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Quantitative asymptotic regularity of the VAM iteration
with error terms form-accretive operators

in Banach spaces

Paulo Firmino and Laurenţiu Leuştean

Abstract. In this paper, we obtain, by using proof mining methods, quantitative results on the
asymptotic regularity of the viscosity approximation method (VAM) with error terms form-accretive
operators in Banach spaces. For concrete instances of the parameter sequences, linear rates are com-
puted by applying a lemma due to Sabach and Shtern.

1. Introduction

LetX be a normed space, A WX ! 2X an accretive operator with a nonempty set of zeros,
and C � X a nonempty closed convex subset of X such that domA � C � ran.IdC 
A/
for all 
 > 0. Xu et al. [26] studied recently the following iteration:

VAM x0 D x; xnC1 D ˛nf .xn/C .1 � ˛n/J
A
�n
xn; (1.1)

where x 2 C , f W C ! C is an ˛-contraction for ˛ 2 Œ0; 1/, .�n/ is a sequence in .0;1/,
.˛n/ is a sequence in Œ0; 1�, and, for every n 2 N, JA

�n
is the resolvent of order �n of A.

The VAM iteration is an instance of the viscosity approximation method applied to
resolvents of accretive operators in Banach spaces (see, for example, [2,16,19,21,22,25]).
If one takes f .x/ D u 2 X in (1.1), one gets the Halpern-type proximal point algorithm
(HPPA), introduced by Kamimura and Takahashi [10] and Xu [24], a modification of the
proximal point algorithm that was studied in a series of papers in recent years. Thus, VAM
is a viscosity version of the HPPA.

Xu et al. [26] proved, in the setting of uniformly convex and/or uniformly Gâteaux
differentiable Banach spaces, strong convergence results for the VAM iteration towards a
zero of A, extending results for the HPPA obtained by Aoyama and Toyoda [1].

As it is the case with numerous convergence proofs, an intermediate step is to obtain
the asymptotic regularity of the iteration. Asymptotic regularity was defined by Browder
and Petryshyn [5] for the Picard iteration and extended to general iterations by Borwein,
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Reich, and Shafrir [3]. By inspecting the proofs from [26], one can see that asymptotic
regularity of the VAM iteration holds, under some hypotheses on .˛n/, .�n/, in the more
general setting of Banach spaces.

In this paper, we prove quantitative asymptotic regularity results for the VAMe iter-
ation for m-accretive operators, defined by adding error terms to the VAM iteration (see
(4.1)). These quantitative results provide uniform rates of asymptotic regularity, .JA

�n
/-

asymptotic regularity and, for all m 2 N, JA
�m

-asymptotic regularity for VAMe. We com-
pute such linear rates for concrete instances of the parameter sequences .˛n/, .�n/ as an
application of a lemma of Sabach and Shtern [23]. As VAM and HPPA for m-accretive
operators are particular cases of our VAMe iteration, we obtain rates for these iterations,
too. Furthermore, as an immediate consequence of our quantitative results, we obtain qual-
itative asymptotic regularity results for the VAMe iteration.

The results from the paper are obtained by applying methods of proof mining, a
research program concerned with the extraction, by using proof-theoretic techniques, of
new information from mathematical proofs. We refer to Kohlenbach’s textbook [12] for
details on proof mining and to [13, 14] for surveys of recent applications in nonlinear
analysis and optimization. Finally, let us remark that proof mining was applied recently
by Kohlenbach and Pinto [15] to obtain quantitative results, providing rates of metastabil-
ity, for viscosity approximation methods in W -hyperbolic spaces.

2. Preliminaries

Let X be a normed space and A W X ! 2X a set-valued operator on X . As usual, we
identify the operator A with its graph graA D ¹.x; y/ 2 X �X j y 2 Axº.

Let domAD ¹x 2 X j Ax ¤ ;º be the domain of A and ranAD
S
x2X Ax the range

of A. Furthermore, we denote by zerA the set of zeros of A, that is,

zerA D ¹x 2 X j 0 2 Axº:

The definition of the inverse A�1 of A is given through its graph:

graA�1 D ¹.y; x/ 2 X �X j .x; y/ 2 graAº D ¹.y; x/ 2 X �X j y 2 Axº:

If � 2 R and B is another set-valued operator onX , then �AD ¹.x;�y/ j x 2 X;y 2 Axº
and AC B D ¹.x; y C z/ j x 2 X; y 2 Ax; z 2 Bxº. For every 
 > 0, the resolvent JA

of order 
 of A is defined by JA
 D .IdC 
A/

�1, where Id is the identity operator on X .
One can easily verify that domJA
 D ran.IdC 
A/ and ranJA
 D domA.

Let us recall that if ; ¤ C � X and T W C ! X is a mapping, we denote by Fix.T /
the set of fixed points of T and T is said to be nonexpansive if kT x � Tyk � kx � yk for
all x; y 2 X .

An operator A is said to be accretive [4, 11] if for all x; y 2 domA, u 2 Ax, v 2 Ay,
and 
 > 0,

kx � y C 
.u � v/k � kx � yk:
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It is well known that, for any accretive operator A and for all 
 > 0,

JA
 W ran.IdC 
A/! domA

is a nonexpansive mapping such that Fix.JA
 / D zerA (see, for example, [9, Corollary
3.4.1] and [9, Proposition 6.7.1] for proofs).

Lemma 2.1. Assume that A is an accretive operator. Let �; 
 > 0.

(i) If x 2 ran.IdC �A/, then 

�
x C .1 � 


�
/JA
�
x 2 ran.IdC
A/ and

JA� x D J
A



�

�
x C

�
1 �




�

�
JA� x

�
: (2.1)

(ii) For all x 2 ran.IdC �A/ \ ran.IdC 
A/,

kJA
 x � J
A
� xk �

ˇ̌̌
1 �




�

ˇ̌̌

JA� x � x

: (2.2)

Proof. For the proof of (2.1), see [9, Proposition 3.4.1]. Inequality (2.2) follows immedi-
ately from (2.1) and the fact that JA
 is nonexpansive:

kJA
 x � J
A
� xk D




JA
 x � JA
 �
�x C �1 � 
��JA� x�



�




x � 

�
x �

�
1 �




�

�
JA� x




 D ˇ̌̌1 � 

�

ˇ̌̌

x � JA� x

:
Anm-accretive operator is an accretive operator A that satisfies ran.IdC 
A/DX for

all 
 > 0. It follows that, for anm-accretive operator A, (2.1) and (2.2) hold for all x 2 X .

