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The quasi-periods of the Weierstrass zeta-function
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Abstract. We study the ratio p D �1=�2 of the quasi-periods of the Weierstrass �-function
in dependence of the ratio � D !1=!2 of the generators of the underlying rank-2 lattice. We
will give an explicit geometric description of the map � 7! p.�/. As a consequence, we obtain
an explanation of a theorem by Heins who showed that p attains every value in the Riemann
sphere infinitely often. Our main result is implicit in the classical literature, but it seems not to
be very well known.

Essentially, this is an expository paper. We hope that it is easily accessible and may serve as
an introduction to these classical themes.
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1. Introduction

Throughout this paper, we assume that !1; !2 ¤ 0 are two numbers in the complex
plane C that are linearly independent over the field of real numbers R. We define

� WD !1=!2

and assume that
Im.�/ > 0:

We also consider the associated rank-2 lattice

(1.1) � D
®
k!1 C n!2 W n; k 2 Z

¯
generated by !1 and !2.

The Weierstrass �-function associated with this lattice � is given by the series

(1.2) �.uI�/ D
1

u
C

X

2�n¹0º

�
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C
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u
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�
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We simply write �.u/ if the underlying lattice � is understood. It is well known that
the series (1.2) converges absolutely and locally uniformly for u 2 C n � . Moreover, �
is an odd meromorphic function with poles of first order precisely at the lattice points.
It has the periodicity property

(1.3) �.uC !k/ D �.u/C �k

for some constants �k 2 C, k D 1; 2 (for a discussion of all these facts, see [4, Chap-
ter 4]). Throughout this paper, we assume that u represents a variable in C, and so
(1.3) and similar formulas are identities valid for all u 2 C.

We call �1 and �2 the quasi-periods of � associated with the given generators !1
and !2 of � . Evaluating (1.3) at u D �!k=2 and using that � is an odd function, we
see that

�k D 2�

�
1

2
!k

�
for k D 1; 2. It also follows from (1.3) that

�.uC k!1 C n!2/ D �.u/C k�1 C n�2

for k; n 2 Z.
Since there are no doubly-periodic meromorphic functions on C with period lattice

� and only first-order poles at the lattice points (see [4, Corollary, p. 23]), �1 and �2
cannot both vanish. This means that

p WD �1=�2 2 yC WD C [ ¹1º

is well defined. Moreover, it follows from the formulas above that �1 and �2 are
homogeneous of degree �1 when considered as functions of the pair .!1; !2/. This
means that if we make the substitution

.!1; !2/ 7! .t!1; t!2/

with t 2 C� WD C n ¹0º, then we get a corresponding substitution

.�1; �2/ 7! .t�1�1; t
�1�2/:

This implies that the function p is homogeneous of degree 0, and hence, we can
consider p D p.�/ as function of � D !1=!2.

Let H WD ¹� 2 C W Im.�/ > 0º be the open upper halfplane. The function � 2H 7!

p.�/ 2 yC can be described explicitly, as the main result of this paper shows. In order
to state this, we first introduce some terminology.
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A closed Jordan regionX in the Riemann sphere yC is a compact set homeomorphic
to a closed disk. Then, its boundary @X is a Jordan curve and the set of interior points
inte.X/ WD X n @X a simply connected open region.

A circular arc triangle T is a closed Jordan region in yC whose boundary is decom-
posed into three non-overlapping circular arcs considered as the sides of T . The three
endpoints of these arcs are the vertices of T .

We say that f is a conformal map between two circular arc triangles X and Y
in yC if f is a homeomorphism between X and Y that sends the vertices of X to the
vertices of Y and is a biholomorphism between inte.X/ and inte.Y /. We say that f is
an anti-conformal map between X and Y if z 2 X 7! f .z/ 2 xY is a conformal map
between X and the complex conjugate xY WD ¹ Nw W w 2 Y º of Y .

We can now state our result.

Theorem 1.1. The function � 7! p.�/ is meromorphic on H. It maps the circular arc
triangle

(1.4) T0 WD
®
� 2 C W 0 � Re.�/ � 1=2; Im.�/ > 0; j� j � 1

¯
[ ¹1º

conformally onto the circular arc triangle

(1.5) T1 WD
®
� 2 C W 0 � Re.�/ � 1=2

¯
n
®
� 2 C W Im.�/ < 0; j� j > 1

¯
[ ¹1º:

Here, the vertices of the triangles correspond under the map p in the following way:

p.i/ D �i; p

�
1

2

�
1C i

p
3
��
D
1

2

�
1 � i
p
3
�
; p.1/ D1:

Of course, the last relation has to be understood in a limiting sense: if � 2 T0 \H!

1, then p.�/ 2 T1 \H!1. In the following, we always think of p (and similar
functions) as extended to the point1 in this way.

In order to give a more intuitive description of the map p based on Theorem 1.1,
we proceed as follows. Note that the triangle T0 has angles 0, �=2, �=3 at its vertices
1, i , � WD 1

2
.1C i

p
3/, respectively. Let T � yC be an arbitrary circular arc triangle

in the Riemann sphere with angles equal to 0, �=2, �=3. Each such triangle is Möbius
equivalent to T0 or its complex conjugate T0 (see Lemma 3.6 below). This implies
that the triangle T is contained in the intersection D1 \D2 of two closed disks D1
and D2 in yC each bounded by a circle in yC containing one of the sides of T and such
that these boundaries touch at the vertex of T with angle 0. Then, the closure T 0 of the
set .D1 \D2/ n T is a circular arc triangle that we call complementary to T , since
D1 \D2 D T [ T

0. Note that T 0 has the same vertices as T , is bounded by arcs of
the same three circles as T , and has angles 0, �=2, 2�=3 (see Figure 1). This relation
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D1 \D2 D T [ T
0T T 0

Figure 1
A circular arc triangle T with angles 0, �=2, �=3 and its complementary triangle T 0.

of T and its complementary triangle T 0 is invariant under Möbius transformations and
complex conjugation.

Note that T1 is the complementary triangle to T0 in this sense (see Figure 2). In
particular, the complex conjugate � 7! Np.�/ WD p.�/ of p maps T0 anti-conformally
onto its complementary triangle

T 00 D T1 D ¹1º [
®
� 2 C W 0 � Re.�/ � 1=2

¯�®
� 2 C W Im.�/ > 0; j� j > 1

¯
such that the common vertices i , �, and1 are fixed under Np.

Now, it is well known that by successive reflections in the sides of T0 we generate
a tessellation T of the set

H� WD H [Q [ ¹1º

by circular arc triangles with angles 0, �=2, �=3 (see [11, Section 2.2] and Figure 3
for an illustration).

Let G be the group of conformal or anti-conformal homeomorphisms of yC gener-
ated by the reflections in the sides of T0. By applying the Schwarz Reflection Principle
repeatedly and the invariance of the relation between a triangle and its complementary
triangle under this procedure, we immediately see that Np ı S D S ı Np for all S 2 G.
This gives the following consequence.

Corollary 1.2. Let T be any triangle in the tessellation T of H� obtained by successive
reflections in the sides of T0, and let T 0 be the complementary triangle of T as defined
above. Then, Np is an anti-conformal map of T onto T 0 that fixes the vertices of T .
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T1

T0

i
�

Figure 2
The circular arc triangle T0 with its complement T1.

