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Hyperfiniteness of boundary actions of relatively
hyperbolic groups

Chris Karpinski

Abstract. We show that if G is a finitely generated group hyperbolic relative to a finite collection
of subgroups P , then the natural action of G on the geodesic boundary of the associated relative
Cayley graph induces a hyperfinite equivalence relation. As a corollary of this, we obtain that the
natural action of G on its Bowditch boundary @.G;P / also induces a hyperfinite equivalence rela-
tion. This strengthens a result of Ozawa obtained for P consisting of amenable subgroups and uses
a recent work of Marquis and Sabok.

1. Introduction

This paper studies equivalence relations induced by boundary actions of relatively hyper-
bolic groups. The study of boundary actions began with the work of Connes, Feldman, and
Weiss in [5] and Veršik in [22] who studied the actions of free groups on their boundaries.
They showed that for a free group, its action on the Gromov boundary is �-hyperfinite
for every Borel quasi-invariant probability measure � on the boundary. Adams [1] later
generalized this result to all hyperbolic groups.

Relatively hyperbolic groups were introduced by Gromov [10]; see also the mono-
graph of Osin [17]. Given a relatively hyperbolic group G with a collection of parabolic
subgroups P , there is a natural boundary called the Bowditch boundary, denoted @.G;P /,
which is a compact metrizable space on which G acts naturally by homeomorphisms.

In [19], Ozawa generalized the work of Adams [1] to the actions of relatively hyper-
bolic groups on their Bowditch boundary under the assumptions that the parabolic sub-
groups are exact. When the parabolic subgroups of G in P are amenable, Ozawa [19]
proved that the action of G on @.G;P / is topologically amenable, and, more generally,
when the parabolic subgroups are exact, Ozawa [19] proved that the group G is exact.
Alternative proofs of the exactness of the group were given by Osin [16] who worked with
parabolic subgroups with finite asymptotic dimension and by Dadarlat and Guentner [6]
who worked with parabolic subgroups that are uniformly embeddable into a Hilbert space.

In [23], Zimmer introduced the notion of amenability of equivalence relations; see also
the work of Connes, Feldman, and Weiss [5]. By [2, Theorem 5.1], a measurable action

Mathematics Subject Classification 2020: 20F67 (primary); 20F65, 03E15 (secondary).
Keywords: hyperfinite equivalence relations, relatively hyperbolic groups, Bowditch boundary.



C. Karpinski 2

of a countable group G on a standard probability space .X; �/ is �-amenable if and only
if �-almost all stabilizers are amenable and the orbit equivalence relation is �-amenable.

In this paper, we generalize the result of Ozawa and work with relatively hyperbolic
groups without any assumptions on the parabolic subgroups. In fact, we consider bound-
ary actions from the Borel perspective. A countable Borel equivalence relation is called
hyperfinite if it is a countable increasing union of finite Borel subequivalence relations.
Dougherty, Jackson, and Kechris showed in [8, Corollary 8.2] that the boundary action of
any free group induces a hyperfinite orbit equivalence relation. The result of Dougherty,
Jackson, and Kechris was generalized to cubulated hyperbolic groups by Huang, Sabok,
and Shinko in [12], and later to all hyperbolic groups by Marquis and Sabok in [15]. In
this paper, we prove the following.

Theorem A. Let G be a finitely generated group hyperbolic relative to a finite collection
of subgroups P and let y� be the associated relative Cayley graph. Then the natural action
of G on the geodesic boundary @y� induces a hyperfinite orbit equivalence relation.

Corollary B. Let G be a finitely generated group hyperbolic relative to a finite collection
of subgroups P . Then the natural action ofG on the Bowditch boundary @.G;P / induces
a hyperfinite orbit equivalence relation.

Corollary B, in particular, strengthens the result of Ozawa [19] in case the parabolic
subgroups are amenable. Indeed, hyperfiniteness implies �-amenability for every invari-
ant Borel probability measure � and by [3, Theorem 3.3.7], an action of a countable group
on a locally compact space by homeomorphisms is topologically amenable if and only if
it is �-amenable for every invariant Borel probability measure �.

We proceed by following a similar approach to [12, 15], studying geodesic ray bun-
dles Geo.x; �/ in relative Cayley graphs (Definition 2.2). For the case of a cubulating
hyperbolic group G studied in [12], the crucial property from which the hyperfiniteness
of the boundary action of G follows is the finite symmetric difference of geodesic ray
bundles: For any x; y 2 G and any � 2 @G, Geo.x; �/4Geo.y; �/ is finite (see [12, The-
orem 1.4]). In [21], Touikan showed that this symmetric difference need not be finite in
Cayley graphs of general hyperbolic groups, although in [14], Marquis provides many
examples of groups acting geometrically on locally finite hyperbolic graphs where this
finite symmetric difference property does hold. In [15], Marquis and Sabok define a mod-
ified version of the geodesic ray bundle, denoted Geo1.x; �/ for x 2 G and � 2 @G
(see [15, Definition 5.5] and Definition 2.6 in our paper) and show ([15, Theorem 5.9])
that these modified geodesic ray bundles satisfy a finite symmetric difference property:
jGeo1.x; �/4Geo1.y; �/j < 1 for each x; y 2 G and for each � 2 @G. Marquis and
Sabok then deduce hyperfiniteness of the boundary action as a consequence of this finite
symmetric difference property of the modified bundles (see [15, Section 6]).

Local finiteness of the Cayley graph plays a crucial role in establishing the finite sym-
metric difference property of the Geo1 bundles in [15]. However, relative Cayley graphs of
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relatively hyperbolic groups are not locally finite. To make up for this loss of local finite-
ness, we rely on finiteness results about relative Cayley graphs of relatively hyperbolic
groups from [17] (namely, [17, Theorem 3.26]).

We note also that the hyperfiniteness of boundary actions has been studied beyond
relatively hyperbolic groups. Przytycki and Sabok have recently established the hyper-
finiteness of the actions of a mapping class group of an oriented surface of finite type
on the boundaries of the arc graph ([20, Theorem 1.1]) and the curve graph ([20, Corol-
lary 1.2]) of the surface. More recently, Oyakawa has shown that every countable acylin-
drically hyperbolic group admits a (not necessarily finite) generating set for which the
associated Cayley graph is acylindrical and the induced boundary action of the group is
hyperfinite [18].

