consider the setƒC � ƒ
of contact forms whose Reeb flows have positive topological entropy. As mentioned
before, ƒC is open, and we need to show that ƒC is dense in ƒ.

Letƒ� �ƒ denote the set of non-degenerate contact forms. As is well known,ƒ�
contains a countable intersection of open and dense subsets of ƒ. In particular, ƒ� is
dense in ƒ. Let ƒe � ƒ denote the subset of all contact forms that admit at least one
elliptic closed Reeb orbit. Then ƒh D ƒ� n ƒ

e consists precisely of those contact
forms on ƒ all of whose periodic Reeb orbits are hyperbolic.

Let � 2 ƒ� \ ƒe and 
 an elliptic periodic Reeb orbit of �. The Poincaré map
on a small section transverse to 
 can be described as a symplectic embedding '0
defined on an open neighborhood of .0; 0/ 2 R2 into R2, such that '0.0; 0/ D .0; 0/.
Up to a linear symplectic change of coordinates, there is no loss of generality to
assume thatD'0.0;0/DR˛0 is rotation by an angle ˛0 2R n 2�Q. Therefore, we can
write '0 D R˛0 ı  0 for some symplectic map  0 defined near the origin, satisfying
 .0; 0/ D .0; 0/, D 0.0; 0/ D I . It follows that  0 can be represented near .0; 0/ by
a generating function u0. This means that

 0.x; y/ D .X; Y / ,

´
X � x D D2u0.x; Y /;

y � Y D D1u0.x; Y /:
(20)
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Here D1 and D2 denote partial derivatives of u0 with respect to first and second
variables, respectively. The Hessian of u0 at .0; 0/ vanishes.

Let r 2 N be arbitrary. It follows [52, Corollary 1] that u0 can be C r -slightly
perturbed on a small fixed neighborhood of .0; 0/ to a C r -function u1, and that ˛0
can be slightly perturbed to ˛1 2 R n 2�Q, in such a way that the following holds:
If  1 is the map induced by u1 as in (20), then the map '1 D R˛1 ı 1 has transverse
homoclinic connections in every neighborhood of .0; 0/.

Using bump functions one constructs a C r function u defined on a small open
neighborhood of .0; 0/, that agrees with u1 near .0; 0/ and with u0 outside of a
small neighborhood of .0; 0/, whose C r -distance to u0 is controlled by the C r -
distance between u1 and u0. Such a function can be used to construct a symplectic
C r -embedding ' defined on a small open ball centered at .0; 0/ that agrees with '1
near the origin and with '0 outside of a neighborhood of the origin. The map ' can
be embedded as Poincaré map of an elliptic periodic orbit of a contact form �0 of
class C rC1. By construction, the contact form �0 has a hyperbolic periodic Reeb orbit
with a homoclinic connection. Hence, �0 can be C rC1-slightly perturbed to a smooth
contact form �00 that has a hyperbolic periodic Reeb orbit with a homoclinic connec-
tion. In particular, �00 2 ƒC. Since r � 1 is arbitrary and the size of the perturbations
can be taken arbitrarily small, we find via the above process a sequence of smooth
contact forms �n 2 ƒC such that �n ! � in C1.

Now let � 2 ƒ nƒe . There is a sequence of contact forms �n satisfying �n ! �

in C1, such that every �n is strongly non-degenerate and has a @-strong Birkhoff
section for its Reeb flow. This is so because both properties are C1-generic; the
latter property holds in an open and dense set of contact forms in the C1-topology
by Corollary 1.2. If there exists a subsequence nj !1 such that �nj 2 ƒe then, by
what was observed so far, � is a limit of contact forms in ƒC. Hence, it remains to
deal with the case where there exists N 2 N such that for every n � N the contact
form �n is strongly non-degenerate, its Reeb flow has a @-strong Birkhoff section, and
all periodic Reeb orbits are hyperbolic. Proposition 6.4 implies that for every n � N
the Reeb flow of �n has a hyperbolic periodic orbit with a homoclinic connection,
which in turn implies that �n 2 ƒC. The proof of Theorem 1.5 is complete.