The Möbius transformations of the form

(1.6) � 7! S.�/ D
a� C b

c� C d
;

where a; b; c; d 2 Z with ad � bc D 1 form the modular group PSL2.Z/. This is a
subgroup of index 2 of the group G defined above.

It follows from our previous considerations that

(1.7) p ı S D S ı p

for all S 2 PSL2.Z/. Meromorphic functions f with this type of transformation
behavior (f ı S D zS ı f , where S runs through a Fuchsian group � and zS is a
Möbius transformation associated with S) are called polymorphic in the classical
literature. We will refer to property (1.7) of p as its PSL2.Z/-equivariance.

We will soon see that this equivariant behavior of p can easily be derived analyti-
cally (see Proposition 2.2). Theorem 1.1 and Corollary 1.2 essentially explain this
behavior from a geometric perspective.

The circular arc triangle

(1.8) V0 D
®
� 2 H W 0 � Re.�/ � 1; j� � 1=2j � 1=2

¯
[ ¹1º

has all its angles equal to 0. It consists of a union of six triangles from the tessellation
T (see Figure 4). It is easy to see from Corollary 1.2 that the continuous extension of
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i
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10

T0

Figure 3
Some circular arc triangles in the tessellation T .

Np to V0 attains every value in yC once, twice, or thrice. This is illustrated in Figure 4,
where the level of darkness indicates how often the regions are covered (the darker the
gray, the more often the region is covered; note that some relevant circles are drawn in
black which does not correspond to how often the points in these circles are attained).
In particular, Np.V0 \H/ D yC D p.V0 \H/.

Now, if we successively reflect in the sides of V0, we obtain another tessellation T 0

of H� by circular triangles whose angles are all equal to 0. Each of the triangles V in
this tessellation is a union of six triangles in T . Then, Corollary 1.2 and the previous
discussion imply that p.V \H/ D yC. We obtain the following consequence.

Corollary 1.3. The map p attains every value in yC infinitely often on H.

This was the main result in the papers [8, 9] by Heins. He proved it by a purely
function-theoretic argument without an explicit description of the map p.

We will give two proofs of Theorem 1.1. The first one is along classical lines. We
suitably normalize the quasi-periods �1 and �2 and show that these normalized periods
form a fundamental system of solutions of a hypergeometric differential equation with
a certain elliptic modular function, the absolute invariant J , as the variable (see (3.21)).
This will show that p D p.J / is a Schwarz triangle map sending the closed lower
J -halfplane considered as a circular arc triangle with vertices 0, 1,1 to a circular arc
triangle with angles 2�=3; �=2; 0. On the other hand, it is known that J is a conformal
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V0

i �

0 1

Figure 4
Sets covered by the map Np restricted to V0.

map of the circular arc triangle T0 onto the lower J -halfplane. This will lead to the
explicit description of the map � 7! p.�/.

Our second approach to Theorem 1.1 is more direct: we will show that p is a
homeomorphism from @T0 onto @T1. The statement then essentially follows from the
Argument Principle (see Proposition 4.1).

We should emphasize that none of our results are really new. The hypergeometric
ODE (3.21) for the suitably normalized quasi-periods �1 and �2 goes back to at least
as far as Fricke–Klein. The quasi-periods of � are really the periods of the elliptic
integral of the second kind in Weierstrass normalization (see [5, p. 152 ff. and p. 198
ff.] for a thorough discussion). The ODE valid for them (in suitable normalization)
is an example of what is now called a Picard–Fuchs equation. They are satisfied by
periods of other elliptic and more general integrals (see [16] for a gentle introduction).
Fricke–Klein were also well aware of the connection to Schwarz triangle maps, but
they seem not to have stated Theorem 1.1 explicitly even though it easily follows from
their considerations.

In the more recent literature, the function p (in the form (2.7) below) was con-
sidered by various authors (see, for example, [10, 12, 14]). In [12], the connection
to hypergeometric ODEs was realized and an explicit formula for the Schwarzian
derivative ¹p; �º was obtained (see Section 5 for more discussion), but the explicit
geometric description of p was not pointed out. In [14], some mapping properties of
p were studied without the full realization of the statement of Theorem 1.1. Actually,
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the authors of [14] explicitly ask whether p is a conformal map on the fundamental
region of the modular group given by the union of T0 and its reflection in the imaginary
axis. This immediately follows from Corollary 1.2. In [10], the authors do prove a
biholomorphism property of p that is equivalent to Theorem 1.1. Their method is
somewhat ad hoc, based on similar considerations as our second argument for the proof
of Theorem 1.1.

This paper is of an expository nature giving an introduction to this classical subject.
An interesting topic for further investigation is whether mapping properties similar to
Theorem 1.1 can also be obtained for ratios of periods of other naturally appearing
elliptic integrals. It is to be hoped that this paper will be a starting point for further
studies along these lines.

2. First facts about the quasi-periods

We first compute some special values of p and then derive a representation of p in
terms of a Fourier series. All of this is well known from the classical literature (see [5]
for example). A modern account is given in [4].

If !1 D i and !2 D 1, then � D ¹ki C n W k; n 2 Zº, and so i� D � . This implies
that, for �.u/ D �.uI�/, we have

�.iuI�/ D �.iuI i�/ D �i�.uI�/:

Hence,
�1 D 2�.i=2/ D �2i�.1=2/ D �i�2;

and so,

(2.1) p.i/ D �1=�2 D �i:

Throughout this paper, we use the notation

� D
1

2
.1C i

p
3/:

Now, let !1 D �, !2 D 1, � D ¹k�C n W k; n 2 Zº. Then,

�� D �

which implies

�.�u/ D �.�uI�/ D �.�uI ��/ D ��1�.uI�/ D ��1�.u/ D N��.u/:



The quasi-periods of the Weierstrass zeta-function 9

Hence,
�1 D 2�.�=2/ D 2 N��.1=2/ D N��2

and

(2.2) p.�/ D �1=�2 D N�:

Now, let !1 and !2 again be arbitrary, � be the associated rank-2 lattice as in (1.1),
and �.u/ D �.uI�/. If we integrate � over the contour given by the parallelogram Q

with vertices˙!1=2˙ !2=2, in positive orientation, then the residue theorem gives
us the Legendre relation

(2.3) 2�i D !1�2 � !2�1:

See [4, pp. 50–51] for more details.
We will now prove a much deeper fact that connects the quasi-periods with the

theory of modular forms which we will review in Section 3. We first set up some
notation. As before, � 2 C with Im.�/ > 0 will denote a variable in the open upper
halfplane H. Throughout this paper, we set

q WD e2�i� :

Note that jqj < 1 for � 2 H. We define

�k.n/ WD

nX
mD1;mjn

mk

for k; n 2 N. So, �k.n/ is the sum of all kth-powers mk of natural numbers m that
divide n. Finally, we define

(2.4) E2.�/ WD 1 � 24

1X
nD1

nqn

1 � qn
D 1 � 24

1X
nD1

�1.n/q
n:

It is immediate that this series (as a function of � 2 H) converges locally uniformly on
H. Hence, E2 is a holomorphic function on H.