2. Preliminaries

In this paper, for a hyperbolic metric spaceX , @X will denote the geodesic boundary ofX .
We will also denote Chb.X/ the horoboundary of X (see [15, Section 2.4] for a definition
of the horoboundary).

2.1. Relatively hyperbolic groups

Relatively hyperbolic groups were first introduced by Gromov in his seminal paper [10]
as a generalization of hyperbolic groups. The following definitions can be found in [17].

Let G be a group generated by a finite set X , let P D ¹H1; : : : ;Hnº be a collection of
subgroups of G and let H D

S
P . The relative Cayley graph associated with X and P is

the Cayley graph y� with respect to the generating setX [H . This graph can be identified
with the coned-off Cayley graph obtained by starting with the Cayley graph � of G with
respect to X , adjoining to � a vertex vgHi for each left coset gHi and connecting each
vertex of gHi in � to vgHi by an edge of length 1

2
. The notations dX and d refer to the

word metrics with respect to the generating sets X and X [H , respectively. We will use
the notation BXr .x/ to denote the closed ball of radius r in the metric dX about the point
x 2 G.

A finitely generated group G is hyperbolic relative to a collection of subgroups
P D ¹H1; : : : ; Hnº if there exists a finite generating set X of G such that the associated
relative Cayley graph is hyperbolic and satisfies the bounded coset penetration property
(BCP) (see [17, Definition 6.5] for the definition of the BCP; we will not need to use the
definition of BCP, so we do not define it here). Relative hyperbolicity is invariant under
change of finite generating set by [17, Proposition 2.8].

For a finitely generated group G hyperbolic relative to a finite collection P of sub-
groups, there is a natural compact metrizable space on which G acts naturally by homeo-
morphisms, denoted @.G;P / and called the Bowditch boundary (see [4, Section 4] for the
construction of the Bowditch boundary). The following theorem is the main ingredient in
establishing Corollary B as a result of Theorem A.
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Theorem 2.1. Let G be hyperbolic relative to a finite collection of subgroups P , with
relative Cayley graph y� . Then @y� embeds G-equivariantly and homeomorphically into
@.G;P / with countable complement.

Proof. In [7, Proposition 1, Section A.2], it is shown that the coned-off Cayley graph y�
witnesses the relative hyperbolicity of G with respect to P according to Definition 2 of
relative hyperbolicity from [4]. Therefore, by [4, Propositions 8.5 and 9.1], @y� embeds
G-equivariantly and homeomorphically into @.G;P / and @y� has countable complement
in @.G;P /.

2.2. Combinatorial Geodesic Ray Bundles

Let X be a hyperbolic graph equipped with its natural combinatorial metric (assigning
edges length 1), and denote the vertex set of X by X .0/. We present some definitions
and terminology used in [15] that we will use in our paper. We refer the reader to [15,
Sections 3 and 4] for a further study of the objects we define in this section.

Definition 2.2. For x 2 X .0/ and � 2 @X , define CGR.x; �/ to be the set of all combina-
torial geodesic rays (CGRs) based at x and define the combinatorial geodesic ray bundle
Geo.x; �/ D

S
CGR.x; �/ to be the set of all vertices on CGRs in CGR.x; �/.

By [15, Lemma 3.2], every CGR 
 D .xn/n converges to some � 2Chb.X/. We denote
such limit � D �
 .

Definition 2.3. Fixing a basepoint z 2 X .0/, for � 2 @X define the limit set „.�/ D ¹�
 W

 2 CGR.z; �/º.

By [15, Lemma 3.1] (which says that we can move the basepoint of any geodesic ray
to any other basepoint to obtain a geodesic with the same tail), the definition of „.�/ is
independent of the basepoint (i.e., for any z1; z2 2 X .0/ and � 2„.�/, we have � D �
 for
some 
 2 CGR.z1; �/ if and only if � D �
 0 for some 
 0 2 CGR.z2; �/).

Definition 2.4. For x 2 X .0/; � 2 @X , and � 2 „.�/, define the combinatorial sector
Q.x; �/ D ¹y 2 X .0/ W y 2 
 for some 
 2 CGR.x; �/ with �
 D �º.

Definition 2.5. For � 2 @X , a vertex x 2 X .0/ is �-special if
T
�2„.�/Q.x; �/ contains a

CGR 
 . The set of all �-special vertices is denoted Xs;� .

By [15, Lemma 4.7], if x 2 Xs;� , then there exists a unique � 0 2 „.�/ such thatT
�2„.�/Q.x; �/ D Q.x; �

0/. We denote such � 0 by � 0 D �x;� .
Our main objects of interest will be the following modified geodesic ray bundles, first

defined in [15, Definition 5.5].
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Definition 2.6. Let x 2 X .0/ and � 2 @X . For � 2„.�/, let Y.x; �/ be the set of �-special
vertices y 2 Geo.x; �/ with �y;� D � at minimal distance to x. Put

Geo1.x; �/ D
[

�2„.�/

[
y2Y.x;�/

Q.y; �/:

3. Geodesic ray bundles in relatively hyperbolic groups

In this section, we examine modified geodesic ray bundles in the relative Cayley graph y�
and prove that these modified bundles have finite symmetric difference for a fixed
boundary point. This section generalizes [15, Theorem 5.9].

We begin by showing that j¹
.i/ W 
 2 CGR.x; �/ºj is uniformly bounded for each i ,
each x 2 G, and each � 2 @y� , which is a well-known property in any uniformly locally
finite hyperbolic graph.

We will make use of the following result, which states that geodesic triangles in the
relative Cayley graph are slim with respect to the metric dX for some finite generating
set X .

Theorem 3.1. Let G be a finitely generated group hyperbolic relative to a collection of
subgroups ¹H1; : : : ; Hnº. There exists a finite generating set X of G such that the fol-
lowing holds. There exists a constant � such that for any geodesic triangle pqr in the
relative Cayley graph y� and any vertex u on p, there exists a vertex v on q [ r such that
dX .u; v/ � �.

Proof. The finite generating set X is constructed in the proof of [17, Lemma 3.1] and it is
shown in the proof of [17, Theorem 3.26] that X satisfies the stated property.

Here is the main result of this section.