3. Quantitative notions and lemmas

Let us recall the main quantitative notions that will be used in this paper. Suppose that
.an/n2N is a sequence in a metric space .X; d/. A mapping ' W N ! N is said to be

(i) a Cauchy modulus of .an/ if, for all k 2 N and all n � '.k/,

d.anCp; an/ �
1

k C 1
holds for all p 2 N;

(ii) a rate of convergence of .an/ (towards a 2X ) if, for all k 2N and all n� '.k/,

d.an; a/ �
1

k C 1
:

Obviously, .an/ is Cauchy iff .an/ has a Cauchy modulus, and limn!1 an D a iff
.an/ has a rate of convergence towards a.

Assume that
P1
nD0 bn is a series of nonnegative real numbers and . Qbn D

Pn
iD0 bi / is

the sequence of partial sums. Then, a Cauchy modulus of the series is a Cauchy modulus
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of . Qbn/. A rate of divergence of the series is a mapping � WN!N satisfying
P�.n/
iD0 bi � n

for all n 2 N. It is clear that
P1
nD0 bn diverges iff it has a rate of divergence.

Let .yn/ be a sequence in a metric space .X; d/,ˆ WN!N, C be a nonempty subset
of X , T W C ! C , and .Tn W C ! C/n2N be a countable family of mappings. We say that

(i) .yn/ is asymptotically regular with rateˆ (orˆ is a rate of asymptotic regularity
of .yn/) if limn!1 d.yn; ynC1/ D 0 with rate of convergence ˆ;

(ii) .yn/ is T -asymptotically regular with rate ˆ (or ˆ is a rate of T -asymptotic
regularity of .yn/) if limn!1 d.yn; Tyn/ D 0 with rate of convergence ˆ;

(iii) .yn/ is .Tn/-asymptotically regular with rate ˆ (or ˆ is a rate of .Tn/-asymp-
totic regularity of .yn/) if limn!1 d.yn; Tnyn/D 0with rate of convergenceˆ.

3.1. Useful lemmas on sequences of real numbers

Lemma 3.1. If .bn/ is a sequence in Œ0; 1� and � is a rate of divergence for
P1
nD0 bn,

then �.n/ � n � 2 for all n 2 N.

Proof. Assume that �.n/ < n� 2 for some n 2 N. It follows that
P�.n/
iD0 bi �

Pn�2
iD0 bi �

n � 1 < n; which is a contradiction.

Lemma 3.2. Let .an/, .bn/ be sequences of nonnegative real numbers, p; q 2 N, and
cn D pan C qbn for all n 2 N. Assume that .an/ is Cauchy with Cauchy modulus '1 and
.bn/ is Cauchy with Cauchy modulus '2. Then, .cn/ is Cauchy with Cauchy modulus

'.k/ D max¹'1.2p.k C 1/ � 1/; '2.2q.k C 1/ � 1/º:

Proof. Let k 2 N. We get that, for all n � '.k/ and all p 2 N,

cnCp � cn D p.anCp � an/C q.bnCp � bn/

� p �
1

2p.k C 1/
C q �

1

2q.k C 1/
D

1

k C 1
:

The following result is [18, Proposition 2.7], which is a reformulation of [8, Lemma
2.9 (1)], obtained by taking 1

kC1
instead of ". It is a quantitative version of a particular

case of a very useful lemma on sequences of real numbers due to Xu [24].

Proposition 3.3. Let .an/ be a sequence in Œ0; 1� and .cn/, .sn/ sequences of nonnegative
real numbers such that for all n 2 N,

snC1 � .1 � an/sn C cn: (3.1)

Assume that L 2 N� is an upper bound on .sn/,
P1
nD0 an diverges with rate of diver-

gence � , and
P1
nD0 cn converges with Cauchy modulus �.

Then, limn!1 sn D 0 with rate of convergence † defined by

†.k/ D �.�.2k C 1/C 1C dln.2L.k C 1//e/C 1:
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The next lemma is a slight variation of [23, Lemma 3], proved in [18, Lemma 2.8].

Lemma 3.4. Let L > 0, J � N � 2, 
 2 .0; 1�, .cn/ be a sequence bounded above by L,
and an D N


.nCJ/
for all n 2 N. Suppose that .sn/ is a sequence of nonnegative real

numbers such that s0 � L and, for all n 2 N,

snC1 � .1 � 
anC1/sn C .an � anC1/cn:

Then, for all n 2 N,

sn �
JL


.nC J /
:

4. VAM with errors for resolvents ofm-accretive operators in Banach
spaces

Let X be a normed space, A W X ! 2X an m-accretive operator such that zerA ¤ ;, and
f W X ! X an ˛-contraction for ˛ 2 Œ0; 1/, that is, kf .x/ � f .y/k � ˛kx � yk for all
x; y 2 X .

We consider the iteration .xn/ defined as follows:

VAMe x0 D x 2 X; xnC1 D ˛nf .xn/C .1 � ˛n/J
A
�n
xn C en; (4.1)

where .˛n/n2N is a sequence in Œ0; 1�, .�n/n2N is a sequence in .0;1/, and .en/n2N is a
sequence in X . Hence, .xn/ is obtained from the VAM iteration studied in [26] by adding
error terms en.

For every z 2 zerA, let .Kz;n/n2N be a sequence of real numbers defined as follows:

Kz;0 D max
²
kx � zk;

kf .z/ � zk

1 � ˛

³
; Kz;n D Kz;0 C

n�1X
iD0

keik for all n � 1: (4.2)

Thus, Kz;nC1 D Kz;n C kenk for all n � 0.

