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High frequency forcing of an attracting heteroclinic cycle

Isabel S. Labouriau and Alexandre A. P. Rodrigues

Abstract. This article is concerned with the effect of time-periodic forcing on a vector field
exhibiting an attracting heteroclinic network. We show that as the forcing frequency tends to
infinity, the dynamics reduces to that of a network under constant forcing, the constant being the
average value of the forcing term. We also show that under small constant forcing the network
breaks up into an attracting periodic solution that persists for periodic forcing of high frequency.

1. Introduction

Heteroclinic cycles organize the dynamics in a wide range of systems: ecological
models of competing species [1, 13, 16], thermal convection [18, 20], game theory
[6,11] and climate science [4]. A paradigmatic example of a robust heteroclinic cycle
occurs in Guckenheimer’s and Holmes’ three-dimensional system [13], also studied
by May and Leonard [16] and by Busse and Heikes [5]. Although their initial models
have periodic forcing terms, all the theory has been developed for the autonomous
case. In this case, the equations are symmetric under permutation of coordinates.

With the non-autonomous forcing terms removed, each of the equilibria on the
coordinate axes is of saddle type, and the existence of connecting orbits has been
proved. Moreover, attracting heteroclinic networks have been found in an open set in
the space of parameters [13]. Other examples from the dissipative category include
the equations of Lorenz, Duffing and Lorentz gases acted on by external forces [7].

Symmetry-breaking constant perturbations to robust heteroclinic cycles with one-
dimensional connections are well known to result in long-period periodic solutions
that lie close to the original cycle. To date there has been very little systematic invest-
igation of the effects of perturbations that are time-periodic, despite being natural for
the modelling of many biological effects as, for instance, the effect of seasonality in
epidemiological models [10].
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From a mathematical point of view, one might expect to make comparisons be-
tween the consequences of time-periodic forcing on a heteroclinic cycle and the well-
known effects of time-periodic forcing on periodic oscillations, for example, fre-
quency locking (existence of periodic solutions whose period is an integer multiple
of the period of the external forcing) and the effects of low/high frequency. These
general observations provide double motivations for this work.

In a series of papers, the authors of [9, 19, 23, 24] considered the effect of small-
amplitude time-periodic forcing of an attracting heteroclinic network and describe
how to reduce the dynamics to a two-dimensional map. In the limit where the hetero-
clinic cycle is weakly attracting, intervals of frequency locking appear. In the opposite
limit, where the heteroclinic cycle becomes strongly stable, no frequency locking is
observed. In [21] it is proved that strange attractors are abundant near a heteroclinic
cycle when the frequency ! of the forcing term satisfies ! � 0, emphasizing the
important role of ! on the dynamics. This discussion raised the following question:

(Q) could we identify and isolate the asymptotic effect of ! on the dynamics near
a periodically-perturbed robust heteroclinic cycle?

There is no general theory for high-frequency forcing on attracting heteroclinic net-
works although the analysis of its effect in nonlinear oscillations may be useful in
many applications. For instance, a high-frequency signal may block the conduction in
the neural system [26].

In the present article, we examine the effect of high frequency periodic forcing
on a nonlinear system of differential equations constructed in Aguiar et al. [3] which,
in the absence of forcing, exhibits an asymptotically stable network. We prove that
the dynamics of the system is equivalent to the averaged one as the frequency of the
forcing tends toC1. Although our computations are done on the example of [3], our
results are of far wider interest than the specific problem studied in this paper.

Structure

This article is organized as follows. In Section 2, we describe our object of study
and, for the sake of completeness, we review in Section 3 some properties of the
unperturbed system. We also motivate the model and describe how the problem under
consideration fits in the literature.

The remainder of the article is dedicated to the proof of the main result. In Sec-
tion 4, we construct suitable cross-sections near the equilibria where the local and
global maps will be defined. In Section 5, we obtain the expressions that will be used
to compute the first return map to a given cross-section. We also derive auxiliary
results that will be helpful to analyse the asymptotic coefficients of the first return
map. Section 6 proves the main contribution of this article as well as some dynamical
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consequences. The existence of an attracting and hyperbolic solution near the cycle
under high frequency forcing is explored in Section 7. We finish the article with a
short discussion in Section 8. In Appendix A, we list some notation used throughout
this article, as well as their meaning.

2. The model under consideration

Our object of study is the following two-parameter family of ordinary differential
equations:

PX D F.�;�/.X; t/

defined in X D .x; y; z/ 2 R3 by:8̂<̂
:
Px D x.1 � r2/ � ˛xz C ˇxz2 C .1 � x/Œ�f .2!t/C ��;

Py D y.1 � r2/C ˛yz C ˇyz2;

Pz D z.1 � r2/ � ˛.y2 � x2/ � ˇz.x2 C y2/;

(2.1)

where

• r2 D x2 C y2 C z2,

• ! 2 RC,

• �; � 2 RC0 are two small and independent parameters, and

• f W R! R is a smooth, non-constant �=!-periodic map such thatZ �=!

0

f .2!t/dt D 0:

We also assume that

ˇ < 0 < ˛; jˇj < ˛ ) ˇ2 < 8˛2: (2.2)

Concerning equation (2.1), the amplitude of the autonomous perturbation is gov-
erned by the parameter � whereas � controls the amplitude of the non-autonomous
term. The parameter ! is what we call the frequency of the periodic forcing. We refer
to PX D F.0;0/.X; t/ as the unperturbed system.

3. Motivation and state of the art

In this section, we recall some basic features associated to the system (2.1) when
� D � D 0. For the terminology of equivariant differential equations and heteroclinic
structures we refer the reader to the book by Golubitsky and Stewart [12].
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3.1. The construction of the unperturbed system

Equation (2.1) was originally constructed to obtain a symmetric heteroclinic network
associated to two equilibria, using a general construction described in [3], that we
proceed to summarise.

