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Introduction by the Organizers

The Arbeitsgemeinschaft Cluster Algebras, organised by Roger Casals, Bernhard
Keller and LaurenWilliams, attracted excellent researchers of various backgrounds
from all over the world, including many graduate students and postdocs. It was
organized with 48 on-site and 12 online participants. As usual for an Arbeitsge-
meinschaft, the organisers had provided a detailed program and had distributed
the talks to the participants. We had a total of 16 talks of one hour each with
ample time for discussion and additional sessions for recaps, questions and an-
swers, discussions and software demonstrations from eight to ten in the evenings.
On Wednesday afternoon, we made an excursion to St. Roman and on Thursday
evening, Andreas Thom moderated the discussion and vote on the next Arbeits-
gemeinschaft in this series.
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In this Arbeitsgemeinschaft, we focused on three main subjects:

A. the basic theory of cluster algebras (5 talks)
B. the most important classical examples of cluster structures on varieties (5

talks) and
C. the recent interaction between cluster algebras and symplectic topology

and its application to the construction of cluster structures on braid vari-
eties (6 talks).

The talks in part A were devoted to the definition and first examples of cluster
algebras, the classification of the cluster-finite cluster algebras (parametrized by
the finite root systems), the basic techniques for constructing cluster structures
on (homogeneous) coordinate algebras of varieties with the example of the Grass-
mannian, additional notions and results on cluster combinatorics and the family
of cluster algebras constructed from marked surfaces.

Part B started with a talk on more advanced techniques for constructing cluster
structures on varieties followed by talks on the combinatorics of plabic graphs and
the associated positroid cells, on webs and the cluster structure on the Grassman-
nian of 3-dimensional subspaces, on double Bruhat cells and generalizations and
finally on Fock–Goncharov’s cluster ensembles, which provide a more symmetric,
geometric framework for the whole theory.

Part C focused on developments in symplectic geometry that have either used
cluster algebras or been used to study them. In particular, this last series of
lectures aimed at developing the intuitions and techniques from symplectic ge-
ometry (following Casals, Weng, Pascaleff–Tonkonog, Gao–Shen–Weng, . . . ) and
the microlocal theory of sheaves (Kashiwara–Schapira, . . . ) to complement the
more algebraic and combinatorial methods often used to study cluster algebras.
On the one hand, these lectures explained new results in the study of Lagrangian
surfaces, including the detection of infinitely many Lagrangian fillings, via tech-
niques from cluster algebras (after Casals–Gao and Casals–Weng). On the other,
the combinatorics of weaves were also presented from their original symplectic
geometric viewpoint and then applied to prove new results in the study of cluster
algebras. To wit, the lectures showed that the coordinate rings of braid varieties,
which arise as certain moduli of Lagrangian fillings and generalize Richardson
varieties, are indeed cluster algebras (after Casals–Gorsky–Gorsky–Simental and
Casals–Gorsky–Gorsky–Le–Shen–Simental). For lack of time, we did not cover the
alternative, more combinatorial construction of such cluster structures on braid
varieties due to Galashin–Lam–Sherman-Bennett–Speyer.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

A1–Introduction to cluster algebras : Definition and first examples

Théo Pinet

The principal references for this note are the pioneering work of Fomin–Zelevinsky
[1, 3], their book [4] and Keller’s paper [5]. The main goal of the note is to introduce
the notion of cluster algebra associated to a valued/ice quiver and to illustrate this
notion on examples, with in particular the example of the homogeneous coordinate
algebra of the Grassmannian of planes in (n+3)-dimensional space. Informally, the
cluster algebra associated to a quiver Q with n vertices is a subalgebra of the field

of rational functions F = Q(x1, . . . , xn) whose generators, the cluster variables,
are grouped in clusters of size n and are constructed recursively, starting from the
initial seed (Q, (x1, . . . , xn)), using mutations. Let us now make this more precise.

Given a good quiver Q = (Q0, Q1, s, t) (i.e. a finite directed graph with no loops
or 2-cycles) and a vertex k ∈ Q0, we define another good quiver µk(Q) from Q by

(1) adding an arrow i→ j for all paths of the form i→ k → j in Q,

(2) inverting all arrows of the form i→ k and k → j in Q, and

(3) removing all 2-cycles created from steps (1) and (2).

The good quiver µk(Q) is called the mutation of Q at k. Note that µk(µk(Q)) = Q.
For example, mutating the Markov quiver QM below at vertex 1, gives us a quiver
isomorphic to QM . We thus say that the mutation class of QM is {QM}.

QM =
2 3

1
µ1

2 3

1

≃ QM

Figure 1. Example of quiver mutation with the Markov quiver QM .

Fix n ∈ Z≥0. A seed is a pair (Q, u) with Q a good quiver having n vertices and
with u = (u1, . . . , un) ∈ Fn a sequence satisfying F = Q(u1, . . . , un). Starting from
a seed (Q, u) and a vertex k ∈ Q0, the mutated seed µk(Q, u) in direction k is

µk(Q, u) = (µk(Q), u′)

where u′ = (u1, . . . , uk−1, u
′
k, uk+1, . . . , un) with u′

k given by the exchange relation

(1) uku
′
k =

∏

α∈Q1

t(α)=k

us(α) +
∏

α∈Q1

s(α)=k

ut(α).

Fix now a good quiver Q with n vertices. A cluster associated to Q is a sequence
u′ ∈ Fn occuring in a seed (Q′, u′) that is linked to the initial seed (Q, (x1, . . . , xn))
by a finite sequence of mutations. We call cluster variables the components of the
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clusters associated to Q and define the cluster algebra AQ corresponding to Q as
the subalgebra of F generated by all cluster variables. In other words,

AQ = Q[cluster variables associated to Q] ⊆ F.

Most cluster algebras, like the one associated to the Markov quiver, have infinitely
many cluster variables. These algebras can thus be quite hard to describe explicitly.
However, their complexity is somewhat limited by the theorem below, which is one
of the most remarkable results proven during the early study of cluster algebras.

Theorem 1 (Laurent phenomenon, [1, 2]). Fix u′ = (u′
1, . . . , u

′
n) a cluster of AQ.

Then, the cluster variables of AQ all live inside the ring Z[(u′
1)

±1, . . . , (u′
n)

±1].

In particular, the cluster algebra AQ is contained in the algebra Q⊗ZUQ where

UQ =
⋂

u′=(u′

1
,...,u′

n)
cluster of AQ

Z[(u′
1)

±1, . . . , (u′
n)

±1]

is the upper cluster algebra corresponding to Q. Note nevertheless that AQ 6= UQ
in general since, for Q = QM the Markov quiver, the Laurent polynomial

f(x1, x2, x3) =
x2
1 + x2

2 + x2
3

x1x2x3

belongs to UQ, but not to AQ (see e.g. [4]).
Now, let us add frozen nodes {n+1, . . . ,m} (with m ≥ n) to our good quiver Q

in order to obtain an iced quiver of type (n,m). These frozen vertices can connect
to the original (i.e. unfrozen) vertices of our quiver Q in any way that do not create
2-cycles, but cannot be connected to another frozen vertex. Here is an example:

2 3

14 5

Figure 2. Example of iced quiver with 2 frozen nodes (indicated
with a box) and an unfrozen part equal to the Markov quiver.

Given an iced quiver Q, we can define a cluster algebra AQ exactly as above from
the initial seed (Q, (x1, . . . , xm)) by mutating at unfrozen vertices {1, . . . , n} (and
at these vertices only). In this situation, the variables xn+1, . . . , xm belong to all
clusters of AQ and are called coefficients (instead of cluster variables). This slight
generalization allows us to state the result below, again due to Fomin–Zelevinsky.

Theorem 2 ([2]). Let X be a rational quasi-affine irreducible m-dimensional com-
plex variety such that dimX = m. Fix moreover Q an iced quiver of type (n,m).
Suppose given functions ϕv and ϕxi

in the coordinate ring C[X ] for all choices of
cluster variables v of AQ and all n < i ≤ m. Suppose also that

(i) these functions altogether generate the coordinate ring C[X ] and that
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(ii) the map sending a cluster variable or a coefficient to the associated function
sends exchange relations in AQ to equalities in C[X ].

Then, the latter map extends to an algebra isomorphism C⊗Q AQ ≃ C[X ].

When the conditions in the above theorem are satisfied, we say that the coordi-
nate ring C[X ] carries a cluster structure of type Q with initial seed {ϕxi

}mi=1. For
an example of such a situation, fix m = n+3 with n ≥ 1 and denote by A the alge-
bra of polynomial functions on the cone over the Grassmannian Gr2,m(C) of planes
in Cm. Then, A is generated by the Plücker coordinates xij (with 1 ≤ i < j ≤ m)
which are subject to the Plücker relations

(2) xikxjℓ = xijxkℓ + xiℓxjk

whenever 1 ≤ i < j < k < ℓ ≤ m. Let now P be am-gon with a fixed triangulation
T . Then a well-known procedure (see e.g. [2, 4]) produces an iced quiver Q of type
(n,m) from P and T . Here is an example with m = 6:

1

2

3

4

5

6

16

56

45

15

35

13

34

12

23

Figure 3. Iced quiver Q associated to hexagon P with triangu-
lation T . Sides of P (diagonals of T ) give frozen (resp. unfrozen)
nodes, while arrows are obtained by turning in a counter-clockwise
manner inside the triangles bounded by T (see e.g. [4]).

Theorem 3 ([2, 4]). The algebra A carries a cluster structure with type the iced
quiver Q above and with cluster variables (coefficients) the Plücker coordinates xij

associated to diagonals (resp. sides) of P . Also, the clusters of A are the n-tuples
of diagonals of P forming a triangulation and the exchange relations for the cluster
algebra A (see (1)) are exactly the Plücker relations (2).