A. A result in Schwartzman–Fried–Sullivan theory

In this appendixM is a closed, connected and oriented 3-manifold, andX is a smooth
vector field on M . The flow of X is denoted by �t . Let L � M be a link formed by
periodic orbits. As before, we denote by P�.M n L/ the set of �-invariant Borel
probability measures onM nL. The statement below can be found as Theorem 2.3 in
the extended arXiv version of [46], but its proof was not available in the literature as



V. Colin, P. Dehornoy, U. Hryniewicz, and A. Rechtman 596

far as we know, except for some arguments sketched by Ghys [24], and for a version
stated in terms of homology directions by Fried [22].

Theorem A.1. Suppose that there exists y 2 H 1.M n LIR/ satisfying

(i) � � y > 0 for all � 2 P�.M n L/;

(ii) �y.
/ > 0 for all 
 � L.

Then there exists a @-strong Birkhoff section for �t whose boundary components are
contained in L.

Remark A.2. A refinement of Theorem A.1 with conditions for global surfaces of
section representing a prescribed homology class can be found in [31].

Remark A.3. Some components of L may not be contained in the boundary of the
Birkhoff section provided by Theorem A.1.

A.1. Preliminaries

A.1.1. Blowing up periodic orbits. As proved in Section 3.1, we can blow L up
and construct a new manifold without boundary ML (4), containing a special smooth
compact domain DL (6). The domain DL � ML is the closure of M n L in ML.
Moreover, X can be extended from M n L to ML as a smooth vector field XL. The
vector field XL is not unique, but its restriction to DL is unique. Moreover, XL is
tangent to @DL and the dynamics on @DL captures the linearized dynamics along the
components of L in a precise way described in Section 3.1.

For later purposes we need to fix some notation. Denote the components of L by

1; : : : ; 
h and their primitive periods by Tj > 0. For each j D 1; : : : ; h, †j � @DL
denotes the boundary torus associated to the end of M n L near 
j .

A.1.2. Schwartzman cycles and structure currents. For every p � 0 one can turn
�p.ML/ into a topological vector space by equipping it with the C1loc -topology. Its
topological dual is denoted by Cp D �p.ML/

0 and equipped with the weak* topol-
ogy. As mentioned before, an element of Cp is a p-current with compact support.
Denote by C 0p the topological dual of Cp equipped with its weak* topology. The map
�p.ML/ ! C 0p given by ! 7! h�; !i is a linear homeomorphism, in other words
�p.ML/ is reflexive. There is a boundary operator @W CpC1 ! Cp defined as the
adjoint of the exterior derivative d W�p.ML/!�pC1.ML/. A current in Cp is called
a cycle if it is in the kernel of @WCp ! Cp�1, and is called a boundary if it is in the
image of @W CpC1 ! Cp . The space of boundaries is denoted by Bp , the space of
cycles by Zp , and we have Hp.MLIR/ D Zp=Bp .

Consider the set P.ML/ of compactly supported finite Borel measures on ML,
and let P�L.DL/ � P.ML/ be the subset of those which are �L-invariant probability
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measures supported on DL. Any � 2 P.ML/ defines a 1-current c� 2 C1 by the
formula

hc�; !i D

Z
ML

!.XL/ d�; ! 2 �1.ML/:

We follow Sullivan’s notation and write

c� D

Z
ML

XL d�:

If � is supported on DL, then c� is a cycle if, and only if, � is �L-invariant. The
elements of the set

SX WD ¹c� j � 2 P�L.DL/º � Z1

will be called Schwartzman cycles. The Dirac currents ıp 2 C1, p 2ML, are defined
by

hıp; !i D !.XL/jp 2 R:

Let C � C1 denote the closed convex cone generated by ¹ıp j p 2 DLº. In [49], C is
called the cone of structure currents in DL. The following lemma summarizes the
analytical facts we need.

