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Abstract. This mini-workshop aimed at bringing together experts and early
career researchers on finiteness conditions for discrete groups, and experts
on varying aspects of locally compact groups to find a common framework
to develop a systematic theory of homological finiteness conditions for to-
tally disconnected locally compact groups. Whereas the homological theory
of finiteness conditions of discrete groups is well developed and the struc-
ture theory of totally disconnected locally compact groups has seen some
important breakthroughs in the last decade, the homological theory for (non-
compact) totally disconnected locally compact groups is an emerging research
area. Specific topics include finiteness conditions for locally compact groups,
Mackey functors and Bredon cohomology for topological groups, connections
to condensed mathematics, connections to ℓ2-invariants and Σ-invariants.
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Introduction by the Organizers

The class of locally compact (= LC) groups plays a central role among topological
groups. With the solution of Hilbert’s 5th problem, the understanding of the struc-
ture of connected LC-groups has significantly increased. Since every LC-group is
an extension of a connected LC-group by a totally disconnected LC-group, the
contemporary structure problem focuses on totally disconnected LC-groups (=
TDLC-groups). In the last decades there has been a significant progress in the
study of the structure theory of TDLC-groups, see e.g. [2, 4, 14, 10, 12, 13].
However, the study of homological finiteness conditions has, so far, been rather
disjointed and piece-meal. Stefan Witzel gave a 3-lectures survey on finiteness
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properties for LC-groups, discussing the notions introduced by Castellano–Corob
Cook [6] and Abels–Tiemeyer [1] and stressing further on the missing pieces of
the theory. Ged Corob Cook, during his talk, suggested a new strategy to inves-
tigate finiteness properties for TDLC-groups based on new model structures on
k-spaces and simplicial k-spaces [8]. Homological finiteness conditions are very
well understood for discrete groups [3], and there is a rich theory for cohomology
(both discrete and profinite) for profinite groups. A link, however, to the theory
of TDLC-groups, so far, is only very superficial. In recent years, partly due to the
theory developed by Castellano–Weigel [7], the study of cohomological finiteness
conditions for TDLC-groups has had a little bit of a resurgence [6, 5, 11]. Thomas
Weigel’s lectures introduced the state of the art of the rational discrete cohomol-
ogy for TDLC-groups [7], and highlighted the connection with zeta functions for
groups. Stable categories for the rational discrete modules of a TDLC-group were
considered by Rudradip Biswas, whereas Sofiya Yatsyna introduced Gedrich and
Gruenberg invariants for TDLC-groups. Bianca Marchionna presented her recent
work concerning double coset zeta functions of TDLC-groups acting on trees, and
Laura Bonn discussed the relation between the finiteness properties of a discrete
group and those of its Schlichting completion. Peter Kropholler offered three lec-
tures related to finiteness properties of discrete groups that culminated in a lecture
on condensed mathematics and profinite groups. He highlighted the advantages
of condensed mathematics over other theories: homological algebra in condensed
mathematics takes place in abelian categories, which provides an apparently easier
approach, though there is still much work to do in that area. Ian Leary presented
several embeddings theorems for discrete groups whose TDLC analogue is still
unknown, and Lewis Molyneux discussed finiteness properties of groups generaliz-
ing Richard Thompson’s group F. Dawid Kielak [9] and Yuri Santos Rego offered
different perspectives on profinite rigidity.

This mini-workshop was attended by the 16 invited participants, who all travelled
to Oberwolfach. Amongst the 20h lectures, there were four mini series of 3h each
given by four experienced mathematicians, eight 1h talks, mostly given by early
career researchers, and one very lively problem session.