Start with the differential equation

PX D .1 � kXk2/X

for X D .x; y; z/ 2 R3, for which the unit sphere S2 attracts all points except the
origin (i.e., is globally attracting) and all its points are equilibria. Then consider the
finite Lie group G � O.3/ generated by the two linear maps

�1.x; y; z/ D .�y; x;�z/ and �2.x; y; z/ D .x;�y; z/:

Add two G -equivariant perturbing terms of order 3, say ˛A.X/ and ˇB.X/, to the
differential equation. These two terms are chosen to be tangent to S2, so this sphere
is still flow-invariant and attracting. The new equations are then G -equivariant, and
therefore, for each subgroup H � G the fixed point subspace Fix.H / D ¹X 2 R3 W
�.X/ D X8� 2 Hº is flow-invariant (see [12]). Hence the action of G on R3 has the
following symmetry flow-invariant planes corresponding to subgroups generated by
elements � 2 G such that �2 is the identity:

Fix.�2 ı �21/ D ¹X 2 R3 W �2 ı �21.X/ D Xº D ¹.x; y; z/ 2 R3 W x D 0º;
Fix.�2/ D ¹X 2 R3 W �2.X/ D Xº D ¹.x; y; z/ 2 R3 W y D 0º;

and symmetry axes:

Fix.�21/ D ¹.x; y; z/ 2 R3 W x D 0 and y D 0º;

Fix.�2 ı �31/ D ¹.x; y; z/ 2 R3 W x D y and z D 0º;

Fix.�2 ı �1/ D ¹.x; y; z/ 2 R3 W x D �y and z D 0º:

3.2. Dynamics of the unperturbed system

The intersection of the flow-invariant sphere S2 and Fix.h�i/, � 2 G , is a flow-invari-
ant set. Then, as illustrated in Figure 1, the intersection of this sphere with Fix.�21/
gives rise to two saddle type equilibria

vC D .0; 0; 1/; and v� D .0; 0;�1/;

where the derivative of F.0;0/ is

DF.0;0/.0; 0; �/ D

0B@ˇ � �˛ 0 0

0 ˇ C �˛ 0

0 0 �2

1CA where � D ˙1:
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Figure 1. Sketch of the heteroclinic connections when � D � D 0.

On S2 there are also four unstable foci .˙
p
2
2
;˙
p
2
2
; 0/ on the lines Fix.�2 ı �31/

and Fix.�2 ı �1/. The intersections of the sphere S2 with the planes Fix.�2 ı �21/ and
Fix.�2/ generate two pairs of one-dimensional heteroclinic connections linking the
equilibria vC and v�, as depicted in Figure 1.

The union of these equilibria and connections forms four heteroclinic cycles and,
taken together, a heteroclinic network denoted � . The two-dimensional coordinate
subspaces Fix.�2 ı �21/D ¹x D 0º and Fix.�2/D ¹y D 0º are flow-invariant and sep-
arate the space R3, hence trajectories starting on a connected component of R3n.¹x D
0º [ ¹y D 0º/ cannot visit another component. Thus, nearby trajectories only visit a
neighbourhood of one cycle in the network, hence there is no switching in the sense
of [2].

Within each of the invariant planes defined by x D 0 and y D 0, each connecting
orbit is a saddle-sink connection. Therefore, the network � is robust in the class of
G -symmetric vector fields.

Define the map g W R3! R3 such that g.x; y; z/D .x � y/2C z2. If ˇ D 0, then
the Lie derivative of F.0;0/ with respect to g is identically zero on S2, which means
that trajectories of the flow of (2.1) on S2 move along closed trajectories that are the
intersection of S2 and the level surfaces of g. Therefore, the perturbation ˇB.X/ and
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condition (2.2) force the foci to be unstable when restricted to S2, and the network
� to be globally asymptotically stable (cf. [3]). Typical trajectories starting near �
accumulate on one of the cycles in the network and remain near the equilibria for
increasing periods of time. These trajectories make fast transitions from one equilib-
rium point to the next. In particular, there are no periodic solutions near � .

The constant ıD ˛�ˇ
˛Cˇ

> 1measures the strength of attraction of each equilibrium
because it is the ratio between the contracting (negative tangent to S2) and the expand-
ing (positive) eigenvalues ofDF.0;0/.0; 0;�/. It is related with the ratio of consecutive
times of sojourn near each equilibrium. Analogously, the constant ı2 measures the
strength of attraction of each cycle of � .

3.3. The perturbing terms

We add to (2.1) two perturbing terms of different nature, one governed by � and the
other by �. The term governed by � is an autonomous perturbation; the other is non-
autonomous. If either � > 0 or � > 0, only the symmetry �2 remains and, in general,
the network � is destroyed.

Our choice of perturbing term .1 � x/Œ�f .2!t/ C �� is made for two reasons:
first, it simplifies the computations and allows comparison with previous work by
other authors [3, 9, 14, 15, 19, 24]. Secondly, it simplifies the quantitative reduction of
the differential equations to a map on a cylinder. The dynamics of the unperturbed
equations will transfer the effect of the perturbation to the other coordinates.

We may split the family of perturbations as follows:

.1 � x/Œ�f .2!t/C �� D �.1 � x/f .2!t/
non-autonomous forcing

C � .1 � x/
autonomous

where Z �=!

0

f .2!t/dt D 0:

This splitting will be clearer in the sequel.

3.4. State of the art

When either � ¤ 0 or � ¤ 0 the plane defined by x D 0 is no longer invariant due
to the .1 � x/ factor in the perturbing term, hence the connection from vC to v� is
broken. The autonomous case � > � D 0 is the simplest one and may be explored
as in [9, §5.2.1] to conclude that the dynamics is governed by an attracting periodic
solution.