Lemma A.4 ([31, Lemmas 3.3 and 3.4]). The following hold:

(I) There exists ! 2 �1.ML/ such that hc; !i > 0 for every c 2 C n ¹0º.

(II) If ! is as in (I), then the convex set K D ¹c 2 C j hc; !i D 1º is compact.

(III) For every c 2 C, there exists a unique finite Borel measure � on DL such
that

c D

Z
DL

XL d�:

A.2. Transverse foliations

Let ˇ be a closed 1-form ˇ 2 �1.ML/ that represents y on M nL D DL n @DL. We
claim that

hc�; ˇi > 0 8� 2 P�L.DL/: (21)

To see this, let � 2 P�L.DL/ be arbitrary. For every Borel set E �ML, define

�j .E/ D �.E \†j / P�.E/ D �.E \ .DL n @DL// D �.E \ .M n L//:

Then P� and the �j are �L-invariant Borel measures, and � D P�C
P
j �j . We have

hc�; ˇi D

Z
ML

ˇ.XL/ d� D

Z
ML

ˇ.XL/ d P�C

hX
jD1

Z
ML

ˇ.XL/ d�j : (22)
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If �j .ML/D �.†j / > 0, then �j =�j .ML/ 2 P�L.DL/ is supported on†j . By Lem-
ma 3.6 and the hypotheses of Theorem A.1,Z

ML

ˇ.XL/ d�j D

Z
†j

ˇ.XL/ d�j D
2�

Tj
�j .ML/�

y.
j / > 0:

If P�.ML/ D �.M n L/ > 0, then P�= P�.ML/ induces an element of P�.M n L/. By
the hypotheses of Theorem A.1,Z

ML

ˇ.XL/ d P� D

Z
MnL

ˇ.X/ d P� > 0:

Thus each term in the sum (22) is non-negative, and at least one term is positive since
�.ML/ D �.DL/ D 1. We have established (21).

By (I) and (II) in Lemma A.4, there exists ! 2 �1.ML/ such that h�; !i > 0

on C n ¹0º, andK D ¹c 2 C j hc;!i D 1º is compact and convex in C1. Let c 2 C n ¹0º
be a cycle. By (III) in Lemma A.4,

c D

Z
ML

XL d�

for some positive finite Borel measure � supported on DL, and � must be invariant
because c is a cycle. In other words, � WD �=�.ML/ 2 P�L.DL/ and c D �.ML/c�

for a Schwartzman cycle c�. From (21), we conclude that

hc; ˇi D �.ML/hc�; ˇi > 0:

In particular, C \ B1 D ¹0º, or equivalently K \ B1 D ;, and ˇ evaluates positively
on K \ Z1. By [31, Theorem A.1], we find �0 2 C 01 that vanishes on B1, is positive
on K, and agrees with ˇ on Z1. By reflexivity C 01 D �

1.ML/, we conclude that �0
is a 1-form, and as such it must be closed since it vanishes on B1. Moreover, �0jMnL
represents y since it agrees with ˇ on Z1. Finally, note that

�0.XL/jp D hıp; �i > 0 8 p 2 DL (23)

because h�; �0i > 0 on C n ¹0º.
The kernel of �0 integrates to a foliation transverse to XL, and hence to X on

M n L, but in general this foliation might behave very badly. In the next Section we
shall deal with this issue by well-known arguments.