Lemma 4.1. For all z 2 zerA and m; n 2 N,

(i) kxn � zk; kf .xn/ � zk � Kz;n;

(ii) kxnC1 � xnk � 2Kz;nC1;

(iii) kJA
�m
xn � zk � Kz;n;

(iv) kJA
�m
xn � xnk, kJA�mxn � f .xn/k � 2Kz;n.

Proof. (i) We prove the two inequalities simultaneously by induction on n.
n D 0: kx0 � zk � Kz;0 follows by (4.2). Furthermore, applying the fact that f is an

˛-contraction and (4.2), we get that

kf .x0/ � zk � kf .x0/ � f .z/k C kf .z/ � zk � ˛kx0 � zk C .1 � ˛/Kz;0 � Kz;0:
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n) nC 1: we have that

kxnC1 � zk D


˛n.f .xn/ � z/C .1 � ˛n/.JA�nxn � JA�nz/C en

 as JA�nz D z

� ˛nkf .xn/ � zk C .1 � ˛n/kxn � zk C kenk

as JA�n is nonexpansive

� Kz;n C kenk by the induction hypothesis

D Kz;nC1:

Moreover, kf .xnC1/ � zk � ˛kxnC1 � zk C kf .z/ � zk � Kz;nC1.
(ii) kxnC1 � xnk � kxn � zk C kxnC1 � zk � Kz;n CKz;nC1 � 2Kz;nC1.
(iii) kJA

�m
xn � zk D kJ

A
�m
xn � J

A
�m
zk � kxn � zk � Kz;n.

(iv) kJA
�m
xn � xnk � kJ

A
�m
xn � zk C kxn � zk � 2Kz;n and

JA�mxn � f .xn/

 � 

JA�mxn � z

C kf .xn/ � zk � 2Kz;n:

The following is the main inequality that will be used in the proof of one of our main
results from Section 5.

Proposition 4.2. For all n 2 N,

kxnC2 � xnC1k � .1 � .1 � ˛/˛nC1/kxnC1 � xnk CMz;n C kenC1 � enk; (4.3)

kxnC2 � xnC1k � .1 � .1 � ˛/˛nC1/kxnC1 � xnk CM
�
z;n C kenC1 � enk; (4.4)

where

Mz;n D 2Kz;n

�
j˛nC1 � ˛nj C .1 � ˛nC1/

ˇ̌̌̌
1 �

�nC1

�n

ˇ̌̌̌�
;

M �z;n D 2Kz;n

�
j˛nC1 � ˛nj C .1 � ˛nC1/

ˇ̌̌̌
1 �

�n

�nC1

ˇ̌̌̌�
:

Proof. We have that

xnC2 � xnC1 D
�
˛nC1f .xnC1/C .1 � ˛nC1/J

A
�nC1

xnC1
�

�
�
˛nC1f .xn/C .1 � ˛nC1/J

A
�n
xn
�

C
�
˛nC1f .xn/C .1 � ˛nC1/J

A
�n
xn
�

�
�
˛nf .xn/C .1 � ˛n/J

A
�n
xn
�
C enC1 � en

D ˛nC1.f .xnC1/ � f .xn//C .1 � ˛nC1/
�
JA�nC1xnC1 � J

A
�n
xn
�

C .˛nC1 � ˛n/f .xn/C .˛n � ˛nC1/J
A
�n
xn C enC1 � en

D ˛nC1.f .xnC1/ � f .xn//C .1 � ˛nC1/
�
JA�nC1xnC1 � J

A
�n
xn
�

C .˛nC1 � ˛n/
�
f .xn/ � J

A
�n
xn
�
C enC1 � en:
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Thus,

kxnC2 � xnC1k � ˛nC1˛kxnC1 � xnk C .1 � ˛nC1/


JA�nC1xnC1 � JA�nxn



C j˛nC1 � ˛nj


f .xn/ � JA�nxn

C kenC1 � enk

� ˛nC1˛kxnC1 � xnk C .1 � ˛nC1/


JA�nC1xnC1 � JA�nxn



C 2Kz;nj˛nC1 � ˛nj C kenC1 � enk by Lemma 4.1 (iv):

As 

JA�nC1xnC1 � JA�nxn

 � 

JA�nC1xnC1 � JA�nC1xn

C 

JA�nC1xn � JA�nxn


� kxnC1 � xnk C



JA�nC1xn � JA�nxn

;
it follows that

kxnC2 � xnC1k � .˛nC1˛ C 1 � ˛nC1/kxnC1 � xnk C .1 � ˛nC1/


JA�nC1xn � JA�nxn



C 2Kz;nj˛nC1 � ˛nj C kenC1 � enk:

By (2.2) and Lemma 4.1 (iv), we have that

JA�nC1xn � JA�nxn

 � ˇ̌̌̌1 � �nC1�n

ˇ̌̌̌

JA�nxn � xn

 � 2Kz;n ˇ̌̌̌1 � �nC1�n

ˇ̌̌̌
; (4.5)

JA�nC1xn � JA�nxn

 � ˇ̌̌̌1 � �n

�nC1

ˇ̌̌̌

JA�nC1xn � xn

 � 2Kz;n ˇ̌̌̌1 � �n

�nC1

ˇ̌̌̌
: (4.6)

Apply (4.5) and (4.6) to conclude that (4.3) and (4.4) hold.