The case � > � D 0 and ı2 & 1., ı & 1/ has been studied in [14], where the
authors derived the first return map near a heteroclinic cycle for small amplitude of
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the perturbing term and reduce the analysis of the non-autonomous system to that of
a two-dimensional map on a cylinder.

They found rich dynamical features arising from a discrete-time Bogdanov–
Takens bifurcation. When the perturbation strength is small, the first return map has an
attracting invariant closed curve that is not contractible on the cylinder. Furthermore,
the authors pointed out the existence of two distinct dynamical regimes corresponding
to the existence or non-existence of intervals of frequency locking as ! varies. These
findings are consistent with those of [23,24] who analysed a similar phenomenon near
the May–Leonard cycle.

Increasing the perturbation strength there are periodic solutions that bifurcate into
a closed contractible invariant curve and into a region where the dynamics is conjugate
to a full shift on two symbols () chaos and strange attractors emerge).

For the case � > � D 0 and ı2 � 1, the bistability described for the case ı2 & 1

disappears. Authors of [23, 24] have shown the equivalence of the dynamics to that
of a circle map, and discuss whether the circle map is likely to be invertible or non-
invertible. The existence of regular and chaotic dynamics largely depends on the order
of ! as one may check in [21, Table 3].

3.5. Novelty

In the present paper, the forcing frequency is our principal bifurcation parameter and
we are interested in the case ! large. Pursuing an answer to question (Q) in the con-
text of strongly attracting systems (ı2 � 1), this work may be seen as the natural
continuation of [14].

Our main result states that, when the forcing frequency ! ! C1, the effect of
the perturbation governed by .�; �/ is reduced to the effect of the autonomous term.
In other words, we show that the asymptotic dynamics associated to lim!!C1 F.�;�/
is qualitatively the same as that of the averaged system F.0;�/. The proof is performed
via the construction of a first return map to a suitable cross-section.

As a consequence, when ! ! C1, the non-autonomous equation (2.1) has be-
come autonomous, and the system dimension decreases as the non-autonomous com-
ponent for “fast motion” governed by � has been dropped completely.

3.6. Insight into the reasoning

In order to improve the readability of the article, we sketch the route of the proof of
the main result of the paper.

(1) We transform (2.1) into an autonomous equation in R4 by adding a new
coordinate s for the forcing time. We call the new equation the suspension
of (2.1).
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(2) We obtain isolating blocks and cross-sections near each equilibrium for the
unperturbed differential equation. After the addition of non-autonomous terms
to (2.1) the equilibria may no longer be equilibria, but the cross-sections
remain transverse to the flow of the suspension.

(3) We derive the expressions for the linearization of (2.1) near vC and v�, say
ˆvC and ˆv� . The computation of these maps is a bit more tricky than in the
autonomous hyperbolic case because some of the times of flight depend on f .
These maps depend on the phase space coordinates .x2; w2/ and also on the
suspension time s.

(4) The local maps ˆvC and ˆv� depend on the two expressions K1.�; �/ and
K2.�; �/, where

K1.0; 0/ D K2.0; 0/ D 0:

(5) In Section 5.5, we assume that f .t/ D sin t in order to make analytic pro-
gresses in the explicit computation of K1.�; �/ and K2.�; �/ although we
emphasise that the result is valid for any f satisfying the conditions of Sec-
tion 2.

(6) After defining suitable global maps (natural in our scenario), we define the
first return map R.�;�/ as the composition of local and global maps, and we
prove the main result of this paper, the content of Theorem 3,

lim
!!1

R.�;�/ D R.0;�/:

(7) Finally, for the sake of completeness, we prove that the dynamics of R.0;�/ is
governed by a sink whose period goes to C1 as � goes to 0. When � D 0,
the sink collapses into � .

4. Cross-sections

Our results will be obtained analysing the first return map to a suitable cross-section
to the flow of (2.1), obtained from the transitions between four cross-sections for the
unperturbed equation. In this section, we construct suitable cross-sections near the
equilibria where the local and global maps will be defined. To do this, consider cubic
neighbourhoods V˙ in R3 of v˙,

V� D ¹.x; y;w/ W jxj < "; jyj < "; jwj < "º; w D z � �; � D ˙1;

for " > 0 small. As suggested by Figure 2, we use the following cross-sections con-
tained in the boundary of VC.
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Figure 2. Scheme of the cross-sections In.vC/ and Out.vC/ in the neighbourhood VC of vC.
The set W ss.vC/, the local strong stable manifold of vC, corresponds to the radial direction in
the invariant sphere S2.

• In.vC/ D ¹."; y; w/ W jyj < "; jwj < "º with coordinates .y1; w1/. It consists of
points whose trajectories go into VC in small positive time.

• Out.vC/ D ¹.x; "; w/ W jxj < "; jwj < "º with coordinates .yx1; yw1/. It consists of
points whose trajectories go out of VC in small positive time.

The cross-sections contained in the boundary of V� are

• In.v�/D ¹.x;";w/ W jxj< "; jwj< "ºwith coordinates .x2;w2/with points whose
trajectories go into V� in small positive time,

• Out.v�/ D ¹."; y; w/ W jyj < "; jwj < "º with coordinates .yy2; yw2/ containing
points whose trajectories go out of V� in small positive time.