The staff of the Mathematisches Forschungsinstitut Oberwolfach have excelled,
providing all the support that we could have wished, and all in a very courte-
ous manner. We are very grateful for the additional funding for 2 young PhD
students through Oberwolfach-Leibniz-Fellowships. We strongly believe that such
opportunities enable Ph.D. and junior researchers to get integrated within the re-
search community at an early stage in their academic career, and broaden their
networking activities. In conclusion, the meeting was a success.
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Abstracts

Geometric and Cohomological Finiteness Conditions in Group Theory

Peter H. Kropholler

The background to Leary’s results on groups of type FP2. In 1937, Bern-
hard Neumann proved that there are uncountably many 2-generator groups. Sub-
sequently, in 1949, Higman, Neumann, and Neumann [3] introduced what are now
known as HNN extensions and used them to prove that every countable group can
be embedded in a 2-generator group. A parallel can be drawn with Liouville’s
discovery of a transcendental number in 1844. In essence Liouville showed that
the number

∞∑

n=1

10−n!

is far better approximated by rational numbers than is possible for any irrational
root of a polynomial with integer coefficients, and therefore this number must be
transcendental. Liouville’s result was trumped by Cantor’s proof that there are
2ℵ0 transcendental numbers but only ℵ0 algebraic numbers. Of course, Cantor’s
extraordinary insight took many year to develop because Set Theory was in its
infancy and the theory of infinite cardinals needed to be developed. In particular,
clear proofs (avoiding the axiom of choice) of the Schroeder–Bernstein Theorem
(which is needed to show that the order relation on cardinal numbers satisfies
the law of trichotomy) did not emerge until the turn of the century and until
that matter was settled, Cantor’s diagonal argument showing that the set of real
numbers is uncountable remained one piece of a jig-saw.

Liouville’s number admits many variations and it is easy to generate 2ℵ0 num-
bers with the essential property concerning rational approximation. In 1844, Li-
ouville and others would have been aware that there was now a whole family of
transcendental numbers but would not have been able to formulate this in terms
of countability or uncountability.

By 1937, Bernhard Neumann’s construction of 2ℵ0 finitely generated groups
was a milestone similar in nature to Liouville’s discovery of 2ℵ0 transcendental
numbers and 1949 paper [3] cements this discovery with the more remarkable
embedding theorem which can be compared with Cantor’s discover that almost all
real numbers are transcendental.

Since there are only countably many finitely presented groups up to isomor-
phism the question arises: which finitely generated groups can be embedded into
finitely presented groups. Higman answered this in 1961 by exhibiting a remarkable
connection with logic, [2]: a finitely generated group admits a finitely presented
overgroup if and only if it is recursively presentable.

By this point, cohomological finiteness conditions emerged in the work of Serre.
A group G if of type FPn if there is a projective resolution P∗ → Z of the trivial
ZG-module with Pj finitely generated for j < n+ 1. It was easy to see that type
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FP1 is equivalent to finite generation, and that finitely presented groups are of
type FP2. Therefore the natural question arose:

Do there exist groups of type FP2 that are not finitely presented? The
question was answered in 1997 by the celebrated work of Bestvina and Noel Brady,
[1]. They developed a combinatorial form of Morse theory suited to cube complexes
and were able to exhibit whole families of examples. However, unlike the case
of Louiville’s numbers where we can see now that Liouville has a continuum of
examples of similar kinds of number, the Bestvina–Brady examples were only
countable in number. This fact seemed to pass unnoticed but around 2014 at
a gathering in the Oxford Mathematical Institute, Charles Miller III raised the
question. By 2018, Ian Leary had the answer both in the spirit of Bernhard
Neumann’s theorem [5]:

There are uncountably many groups of type FP. And in the spirit of the
Higman–Neumann–Neumann theorem [4]:

Every countable group can be embedded in a group of type FP2. So
arguably, Leary’s results build on Bestvina and Brady’s work in the same way
that Cantor’s diagonal argument transcends Liouville’s examples of 1844.