A.3. Birkhoff sections

Note that H 1.MLIR/ ' H 1.M n LIR/ is a finite-dimensional vector space. Hence,
in view of (23), we can find arbitrarily C1loc -close to �0 a 1-form �1 on ML which is
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closed, has rational periods, and still satisfies (23). Consider inclusions �WDL ,!ML

and �j W†j ,! ML. The class Œ���1� 2 H 1.DLIR/ is close to y, and induces a class
in H 1.DLIQ/. Choose m 2 N such that � WD m�1 has integer periods. Note that �
satisfies (23), that is

�.XL/jp D hıp; �i > 0 8 p 2 DL: (24)

Denote by N 2 N a generator of the group of periods of �. Then, after arbitrarily
choosing a point p0 2 M n L, we can define a map prWDL ! R=Z by setting pr.p/
to be the integral of N�1��� along any path from p0 to p, modulo Z:

pr.p/ D
1

N

Z p

p0

��� mod Z:

The map prWDL! R=Z is a smooth surjective submersion in view of (24). It follows
from this construction that if cWS1 !M n L is a smooth loop then

1

N

Z
c

� D degree of pr ı c:

The preimages pr�1.x/ are the leaves of a foliation of DL obtained by integrat-
ing ker ���. Each pr�1.x/ is a compact embedded submanifold of DL that intersects
the boundary @DL cleanly, since it is transverse to XL and XL is tangent to @DL.
It follows that pr�1.x/ � DL is a smooth embedded surface transverse to XL with
boundary equal to pr�1.x/ \ @DL. Each leaf pr�1.x/ can be co-oriented by the vec-
tor field XL, and can also be co-oriented by pulling back the canonical orientation
of R=Z via the map pr. These co-orientations coincide by construction. Note that all
trajectories in DL will hit all leaves pr�1.x/ in finite time, both in the future and in
the past: this follows from compactness of DL and from (24). In particular, for all
x 2 R=Z the surface pr�1.x/ is a global surface of section for the flow of XL on DL.

In a final step we modify one given fiber of the map pr to obtain a Birkhoff section
for the flow of X on M . Let us fix x 2 R=Z arbitrarily. For each j 2 ¹1; : : : ; hº, we
choose coordinates

.t; �/ 2 R=TjZ �R=2�Z ' †j

as explained in Section 3.1. These can be used to write a basis ¹dt;d�º ofH 1.†j IR/.
Note that N�1��j � is homologous to a1 dt=Tj C a2 d�=2� for some a1; a2 2 Z.
Assume that pr�1.x/ \†j ¤ ;, and let us consider a connected component ˛ of
pr�1.x/ \ †j , oriented as part of the boundary of pr�1.x/. Then ˛ is non-trivial
in H1.†j IZ/, since otherwise it would bound a disk D � †j with XL t @D thus
forcing a singularity of XL on †j . Let ¹e1; e2º be the basis in H1.†j IZ/ dual to
¹dt=Tj ; d�=2�º and write ˛ D n1e1 C n2e2 in homology. We already know that

.n1; n2/ ¤ .0; 0/:
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Since ˛ is an embedded loop in †j we also know that .n1; n2/ is primitive: if d 2 N

and .n1; n2/=d 2 Z � Z, then d D 1. Moreover,

0 D N�1
Z
˛

��j � D a1n1 C a2n2:

The numbers n1; n2 depend only on j and not on the choice of ˛. Using the transver-
sality of the flow, we can deform pr�1.x/ near pr�1.x/\†j to obtain a surface S that
intersects @DL transversely, is transverse to XL up to the boundary, still is a global
section for the flow on DL, and such that the following holds: if n1 D 0, then S coin-
cides with finitely many annuli of the form ¹t D t�; r 2 Œ0; "/º near †j ; if n1 ¤ 0,
then dt does not vanish tangentially to S \ †j . Now we collapse each †j to 
j to
obtain again the manifold M from DL. This collapsing map can be defined by

.t; r; �/ 7! .t; rei� /

near each†j . In this process S gets map to a Birkhoff section for the flow ofX onM .
The transversality to the flow on @DL before applying the projection implies that we
get a @-strong Birkhoff section. In the notation above, if n1 D 0 then each loop ˛ gets
mapped to an interior point of the obtained section where it intersects 
j transversely,
and if n1 ¤ 0 then the orbit 
j gets covered jn1j times.

Remark A.5. Since the Birkhoff section obtained is @-strong, the associated return
time function is bounded.