The local stable manifolds of vC and v� in the cross-sections In.vC/ and In.v�/
are given by

W s.vC/\ In.vC/D ¹.0;w1/ W jw1j< "º; W s.v�/\ In.v�/D ¹.0;w2/ W jw2j< "º:

From now on we restrict our attention to the y > 0 component of In.vC/nW s.vC/
(respectively the x > 0 component of In.v�/nW s.v�/) and we abuse notation by
calling it In.vC/ (respectively In.v�/). All the results hold on the other component,
but follow a different cycle in the heteroclinic network � . By rescaling the variables
.x; y; z/ and the parameters � and � we may take " D 1 in the cross-sections defined
above.
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5. Local maps

The aim of this section is to obtain expressions that will be used to compute the first
return map to the cross-section In.vC/ in the flow of (2.1). The computations are
similar to those of [14], so we give only an overview. The expression for the first
return map to this cross-section to � is obtained as the composition of two types of
maps: local maps between the neighbourhood walls of each V˙, and global maps from
one neighbourhood to the other. Here, we obtain the local maps (at leading order in
�;�) by computing the point where a solution hits each cross-section and the time the
solution takes to move between cross-sections.

Suspension

For .�; �/ ¤ .0; 0/ we consider the suspension of (2.1) given by´
PX D F.�;�/.X; s/;

Ps D 1;
where X D .x; y; z/ and s 2 S1 (5.1)

and the augmented cross-sections S1 � In.v˙/ and S1 � Out.v˙/ to the suspended
flow. Although vC and v� are no longer constant solutions of (2.1) for .�;�/¤ .0; 0/,
for small .�; �/ the augmented cross-sections defined above are still crossed trans-
versely by trajectories.

5.1. Linearisation

The linearisation of (2.1) near v˙ is8̂<̂
:
Px D .ˇ � �˛/x � �f .2!t/ � �;

Py D .˛ C �ˇ/y;

Pw D �2.w C �/;

w D z � �; � D ˙1: (5.2)

Equation (2.1) may be written in the form

PX DMX CR.X/ � Œ�f .2!t/C ��.1; 0; 0/T

forXT D .x;y; z/where PX DMX � Œ�f .2!t/C��.1;0;0/T is any of the equations
(5.2) for � D ˙1 and

M D

0B@ˇ � �˛ 0 0

0 ˇ C �˛ 0

0 0 �2

1CA :



High frequency forcing of an attracting heteroclinic cycle 11

The constant matrix M has no eigenvalues with zero real part, both the perturbation
�f .2!t/C � and the nonlinear part R.X/ are bounded and the nonlinear part R.X/
is uniformly Lipschitz in a compact neighbourhood of S2. Under these conditions,
Palmer’s theorem [17, pp. 754] implies that there are neighbourhoods of vC and v�,
where the vector field is C 1 conjugate to its linearisation.

5.2. Local map near vC

The calculation of the first return map will use the form of the general solution of (5.2).
For z D 1C w we get Pw D �2.1C w/: Using the Lagrange method of variation of
parameters as described in [22, pp. 842], the solution of the linearised system (5.2)
near vC, with initial condition .x; y; w/.s/ D .1; y1; w1/ 2 S1 � In.vC/nW s.vC/ at
time s, is8̂̂̂̂

<̂
ˆ̂̂:
x.t; s/ D e.ˇ�˛/.t�s/

�
1 �

Z t

s

e�.ˇ�˛/.��s/.�f .2!�/C �/d�
�
;

y.t; s/ D y1e.˛Cˇ/.t�s/;

w.t; s/ D .w1 C 1/e�2.t�s/ � 1:

(5.3)

The time of flight T1 from S1 � In.vC/nW s.vC/ to S1 �Out.vC/ is defined as the
minimum non-negative time T1 such that a trajectory starting at S1 � In.vC/nW s.vC/
hits S1 �Out.vC/. If .1; y1;w1/ 2 S1 � In.vC/nW s.vC/ then T1.y1;w1/ is the solu-
tion T1 D t of y.t/ D 1. Hence

y.T1/ D 1 , y1e.˛Cˇ/.T1�s/ D 1 , ln
�
1

y1

�
D .˛ C ˇ/.T1 � s/:

In this case, T1 does not depend on � or on �. These solutions arrive at Out.vC/ at a
time

T1 D s C ln
�
1

y1

� 1
˛Cˇ

D s �
1

˛ C ˇ
lny1:

Replacing t by T1 in the first and third equation of (5.3), we get the map

ˆvC W S
1
� In.vC/! S1 � Out.vC/;

ˆvC.s; y1; w1/ D

0BB@
s � 1

˛Cˇ
lny1

yı1

�
1 �

R T1
s

e�.ˇ�˛/.��s/.�f .2!�/C �/d�
�

.w1 C 1/y1
2

˛Cˇ � 1

1CCA D .T1; yx1; yw1/:
(5.4)
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5.3. Local map near v�

The treatment of (5.2) for � D�1 is similar to Section 5.2, although the computations
involve more steps. The solution of (5.2), with initial condition

.x; y;w/.s/ D .x2; 1; w2/ 2 S1 � In.v�/

at time s, is8̂̂̂̂
<̂
ˆ̂̂:
x.t/ D x2e.˛Cˇ/.t�s/

�
1 �

1

x2

Z t

s

e�.˛Cˇ/.��s/.�f .2!�/C �/d�
�
;

y.t/ D e.ˇ�˛/.t�s/;

w.t/ D .w2 � 1/e�2.t�s/ C 1:

(5.5)

The time T2 of arrival at Out.v�/, starting at In.v�/ is more difficult to compute
than T1. This is why we use its Taylor expansion at .0; 0/ truncated at second order of
� and �. We write T2.�; �/ to stress its dependence on the bifurcation parameters.

Lemma 1. The time of flight T2 inside V� of .x2; 1; w2/ 2 S1 � In.v�/ only depends
on x2 and may be written as

T2.�; �/ D s �
1

˛ C ˇ
ln x2 C

�
1

.˛ C ˇ/

Z T2.0;0/

s

e�.˛Cˇ/.��s/.�f .2!�/C �/d�
�

CO.k.�; �/k2/;

where O.k.�; �/k2/ denotes the usual Landau notation and T2.0; 0/ D s �
lnx2
˛Cˇ

.