Proposition 2.1. For given !1; !2, let �1; �2 be the quasi-periods of the associated
�-function. Then,

�1 D �
2�i

!2
C
�2!1

3!22
E2.�/;(2.5)

�2 D
�2

3!2
E2.�/:(2.6)

In particular,

(2.7) p.�/ D �1=�2 D � �
6i

�E2.�/
:
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Since E2.�/! 1 as Im.�/!C1, it follows from (2.7) that

(2.8) p.�/!1 as Im.�/!C1:

Formulas (2.5) and (2.6) are well known; see, for example, [5, p. 311]. Since
they are the basis for our further considerations, we will give a proof for the sake of
completeness. We will follow an argument outlined in [5, pp. 262–263].

Proof. It is enough to show (2.6). Then, (2.5) follows from this and the Legendre
relation (2.3), and (2.7) is an immediate consequence of (2.5) and (2.6).

Our starting point is formula (1.2). For ease of notation, we use the abbreviation
.k; n/ D k!1 C n!2 and set

†k.u/ WD
X
n2Z

�
1

u � .k; n/
C

1

.k; n/
C

u

.k; n/2

�
for k 2 Z n ¹0º. Moreover, we set

†0.u/ WD
1

u
C

X
n2Zn¹0º

�
1

u � .0; n/
C

1

.0; n/
C

u

.0; n/2

�
:

Since the series (1.2) converges absolutely and uniformly inu2C n� , we can rearrange
the order of summation; so

�.u/ D
X
k2Z

†k.u/:

The idea now is to express �2 D �.uC !2/ � �.u/ in terms of the differences of the
functions †k . First, note that

†0.uC !2/ �†0.u/ D
2

!2

1X
nD1

1

n2
D

�2

3!2
:

For the other differences, we use the standard fact that

(2.9)
�2

sin2.�u/
D

X
n2Z

1

.u � n/2

for u 2 C n Z. By considering partial sums, we see that, for k 2 Z n ¹0º, we have

†k.uC !2/ �†k.u/ D
X
n2Z

!2

.k; n/2
D

1

!2

X
n2Z

1

.k� C n/2

D
�2

!2 sin2.jkj��/
D
�4�2qjkj

!2.1 � qjkj/2

D �
4�2

!2

1X
nD1

nqnjkj:
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Putting this all together, we see that

�2 D �.uC !2/ � �.u/ D
X
k2Z

.†k.uC !2/ �†k.u//

D
�2

3!2
�
8�2

!2

1X
kD1

1X
nD1

nqnk D
�2

3!2
�
8�2

!2

1X
nD1

�1.n/q
n
D

�2

3!2
E2.�/;

as desired.

We now give an analytic argument for the equivariant nature of p under the modular
group and a closely related transformation behavior of the function E2.

Proposition 2.2. Let a; b; c; d 2 Z with ad � bc D 1. Then,

(2.10) p

�
a� C b

c� C d

�
D
ap.�/C b

cp.�/C d

and

(2.11) E2

�
a� C b

c� C d

�
D .c� C d/2E2.�/ �

6i

�
c.c� C d/:

Proof. We define !01 D a!1 C b!2 and !02 D c!1 C d!2. Then, !01; !
0
2 generate the

same lattice � as !1; !2, and so give rise to the same �-function. The first quasi-period
�01 associated with the pair !01; !

0
2 can be computed from the following identity in u:

�01 D �.uC !
0
1/ � �.u/ D �.uC a!1 C b!2/ � �.u/ D a�1 C b�2:

Similarly, for the second quasi-period �02 associated with !01; !
0
2, we have �02 D c�1 C

d�2. Equation (2.10) then immediately follows by passing to quotients.
By (2.6), we have

E2.�/ D 3�2!2=�
2:

So, if we use the previous notation and write � 0 WD !01=!
0
2 D .a� C b/=.c� C d/, then

we have

E2.�
0/ D 3�02!

0
2=�

2
D 3.c�1 C d�2/.c!1 C d!2/=�

2

D .cp.�/C d/.c� C d/E2.�/D.c.� � 6i=.�E2.�///C d/.c� C d/E2.�/

D .c� C d/2E2.�/ �
6i

�
c.c� C d/:

A curious consequence of Corollary 1.3 is that there are pairs .!1; !2/ for which
�1 or �2 vanishes (they cannot both be zero for a given pair .!1; !2/). In this case, � is
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a periodic, but not doubly-periodic function. This seems to have been first noticed by
Watson [13] and was also pointed out by Heins in [8].

Note that (2.10) implies that �1 D 0 for a pair .!1; !2/ if and only if �2 D 0 for the
pair .�!2; !1/. On the other hand, by (2.6), we have �2 D 0 if and only if E2.�/ D 0.
So, studying values .!1; !2/ where �1 or �2 vanishes amounts to the same as finding
all zeros of E2. As Heins alluded to in [9], it is easy to see that E2 has a zero on
the positive imaginary axis. Watson [13] had actually computed this zero with great
accuracy. The location of all the zeros of E2 in H was studied in depth in [10, 14].

3. Modular forms

In order to proceed, we need some facts about modular forms. This is all standard
material going back to Fricke–Klein [6] and beyond. A modern account can be found
in [11]. The survey by Zagier [15] gives a fresh perspective with connections to many
other areas. All we need are some basic fundamentals of the theory. Many of them are
discussed in [4] and all of them in [11, Chapters 1–3], for example. We start with a
definition.

Definition 3.1. A holomorphic function f on H is called a (holomorphic and inho-
mogeneous) modular form of weight k 2 N if it satisfies

(3.1) f

�
a� C b

c� C d

�
D .c� C d/kf .�/

for all � 2 H and a; b; c; d 2 Z with ad � bc D 1. Moreover, we require that

(3.2) f .�/ D O.1/ as Im.�/!C1:

Note that a modular form is 1-periodic: f .� C 1/D f .�/. So, it will have a Fourier
series expansion

(3.3) f .�/ D
X
n2Z

ane
2�in�

D

X
n2Z

anq
n

that converges for all q 2 C with jqj < 1. Condition (3.1) ensures that no terms with
negative powers of q occur in this series, and so,

(3.4) f .�/ D
X
n2N0

anq
n:

If f is a function on H, k 2 N, and S 2 PSL2.Z/ is as in (1.6), then we can define
an operation f jkS by setting .f jkS/.�/D f .S.�//.c� C d/�k . Condition (3.1) then
simply becomes .f jkS/.�/ D f .�/.
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One can easily check that if S; T 2 PSL2.Z/, then

f jk.S ı T / D .f jkS/jkT:

This implies that in order to verify (3.1) it is enough to do this for generators of
PSL2.Z/, for example for � 7! � C 1 and � 7! �1=� . We see that condition (3.1) is
equivalent to the identities

f .� C 1/ D f .�/ and f .�1=�/ D �kf .�/:

We say that f is a modular function if it is meromorphic on H and satisfies
f ı S D f for all S 2 PSL2.Z/. Moreover, we require that, for some N 2 N0, we
have

(3.5) f .�/ D O.q�N / as Im.�/!C1:

A modular function f is 1-periodic and has a Fourier expansion as in (3.3) converging
if jqj > 0 is small enough. Condition (3.5) ensures that in this Fourier expansion only
finitely many non-zero terms with negative n occur.

Note that if g and h ¤ 0 are modular forms of the same weight, then f D g=h is a
modular function. If g and h are modular forms of weights k and l , respectively, then
gh is a modular form of weight k C l .