Theorem 3.2. Let G be a finitely generated group hyperbolic relative to a collection of
subgroups ¹H1; : : : ;Hnº. There exists a finite generating set X of G such that the follow-
ing holds. Let y� be the associated relative Cayley graph. Then there is a constant B such
that for any x 2 G, any � 2 @y� , and each i 2 N, we have

j¹
.i/ W 
 2 CGR.x; �/ºj � B:

Proof. Take the finite generating set X to be as in Theorem 3.1. Let i 2 N. Let � be the
constant from Theorem 3.1. Note that y� is �-hyperbolic. Fix any 
0 2 CGR.x; �/ and let
k D i C 3� C 1. We will show that for each 
 2 CGR.x; �/, there exists a vertex v on 
0
with d.v; 
0.i// � 3� and such that dX .
.i/; v/ � �.

Let 
 2 CGR.x; �/ be arbitrary. Begin by joining 
.k/ and 
0.k/ with a geodesic ˛
(see Figure 1). By �-hyperbolicity of y� , we have that d.
.k/; 
0.k//� 2�, so ˛ has length
`.˛/ at most 2�.
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Figure 1. The arrangement of geodesics in the proof of Theorem 3.2.

Letting jk denote the restriction of a geodesic to ¹0; 1; : : : ; kº, we apply Theorem 3.1
to the geodesic triangle with sides 
0jk ; ˛ and 
 jk , By Theorem 3.1, there exists a vertex v
on 
0jk or on ˛ such that dX .
.i/; v/ � �. We cannot have v on ˛ because then we would
have d.
.i/; v/ � � (since d � dX ), which would imply by the triangle inequality that

k � i D d.
.i/; 
.k// � d.
.i/; v/C d.v; 
.k// � d.
.i/; v/C `.˛/ � � C 2� D 3�

contradicting our choice of k. Therefore, we must have that v is on 
0jk .
Lastly, let us show that d.v;
0.i//� 3�. By �-hyperbolicity, we have d.
.i/;
0.i//�

2�, and note that dX .
.i/; v/ � � implies d.
.i/; v/ � �, so by the triangle inequality,

d.v; 
0.i// � d.v; 
.i//C d.
.i/; 
0.i// � � C 2� D 3�:

We conclude that for each i 2 N and each 
 2 CGR.x; �/, 
.i/ must be �-close
in dX to a vertex v on 
0 with d.v; 
0.i// � 3�. There are at most 6� C 1 such ver-
tices on 
0, so we obtain that j¹
.i/ W 
 2 CGR.x; �/ºj � .6� C 1/jB�X .1/j. Thus, we set
B D .6� C 1/jB�X .1/j.

As a corollary of Theorem 3.2, we obtain the following.

Theorem 3.3. Let G be a finitely generated group hyperbolic relative to a collection of
subgroups ¹H1; : : : ;Hnº. There exists a finite generating set X of G such that the follow-
ing holds. If y� is the associated relative Cayley graph, then Geo1.x; �/4Geo1.y; �/ is
finite for each x; y 2 G and each � 2 @y� .

Proof. Let X be as in Theorem 3.2. By Theorem 3.2, we have that Geo.x; �/ is uniformly
locally finite for each x 2 G and � 2 @y� . In [15, Theorem 5.9], it is proved that if a hyper-
bolic graph � has the property that Geo.x; �/ is uniformly locally finite for each vertex x
and each � 2 @� , then Geo1.x; �/4Geo1.y; �/ is finite for each pair of vertices x; y and
each � 2 @� . Therefore, Geo1.x; �/4Geo1.y; �/ is finite for each x; y 2 G and each
� 2 @y� .

Remark 3.4. Note that Theorem 3.2 implies that if a relatively hyperbolic group G is
generated by a finite set X as in Theorem 3.3, and if the set of ends of the associated rel-
ative Cayley graph is the same as @y� , then the ends of y� have uniformly bounded degree
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(see [11, Section 2] for the definition of ends and the degree of an end). This appears to
not have been known for relative Cayley graphs of relatively hyperbolic groups.

4. Hyperfiniteness of the boundary action

In this section, we establish the hyperfiniteness of the boundary actions of relatively hyper-
bolic groups as a consequence of Theorem 3.3. Our arguments follow [15, Section 6]. The
main difference here is in our coding of labels of geodesics. In this section, we fix a finite
generating set X for G as in Theorem 3.3 and let y� denote the associated relative Cayley
graph of G with respect to ¹H1; : : : ;Hnº and X .

First, we give a binary coding to the symmetrized generating set S WD .X [H /˙.
Using that S is countably infinite, we fix a bijection f W S ! 2<N WD

S
n2N 2

n from S to
the set 2<N of all finite binary sequences (which we can identify with the set of all finitely
supported, infinite binary strings). The label of a geodesic ray is then coded as an element
of .2<N/N , the set of all infinite sequences of finite binary strings.

We will need to order elements of .2n/n (i.e., the set of length n sequences of
length n binary strings) for each n. Following [8, Section 7], for each m1; m2 2 N,
each w D .w0; w1; : : : ; wn�1/ 2 .2

m1/m2 and for each n 2 N with n � m1; m2, we
put wjn D ..w0/jn; .w1/jn; : : : ; .wn�1/jn/, where .wj /jn is the restriction of the length
m1 binary sequence wj to the first n entries. Similarly, if w 2 .2N/N , we put wjn D
..w0/jn; .w1/jn; : : : ; .wn�1/jn/. If we visualize w 2 .2n/n as an n � n matrix, then wji is
an i � i submatrix of the n � n matrix w, starting at the top left corner of w.

For each n 2 N, we fix a total order <n on .2n/n as in [8, Section 7] such that for all
w; v 2 .2nC1/nC1, wjn <n vjn) w <nC1 v. Given 
 2 CGR.g; �/, we define lab.
/ 2
.2<N/N to be its coded label. Therefore, according to above, lab.
/jn 2 .2n/n denotes the
restricted label. Now, analogously to [15, Definition 6.1], we have the following.

Definition 4.1. For � 2 @y� , define

C � D ¹.g; lab.
/jn/ 2 G � .2n/n W g 2 Geo1.e; �/; 
 2 CGR.g; �/; n 2 Nº:

Definition 4.2. An s in .2n/n occurs in C � if .g; s/ 2 C � for some g 2 Geo1.e; �/. An s
in .2n/n occurs infinitely often in C � if .g; s/ 2 C � for infinitely many g 2 Geo1.e; �/.