4.1. Quantitative hypotheses on the parameter sequences

We consider the following hypotheses on the parameter sequences .˛n/, .�n/, .en/ from
the definition (4.1) of the VAMe iteration .xn/:

.H1˛n/

1X
nD0

˛n D1 with divergence rate �1I

.H2˛n/

1X
nD0

j˛n � ˛nC1j <1 with Cauchy modulus �2I

.H3˛n/ lim
n!1

˛n D 0 with rate of convergence �3I

.H1�n/

1X
nD0

ˇ̌̌̌
1 �

�nC1

�n

ˇ̌̌̌
<1 with Cauchy modulus 
1I

.H1��n/

1X
nD0

ˇ̌̌̌
1 �

�n

�nC1

ˇ̌̌̌
<1 with Cauchy modulus 
�1 I



P. Firmino and L. Leuştean 8

.H2�n/ ƒ 2 N� and Nƒ 2 N are such that �n �
1

ƒ
for all n � NƒI

.H3�n/

1X
nD0

j�n � �nC1j <1 with Cauchy modulus 
3I

.H1en/

1X
nD0

kenk <1 with Cauchy modulus �1I

.H2en/ lim
n!1

kenk D 0 with rate of convergence �2I

.H3en/ E 2 N� is an upper bound on
1X
nD0

kenk:

Lemma 4.3. (i) Assume that .H3en/ holds. For every z 2 zerA, let Kz 2 N� be such
that

Kz � max
²
kx � zk;

kf .z/ � zk

1 � ˛

³
CE:

Then, Kz;n � Kz for all n 2 N. Hence, Lemma 4.1 and inequalities (4.3), (4.4) hold with
Kz instead of Kz;n or Kz;nC1.

(ii) Suppose that .H1en/ holds. Then, .H2en/ is satisfied with �2.k/D �1.k/C 1 and
.H3en/ is satisfied with E D d

P�1.0/
iD0 keike C 1.

Proof. Let us denote, for all m 2 N, Qem D
Pm
iD0 keik.

(i) It is obvious, by (4.2).

(ii) Let k 2 N and n � �2.k/. We get that kenk D Qen � Qen�1 � 1
kC1

, as n � 1 �
�1.k/, so we can apply .H1en/.
Obviously, if n < �1.0/, we have that Qen � Qe�1.0/ < E. Let n � �1.0/. By
.H1en/, we get that Qen � Qe�1.0/ � 1; hence, Qen � E.

Lemma 4.4. Assume .H2�n/ and .H3�n/ hold. Then, .H1�n/ and .H1��n/ hold with


1.k/ D 

�
1 .k/ D max¹Nƒ; 
3.ƒ.k C 1/ � 1/º: (4.7)

Proof. Let us denote z�nD
Pn
iD0 j�i � �iC1j. We get that, for all n� 
1.k/ and all p 2N,

nCpX
iD0

ˇ̌̌̌
1 �

�iC1

�i

ˇ̌̌̌
�

nX
iD0

ˇ̌̌̌
1 �

�iC1

�i

ˇ̌̌̌
D

nCpX
iDnC1

1

�i
j�i � �iC1j �

nCpX
iDnC1

ƒj�i � �iC1j by .H2�n/

D ƒ.z�nCp � z�n/ �
1

k C 1
by .H3�n/:

The fact that .H1��n/ holds is obtained similarly.
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5. Rates of asymptotic regularity, .JA
�n
/-asymptotic regularity and,

for allm 2 N, JA
�m

-asymptotic regularity

Throughout this section, X is a Banach space, A W X ! 2X is an m-accretive operator
such that zerA¤ ;, f W X ! X is an ˛-contraction for ˛ 2 Œ0; 1/, x 2 X , and .xn/ is the
VAMe iteration starting with x, defined by (4.1).

The first main result of the paper gives effective rates of asymptotic regularity of .xn/.

Theorem 5.1. Suppose that .H1˛n/, .H2˛n/, .H1�n/, and .H1en/ hold. Let z 2 zerA,
Kz 2 N�, be such that

Kz � max
²
kx � zk;

kf .z/ � zk

1 � ˛

³
C

&
�1.0/X
iD0

keik

'
C 1; (5.1)

and

�.k/ D max¹�2.6Kz.k C 1/ � 1/; 
1.6Kz.k C 1/ � 1/; �1.6k C 5/º:

Then, .xn/ is asymptotically regular with rate ˆ W N ! N defined by

ˆ.k/ D �1

��
�.2k C 1/C 1C dln.4Kz.k C 1//e

1 � ˛

�
C 1

�
:

Proof. We show that we can apply Proposition 3.3 with sn D kxnC1 � xnk, L D 2Kz ,

an D .1 � ˛/˛nC1; and cn D 2Kz

�
j˛nC1 � ˛nj C

ˇ̌̌̌
1 �

�nC1

�n

ˇ̌̌̌�
C kenC1 � enk:

Let us remark first that (3.1) holds, as a consequence of (4.3) and Lemma 4.3 (i).
Furthermore, by Lemmas 4.1 (ii) and 4.3 (i), we have that L is an upper bound on .sn/.

For the rest of the proof, let k 2 N be arbitrary. Define

�.k/ D max
²
�1

��
k

1 � ˛

�
C 1

�
� 1; 0

³
:

It follows that

�.k/X
nD0

an D .1 � ˛/

 
�.k/C1X
nD0

˛n � ˛0

!
� .1 � ˛/

 �1.d k
1�˛ eC1/X
nD0

˛n � ˛0

!
� .1 � ˛/

��
k

1 � ˛

�
C 1 � ˛0

�
by .H1˛n/

� .1 � ˛/

�
k

1 � ˛

�
as ˛0 � 1

� k:

Thus, � is a rate of divergence of
P1
nD0 an.
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Denote, for all m 2 N,

z̨m D

mX
iD0

j˛iC1 � ˛i j; z�m D

mX
iD0

ˇ̌̌̌
1 �

�iC1

�i

ˇ̌̌̌
;

Qem D

mX
iD0

keik; and Qcm D

mX
iD0

ci :

We get that, for all n � �.k/ and all p 2 N�,

QcnCp � Qcn D 2Kz..z̨nCp � z̨n/C .z�nCp � z�n//C

nCpX
iDnC1

keiC1 � eik

�
4Kz

6Kz.k C 1/
C

nCpX
iDnC1

keiC1 � eik by .H2˛n/ and .H1�n/

�
2

3.k C 1/
C

nCpX
iDnC1

.keiC1k C keik/

D
2

3.k C 1/
C . QenC1Cp � QenC1/C . QenCp � Qen/

�
2

3.kC1/
C

2

6.kC1/
as n��1.6kC5/; so we can apply .H1en/ twice

D
1

k C 1
:

Thus,
P1
nD0 cn converges with Cauchy modulus �.