Let us at last finish this note by recalling that iced quivers of type (n,m) are in
bijection with integral m× n matrices with skew-symmetric n× n top submatrix.
Using this bijection, we can define the notion of matrix mutation which can in turn
be generalized to the setting of integralm×n matrices having skew-symmetrizable
n× n top submatrix. This then leads to mutation for valued iced quivers [4, 5].
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A2–Classification of cluster-finite cluster algebras

Kaveh Mousavand

This talk was a summary of the seminal work of Fomin and Zelevinsky [1] on
the classification of those cluster algebras which admit only finitely many clusters.
Such algebras are traditionally called of “finite type”, and they are treated up to
a suitable notion of isomorphism for cluster algebras. Before we recall the main
ingredients and state the results, let us remark that there are other notions of
finiteness in the study of cluster algebras (e.g. finite mutation type, or finitely
generated cluster algebras, etc.) that are different from the problem considered
in the talk. Also, we observe that in some textbooks, a commutative algebra
is said to be of finite type if it is a quotient of a polynomial algebra in finitely
many indeterminates. Unfortunately, this notion is different from the finiteness
phenomenon treated in [1]. That is, there are examples of cluster algebras which
are finite type as commutative algebras, but they admit infinitely many clusters
(For instance, the coordinate algebras of maximal unipotent subgroups in [5], or
any finitely generated cluster algebra with infinitely many clusters.). To avoid
any confusion caused by the discrepancy in terminology, henceforth we adopt a
less ambiguous term proposed by Benrhard Keller– one of the organizers of this
Arbeitsgemeinschaft– and say that a cluster algebra is cluster-finite if it admits
only finitely many clusters.

1. Notations, main ingredients and background

Here we only recall some standard terminology and notations that allow us to
articulate the main problem and results. For detailed study of root systems, we
refer to [4]. Moreover, all the required materials from cluster algebras that are
used below can be found in [1].

Throughout, let Φ denote a finite irreducible crystallographic root system in the
Euclidean space Rn. It is known that, up to isometry and simultaneous rescaling
of the vectors, Φ is uniquely determined by its Cartan matrix CΦ, to which one
can associate a unique Dynking graph. In particular, the Dynkin graphs of all
finite irreducible crystallographic root systems are often denoted by An (n ≥ 1),
Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8, F4, or G2 (for details, see
[2] and [4]). For Φ, and a fixed simple system ∆ in Φ, by Φ+ we denote the
set of positive roots. Furthermore, the set of almost positive roots is defined as
Φ≥−1 := Φ+ ∪−∆, where −∆ := {−α|α ∈ ∆}.

Now, we briefly recall the main ingredients of the most general construction of
cluster algebras, as in [1]. Let P be a semifield, and by F denote the field of rational
functions in n indeterminates with cooeficients in ZP. This will be the ambient
field containing the cluster algebra A of rank n, described below. Every seed in
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F is a triple Σ = (x, p,B), where x is called a cluster, consisting of n elements in
F . These elements are known as the cluster variables and form a free generating
set for a field extension over the field of fractions of ZP in F . Moreover, the
coefficient p = (p±x )x∈x is a 2-tuple of elements in P satisfying the normalization

condition p+x ⊕ p−x = 1. Here, ⊕ denotes the auxiliary addition in the semifield
P. Finally, B = (bxy)x,y∈x denotes a sign-skew-symmetric matrix whose rows and
columns are indexed by the cluster variables in x. Namely, for all x, y ∈ x, either
bxy = byx = 0, or else bxybyx < 0. Through the explicit formulas in section 1 of [1],
one can mutate the seed Σ = (x, p,B) in all n directions, that is, to simultaneously
mutate the cluster x, the coefficient p, as well as the matrix B.

Starting from an initial seed Σ, perform all possible mutations on Σ, and then
iterate this procedure at every output obtained in each step. This iteration may
terminate after only finitely many steps, that is, we get no new seeds after a finite
number of mutations, or else one can mutate and produce infinitely many different
seeds. Let S denote the set of all seeds in F obtained via all possible iterations of
mutations starting from Σ. By X and P , respectively denote the set of all cluster
variables and the set of all coefficients in the seeds belonging to S. Let Z[P ] denote
the subring of F generated by P . Then, the normalized cluster algebra A is the
Z[P ]-subalgebra of F generated by X . As shown in [1], A can be studied up to
strong isomorphism of cluster algebras. More precisely, over a fixed semifield P, if
F and F ′ are two ambient fields as above, and A ⊂ F and A′ ⊂ F ′ are two cluster
algebras, then A and A′ are strongly isomorphic if there exists a Z[P ]-algebra
isomorphism between F and F ′ which additionally transports any seed in F to F ′.
Such an isomorphism induces an algebra isomorphism between A and A′ which
preserves the cluster structure. We remark that, even over a fixed semifield, an
arbitrary Z[P ]-algebra isomorphism between two cluster algebras is not necessarily
a strong isomorphism. In fact, there exist Z[P ]-algebras which admit two different
cluster structures that are not strongly isomorphic (for explicit examples, see [3]).

2. Main results

Before we state the first theorem, let us recall that for an arbitrary n× n integer
square matrix B = (bij), the Cartan counterpart of B, which we denote by CB =
(cij), is defined by putting cij := 2, if i = j, and cij := −|bij|, otherwise. Observe
that CB is not necessarily a Cartan matrix, but it is a generalized Cartan matrix.
Now, we are ready to state the first main result. Throughout, we use the notations
and terminology introduced above.

Theorem 1. Fomin-Zelevinsky [1]: Let Σ = (x, p,B) be a seed in F such that
bxybxz ≥ 0, for all x, y and z in x. If the Cartan counterpart of B is the Cartan
matrix CΦ of a finite root system Φ, then A is cluster-finite. Conversely, up to
strong isomorphism, every cluster-finite cluster algebra is of the above form, that
is, it admits a seed with the aforementioned properties.

By the preceding theorem, if the cluster algebra A of rank n is cluster-finite, a
unique finite root system Φ in Rn is associated to A. Consequently, A is called
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of type Φ, and has the corresponding Dynkin graph with n vertices. For a more
detailed treatment of cluster-finite cluster algebras from this viewpoint, see [2].

The second main result is the following theorem which gives equivalent charac-
terizations of cluster-finite cluster algebras, and further describes the connection
between their cluster variables and certain roots in the corresponding root system.

Theorem 2. Fomin-Zelevinsky [1]: For any cluster algebra A, the following are
equivalent:

(1) A is cluster-finite;
(2) A admits finitely many cluster variables, that is, X is a finite set;
(3) In every seed Σ = (x, p,B) in S, we have |bxybyx| ≤ 3, for all x, y ∈ x.

That being the case, let Φ be the root system of A and x0 = (x1, · · · , xn) the
initial cluster. Then, there is a unique bijection between the almost positive roots
in Φ and the cluster variables in X , expressed in terms of x0. More precisely, if
∆ = {α1, · · · , αn} is a simple system in Φ, for each α ∈ Φ≥−1, the corresponding

cluster variable is x[α] =
Pα(x

0
)

xα , where Pα(x0) is a polynomial over ZP in terms of
cluster variables in x0 and has a non-zero constant term, and xα is the monomial
defined as xα = xc1

1 · · ·x
cn
n , where α = c1α1+· · ·+cnαn. In particular, x[−αi] = xi.

We end with some remarks on the above theorem and the more recent results on
the cluster-finite cluster algebras obtained after their original treatment in [1].

First, observe that the implication (1) → (2) in the preceding theorem follows
from the definition, but the converse is far from trivial. In particular, a finite set
of cluster variables could a priori appear in infinitely many clusters that belong to
different seeds in S. However, the above theorem says this never happens. Second,
note that part (3) gives an explicit condition in terms of entries of the matrices
of each seed. However, we remark that one should verify this condition for all
seeds in S to conclude that A is cluster-finite. In fact, there are cluster algebras
which are not cluster-finite, but they admit a seed which satisfies condition (3).
Third, with regard to the correspondence between the almost positive roots and
the cluster variables of cluster-finite cluster algebras, we remark that an elegant
construction is given by Keller [7], where one can begin from the initial cluster
variables and through a concrete knitting algorithm recover the aforementioned
bijection between the almost positive roots and all cluster variables. Finally, we
note that some other conceptual characterizations of cluster-finite cluster algebras
have been achieved after their first appearance in [1]. In particular, in [6] it is
shown that a cluster algebra A is cluster-finite if and only if the set of cluster
monomials forms an additive basis for A.
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A3–The cluster structure of the Grassmannian coordinate algebra

Liana Heuberger

One of the first examples where a coordinate ring admits a cluster algebra structure
in a non-trivial way arises in the case of the affine cone over the Grassmannian.
During the proof of this result, we encounter a fundamental tool in cluster algebra
theory: the celebrated starfish lemma. This talk showcases the power of the lemma
by applying it to a familiar, yet nontrivial context.

The Grassmannian of a-subspaces of a b-dimensional C-vector space is one of
the first projective varieties one encounters in geometry beyond projective spaces
themselves. Its homogeneous coordinate ring, also known as the Plücker ring has
been extensively studied and is known to be generated by Plücker coordinates. Ex-
pressing this ring in terms of SLa(C)-invariant polynomials allows us to understand
the Plücker coordinates as a× a minors of an a× b matrix.

There exist two known constructions of the cluster algebra structure of this
ring, the first of which appeared in the work of Scott [1]. Scott chooses a seed
whose cluster variables are themselves Plücker coordinates, and such that the one-
step mutation at each variable yields a cluster variable which is again a Plücker
coordinate. The combinatorial setup of this method, involving alternating strand
diagrams, is less self-contained than that of the alternative construction of Fomin,
Williams and Zelevinsky [2], whose proof we chose to present throughout this talk.

The seed chosen in [2] is formed of distinguished Plücker coordinates whose
respective Young tableaux are rectangles. More precisely, one can associate a
Plücker coordinate to any sub-rectangle of an a × (b − a) rectangle in a unique
way, and we choose this set of coordinates as the seed of our cluster algebra. The
frozen variables correspond to those coordinates with consecutive indices, while
the remainder are cluster variables.