Proof. Let us derive the Taylor expression of T2.�; �/ of degree 1,

T2.�; �/ D T2.0; 0/C
@T2

@�
.0; 0/C

@T2

@�
.0; 0/CO.k.�; �/k2/: (5.6)

By definition of time of flight in V�, we may write

1 � x.T2.�; �/; �; �/

(5.5)
D e.˛Cˇ/.T2.�;�/�s/

�
x2 � �

Z T2.�;�/

s

e�.˛Cˇ/.��s/f .2!�/d�

� �

Z T2.�;�/

s

e�.˛Cˇ/.��s/d�
�
:

For � D � D 0, we get

x2e.˛Cˇ/.T2.0;0/�s/ D 1 ) T2.0; 0/ D s �
ln x2
˛ C ˇ

: (5.7)
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Using the chain rule applied to the equality x.T2.�; �/; �; �/ D 1 at .�; �/ D .0; 0/,
we get

@x

@t
.T2.0; 0/; 0; 0/

@T2

@�
.0; 0/C

@x

@�
.T2.0; 0/; 0; 0/ D 0

and thus

.˛ C ˇ/x2e.˛Cˇ/.T2.0;0/�s/
@T2

@�
.0; 0/ �

Z T2.0;0/

s

e�.˛Cˇ/.��s/f .2!�/d� D 0:

According to the left-hand side of (5.7), the previous equality may be simplified as

.˛ C ˇ/
@T2

@�
.0; 0/ �

Z T2.0;0/

s

e�.˛Cˇ/.��s/f .2!�/d� D 0;

,
@T2

@�
.0; 0/ D

1

.˛ C ˇ/

Z T2.0;0/

s

e�.˛Cˇ/.��s/f .2!�/d�:

Analogously, we have

.˛ C ˇ/
@T2

@�
.0; 0/ �

Z T2.0;0/

s

e�.˛Cˇ/.��s/d� D 0

and hence
@T2

@�
.0; 0/ D

1

.˛ C ˇ/

Z T2.0;0/

s

e�.˛Cˇ/.��s/d�:

Replacing T2.0; 0/, @T2@� .0; 0/ and @T2
@�
.0; 0/ in (5.6), it yields

T2.�; �/ D s �
1

˛ C ˇ
ln x2 C

�
1

.˛ C ˇ/

Z T2.0;0/

s

e�.˛Cˇ/.��s/.�f .2!�/C �/d�
�

CO.k.�; �/k2/

and the result follows.

From now on, we omit the remainder O.k.�; �/k2/ of T2 in the computations.
Using the expression of T2 obtained in Lemma 1 in (5.5), we may deduce that

y.T2/ D e
.ˇ�˛/.T2�s/

D exp
�
�
.ˇ � ˛/

˛ C ˇ
ln x2

C

�
.ˇ � ˛/

.˛ C ˇ/

Z T2.0;0/

s

e�.˛Cˇ/.��s/.�f .2!�/C �/d�
��

D xı2 exp
�
�ı

Z T2.0;0/

s

e�.˛Cˇ/.��s/.�f .2!�/C �/d�
�
:



I. S. Labouriau and A. A. P. Rodrigues 14

Analogously, we may write

w.T2/ D 1C .w2 � 1/e�2.T2�s/

D 1C .w2 � 1/ exp
�

2

˛ C ˇ
ln x2

C

�
�2

.˛ C ˇ/

Z T2.0;0/

s

e�.˛Cˇ/.��s/.�f .2!�/C �/d�
��

D 1C .w2 � 1/x
2=.˛Cˇ/
2

� exp
�
�2

.˛ C ˇ/

Z T2.0;0/

s

e�.˛Cˇ/.��s/.�f .2!�/C �/d�
�
:

Therefore, we define the local map as

ˆv� W S
1
� In.v�/! S1 � Out.v�/;

ˆv�D

0BB@
s � 1

˛Cˇ
ln x2 C 1

.˛Cˇ/

R T2.0;0/
s

e�.˛Cˇ/.��s/.�f .2!�/C �/d�

xı2 exp
�
�ı
R T2.0;0/
s

e�.˛Cˇ/.��s/.�f .2!�/C �/d�
�

1C .w2 � 1/x
2=.˛Cˇ/
2 exp

�
�2
˛Cˇ

R T2.0;0/
s

e�.˛Cˇ/.��s/.�f .2!�/C �/d�
�
1CCA

D.T2; yy2; yw2/: (5.8)

It follows that if x2 > 0 then yy2 > 0. To establish a similar statement for ˆvC we
will need the information of Lemma 2 below.

5.4. Summary

The expressions for ˆvC (cf. (5.4)) and ˆv� (cf. (5.8)) may be written as

ˆvC.s; y1; w1/ D

0B@ s �
1

˛Cˇ
lny1

yı1.1 �K1/

.w1 C 1/y
2

˛Cˇ

1

1CA D .T1; yx1; yw1/
and

ˆv�.s; x2; w2/ D

0B@ s � 1
˛Cˇ

ln x2 C K2
.˛Cˇ/

xı2 exp.�ıK2/

1C .w2 � 1/
�
x
2=.˛Cˇ/
2 exp

�
�2K2
˛Cˇ

��
1CA D .T2; yy2; yw2/

where

ı D
˛ � ˇ

˛ C ˇ
> 1;



High frequency forcing of an attracting heteroclinic cycle 15

K1 D

Z T1

s

e�.ˇ�˛/.��s/.�f .2!�/C �/d�;

K2 D

Z T2.0;0/

s

e�.˛Cˇ/.��s/.�f .2!�/C �/d�:

Both K1 and K2 depend on s; � and �. Furthermore, when � D � D 0, we get

.T1; yx1; yw1/ D

�
s �

1

˛ C ˇ
lny1; yı1 ; .w1 C 1/y

2
˛Cˇ

1

�
;

.T2; yy2; yw2/ D

�
s �

1

˛ C ˇ
ln x2; xı2 ; 1C .w2 � 1/x

2=.˛Cˇ/
2

�
;

corresponding to the expressions of the local maps for the unperturbed case. Note that,
although the second and third coordinates of ˆvC are well defined and equal to zero
at .s; y1; w1/ D .s; 0; 0/, the first coordinate tends to infinity as y1 goes to zero, since
this point corresponds to the heteroclinic connection from vC to v�. In other words,
.s; 0; 0/ 2 In.vC/ is a point that never returns. The same remark applies to ˆv� .