We can apply Proposition 3.3 to conclude that limn!1 kxnC1 � xnk D 0 with rate of
convergence

†.k/ D �.P /C 1 D max
²
�1

��
P

1 � ˛

�
C 1

�
� 1; 0

³
C 1

D max
²
�1

��
P

1 � ˛

�
C 1

�
; 1

³
;

whereP D �.2kC 1/C 1Cdln.4Kz.kC 1//e. As d P
1�˛
eC 1�P C 1� 2Cdln4eD 4,

it follows, by Lemma 3.1, that �1.d P
1�˛
e C 1/ � 2; hence,

†.k/ D �1

��
P

1 � ˛

�
C 1

�
D ˆ.k/:

Remark 5.2. Theorem 5.1 holds if we replace in the hypothesis .H1�n/ with .H1��n/
and in the rates 
1 with 
�1 . In the proof, we apply (4.4) instead of (4.3).

Remark 5.3. By Lemma 4.4, Theorem 5.1 also holds if we assume .H2�n/ and .H3�n/
instead of .H1�n/. Then, 
1 is given by (4.7).
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The second main result shows that, given a rate of asymptotic regularity of .xn/, one
can compute, under some quantitative hypotheses on the parameter sequences, rates of
.JA
�n
/-asymptotic regularity and of JA

�m
-asymptotic regularity for every m 2 N.

Theorem 5.4. Suppose that ˆ is a rate of asymptotic regularity of .xn/, .H2en/ holds,
z 2 zerA, and Kz 2 N� satisfies (5.1).

(i) Assume that .H3˛n/ holds. Define ‰ W N ! N by

‰.k/ D max¹�3.6Kz.k C 1/ � 1/;ˆ.3k C 2/; �2.3k C 2/º:

Then, ‰ is a rate of .JA
�n
/-asymptotic regularity of .xn/.

(ii) Assume that .H3˛n/ and .H2�n/ hold. Define, for everym 2 N,‚m W N! N
by

‚m.k/ D max¹Nƒ; ‰.ƒmƒ.k C 1/ � 1/;‰.2k C 1/º;

where ƒm 2 N� is such that ƒm � �m.
Then, for every m 2 N, ‚m is a rate of JA

�m
-asymptotic regularity of .xn/.

Proof. (i) Remark first that, for all n 2 N,

kJA�nxn � xnC1k D kJ
A
�n
xn � .˛nf .xn/C .1 � ˛n/J

A
�n
xn C en/k

D k˛n.J
A
�n
xn � f .xn// � enk � ˛nkJ

A
�n
xn � f .xn/k C kenk

� 2˛nKz C kenk by Lemmas 4.1 (iv) and 4.3 (i):

It follows that, for all n � ‰.k/,

kJA�nxn � xnk � kJ
A
�n
xn � xnC1k C kxnC1 � xnk

� 2˛nKz C kxnC1 � xnk C kenk

�
1

3.k C 1/
C

1

3.k C 1/
C

1

3.k C 1/

D
1

k C 1
;

by .H3˛n/, the fact that ˆ is a rate of asymptotic regularity of .xn/, and .H2en/.
Thus, ‰ is a rate of .JA

�n
/-asymptotic regularity of .xn/.

(ii) Let m 2 N. For all n 2 N, we have that

kJA�mxn � xnk � kJ
A
�m
xn � J

A
�n
xnk C kJ

A
�n
xn � xnk

�
j�n � �mj

�n
kxn � J

A
�n
xnk C kJ

A
�n
xn � xnk by (2.2)

D

�
j�n � �mj

�n
C 1

�
kJA�nxn � xnk:
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Let n � ‚m.k/. We have two cases:

(a) �m � �n. Then, j�n��mj
�n

C 1 D �m��n
�n
C 1 D �m

�n
, so

kJA�mxn � xnk �
�m

�n
kJA�nxn � xnk

.H2�n/
� ƒmƒkJ

A
�n
xn � xnk �

1

k C 1
;

as n � ‰.ƒmƒ.k C 1/ � 1/.

(b) �m < �n. Then, j�n��mj
�n

C 1 D �n��m
�n
C 1 D 2 � �m

�n
, so

kJA�mxn � xnk �

�
2 �

�m

�n

�
kJA�nxn � xnk < 2kJ

A
�n
xn � xnk �

1

k C 1
;

as n � ‰.2k C 1/.

Thus, ‚m is a rate of JA
�m

-asymptotic regularity of .xn/.

As it is the case with applications of proof mining, we obtain effective uniform rates
that have a very weak dependency on the normed space X and the m-accretive operator
A, only via Kz given by (5.1) for some zero z of A. The rates are computed for arbitrary
parameter sequences .˛n/, .�n/, .en/ satisfying the quantitative hypotheses stated in The-
orems 5.1, 5.4 or Remarks 5.2, 5.3 and depend on the different moduli associated to these
hypotheses. As we will see in Section 5.3, we get linear rates for concrete instances of
such sequences.

Furthermore, if one forgets about the quantitative aspects, one gets, as an immediate
consequence, qualitative asymptotic regularity results for the VAMe iteration .xn/.

Corollary 5.5. Assume that
P1
nD0 ˛n D1,

P1
nD0 j˛n � ˛nC1j <1,

P1
nD0 kenk <1,

and one of the following holds:

(a)
P1
nD0 j1 �

�nC1
�n
j <1,

(b)
P1
nD0 j1 �

�n
�nC1
j <1,

(c) infn2N �n > 0 and
P1
nD0 j�n � �nC1j <1.

Then, limn!1 kxn � xnC1k D 0.

Corollary 5.6. Suppose that limn!1 kxn � xnC1k D 0 and limn!1 kenk D 0.