The proof involves a double inclusion: one has to prove that each mutation
of this distinguished seed remains in the Plücker ring (as opposed to its fraction
field), and conversely that every Plücker coordinate is generated by a subsequent
mutation.

The first implication relies on the starfish lemma, which roughly guarantees
that if one starts from a polynomial seed whose one-step mutations produce poly-
nomial cluster variables, then the same holds for all subsequent mutations. For
this distinguished seed, we no longer obtain Plücker coordinates after one-step mu-
tations, yet we are still able to control the behaviour of the new cluster variables:
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this achieved by combining well-known Plücker relations between the variables of
the distinguished seed, and the exchange relations of the mutations. We show that
the one-step cluster variables are indeed polynomial, thereby concluding the first
half of the proof.

For the second implication, Fomin, Williams and Zelevinsky have an inductive
approach via the Muir embedding. More specifically, one can embed rectangular
quivers of smaller size inside a fixed rectangular quiver and use the inductive
hypothesis to obtain some (but not all) Plücker coordinates. They then use cyclic
shifts, shown to be mutations of the distinguished seed, to obtain the outstanding
coordinates and the proof concludes.
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C1–Introduction to Lagrangian fillings

Yu Pan

Symplectic and contact geometry, rooted from classical mechanics, has experienced
a rapid development in the last forty years. It mainly concerns manifolds with ad-
ditional geometrical structures called symplectic and contact manifolds and special
knots and surfaces in them called Legendrian knots and exact Lagrangian fillings.

A symplectic manifold is an even dimensional manifold with a non-degenerate
closed 2-form. An example is the cotangent space R4 = T ∗R2, ω = dp1 ∧ dq1 +
dp2 ∧ dq2. Note that this symplectic manifold is also exact, i.e., ω = dλ (in the
example λ = −q1dp1 − q2dp2). An odd dimensional counterpart is called contact
manifold, which is an odd dimensional manifold with a contact structure given by
the kernel of a 1-form α such that α ∧ dαn 6= 0. An example of a 3-dimensional
contact manifold is R3

std = (R3, ker α) where α = dz − ydx. Darboux theorem
shows that every symplectic (contact) manifold locally are the same. Therefore it
is more interesting to explore the global geometrical (i.e., topological) properties
of symplectic/contact manifolds.

For similar reason as the one for knots and surfaces being essential in low di-
mensional topology, it is also important to consider special knots and surfaces in
contact and symplectic manifolds that cooperate well with the additional geomet-
rical structures. These knots and surfaces are called Legendrian knots and exact
Lagrangian surfaces.

In particular, a Legendrian knot Λ ∈ R3
std in (R3, ker α) is a knot in R3 such

that α vanishes on it. An important way to visualize it is through front projection
ΠF : R3 → R2

xz. Note that we do not loose information in the front projection
of a Legendrian knot Λ since the y-coordinate can be recovered through y = dz

dx

(since the 1-form α vanishes on Λ). One can see the example of front projections
of an unknot and a trefoil in Figure 1. As a generalization of the trefoil, the (−1)
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closure of a positive braid β is sketched in the Figure 1 (c). This will be the main
example of Legendrian links we will focus on in the latter C-lectures.

Figure 1. Front projections of unknot (a), trefoil (b) and (−1)-
closure of positive braid β (c).

An exact Lagrangian filling L of Λ ∈ R3
std in (R4, ω = dλ) is an embedded

surface L bounded by Λ such that λ|TL is exact. The exact Lagrangian condition
imposes strong rigidity on exact Lagrangian fillings. One evidence is that once a
Legendrian knot has an exact Lagrangian filling, then the genus of the filling is
fixed (differently compared with topological fillings, in which case the genus can
increase freely), which is the 4-ball genus of the knot.

An essential question in symplectic geometry is that given a Legendrian knot
in R3

std, how many exact Lagrangian fillings does it have in R4. Currently, the
only known case is the maximum Thurston-Bennequin number (max-tb) unknot.
By Eliashberg and Polterovich, the max-tb unknot has a unique exact Lagrangian
filling. Note that the max tb condition is a necessary condition for a Legendrian
to bound an exact Lagrangian filling. For the next easiest example, which is the
Legendrian max-tb trefoil, which is also the (−1)-closure of a positive (2, 5) braid,
we introduce a way to build exact Lagrangian fillings of it through concatenating
elementary blocks together. The construction gives 5 exact Lagrangian fillings that
are smoothly isotopic but are not Hamiltonian isotopic. This will match with the
A2 cluster structure will introduce in latter lectures for the positive (2, 3) braid.

As to other Legendrians, Casals and Gao in 2020 showed that (−1) closure of
positive (m,n+m) braids (which is a topological (m,n)-torus link), for n ≥ 3,m ≥
6 or (m,n) = (4.4), (4, 5), (5, 5), all have infinitely many exact Lagrangian fillings.
This is essentially because of the fact that the positive (m,n) braid correspond to
some cluster algebra of infinite type.

The goal of the C-lectures is to build connection of “the space of exact La-
grangian fillings of the Legendrian (−1)-closure of a positive braid β” with a
cluster algebra so that we can use the cluster algebra structure to understand
the geometrical space better. In particular, each exact Lagrangian filling has an
L-compressing disk system that corresponds to a quiver. The Lagrangian surgery
operation that changes one exact Lagrangian filling to another corresponds to a
mutation.
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A4–More Cluster Combinatorics: g-vectors, c-vectors, F -polynomials

Merik Niemeyer

The goal of this talk was to deepen our understanding of cluster combinatorics
by introducing c- and g-vectors, as well as F -polynomials. These come from a
certain choice for the frozen part of the quiver, but contain enough information
to reconstruct both the cluster variables and the y-variables of any cluster algebra
associated to an ice quiver with the same mutable part. Moreover, we looked at
some tropical dualities due to Nakanishi-Zelevinsky, which establish remarkable
connections between c- and g-vectors. The talk largely followed Keller’s survey
paper [3].

1. Preparation

In the previous talks we have seen quivers and their corresponding exchange matri-
ces, as well as ice quivers, which contain some frozen nodes, and can be described
by extended exchange matrices. If the cluster variables of the initial seed are
x1, ..., xn, and the frozen variables are xn+1, . . . , xm, every cluster variable will be
a Laurent polynomial in x1, . . . , xn with coefficients in Z[xn+1, . . . , xm]. In order
to phrase some of the results in the language of our reference material, let us
slightly change perspective and set

yj =

m∏

i=n+1

x
bij
i ∈ Trop(xn+1, . . . , xm) ,

for 1 ≤ j ≤ n, where Trop(xn+1, . . . , xm) denotes a certain tropical semifield.
These y-variables follow a ’tropical’ mutation rule and capture how the frozen
nodes are attached to the mutable nodes of the quiver. Therefore instead of keeping
track of the extended exchange matrix and the cluster variables as we mutate, we
can take the (principal part of the) exchange matrix, the cluster variables and the
y-variables. This data constitutes a seed. Now, pick a vertex t0 of the labeled
n-regular tree Tn, assign the initial seed to it, and then assign the seed mutated
according to the edge labelling to the neighbouring vertices. Inductively, we obtain
the seed pattern.

2. c-vectors, g-vectors and F -polynomials

2.1. Definitions. Let Q be a quiver (without frozen nodes), with nodes labelled
1, ..., n. We first add frozen nodes in a particular way:

Definition 1. The principal extension Qpr of Q is the quiver obtained from Q by
adding nodes i′ for 1 ≤ i ≤ n and arrows i′ → i.
The cluster algebra with principal coefficients associated to Q is the cluster algebra
associated to Qpr.
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Let B be the exchange matrix of Q, then the extended exchange matrix of Qpr

is given by

B̃ =

(
B
Idn

)
.

This mutates according to the rules of matrix mutation, and thus we assign a
matrix B̃(t) to every vertex t ∈ Tn, which has the form

B̃(t) =

(
B(t)
C(t)

)
.

Definition 2. The matrix C(t) is the matrix of c-vectors, its columns are the
c-vectors cj(t), 1 ≤ j ≤ n.

Theorem 3. Every c-vector is non-zero and its entries are either all non-negative
or all non-positive.

This appeared implicitly as a conjecture in [1] and was proved in full generality
in [2].

Next, we define F -polynomials: Recall again, that every cluster variable xj(t),
for 1 ≤ j ≤ n and t ∈ Tn, is a Laurent polynomial in the initial cluster variables,
with coefficients in Z[x′

1, ..., x
′
n], where x′

i denotes the (frozen) variable associated
to the node i′.

Definition 4. Let 1 ≤ j ≤ n and t ∈ Tn. The F -polynomial Fj(t) ∈ Z[x′
1, ..., x

′
n]

is obtained by specializing xj(t) to x1 = ... = xn = 1.

In the original paper [1], Fomin and Zelevinsky prove that any F -polynomial is
a ratio of two polynomials with positive integer coefficients, which implies that it
can be evaluated in any semifield (we now know that every F -polynomial is in fact
a polynomial with positive integer coefficients [2]). Moreover, they conjectured
the following theorem, which is equivalent to the sign property of c-vectors given
above.

Theorem 5. Every F -polynomial has constant term 1.

The final object we need to introduce are the g-vectors, which we obtain by
endowing the Laurent ring Z[x±1

1 , ..., x±1
n , x′

1, ..., x
′
n] with the following Zn-grading:

deg(xi) = ei,

deg(x′
i) = −Bei,

for 1 ≤ i ≤ n, where ei denotes the i-th standard vector. Fomin and Zelevinsky
proved that any cluster variable xj(t) is homogeneous with respect to this grading,
allowing us to define:

Definition 6. Let t ∈ Tn, 1 ≤ j ≤ n. The g-vector gj(t) is defined as

gj(t) = deg(xj(t)) .