Note that for each n 2 N, there exists s 2 .2n/n which occurs infinitely often
in C � because taking any 
 2 CGR.e; �/, by [15, Proposition 5.8], 
 n Geo1.e; �/
is finite, so there exists some N such that for all k � N , 
.k/ 2 Geo1.e; �/. Then
.
.k/; lab..
.i//i�k/jn/ 2 C � and lab..
.i//i�k/jn 2 .2n/n for each k � N . Since .2n/n

is finite, by the Pigeonhole principle, some s 2 .2n/n must repeat infinitely often in C � ,
that is, .
.k/; s/ 2 C � for infinitely many k � N . For each n 2 N, we can therefore
choose the minimal (in the order <n defined above) such s 2 .2n/n occurring infinitely
often in C � . We shall denote this element by s�n .
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Proposition 4.3. For each n 2 N, we have that .s�nC1/jn D s
�
n .

Proof. Since s�nC1 appears infinitely often in C � , so does .s�nC1/jn, so s�n <n .s
�
nC1/jn

or s�n D .s
�
nC1/jn. If s�n <n .s

�
nC1/jn, then since there are only finitely many exten-

sions of s�n to an element of .2nC1/nC1 and since s�n appears infinitely often in C � ,
there would exist s 2 .2nC1/nC1 such that sjn D s

�
n and s appear infinitely often in C � .

Since sjn <n .s
�
nC1/jn, we obtain that s <nC1 s

�
nC1, contradicting the minimality of s�nC1.

Therefore, s�n D .s
�
nC1/jn.

We now fix a total order � on the group G such that g � h) d.e; g/ � d.e; h/ (for
instance, fixing a total order on S , we can define � to be lexicographic order on elements
of G as words over S , where we choose for each element of G the lexicographically least
word over S representing it). Using the same notation as in [15, Section 6], we define the
following.

Definition 4.4. For each n 2 N and � 2 @y� , put T �n D ¹g 2 Geo1.e; �/ W .g; s
�
n/ 2 C

�º

and put g�n D minT �n (where the minimum is with respect to the above total order on G).
Put k�n D d.e; g

�
n/ for each n 2 N.

Note that min T �n exists because T �n � Geo.e; �/ and Geo.e; �/ are locally finite by
Theorem 3.2. By definition of� and since s�n D .s

�
nC1/jn for each n, we have that .T �n /n is

a non-increasing sequence of sets and therefore the sequence .k�n/n2N is a non-decreasing
sequence of natural numbers.

We shall now generalize the results of [15, Section 6], which were stated for Cayley
graphs of hyperbolic groups. Recall that we fix our hyperbolicity constant to be � from
Theorem 3.1. We recall that the topology on G is the discrete topology induced by the
relative metric d , the topology on @y� is the canonical topology on the geodesic bound-
ary, having countable neighborhood base V.�;m/g D ¹� 2 @y� W 9
 2 CGR.g;�/ and � 2
CGR.g; �/ with d.
.t/; �.t// � 2� for each t � mº for each m 2 N, each � 2 @y� , and
each basepoint g 2 G, GN has the product topology, and Chb.y�/ has the topology of
pointwise convergence.

Let us establish a link between the topology of @y� and sequences of CGRs in y� . The
condition in the following proposition is often used as the definition of the topology on
@X when X is a proper hyperbolic space, but in general does not give the same topology
on @X that we work with here.

Proposition 4.5. Suppose that �n! � in @y� . Then for any g 2G, there exists a sequence
of CGRs .
n/n such that 
n 2 CGR.g; �n/ for each n and such that every subsequence
of .
n/n itself has a subsequence which converges to some CGR 
 2 CGR.g; �/.

Proof. Since �n ! �, by definition of the topology on @y� , we have that for each m 2 N,
there exists a CGR 
m 2CGR.g;�m/ and �m 2CGR.g;�/ such that d.
m.t/;�m.t//� 2�
for every t � m. Fixing any � 2 CGR.g; �/, we obtain that d.
m.t/; �.t// � 4� for every
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t � m and everym, since �m; � 2 CGR.g; �/ for allm and hence are 2� close for eachm.
We claim that every subsequence of .
n/n has a convergent subsequence. First, let us
argue as in the proof of Theorem 3.2 to show that for each i , j¹
n.i/ W n 2 Nºj is finite.

Given i 2N, set k D i C 5�C 1. For each n� k, we have d.
n.k/;�.k//� 4�. Let u
denote a geodesic between 
n.k/ and �.k/ (see Figure 2).

Then arguing as in the proof of Theorem 3.2, there exists a vertex v on � with
dX .
n.i/; v/ � �. It follows that j¹
n.i/ W n � kºj is finite, and therefore that j¹
n.i/ W
n 2 Nºj is finite. Therefore,

S
n 
n [ � is locally finite. Since

S
n 
n [ � is locally

finite, by Kőnig’s lemma it follows that every subsequence of .
n/n has a convergent
subsequence. The limit CGR 
 of this subsequence is in CGR.g; �/ because for each t ,
d.
k.t/; �.t// � 4� for all but finitely many k, so d.
.t/; �.t// � 4� for all t .

We now generalize the claims of [15, Section 6] to relatively hyperbolic groups. We
begin by generalizing Claim 1 of [15]. In [15, Claim 1], the set C below is proved to be
compact, while here it is only closed.

Claim 4.6. The set C D ¹
 2 GN W 
 is a CGRº is closed. Furthermore, for any g 2 G
and any � 2 @y� , the set CGR.g; �/ � GN is compact.

Proof. Let .
n/n be a sequence of elements of C converging to some 
 2 GN . We claim
that 
 is a geodesic. Indeed, since 
n ! 
 , for each m 2 N, there exists N 2 N such that
for all n � N , we have 
njm D 
 jm. In particular, it follows that 
 jm is a geodesic, since

njm is a geodesic for each n. Thus, 
 is a geodesic ray based at limn 
n.0/ and is hence
a CGR, so 
 2 C . Therefore, C is closed.

The “furthermore” statement is not difficult to see as it follows immediately from
Kőnig’s lemma, since Geo.g; �/ is locally finite (by Theorem 3.2).

g

γ
n

λ

ui

k

Figure 2. The geometry of the geodesics 
n, �.
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The next claims are the exact relatively hyperbolic analogues of claims from [15]
and their proofs are almost identical (most proofs are completely identical); however, we
present all proofs for completeness.

Claim 4.7. The set R D ¹.�; g; 
/ 2 @y� �GN W 
 2 CGR.g; �/º is closed in @y� �GN .