5.5. Auxiliary result

In order to have an explicit expression for K1 and K2, we assume that f .t/ D sin t .
The integrals K1 and K2 are linear on � and � and, under the previous assumption,
they may be computed explicitly.

Lemma 2. The following equalities hold:

(1) If f .t/ D sin t then the expression for K1 is

K1 D
�y�ı1

.ˇ � ˛/2 C 4!2

�
.ˇ � ˛/ sin.2!.T1 � s//C 2! cos.2!.T1 � s//

�
�

�

.ˇ � ˛/2 C 4!2

�
.ˇ � ˛/ sin.2!s/C 2! cos.2!s/

�
C �

y�ı1 � 1

˛ � ˇ
:

(2) If f .t/ D sin t then the expression for K2 is

K2 D
�x2

.˛ C ˇ/2 C 4!2

�
.˛ C ˇ/ sin.2!.T2.0; 0/ � s//

C 2! cos.2!.T2.0; 0/ � s//
�

�
�

.˛ C ˇ/2 C 4!2

�
.˛ C ˇ/ sin.2!s/C 2! cos.2!s/

�
C �

1 � x2

˛ C ˇ
:

Proof. (1) Using the linearity of the integral, K1 may be written as

�

Z T1

s

e�.ˇ�˛/.��s/f .2!�/d� C �
Z T1

s

e�.ˇ�˛/.��s/d�:
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Each summand may be computed explicitly. For the second one we haveZ
e�.ˇ�˛/.��s/d� D

�e�.ˇ�˛/.��s/

.ˇ � ˛/
:

From [14, Lemma 6] (integrating by parts twice) and since f .t/ D sin t , we getZ
e�.ˇ�˛/.��s/ sin.2!�/d� D

e�.ˇ�˛/.��s/

.ˇ � ˛/2 C 4!2

�
.ˇ � ˛/ sin.2!�/C 2! cos.2!�/

�
:

To compute K1 we need T1 � s D �
lny1
ˇC˛

, hence

e�.ˇ�˛/.T1�s/ D y
.ˇ�˛/=.ˇC˛/
1 D y�ı1

and the expression for K1 follows.
(2) Analogous computations.

In particular, it follows from this lemma thatK1 < 1 for sufficiently large !, since
in this case the terms with � are small and the term with � is negative. Hence, for
large !, if y1 > 0 and ˆvC.s; y1; w1/ D .T1; yx1; yw1/ then yx1 > 0.

5.6. Global and first return maps

The first return map to S1 � In.v�/ will be

R.�;�/ WD .‰vC!v�/ ıˆvC ı .‰v�!vC/ ıˆv� (5.9)

where
‰vC!v� W S

1
� Out.vC/! S1 � In.v�/

and
‰v�!vC W S

1
� Out.v�/! S1 � In.vC/

are the global maps whose expressions are given below.
Trajectories that remain close to the network � spend long times near the equi-

libria and make fast transitions from each neighbourhood V˙ to the next one. Thus
the first components of ‰vC!v� and ‰v�!vC , representing the time transitions, may
be disregarded. Since the symmetry �2 remains for �; � > 0, we may assume that
‰v�!vC is the identity. Finally, since the cycle is broken for � > 0, the map‰vC!v�
depends on � in an affine way. Therefore, for a > 0, we take the transition maps as

‰vC!v�.s; yx1; yw1/ 7! .s; yx1 C a�; yw1/ D .s; x2; w2/;

‰v�!vC.s; yx2; yw2/ 7! .s; yx2; yw2/ D .s; x1; w1/:
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6. Main result

We are now in a position to show that when the frequency ! of the forcing tends to
infinity, the first return map for F.�;�/ approaches that of the averaged system F.0;�/.

Theorem 3. For initial conditions close to any of the cycles in the network � , the first
return map

R.�;�/ W S1 � In.v�/! S1 � In.v�/

for (2.1) satisfies
lim
!!1

R.�;�/ D R.0;�/:

Proof. To prove the result we do not need to write explicitly the analytical expression
of R.�;�/. First of all, note that the global maps defined in Section 5.6 do not depend
on �. From the expressions (5.4) and (5.8) derived in Section 5.4 it is clear that ˆvC
and ˆv� only depend on !, � and � through the integrals K1 and K2. Their expres-
sions are computed explicitly in Lemma 2 above, where we show them to be of the
form

Ki .!; s; �; �/ D �Hi;�.!; s/C �Hi;�.!; s/; i D 1; 2:

In both cases the term Hi;�.!; s/ contains one of the factors

1=Œ.ˇ ˙ ˛/2 C 4!2�

multiplying a combination of sines and cosines, the last ones multiplied by !. Hence,
Hi;�.!; s/ consists of a term that goes to zero with !2 when ! ! C1 multiplying
functions that are either bounded or the product of ! by something bounded. There-
fore, lim!!1Hi;�.!; s/ D 0 and the result follows.