The g-vectors are the columns of the matrix of g-vectors, denoted G(t).
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Again, we have a theorem which is equivalent to the two we gave previously:

Theorem 7. The g-vectors are sign-coherent, meaning that for any t ∈ Tn every
row of the matrix G(t) is non-zero and either has only non-negative or only non-
positive entries.

As we had seen in previous talks, the cluster variables and entries of the ex-
change matrix are obtained recursively from the initial data via mutation. Conse-
quently, one can deduce recursive formulas for all the above objects, and we gave
an idea of how to do that.

2.2. Separation formulas. With all of this in place, we can reobtain both cluster
and y-variables. These formulas are due to Fomin-Zelevinsky [1].

Theorem 8. Let t ∈ Tn, P any (coefficient) semifield, and F = Q(P)(x1, . . . , xn)
the ambient field.

(a) yj(t) = y
c1j(t)
1 · · · y

cnj(t)
n

∏n
i=1 Fi(t)|P(y1, . . . , yn)

bij(t),

(b) xj(t) = x
g1j(t)
1 · · ·x

gnj(t)
n

Fj(t)|F (ŷ1,...,ŷn)
Fj(t)|P(y1,...,yn)

, where ŷj = yj
∏n

i=1 x
bij
i .

Let us stress that this allows us to compute the cluster variables and coefficients
for any cluster algebra just using the data obtained from the corresponding cluster
algebra with principal coefficients.

3. Tropical dualities

Finally, we saw some tropical dualities, due to Nakanishi and Zelevinsky [4], which
relate c- and g-vectors in various ways. To state these, we need to upgrade our
notation slightly. We write C(B, t0, t) for the matrix of c-vectors obtained by
starting with the exchange matrix B at t0 ∈ Tn and mutating to t, and analogously
for the matrix of g-vectors.

Theorem 9. Let B be a skew-symmetrizable exchange matrix, t0, t ∈ Tn. Then:

(a) G(B, t0, t)
T = C(−BT , t0, t)

−1,
(b) C(B, t0, t) = C(−B(t), t, t0)

−1,
(c) G(B, t0, t) = G(−B(t), t, t0)

−1.

The c-vectors appearing in formula (a) belong to the Langlands-dual quiver
which is obtained by replacing the exchange matrix B with −BT .

In the last five minutes of the talk, we defined the notion of maximal green
and reddening mutation sequences, notions which were further discussed in the
evening session.
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A5–Cluster algebras from surfaces

Kayla Wright

Endowing mathematical objects with a cluster structure boomed after the axiom-
atization of cluster algebras by Fomin and Zelevnisky in the early 2000’s. In this
talk, we will explain how to endow a topological marked surface (S,M) with a clus-
ter structure. Namely, we take a Riemannian orientable surface S with nonempty
boundary and a finite set of marked points M on the boundary of S such that
each boundary component contains at least one marked point. We triangulate
(S,M) by drawing arcs between the marked points so that they are maximally
non-crossing up to isotopy relative to the boundary. For example, if we take S
to be a hexagon and M to be its 6 vertices, we triangulate S by drawing three
non-crossing diagonals.

With this topological set up, we see beautiful bijections between arcs and clus-
ter variables, triangulations and clusters, and skein relations and cluster muta-
tion. This story can be further enhanced when incorporating the geometry of
Teichmüller theory. Namely, if we look at the space of certain hyperbolic metrics
on (S,M) and properly define lengths of geodesics on the surface, we are able to see
a cluster structure on Teichmüller space, denoted T (S,M). More specifically, if we
fix a metric in Teichmüller space and a choice of small circle around each marked
point m ∈M , we can define the length of a geodesic between marked points m,m′

on (S,M) as the signed distance between the circles around m and m′. These
small circles are called horocycles and the choice of horocycle at each marked

point gives the data of decorated ˜T (S,M). We coordinatize this decorated ver-
sion of Teichmüller space with Penner coordinates, also known as λ-lengths, which
are an exponential version of the above defined length. These λ-lengths satisfy
Ptolemy’s Theorem which is the geometric version of the skein relations from the
topological set-up. Altogether, this means that decorated Teichmüller space has
a cluster structure, wheres cluster variables are in bijection with geodesics and
cluster mutation is given by this hyperbolic version of Ptolemy’s Theorem.

C2–Fronts and Lagrangian fillings of Legendrian links

Agniva Roy

The references for this talk are Section 4 of [1], and Sections 2 and 7 of [2].

1. Demazure weave fillings of positive braid closures

Definition 1 (Demazure Product). Given a positive braid word β, the Demazure
product of β, denoted δ(β), is the braid that corresponds to quotienting out the
braid word using the relations σ2

i = σi, and also braid relations.
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Figure 1. The figure is courtesy of the authors of [1].

Example. Given the word σ2
1σ

2
2 representing a 3-stranded braid, the Demazure

product is the braid σ1σ2.

In this section we describe an algebraic procedure that takes as input a positive
braid β and outputs the braid corresponding to δ(β), the Demazure product of β.
We will encode the braid purely by its crossings, as follows, and the three allowable
moves will be braid commutations, pinching a crossing and a braid move, as shown
in Figure 1.

A positive braid will be represented by encoding each Artin generator by a
colour; thus an N -stranded braid with Demazure product w0 will need N − 1
colours. Then, the algorithm to build a Demazure weave proceeds by using com-
mutations, braid moves and pinch moves to eliminate all powers of generators till
we are left with just the Demazure product. Typically, we will use the moves to
isolate the Demazure product on one side and then use pinch and braid moves
successively to remove the powers of generators one by one.

The result of this procedure is called the Demazure weave. In Section 2, we
will show how this algebraic procedure builds an exact Lagrangian filling for the
(−1)-closure of the braid βδ(β).

Example. We give an example, see Figure 1, of the procedure using a 3-stranded
braid β = σ1σ

2
2σ

2
1σ2. This example will not see any commuting relations being

used. In this picture, we use blue to represent σ1 and red for σ2. The Demazure
product of β is δ(β) = σ1σ2σ1.

We will interpret these diagrams as being properly embedded in a 2-disk, and
call them N -graphs.

2. Legendrian surfaces from weaves

Given an N -graph G on D2, one can construct an immersed surface in R × D2,
which is the front projection of a Legendrian surface Λ(G) in J1(D2) by weaving
as follows. The objective is to create an immersed surface that projects to D2,
whose singularities are encoded by the N -graph:

• start with N sheets over D2

• for every (i, i+ 1)-edge, introduce a line A2
1-singularities between the cor-

responding two sheets
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Figure 2. At level (1), we see the Demazure product on the
left. At levels (2) and (3) respectively, we see the blue and red
generators on the right being pinched so that at the end, we are
left with δ(β).

• for every hexavalent vertex, introduce an A3
1-singularity between the cor-

responding triple of consecutive sheets
• for every trivalent vertex, introduce a D−

4 -singularity between the corre-
sponding two sheets

(i+1,i+2)

1

i

i+1

N

(i,i+1)

(i,i+1) (i,i+1)

...
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N

...
...

(i,i+1)

1

i

i+1

N
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1
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i+1

N
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i+2

(i,i+1)

(i,i+1)

(i,i+1)

(i+1,i+2)

(i+1,i+2)

Figure 3. The weaving of singularities of fronts along the edges
of the N -graph (courtesy of Roger Casals and Eric Zaslow). Glu-
ing these local models according to the N -graph Γ yields the weave
Λ(Γ).

Some topological properties of the resulting surface: Λ(G) is anN -fold branched
cover over D2 simply branched over the trivalent vertices of G.

(1) Euler characteristic – χ(Λ(G)) = Nχ(D2) − v(G) where v is the number
of trivalent vertices

(2) 1-cycles correspond to Y-trees. This is indicated in Figure 4.
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Figure 4. An I-tree corresponds to a cycle in the Legendrian
surface, called an I-cycle.

Definition 2. An N -graph is called free if the corresponding Legendrian weave
has no Reeb chords.

The Demazure weaves built in Section 1 are free, hence the projection from R5

to R4 is embedded, as the only double points that could show up are due to Reeb
chords. Also, by construction, the surfaces in R4 are exact Lagrangian, hence this
procedure now produces an exact Lagrangian filling of the (-1)-closure of βδ(β)
for any positive braid word β.

3. Quivers from Weaves

Associated to a Demazure weave, we can build a quiver that encodes the 1-cycles on
the graph and their pairwise intersections. Further, there is a mutation operation
one can do on the 1-cycles that show up in the weave to create another exact
Lagrangian filling for the same braid, which may or may not be equivalent (up
to Hamiltonian isotopy) to the previous one. We show how to do this in case
of 2-weaves, i.e. weaves corresponding to 2-graphs, i.e. with only one colour.
Firstly, given any 2-graph, encode all the I-trees as vertices on the quiver. Then,
add arrows from every cycle to cycles that share a vertex with them, with arrows
going from a cycle to one that is counter-clockwise of them.

Example. Consider the trefoil knot T (2, 3). It is the (−1)-closure of the braid
σ5
1 , which we can consider to be βδ(β) for β = σ4. We can see two I-cycles in the

Demazure weave, and can build the A2-quiver from them as shown in Figure 5.
Mutating at an I-cycle corresponds to a local I −H move.

References

[1] Casals, Roger and Gorsky, Eugene and Gorsky, Mikhail and Simental, José, Algebraic weaves
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Figure 5. The Demazure weave and its mutation along the cycle
denoted by 2, for the trefoil T (2, 3). These correspond to distinct
exact Lagrangian fillings of the trefoil knot.

B1–Techniques for constructing cluster structures on varieties

Colin Krawchuk

In recent years, cluster structures have been discovered on the coordinate rings of
many varieties, including open positroid varieties [8, 9, 4], double Bott-Samelson
varieties [10] and braid varieties [5, 2]. The presence of a cluster structure has
important implications for the geometry of an algebraic variety, including the
existence of canonical linearly independent sets of regular functions.

