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On the finitary content of Dykstra’s cyclic
projections algorithm

Pedro Pinto

Abstract. We study the asymptotic behaviour of the well-known Dykstra’s algorithm. We provide
an elementary proof for the convergence of Dykstra’s algorithm in which the standard argument
is stripped to its central features and where the original compactness principles are circumvented,
additionally providing highly uniform computable rates of metastability in a fully general setting.
Moreover, under an additional assumption, we are even able to obtain effective general rates of
convergence. We argue that such an additional condition is actually necessary for the existence of
general uniform rates of convergence.

1. Introduction

Many problems in convex optimisation can be stated in terms of finding a point in the
intersection of a family of convex and closed sets, what is known as the convex feasibility
problem:

find some point x 2
\
j2I

Cj ; (CFP)

assuming a priori that \
j2I

Cj ¤ ;;

i.e., the problem has a solution (is feasible). The study of such problems first appeared
in connection with constraints defined by linear inequalities and where the feasibility set
is the intersection of half-spaces. Since then the general problem has been the subject
of much research due to its broad applicability in applied mathematics – e.g., in statist-
ics, partial differential equations (Dirichlet problem over irregular regions), solving linear
equations (Kaczmarz’s method), image or signal restoration, and computed tomography.
For further discussions, we refer the reader to the surveys [2, 8].

One of the most successful and well-known techniques to iteratively approximate a
solution to the CFP is von Neumann’s method of alternating projections (MAP). For a
subspace V , let PV denote the orthogonal projection map onto V .
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Theorem 1.1 (von Neumann [47]). Let V1;V2 be two closed vector subspaces of a Hilbert
space X . Then, for any point x0 2 X , the iteration defined by

xnC1 WD PV1PV2.xn/

converges strongly to PV1\V2.x0/.

The original proof by von Neumann does not generalize immediately to more than
two subspaces. This was overcome by Halperin who extended the convergence result to a
finite number of subspaces.

Theorem 1.2 (Halperin [18]). Let V1; : : : ; Vm be m � 2 closed vector subspaces of a
Hilbert space. Then, for any point x0 2 X , the iteration defined by

xnC1 WD PV1 � � �PVn.xn/ (MAP)

converges strongly to PTm
jD1 Vj

.x0/.

The convergence of (MAP) holds more generally when the sets Vj are affine subspaces
(i.e., translates of subspaces) provided that their intersection is nonempty. Elementary
geometric proofs of Theorems 1.1 and 1.2 can be found in [33, 34]. However, if the sets
are just assumed to be closed and convex, then the situation is more delicate. In 1965,
Bregman established weak convergence of von Neuman’s method in the general setting.

Theorem 1.3 (Bregman [6]). Let C1; : : : ;Cm bem� 2 closed convex subsets of a Hilbert
space such that

Tm
jD1 Cj ¤ ;. Then, (MAP) converges weakly to a point in the intersec-

tion.

In 2004, Hundal [19] gave a counterexample (where the sets consist of a closed hyper-
plane and a closed convex cone in `2.N/) for which the iteration indeed does not converge
in norm (see also [36]). Moreover, there are very easy examples of convex sets where
(MAP) converges strongly to a point in the intersection, but such point is distinct from the
projection of x0. A different iterative scheme was proposed by Dykstra that does converge
strongly to the projection of x0 in the general setting of the convex feasibility problem.

Consider C1; : : : ; Cm to be m � 2 closed convex subsets of a Hilbert space with
nonempty intersection. For n � 1, let Cn denote the set Cjn , where jn WD Œn � 1� C 1

with Œr� W� r mod m, and let Pn denote the metric projection onto Cn. For x0 2 X an
initial point, Dykstra’s cyclic projections algorithm is defined recursively by the equations´

x0 2 X;

q�.m�1/ D � � � D q0 D 0
and 8n � 1

´
xn WD Pn.xn�1 C qn�m/;

qn WD xn�1 C qn�m � xn:
(D)

In 1983, Dykstra [15] proved the strong convergence in the particular case when all
the sets are closed convex cones of a finite dimensional Hilbert space. The result was later
extended to the general setting by Boyle and Dykstra [5].
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Theorem 1.4 (Boyle–Dykstra [5]). Let C1; : : : ; Cm be m � 2 closed convex subsets of a
Hilbert space such that

C WD

m\
jD1

Cj ¤ ;:

Then, for any point x0 2 X , the iteration .xn/ generated by (D) converges strongly to
PC .x0/.

When the Ci ’s are closed vector subspaces (or more generally, closed affine sub-
spaces), the projection is a linear map and it is easy to see that the scheme (D) reduces to
(MAP). It may be helpful to think of Dykstra’s algorithm as operating in stages: it starts
with some initial guess x0 2X and by setting auxiliary terms q�.m�1/; : : : ; q�1; q0 to zero.
One is then able to compute x1; : : : ; xm. Using these points, we can now update the values
of the auxiliary terms, namely, computing q1; : : : ; qm. After this, the process repeats and
will approximate in norm the projection of x0 onto the feasibility set.

Dykstra’s cyclic projections algorithm is an attractive method for strongly approxim-
ating the intersection of closed convex sets in a Hilbert space as, while it converges to
the feasible point closest to x0, it only requires knowledge of the projections onto the
individual convex sets Cj . However, contrary to (MAP), not much is known regarding its
quantitative information. For the particular case when the sets Cj are closed half-spaces,
i.e., the intersection is a polyhedral subset of X , Deutsch and Hundal [10] obtained rates
of convergence for (D) (see [9] and the references therein for further discussions on rates
of convergence and their applications). Strikingly, in the case of m D 2, the rate does not
depend on the initial point but only on an upper bound on its distance to the intersection.

In this paper, we analyse the asymptotic behaviour of Dykstra’s algorithm and provide
highly uniform quantitative information in the general setting of Theorem 1.4.

When analysing the convergence of the sequence .xn/, one considers the equivalent
Cauchy formulation

8" > 0 9n 2 N 8i; j � n.kxi � xj k � "/: (�)

Effective rates of convergence, i.e., a computable function giving a witness to the value
of n in (�), are in general excluded (as per the fundamental work of Specker [43]). Proof-
theoretical considerations (see [23]) guide us to the next best possible thing

8" > 0 8f W N ! N 9n 2 N 8i; j 2 ŒnInC f .n/�.kxi � xj k � "/; (�)

where
ŒnInC f .n/� D ¹n; nC 1; : : : ; nC f .n/º:

The statement (�) is noneffectively equivalent to the Cauchy property of the sequence.
This reformulation of (�) is long known to logicians as Kreisel’s no-counterexample inter-
pretation and was popularised by Terence Tao under the name of metastability [45, 46].
In line with such terminology, a function that given " > 0 and f 2 NN outputs a bound
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on n in (�) is called a rate of metastability. General logical metatheorems (e.g., [16, 22])
guarantee the existence of such rates provided the proof of the convergence statement can
be formalised in certain formal systems1.

We provide a quantitative analysis of the proof in [3] which follows closely the argu-
ments originally given by Boyle and Dykstra [5]. Through our quantitative analysis, it
was possible to remove the compactness principles crucial in the original proof and, in
this way, obtain effective rates of metastability in the general setting of the convex feasib-
ility problem. Moreover, our quantitative results are a true finitisation of Theorem 1.4, in
the sense that the infinitary result is fully recovered. In this way, we provide an elementary
proof for the convergence of Dykstra’s algorithm. Mathematicians naturally prefer rates of
convergence to rates of metastability. However, in full generality, they are usually unavail-
able. Furthermore, when such rates are actually available, they are frequently sensitive to
the parameters of the problem. In this case, one would expect a rate of convergence to
depend on the specifics of the underlying space, of the convex sets, and on the initial point
on which the iteration is initiated. This should be compared with the uniformity exhibited
by the rate of metastability obtain in Theorem 3.11, it only depends on the number of con-
vex sets and on a bound to the distance of x0 and the intersection set. For the general case
augmented with a regularity assumption on the convex sets, we show that it is possible
to obtain uniform rates of convergence. From this, we derive rates of convergence for the
case of basic semi-algebraic convex sets in Rn (which in particular covers the polyhed-
ral case in finite dimension). We furthermore argue that the setting with this regularity
assumption is actually the only one where uniform rates of convergence are possible, in
particular, encompassing the rate of convergence obtained by Hundal and Deutsch for the
polyhedral case when m D 2.