Proof. Suppose that .�n; gn; 
n/ 2 R for all n and that .�n; gn; 
n/! .�; g; 
/. Then,
�n ! � 2 @y� , gn ! g in G (so that .gn/ is eventually equal to g, by discreteness of G),
and 
n ! 
 in GN , so that 
 2 CGR.g; �0/ for some �0 2 @y� (by Claim 4.6). We will
show that � D �0.

As �n ! �, by Proposition 4.5, there exists a sequence .
 0n/n with 
 0n 2 CGR.g; �n/
which has a subsequence .
 0nk /k that converges to some 
 0 2 CGR.g; �/. Choose k large
enough such that all gnk equal g, so that 
nk ; 


0
nk
2 CGR.g; �nk /. We then have that

d.
nk .m/; 

0
nk
.m//� 2� for eachm. Taking k!1, we obtain that d.
.m/; 
 0.m//� 2�

for all m, and therefore that � D �0. Thus, .�n; gn; 
n/! .�; g; 
/ with 
 2 CGR.g; �/,
so .�; g; 
/ 2 R and so R is closed.

Claim 4.8. The setF D¹.�;g; .
.0/;
.1/; : : : ;
.n///2 @y� �G �G<N W 
 2CGR.g;�/º
is Borel in @y� �G �G<N .

Proof. Let F 0 D ¹.�; g; .
.0/; 
.1/; : : : ; 
.n//; 
 0/ 2 @y� �G �G<N �GN W .�; g; 
 0/ 2

R and 
 0i D 
i for each 0 � i � nº. By Claim 4.7, F 0 is closed in @y� �G �G<N �GN .
Note that F is the projection of F 0 to the first three components @y� �G �G<N . Note also
that the section F 0

.�;g;.
.0/;
.1/;:::;
.n///
is compact for every .�;g; .
.0/;
.1/; : : : ; 
.n///2

@y� �G<N . Indeed, F 0
.�;g;.
.0/;
.1/;:::;
.n///

D ¹
 0 2 CGR.g; �/ W 
 0.i/ D 
.i/ for all 0 �
i � nº, which is a closed subset of the compact set CGR.g;�/, hence it is compact. By [13,
Theorem 18.18], it follows that F is Borel in @y� �G �G<N .

Claim 4.9. The set M D ¹.�; �/ 2 @y� � Chb.y�/ W � 2 „.�/º is Borel in @y� � Chb.y�/.

Proof. We follow a similar proof to the proof of [15, Claim 4]. We will show that M is
both analytic and coanalytic, hence Borel by [13, Theorem 14.11]. By definition of „.�/,
we have that .�; �/ 2M if and only if

9
 2 GN
W .�; 
.0/; 
/ 2 R and �
 D �:

We also have that

�
 D � ” 8g 2 G 9n 2 N 8m � n f
.m/.g/ D �.g/

which gives a Borel definition of the set ¹.�; 
/ 2 Chb.y�/ � C W �
 D �º. Thus, from
Claim 4.7 we have that M is analytic. To show that M is coanalytic, we will show the
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following, denoting Nk.A/ the k-neighborhood of a subset A of G and enumerating
G D ¹g1; g2; : : :º: .�; �/ 2M if and only if

8N 2 N; 9n1; : : : ; nN 2 N W 8� 2 GN if .�; e; �/ 2 R; then

8k 2 N; 9
k 2 GkC1 a geodesic path with 
k.0/ D e such that
k � N2�.�/

and such that 8` D 1; : : : ; N;8i 2 N with i > n` we have f
k.i/.g`/ D �.g`/:

This formula defines a coanalytic set since there is a single universal quantifier 8
ranging over an uncountable standard Borel space GN .

For the forward direction, if .�; �/ 2 M , then there exists 
 2 CGR.e; �/ converging
to �. Since 
 converges to �, for each g 2 G, there exists ng such that for all i > ng , we
have f
.i/.g/D �.g/. We take ni D ngi for each i in the above formula. We take 
k D 
 jk
(the restriction of 
 from 0 to k) for each k 2 N. Then for each � 2 CGR.e; �/, we have
d.
.n/; �.n// � 2� for each n 2 N, so 
k � N2�.�/ for each k. Furthermore, since for
each g 2 G and i > ng , we have f
.i/.g/ D �.g/, we have for all N 2 N, for all k 2 N,
for all ` D 1; : : : ; N , and for all i > n` with i � k, that f
k.i/.g`/ D �.g`/.

For the reverse direction, for any N 2 N and � 2 CGR.e; �/, we obtain a sequence
.
k/k 2

Q
k2N G

kC1 of geodesic paths starting at e, each contained in N2�.�/ and such
that f
k.i/.g`/ D �.g`/ for each ` D 1; : : : ; N for all sufficiently large i; k. Arguing as
in the proof of Theorem 3.2, we have that ¹
k.i/ W k 2 Nº is finite for each i . Therefore,
by Kőnig’s lemma, .
k/k has a subsequence converging to some CGR 
g1;:::;gN based
at e, and 
g1;:::;gN � N2�.�/, so 
g1;:::;gN 2 CGR.e; �/. From f
k.i/.g`/! �.g`/ for all
`D 1; : : : ;N as i; k!1, we have that �
g1;:::;gN .g`/D �.g`/ for all `D 1; : : : ;N . Since
„.�/ is finite, there exist � 0 2 „.�/ and infinitely many N 2 N such that �
g1;:::;gN D �

0.
Using that � 0.g`/ D �
g1;:::;gN .g`/ D �.g`/ for each ` D 1; : : : ; N and for infinitely
many N , we obtain that � 0 D �, since the subsets ¹g1; : : : ; gN º exhaust G as N gets
arbitrary large. Hence, � 2 „.�/, and we conclude that .�; �/ 2M .

By [15, Proposition 5.2], for each � 2 @y� , we have that the section M� D „.�/ is
finite, having cardinality bounded above by the constant B from Theorem 3.2. Since M
is Borel and has finite sections of size at most B , by the Lusin–Novikov theorem we
have Borel functions �1; : : : ; �B W @y� ! Chb.y�/ such that M is the union of the graphs
G�i D ¹.�; �i .�// W � 2 @

y�º of the �i .

Claim 4.10. For each i D 1; : : : ; B , Qi D ¹.�; g; h/ 2 @y� � G2 W h 2 Q.g; �i .�//º is
Borel in @y� �G2.