(i) If limn!1 ˛n D 0, then limn!1 kxn � J
A
�n
xnk D 0.

(ii) If limn!1 ˛n D 0 and infn2N �n > 0 hold, then limn!1 kxn � J
A
�m
xnk D 0

for every m 2 N.

5.1. Rates for the VAM iteration

By letting en D 0 for all n 2 N, the VAMe iteration becomes the VAM iteration:

VAM x0 D x 2 X; xnC1 D ˛nf .xn/C .1 � ˛n/J
A
�n
xn;

where A is an m-accretive operator.
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Let z 2 zerA and K�z 2 N� satisfy

K�z � max
²
kx � zk;

kf .z/ � zk

1 � ˛

³
: (5.2)

By a slight modification of the proofs of Theorems 5.1, 5.4, taking into account that
en D 0 for all n 2 N and that Lemma 4.3 (i) holds with E D 0, we obtain rates for the
VAM iteration.

Proposition 5.7. Assume that .H1˛n/, .H2˛n/, .H1�n/ hold and define

��.k/ D max¹�2.4K�z .k C 1/ � 1/; 
1.4K
�
z .k C 1/ � 1/º;

ˆ�.k/ D �1

��
��.2k C 1/C 1C dln.4K�z .k C 1//e

1 � ˛

�
C 1

�
:

Then, ˆ� is a rate of asymptotic regularity of the VAM iteration .xn/.

Remarks 5.2 and 5.3 are true for the VAM iteration too.

Proposition 5.8. Let ˆ� be a rate of asymptotic regularity of .xn/. Define

‰�.k/ D max¹�3.4K�z .k C 1/ � 1/;ˆ
�.2k C 1/º if .H3˛n/ holds,

and, for m 2 N and ƒm 2 N� such that ƒm � �m,

‚�m.k/ D max¹Nƒ; ‰�.ƒmƒ.k C 1/ � 1/;‰�.2k C 1/º

if both .H3˛n/ and .H2�n/ hold.

Then, ‰� is a rate of .JA
�n
/-asymptotic regularity of .xn/ and, for every m 2 N, ‚�m is a

rate of JA
�m

-asymptotic regularity of .xn/.

Corollaries 5.5 and 5.6 (with the hypotheses
P1
nD0 kenk < 1, limn!1 kenk D 0

removed) hold also for the VAM iteration.
We remark that in [26] the VAM iteration .xn/ is studied in a more general setting, by

considering an accretive operator A, an ˛-contraction f W C ! C , and x 2 C , where ; ¤
C � X is a nonempty closed convex subset of X satisfying domA � C � ran.IdC 
A/
for all 
 > 0. It is easy to see that the results from Section 4 specialized to en D 0 hold
in this setting with basically the same proofs. Hence, Propositions 5.7 and 5.8 are true in
this more general setting, too.

5.2. Rates for the HPPA iteration

Another particular case of the VAMe iteration is the (inexact) HPPA iteration:

HPPA x0 D x 2 X; xnC1 D ˛nuC .1 � ˛n/J
A
�n
xn C en;

obtained by letting f .x/D u 2X in the definition (4.1) of VAMe. Obviously, the constant
mapping f .x/ D u is an ˛-contraction with ˛ D 0.
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Theorems 5.1 and 5.4 hold for the HPPA iteration with Kz 2 N� such that

Kz � max¹kx � zk; ku � zkº C

&
�1.0/X
iD0

keik

'
C 1:

Furthermore, Corollaries 5.5 and 5.6 are true for the HPPA .xn/, too.
By letting en D 0, we get that Propositions 5.7 and 5.8 hold with K�z 2 N� such that

K�z � max¹kx � zk; ku � zkº:

Methods of proof mining were applied in [17, 20] to the HPPA iteration associated to
a maximal monotone operator A in a Hilbert space X to obtain quantitative results on its
asymptotic behavior, including rates of ..JA

�n
/; JA

�m
.m 2 N//-asymptotic regularity.

In this paper, we compute such rates for the more general setting of m-accretive oper-
ators in Banach spaces.

5.3. Linear rates for concrete instances of the parameter sequences

[23, Lemma 3] or its slight variation, Lemma 3.4, were applied recently to obtain linear
rates of asymptotic regularity for the Tikhonov–Mann and modified Halpern iterations [6],
the alternating Halpern–Mann iteration [18], and different Halpern-type iterations [7]. In
the sequel, we use Lemma 3.4 to compute linear rates for the VAMe iteration for two
specific choices of the parameter sequences.

In the following, for all n 2 N,

˛n D
2

.1 � ˛/.nC J /
; where J D 2

�
1

1 � ˛

�
:

As .˛n/ is decreasing, we have that

˛n � ˛0 D
2

.1 � ˛/J
� 1:

Thus, ˛n is a sequence in Œ0; 1�.

5.3.1. A first example. For all n 2 N, consider

�n D � > 0 and en D 0:

Then, .xn/ is the VAM iteration with a single mapping JA
�

, which is nonexpansive. It fol-
lows that .xn/ is a particular case of the viscosity version of the Halpern iteration (where
one considers an arbitrary nonexpansive mapping T instead of J�) introduced by Xu [25]
and studied by Sabach and Shtern [23] under the name of sequential averaging method
(SAM). As an application of [23, Lemma 3], Sabach and Shtern obtained linear rates of
(T -)asymptotic regularity for SAM. Cheval and the second author [7] applied Lemma 3.4
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to compute such linear rates in the more general setting of W -hyperbolic spaces; these
rates hold in our setting, too.

Consider the following mappings, defined in [7, Section 3.2, (15), (16)], with notations
adapted to this paper:

ˆ0.k/ D 4K
�
z

�
1

1 � ˛

�2
.k C 1/ � 2

�
1

1 � ˛

�
;

‰0.k/ D

�
4K�z

�
1

1 � ˛

�2
C 4K�z

�
1

1 � ˛

��
.k C 1/ � 2

�
1

1 � ˛

�
;

where z 2 zerA and K�z 2 N� satisfies (5.2).
Then, .xn/ is asymptotically regular with rate ˆ0 and JA

�
-asymptotically regular with

rate‰0. As �nD� for all n2N, obviously .JA
�n
/-asymptotic regularity and JA

�m
-asymptotic

regularity (for m 2 N) coincide with JA
�

-asymptotic regularity of .xn/.