It is therefore natural to ask how one might determine if a given variety inherits
a cluster algebra structure. Identifying such a structure involves constructing an
initial seed of regular functions, showing each cluster variable in the associated
algebra is indeed a regular function, and showing that the cluster variables generate
the coordinate ring of the variety. While there is no general method for this
procedure, we recount several useful techniques that have been successfully applied
to construct cluster structures on varieties.

One of the most useful criteria for showing that the cluster variables arising
from a candidate seed are regular functions is the Starfish Lemma:

Lemma 1. [1, Starfish Lemma] Let R = C[X ] be the coordinate ring of an
irreducible normal affine complex algebraic variety X . Let (Q, x̃) be seed of rank
n in C(X) with x̃ = (x1, . . . , xm) for n ≤ m whose variables lie in R such that

(1) the cluster variables in x̃ are pairwise coprime,
(2) for each cluster variable xk ∈ x̃, the seed mutation µk replaces xk with an

element x′
k that lies in R and is coprime to xk.

Then A(Q, x̃) ⊂ R.

The proof of the Starfish lemma relies on Hartogs’ principle (showing that
a function on X which is regular outside a subset of codimension 2 is regular
everywhere). Under the conditions of the lemma, this property is satisfied not just
for cluster variables but for elements of the upper cluster algebra of A(Q, x̃).

To demonstrate the converse, that the cluster variables generate the coordinate
ring of the variety, a frequent strategy is to first show that A(Q, x̃) coincides with
its upper cluster algebra. There are several reasons why this approach is beneficial.
Often it is easier to show that regular functions on the variety are generated by
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elements of the upper cluster algebra than arbitrary cluster variables. Moreover,
if we wish to apply the Starfish Lemma then this equality must hold in order for
A(Q, x̃) to be a cluster structure on C[X ]. On the other hand, cluster algebras
that do not equal their upper cluster algebra are often unwieldy, and it can be
challenging to show containment in these cases.

For these reasons, criteria for A(Q, x̃) to be equal to its upper cluster algebra
have been introduced by several authors. In [6] Muller introduced the class of
locally acyclic cluster algebras, which admit a finite cover by certain simpler cluster
algebras (called acyclic cluster localisations). A consequence of this definition is
that any local property of acyclic cluster algebras is true of locally acyclic cluster
algebras. In particular, we have the following useful result:

Theorem 2. [6] If a cluster algebra is locally acyclic, then it coincides with its
upper cluster algebra.

Any locally acyclic cluster algebra A also inherits a covering of Spec(A) by open
subvarieties corresponding to cluster localisations. In [7] Muller and Speyer refined
this idea by defining Louise cluster algebras that have the additional property
that the cluster localisations associated to this covering satisfy a Mayer-Vietores
decomposition of cluster algebras. As an application, they showed the following:

Theorem 3. [7] Cluster algebras associated to Postnikov diagrams in the disk are
Louise.

Unfortunately, the definition of locally acyclic cluster algebras does not suggest a
method to check whether a given cluster algebra possesses this property. However,
if the quiver of a seed (Q, x̃) belongs to a class of quivers called Banff quivers,
then the corresponding cluster algebra A(Q, x̃) is locally acyclic [6]. Moreover, a
recursive algorithm is given in [6] for checking if a quiver is indeed Banff. Similarly,
the class of sink-recurrent quivers is defined in [5] and seeds with sink-recurrent
quivers are shown to give rise to locally acyclic cluster algebras. Notably, this
fact was used by the authors to prove that cluster algebras arising from 3D-Plabic
graphs are locally acyclic.

A final strategy for showing that A coincides with its upper cluster algebra
relies on quasi-homorphisms between cluster algebras in the sense of Fraser [3].
In particular, if the elements of a generating set for the upper cluster algebra
belong to either A or a quasi-equivalent cluster algebra, then A coincides with its
upper cluster algebra. This approach was taken in [2] where it is shown that cyclic
rotations of braid words induce quasi-cluster transformations.
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B2–Combinatorics of plabic graphs

Peter Spacek

We introduced plabic graphs : planar, bicolored graphs properly embedded into the
closed disk with b (uncolored) vertices on the boundary. (Loops and multiple edges
are allowed.) We also defined move-equivalence of plabic graphs, i.e. two graphs
are move-equivalent if they are related by the square move (exchanging colors
on a square with alternatingly colored vertices), the creative/destructive move
(inserting a colored vertex on an edge or removing a bivalent vertex), and finally
the (de)construction move (merging two vertices of the same color connected by
an edge or splitting a colored vertex into two connected by an edge).

We then discussed how to construct a quiver associated to a given plabic graph:
a vertex for each face (if a face borders the boundary of the disk, the correspond-
ing vertex is frozen), and an arrow between vertices for each edge of the plabic
graph with a white vertex on the left and a black on the right (cancel out any
2-cycles arising from this). We noted that the square move leads to mutation of
the associated quiver, as long as every two consecutive faces bordering the square
are distinct.

Next, we related plabic graph to combinatorial objects that appeared before: we
showed how to construct a plabic graph from a triangulation of a polygon and from
(double) wiring diagrams. We quickly discussed how the quiver of a triangulation
coincides with the quiver of the plabic graph arising from a triangulation, and
mentioned that the same holds for (double) wiring diagrams.

We then defined reduced plabic graphs : namely, plabic graphs that are not move-
equivalent to a plabic graph containing the “forbidden configurations”, namely the
hollow digon (two vertices with two edges connecting them), and an internal leaf
connected to a trivalent vertex of the other color that is not move-equivalent to
a bivalent vertex. To obtain a more direct characterization, we introduced trip
permutations : a trip is a path through the plabic graph following the “rules of the
road”, turning to the right at black and to the left at white vertices; trips either
start and end at a boundary vertex, or are round trips in the interior; the trip
permutation (associated to a plabic graph G) is the permutation πG of b elements
that sends i to j if the trip in G starting at i ends at j.
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We mentioned that move-equivalent plabic graphs have the same trip permuta-
tions, and that in reduced plabic graphs a fixed point i of the permutation implies
that the component connected to the boundary vertex i is move-equivalent to a
lollipop. This led to the definition of decorated trip permutations of reduced plabic
graph: each fixed point i of the trip permutation of the reduced plabic graph is
decorated with i or i if the lollipop attached to i is white resp. black. This al-
lowed us to state the fundamental theorem of reduced plabic graphs : two reduced
plabic graphs are move-equivalent if and only if their decorated trip permutations
coincide. This in particular led to the observation that reduced plabic graphs are
exactly those plabic graphs with a given trip permutation that have the minimal
number of faces.

We continued by discussing the relation between reducedness and normalcy: a
normal plabic graph is a bipartite plabic graph with trivalent white vertices and
only black vertices connected to the boundary vertices. We say that a plabic graph
has a bad feature if it contains either a round trip, a essential self-intersection (a
trip that pass through the same edge twice), or a bad double crossing (two trips
both crossing two given edges in the same order). We then stated the theorem
that a normal plabic graph is reduced if and only if it contains no bad features.
Afterwards, we sketched an algorithm that uses move-equivalences to turn a plabic
graph into a normal plabic graph (or results into a non-reduced plabic graph),
allowing the previous theorem to be applied to general plabic graphs. We also
mentioned the existence of the resonance property to check reducedness.

Finally, we defined source and target face labelings of reduced plabic graphs: a
face is labeled by the set of those i such that the trips starting (resp. ending) at i
have the given face to the left of the trip. (This works due to the fact that trips in
a reduced plabic graph bisect the disk.) We mentioned that the labels of the faces
of a given reduced plabic graph all have the same cardinality. Finally, we defined
the positroid associated to a reduced plabic graph given by the face labels of the
boundary faces.

The main reference for this talk was Chapter 7 of [1]. The seminal reference for
plabic graphs is [2].
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C3–Constructible sheaves on Legendrian knots

Yoon Jae Nho

Given a Legendrian knot Λ ⊂ R3, one can construct a D−-stack R(Λ) which
is a Legendrian isotopy invariant of Λ. If Λ is a positive braid knot, this stack
can be identified with the open Bott-Samelson variety associated with β. One
interpretation of R(Λ) is that it is the “moduli” of exact Lagrangian fillings of
Λ. Indeed, an exact Lagrangian filling L of Λ gives rise to an open toric chart
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(C∗)b1(L) of R(Λ), which can be verified by direct calculation in the case of free
Legendrian weaves, using the machinery of [3].

Building R(Λ) is a two-step process. First, one considers the category of con-
structible sheaves on R2

x,y supported on Λ. These categories admit combinatorial
descriptions, but they are not Legendrian isotopy invariants. Then, one can fur-
ther restrict to sheaves with singular support on Λ. The theorem of GKS[4] then
states that the category of such sheaves is indeed Legendrian isotopy invariant.
Then, we can further restrict to “microlocal rank 1” sheaves with singular support
on Λ with vanishing stalks at y = −∞. The moduli of such sheaves then yield
R(Λ).

As a concrete example, in the case Λ = Λβ for the (−1)-closure of a positive
braid-knot β with reduced word expression β = si1 ...sin , where si is the trans-
position of the ith strand with the i + 1th strand, one can show that the moduli
R(Λβ) is given by the moduli of tuples of complete flags (F1, ..., Fn+1) with rela-
tive position conditions Fj ∼sij

Fj+1, and Fn+1 = F1, which is indeed the open

Bott-Samelson variety.
In this talk, we address the first part of the problem. Given a (regular cell

refinement) of stratification induced by the front-projection of Λ on R2
x,y, we in-

troduce the notion of constructible sheaves, i.e. sheaves whose restriction to each
stratum are locally constant sheaves. Then, we compute constructible sheaves
supported on the local model for the arc, the cusp and the crossing. We then use
the local-to-global principle to express constructible sheaves supported on more
general Legendrian knots as functors from the poset category induced by the strat-
ification to the category of k-modules.
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B3–Webs and Gr(3, n)

Emine Yıldırım

The goal of this talk to understand the cluster algebra structure in the homoge-

neous coordinate ring of Grassmannian C[Ĝr(3, n)] of 3-planes in Cn from Fomin-
Pylyvaskyy perspective using Kuberberg’s web basis. We mainly follow the fol-
lowing references: [4] and [1, Section 9.1]. We start the talk by explaining the
definition of a tensor diagram. Then, we show how a tensor diagram encodes an
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element in the homogeneous coordinate ring of Grassmannian. Fomin and Pyly-
vaskyy show that if a tensor diagram is a planar tree, then the corresponding web
invariant is a cluster or coefficient variable. We give a complete example of the
cluster algebra structure in the case of n = 6. The cluster algebra for Gr(3, 6) is
of Dynkin type D4; it has 22 cluster variables - six of which are frozen variables.
Since Plücker coordinates are cluster variables, we have 20 Plücker cluster vari-
ables and two non-Plücker cluster variables in this case. We explicitly compute
these two non-Plücker cluster variables using skein relations.