Proof. By [15, Lemma 4.2], for x;y 2G, denoting 
.x;y/ the union of all geodesic paths
in y� from x to y, we have that Q.g; �i .�// D

S
n2N 
.g; xn/ for some, equivalently any,

.xn/n 2 CGR.g; �/ converging to �i .�/. From this, we obtain that

h 2 Q.g; �i .�// ”9� 2 C (resp. 8� 2 C ) : �.0/ D g and �� D �i .�/

and 9n 2 N : h 2 
.g; �.n//.
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This yields the analyticity (from the 9 above) and coanalyticity (from the 8 above)
of Qi , hence Borelness of Qi .

Claim 4.11. The set P D ¹.�; h/ 2 @y� �G W h 2 y�s;�º is Borel in @y� �G.

Proof. We have that h 2 y�s;� if and only if

8n 2 N; 9
n 2 GnC1 W .�; h; 
n/ 2 F and 8i � B 8k < n; .�; h; 
n.k// 2 Qi :

Indeed, if h 2 y�s;� , then
T
�2„.�/Q.h; �/ contains a CGR 
 2 CGR.h; �/, so we can

take 
n D 
 jn (the restriction from 0 to n) for all n 2 N to satisfy the above condition.
Conversely, if the above condition holds, then by local finiteness of Geo.h; �/, the

sequence .
n/n2N with .�; h; 
n/ 2 F will have a subsequence converging to some

 2 CGR.h; �/ and the above condition yields that 
 �

T
�2„.�/Q.h; �/, so that h 2 y�s;� .

Since F and Qi are Borel, we conclude that P is Borel.

Claim 4.12. The set P1 D ¹.�; �; h/ 2 Chb.y�/� @y� �G W h 2 y�s;� and � D �h;�º is Borel
in Chb.y�/ � @y� �G.

Proof. We have .�; �; h/ 2 P1 if and only if

.�; h/ 2 P and 9i � B W .�; �/ 2 G�i and 8j � B;Q.h; �i .�// � Q.h; �j .�//:

Since P is Borel (Claim 4.11), G�i is Borel (as �i is Borel), and Qi is Borel
(Claim 4.10), the above yields that P1 is Borel.

Claim 4.13. The set LD ¹.h; �; �/ 2 G � Chb.y�/ � @y� W h 2 Y.e; �/; � 2 „.�/º is Borel
in G � Chb.y�/ � @y� .

Proof. We have that .h; �; �/ 2 L if and only if .�; �/ 2 M and h is the closest element
to e (in the metric d ) such that h 2 Geo.e; �/ and .�; �; h/ 2 P1. Thus, by Claims 4.9,
4.10, and 4.12, L is Borel (note that h 2 Geo.e; �/, .�; e; h/ 2 Qi for some i � B , so
¹.h; �/ 2 G � @y� W h 2 Geo.e; �/º is Borel in G � @y� by Claim 4.10).

Claim 4.14. The setB D ¹.g;h; �; �/ 2G2 �Chb.y�/� @y� W g 2Q.h; �/;h 2 Y.e; �/; � 2
„.�/º is Borel in G2 � Chb.y�/ � @y� .

Proof. We have that .g; h; �; �/ 2 B if and only if 9i � r such that � D �i .�/ and
.�;h;g/2Qi and .h;�;�/2L. SinceL;Qi , and �i are Borel, it follows thatB is Borel.

Claim 4.15. The set A D ¹.�; g/ 2 @y� �G W g 2 Geo1.e; �/º is Borel in @y� �G.

Proof. Since Geo1.e; �/ D
S
�2„.�/

S
h2Y.e;�/Q.h; �/, we have

.�; g/ 2 A ” 9� 2 „.�/; 9h 2 Y.e; �/ W g 2 Q.h; �/

” 9� 2 „.�/; 9h 2 Y.e; �/ W .g; h; �; �/ 2 B
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Therefore,A is the projection .g;h;�;�/ 7! .�;g/ ofB onto @y� �G. By Claim 4.14,B
is Borel. Also, the sections ¹.h; �/ 2 G � Chb.y�/ W h 2 Y.e; �/; � 2 „.�/º of B are finite
by Theorem 3.2 and [15, Proposition 5.2]. Therefore, by the Lusin–Novikov theorem, A
is Borel.

Claim 4.16. The set D D ¹.�; .
.0/; 
.1/; : : : ; 
.n/// 2 @y� �G<N W 
.0/ 2 Geo1.e; �/
and 
 2 CGR.
.0/; �/º is Borel in @y� �G<N .

Proof. We have .�; .
.0/; 
.1/; : : : ; 
.n/// 2 D holding true if and only if both
.�; 
.0/; .
.0/; 
.1/; : : : ; 
.n/// 2 F and .�; 
.0// 2 A. By Claim 4.15, A is Borel in
@y� �G. Also, F is Borel by Claim 4.8. Therefore, D is Borel.

Claim 4.17. For each n, the set Sn WD ¹.�; sn/ 2 @y� � .2n/n W sn D s
�
nº is Borel in

@y� � .2n/n.

Proof. We have that .�; sn/ 2 Sn if and only if sn is the <n-minimal element in .2n/n for
which the following holds:

8m 2 N; 9.
.0/; 
.1/; : : : ; 
.n// 2 GnC1 W

d.
.0/; e/ � m; .�; .
.0/; 
.1/; : : : ; 
.n/// 2 D and lab.
/jn D sn:

Note that the “only if” holds by local finiteness of Geo.e; �/. Thus, Sn is Borel by
Claim 4.16.

Now let E denote the orbit equivalence relation of the action of G on @y� .

Definition 4.18. Let Z D ¹� 2 @y� W k�n ¹1º.

Since Geo1.e; �/ is locally finite (as Geo.e; �/ is locally finite and Geo1.e; �/ �
Geo.e; �/), we have that Z is the set of all � such that there exists g� belonging to T �n for
all n, that is, for which there exists 
� 2 CGR.g�; �/ with label s� 2 .2<N/N .

Lemma 4.19. The map ˛ W .Z;EjZ/! .@y�;D/ given by � 7! g�1� � is a Borel reduction.