Let f be a modular form of weight k. Then, we can pass to an associated homoge-
neous modular form Qf depending on two variables !1 and !2 (satisfying our standing
assumptions) by setting

Qf .!1; !2/ D

�
2�

!2

�k
f .!1=!2/ D

�
2�

!2

�k
f .�/:

The incorporation of the factor 2� here has some advantages. Then, Qf is a homogeneous
function of degree �k in the sense that

Qf .t!1; t!2/ D t
�k Qf .!1; !2/

for t 2 C�. Moreover, (3.1) is equivalent to
Qf .a!1 C b!2; c!1 C d!2/ D Qf .!1; !2/:

So, the transformation behavior of a homogeneous modular form becomes more trans-
parent at the cost of having to deal with a function of two variables.

The (inhomogeneous and holomorphic) modular forms of a given weight k 2 N

obviously form a vector space Mk over C. It immediately follows from the definitions
that there are no non-trivial modular forms of odd weight (indeed, change the signs of
a; b; c; d in (3.1)). If k is even, then the following well-known fact gives the dimension
of Mk for even k (see [11, Theorem 18, p. 47]). The fact that Mk is finite-dimensional
is probably the single most important fact in the theory of modular forms.
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Proposition 3.2. For even k 2 N, we have

dim Mk D

´
bk=12c for k � 2 mod 12,
bk=12c C 1 for k 6� 2 mod 12.

In particular, there are no non-trivial modular forms of weight 2. Moreover, the
spaces of modular forms of weight 4, 6, and 8 are all one-dimensional and hence
spanned by any non-trivial form in these spaces. The latter fact is all we need in the
following.

To obtain non-trivial modular forms in M4 and M6, we consider the Eisenstein
series Gk defined for even k � 4 as

Gk.�/ D
X
m;n2Z

0 1

.m� C n/k
:

Here, the prime on the sum means that the term with m D n D 0 should be omitted
from the summation.

The series representing the function Gk , k � 4, converges absolutely and locally
uniformly for � 2 H; so Gk is a holomorphic function of � 2 H. Actually, Gk is
a modular form of weight k. Indeed, it is immediate to see that Gk has the right
transformation behavior as in (3.1). Moreover, one can explicitly obtain a Fourier
expansion of Gk as in (3.4). This can be seen by a computation similar to the proof
of Proposition 2.1 where one uses an identity obtained from (2.9) by differentiating
.k � 2/-times. This is standard and the details can be found in [11, Chapter 3], for
example. We only need the result for k D 4 and k D 6. Namely, we have

G4 D
�4

45
E4; G6 D

2�6

945
E6;

where

E4 D 1C 240

1X
nD1

n3qn

1 � qn
D 1C 240

1X
nD1

�3.n/q
n;

E6 D 1 � 504

1X
nD1

n5qn

1 � qn
D 1 � 504

1X
nD1

�5.n/q
n:

In particular, G4, or equivalently E4, is a modular form spanning M4, and G6 or
E6 are modular forms each spanning M6. The space M8 is spanned by E24 .

While E2 (as defined in (2.4)) is not a modular form, it has a transformation
behavior that is closely related. Indeed, each function Ek , k D 2; 4; 6, is 1-periodic,
that is, for � 2 H it satisfies

Ek.� C 1/ D Ek.�/I
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moreover, we have

E2.�1=�/ D �
2E2.�/ �

6i

�
�;(3.6)

E4.�1=�/ D �
4E4.�/;(3.7)

E6.�1=�/ D �
6E6.�/:(3.8)

The first equation follows from (2.11), while the last two equations follow from the
fact that E4 and E6 are modular forms of weight 4 and weight 6, respectively. Due to
its simple transformation behavior, E2 is called a quasi-modular form of weight 2.

If, as before, � D 1
2
.1C i

p
3/, then

�1=� D �
1

2
.1 � i

p
3/ D � � 1;

and so,
�4E4.�/ D E4.�1=�/ D E4.� � 1/ D E4.�/:

Hence,

(3.9) E4.�/ D 0:

It follows from the valence formula for modular forms (see [11, Theorem 13, p. 41])
that � is the only zero ofE4 on H� DH[Q[ ¹1º up to equivalence under PSL2.Z/.
More precisely, we have

(3.10) E4.�/ D 0 for � 2 H� if and only if � D S.�/ for some S 2 PSL2.Z/:

If we insert � D i in the transformation formula (3.8) for E6, we see that E6.i/ D
�E6.i/, and so,

(3.11) E6.i/ D 0:

Again, i is the only zero of E6 up to equivalence under PSL2.Z/, but we will not need
this fact.

We will derive expressions for the derivatives

E 0k D dEk=d�:

These formulas are often attributed to Ramanujan, but they can be traced back (in
different notation) to Fricke–Klein and beyond. To absorb a factor 2�i that appears in
these formulas, we introduce the abbreviation

DF D
1

2�i

dF.�/

d�

for ease of notation.
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Proposition 3.3. The following identities are valid:

DE2 D
1

12
.E22 �E4/;(3.12)

DE4 D
1

3
.E2E4 �E6/;(3.13)

DE6 D
1

2
.E2E6 �E

2
4 /:(3.14)

Proof. To prove the first formula, we consider the function f D DE2 �
1
12
E22 on

H. It is 1-periodic and has a Fourier expansion of the form (3.4) as follows from
computations with the underlying q-power series for E2. Moreover, the transformation
behavior of E2 gives

��2E 02.�1=�/ D
d

d�
E2.�1=�/ D

d

d�

�
�2E2.�/ �

6i

�
�

�
D 2�E2.�/C �

2E 02.�/ �
6i

�
;

and so,
DE2.�1=�/ D �

4DE2.�/ �
i

�
�3E2.�/ �

3

�2
�2:

Hence,

f .�1=�/ D DE2.�1=�/ �
1

12
E2.�1=�/

2

D �4DE2.�/ �
i

�
�3E2.�/ �

3

�2
�2 �

1

12

�
�2E2.�/ �

6i

�
�

�2
D �4f .�/:

It follows that f is a modular form of weight 4. Since the space of these forms has
dimension 1 and is spanned by E4, there exists a constant c 2 C such that f D cE4.
To determine this constant, we consider the leading coefficients of the q-expansions of
f and E4. We find that

f .�/ D �
1

12
CO.q/; E4 D 1CO.q/;

and so, c D � 1
12

. The claim follows.
The other identities follow from similar considerations: one shows that DE4 �

1
3
E2E4 is a modular form of weight�6 andDE6 � 1

2
E2E6 is a modular form of weight

�8. Moreover, the spaces of these forms are spanned byE6 andE24 , respectively. Again,
one determines the proportionality constants by considering q-expansions.



The quasi-periods of the Weierstrass zeta-function 17

To put the preceding argument into a more general perspective: if f is a modular
form of weight k D 4; 6; : : :, then one can show by computations similar to the ones in
the proof of Proposition 3.3 that its Serre derivative (see [15, p. 48])

#kf WD Df �
k

12
E2f

is a modular form of weight k C 2.
We need two more auxiliary functions. The first one is

� WD
1

1728
.E34 �E

2
6 /:

This is a modular form of weight 12 (note that the notation in [4, 11] is different from
ours). From Proposition 3.3 it follows that

D� D
1

1728
.D.E34 / �D.E

2
6 // D

1

1728
.3E24DE4 � 2E6DE6/

D
1

1728
.E34 �E

2
6 /E2 D �E2:

Based on this and the expansion of E2 as a q-series, it is easy to derive the well-known
formula

(3.15) � D q

1Y
nD1

.1 � qn/24:

Indeed, both sides in this identity are holomorphic functions on H with the same
logarithmic derivatives, namely, 2�iE2; so they must represent the same function up
to a multiplicative constant. This constant is equal to 1 as a comparison of the leading
terms of the q-expansions shows.