B. A lemma on weak* convergence

Let X be a compact manifold and let � be a regular1 Borel probability measure on X .
Let �n be a sequence of Borel probability measures satisfying �n ! � in the weak*
topology.

Lemma B.1. If V � X is open with �.@V / D 0, and if f W V ! R is a continuous
bounded function, then Z

V

f d�n !

Z
V

f d�:

Proof. We start with a claim.

Claim. For every � > 0 there exists an open neighborhoodW of @V , and n0 � 1, such
that n � n0) �n.W / < �.

1A Borel probability measure is regular if for every Borel set E and every " > 0, we find
a compact set K and an open set U such that K � E � U , �.K/ > �.E/ � " and �.U / <
�.E/C ".
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Proof of the claim. To prove the claim, we use the regularity of � to find an open
neighborhoodW 0 of @V such that �.W 0/ < �. Now we find  WX ! Œ0; 1� continuous
such that supp. / � W 0 and  jW � 1 on some open neighborhood W � W 0 of @V .
Then

� > �.W 0/ �

Z
X

 d� D lim
n!1

Z
X

 d�n;

which implies that we can find n0 such that

n � n0 ) �n.W / �

Z
X

 d�n < �

as desired. The proof of the claim is complete.

Let " > 0 be fixed arbitrary. For any ı > 0 we can use the regularity of � to find a
compact set K0 � V such that �.K0/ > �.V / � ı=2, and an open set U0 � V such
that �.U0/ < �. xV /C ı=2. By the claim proved above we find an open neighborhood
W of @V and n0 such that �n.W / < ı for all n � n0. Consider sets

K D K0 [ .V nW /; U D U0 \ .V [W /:

Then K � K0 is compact, U � U0 is open, and U n K � W . Moreover, we can
estimate

�.U nK/ � �.U0 nK0/ D �.U0/ � �.K0/

< �. xV /C ı=2 �
�
�.V / � ı=2

�
D ı;

where the assumption �.@V / D 0 was used to get the equality �.V / D �. xV /. In
addition, we have

n � n0 ) �n.U nK/ � �n.W / < ı:

Now consider 'WX ! Œ0; 1� continuous such that supp.'/ � U n K and ' � 1 on
some neighborhood of @V . Let hWX ! R be the continuous function that agrees with
.1 � '/f on V and vanishes on X n V . By the assumption that �n ! � weak*, we
can find n1 such that

n � n1 )

ˇ̌̌̌Z
X

h d�n �

Z
X

h d�

ˇ̌̌̌
< ı:

We can estimateˇ̌̌̌Z
V

f d�n �

Z
V

f d�

ˇ̌̌̌
D

ˇ̌̌̌Z
V

'f d�n �

Z
V

'f d�C

Z
X

h d�n �

Z
X

h d�

ˇ̌̌̌
�

ˇ̌̌̌Z
V

'f d�n

ˇ̌̌̌
C

ˇ̌̌̌Z
V

'f d�

ˇ̌̌̌
C

ˇ̌̌̌Z
X

h d�n �

Z
X

h d�

ˇ̌̌̌
�
�
sup jf j

��
�n.U nK/C �.U nK/

�
C

ˇ̌̌̌Z
X

h d�n �

Z
X

h d�

ˇ̌̌̌
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from where we see that if n � max¹n0; n1º, thenˇ̌̌̌Z
V

f d�n �

Z
V

f d�

ˇ̌̌̌
� 2ı

�
sup jf j

�
C ı:

Finally, note that we could have chosen ı > 0 satisfying 2ı.sup jf j/ C ı < ". The
proof of the lemma is complete.

C. An alternative proof of the C 1-density of the existence of a Birkhoff
section

In this appendix we sketch an alternative proof of the following direct consequence of
Corollary 1.2. As the proof takes a different path, we think it is worth mentioning it.

Theorem C.1. If .M; �/ is a closed oriented 3-manifold then the set of Reeb vector
fields for � on M that admit a Birkhoff section is C 1-dense in the set of Reeb vector
fields.