A tensor diagram is called a web if it is planar. Non-elliptic webs give rise to
web invariants which form a linear basis in the ring of invariants. Let us now state
some of Fomin-Pylyvaskyy’s conjectures.

Conjectures.

(1) The set of cluster (and coefficient) variables coincide with the set of inde-
composable arborizable web invariants.

(2) Two cluster variables lie in the same cluster if and only if they are com-
patible web invariants.

(3) If n ≥ 9, there are infinitely many indecomposable non-arborizable web
invariants.

Fomin-Pylyvaskyy [4] verify these conjectures in the finite type examples:

Gr(2, n+ 3) Gr(3, 6) Gr(3, 7) Gr(3, 8)
An D4 E6 E8

Note that this talk is a restrictive setting of Fomin-Pylyvaskyy paper - keep in
mind the theorems and conjectures we mention in this abstract can be stated in
a more general set up for SL(V ) invariant rings that is Fomin-Pylyvaskyy’s main
object in their paper [4]. Furthermore, C. Fraser [1] proves that for the cluster
algebra in the homogeneous coordinate ring of Grassmannian Gr(3, 9):

(1) Every cluster variable is an indecomposable arborizable web invariant.
(2) Every cluster monomial is a web invariant.
(3) There are infinitely many indecomposable non-arborizable web invariants.

These results are strong evidences for the validity of the conjectures. Finally,
we would like to mention that webs may seem similar to dimers; [2] is a reference
to see how they are related. Also, we refer curious audience to the paper [3] for
further reading and a general view on this topic.
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C4–Microsupport and Legendrian fronts

Laurent Côté

Summary. Given Legendrian Λ in the cosphere bundle of R2, one can associate
to it a variety M(Λ) whose properties carry useful information about Λ. This
variety is defined as the moduli space of objects of the category of constructible
sheaves microsupported along Λ. The purpose of this talk was to introduce the
notions which enter into this construction.

1. Microsupport of sheaves

Conventions 1. Throughout this report, all sheaves are implicitly assumed to
be constructible (with perfect stalks) and valued in the dg derived category of
chain complexes over C. All functors are implicitly derived. All stratifications are
assumed to be Whitney. Finally, for consistency with some of the literature (e.g.
[3]) we work throughout in the real analytic category.

Let M be a manifold. Fix a stratification S on M and a point x ∈M . Let Sx

be the stratum containing x. A function f : Op(x) → R is said to be stratified
Morse at x ∈ M if either (a) f |Sx

is non-critical at x or (b) f |Sx
has a Morse

critical points at x and dfx(τ) 6= 0 for any τ ⊂ TxM which is equal to a limit of
tangent vectors of a larger stratum Y > Sx.

Construction-Definition 2. Given F ∈ sh(M), fix x ∈ M and a function
f : Op(x)→ R such that f(x) = 0. Fix ǫ, δ > 0 and set

M(x,f,ǫ,δ)(F) := cone
(
F(Bǫ(x) ∩ f−1(−∞, δ))→ F(Bǫ(x) ∩ f−1(−∞,−δ))

)

If f is stratified Morse at x ∈ M , then it can be shown that M(x,f,ǫ,δ)(F)
stabilizes as ǫ, δ → 0. In fact, the output only depends on (x, dfx) ∈ T ∗

xM .

Definition 3. For (x, ξ) ∈ S∗
xM and f stratified Morse at x ∈ M , we define the

Morse group M(x,ξ)(F) := M(x,f,ǫ,δ)(F) for ǫ, δ small enough.

A covector (x, ξ) ∈ S∗M is said to be characteristic if M(x,ξ)(F) 6= 0. Note
that this notion depends on the stratification S.

The characteristic covectors correspond precisely to the (co)directions along
which the restriction map of F is non-trivial. This suggests that the set of char-
acteristic co-vectors is a useful invariant of F .

Definition 4 (Microsupport). The microsupport (or singular support) of F is the
set

(1) SS(F) := {(x, ξ) ∈ S∗M | (x, ξ) is characteristic }.

While the notion of a characteristic vector depends on the stratification, it
can be shown that the microsupport does not depend on this choice. In fact, the
microsupport can be defined without choosing a stratification and appealing to the
theory of stratified Morse functions; see [2, Sec. 5.1]. However, the Morse-theoretic
viewpoint is useful for intuition and computations.
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Figure 1. Here the vertical arrow is the front of a Legendrian
arc Λ ⊂ S∗R2. The “hair” specifies a unique lift of the front.

2. The category ShΛ(M)

Let Λ ⊂ S∗M be a Legendrian.

Definition 5. We let shΛ(M) ⊂ sh(M) be the full subcategory on objects whose
microsupport is contained in Λ.

To get a handle on this definition, let us suppose that π(Λ) ⊂ M is a front.
Then we can consider the category of sheaves shS(M) constructible with respect
to any stratification S containing the front. According to the exit-path definition
of a constructible sheaf, this is the same thing as a module over the exist path
category. In other words, a constructible sheaf is the data of a stalk on each
stratum and restriction maps from lower dimensional strata to higher dimensional
strata.

The microsupport condition picks out a full subcategory shΛ(M) ⊂ shS(M) by
forcing some of the restriction maps to be isomorphisms. This is illustrated in the
following example.

Example. Suppose that Λ is a lift of the front drawn in Figure 2. Then the cate-
gory of sheaves constructible with respect to the induced stratification is equivalent

to the category of representations of the quiver (•
α
←− •

β
−→ •). However, for a con-

structible sheaf to lie in shΛ(D
2), it must have the property that the restriction

map corresponding to β is an isomorphism: indeed, the failure of this map to be
an isomorphism would be witnessed by a point in the microsupport. But by defi-
nition of shΛ(D

2), the microsupport of F in S∗,−D2 is empty (the “hair” points
in the + direction). We conclude that the category shΛ(D

2) is equivalent to the
category of representations of the A2 quiver.

The great virtue of the category shΛ(M), as opposed to shS(M), is that it is
an invariant of Λ. This is the content of the following theorem:

Theorem 6 (Fundamental theorem [1] (Guillermou–Kashiwara–Schapira)). A
Legendrian isotopy Λ Λ′ ⊂ S∗M induces an equivalence of categories

shΛ(M)→ shΛ′(M).

In general, shΛ(M) can be very complicated. However, when M = R2, then the
front projection of a Legendrian generically only has cusps and crossings. Hence
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Figure 2. The front projection of a trefoil

the study of shΛ(R2) can be reduced to local models. The simplest local model
was computed in Example 2; the other two (cusp and crossing) were also computed
in the talk. See [3, Sec. 3.3].

3. The moduli space of rank 1 objects

In order to access the category shΛ(M), it is often useful to consider categorical
invariants associated to it. The main class of invariants which were discussed in
the talk are so-called “moduli spaces” of objects.

Definition 7. Suppose Λ ⊂ S∗M is connected. The microlocal rank of F ∈
shΛ(M) is the rank of M(x,ξ)(F) for any (x, ξ) ∈ Λ.

Theorem 8 ([5] Toën–Vaquié). There exists a “derived stack” Mr(Λ) whose
points are in bijection with isomorphism classes of objects of shΛ(M) having mi-
crolocal rank r.

This theorem is an abstract result valid for categories satisfying a certain finite-
ness assumption. Our standing assumption that constructible sheaves have perfect
stalks is essential in order to appeal to it.

For many Legendrians which arise in practice, the output of this theorem (a
priori a derived stack) is an ordinary variety which can be explicitly described.

Example. In the talk, we explicitly computed the moduli space of rank 1 objects
where Λ is the (lift of the) front drawn in Figure 3. The answer is as follows. We
first consider the moduli space

M̃1(Λ) := {(ℓ0, . . . , ℓ4) ∈Mat2×5(C) | ℓi ∈ Mat2×1(C), ℓi ⋔ ℓi+1, i ∈ Z/5}

Then the moduli space of rank 1 objects is the quotient

M1(Λ) = M̃1(Λ)/(GL2(C)×Diag5(C)).

One can also consider a framed variant

M1
fr(Λ) = M̃

1(Λ)/GL2(C).

The main idea for performing such computations is to restrict ourselves to local
models, for which (as explained above) the category of microlocal sheaves is fully
understood. We refer to [3, Sec. 6] and [4, Sec. 3] for related computations.
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B4–Double Bruhat cells and generalisations

Matthew Pressland

1. Double Bruhat cells

One of the earliest results equipping the coordinate ring of an algebraic variety
with a cluster algebra structure is due to Berenstein, Fomin and Zelevinsky [2],
who achieve this for double Bruhat cells. Before describing their construction, we
give the necessary set-up and definitions.

Fix a connected, simply connected, semisimple algebraic group G over C, with
opposite Borel subgroups B+ and B−. This determines a maximal torus T =
B+ ∩ B−

∼= (C×)n, a Weyl group W = NormG(T )/T , and a Dynkin diagram ∆.
The Weyl group is generated by n simple reflections si, for i ∈ ∆0.