It immediately follows from (3.15) that � has no zeros on H and that it takes
positive real values for � on the positive imaginary axis. In the following, we will
consider various roots �1=k of � for k 2 N. Since � has no zeros on H, these are
holomorphic functions on H. A priori, �1=k is only defined up to multiplication by a
kth root of unity. We fix this ambiguity so that �1=k attains positive real values on the
positive imaginary axis.

We need one more auxiliary function, namely, the J -invariant given as

(3.16) J D E34=.E
3
4 �E

2
6 / D

1

1728
E34=�:

This is a modular function. It is well known that J maps the circular arc triangle
T0 as in (1.4) conformally to the closed lower halfplane, considered as a circular arc
triangle with vertices 0, 1,1 (see [4, Chapter 6; Theorem 5, p. 90]).
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At least the correspondence of vertices is easy to see: the definition of J immediately
gives

J.�/ D
1

1728
q�1 CO.1/ as Im.�/!C1:

Hence, J.1/ D1 (understood in a limiting sense). Moreover, the definition of J in
combination with (3.9) and (3.11) gives

J.�/ D 0 and J.i/ D 1:

By (3.16), we obtain a uniquely determined holomorphic third root of J by setting

J 1=3 WD
1

12
E4=�

1=3:

Similarly, by (3.16), we have

J � 1 D
1

1728
E26=�;

which allows us to define the holomorphic function

.J � 1/1=2 WD
1

24
p
3
E6=�

1=2:

Note that these definitions fix the ambiguity of J 1=3 and .J � 1/1=2 in such a way that
these functions take positive real values with � on the positive imaginary axis with
Im.�/ large.

The previous formulas can be rewritten as follows:

E4 D 12J
1=3�1=3; E6 D 24

p
3.J � 1/1=2�1=2:

We also have

DJ D
1

1728

�
3E24D.E4/

�
�
E34D.�/

�2

�
(3.17)

D �
1

1728
E24E6=� D �2

p
3J 2=3.J � 1/1=2�1=6:

We want to introduce J as a new variable instead of � for some functions of � . The
map � 2 H 7! J.�/ is locally injective at all points not equivalent to i or � under the
modular group. The latter points are exactly those where J takes on the values 1 or 0.
Moreover, J.�/ attains all values in yC except1. This means that � D �.J / is locally
well defined away from the points 0, 1,1 in the J -plane. Once we fix such a local
branch � D �.J /, we can analytically continue it along any path in yC n ¹0; 1;1º. In
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this way, we obtain a multi-valued function on yC n ¹0; 1;1º, whose branches differ
by postcomposition with elements in the modular group PSL2.Z/.

We will now fix such a local branch � D �.J / and introduce the following functions,
considered as depending on the variable J :

�1 D ��
1=12; �2 D �

1=12;(3.18)

H1 D
1

�1=12

�
�E2 �

6i

�

�
; H2 D

E2

�1=12
:(3.19)

Note that by (2.7), we have

(3.20) H1.�/=H2.�/ D � �
6i

�E2.�/
D p.�/:

The meaning of the expressions (3.18) and (3.19) becomes clearer if one transitions to
homogeneous functions of the variables !1 and !2. See Section 5 for more details.

Lemma 3.4. For k D 1; 2 we have the following identities:

d�k

dJ
D �

1

24
p
3
J�2=3.J � 1/�1=2Hk;

dHk

dJ
D

1

2
p
3
J�1=3.J � 1/�1=2�k :

Proof. We have

D�1 D
1

12
�1=12�E2 �

i

2�
�1=12; D�2 D

1

12
�1=12E2:

Hence,

d�2

dJ
D D�2=DJ

D �
1

24
p
3
E2J

�2=3.J � 1/�1=2=�1=12

D �
1

24
p
3
J�2=3.J � 1/�1=2H2:

Similarly,

d�1

dJ
D D�1=DJ D

1
12
�1=12�E2 �

i
2�
�1=12

�2
p
3J 2=3.J � 1/1=2�1=6

D �
1

24
p
3
J�2=3.J � 1/�1=2H1:

The first identity follows.
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For the second identity, note that

DH2 D D.E2=�
1=12/ D DE2=�

1=12
�
1

12
E22=�

1=12

D �
1

12
E4=�

1=12
D �J 1=3�1=4;

and so,

dH2

dJ
D DH2=DJ D

�J 1=3�1=4

�2
p
3J 2=3.J � 1/1=2�1=6

D
1

2
p
3
J�1=3.J � 1/�1=2�2:

Similarly,

DH1 D D
�
�E2 �

6i

�

�.
�1=12 �

1

12

�
�E2 �

6i

�

�
E2

.
�1=12

D

�
�

i

2�
E2 C

1

12
�.E22 �E4/

�.
�1=12 �

1

12

�
�E2 �

6i

�

�
E2

.
�1=12

D �
1

12
�E4=�

1=12
D ��J 1=3�1=4 D �DH2:

It follows that
dH1

dJ
D DH1=DJ D �DH2=DJ D

1

2
p
3
J�1=3.J � 1/�1=2��2

D
1

2
p
3
J�1=3.J � 1/�1=2�1:

Proposition 3.5. The functions H1 and H2 considered as functions of J form a
fundamental system of solutions of the hypergeometric differential equation

(3.21) w00.z/C
5z � 2

6z.z � 1/
w0.z/C

1

144z.z � 1/
w.z/ D 0:

As mentioned in the introduction, this is not new. It follows from the methods of
Fricke–Klein and was explicitly stated in [5, formula (9), p. 326]. To derive (3.21),
Fricke used homogeneous modular forms and an associated differentiation process in
contrast to our approach based on inhomogeneous modular forms (see Section 5 for
more discussion).

Proof. We use the system of equations from Lemma 3.4. For simplicity, we write
H D Hk and � D �k for k D 1; 2. Then,

d2H

dJ 2
D

d

dJ

�
1

2
p
3
J�1=3.J � 1/�1=2�

�
D

�
�
1

3J
�

1

2.J � 1/

�
dH

dJ
C

1

2
p
3
J�1=3.J � 1/�1=2

d�

dJ

D �
5J � 2

6J.J � 1/

dH

dJ
�

1

144J.J � 1/
H:
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It follows thatH1 andH2 are solutions of the above differential equation. Since the ratio
p D H1=H2 of these functions is non-constant by (2.7), they are linearly independent
and form a fundamental system of solutions.

The general form of the hypergeometric differential equation (see [3, Part 7, Chap-
ter 2] or [1, Chapter 8]) is

(3.22) w00.z/C
z.1C ˛ C ˇ/ � 


z.z � 1/
w0.z/C

˛ˇ

z.z � 1/
w.z/ D 0:

So, the parameters in (3.21) are ˛ D ˇ D �1=12 and 
 D 1=3. This implies that
the ratio p D H1=H2 is a conformal map of the closed upper or lower J -halfplane
considered as circular arc triangles with vertices 0, 1,1 onto a circular arc triangle
with angles �� , �� , �� , respectively, where

� D 1 � 
 D 2=3; � D 
 � ˛ � ˇ D 1=2; � D ˛ � ˇ D 0:

This is thoroughly explained in [3, Part 7, Chapter 2] or [1, pp. 252–254].
Before we proceed, we record a simple geometric fact.