The quantitative study in this paper is set in the context of the “proof mining” program
([23], see also the recent survey [27]) where proof-theoretical techniques are employed to
analyse prima facie noneffective mathematical proofs with the goal of obtaining additional
information. With a broad range of applications, the proof mining program has been in par-
ticular very successful in the study of results in convex optimisation. A closer connection
with the CFP can be found in its applications to splitting methods, e.g., [11, 13, 14, 35], in
particular in the previous studies of (MAP) in [26]. An important work was the analysis
of Bauschke’s solution to the zero displacement problem [1] regarding the potentially
“inconsistent feasibility problem” in [28], as well as the quantitative studies of general-
isations of Bauschke’s result in [41, 42] carried out in the underlying context of the proof
mining program.

All these previous works point to the usefulness of proof mining and of logic-based
techniques in the study of the convex feasibility problem and connected methods (see,
e.g., the recent [32]). That being said, we remark that such perspective and techniques only
operate in the background and that the central theorems are presented in a way which does

1The class of such admissible proofs is (in practice) very large, encompassing in particular most proofs
in classical analysis.
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not assume any prior knowledge of logic on the reader. Nevertheless, we allow ourselves
some simple logical remarks in the final section of the paper, which we think may be of
particular interest to logicians and the more inquisitive mathematicians.

2. Preliminaries and Lemmas

This section recalls some quantitative notions and introduces the technical lemmas crucial
for the subsequent analysis.

2.1. Quantitative notions
Let .xn/ be a Cauchy sequence in a normed space .X; k � k/.

Definition 2.1. We say that a function � W .0;1/! N is a Cauchy rate if

8" > 0 8i; j � �."/.kxi � xj k � "/:

If the sequence .xn/ converges to some point x 2 X (e.g., if the space is complete),
then any Cauchy rate will also be a rate of convergence towards x; i.e.,

8" > 0 8i � �."/.kxi � xk � "/:

Considerations from computability theory [43] tell us that effective Cauchy rates are in
general excluded, and one thus looks at an equivalent but computationally weaker refor-
mulation.

Definition 2.2. We call a function ‚ W .0;1/ �NN ! N a rate of metastability if

8" > 0 8f W N ! N 9n � ‚."; f / 8i; j 2 ŒnInC f .n/�.kxi � xj k � "/;

where ŒnInC f .n/� WD ¹n; nC 1; : : : ; nC f .n/º.

The following result is folklore (see, e.g., [30]).

Proposition 2.3. A function � W .0;1/! N is a Cauchy rate if and only if the function
‚ W ."; f / 7! �."/ is a rate of metastability.

2.2. Lemmas

Throughout, let .X; h�; �i/ be a real Hilbert space with inner product h�; �i and norm k � k WDp
h�; �i. We also use the notation ŒaI b� WD Œa; b� \N and N� WD N n ¹0º. In this section

we collect known results and prove some useful technical lemmas. Recall the following
characterisation of the metric projection, known as Kolmogorov’s criterion.

Proposition 2.4 ([3, Theorem 3.16]). Let C be a nonempty closed convex subset of X .
Then, every point u 2 X has a unique best approximation on C , which we denote by
PC .u/ and call the projection of u onto C . Furthermore, PC .u/ is the unique element of
C satisfying

8y 2 C
�
hu � PC .u/; y � PC .u/i � 0

�
:
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We will require a quantitative version of the proposition above. The first quantitative
studies on the metric projection are featured in [24, 25]. The version used here follows
the formulation proven in [17, 37]. In [13], it was used in an “"=ı-formulation” for the
general nonlinear setting of CAT(0) spaces. Let NBr .p/ denote the closed ball of radius
r � 0 centred at p 2 X , i.e., NBr .p/ WD ¹x 2 X W kx � pk � rº.

Proposition 2.5. Given u 2 X , let b 2 N� be such that b � ku � pk for some p 2Tm
jD1 Cj . For any " > 0 and function ı W .0;1/ ! .0;1/, there exist � � ˇ.b; "; ı/

and x 2 NBb.p/ such that
Vm
jD1 kx � Pj .x/k � ı.�/ and

8y 2 NBb.p/

� m̂

jD1

ky � Pj .y/k � �! hu � x; y � xi � "

�
;

where ˇ.b; "; ı/ WD '2

24b
with

' WD min
²
Qı.i/.1/ W i �

�
4b4

"2

�³
and Qı.�/ WD min

²
ı
� �2
24b

�
;
�2

24b

³
for any � > 0:

The proof of this result is an easy modification of the one in [13] regarding common
(almost-)fixed points of two nonexpansive maps to common (almost-)fixed points of m
projection maps. Indeed, it is clear that the result holds mutatis mutandis for any finite
number of nonexpansive maps (and so, for metric projections in Hilbert spaces). In order
to convince the reader, we nevertheless include a proof. First, we require the following
two technical lemmas essentially due to Kohlenbach [25]2.

Lemma 2.6. Let C be some convex bounded subset of a normed space and D 2 N� be a
bound on the diameter of C . Consider a nonexpansive map T W C ! C . Then,

8" > 0 8x1; x2 2 C

� 2̂

iD1

kxi � T .xi /k �
"2

12D
! 8t 2 Œ0; 1�.kwt � T .wt /k � "/

�
;

where wt WD .1 � t /x C ty.

Lemma 2.7. Let X be a normed space and for x; y 2 X and write wt WD .1 � t /x C ty
for t 2 Œ0; 1�. Then, for any u; x; y 2 X ,

8" 2 .0; b2�

�
8t 2 Œ0; 1�

�
ku � xk2 � ku � wtk

2
C
"2

D2

�
! hu � x; y � xi � "

�
;

where D 2 N� is such that D � kx � yk.

Proof of Proposition 2.5. Let " > 0 and a function ı W .0;1/ ! .0;1/ be given. We
structure the argument in two central claims.

2Despite some optimisation of constants, the results are established as in [25, Lemmas 2.3 and 2.7].
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Claim 1. There exist � � ' and x 2 NBb.p/ such that
Vm
jD1 kx � Pj .x/k �

Qı.�/ and

8y 2 NBb.p/

� m̂

jD1

ky � Pj .y/k � �! ku � xk
2
� ku � yk2 C

"2

4b2

�
:

Proof of Claim 1. Assume towards a contradiction that for all � � ' and x 2 NBb.p/ such
that

Vm
jD1 kx � Pj .x/k �

Qı.�/,

9y 2 NBb.p/

� m̂

jD1

ky � Pj .y/k � � ^ ku � yk
2 < ku � xk2 �

"2

4b2

�
: (2.1)

We then define a finite sequence z0; : : : ; zr with r WD d4b
4

"2
e as follows. Take z0 to be p.

In particular, z0 2 NBb.p/ and kz0 � Pj .z0/k � Qı.r/.1/ for all j 2 Œ1Im�. Consider that
for i � r � 1, we have zi 2 NBb.p/ such that kzi � Pj .zi /k � Qı.r�i/.1/ for all j 2 Œ1Im�.
Then, by (2.1), there is some y 2 NBb.p/ such that

m̂

jD1

ky � Pj .y/k � Qı
.r�i�1/.1/ and ku � yk2 < ku � zik

2
�
"2

4b2
:

We define ziC1 to be one such y. By construction, ku� ziC1k2 < ku� zik2 � "=4b2 for
all i < r , and so, we obtain

ku � zrk
2 < ku � z0k

2
� r

"2

4b2
� b2 �

4b4

"2
"2

4b2
D 0;

which is a contradiction and concludes the proof of the claim.