Each node i ∈ ∆0 determines a homomorphism ϕi : SL2(C)→ G, taking upper
triangular matrices into B+ and lower triangular matrices into B−. We may lift
W to a subset (but not a subgroup) of G by identifying si with s̄i = ϕi

(
0 −1
1 0

)
,

and a general element w = si1 · · · siℓ with s̄i1 · · · s̄iℓ , where the expression for w
as a product of simple reflections is chosen to be reduced, i.e. of minimal length
ℓ = ℓ(w). Viewing W as a subset of G in this way, we obtain a pair of Bruhat
decompositions

G =
⋃

u∈W

B+uB+ =
⋃

v∈W

B−vB−.

Definition 1. A double Bruhat cell is Gu
v := B+uB+ ∩B−vB−, for u, v ∈ W .

To describe a cluster algebra structure on the coordinate ring C[Gu
v ], we restrict

for simplicity to the case that the Dynkin diagram ∆ is simply-laced, that is, of
type A, D or E. This will allow us to describe the initial seed via a quiver, rather
than a more general valued quiver or skew-symmetrisable matrix. We will also
deviate from the original presentation in [2], and using instead a description of
this seed derived from work of Shen and Weng [7], which we will return to shortly.

Definition 2. Given u, v ∈ W , consider a trapezium with its upper edge cut into
ℓ(u) segments, and lower edge cut into ℓ(v) segments. A triangulation of (u, v) is
a choice of reduced expression for each of u and v, together with a decomposition
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1

2

3

s3

⊖

s2

⊖

s1

⊖

s2

⊕

s1

⊕

s3

⊕

s2

⊕

Figure 1. A triangulation of (u, v), with the associated string
diagram overlaid, for G = SL4(C), so ∆ = A3 (shown left), with
u = s3s2s1 and v = s2s1s3s2. Closed strings are shown in green,
and open strings in blue.

of the trapezium into triangles such that exactly one edge of each triangle lies on
the upper or lower edge of the trapezium. See Figure 1 for an example.

Given a triangulation of (u, v), we label the segments on the upper and lower edges
via the chosen reduced expressions of u and v, reading from left to right. This
labels exactly one edge of each triangle by a simple reflection, and hence induces a
labelling of the triangles. A triangulation of (u, v) determines a string diagram in
the following way. Draw n = |∆0| strands through the trapezium, indexed by the
nodes of the Dynkin diagram. In a triangle labelled by si, cut strand i, and label
the cut by ⊕ if the labelled edge of the triangle is on the bottom of the trapezium,
and by ⊖ if the labelled edge is on the top. This process cuts the strands into
strings, which can be either closed (incident with two cuts), or open (incident with
at most one cut). Again, an example is shown in Figure 1.

Definition 3. The (ice) quiver Q(t) of a triangulation t of (u, v) has as vertices
the strings of the associated string diagram, with open strings frozen. At each cut,
we see one of the following configurations in the quiver, depending on the sign.

⊕ ⊖

Here the solid arrow connects the two strings from strand i meeting at the cut,
and we draw a pair of dashed arrows as shown for each string passing through the
triangle containing the cut and lying on a strand j with i and j joined by an edge
of ∆. These dashed arrows are interpreted as ‘half-arrows’: in the final quiver, two
half-arrows in the same direction add together to form a full (solid) arrow, while
those in opposite directions cancel out. This process produces a natural collection
of half-arrows between frozen vertices, but these play no role in defining the cluster
algebra. See Figure 2 for the quiver associated to the triangulation in Figure 1.
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1

2

3

⊕ ⊖

⊕

⊕

⊖

⊖

⊕

⊕

⊖ ⊕

Figure 2. Constructing the quiver of the triangulation in Fig-
ure 1; the initial construction involving half-arrows (left), and the
final quiver (right). Mutable vertices are green, and frozen ver-
tices are blue.

Theorem 4 (Berenstein–Fomin–Zelevinsky [2]). Let u, v ∈W , let t be a triangula-
tion of (u, v), and let A (t) be the cluster algebra associated to Q(t), with invertible
frozen variables. Then there is an isomorphism

A (t)
∼
→ C[Gu

v ]

sending the initial cluster variables to generalised minors.

Strictly speaking, the original result from [2] gives an isomorphism with the
upper cluster algebra U (t) associated to Q(t). However, Muller and Speyer [6]
show that this cluster algebra is locally acyclic, and hence A (t) = U (t).

We do not give the general definition of generalised minors here, but note that
in type A, where G = SLn+1(C), they are ordinary matrix minors. There is an
explicit combinatorial recipe for computing which minors are the images of the
initial cluster variables under the isomorphism of Theorem 4. For our running
example, the result is

D1

3
D4

1

D12

23
D14

12

D123

134
D124

123

D1

1

D12

24
D14

13

D124

134

where DI
J denotes the minor on rows I and columns J .

2. Double Bott–Samelson varieties

Recall that the braid group Br(∆) is defined similarly to the Coxeter group of ∆
(which is isomorphic to W ), but excluding the relations s2i = e. A positive braid is
an element of Br(∆) expressible as a word in the letters si, i ∈ ∆0 (in contrast to a
general braid, in which the letters s−1

i may be necessary). Given u, v ∈ Br(∆), one
can define a triangulation exactly as in Definition 2, replacing ‘reduced expression’
by ‘positive braid word’. Given such a triangulation t, construct the associated

string diagram as before, but viewing u and v as elements of Br(∆̃), for ∆̃ the

associated affine diagram. Let Q̃(t) be the associated quiver, which differs from
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0

1

2

3

s3

⊖

s2

⊖

s1

⊖

s2

⊕

s1

⊕

s3

⊕

s2

⊕

∗

∗

Figure 3. A triangulation of positive braid words (u, v), with the
associated ‘affine’ string diagram overlaid (left), and a schematic
of the associated quiver (right). To obtain the actual quiver, the
two vertices labelled by ∗ should be identified.

Q(t) by adding a single frozen vertex, corresponding to the single open string

labelled by the extending vertex of ∆̃, and its incident arrows. An example is
given in Figure 3; while this reuses the reduced expressions for elements of W
from the previous example, we emphasise that the general construction applies to
arbitrary positive braid words.

The cluster algebra Ã (t) with invertible frozen variables associated to Q̃(t) also
turns out to have a geometric interpretation.

Definition 5 (Shen–Weng [7]). Let u = si1 · · · siℓ and v = sj1 · · · sjm be positive
braids. Then the double Bott–Samelson variety BSuv consists of tuples of flags
(x0B+, . . . , xℓB+, y0B−, . . . , ymB−) ∈ G\

(
(G/B+)

ℓ × (G/B−)
m
)
(that is, each

tuple is considered up to the left action of G on the product of flag varieties)
subject to the conditions that

(1) x−1
k−1xk ∈ B+sikB+ for k = 1, . . . , ℓ,

(2) y−1
k yk−1 ∈ B−sjkB− for k = 1, . . . ,m,

(3) x−1
0 y0 ∈ B+B− and x−1

ℓ ym ∈ B+B−.

Letting U± denote the unipotent radicals of B±, the decorated Bott–Samelson

variety B̂Suv consists of those tuples

(x0U+, x1B+, . . . , xℓB+, y0B−, . . . , ym−1B−, ymU−)

in G\
(
G/U+ × (G/B+)

ℓ−1 × (G/B−)
m−1 × G/U−

)
which map to points of BSuv

under the natural projection.

Shen and Weng [7] show that both of these varieties depend, up to isomorphism,
only on the positive braids u and v, and not on the choice of braid words.

Theorem 6 (Shen–Weng [7]). Let u and v be positive braids and let t be a trian-
gulation of (u, v). Then there is an isomorphism

Ã (t)
∼
→ C[B̂Suv ].

Remark 7. The ordinary Bott–Samelson variety BSw associated to w ∈ W was
introduced [1] to provide a desingularisation of the Schubert variety BwB/B. Dou-
ble Bott–Samelson varieties are special cases of braid varieties, and so Theorem 6
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is an important precursor to the general result that all such varieties carry cluster
algebra structures [3, 4, 5].
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C5–Cluster algebras and symplectic topology: Microlocal holonomies
and the Bott-Samelson case

Mikhail Gorsky

This talk concerns a point of view on cluster algebra structures on coordinate
rings of certain affine algebraic varieties by means of symplectic geometry. Several
families of varieties appearing in talks B1 – B4, such as open positroid varieties,
double Bruhat cells, and double Bott-Samelson cells, can be described as moduli
spaces of decorated microlocal rank-1 constructible sheaves on R2 supported on
front projections of Legendrian links in R3 with the standard contact structure
ξst. This perspective connects talks from series A and B with the framework of
series C.

Consider a positive braid β with the Demazure product w0 ∈ Sn. The Leg-
endrian (−1)-closure of the braid represented by β is a Legendrian link Λβ in
(R3, ξst). If β = ∆β′ for some positive braid β′, where ∆ is the half-twist, the
link Λβ is Legendrian isotopic to the rainbow closure of β′, as considered in [7,
Section 6.5]. With a Legendrian link Λ taken with a collection of marked points T
one can naturally associate a moduli stack M(Λ, T ) of decorated microlocal rank-
1 constructible sheaves on R2 whose support is contained in the front projection
of Λ. It turns out that for (Λβ, T ) with T containing at least one marked point
per link component, M(Λ, T ) is in fact a smooth affine algebraic variety: it can
be realized, up to a torus factor, as a braid variety X(β) in type A which will be
discussed in more detail in talk C6. The smoothness of braid varieties follows from
work of Escobar [3].