Proof. We argue as in [15]. First, let us show that s�n D s
g�
n for each g 2 G, each � 2 @y� ,

and each n 2 N. If there are infinitely many pairs .h; s�n/ 2 C � , then since the left action
of G on y� preserves labels of geodesics, there are infinitely many pairs .gh; s�n/, where
s
�
n D lab.
/jn for some 
 2CGR.
.0/;g�/ and where 
.0/ 2 gGeo1.e;�/DGeo1.g;g�/

(using [15, Lemma 5.10] in the last line).
By [15, Theorem 5.9], the symmetric difference between Geo1.g;g�/ and Geo1.e;g�/

is finite and so there are infinitely many pairs .gh; s�n/ 2 Geo1.e; g�/. Hence, there are
infinitely many pairs .gh; s�n/ 2 C g� . Thus, as s�n is least in the order <n that appears
infinitely often in C � , we have that s�n D s

g�
n . As s�n D s

g�
n for each n, we have s� D sg� .
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This implies that ˛ is constant on G-orbits. Indeed, suppose � D g� for some g 2 G,
�; � 2 Z. We have that ˛ maps the boundary point Œ
� � to the boundary point Œg�1

�

� �.

Note that g�1
�

� 2 CGR.e; g�1

�
�/ and lab.g�1

�

� / D s� , because 
� has label s� and

left multiplication preserves labels of geodesics. On the other hand, ˛ maps � D Œ
�� to
g�1� � D Œg�1� 
��. We have that g�1� 
� 2 CGR.e; g�1� �/ and lab.g�1� 
�/ D s� . But by
above, s� D sg� D s� . Therefore, g�1� 
� and g�1

�

� both start at e and have the same

label. Therefore, they are the same geodesic. Hence, g�1
�
� D g�1� �, that is, ˛.�/ D ˛.�/.

It follows that ˛ is reduction toD on @y� . Indeed, the above shows that �E�) ˛.�/D

˛.�/. Conversely, if ˛.�/D ˛.�/, then g�1� �D g�1
�
� , so � D g�g�1� �, and therefore �E�.

It remains to show that ˛ is Borel. To show this, let us first show that the set
U WD ¹.�; s/ 2 Z � .2N/N W s D s�º is Borel. We have s D s� if and only if .�; sjn/ 2 Sn
for each n 2 N, so ¹.�; s/ 2 Z � .2N/N W s D s�º is Borel by Claim 4.17 (note that the
map .�; s/ 7! .�; sjn/ is continuous, hence Borel, for each n 2 N).

Now the Borelness of U implies the Borelness of the graph of ˛. Indeed, note
that for � 2 Z and � 2 @y� , denoting lab W Z � C ! Z � .2N/N the continuous map
.�; 
/ 7! .�; lab.
//, we have

� D g�1� � ” 9
 2 C W 
 2 CGR.e; �/ and lab.
/ D s�

” 9
 2 C W .�; e; �/ 2 R and .�; 
/ 2 lab�1.U /:

Putting T D ¹.�; �; 
/ 2 Z � @y� �C W .�; e; 
/ 2 R and .�; 
/ 2 lab�1.U /º, we have
that T is Borel because R and U are Borel (see Claim 4.7 for the Borelness of R). By
above, the graph of ˛ is the projection proj

Z�@y�
.T / of T onto the first two coordinates

.�; �/. For each .�; �/ 2 Z � @y� , the section T.�;�/ D ¹
 2 C W .�; �; 
/ 2 T º D ¹
 2
C W 
 2 CGR.e; �/ and lab.
/ D s�º is finite, being either a singleton or the empty set
(because a geodesic ray is uniquely determined by its basepoint and label). Therefore, by
the Lusin–Novikov theorem, we have that proj

Z�@y�
.T / is Borel. Thus, the graph of ˛ is

Borel, so ˛ is Borel.

Lemma 4.20. The equivalence relation E is smooth on the saturation ŒZ�E D ¹� 2 @y� W
9� 2 Z such that �E�º.

Proof. By Lemma 4.19, E is smooth on Z, yielding the claim.

Definition 4.21. Let Y D @y� n ŒZ�E . For each n 2N, defineHn W @y�! 2G byHn.�/D
.g
�
n/
�1T

�
n . Let Fn be the equivalence relation on imHn which is the restriction of the shift

action of G on 2G to imHn.

The following lemma is a generalization of [15, Lemma 6.7].

Lemma 4.22. There exists a constantK such that for each n 2N, each equivalence class
of Fn has size at most K.
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Proof. Note that by Thereom 3.2, we have that each closed ball of radius r in Geo.x; �/
has cardinality at most .2.r C 2�/C 1/B , where B is the constant from Theorem 3.2. We
will show that we can take K D .20� C 1/B .

Let �; � 2 @y� and suppose that Hn.�/ D gHn.�/. By the proof of [15, Lemma 6.7]
(which only relies on the hyperbolicity of the Cayley graph and local finiteness of geodesic
ray bundles and so holds in our context when applied to y�), we have d.e; g/ � 8�. For
completeness, let us reproduce this proof.

By definition, T �n (resp., T �n ) is an infinite subset of Geo.e; �/ (resp., Geo.e; �/). Since
Geo.e; �/ is locally finite, this means that T �n (resp., T �n ) uniquely determines � (resp., � ).
From Hn.�/ D gHn.�/, we have .g�n/�1T

�
n D g.g

�
n/
�1T �n and since T �n and T �n deter-

mine their boundary points, this implies that .g�n/�1� D g.g�n/
�1� . Let us denote by �

the common boundary point .g�n/�1� D g.g�n/
�1� .

We have that g; e 2 .g�n/�1T
�
n D g.g

�
n/
�1T �n � Geo.g.g�n/

�1; �/, so there exists � 2
CGR.g.g�n/

�1; �/ passing through g and �0 2 CGR.g.g�n/
�1; �/ passing through e. Write

g D �.m1/ and e D �0.m2/ for some m1;m2 2 N. Note that by �-hyperbolicity, we have
d.e;�.m2//� 2�. Also, we havem2 �m1. Indeed, since g�ng

�12g�ng
�1.g

�
n/
�1T

�
n DT

�
n ,

we have

m2 D d.e; g.g
�
n/
�1/D d.e; g�ng

�1/ � d.e; g�n/D d.e; .g
�
n/
�1/D d.g; g.g�n/

�1/D m1;

where d.e; g�ng
�1/ � d.e; g�n/ holds by �-minimality of g�n in T �n .