In the following, consider �0 � ' and x 2 NBb.p/ as per Claim 1, and define �1 WD
�20
24b

which is bounded below by ˇ.b; "; ı/.

Claim 2. For all y 2 NBb.p/ and t 2 Œ0; 1�,

m̂

jD1

ky � Pj .y/k � �1 ! ku � xk
2
� ku � wtk

2
C

"2

4b2
:

Proof of Claim 2. By the definition of the function Qı, we have in particular that

m̂

jD1

kx � Pj .x/k � �1:

Now, if we consider y 2 NBb.p/ such that ky � Pj .y/k � �1 for all j 2 Œ1Im�, then we
can apply Lemma 2.6 (with D D 2b) to each of the projection maps restricted to NBb.p/
to conclude that

Vm
jD1 kwt � Pj .wt /k � �0. By convexity, wt 2 NBb.p/ and the result

follows by the assumption on �0 and x.
By definition of Qı, we have

Vm
jD1 kx �Pj .x/k � ı.�1/ and application of Lemma 2.7

(with D D 2b) concludes the proof.
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We will make use of the following two technical lemmas. The first lemma is a quant-
itative version of the fact that any summable sequence of nonnegative real numbers must
convergence towards zero.

Lemma 2.8. Let .an/ 2 `1C.N/ and consider B 2 N such that
P
an � B . Then,

8" > 0 8f W N ! N 9n � ‰.B; "; f / 8i 2 ŒnInC f .n/�.ai � "/;

where

‰.B; "; f / WD Lf .R/.0/ with Lf .m/ WD mC f .m/C 1 and R WD
jB
"

k
:

Proof. Let " > 0 and f W N ! N be given. Assume towards a contradiction that

8n � ‰.B; "; f / 9i 2 ŒnInC f .n/�.ai > "/:

Using this assumption, we recursively construct .RC 1/-many distinct indices i0; : : : ; iR
such that ir 2 Œ Lf .r/.0/I Lf .r/.0/C f . Lf .r/.0//� and air > ". Then,

1X
iD0

ai �

RX
rD0

air > .RC 1/" � B;

which is a contradiction.

The next lemma corresponds to a quantitative version of [3, Lemma 30.6] (which itself
is a variant of a technical lemma proved by Dykstra).

Lemma 2.9. Let .an/ 2 `2C.N/ and consider B 2 N such that
P
a2n � B . For all n 2 N,

set sn WD
Pn
kD0 ak , and let m � 2 be given. Then,

lim sn.sn � sn�m�1/ D 0 with lim inf -rate �B.m; ";N / WD
�
e.

.mC1/B
" /2

�
� .N C 1/I

i.e.,
8" > 0 8N 2 N 9n 2 ŒN IN C �B.m; ";N /�.sn.sn � sn�m�1/ � "/:

Proof. Let N 2 N and " > 0 be given, and shorten � D �B.m; ";N /. Using the Cauchy–
Schwarz inequality, we have for all n 2 N

sn �
p
nC 1

vuut nX
kD0

a2
k
�
p
nC 1

p
B: (2.2)

Assume towards a contradiction that for all n 2 Œmax¹N;mºIN C �� we have

sn � sn�m�1 D

nX
iDn�m

ai >
"

p
B
p
nC 1

: (2.3)
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Then, again by the Cauchy–Schwarz inequality, for all n 2 Œmax¹N;mºIN C ��, we have

"2

B.nC 1/
<

� nX
iDn�m

ai

�2
� .mC 1/ �

nX
iDn�m

a2i :

Note that, by the integral test, the definition of � entails

NC�X
nDN

1

nC 1
� log

�
N C � C 2

N C 1

�
�
.mC 1/2B2

"2
;

and so, we derive the following contradiction:

.mC 1/2B �

NC�X
nDN

"2

B.nC 1/
<

NC�X
nDN

�
.mC 1/

nX
iDn�m

a2i

�
D .mC 1/

mX
kD0

NC�X
iDN

a2i�k � .mC 1/
2B:

Hence, there is some n 2 ŒN IN C �� such that equation (2.3) fails, and by equation (2.2)
the result follows.

3. Main results

For the remaining sections, let x0 2 X be given and consider .xn/ to be the iteration
generated by (D). We start with some facts that follow easily from the definition of the
algorithm.

Lemma 3.1. For all n 2 N�, we have the following:

(i) xn�1 � xn D qn � qn�m,

(ii) x0 � xn D
Pn
kDn�mC1 qk ,

(iii) xn 2 Cn and 8z 2 Cn.hxn � z; qni � 0/,

(iv) hxn � xnCm; qni � 0.

Proof. Let n 2 N� be given. Fact (i) follows immediately from the definition of qn. Now,
from (i) we easily derive (ii). Indeed,

x0 � xn D

nX
kD1

xk�1 � xk D

nX
kD1

qk � qk�m D

nX
kD1

qk �

n�mX
kD�.m�1/

qk

D

nX
kD1

qk �

n�mX
kD1

qk D

nX
kDn�mC1

qk :
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The definition of xn entails (iii) using the definition of qn and the characterization of the
metric projection in Proposition 2.4. Finally, point (iv) is an immediate consequence of
(iii) as xnCm 2 CnCm D CjnCm D Cjn D Cn.

We also have the following useful inequality.

Lemma 3.2. For all n 2 N,
Pn
kDn�mC1 kqkk �

Pn�1
kD0 kxk � xkC1k.

Proof. We argue by induction on n 2 N. Since q�.m�1/ D � � � D q0 D 0, the base case
n D 0 is trivial. For the induction step,

nC1X
kDn�mC2

kqkk D

nX
kDn�mC1

kqkk C kqnC1k � kqn�mC1k

IH
�

n�1X
kD0

kxk � xkC1k C kqnC1 � qnC1�mk D

nX
kD0

kxk � xkC1k;

using Lemma 3.1 (i). This concludes the proof.

We now prove the main equality used throughout Dykstra’s proof.

Lemma 3.3. For all z 2 X and i; n 2 N with i � n (see footnote3),

kxn � zk
2
D kxi � zk

2
C

i�1X
kDn

�
kxk � xkC1k

2
C 2hxk�mC1 � xkC1; qk�mC1i

�
C 2

iX
kDi�mC1

hxk � z; qki � 2

nX
kDn�mC1

hxk � z; qki; (3.1)

and in particular,

kxi � zk
2
� kxn � zk

2
C 2

nX
kDn�mC1

hxk � z; qki � 2

iX
kDi�mC1

hxk � z; qki: (3.2)

Proof. The proof of identity (3.1) is by induction on i . The base case i D n is trivial. For
i C 1, we first see that

hxiC1 � z; qiC1 � qiC1�mi D hxiC1 � z; qiC1i

� .hxiC1 � xi�mC1; qi�mC1i C hxi�mC1 � z; qi�mC1i/

D hxi�mC1 � xiC1; qi�mC1i

C hxiC1 � z; qiC1i � hxi�mC1 � z; qi�mC1i;

3Here, one considers x�.m�1/; : : : ; x�1 arbitrary points in X .
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and so, using Lemma 3.1 (i), we have

kxi � zk
2
D h.xiC1 � z/C .xi � xiC1/; .xiC1 � z/C .xi � xiC1/i

D kxiC1 � zk
2
C kxi � xiC1k

2
C 2hxiC1 � z; xi � xiC1i

D kxiC1 � zk
2
C kxi � xiC1k

2
C 2hxiC1 � z; qiC1 � qiC1�mi

D kxiC1 � zk
2
C kxi � xiC1k

2
C 2hxi�mC1 � xiC1; qi�mC1i

C 2hxiC1 � z; qiC1i � 2hxi�mC1 � z; qi�mC1i:

We can now verify the induction step,

kxn � zk
2 IH
D kxi � zk

2
C

i�1X
kDn

�
kxk � xkC1k

2
C 2hxk�mC1 � xkC1; qk�mC1i

�
C 2

iX
kDi�mC1

hxk � z; qki � 2

nX
kDn�mC1

hxk � z; qki

D
�
kxiC1 � zk

2
C kxi � xiC1k

2
C 2hxi�mC1 � xiC1; qi�mC1i

C 2hxiC1 � z; qiC1i � 2hxi�mC1 � z; qi�mC1i
�

C

i�1X
kDn

�
kxk � xkC1k

2
C 2hxk�mC1 � xkC1; qk�mC1i

�
C 2

iX
kDi�mC1

hxk � z; qki � 2

nX
kDn�mC1

hxk � z; qki

D kxiC1 � zk
2
C

iX
kDn

�
kxk � xkC1k

2
C 2hxk�mC1 � xkC1; qk�mC1i

�
C 2

iC1X
kDi�mC2

hxk � z; qki � 2

nX
kDn�mC1

hxk � z; qki;

which concludes the induction and proves (3.1). To verify (3.2), just note that the terms in
the first sum are all nonnegative.

The assumption of feasibility,
Tm
jD1 Cj ¤ ;, now entails that the iteration .xn/ is

bounded and
P
kxk � xkC1k

2 <1. For the sequel, we fix some point p 2
Tm
jD1Cj and

a natural number b 2 N� such that b � kx0 � pk.

Lemma 3.4. For all n 2 N,

kxn � pk � b and
nX
kD0

kxk � xkC1k
2
� b2:

Proof. The result follows immediately from (3.1) and (3.2) with z D p and n D 0 using
Lemma 3.1 (iii) and the fact that

P0
kD�.m�1/hxk � p; qki D 0.
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Using Lemma 2.9, we derive a lim inf-rate for the first step in the convergence proof
of Dykstra’s algorithm.

Proposition 3.5. We have limn

Pn
kDn�mC1 jhxk � xn; qkij D 0, and moreover, for all

" > 0 and N 2 N,

9n 2 ŒN IN Cˆ.b;m; ";N /�

� nX
kDn�mC1

jhxk � xn; qkij � "

�
; (3.3)

where ˆ.b;m; ";N / WD �b2.m; ";N /, with � as defined in Lemma 2.9.

Proof. Let " > 0 and N 2 N be given. As we have seen
P
kxk � xkC1k

2 � b2, and so,
we can apply Lemma 2.9 (instantiated with an D kxn � xnC1k and B D b2) to conclude
that there is n 2 ŒN IN Cˆ.b;m; ";N /� such that� nX

kDn�mC1

kxk � xkC1k

�
�

� nX
kD0

kxk � xkC1k

�
D .sn � sn�m/sn � ":

By triangle inequality, for all k 2 Œn �mC 1In�,

kxk � xnk �

n�1X
`Dk

kx` � x`C1k �

n�1X
`Dn�mC1

kx` � x`C1k;

and thus, using Cauchy–Schwarz and Lemma 3.2, we get

nX
kDn�mC1

jhxk � xn; qkij �

nX
kDn�mC1

kxk � xnk � kqkk

�

� nX
kDn�mC1

kqkk

�� n�1X
`Dn�mC1

kx` � x`C1k

�
�

� nX
kD0

kxk � xkC1k

�� nX
kDn�mC1

kxk � xkC1k

�
� ";

which, in particular, means that limn

Pn
kDn�mC1 jhxk � xn; qkij D 0.

3.1. Asymptotic regularity

Here, we discuss the asymptotic regularity of .xn/. In the previous subsection, we saw thatPn
kD0 kxk � xkC1k

2 � b2. Hence, by Lemma 2.8, we immediately derive the following
result.

Proposition 3.6. We have lim kxn � xnC1k D 0, and moreover,

8" > 0 8f 2 NN
9n � ‰.b2; "2; f / 8k 2 ŒnInC f .n/�

�
kxk � xkC1k � "

�
;

where ‰ is as defined in Lemma 2.8.
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One can now show the asymptotic regularity with respect to the individual projections.

Proposition 3.7. For all j 2 Œ1Im�, we have lim kxn � Pj .xn/k D 0, and

8" > 0 8f 2 NN
9n � ˛.b;m; "; f / 8k 2 ŒnInC f .n/�

� m̂

jD1

kxk � Pj .xk/k � "

�
;

where
˛.b;m; "; f / WD ‰

�
b2;

� "

m � 1

�2
; f Cm � 2

�
;

with ‰ as defined in Lemma 2.8.

Proof. For given " > 0 and f W N ! N, by Proposition 3.6, there is n � ˛.b; m; "; f /
such that

8k 2 ŒnInC f .n/Cm � 2�
�
kxk � xkC1k �

"

m � 1

�
: (3.4)

Consider k 2 ŒnInC f .n/�. By the definition, we have xk 2 Cjk with jk WD Œk � 1�C 1.
For all i 2 Œ0Im � 1�, as xkCi 2 CjkCi from the definition of the projection map PjkCi ,
we have

kxk � PjkCi .xk/k � kxk � xkCik �

kCi�1X
`Dk

kx` � x`C1k

�

kCm�2X
`Dk

kx` � x`C1k � .m � 1/ �
"

m � 1
D ";

where in the last step we use the fact that ŒkI k C m � 2� � ŒnI nC f .n/C m � 2� and
(3.4). The conclusion now follows from observing that for any k 2 N the cyclic definition
of C.�/ entails ¹PjkCi W i 2 Œ0Im � 1�º D ¹P1; : : : ; Pmº.

Remark 3.8. Note that the previous argument is clearly constructive, and the reason we
only obtain a rate of metastability is due to having only a metastability statement in Pro-
position 3.6. This is already clear by Proposition 2.3 and the fact that the counterfunction
f only appears in the definition of ˛ when the bounding information from Proposition 3.6
depends on the functional parameter. Indeed, if the conclusion of Proposition 3.6 would
hold with a rate of asymptotic regularity  ,

8" > 0 8k �  ."/.kxk � xkC1k � "/;

then the same argument would entail a rate satisfying

8" > 0 8k � z ."/

� m̂

jD1

kxk � Pj .xk/k � "

�
;

with z ."/ WD  ."=.m � 1//.
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3.2. Metastability

Here, we show the full quantitative version of Theorem 1.4. Moreover, our proof bypasses
all of the compactness principles used in the original proof. We start with an easy remark
regarding some of the data obtained so far.

Remark 3.9. The function ˛ (Proposition 3.7) is monotone in ",

" � "0 ! ˛.b;m; "; f / � ˛.b;m; "0; f /:

The function ˆ (Proposition 3.5) is monotone in N ,

N � N 0 ! ˆ.b;m; ";N / � ˆ.b;m; ";N 0/:

We have the following result which plays a central role in bypassing the compactness
principles used in the original argument.