As we have mentioned in the introduction, aC1-generic contact form � on .M;�/
is non-degenerate. Let R be the Reeb vector field of �. In that case, by [11, Theo-
rem 1.1], R is carried by a broken book decomposition .K;F /. The bindingK of the
broken book decomposition has radial and broken components, and if all the compo-
nents are radial the broken book decomposition is a rational open book decomposition
and any page is a Birkhoff section. The proof of [11, Theorem 4.13] provides a mech-
anism to successively eliminate broken components of the binding K, inspired by
Fried [23]. It works as follows, see also Figure 2.

Let k 2 K be a broken component of the binding, which is automatically a hyper-
bolic orbit of the Reeb flow R. Assume it is positive (i.e., the eigenvalues of the
linearized first return map are positive) and denote by N and S the two components
of the complement of k in its stable manifold, and byE andW the two components of
the complement of k in its unstable manifold (in red and blue respectively on Figure 2
left). If there is a transverse homoclinic connection p from E to N and a transverse
homoclinic connection q from W to S , then one can find a periodic orbit p0 of R
close to p and another one q0 close to q. There is also a periodic orbit r 0 following
successively p and q thanks to the combinatorial description of the dynamics. In this
situation, Fried [23] constructed a pair of pants P transverse to R, bounded by these
three orbits, and intersecting the orbit k in its interior, see Figure 2.

We add this section P to our broken book decomposition, via the following pro-
cess, sometimes called Fried sum: denoting by SRF

the union of the rigid pages, we
consider the union P [ SRF

. It is an immersed surface with 1-dimensional singular-
ities consisting of arcs ending on boundary orbits of P or SRF

, see Figure 3 left. We
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k

p0

q0
r 0

r 0

Figure 2. On the left, a transversal picture where the central dot is k, the stable manifolds are in
blue, the unstable ones in red, the empty dots correspond to the homoclinic W-S connection q,
the pentagons to the orbit q0, the triangles to the orbit p0 and the 4-pointed stars to the orbit r 0.
On the right the pair of pants P transverse to the vector field R and intersecting the orbit k
constructed by Fried: it is the union of a parallelogram in a local transverse disk whose vertices
lie on p0; r 0; q0 and r 0 respectively, and the image under the flow of the two “almost stable
edges” of this parallelogram. This topological surface is not strictly speaking transverse to the
flow, but one can smooth it and make it transverse to R at the same time.

desingularize those arcs transversally to the vector field, as on the central picture. On
a broken binding orbit transverse to P , the result is depicted on Figure 3 right: the
addition of a meridian circle corresponding to the intersection with P to the boundary
of SRF

gives a boundary for the new surface that intersects all orbits of the projec-
tivized flow, including the stable and unstable direction of the broken binding orbit.
We then obtain a new broken book decomposition, whose new binding is the initial
one increased by the three new orbits p0; q0; r 0 and whose broken binding is the pre-
vious with k removed, i.e., k is no more a broken binding component anymore: it can
either disappear from the binding or become a radial component, depending on the
balance between the number of incoming and outgoing rigid pages. Since the orbits
p0, q0 and r 0 are intersecting the pages of .K;F / transversally, they become radial
components of the new binding.

By applying this process on all broken binding orbits successively, we reduce the
broken part of the binding. After a finite number of steps, the broken book has only
radial binding components, and all its pages are Birkhoff sections for the Reeb flow.

The case where k is a negative hyperbolic periodic orbit is treated in the same
manner. The difference is that now one needs to consider the second iterate of the
return map to a local transversal to the periodic orbit in order to have the same picture.
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Figure 3. On the left is depicted the Fried sum of two transverse surfaces, which amounts to
consider their union and desingularize it transversally to the vector field. On the right what
happens along a broken binding orbit k when adding the pair of pants P to the collection of
rigid pages SRF

. The torus is the blow-up of k. The stable and unstable manifolds are dotted,
the rigid pages are in pink and purple depending on the sector, and P is the orange meridian
circle. If the sum of the longitudinal coordinates of all boundary components of SRF

add up
to 0, then the Fried union with P also has zero longitudinal coordinate, hence the boundary of
the new surface can be made meridional. After an isotopy, we obtain a surface with no boundary
component along k and transverse to it. If this sum is non-zero, then the obtained surface still
has k in its boundary, but k is now in the radial part of the boundary (i.e., the flow winds with
respect to the new surface).