5.3.2. A second example. Let us take, for all n 2 N,

�n D
nC J

nC J � 1
and en D

1

.nC J /2
e�; where e� 2 X:

Since
P1
nD0

1
.nCJ/2

< 1
J�1

, it follows that .H3en/ holds with

E D

�
ke�k

J � 1

�
:

Let z 2 zerA and Kz 2 N� satisfying

Kz � max
²
kx � zk;

kf .z/ � zk

1 � ˛

³
C

�
ke�k

J � 1

�
:

Proposition 5.9. For all n 2 N,

kxnC1 � xnk �
3JKz C ke

�k

.1 � ˛/.nC J /
: (5.3)

Thus,

ˆ0.k/ D
�
3JKz C dke

�
ke
�� 1

1 � ˛

�
.k C 1/ � J

D 6Kz

�
1

1 � ˛

�2
.k C 1/C dke�ke

�
1

1 � ˛

�
.k C 1/ � 2

�
1

1 � ˛

�
is a linear rate of asymptotic regularity of .xn/.

Proof. By Lemma 4.3 (i), we have that Lemma 4.1 and (4.3) hold with Kz defined as
above instead of Kz;n or Kz;nC1. Applying (4.3), we get that, for all n 2 N,

kxnC2 � xnC1k � .1 � .1 � ˛/˛nC1/kxnC1 � xnk C Pz ;
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where

Pz D 2Kz

�
j˛nC1 � ˛nj C .1 � ˛nC1/

ˇ̌̌̌
1 �

�nC1

�n

ˇ̌̌̌�
C kenC1 � enk

D j˛nC1 � ˛nj

�
2Kz

�
1C

.1 � ˛nC1/

j˛nC1 � ˛nj

ˇ̌̌̌
1 �

�nC1

�n

ˇ̌̌̌�
C
kenC1 � enk

j˛nC1 � ˛nj

�
:

As

j˛nC1 � ˛nj D ˛n � ˛nC1 D
2

.1 � ˛/.nC J /.nC 1C J /
;

1 � ˛nC1 D
.1 � ˛/.nC 1C J / � 2

.1 � ˛/.nC 1C J /
;ˇ̌̌̌

1 �
�nC1

�n

ˇ̌̌̌
D 1 �

�nC1

�n
D

1

.nC J /2
;

we have that

.1 � ˛nC1/

j˛nC1 � ˛nj

ˇ̌̌̌
1 �

�nC1

�n

ˇ̌̌̌
D

�
.1 � ˛/.nC 1C J / � 2

�
.nC J /

2
�

1

.nC J /2

�
nC J � 1

2.nC J /
<
1

2
:

Furthermore,

kenC1 � enk

j˛nC1 � ˛nj
D
.2.nC J /C 1/ke�k.1 � ˛/

2.nC J /.nC J C 1/
�
ke�k

nC J
�
ke�k

J
:

It follows that, for all n 2 N,

kxnC2 � xnC1k < .1 � .1 � ˛/˛nC1/kxnC1 � xnk C .˛n � ˛nC1/

�
3Kz C

ke�k

J

�
:

One can easily see that Lemma 3.4 can be applied with

sn D kxnC1 � xnk; L D 3Kz C
ke�k

J
; N D 2;

J D 2

�
1

1 � ˛

�
; 
 D 1 � ˛; an D ˛n; cn D 3Kz C

ke�k

J

to conclude that (5.3) holds, and, as a consequence, ˆ0 is a rate of asymptotic regularity
of .xn/.

Proposition 5.10. Define

‰0.k/ D 18Kz

�
1

1 � ˛

�2
.k C 1/C 3dke�ke

�
1

1 � ˛

�
.k C 1/ � 2

�
1

1 � ˛

�
;

‚0.k/ D 36Kz

�
1

1 � ˛

�2
.k C 1/C 6dke�ke

�
1

1 � ˛

�
.k C 1/ � 2

�
1

1 � ˛

�
:
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Then, ‰0 is a linear rate of .JA
�n
/-asymptotic regularity of .xn/ and ‚0 is a linear rate of

JA
�m

-asymptotic regularity of .xn/ for every m 2 N.

Proof. We can apply Theorem 5.4, as .H3˛n/ holds with �3.k/ D Jk, .H2en/ holds
with �2.k/ D max¹d

p
ke�k.k C 1/e � J; 0º, .H2�n/ holds with ƒ D 1, Nƒ D 0, and

ƒm D 2 � �m for all m 2 N.
Using also Proposition 5.9, it follows that .xn/ is .JA

�n
/-asymptotically regular with

rate

‰.k/ D max¹�3.6Kz.k C 1/ � 1/;ˆ0.3k C 2/; �2.3k C 2/º:

Since

�3.6Kz.k C 1/ � 1/ D 6JKz.k C 1/ � J;

ˆ0.3k C 2/ D 9JKz

�
1

1 � ˛

�
.k C 1/C 3

˙
ke�k

�� 1

1 � ˛

�
.k C 1/ � J;

�2.3k C 2/ D max
®˙p

3ke�k.k C 1/
�
� J; 0

¯
;

we have that �3.6Kz.k C 1/ � 1/; �2.3k C 2/ < ˆ0.3k C 2/; hence,

‰.k/ D ˆ0.3k C 2/ D ‰0.k/:

Applying Theorem 5.4 (ii), we get that, for every m 2 N, .xn/ is JA
�m

-asymptotically reg-
ular with rate

‚m.k/ D max¹Nƒ; ‰0.ƒmƒ.k C 1/ � 1/;‰0.2k C 1/º

D ‰0.2k C 1/ D ‚0.k/:
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[18] L. Leuştean and P. Pinto, Rates of asymptotic regularity for the alternating Halpern–Mann
iteration. Optim. Lett. 18 (2024), no. 2, 529–543 Zbl 07814898 MR 4711353