Proposition 3.10. Let " > 0 and a function � W N ! .0;1/ be given. Then,

9n � .b;m; ";�/ 9x 2 NBb.p/� m̂

jD1

kx � Pj .x/k � �.n/ ^ kx � xnk � " ^

nX
kDn�mC1

hxk � xn; qki � "

�
;

where .b;m; ";�/ WD x̨. x̌/Cˆ".x̨. x̌// with

x̌ WD ˇ
�
b;
"2

2
; ı
�
;

ı.�/ WD min
²

"2

8b
�
x̨.�/Cˆ".x̨.�///

; z�.x̨.�/Cˆ".x̨.�///

³
for all � > 0;

x̨.�/ WD ˛.b;m; �;ˆ"/ for all � > 0;

ˆ"
�
N
�
WD ˆ

�
b;m;

"2

4
;N
�

for all N 2 N;

z�.k/ WD min
®
�.k0/ W k0 � k

¯
for all k 2 N;

˛; ˇ;ˆ are as in Propositions 3.7, 2.5, and 3.5, respectively:

Proof. By Proposition 2.5 with u D x0, there are �0 � x̌ and x 2 NBb.p/ such that

m̂

jD1

kx � Pj .x/k � ı.�0/ (3.5)

and

8y 2 NBb.p/

� m̂

jD1

ky � Pj .y/k � �0 ! hx0 � x; y � xi �
"2

2

�
: (3.6)
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Considering Proposition 3.7 with " D �0 and f D ˆ", we obtain

9N0 � x̨.�0/ 8i 2 ŒN0IN0 Cˆ"
�
N0
�
�

� m̂

jD1

kxi � Pj .xi /k � �0

�
:

Since .xn/� NBb.p/, by (3.6) we have 8i 2 ŒN0IN0Cˆ".N0/�.hx0 � x;xi � xi � "2=2/.
On the other hand, from Proposition 3.5 (with " D "2

4
and N D N0) and the definition

of the function ˆ", there exists n0 2 ŒN0IN0 Cˆ".N0/� such that
n0X

kDn0�mC1

hxk � xn0 ; qki �
"2

4
:

At this point, we remark that n0 � .b;m; ";�/. Indeed, by Remark 3.9 and as �0 � x̌,

n0 � N0 Cˆ".N0/ � x̨.�0/Cˆ".x̨.�0// � x̨. x̌/Cˆ".x̨. x̌// D .b;m; ";�/:

The definition of the function ı, then entails ı.�0/ � z�.x̨.�0/ C ˆ".x̨.�0/// � �.n0/.
Hence, the first and the last term of the conjunction in the result hold true a fortiori, and it
remains to verify that kx � xn0k � ". Note that the definition of ı also entails

ı.�0/ �
"2

8b.x̨.�0/Cˆ".x̨.�0///
�

"2

8b.N0 Cˆ".N0//
�

"2

8bn0
:

Thus,

kx � xn0k
2

D hx � xn0 ; x � x0i C hx � xn0 ; x0 � xn0i �
"2

2
C hx � xn0 ; x0 � xn0i

D
"2

2
C

n0X
kDn0�mC1

hx � xn0 ; qki by Lemma 3.1 (ii)

D
"2

2
C

n0X
kDn0�mC1

hxk � xn0 ; qki C

n0X
kDn0�mC1

hx � xk ; qki

�
"2

2
C
"2

4
C

n0X
kDn0�mC1

hPk.x/„ƒ‚…
2Ck

�xk ; qki C

n0X
kDn0�mC1

hx � Pk.x/; qki

�
3"2

4
C

n0X
kDn0�mC1

hx � Pk.x/; qki by Lemma 3.1 (iii)

�
3"2

4
C

n0X
kDn0�mC1

kx�Pk.x/k � kqkk�
3"2

4
Cı.�0/

n0�1X
kD0

kxk�xkC1k by Lemma 3.2

�
3"2

4
C ı.�0/ � n0 � 2b �

3"2

4
C

"2

8bn0
� n0 � 2b D "

2;

which gives kx � xn0k � " and concludes the proof.
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We are now ready to prove the quantitative version of Theorem 1.4.

Theorem 3.11. Let C1; : : : ; Cm be m � 2 convex subsets of a Hilbert space X such
that

Tm
jD1 Cj ¤ ;. Let x0 2 X and b 2 N� be given such that b � kx0 � pk for some

p 2
Tm
jD1Cj . Then, the sequence .xn/ generated by (D) is a Cauchy sequence and for all

" 2 .0; 1� and f W N ! N,

9n � �.m; b; "; f / 8i; j 2 ŒnInC f .n/�.kxi � xj k � "/;

where �.b;m; "; f / WD .b;m; Q";�";f / with  as defined in Proposition 3.10, Q" WD "2

96b

and

�";f .k/ WD
"2

48b �max¹k C f .k/; 1º
for all k 2 N:

Proof. Let " 2 .0; 1� and a function f W N ! N be given. By Proposition 3.10, there are
n0 � �.b;m; "; f / and x 2 NBb.p/ such that

(a)
Vm
jD1 kx � Pj .x/k � �";f .n0/,

(b) kxn0 � xk � Q" �
"p
12

(see footnote4),

(c)
Pn0
kDn0�mC1

hxk � xn0 ; qki � Q" �
"2

48
.

In order to verify that the result holds for such n0, we consider i 2 Œn0I n0 C f .n0/�. We
assume that f .n0/� 1, and thus max¹n0C f .n0/; 1º D n0C f .n0/; otherwise, the result
trivially holds. Since i � n0, by (3.2) and using .b/, we have

kxi � xk
2
� kxn0 � xk

2
C 2

n0X
kDn0�mC1

hxk � x; qki � 2

iX
kDi�mC1

hxk � x; qki

�
"2

12
C 2

n0X
kDn0�mC1

hxk � x; qki„ ƒ‚ …
t1

C2

iX
kDi�mC1

hx � xk ; qki„ ƒ‚ …
t2

:

Using (b), (c) and Lemma 3.1 (ii), we get

t1 D

n0X
kDn0�mC1

hxk � xn0 ; qki C

n0X
kDn0�mC1

hxn0 � x; qki

�
"2

48
C

�
xn0 � x;

n0X
kDn0�mC1

qk

�
D
"2

48
C hxn0 � x; x0 � xn0i

�
"2

48
C 2b � kxn0 � xk �

"2

48
C 2b � Q" D

"2

48
C 2b �

"2

96b
D
"2

24
;

4For simplicity, we assumed that " 2 .0; 1� to avoid replacing " with min¹"; 1º in the definition of Q" and
still have the second inequality in (b).
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and, using (a) and Kolmogorov’s criterion, we get

t2 D

iX
kDi�mC1

hx � Pk.x/; qki C

iX
kDi�mC1

hPk.x/„ƒ‚…
2Ck

�xk ; qki

„ ƒ‚ …
�0

�

iX
kDi�mC1

hx � Pk.x/; qki �

iX
kDi�mC1

kx � Pk.x/kkqkk

� �";f .n0/

iX
kDi�mC1

kqkk � �";f .n0/ �

i�1X
kD0

kxk � xkC1k by Lemma 3.2

� 2b � i ��";f .n0/ D 2b � i �
"2

48b.n0 C f .n0//
�
"2

24
;

using in the last inequality the fact that i � n0 C f .n0/. Overall, we conclude that

kxi � xk
2
�
"2

12
C
"2

12
C
"2

12
D
"2

4
;

and thus, kxi � xk � "=2, which entails the result by triangle inequality.

In contrast with the lack of a full rate of convergence, the reader should note the high
uniformity of the rate of metastability obtained. Our function does not depend on specifics
of the underlying space nor on any additional geometric properties of the convex sets. The
rate only depends on the parametersm� 2 for the number of sets, and b 2N� for a bound
on the distance between the initial point and the feasibility set.