The conclusion so far is that the proof of Theorem C.1 boils down to proving
that by a C 1-small perturbation supported away from the binding K, one can intro-
duce transverse homoclinic connections at will. Note that if the perturbation is small
enough and supported outside a fixed neighborhood of K, then the Reeb vector field
remains carried by .K;F / since the transversality condition is open away from the
binding.

This is a direct application of the work of Bonatti–Crovisier [9] and Arnaud–
Bonatti–Crovisier [4] in the Reeb case. The only thing to check is that Reeb flows
satisfy the Lift axiom of Pugh–Robinson [45]. For its statement and proof below, we
denote by Dr.z/ � R2n and Br.z/ � R2n the closed and open euclidean balls of
radius r > 0 and center z 2 R2n, respectively.

Lemma C.2 (Lift axiom). Equip R2n �R with coordinates .z; t/. Consider a contact
form � on D1.0/ � Œ0; 1� with Reeb vector field R D @t . There exist K > 0 and 0 <
"� < 1=2 with the following property. For every 0 < " < "� and z0 2 B".0/ n ¹0º,
there exists a smooth contact form �0 on D1.0/ � Œ0; 1� with the same contact kernel
as � such that k�0 � �kC2 < K", �0 � � is compactly supported in the open box
B"�1jz0j.0/ � .0; 1/, and the Reeb flow of �0 takes .0; 0/ to .z0; 1/.
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Proof. Fix ˇW Œ0; 1�! Œ0; 1� smooth such that ˇ.t/ D 0 for t near 0, ˇ.t/ D 1 for t
near 1, ˇ0 � 0. For every z0 2 B1.0/, consider the curve


.t I z0/ D
�
ˇ.t/z0; t

�
:

We look for a family of contact Hamiltonians hz0.z; t/ on D1.0/ � Œ0; 1�, depending
on a parameter z0 2 R2n. The associated contact Hamiltonian vector field is

X D hz0RC Y;

where Y is determined by iY � D 0, dhz0 � .iRdhz0/� D iY d�. We would like to
achieve that X is positively tangent to 
 , and that hz0 D 1 along 
 . A simple calcula-
tion shows that these constraints can be met if jz0j is small enough. Moreover, if we
represent dhz0.
.t// D hV.t I z0/; �i by a vector field, then

jV j C j@tV j C j@
2
t V j � cjz0j

for some c > 0 independent of z0. Note that hV.t Iz0/;@t
.t Iz0/iD 0 for all t . Perhaps
after making c larger, but still independent of z0, the function

yhz0.z; t/ D 1C hV.t I z0/; .z � ˇ.t/z0; 0/i

satisfies

kyhz0 � 1kC2.D1.0/�Œ0;1�/ � cjz0j; j
yhz0.z; t/ � 1j � cjz0j.jzj C jz0j/

and meets the requirements along 
 . The discussion so far is independent of ". Con-
sider smooth bump functions �"z0.z/ with values in Œ0; 1�, �"z0 D 1 on D2jz0j.0/, and

supp.�"z0/ � B"�1jz0j.0/; kr�
"
z0
k1 D O

�
"jz0j

�1
�
; kr2�"z0k1 D O

�
"2jz0j

�2
�
:

To conclude, note that there exists "� > 0 small enough such that if 0 < " < "�, then

hz0 D 1C �
"
z0
.z/
�
yhz0.z; t/ � 1

�
is the contact Hamiltonian we were looking for, and �0 D hz0�.