Lemma 3.6. Let T � yC be a circular arc triangle. If T has angles 0; �=2; �=3, then
it is Möbius equivalent to T0 or T0. If T has angles 0; �=2; 2�=3, then it is Möbius
equivalent to T1 or T1.

Here, we say that two circular arc triangles X and Y are Möbius equivalent if
there exists a Möbius transformation S (i.e., a biholomorphism on yC) that gives a
conformal map between X and Y (as defined in the introduction). Recall that T0 and
T1 are defined in (1.4) and (1.5), respectively.

Proof. The first part is true in even greater generality and its proof is fairly standard
(see, for example, [3, Section 394 and Figure 83]); so we will only give an outline of
the argument.

Suppose T � yC has angles 0; �=2; �=3 at its vertices a; b; c 2 @T , respectively.
By applying an auxiliary Möbius transformation to T , we may assume that a D 1.
Then, the side of T containing b and c must be an arc on a circle C and cannot be a
segment on a line (in the latter case the angles at b and c would have to add up to �
which they do not). By applying another Möbius transformation (namely, a Euclidean
similarity), we may also assume that C is the unit circle and that the two sides of T
containing a D1; b and a; c, respectively, are rays parallel to the positive imaginary
axis. It is then easy to see that the only possibilities are b D i , c D �, in which case
T D T0, or b D i , c D � N� in which case T is equal to the reflection image of T0 in
the imaginary axis, and hence Möbius equivalent to T0.
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If T � yC has angles 0; �=2; 2�=3 at its vertices a; b; c 2 @T , respectively, then
the quickest way to verify the statement is to reduce it to the first part. For this we
consider the unique circular arc triangle zT with the same vertices a; b; c and angles
0; �=2; �=3, respectively, so that T is complementary to zT in the sense discussed in
the introduction. Then, zT [ T forms a lune as in Figure 1. By what we have seen, we
can find a Möbius transformation S that gives a conformal map of zT onto T0 or T0.
Then, S is a conformal map of T onto T1 or T1 and the statement follows.

The different cases in the previous lemma can easily be distinguished by taking
boundary orientation into account. Let us assume the circular arc triangle T has
angles 0; �=2; �=3 at its vertices a; b; c 2 @T , respectively. Then, we orient @T so
that we traverse a; b; c in this cyclic order if we run through @T according to the
orientation. Now, suppose T lies on the left of @T with this orientation. Since Möbius
transformations are orientation-preserving, it then follows that T cannot be Möbius
equivalent to T0, and so, it must be Möbius equivalent to T0. If T lies on the right
of @T , then T is Möbius equivalent to T0. A similar analysis applies to circular arc
triangles that are Möbius equivalent to T1 and T1.

The proof of our main result is now easy.

Proof of Theorem 1.1. We know that � 7! J.�/ sends T0 conformally to the circular
arc triangle given by the closed lower halfplane. Here, the vertex correspondence under
the map is1 7! 1, i 7! 1, � 7! 0. On the other hand, we know that p D H1=H2,
now considered as a function of J , sends the lower J -halfplane conformally onto some
circular arc triangle T with vertices a; b; c 2 yC where the angles are 0, �=2, 2�=3,
respectively. Here, the vertex correspondence under J 7! H1=H2 is given by 0 7! c,
1 7! b,1 7! a.

If we compose � 7! J with J 7! H1=H2, then we obtain the map

� 7! H1.�/=H2.�/ D p.�/:

In particular, p is a conformal map between the circular arc triangles T0 and T such
that p.1/ D a, p.i/ D b, p.�/ D c. On the other hand, we know the values that p
obtains at these locations (see (2.1), (2.2), and (2.8)). It follows that a D p.1/ D1,
b D p.i/ D �i , c D p.�/ D N�.

If we orient @T0 so that T0 lies on the left of @T0, then the vertices of T0 are in
cyclic order1; i; �. Since the conformal map p of T0 onto T preserves orientation, T
lies on the left of @T if @T carries the induced orientation under p. This corresponds
to the cyclic order p.1/ D1, p.i/ D �i , p.�/ D N� of the vertices of T .

Lemma 3.6 and the subsequent discussion after this lemma now imply that T is
Möbius equivalent to T1 (and not to T1). Since T and T1 have the same vertices, it
follows that T D T1 and the statement follows.
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4. An alternative approach

Our proof of Theorem 1.1 is in a sense the “classical” proof. It may be interesting to
point out a different and simple direct argument that avoids the theory of hypergeometric
ODEs. We require some preparation.

Proposition 4.1. Suppose U � yC is a closed Jordan region and f W inte.U /! C is a
holomorphic function that has a continuous extension (as a map into yC) to the boundary
@U � yC. Suppose this extension maps @U homeomorphically to the boundary @V � yC
of a closed Jordan region V � yC with inte.V / � C.

If1 2 @V we assume in addition that if the Jordan curve @U is oriented so that
U lies on the left of @U and if @V carries the orientation induced by f , then V lies on
the left of @V .

Under these assumptions, f is a homeomorphism of U onto V that is a biholomor-
phism between inte.U / and inte.V /.

In our application of this statement,1 will be on the boundary of U and V . This
is the reason why the formulation is somewhat technical and we cannot simply assume
U; V � C.

Proof. The Argument Principle implies that on inte.U / the function f attains each
value in inte.V / once and no other values. The statement easily follows. As this reason-
ing is fairly standard, we skip the details (see [2, pp. 310–311] for some background
and [2, Exercise 9.17 (i)] for a closely related statement).

We need the following estimate for E2 (see [10, Lemma 2.3]).

Lemma 4.2. We have
jE2.�/ � 1j �

24jqj

.1 � jqj/3

for � 2 H. In particular,

E2.�/ ¤ 0 for Im.�/ �
p
3=2:

Proof. We have

jE2.�/ � 1j � 24

1X
nD1

njqjn

1 � jqjn
�

24

1 � jqj

1X
nD1

njqjn D
24jqj

.1 � jqj/3
:

Since jqj D e�2� Im.�/, the last expression is monotonically decreasing as a function
of Im.�/. It follows that for Im.�/ �

p
3=2, we have

jE2.�/ � 1j �
24e�2�

p
3=2

.1 � e�2�
p
3=2/3

D 0:105 � � � :

The statement follows.
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Lemma 4.3. The function p is holomorphic near each point � 2 T0 \H. Moreover,
p0.�/ D 0 for � 2 T0 \H if and only if � D �.

So, the only critical point of p on T0 \H is at � D �.

Proof. The first part follows from (2.7), because E2 does not take the value 0 on
T0 \H by Lemma 4.2. By (2.7) and (3.12), we also have

(4.1) p0.�/ D 1C
6iE 02.�/

�E22 .�/
D
E4.�/

E22 .�/
:

Now, by (3.10) all zeros ofE4 are given by S.�/, S 2 PSL2.Z/. No point � 2 T0 n ¹�º
is equivalent to � under the action of PSL2.Z/ on H�. It follows that � D � is the only
zero of E4 and hence of p0 on T0.