This raises a number of questions. The obvious one, and only one I will mention
in this short abstract is:

For which n is it possible to embed every countable group into a group

of type FPn? It is natural to suspect that the answer is n =∞ but there is not
method known at present even to address the case n = 3.
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Discrete cohomology, the Hattori-Stallings rank, the Euler

characteristic and formal Dirichlet series for t.d.l.c. groups

Thomas Weigel

(joint work with Ilaria Castellano, Gianmarco Chinello, Bianca Marchionna and
George Willis)

In recent years totally disconnected locally compact (= t.d.l.c.) groups have raised
much attention. As reflected by D. van Dantzig’s theorem (cf. [6]), which states
that every t.d.l.c. group contains a compact open subgroup, the structure theory
of t.d.l.c. groups is significantly different from the theory of Lie groups. T.d.l.c.
groups arise in many different areas in Mathematics.

Example 1. (A) If X is an affine group scheme defined over Z and F is a t.d.l.c.
field, then X(E) carries naturally the structure of a t.d.l.c. group.
(B) If T is a locally finite tree then Aut(T ) carries naturally the structure of a
t.d.l.c. group.
(C) Let Λ be a connected graph and let G be a graph of groups based on Λ such
that Gx are profinite groups for all x ∈ V (Λ) ∪E(Λ), and that αe : Ge → Gt(e) are
open immersions for all edges e ∈ E(Λ). Then π1(G ,Λ, x0) carries naturally the
structure of a t.d.l.c. group.
(D) If F is a field of characteristic 0, and E/F is a field extension of finite tran-
scendence degree then AutF(E) = {α ∈ Aut(E) | α|F = idF } carries naturally the
structure of a t.d.l.c. group (cf. [1, §6.3]).
(E) For every crystallographic Coxeter group (W,S) there exists a simply-connec-
ted root group datum D and a Tits functor XD . Evaluating this functor on a finite
field F and taking the completion with respect to its action on the positive part
of the twin building ∆± one obtains the topological Kac-Moody group X̂D(F ).

1. Discrete cohomology. Let G be a t.d.l.c. group, let R ∈ {Z,Q} and let M
be a left R[G]-module. Then

(1) dM = {m ∈M | stabG(m) open in G }

is an R[G]-submodule of M , the largest discrete left R[G]-submodule of M . One
calls the left R[G]-module discrete, if M = dM . The full subcategory R[G]dis of

R[G]mod, the objects of which are discrete left R[G]-modules, is an abelian cate-
gory with enough injectives and thus allows to define cohomology with coefficients
in R[G]dis by dH•(G, ) = R•( G). For R = Z these cohomology groups are
quite difficult to compute. Nevertheless, an interesting question in this context
which has not yet obtained the attention it deserves, is the following:

Question 1. Let G = AutF(E), where F is a field of characteristic 0 and let E/F
be a field extension of finite transcendence degree over F. What is dH1(G,E×)?

In [3] the authors addressed many problems concerning the category Q[G]dis.
However, several questions remained unanswered. E.g.:
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Question 2. Let G be a t.d.l.c. group. For which closed subgroups H of G is
resGH( ) mapping injectives to injectives. Of particular interest would be the case
when H is co-compact in G, or when H is discrete in G.

For R = Q calculations of dH•(G, ) become easier due to the following fact

Fact 1. The category Q[G]dis is an abelian category with enough projectives. Indeed
for any compact, open subgroup O of G the left Q[G]-permutation module Q[G/O]
is a projective object in Q[G]dis.

If M and N are two rational discrete left G-modules it is straightforward to
verify that M ⊗Q N is again a rational discrete left G-module. Neverthelesss the
following question remained unanswered.

Question 3. Let P be a projective object in Q[G]dis and let M be a rational discrete
left G-module. Is P ⊗Q M necessarily a projective object in Q[G]dis?

The existence of enough projectives in Q[G]dis allows one to define discrete
rational homology dH•(G, ) with coefficients in Q[G]dis, and yields also a natural
notion of being rationally of type FP∞. The setup allows one to define the rational
discrete cohomological dimension of a t.d.l.c. group G by

(2) cdQ(G) = sup{n ∈ N | dHn+1(G, ) = 0 } ∈ N ∪ {∞}.