Remark 3.12. Theorem 3.11 is a true finitisation of Dykstra’s convergence result in the
sense that, besides only discussing properties for a finite number of terms, it implies back
the original statement in a mathematically simple way. Indeed, if the sets are closed, as
the sequence .xn/ satisfies the metastability property it is a Cauchy sequence, and by
completeness it converges to some point of the space, say z D lim xn. By Proposition 3.7
and continuity of the projection maps Pj , we conclude that z must be a common fixed
point for all the projection, i.e., z 2

Tm
jD1 Cj . It only remains to argue that the limit point

is actually the feasible point closest to x0. Let C WD
Tm
jD1 Cj and write PC .x0/ for the

projection of x0 onto the intersection. Consider " > 0 to be arbitrarily given and N0 2 N
such that kxn � zk �min¹ "

2

8b
; "
2
º for all n�N0 (with b as before). As per Proposition 3.5,

we may consider some n0 � N0 such that
n0X

kDn0�mC1

hxk � xn0 ; qki �
"2

8
:

Since z 2 C , by Proposition 2.4, we also have

hPC .x0/ � xn0 ; PC .x0/ � x0i � hz � xn0 ; PC .x0/ � x0i � b � kz � xn0k �
"2

8
:
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It is now easy to see that

kPC .x0/ � xn0k
2
�
"2

8
C hPC .x0/ � xn0 ; x0 � xn0i

D
"2

8
C

n0X
kDn0�mC1

hPC .x0/ � xn0 ; qki by Lemma 3.1 (ii)

D
"2

8
C

n0X
kDn0�mC1

hxk � xn0 ; qki C

n0X
kDn0�mC1

hPC .x0/ � xk ; qki„ ƒ‚ …
�0; by Lemma 3.1 (iii)

�
"2

8
C
"2

8
D

� "
2

�2
;

which entails kPC .x0/ � zk � ", and so, as " is arbitrary, z D PC .x0/.

4. Rates of convergence and regularity

In this section, we study the rate of convergence for Dykstra’s algorithm under a regularity
assumption on the structure of the convex sets. We remark that a regularity assumption
on the convex sets C1; : : : ; Cm is known to allow for rates of convergence already for
simpler iterative methods. As explained in [29, pp. 291–292], a solution to the CFP can be
obtained via a Mann-type iteration and, based on the work in [20], rates of convergence
are available under a regularity condition. Moreover, in [29, pp. 288], the authors obtained
rates of convergence for (MAP) even in a general nonlinear setting and an extremely fast
rate was given in [29, Corollary 4.17]. However, these studies were concerned with the
interplay between regularity and iterative methods which are Fejér monotone with respect
to the feasibility set. In this context, the study of Dykstra’s algorithm is of particular
interest as the iteration fails to be Fejér monotone and yet it was possible to obtain rates
of convergence.

4.1. The rate of convergence

Denote C WD
Tm
jD1 Cj and let p be some point of X . We call � W N � .0;1/! .0;1/

satisfying for all " > 0 and r 2 N,

8x 2 NBr .p/

� m̂

jD1

kx � Pj .x/k � �r ."/! 9z 2 Ckx � zk � "

�
(?)

a modulus of regularity for the sets C1; : : : ;Cm (centred at p). Thus, a modulus of regular-
ity lets us know how close to the individual sets (i.e., �r ."/-almost Pj fixed point) must
a point be so that we are sure that it is close to the intersection set (i.e., an "-almost PC
fixed point). We refer the reader to [29] where this notion was developed and shown to be
an effective tool for a unified discussion of several concepts in convex optimisation.
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Remark 4.1. Clearly, the conclusion of (?) is equivalent to dist.x; C / � ". Furthermore,
the existence of a modulus of regularity centred at p (say �p) obviously entails the exist-
ence of a modulus of regularity centred at any other q 2 X (say �q) – it is easy to verify
that for any q 2 X , �qr W " 7! �

p

rCdkp�qke
."/ works. The choice of the point p is always

clear by the context, and so, we just write �.

When a modulus of regularity is available, we can actually give rates of convergence
for Dykstra’s iteration.

Theorem 4.2. Consider x0 2 X and a natural number b 2 N� such that b � kx0 � pk
for some p 2 C . Let � be a function satisfying (?). Then,

8" > 0 8i; j � ‚.b;m; "/.kxi � xj k � "/;

where ‚.b;m; "/ WD ˛.b;m;�b.Q"/;ˆ"/Cˆ".˛.b;m;�b.Q"/;ˆ"// with

Q" WD
"2

32b
; ˆ".N / WD ˆ

�
b;m;

"2

16
;N
�

for all N 2 N;

˛;ˆ are as in Propositions 3.7 and 3.5, respectively:

In particular, .xn/ converges with rate ‚.

Proof. By Proposition 3.7, there is N0 � ˛.b;m;�b.Q"/;ˆ"/ such that

8n 2 ŒN0IN0 Cˆ".N0/�

� m̂

jD1

kxn � Pj .xn/k � �b.Q"/

�
:

Since .xn/ � NBb.p/, by the assumption (?) on �, it follows that

8n 2 ŒN0IN0 Cˆ".N0/� 9z 2 C
�
kxn � zk �

"2

32b

�
: (4.1)

Applying Proposition 3.5 with " D "2

16
and N D N0, we have n0 2 ŒN0IN0 C ˆ".N0/�

such that
n0X

kDn0�mC1

hxk � xn0 ; qki �
"2

16
:

By (4.1), let z0 2 C be such that kz0 � xn0k �
"2

32b
. Thus, for any i � n0,

iX
kDi�mC1

hxk � xn0 ; qki D

iX
kDi�mC1

hxk � z0; qki„ ƒ‚ …
�0; by Lemma 3.1 (iii)

C

iX
kDi�mC1

hz0 � xn0 ; qki

�

�
z0 � xn0 ;

iX
kDi�mC1

qk

�
D hz0 � xn0 ; x0 � xi i by Lemma 3.1 (ii)

� �kz0 � xn0k � kx0 � xik � �
2b"2

32b
D �

"2

16
:
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Now, by (3.2) with n D n0 and z D xn0 ,

kxi � xn0k
2
� 2

n0X
kDn0�mC1

hxk � xn0 ; qki � 2

iX
kDi�mC1

hxk � xn0 ; qki �
"2

4
;

which entails that kxi � xn0k �
"
2

and the result follows by triangle inequality.

In particular, ‚ is also a rate of asymptotic regularity for the sequence .xn/ and, by
Remark 3.8, the function ‚0 W " 7! ‚.b; m; "

m�1
/ is a rate of asymptotic regularity with

respect to the individual projections.
We now recall the following class of convex sets in Rn.

Definition 4.3. A set C � Rn is called a basic semi-algebraic convex set in Rn if there
exist  � 1 convex polynomial functions gi on Rn such that

C WD
®
x 2 Nn

W gi .x/ � 0; i 2 Œ1I �
¯
:

We remark that the class of basic semi-algebraic convex sets is a broad class of convex
sets which includes in particular, the polyhedral case and the class of convex sets described
by convex quadratic functions. It was observed in [29] that the study of Hölderian regular-
ity in [4] entails the existence of a modulus of regularity for basic semi-algebraic convex
sets with respect to compact sets. As such, we immediately have the following example of
application of Theorem 4.2.

Example 4.4. Let C1; : : : ; Cm � Rn be basic semi-algebraic sets described by convex
polynomials gi;j with degree at most d 2 N such that

Tm
jD1 Cj ¤ ;. Consider some

p 2 Rn. Then, for any r 2 N, there exists c > 0 such that

�r ."/ WD
."=c/�

m
with � WD min

²
.2d � 1/n C 1

2
; B.n � 1/dn

³
;

where

B.n/ WD

�
n

bn=2c

�
is the central binomial coefficient with respect to n is a modulus of regularity for C1; : : : ;
Cm centred at p (see footnote5). Hence, by Theorem 4.2 one has a uniform rate of con-
vergence for Dykstra’s cyclic projections algorithm for basic semi-algebraic convex sets
in Rn.

4.2. Regularity

We now argue that a modulus of regularity is a necessary condition for the existence of
uniform convergence rates.