Alternative proof of Theorem 1.1. We denote by

A WD ¹i t W t � 1º [ ¹1º;

B WD ¹eit W �=3 � t � �=2º;

C WD
°1
2
C i t W t �

p
3=2

±
[ ¹1º

the three sides of T0 and by

A0 WD ¹i t W t � �1º [ ¹1º;

B 0 WD ¹eit W ��=2 � t � ��=3º;

C 0 WD
°1
2
C i t W t � �

p
3=2

±
[ ¹1º

the three sides of T1.
It follows directly from the definition (see (2.4)) that E2.�/ 2 R when � 2 H with

Re.�/ D 0 or Re.�/ D 1=2. Here, E2.�/ > 0 if in addition Im.�/ is large enough.
As a consequence, Re.p.�// D 0 if Re.�/ D 0 (see (2.7)). In particular, p sends

A n ¹1º into the imaginary axis. Moreover, since p0.�/ ¤ 0 on A, we move strictly
monotonically from p.i/ D �i to p.1/ D 1 as � 2 A travels from i to1. Here,
Im.p.�// must be strictly increasing (and not decreasing) with increasing Im.�/ for
� 2 A as Im.p.�// is positive for � 2 A with large Im.�/. This implies that p sends A
homeomorphically onto A0.

Similarly, Re.p.�// D 1=2 if Re.�/ D 1=2. Hence, p sends C n ¹1º into the line
L WD ¹� 2C W Re.�/D 1=2º. Since p0.�/¤ 0 for interior points ofC , we move strictly
monotonically from p.�/ D N� to p.1/ D 1 on the line L as � 2 C moves from �

to1 on C . Again, Im.p.�// > 0 for � 2 C with large Im.�/, and so, we must have a
strict increase here. This implies that p sends C homeomorphically onto C 0.
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Since p sends A into A0, by the Schwarz Reflection Principle, we must have

p.�N�/ D �p.�/

for all � 2 H. If � 2 B , then � lies on the unit circle, and so, N� D 1=� . Then, the
transformation behavior of p implies that

p.�/ D �p.�N�/ D �p.�1=�/ D 1=p.�/;

and so, jp.�/j D 1. We see that p sends B into the unit circle. Since p0 does not vanish
at any interior point of B , we move strictly monotonically along the unit circle from
p.i/ D �i to p.�/ D N� as � moves from i to � along B . This implies that p sends B
homeomorphically onto B 0 or the complementary arc B 00 of B 0 on the unit circle with
the same endpoints as B 0.

Here, we actually must have p.B/ D B 0 as follows by considering orientations.
Indeed, p0.i/ ¤ 0, and so p is a conformal and hence orientation-preserving map near
i . We know that p sends A oriented in a positive direction from i to1 into the arc
A0 oriented from �i to1. Since B lies on the right of the oriented arc A locally near
i , the image p.B/ must lie on the right of A0 near p.i/ D �i . This only leaves the
possibility that p sends B homeomorphically onto B 0 and not onto B 00.

We conclude that p sends the three sides A, B , C of T0 homeomorphically onto
the three sides A0, B 0, C 0 of T1. It follows that p is a homeomorphism of @T0 onto
@T1. Since p is holomorphic on the interior of T0, Proposition 4.1 now implies that
p is a conformal map of the circular arc triangle T0 onto the circular arc triangle T1.
Here, the vertex correspondence is as in the statement and the claim follows.

We want to point out a consequence of our considerations.

Corollary 4.4. The critical points of p on H are precisely the points that are equivalent
to � under the action of PSL2.Z/.

Proof. It follows from Corollary 1.2 and the Schwarz Reflection Principle that if T is a
triangle from the tessellation T (as defined in the introduction), then p is a conformal
map near each point � 2 T \H distinct from the vertex �T of T where the angle
is �=3. There the angle is doubled by p, and so �T is a critical point (of first order).
Therefore, p has precisely the critical points �T , T 2 T . These are precisely the points
that are equivalent to � under the action of PSL2.Z/.

As the proof shows, all critical points of p are of first order, meaning that the local
degree of the map is 2 at these points. Corollary 4.4 can also be derived from (4.1) and
(3.10).
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5. Remarks

(1) Our route to derive Proposition 3.5 is essentially due to Fricke–Klein. In contrast
to our approach, Fricke–Klein usually prefer to work with homogeneous modular forms.
If Qf .!1; !2/ is such a form, then they use an associated form

D� Qf D �1
@ Qf

@!1
C �2

@ Qf

@!2
:

If Qf is a homogeneous modular form of degree �k, then it is straightforward to see
that Qg D D� Qf is a homogeneous modular form of degree �k � 2. The differentiation
processD� occurs implicitly in Fricke–Klein [6] and was systematically used by Fricke
in [5] (see also [7]).

Let us consider the associated inhomogeneous forms f and g so that

Qf .!1; !2/ D

�
2�

!2

�k
f .!1=!2/ and Qg.!1; !2/ D

�
2�

!2

�kC2
g.!1=!2/:

Then,

Qg D D� Qf D �1
@ Qf

@!1
C �2

@ Qf

@!2

D .2�/k.�1!
�k�1
2 � �2!1!

�k�2
2 /f 0.�/ � k.2�/k�2!

�k�1
2 f .�/

D �.2�/kC1i!�k�22 f 0.�/ �
k

12
.2�/kC2!�k�22 E2.�/f .�/:

So, passing to the inhomogeneous version g of Qg, we have

g.�/ D
1

.2�/kC2
Qg.�; 1/ D

1

2�i
f 0.�/ �

k

12
E2.�/f .�/;

and so,

g D Df �
k

12
E2f D #kf:

This shows that the Serre derivative #kf of a modular form f of weight k corresponds
to the homogeneous form D� Qf . So, Serre derivative and the differentiation process
D� are essentially the same, but only differ whether one considers inhomogeneous or
homogeneous modular forms.

(2) The meaning of the functions in (3.18) and (3.19) becomes more transparent if
one writes them using the homogeneous function

z�.!1; !2/ D

�
2�

!2

�12
�.!1=!2/
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and the associated root

z�1=12.!1; !2/ D

�
2�

!2

�
�1=12.�/:

Then,
�1 D

!1

2�
z�1=12.!1; !2/; �2 D

!2

2�
z�1=12.!1; !2/:

So, �1 and �2 are essentially just the periods !1 and !2 renormalized to make them
homogeneous of degree 0. Similarly, using (2.5) and (2.6), one can see that

H1 D
6�1

�
z��1=12.!1; !2/; H2 D

6�2

�
z��1=12.!1; !2/:

Again, hereH1 andH2 are homogeneous of degree 0 as functions of the pair .!1; !2/
and hence functions of � D !1=!2 alone; so the transition from .�1; �2/ to .H1;H2/
is also a normalization procedure.

(3) We can use Lemma 3.4 also to derive a hypergeometric differential equation
with a pair of fundamental solutions given by �1 and �2. Indeed, if we use notation
as in the proof of Proposition 3.5, then we have

d2�

dJ 2
D

d

dJ

�
�

1

24
p
3
J�2=3.J � 1/�1=2H

�
D

�
�
2

3J
�

1

2.J � 1/

�
d�

dJ
�

1

24
p
3
J�2=3.J � 1/�1=2

dH

dJ

D �
7J � 4

6J.J � 1/

d�

dJ
�

1

144J.J � 1/
�:

This is a hypergeometric differential equation with parameters ˛ D ˇ D 1=12 and

 D 2=3. We conclude that � D �1=�2 as a function of J maps the closed upper and
lower J -halfplanes onto circular arc triangles with angles �� , �� , �� , where

� D 1 � 
 D 1=3; � D 
 � ˛ � ˇ D 1=2; � D ˛ � ˇ D 0:

Indeed, this is in agreement with the fact, pointed out earlier, that � 2 T0 7! J.�/ is a
conformal map of T0 onto the closed lower halfplane.