E.g., for a discrete group G this number coincides with the cohomological Q-
dimension of G. It is a direct consequence of Bass-Serre theory that the t.d.l.c.
groups π = π1(G ,Λ, x0) described in Example (C) satisfy cdQ(π) ≤ 1. Let G be
a t.d.l.c. group and let µ be a fixed left-invariant Haar measure on G. One says
that G is c/o-bounded, if there exists a positive real number c such that for every
compact open subgroup O of G one has µ(O) ≤ c. The following theorem can be
seen as a second1 t.d.l.c. version of the Stallings-Swan theorem (cf. [4]).

Theorem 2 (I. Castellano, B. Marchionna, T.W.). Let G be a unimodular c/o-
bounded, compactly generated t.d.l.c. group satisfying cdQ(G) ≤ 1. Then there
exists a graph of groups G like in Example (C ) based on a finite connected graph
Λ such that G ≃ π1(G ,Λ, x0).

Question 4. Does Theorem 2 remain true without the hypothesis of c/o bound-
edness, and/or unimodularity?

Although there is no group algebra one may associated to the abelian category

Q[G]dis, there is a canonical rational discrete bimodule

(3) Bi(G) = lim
−→

O⊆c/oG

Q[G/O]

which plays a similar role as the integral group algebra for discrete groups. E.g.,
the t.d.l.c. group G is said to be a rational duality group of dimension d ∈ N, if

(a) G is rationally of type FP∞,
(b) cdQ(G) = d,

1A first version has been obtained by I. Castellano in [2].
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(c) dHk(G,Bi(G)) = 0 for k 6= d.

From work of Michael Davis one concludes that the t.d.l.c. group G = X̂(F) of
Example 1(E) is a rational duality groups of dimension d ≥ 1 if, and only if, (W,S)
is a Q-duality group of dimension d (cf. [3]). Although many features of Coxeter
groups have been studied in detail, the author could not find a satisfactory2 answer
to the following question.

Question 5. What crystallographic Coxeter groups are Q-duality groups of di-
mension d ≥ 1?

2. The Hattori-Stallings rank and the Euler-Poincaré characteristic. In
case that G is unimodular, the Hom-⊗ identity in combination with the evaluation
morphism φO : P ⊗G HomG(P,Bi(G)) → Q · µ assigns do the identity of every
finitely generated projective object P in Q[G]dis a rational multiple hs(P ) ∈ Q · µ
of a normalized Haar measure µ, and thus can be considered as a generalized
Hattori-Stallings rank (cf. [5]), e.g., hs(Q[G/O]) = µO, where µO is the Haar
measure on G which restriction to O is a probability measure. The following
theorem may be considered as a t.d.l.c. version of a theorem of I. Kaplansky (cf.
[5]).

Theorem 3 (I. Castellano, G. Chinello, T.W.). Let G be a t.d.l.c. group, let O
be a compact open subgroup of G, and let P ∈ ob(Q[G]dis) be projective. Then

hs(P ) ∈ Q+
0 · µO. In particular, hs(P ) = 0 if, and only if, P = 0.

Let G be a t.d.l.c. group which is

(i) unimodular,
(ii) rationally of type FP∞,
(iii) of finite rational cohomological dimension.

For such a group let (P•, ∂•) be a finite and finitely generated projective resolution
of the trivial left Q[G]-module in the category Q[G]dis. Then one defines the Euler-
Poincaré characteristic χG of G by

(4) χG =
∑

k∈N0

(−1)k · hs(Pk).

Example 2. (A) If G = π1(G ,Λ, x0) is the fundamental group of a profinite graph
of groups based on the finite graph Λ (cf. Ex.1(C)), one has

(5) χG =
∑

v∈V (Λ)

µGv −
∑

e∈Eg(Λ)

µGe

(B) If G = X̂D(F) for some finite field of cardinality q (cf. Ex.1(E)) one obtains

(6) χG = 1
pW,S(q) · µIw,

where Iw is the stabilizer of a chamber in the building ∆+.