5Which is to a modulus of regularity for C1 \ � � � \ Cm with respect to the compact set NBr .p/ � Rn,
in the terminology used in [29].
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Proposition 4.5. Let x0 2 X and b 2 N� be such that b � kx0 � pk for some p 2T
jD1 Cj . Consider .xn/ the iteration generated by (D) with initial point x0. Then,

8" > 0 8n 2 N

� m̂

jD1

kx0 � Pj .x0/k �
"2

4bn
! kxn � x0k � "

�
:

Proof. Let " > 0 and n 2 N be given. Assuming the premise of the implication, by (3.2)
(with i D n, n D 0 and z D x0), we have

kxn � x0k
2
� 2

0X
kD�.m�1/

hxk � x0; qki„ ƒ‚ …
D0

C2

nX
kDn�mC1

hx0 � xk ; qki

D

nX
kDn�mC1

hx0 � Pk.x0/; qki C 2

nX
kDn�mC1

hPk.x0/„ ƒ‚ …
2Ck

�xk ; qki

„ ƒ‚ …
�0 by Lemma 3.1 (iii)

� 2

nX
kDn�mC1

kx0 � Pk.x0/k � kqkk �
"2

2bn

nX
kDn�mC1

kqkk

�
"2

2bn

n�1X
kD0

kxk � xkC1k � "
2 using Lemma 3.2;

which entails kxn � x0k � " and concludes the proof.

Note that the natural proof that the scheme (D) satisfies

x0 2

m\
jD1

Cj ! 8n 2 N.xn D x0/

does not require the knowledge that the functions Pj are the metric projections, but
only that they are extensional. Since the functions Pj , being nonexpansive, have a trivial
modulus of uniform continuity independent of any majorisability assumption, logical con-
siderations make it clear that there must exist a bound which does not depend on the
additional constant b 2 N. With such perspective, we give an alternative version of Pro-
position 4.5.

Proposition 4.6. Consider .xn/ to be the iteration generated by (D) with some initial
point x0 2 X . Then,

8" > 0 8n 2 N�
� m̂

jD1

kx0 � Pj .x0/k �
"

5n�1
! kxn � x0k � "

�
:
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Proof. By induction, we show the stronger assertion that, for all n 2 N�,

8" > 0

� m̂

jD1

kx0 � Pj .x0/k �
"

5n�1
! 8n0 2 Œ1In�

�
kxn0 � x0k � " ^ kqn0�mk � "

��
:

For n D 1, we have q1�m D 0 and

kx1 � x0k D kP1.x0/ � x0k �
"

50
D ":

Assuming that the claim holds for some n 2 N�, suppose that

m̂

jD1

kx0 � Pj .x0/k �
"

5n
:

By the induction hypothesis, we have

8n0 2 Œ1In�
�
kxn0 � x0k �

"

5
^ kqn0�mk �

"

5

�
; (4.2)

and, in particular, we just need to verify the consequent for n0 D nC 1. Let us first focus
on qnC1�m. If n < m, then qnC1�m D 0, and so, we assume n � m. We have

kqnC1�mk D kxn�m C qnC1�2m � xnC1�mk � kxn�m � xnC1�mk C kqnC1�2mk:

Since n C 1 � m 2 Œ1I n�, by (4.2), we have kqnC1�2mk � "=5. On the other hand, we
have kxn�m � xnC1�mk � 2"=5. Indeed, if n D m, then

kxn�m � xnC1�mk D kx0 � x1k D kx0 � P1.x0/k �
"

5n
�
2"

5
:

If n > m, then n �m, nC 1 �m 2 Œ1In� and by (4.2),

kxn�m � xnC1�mk � kxn�m � x0k C kxnC1�m � x0k �
2"

5
:

Overall, we conclude that

kqnC1�mk �
3"

5
;

which in particular gives the second conjunct. It is now possible to verify that

kxnC1 � x0k � kPnC1.xn C qnC1�m/ � PnC1.x0/k C kPnC1.x0/ � x0k

� kxn � x0k C kqnC1�mk C kPnC1.x0/ � x0k

�
"

5
C
3"

5
C

"

5n
� ";

concluding the proof.
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The next result states that the existence of rates of convergence that are uniform for
initial points in NBb.p/ entails the existence of a modulus of regularity for the convex sets.

Proposition 4.7. Let

p 2

m\
jD1

Cj DW C:

For any b 2 N, assume the existence of a common rate of convergence towards the limit
PC .x0/ for any iteration generated by (D) with initial point x0 2 NBb.p/; i.e.,

kx0 � pk � b ! 8" > 0 8n � �.b; "/
�
kxn � PC .x0/k � "

�
:

Then, the function

�.b; "/ WD max
²

"2

16b � �.b; "=2/
;

"

2 � 5�.b;"=2/

³
is a modulus of regularity for the sets C1; : : : ; Cm centred at p.

Proof. Consider " > 0, b 2 N and x 2 NBb.p/, and assume that

m̂

jD1

kx � Pj .x/k � max
²

"2

16b � �.b; "=2/
;

"

2 � 5�.b;"=2/

³
:

Let .xn/ be the iteration generated by (D) with initial point x0 WD x. Then, by both Pro-
positions 4.5 and 4.6, kx�.b;"=2/ � xk � "

2
. On the other hand, by the assumption on �, we

have
kx�.b;"=2/ � PC .x/k �

"

2
:

Hence,
kx � PC .x/k � kx � x�.b;"=2/k C kx�.b;"=2/ � PC .x/k � ":

Note that the requirement p 2 C is tied with Proposition 4.5 and we can take p an
arbitrary point in X with suitable changes. The key idea of the previous argument is that
a rate of convergence for an iteration which remains constant whenever the initial point is
already in the target set will entail the existence of a modulus of regularity. An analogous
argument was used in [29, Proposition 4.4] for the case of the Picard iteration in a metric
setting. Indeed, this reasoning can be stated in a general framework, but we refrain from
doing it here and direct the reader to [31, 39].

If a rate of convergence is available but it is sensitive to the initial point, then we obtain
a weaker result (with unclear usefulness).

Proposition 4.8. For any x0 2 X , assume the existence of rate of convergence towards
PC .x0/ for the iteration generated by (D) with initial point x0; i.e.,

8" > 0 8n � �.x0; "/.kxn � PC .x0/k � "/:
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Then,

8" > 0 8x 2 X

� m̂

jD1

kx � Pj .x/k �
"

2 � 5�.x;"=2/
! kx � PC .x/k � "

�
:

For the particular case of the intersection of two half-spaces, Deutsch and Hundal [10]
obtained a rate of convergence for Dykstra’s algorithm which is uniform on the choice
of the initial point depending only on a bound to its distance to the intersection set. By
Proposition 4.7, such situation entails a modulus of regularity for the two half-spaces. In
full generality, but provided there exists a modulus of regularity, Theorem 4.2 guarantees
the existence of uniform rates of convergence. This still leaves open the possibility that no
modulus of regularity exists and yet rates of convergence are available. Such rates would
necessarily be sensitive to the initial point of the iteration – such is the case with the
rates of convergence obtained by Deutsch and Hundal for the general polyhedral case. In
contrast, we obtained rates of metastability in full generality which are uniform in all the
parameters of the convex feasibility problem.

5. Final Remarks

This quantitative study analyzes the proof of strong convergence of Dykstra’s cyclic pro-
jection algorithm. Although the original proof relies on several strong mathematical prin-
ciples, in the end we obtain simple computable metastability rates (primitive recursive in
f in the sense of Kleene [21]) which are highly uniform in the parameters of the convex
feasibility problem. Indeed, our rates only require information on the number of convex
sets m and an upper bound b on the distance between the initial point and the feasibility
set. Furthermore, under a regularity assumption, we adapt the argument to actually derive
uniform rates of convergence towards the feasible point closest to the starting term of the
iteration. We show that the regularity condition is actually necessary for the existence of
such uniform rates. The regularity assumption comes in the form of a modulus of regular-
ity � which (informally) guarantees that the point is "-close to the intersection whenever
it is �."/-close to all the individual convex sets. In the general case, the finitary version
follows through the crucial observation that the role of the weak limit can actually be
replaced by that of a weak version of the projection of x0 onto the intersection set. We
show that our main result (Theorem 3.11) is a true finitary version of Theorem 1.4 in the
sense that it only regards a finite number of iteration terms and the full statement is fully
recovered in an elementary way from the quantitative version (cf. Remark 3.12).