For the rest of the argument, recall from [4, 9] that it uses the fact that in the con-
servative setting there are no wandering points and that there exists N > 0 depending
only on the C 1-size of the perturbation ", such that given any fixed closed neigh-
borhood U of finitely many periodic orbits one can join any two points in the same
connected component of M n .

S
t2Œ0;N � �t .U // by a ı-pseudo-orbit, where ı � "

can be chosen small at will independently of N and ". The jumps of the pseudo-orbit
are contained in a finite number of disjoint flow-boxes in M n U whose radii are of
order ı and lengthN . To construct the flow-boxes, ı has to be taken very small once "
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and N have been fixed. Here �t denotes the flow of R at time t . The ı-pseudo-orbits
can then be turned into genuine ones by "-C 1-small and ı-C 0-small perturbations of
the flow, supported in the flow-boxes (and thus in the complement of U ) and given by
the Lift axiom, see [4, 9].

Precisely here, to make sure that we create a homoclinic connection, we take a
point a on a unstable manifold of a broken component of the binding k and a point b
on one of its stable manifolds. The setU is a small closed neighborhood of the binding
of the supporting broken book so that a and b are in the boundary of U . We can
moreover get that

• the orbit of a for negative time stays in U as well as the orbit of b for positive
times;

• the orbit of a for time Œ0; N � stays outside of U as well as the orbit of b for time
Œ�N; 0�.

We can then find, following [4, 9], two first flow-boxes around the portions of
orbits �Œ0;N �.a/ and �Œ�N;0�.b/ and the remaining ones away from the two first andU ,
provided the endpoints �N .a/ and ��N .b/ belong to the same connected component
of M n .

S
t2Œ0;N � �t .U //. This last condition is always achievable by taking U small

enough.
Then the Lift axiom gives a perturbed Reeb vector field, with a deformation sup-

ported in our collection of flow-boxes (and thus in M n U ), whose flow connects a
and b. This in turn yields a homoclinic orbit for k passing through a and b, since we
did not perturb the portions of orbits in U through a and b that were respectively neg-
atively and positively asymptotic to k. An extra C1-small perturbation is enough to
make the homoclinic connection transverse. If ı is taken small enough, the transver-
sality of the perturbed Reeb vector field with the pages of the broken book away from
the binding is preserved.

In what follows M is a closed contact manifold of dimension 2nC 1 for n � 1.
To go slightly further, let us summarize the connecting lemma that is in particular
obtained in the previous discussion:

Theorem C.3 (Arnaud, Bonatti and Crovisier [4]C "). Let .M;� D ker�/ be a closed
contact manifold with � non-degenerate, then given any two points x; y 2 M , there
exists a C 2-small perturbation �0 of � such that y is in the positive orbit of x under
the flow of R�0 .

From this result, following Arnaud–Bonatti–Crovisier [4, Section 5.1], one ob-
tains the following theorem.

Theorem C.4. On a closed contact manifold, the set of transitive Reeb vector fields
is a Gı -dense in the set of Reeb vector fields for the C 1-topology.
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Proof. The arguments of [4, Section 5.1] apply verbatim. We reproduce them here for
the reader’s convenience. First the set G0 of non-degenerate Reeb vector fields is aGı .
We then consider a countable basis .Un/n2N of neighborhoods ofM and form;n 2N

we let Um;n be the set of Reeb vector fields R for which the flow .�t /t2R satisfies:
there exists t > 0 with �t .Un/ \ Um ¤ ;. The set Um;n is open in the C 1-topology.
Moreover, G0 \Um;n is C 1-dense by the connecting lemma (Theorem C.3), and so
is Um;n. Thus

G D
\
m;n

Um;n

is a Gı .
Every R in G is by definition topologically transitive and thus transitive: it has

a dense orbit. Indeed, if R 2 G , for every m 2 N the set Vm of points of M whose
positive orbit meets Um is open and dense. Thus\

m

Vm

is a Gı . Every point q 2
T
m Vm is on a dense orbit.
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