2Obviously, affine and crystallographic hyperbolic Coxeter groups share this property, but
one may speculate whether the class of examples is much larger or not.
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3. Formal Dirichlet series associated to t.d.l.c. groups. Let G be a t.d.l.c.
group, let µ be a left-invariant Haar measure of G, let O ⊆c/o G and let R ⊂ G
be a set of coset representatives for O\G/O. One says that G has bounded coset
growth with respect to O, if for all n ∈ N one has

(7) an = |{ r ∈ R | µ(OrO) = n · µ(O) }| <∞.

If G has bounded coset growth with respect to some compact open subgroup, then
it has bounded coset growth with respect to all compact open subgroups. For such
a t.d.l.c. group G one defines the formal Dirichlet series

(8) ζG,O(s) =
∑

n∈N

an · n
−s.

In many cases one verifies that ζG,O defines a meromorphic function ζ̂G,O : C →
C ∪ {∞}. In this case one calls (G,O) a meromorphic pair. A question we have
investigated for many examples is the following:

Question 6. For which merohoric pairs (G,O) satisfying (i)-(iii) is it true that

(9) χG = 1
ζG,O(−1) · µO

Question 6 has an affirmative answer for (X̂D(F), Iw) for every crystallographic
Coxeter group (W,S) (cf. Ex. 1(E)). The same is true if G = X(E) for a Chevalley
group scheme X , a t.d.l.c. field E and O ⊂ G a parahoric subgroup of G (cf. [5]).
However, recently B. Marchionna found examples of merohoric pairs which do not
satisfy (4) and also many merohoric pairs satisfying (4) (for t.d.l.c. groups G
without Bruhat decomposition).

The abscissa of convergency a = abs(ζG,O) as well as the order of the pole
ord(ζG,O) at a, do not depend on the choice of compact open subgroup, and thus
are invariants of G.
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Cohomological finiteness conditions and stable categories on rational

discrete modules over TDLC groups

Rudradip Biswas

1. Objective. We want to associate to the abelian category of rational dis-
crete modules over a TDLC group a “stable category” with good behaviour (i.e.
satisfying the equivalences shown in Theorem C).

2. A useful homological result. For any TDLC group G, it is known (Propo-
sition 3.2 of [3]) that the rational discrete modules form an abelian category with
enough projectives and enough injectives - we will be denoting this category by AG.
Denote the supremum over all AG-objects with finite projective (resp. injective)
dimension by Fin ProjDim(AG) (resp. Fin InjDim(AG)).

Theorem A. (partly new, partly inspired by [5], and partly covered by Thm.
VII .2.2 of [2]) The following are equivalent for any TDLC group G.

a) Every object in AG admits a complete projective resolution, i.e. every object
has a projective resolution that eventually agrees with a totally acyclic complex
of projectives.

b) silp(AG) (defined as the supremum over the injective dimension of AG-
projectives) and spli(AG) (defined as the supremum over the projective dimension
of AG-injectives) are finite.

c) Every object in AG admits a complete injective resolution, i.e. every object
has an injective resolution that eventually agrees with a totally acyclic complex of
injectives, and Fin InjDim(AG) <∞.

d) Complete cohomology computed with projective resolutions agrees with com-
plete cohomology computed with injective resolutions (in the style of Nucinkis [5]).

Proposition B. When any of the equivalent statements of Theorem A are sat-
isfied (an easy example is when G = SLn(Qp) as it has finite virtual cohomological
dimension), we have

silp(AG) = spli(AG) = FinProjDim(AG) = Fin InjDim(AG) <∞
We can add some more invariants here like the finitistic and the global Goren-

stein dimensions. The main use of Theorem A is that it gives very neat conditions
on when every object has complete resolutions which is useful in constructing a
well-behaved stable category as we describe below.