7. Dynamics for ! large

We have proved that the dynamics associated to lim!!C1 F.�;�/ is qualitatively the
same as that of the autonomous system F.0;�/. In this section, we analyse the map
F.0;�/ and obtain some dynamical information. Before going further, note that if �D 0
then

K1 D �
y�ı1 � 1

˛ � ˇ
and K2 D �

1 � x2

˛ C ˇ
:

Our first result is technical and provides an explicit expression for the components
of R.0;�/.
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Lemma 4. For � D 0 and .s; x2; w2/ 2 S1 � In.v�/ writing R.0;�/ D .h1; h2; h3/

the following equalities hold:

(1) h1.s; x2; w2/ D s � 1Cı
˛Cˇ

ln x2 C
K2.1Cı/
˛Cˇ

;

(2) h2.s; x2; w2/ D xı
2

2 exp.�ı2K2/Œ1 �
�
˛�ˇ

� � �
˛�ˇ
C a�;

(3) h3.s; x2; w2/ D Œ2C .w2 � 1/x
2

˛Cˇ

2 exp.�2K2
˛Cˇ

/�Œxı2 exp.�ıK2/�
2

˛Cˇ .

Proof. The proof follows by composing of the local maps (5.4) and (5.8) derived in
Section 5.4 and the global maps ‰vC!v� and ‰v�!vC in the order prescribed by

R.0;�/ D .‰vC!v�/ ıˆvC ı .‰v�!vC/ ıˆv� ;

cf. (5.9). We start by obtaining for � D 0 the expressions

y1D x
ı
2 exp.�ıK2/; K2D�

1 � x2

˛ C ˇ
; K1D�

y�ı1 � 1

˛ � ˇ
D�

x�ı
2

2 exp.ı2K2/ � 1
˛ � ˇ

:

Hence, for (2) we get

h2.s; x2; w2/ D y
ı
1.1 �K1/

D .xı2 exp.�ıK2//ı
�
1 � �

.x�ı2 exp.�ıK2//�ı � 1
˛ � ˇ

�
C a�

D xı
2

2 exp.�ı2K2/ �
�

˛ � ˇ
C �

xı
2

2 exp.�ı2K2/
˛ � ˇ

C a�

D xı
2

2 exp.�ı2K2/
�
1 �

�

˛ � ˇ

�
�

�

˛ � ˇ
C a�:

For (1),

h1.s; x2; w2/ D s �
1

˛ C ˇ
ln x2 C

K2

˛ C ˇ
�

1

˛ C ˇ
lny1

D s �
1C ı

˛ C ˇ
ln x2 C

K2.1C ı/

˛ C ˇ
:

Finally, for (3),

w1 D 1C .w2 � 1/

�
x
2=.˛Cˇ/
2 exp

�
�2K2

˛ C ˇ

��
;

h3.s; x2; w2/ D .w1 C 1/y
2

˛Cˇ

1

D

�
2C .w2 � 1/x

2
˛Cˇ

2 exp
�
�2K2

˛ C ˇ

���
xı2 exp.�ıK2/

� 2
˛Cˇ :



High frequency forcing of an attracting heteroclinic cycle 19

From now on, we are interested in the dynamics when � D 0. The map h2 just
depends on x2; this is why we may define h2 W Œ0; 1�! R as

h2.x2/ WD h2.s; x2; w2/:

Lemma 5. The following assertions are valid for .s; x2; w2/ 2 S1 � In.v�/:

(1) For � D 0, x2 D 0 is a hyperbolic attracting fixed point of h2.x2/ D xı
2

2 .

(2) If � > 0, then:

(a) if a � 1
˛�ˇ

> 0, then h2 has a hyperbolic attracting fixed point x? of
order O.�/;

(b) if 4˛
.˛Cˇ/2

> 1, then for any s 2 S1 and any x2 2 Œ0; 1� the map w2 7!
h3.s; x2; w2/ is a Lipschitz contraction in the variable w2.

Proof. (1) For � D 0, we have K2 D 0 and then h2.x2/ D xı
2

2 (cf. item (2) of
Lemma 4), whose fixed point is 0. Since h02.0/ D 0, the hyperbolicity and attract-
iveness follow.

(2) (a) For�D 0, the graph of h2.x2/ crosses transversely the graph of the identity
at x2 D 0, then, for small � ¤ 0, the two graphs still cross transversely at a nearby
value x�.�/ of x2, the hyperbolic continuation of the fixed point found in (1). Since
h2.0/D�.a�

1
˛�ˇ

/ then x�.�/ > 0 if and only if h2.0/ > 0 and in this case the fixed
point is a hyperbolic attractor with lim�!0 x

?.�/D 0. The location of this fixed point
is sketched in Figure 3.

x

Identity

x *

h 
2

2

Figure 3. The graph of h2 intersects the identity map once near the origin.



I. S. Labouriau and A. A. P. Rodrigues 20

(b) By item (3) of Lemma 4, the map h3 does not depend on s and may be written
as

h3.s; x2; w2/ D C1.x2/C C2.x2/w2

where C1; C2 W Œ0; 1�! R are smooth maps with

C2.x2/ D x
2C2ı
˛Cˇ

2 exp
�
�2K2.1C ı/

˛ C ˇ

�
:

Since
2C 2ı

˛ C ˇ
D

4˛

.˛ C ˇ/2

Hyp
> 1

and jexp.�2K2.1Cı/
˛Cˇ

/j < 1, then h3 is a Lipschitz contraction in the variable w2.

Although x2 D 1 is also a fixed point of h2 (for � D 0), we are disregarding
this point from the statement of Lemma 5 for two reasons: first it is repelling and
second it lies on the boundary of the domain of R.0;0/. Please note that the restriction
4˛

.˛Cˇ/2
> 1 of Lemma 5 (2b) is also used in [14, §4.6] for the reduced map.