This kind of argument is in line with the macro developed in [17]. The ability to estab-
lish the Cauchy property of the iteration without the use of sequential weak compactness
is of paramount relevance as it ensures that the final quantitative bound information will
be of a simple nature (namely, it can be described without the need of Spector’s bar-
recursive functionals [44]). This technique has been applied several times in proof mining
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(e.g., in [11, 12, 38]). Moreover, even if one is not concerned with quantitative informa-
tion, a simpler proof which bypasses complex comprehension principles (in this case, the
arithmetical comprehension required to justify weak compactness) allows for easier gen-
eralisations of the original result (see, e.g., the recent [13] where a quantitative approach
allowed to establish a fully new result in a geodesic setting in which weak compactness
arguments, common in Hilbert spaces, are harder to employ). For the case at hand, the
simple quantitative perspective on the convergence of Dykstra’s algorithm allowed for
the recent work in [40] establishing the convergence of Dykstra’s method with Bregman
projections (first introduced in [7]) in general (reflexive) Banach spaces.

Previous eliminations of weak compactness principles were applied to Halpern-type
iterations and to convergence proofs following a similar common proof structure. How-
ever, Dykstra’s algorithm does not appear to have any connection with the Halpern iter-
ation and the proof follows a completely different argument. Thus, it was not a priori
known if it would be possible to bypass the compactness arguments crucial in the original
proof (see the extensive proof-theoretical discussion in [39]). Furthermore, regarding the
discussion under a regularity assumption, as is explained in [29], it is known that for Fejér
monotone iterations a modulus of regularity allows one to obtain rates of convergence.
Note that in this case, however, Dykstra’s method fails to be Fejér monotone, and still it
was possible to extract uniform rates of convergence. This phenomenon is explained in
terms of a generalized notion of Fejér monotonicity in the recent [31].
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[41] A. Sipoş, Quantitative inconsistent feasibility for averaged mappings. Optim. Lett. 16 (2022),

no. 6, 1915–1925 Zbl 07539465 MR 4434739
[42] A. Sipos, The computational content of super strongly nonexpansive mappings and uniformly

monotone operators. 2023, arXiv:2303.02768, to appear in Israel J. Math.
[43] E. Specker, Nicht konstruktiv beweisbare Sätze der Analysis. J. Symbolic Logic 14 (1949),

145–158 Zbl 0033.34102 MR 0031447
[44] C. Spector, Provably recursive functionals of analysis: a consistency proof of analysis by an

extension of principles formulated in current intuitionistic mathematics. In Proc. Sympos. Pure
Math., Vol. V, pp. 1–27, American Mathematical Society, Providence, RI, 1962
Zbl 0143.25502 MR 0154801

[45] T. Tao, Norm convergence of multiple ergodic averages for commuting transformations.
Ergodic Theory Dynam. Systems 28 (2008), no. 2, 657–688 Zbl 1181.37004 MR 2408398

https://doi.org/10.1016/j.aim.2010.10.002
https://zbmath.org/?q=an:1223.03041
https://mathscinet.ams.org/mathscinet-getitem?mr=2739793
https://doi.org/10.1007/s11856-016-1408-4
https://doi.org/10.1007/s11856-016-1408-4
https://zbmath.org/?q=an:1358.47038
https://mathscinet.ams.org/mathscinet-getitem?mr=3556967
https://doi.org/10.1142/9789813272880_0045
https://zbmath.org/?q=an:1445.03062
https://mathscinet.ams.org/mathscinet-getitem?mr=3966757
https://doi.org/10.1007/s10208-018-9377-0
https://doi.org/10.1007/s10208-018-9377-0
https://zbmath.org/?q=an:07027311
https://mathscinet.ams.org/mathscinet-getitem?mr=3913873
https://doi.org/10.1007/s11856-019-1870-x
https://doi.org/10.1007/s11856-019-1870-x
https://zbmath.org/?q=an:1476.47063
https://mathscinet.ams.org/mathscinet-getitem?mr=3990943
https://doi.org/10.1016/j.jmaa.2021.125823
https://doi.org/10.1016/j.jmaa.2021.125823
https://zbmath.org/?q=an:1495.47106
https://mathscinet.ams.org/mathscinet-getitem?mr=4343777
https://arxiv.org/abs/2310.06528
https://doi.org/10.1098/rsta.2022.0015
https://mathscinet.ams.org/mathscinet-getitem?mr=4590513
https://zbmath.org/?q=an:1066.46019
https://mathscinet.ams.org/mathscinet-getitem?mr=2111612
https://zbmath.org/?q=an:1207.46022
https://mathscinet.ams.org/mathscinet-getitem?mr=2778669
https://doi.org/10.1007/s11590-023-02002-y
https://doi.org/10.1007/s11590-023-02002-y
https://zbmath.org/?q=an:07814898
https://mathscinet.ams.org/mathscinet-getitem?mr=4711353
https://zbmath.org/?q=an:1065.47048
https://mathscinet.ams.org/mathscinet-getitem?mr=2026453
https://mathscinet.ams.org/mathscinet-getitem?mr=4419757
https://doi.org/10.1080/01630563.2021.1876726
https://zbmath.org/?q=an:07336647
https://mathscinet.ams.org/mathscinet-getitem?mr=4241913
https://doi.org/10.1007/s11590-021-01812-2
https://zbmath.org/?q=an:07539465
https://mathscinet.ams.org/mathscinet-getitem?mr=4434739
https://arxiv.org/abs/2303.02768
https://doi.org/10.2307/2267043
https://zbmath.org/?q=an:0033.34102
https://mathscinet.ams.org/mathscinet-getitem?mr=0031447
https://doi.org/10.1090/pspum/005/0154801
https://doi.org/10.1090/pspum/005/0154801
https://zbmath.org/?q=an:0143.25502
https://mathscinet.ams.org/mathscinet-getitem?mr=0154801
https://doi.org/10.1017/S0143385708000011
https://zbmath.org/?q=an:1181.37004
https://mathscinet.ams.org/mathscinet-getitem?mr=2408398


P. Pinto 28

[46] T. Tao, Structure and randomness. American Mathematical Society, Providence, RI, 2008
Zbl 1245.00024 MR 2459552

[47] J. von Neumann, Functional Operators. II. The Geometry of Orthogonal Spaces. Ann. of Math.
Stud. 22, Princeton University Press, Princeton, NJ, 1950 Zbl 0039.11701 MR 0034514

Received 13 December 2023; revised 31 May 2024.

Pedro Pinto
Department of Mathematics, Technische Universität Darmstadt, Schlossgartenstraße 7,
64289 Darmstadt, Germany; pinto@mathematik.tu-darmstadt.de

https://doi.org/10.1090/mbk/059
https://zbmath.org/?q=an:1245.00024
https://mathscinet.ams.org/mathscinet-getitem?mr=2459552
https://zbmath.org/?q=an:0039.11701
https://mathscinet.ams.org/mathscinet-getitem?mr=0034514
mailto:pinto@mathematik.tu-darmstadt.de

	1. Introduction
	2. Preliminaries and Lemmas
	2.1. Quantitative notions
	2.2. Lemmas

	3. Main results
	3.1. Asymptotic regularity
	3.2. Metastability

	4. Rates of convergence and regularity
	4.1. The rate of convergence
	4.2. Regularity

	5. Final Remarks
	References