Shen and Weng in [8] and in a joint work with Gao [5] introduced several
versions of double Bott-Samelson (BS) varieties associated with pairs of positive
braid words. In particular, half-decorated double BS varieties for pairs (e, β′)
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were proved in [5] to be isomorphic to M(Λ∆β′ , T ) for T having precisely one
marked point per strand of ∆β′. For decorated double BS varieties, a cluster
A-structure was defined in [8] in terms of generalized minors. This was done
by extending standard approaches to cluster structures on double Bruhat cells
via amalgamation techniques of Fock-Goncharov [4]. This algebra structure was
translated to the symplectic framework in [5], whereM(Λ∆β′ , T ) was interpreted as
the augmentation variety of the link Λ∆β′ . An undecorated variant ofM(Λ∆β′ , T ),
denoted by M1(Λ∆β′ , T ), is also isomorphic to a variant of a double BS variety,
depending on the choice of T . The latter was proved in [8] to admit a cluster
X -structure, also known as a cluster Poisson structure, forming a cluster ensemble
(as defined in talk B5) with M(Λ∆β′ , T ) interpreted as a (half-)decorated double
BS variety.

From the point of view of symplectic geometry, results of [5, 8] indicated the
existence of cluster A- and X -structures on moduli spaces of microlocal rank-1
sheaves associated with Legendrian links, but the construction presented in these
works was fairly unsatisfactory. In the talk, a “symplectic” construction of cluster
A-structures on M(Λ∆β′ , T ) and of cluster X -structures on M1(Λ∆β′ , T ) (the
latter improving on earlier work [6]) was presented. This construction is due to
Casals and Weng [1] who used technology of weaves introduced by Casals and
Zaslow [2]. Weaves are certain coloured graphs representing Lagrangian fillings of
Legendrian links, as explained in talk C2. The main result presented at the talk
is the following.

Theorem 1. [1] For a positive braid β′ and a collection T of marked points on
Λ∆β′ with at least one point per component, the pair

(M(Λ∆β′ , T ),M1(Λ∆β′ , T ))

forms a cluster ensemble, where the initial seeds of (M(Λ∆β′ , T ) andM1(Λ∆β′ , T ))
are described in terms of an exact embedded Lagrangian filling L of Λ∆β′ described
via a certain explicit weave.

The construction and a sketch of the proof were presented. Cluster A-variables
are indexed by certain relative cycles η ∈ H1(L\T,Λ\T ) and can be interpreted as
so-called microlocal merodromies, which intuitively give parallel transport along
η, while X -variables are indexed by absolute cycles in γ ∈ H1(L) and can be
interpreted as microlocal monodromies along γ. The language of weaves not only
provided a symplectic interpretation of cluster algebra structures on the sheaf
moduli spaces, but also allowed to simplify some of the proofs, compared to those
in [8].
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C6–Cluster structures on braid varieties

Tonie Scroggin

Given a braid word β we may define an algebraic variety called a braide variety.
In this talk we show that the coordinate ring of regular functions on any braid
variety is a cluster algebra. By defining Lusztig cycles, intersections and functions
on the Lusztig cycles we are able tio produce a quiver and cluster variables which
constitutes the seed of the cluster algebra C[χ(β)]

Introduction to Cluster Ensembles and the Fock-Goncharov
duality conjectures

Geoffrey Janssens

A geometric counterpart of Fomin-Zelevinsky’s cluster algebras was introduced by
Fock and Goncharov [2, 3] in which ”seed tori” are glued together along cluster
transformations, which are certain distinguished birational maps, to produce clus-
ter varieties. These varieties come in pairs and form a so-called cluster ensemble.

In this talk we start by introducing the above concepts following the histori-
cal reference [3]. Secondely we explain the geometric gains of cluster ensembles.
Hereby we emphasize the importance of some recent works, such as Gross-Hacking-
Keel-Kontsevich [4, 5] and Argüz-Bousseau [1]. Finally, we give a brief introduction
to Fock-Goncharov’s duality conjectures. The recurrent example used during the
talk is the one of (higher) Teichmüller theory. Indeed, cluster varieties have deep
connections with several areas of mathematics, in particular in the study of the
moduli space of local systems on topological surfaces [3].

1. Introduction to Cluster ensembles

In earlier talks cluster algebras associated to quivers with frozen vertices have been
introduced and the translation to cluster algebras with coefficients was mentioned.
For this talk we consider the general setting. In other words, let (P,⊕, ·) be some
semi-field and (x,y, B) a labeled seed with B a skew-symmetrizable n×n matrix.
In particular, y ∈ Pn and the coordinates of x = (x1, . . . , xn) form a free generating
set, over Q[P], of a given field F of rational functions in n variables.
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In order to associate an algebraic variety to every seed obtained from (x,y, B)
by mutation a coordinate-free point of view is more natural. More precisely, a
seed can be viewed as the data ~i = (Λ, I, F, E,D) where

• Λ is a lattice of rank n (i.e. Λ ∼= Zn) equipped with a skew-symmetric
Q-bilinear form (·, ·),
• I an index set with F ⊂ I the frozen indices,
• E = {ei} is a basis of Λ and D = (di) the multipliers. In particular, in
the skew-symmetric case di = 1 for all i.

Forming the matrix (ǫi,j := dj(ei, ej))i,j recovers the transpose of the mutation
matrix considered in the previous talks. However, with the above notion of a seed,
mutation at some k ∈ I \ F is defined as Y -seed mutation. The usual cluster
mutation is found by considering the dual lattice Λ∗ = hom(Λ,Z) with dual basis
{e∗i }. More precisely one needs Λ◦ = span{fi := d−1

i ei}.

Now with the seed ~i, via Λ and Λ◦, one can naturally associate tori:

X~i = spec k[Λ] = hom(Λ,Gm)

and similarly A~i = spec k[Λ◦]. These tori are called the seed X -torus, respectively

seed A-torus. If~i′ = µk(~i) is another seed obtained by mutating at k ∈ I \F , then
there are birational morphisms

µX
k : X~i → X~i′ and µA

k : A~i → A~i′

connecting the associated tori. It is usual to define these morphisms explicitly by
pullback formulas at level of characters which mimic Y and X−cluster mutation.
Using these maps one can glue all the tori in order to obtain a scheme structure
on

⋃
~iX~i and also on

⋃
~iA~i. For algebraic geometrical (complete) details we refer

to [4, Proposition 2.4]. By doing so one obtains the tuple (X ,A) called the cluster
ensemble and which was introduced by Fock-Goncharov. As was pointed out, A
is an honest variety, i.e. it is separated. However, in general X is not seperated.

Subsequently we explained that considering global regular functions on A one
recovers the upper cluster algebra which by the Laurent phenomenon contains the
cluster algebra. At level of the X -variety the global regular functions yield the
so-called Poisson cluster algebra. However the Laurent phenomenon doesn’t hold
in this case.

2. The geometric structure and duality phenomenons

The name Poisson cluster algebras refers to the fact that the X -variety has a
Poisson structure. More precisely, using the bilinear form (·, ·) one writes down
an explicit Poisson structure on each torus X~i, which moreover is invariant under
mutation. In particular it induces a Poisson structure on X . On his turn the torus
A~i carries a mutation well-behaved closed 2-form Ω which induces a symplectic
structure on A.

These structures are connected to each other. To be more precise one needs to
introduce a crucial map connecting the both varieties. To start one defines the
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skew-symmetrizable form [ei, ej ] = dj(ei, ej) and subsequentely considers the map

Λ→ Λ◦ : v 7→
∑

j

[v, ej ]fj .

Associated is the morphism of seed tori

A~i = spec k[Λ◦]→ X~i = spec k[Λ].

These maps behave well with mutaton and hence one obtains a morphism

p : A → X

called the assembly map which, crucially, is monomial and positive. A reassuring
fact now is that the symplectic structure on p(A~i) induced by Ω coincides with
the symplectic structure given by the restriction of the Poisson structure on X~i.

The interplay however doesn’t stop there and in the talk a glimpse was given of
two deeper connections between the both varieties, both of a duality nature. For
the first one needs an alternate description of cluster varieties by Gross-Hacking-
Keel [4] using log Calabi-Yau varieties. In brief, they have shown that X is up to
codimension 2 a blow-up of some concrete toric variety. In particular, besides the
Fock-Goncharov dual variety A of X , one can associate the mirror dual of the log
Calabi-Yau variety (constructed in the framework of the Gross-Siebert program).
It was recentely proven by Argüz-Bousseau [1] that the mirror to the X cluster
variety is a degeneration of the A cluster variety and vice versa.

A second attractive conjectural duality between X and A is given by the Fock-
Goncharov duality conjectures. During the talk we presented a short intuitive
tropical path to the statement. This required to make the birational morphisms
µX
k and µA

k explicit in terms of the coordinate functions zei . With a slight abuse
of notation, they are given by

(
µX
k

)∗
: zv 7→ zv(1 + zek)−(v,ek)(

µA
k

)∗
: zγ 7→ zγ(1 + z(ek,·))−γ(ek)

where v ∈ Λ and γ ∈ Λ◦. Thus, the gluing maps are substraction-free. A won-
derful by-product of this is that one can take P-points for any semi-field P. Now
choosing for P the tropical integers Ztr = (Z,+max), a direct computation yields
an intriguing phenomena. Namely, denoting Atr for the Ztr-points of A, the mor-

phism µAtr

k is up to a change of ek to −ek and of ǫij to −ǫji given by the same
formula as µX

k on Λ. In other words, µX
k is the tropicalization of the Laglands

dual µ
A∨(Ztr)
k . The Fock-Goncharov duality conjecture states that the duality is

far more reaching. For example the basis conjecture predicts that Γ(X∨,OX∨) has
a basis indexed naturally by Atr and vice-versa.

To finish the talk, we mentioned that in [4] the authors showed that the original
Fock-Goncharov conjecture do not hold without certain positivity assumptions.
Nevertheless, they suggest that some formal version of the conjecture should hold.
In their seminal work Gross-Hacking-Keel-Kontsevich [5] proved the formal Fock-
Goncharov conjecture, as well as the original Fock-Goncharov conjecture with the
necessary positivity assumptions.
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Université de Paris
Bâtiment Sophie Germain, Case 7012
8, place Aurélie Nemours
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