[19] A. Moudafi, Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl.
241 (2000), no. 1, 46–55 Zbl 0957.47039 MR 1738332

[20] P. Pinto, A rate of metastability for the Halpern type proximal point algorithm. Numer. Funct.
Anal. Optim. 42 (2021), no. 3, 320–343 Zbl 07336647 MR 4241913

[21] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces.
J. Math. Anal. Appl. 75 (1980), no. 1, 287–292 Zbl 0437.47047 MR 0576291

[22] S. Reich, Approximating fixed points of nonexpansive mappings. Panamer. Math. J. 4 (1994),
no. 2, 23–28 Zbl 0856.47032 MR 1274185

[23] S. Sabach and S. Shtern, A first order method for solving convex bilevel optimization prob-
lems. SIAM J. Optim. 27 (2017), no. 2, 640–660 Zbl 1365.65165 MR 3634996

[24] H.-K. Xu, Iterative algorithms for nonlinear operators. J. London Math. Soc. (2) 66 (2002),
no. 1, 240–256 Zbl 1013.47032 MR 1911872

https://doi.org/10.4153/CMB-1992-003-0
https://zbmath.org/?q=an:0712.47050
https://mathscinet.ams.org/mathscinet-getitem?mr=1157459
https://doi.org/10.1090/S0002-9904-1967-11786-5
https://zbmath.org/?q=an:0159.19905
https://mathscinet.ams.org/mathscinet-getitem?mr=0212626
https://doi.org/10.1090/S0002-9904-1966-11544-6
https://doi.org/10.1090/S0002-9904-1966-11544-6
https://zbmath.org/?q=an:0138.08202
https://mathscinet.ams.org/mathscinet-getitem?mr=0190745
https://doi.org/10.1007/s10957-023-02192-6
https://doi.org/10.1007/s10957-023-02192-6
https://zbmath.org/?q=an:1519.47077
https://mathscinet.ams.org/mathscinet-getitem?mr=4572101
https://doi.org/10.1090/mcom/3991
https://doi.org/10.1090/mcom/3991
https://doi.org/10.1137/22M1511199
https://doi.org/10.1137/22M1511199
https://zbmath.org/?q=an:1519.47080
https://mathscinet.ams.org/mathscinet-getitem?mr=4602512
https://doi.org/10.1515/9783111031811
https://zbmath.org/?q=an:1521.46001
https://mathscinet.ams.org/mathscinet-getitem?mr=4693022
https://doi.org/10.1006/jath.2000.3493
https://doi.org/10.1006/jath.2000.3493
https://zbmath.org/?q=an:0992.47022
https://mathscinet.ams.org/mathscinet-getitem?mr=1788273
https://doi.org/10.2969/jmsj/01940508
https://zbmath.org/?q=an:0163.38303
https://mathscinet.ams.org/mathscinet-getitem?mr=0226230
https://zbmath.org/?q=an:1158.03002
https://mathscinet.ams.org/mathscinet-getitem?mr=2445721
https://zbmath.org/?q=an:07585096
https://mathscinet.ams.org/mathscinet-getitem?mr=4241040
https://doi.org/10.1142/9789813272880_0045
https://zbmath.org/?q=an:1445.03062
https://mathscinet.ams.org/mathscinet-getitem?mr=3966757
https://doi.org/10.1016/j.jmaa.2021.125823
https://doi.org/10.1016/j.jmaa.2021.125823
https://zbmath.org/?q=an:1495.47106
https://mathscinet.ams.org/mathscinet-getitem?mr=4343777
https://zbmath.org/?q=an:1153.47054
https://mathscinet.ams.org/mathscinet-getitem?mr=2478970
https://doi.org/10.1007/s10589-021-00263-w
https://zbmath.org/?q=an:07353215
https://mathscinet.ams.org/mathscinet-getitem?mr=4238150
https://doi.org/10.1007/s11590-023-02002-y
https://doi.org/10.1007/s11590-023-02002-y
https://zbmath.org/?q=an:07814898
https://mathscinet.ams.org/mathscinet-getitem?mr=4711353
https://doi.org/10.1006/jmaa.1999.6615
https://zbmath.org/?q=an:0957.47039
https://mathscinet.ams.org/mathscinet-getitem?mr=1738332
https://doi.org/10.1080/01630563.2021.1876726
https://zbmath.org/?q=an:07336647
https://mathscinet.ams.org/mathscinet-getitem?mr=4241913
https://doi.org/10.1016/0022-247X(80)90323-6
https://zbmath.org/?q=an:0437.47047
https://mathscinet.ams.org/mathscinet-getitem?mr=0576291
https://zbmath.org/?q=an:0856.47032
https://mathscinet.ams.org/mathscinet-getitem?mr=1274185
https://doi.org/10.1137/16M105592X
https://doi.org/10.1137/16M105592X
https://zbmath.org/?q=an:1365.65165
https://mathscinet.ams.org/mathscinet-getitem?mr=3634996
https://doi.org/10.1112/S0024610702003332
https://zbmath.org/?q=an:1013.47032
https://mathscinet.ams.org/mathscinet-getitem?mr=1911872


Quantitative asymptotic regularity of the VAM iteration 19

[25] H.-K. Xu, Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl.
298 (2004), no. 1, 279–291 Zbl 1061.47060 MR 2086546

[26] H.-K. Xu, N. Altwaijry, I. Alughaibi, and S. Chebbi, The viscosity approximation method for
accretive operators in Banach spaces. J. Nonlinear Var. Anal. 6 (2022), no. 1, 37–50
Zbl 07556333

Received 6 March 2024; revised 6 June 2024.

Paulo Firmino
Departamento de Matemática, Faculdade de Ciências, Universidade de Lisboa, Campo Grande,
Ed. C6, 1749-016 Lisboa, Portugal; fc49883@alunos.ciencias.ulisboa.pt
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