Similarly, from g; e 2 .g
�
n/
�1T

�
n , we have g; e 2 Geo..g�n/�1; �/, and so there exists


 2 CGR..g�n/
�1; �/ passing through g and 
 0 2 CGR..g�n/

�1; �/ passing through e.
Write gD 
.m3/ and eD 
 0.m4/ for somem3;m4 2N (see Figure 3). By �-hyperbolicity,
we have d.e; 
.m4// � 2� and m4 � m3 because g�ng 2 g

�
ng.g

�
n/
�1T �n D T

�
n and so by

g

γ

γ′

λ′

λ

e

g(gn
θ)–1

(gn
η)–1

γ(m4)

γ(m5)
γ(m2)

Figure 3. The geometry of the proof of Lemma 4.22.
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the �-minimality of g�n in T �n , we have that

m3 D d..g
�
n/
�1; g/ D d.e; g�ng/ � d.e; g

�
n/ D d.e; .g

�
n/
�1/ D m4:

Let us now consider the sub-CGRs of � and 
 starting at g. Using �-hyperbolicity,
since m2 � m1, there exists m5 � m3 such that d.�.m2/; 
.m5// � 2�. Then by the
triangle inequality and our above estimates, we have

d.
.m4/; 
.m5// � d.
.m4/; e/C d.e; �.m2//C d.�.m2/; 
.m5// � 6�:

Therefore,

d.e;g/D d.e;
.m3//� d.e;
.m4//C d.
.m4/;
.m3//� 2�C d.
.m4/;
.m5//� 8�;

where we have d.
.m4/; 
.m3// � d.
.m4/; 
.m5// because m5 � m3 � m4.
Thus, Hn.�/ D gHn.�/ implies that g is in the ball of radius 8� about e in

Geo..gn� /
�1; �/, which has cardinality at most .2.8� C 2�/C 1/B D .20� C 1/B D K.

Thus, Fn-classes have cardinality at most K.

The following remaining results have the same proof as in [15].

Lemma 4.23. Let n 2 N. Then the map Hn is Borel and so imHn is analytic.

Proof. The sets ¹.�; g�n/ 2 @y� � Gº; ¹.�; T
�
n / 2 @y� � 2

Gº, and GHn D ¹.�; Hn.�// W
@y� � 2Gº are all definable using formulas with countable quantifiers and references to
the Borel sets D and Sn (see Claims 4.16 and 4.17), so these sets are all Borel. As GHn is
the graph of Hn, it is Borel, so Hn is Borel and hence imHn is analytic.

Using [15, Lemma 2.3], there exists a finite Borel equivalence relation F 0n on 2G with
Fn � F

0
n. Since F 0n is finite, Borel, there exists a Borel reduction fn W 2G ! 2N from F 0n

to E0 for each n 2 N, using which we define f W @y� ! .2N/N by f .�/D .fn.Hn.�///n.
Put E 0 D f �1.E1/, that is, �E 0�, f .�/E1f .�/.

Lemma 4.24. The equivalence relation E 0 is a hyperfinite countable Borel equivalence
relation.

Proof. Since Hn is Borel, we have that E 0 is Borel. We also have that E 0 is hypersmooth
by definition, and so it is hyperfinite by [9, Theorem 8.1.5]. We follow the same proof as
the proof of [15, Lemma 6.9], to show that E 0 is countable.

For each n 2 N, define the relation E 0n on @y� by �E 0n� if fm.Hm.�// D fm.Hm.�//
for all m � n. Each E 0n is countable because if �E 0n� , then fn.Hn.�// D fn.Hn.�//, and
fn ı Hn is countable-to-one since Hn is countable-to-one because if Hn.�/ D Hn.�/,
then �E� andE is countable, and fn is finite-to-one since F 0n is finite. Therefore, there are
only countably many choices for � such that �E 0n� once � is fixed. Thus, E 0n is countable.
Noting that E 0 D

S
n2N E

0
n, we obtain that E 0 is countable.



Hyperfiniteness of boundary actions of relatively hyperbolic groups 17

Lemma 4.25. The map f is a homomorphism from EjY to E1.

Proof. Suppose �; � 2 Y are E-related, as witnessed by g 2 G (so g� D � ). By [15,
Theorem 5.9 and Lemma 3.10], we have that g Geo1.e; �/ and Geo1.e; �/ differ by a
finite set. By local finiteness of Geo.e; �/ and since �; � 2 Y , we have that there exists
N 2 N such that gT �n � Geo1.e; �/ for all n � N . By the proof of Lemma 4.19, we
have s�n D s�n , which gives, together with gT

�
n � Geo1.e; �/, that gT �n D T �n . This

then yields .g�n/
�1gg

�
nH

�
n D H

�
n for all n � N . Thus, we have Hn.�/FnHn.�/ and so

Hn.�/F
0
nHn.�/ for all n � N since Fn � F 0n. Therefore, fn.Hn.�//D fn.Hn.�// for all

n � N and so f .�/E1f .�/.

Let us now establish Theorem A on the hyperfiniteness of E, following the proof
of [15, Theorem A].

Proof of Theorem A. Note that EjY is a subrelation of E 0. Indeed, if �; � 2 Y , and �E�,
then by Lemma 4.25, we have that f .�/E1f .�/, which implies �E 0�. By Lemma 4.24,
we have that E 0 is hyperfinite, so EjY is hyperfinite, since a subrelation of a hyperfinite
equivalence relation is hyperfinite. On @y� n Y D ŒZ�E , E is smooth by Lemma 4.20, and
hence hyperfinite. Therefore, E is hyperfinite on @y� .

Recall that we worked with a fixed a finite generating set X in this section. If we use
a different finite generating set X 0 for G, then the relative Cayley graph y� 0 corresponding
to X 0 is G-equivariantly quasi-isometric to y� (via the identity map on G), so @y� 0 is G-
equivariantly homeomorphic to @y� . It follows that the orbit equivalence relation of G on
@y� 0 is also hyperfinite.

As a corollary, we obtain Corollary B on the hyperfiniteness of the action of G on
@.G;P /, where P is the collection of parabolic subgroups.

Proof of Corollary B. By Theorem 2.1, @y� embeds G-equivariantly and topologically
into @.G;P / with countable complement. Therefore, the orbit equivalence relation of G
on @y� is a subrelation of the orbit equivalence relation of G on @.G;P /. Since the orbit
equivalence relation of G on @y� is hyperfinite (by Theorem A) and since @.G;P / n @y�
is countable, it follows that the orbit equivalence relation of G on @.G; P / is also
hyperfinite.
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