Theorem 6. For � D 0 and small � > 0, if 4˛
.˛Cˇ/2

> 1 and a > 1
˛�ˇ

, then the flow
associated to F.0;�/ has an attracting periodic solution whose period P satisfies P D
O.� ln�/.

Proof. Let x? be the hyperbolic and attracting fixed point of h2 obtained in Lemma 5.
Since the map w2 7! h3.s; x

?;w2/ is a Lipschitz contraction in the variable w2, it has
an attracting fixed point w? that depends smoothly on x2. This means that there exists
P > 0 such that

R.0;�/.s; x
?; w?/ D R.0;�/.s C P; x

?; w?/;

therefore the flow associated to F.0;�/ has an attracting periodic solution of period P .
This periodic solution spends a time .T2.s; x?; w?/ � s/ inside V�, followed, inside
VC, by a flight time .T1.sC; yC; wC/ � sC/ with

.sC; yC; wC/ D ‰v�!vC ıˆv�.s; y
?; w?/:

Using item (1) of Lemma 4, this solution has period given by

P D s �
1C ı

˛ C ˇ
ln x? C

K2.1C ı/

˛ C ˇ

D s �
1C ı

˛ C ˇ
ln x? C �

1 � x?

˛ C ˇ

.1C ı/

˛ C ˇ

x?DO.�/
D s �

1C ı

˛ C ˇ
ln x? CO.�/:

Since x? D O.�/ (by Lemma 5), the period P is of the order O.� ln�/ completing
the proof.
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From Theorems 3 and 6 the next corollary follows immediately.

Corollary 7. For small �; � > 0 and very large !, if 4˛
.˛Cˇ/2

> 1 and a > 1
˛�ˇ

, then
the flow associated to F.�;�/ has an attracting periodic solution whose period P sat-
isfies P D O.� ln�/.

8. Discussion and final remarks

In this work, we investigate the influence of high frequency forcing on a differential
equation exhibiting a clean attracting heteroclinic network – clean in the sense that
the unstable manifolds of all the nodes lie in the network. Our result says that if the
frequency of the non-autonomous perturbation goes to infinity, then the dynamics of
the vector field is governed by the averaged system: the non-autonomous equation
(2.1) behaves like an autonomous one. Our main result has been motivated by Tsai
and Dawes [9,23,24] in the context of the Guckenheimer and Holmes example. They
claim without proof that the time-periodic forcing term has an effect equivalent to that
of the time-averaged perturbation term.

Our findings agree well with the theory developed by Cheng-Gui et al. [8]. They
considered a system of the form

Px D f .x/C B cos.!t/H (8.1)

where x 2 Rn represents the state vector of the nonlinear system,H D .1; 1; : : : ; 1/T ,
f W Rn ! Rn is a nonlinear vector field and B cos.!t/ denotes a forcing with fre-
quency ! and amplitude B . The unforced system (H D 0) may exhibit stationary,
periodic or chaotic behaviour for different system parameters. They state that a gen-
eral solution of (8.1), say x.t/, may be written as the sum of a slow motion X.t/ and
a fast motion ‰.t/,

x.t/ D X.t/C
1

!
‰.t; !/

where‰ W R � Rn ! Rn is a 2�=! t-periodic function with zero mean. If !!C1,
then the solution is governed by the slow-motion which is the solution of the original
unperturbed system. The effect of high-frequency forcing becomes apparent. Stating
our result in their terms, as the forcing frequency tends to infinity the equation for the
fast motion drops out completely.

Further, in Section 5.5, we have used the map f .t/ D sin t in (2.1) and H D
.1; 0; : : : ; 0/T but our work is still valid for any smooth t -periodic map f with zero
average.

Conditions under which (2.1) has a chaotic regime in the form of a suspended
horseshoe map have been obtained in [15], where it appears through the destruction
of an invariant torus. We may conclude that here, when ! D C1, in the extended
phase space (equation (5.1)) we cannot write the global map as in [15, Section 4.3].
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More specifically, in the limit case ! D C1, the set

W u.S1 � ¹v�º/ \ In.S1 � ¹vCº/

is not a non-degenerate graph of a multimodal function. When ! D C1 the neces-
sary distortion to obtain chaos does not hold so there is no guarantee of the torus-
breakdown effects. This limit case was left open by Wang [25, pp. 4391].

We conjecture that our result holds for any attracting and clean heteroclinic net-
work where the connections are one-dimensional. Since nonlinear systems driven by
high frequency forcing are prevalent in nature and engineering, we expect that these
results are valuable and helpful to those applications.

A. Notation

In Table 1, we list the main notation used in this paper in order of appearance with the
reference of the section where it is defined.

Notation Meaning Section

� Heteroclinic network formed by four cycles 3.2
ı Saddle-value of vC and v� 3.2
V˙ Neighbourhoods of vC and v� 4
In.v˙/ Cross-sections near v˙ for F.0;0/ 4
Out.v˙/
S1 � In.v˙/ Augmented cross-sections for F.�;�/ 5
S1 � Out.v˙/
ˆvC Local map from S1 � In.vC/ to S1 � Out.vC/ 5.2
ˆv� Local map from S1 � In.v�/ to S1 � Out.v�/ 5.3
T1 Time of flight inside VC 5.2
T2 Time of flight inside V� 5.3
‰vC!v� Global map from S1 � Out.vC/ to S1 � In.v�/ 5.6
‰v�!vC Global map from S1 � Out.v�/ to S1 � In.vC/ 5.6
R.�;�/ Return map to S1 � In.v�/ 5.6
.h1; h2; h3/ Components of the map R.0;�/ 7
4˛

.˛Cˇ/2
> 1 Condition forcing h2 to be dominant in R.0;�/ 7

x? Stable fixed point of h2 7

Table 1. Notation
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