(4) The Schwarzian derivative of a meromorphic function f .z/ depending on a
complex variable z is defined as

¹f; zº WD
d2

dz2
logf 0.z/ �

1

2

�
d

dz
logf 0.z/

�2
D
2f 0.z/f 000.z/ � 3f 00.z/2

2f 0.z/2
:
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It is well known (see [1, p. 253]) that the ratio f Dw1=w2 of two fundamental solutions
of the hypergeometric differential equation has a Schwarzian derivative given by

¹f; zº D
1 � �2

2z2
C

1 � �2

2.1 � z/2
C
1 � �2 � �2 C �2

2z.1 � z/
;

where
� D 1 � 
; � D 
 � ˛ � ˇ; � D ˛ � ˇ:

For our function p D H1=H2, we have � D 2=3, � D 1=2, � D 0, and so,

¹p; J º D
5

18J 2
C

3

8.1 � J /2
C

11

72J.1 � J /
:

Similarly,

¹�; J º D
4

9J 2
C

3

8.1 � J /2
C

23

72J.1 � J /
:

The Schwarzian derivative of a function f is invariant under post-composition
with a Möbius transformations S , namely,

¹S ı f; zº D ¹f; zº:

Moreover, we have the following chain rule for the Schwarzian derivative:

¹f ı g; zº D ¹f; gº

�
dg

dz

�2
C ¹g; zº:

If S 2 PSL2.Z/ is arbitrary, then by PSL2.Z/-equivariance of our function p we
have S ı p D p ı S . It follows that

f .�/ WD ¹p; �º D ¹S ı p; �º D ¹p ı S; �º D f .S.�//S 0.�/2:

This implies that f has the same transformation behavior as a modular form of weight 4.
This can be seen more explicitly as follows:

¹p; �º D ¹p; J ºJ 0.�/2 C ¹J; �º D .¹p; J º � ¹�; J º/J 0.�/2

D �
J 02

6

�
1

J 2
C

1

J.1 � J /

�
D

J 02

6J 2.J � 1/

D �8�2�1=3=J 2=3 D �1152�2�=E24 :

This last expression for ¹p; �º was also recorded in [12, Proposition 6.2]. Since � has
weight 12 and E4 has weight 4, it clearly transforms as a modular form of weight 4.
Note that ¹p; �º is not a modular form according to our definition as this function has
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poles, namely, exactly at the points equivalent to � under PSL2.Z/. These points are
precisely the critical points of p as we know from Corollary 4.4.
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[10] Ö. Imamoḡlu, J. Jermann and Á. Tóth, Estimates on the zeros ofE2. Abh. Math. Semin.
Univ. Hambg. 84 (2014), 123–138. Zbl 1368.11039 MR 3197015

https://doi.org/10.1007/978-3-642-88466-5
https://doi.org/10.1007/978-3-642-88466-5
https://zbmath.org/?q=an:0124.04603
https://mathscinet.ams.org/mathscinet-getitem?mr=176133
https://doi.org/10.1007/978-3-0348-9374-9
https://zbmath.org/?q=an:0434.30002
https://mathscinet.ams.org/mathscinet-getitem?mr=555733
https://zbmath.org/?q=an:0056.06703
https://mathscinet.ams.org/mathscinet-getitem?mr=0064861
https://doi.org/10.1007/978-3-642-52244-4
https://zbmath.org/?q=an:0575.33001
https://mathscinet.ams.org/mathscinet-getitem?mr=0808396
https://doi.org/10.1007/978-3-642-19557-0
https://doi.org/10.1007/978-3-642-19557-0
https://mathscinet.ams.org/mathscinet-getitem?mr=3222331
https://doi.org/10.1515/crll.1882.92.311
https://doi.org/10.1515/crll.1882.92.311
https://zbmath.org/?q=an:14.0388.01
https://mathscinet.ams.org/mathscinet-getitem?mr=1579906
https://doi.org/10.1137/0703020
https://zbmath.org/?q=an:0149.04304
https://mathscinet.ams.org/mathscinet-getitem?mr=0204710
https://doi.org/10.1017/S002776300001240X
https://zbmath.org/?q=an:0177.34903
https://mathscinet.ams.org/mathscinet-getitem?mr=0262492
https://doi.org/10.1007/s12188-014-0091-9
https://zbmath.org/?q=an:1368.11039
https://mathscinet.ams.org/mathscinet-getitem?mr=3197015


M. Bonk 30

[11] B. Schoeneberg, Elliptic modular functions: An introduction. Die Grundlehren der
mathematischen Wissenschaften 203, Springer, Berlin-Heidelberg-New York, 1974.
Zbl 0285.10016 MR 0412107

[12] A. Sebbar and A. Sebbar, Equivariant functions and integrals of elliptic functions. Geom.
Dedicata 160 (2012), 373–414. Zbl 1347.11040 MR 2970061

[13] G. N. Watson, Periodic sigma functions. Proc. London Math. Soc. (3) 2 (1952), 129–149.
Zbl 0046.30604 MR 0048632

[14] R. Wood and M. P. Young, Zeros of the weight two Eisenstein series. J. Number Theory
143 (2014), 320–333. Zbl 1296.11026 MR 3227351

[15] D. Zagier, Elliptic modular forms and their applications. In The 1-2-3 of modular forms,
pp. 1–103, Universitext, Springer, Berlin, 2008. Zbl 1259.11042 MR 2409678

[16] D. Zagier, The arithmetic and topology of differential equations. In European Congress
of Mathematics, pp. 717–776, EMS Press, Zürich, 2018. Zbl 1471.11167 MR 3890449

(Reçu le 2 janvier 2023)

Mario Bonk, Department of Mathematics, University of California, Los Angeles, CA 90055,
USA; e-mail: mbonk@math.ucla.edu

https://doi.org/10.1007/978-3-642-65663-7
https://zbmath.org/?q=an:0285.10016
https://mathscinet.ams.org/mathscinet-getitem?mr=0412107
https://doi.org/10.1007/s10711-011-9688-7
https://zbmath.org/?q=an:1347.11040
https://mathscinet.ams.org/mathscinet-getitem?mr=2970061
https://doi.org/10.1112/plms/s3-2.1.129
https://zbmath.org/?q=an:0046.30604
https://mathscinet.ams.org/mathscinet-getitem?mr=0048632
https://doi.org/10.1016/j.jnt.2014.04.007
https://zbmath.org/?q=an:1296.11026
https://mathscinet.ams.org/mathscinet-getitem?mr=3227351
https://doi.org/10.1007/978-3-540-74119-0_1
https://zbmath.org/?q=an:1259.11042
https://mathscinet.ams.org/mathscinet-getitem?mr=2409678
https://doi.org/10.4171/176-1/33
https://zbmath.org/?q=an:1471.11167
https://mathscinet.ams.org/mathscinet-getitem?mr=3890449
mailto:mbonk@math.ucla.edu

	1. Introduction
	2. First facts about the quasi-periods
	3. Modular forms
	4. An alternative approach
	5. Remarks
	References