3. Candidates for stable categories and equivalences.

Theorem C. (new, in the spirit of [1, 4]) Let G be a TDLC group such that
silp(AG) and spli(AG) are finite. Then, the following triangulated categories are
equivalent (and are therefore equivalently adequate candidates for our stable cat-
egory):

(i) (AG, Êxt
0

AG
( , )) (here, the objects are all modules in AG and the Hom-sets

are given by the zero-th complete cohomology groups computed with projective
resolutions)
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(ii) (AG,}Ext0AG
( , )) (here, the objects are all modules in AG and the Hom-

sets are given by the zero-th complete cohomology groups computed with injective
resolutions)

(iii) Db(AG)/K
b(Proj -AG) (the Verdier quotient of the derived bounded cate-

gory on AG and the homotopy category of bounded complexes of AG-projectives)

(iv) Db(AG)/K
b(Inj -AG) (the Verdier quotient of the derived bounded category

on AG and the homotopy category of bounded complexes of AG-injectives)
(v) The homotopy category of totally acyclic complexes of AG-projectives.
(vi) The homotopy category of totally acyclic complexes of AG-injectives.
(vii) GProj(AG) (Gorenstein projectives of AG, i.e. AG-objects arising as cycles

in totally acyclic complexes of AG-projectives, form a Frobenius category with the
class of projective-injectives given by the AG-projectives; GProj(AG) denotes its
stable category where we keep all Gorenstein projectives as objects and kill all
morphisms that factor through an AG-projective). To get to (iii) from (i), con-
sider a module as a complex concentrated in degree 0; for (iii) to (v), take complete
projective resolutions (possible due to Thm A); for (v) to (vii), take the zero-th
syzygy functor (see Def. 3.7 of [4]); and for (vii) to (i), use the inclusion functor.
Composing these, get (i) ∼= (iii) ∼= (v) ∼= (vii). Repeat the analogous treatment
with “module as a deg 0 concentrated complex”, “taking complete injective reso-
lutions” (again, possible due to Thm A), and the zero-th cosyzygy functor, to get
(ii) ∼= (iv) ∼= (vi). (i) ∼= (ii) by Thm A, and (iii) ∼= (iv) as silp(AG), spli(AG) <∞.

Note that all the categories in Theorem C except two, namely (AG, Êxt
0

AG
( , ))

and (AG,}Ext0AG
( , )), are clearly triangulated categories. Without the assump-

tion that silp(AG) and spli(AG) are finite, these two categories need not even be
triangulated. Since we know very little about AG-injectives, the presence of (vi)
above is noteworthy.

4. Finishing remarks. We are insisting on these equivalences because they are
useful for making progress on stratification questions in the spirit of, for example,
Benson-Iyengar-Krause or Barthel-Heard-Sanders. This is why even if we can
replace AG with a more refined abelian category associated to G using the full
force of Condensed Maths, our use of and dependence on complete resolutions
(both projective and injective) to establish “good behaviour” of our stable category
will remain.

Ending open question. Can we achieve Theorem C with a finiteness assump-
tion on just one of silp(AG) and spli(AG)?
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Finiteness properties and locally compact groups

Stefan Witzel

Topological finiteness properties of discrete groups are studied for two principal
reasons. The classical one is that they give sufficient conditions for group cohomol-
ogy to be effectively computable using a CW-model for a classifying space. The
modern one is that certain finiteness properties are coarse invariants and there-
fore allow to distinguish the large-scale geometry of groups. Finiteness properties
for locally compact groups have been proposed. What is missing is the universal
object whose finiteness they are supposed to describe.

1. Discrete groups

Topological finiteness properties are about the existence of classifying spaces with
good finiteness properties so we start with these. If G is a discrete group, a
K(G, 1) is a homotopy type CG of a pointed CW-complex such that π1(CG) = G
and the map [(Z, z0), CG] → Hom(π1(Z, z0), G) is bijective. Another perspective
is via principal bundles: a principal G-bundle p : EG → BG is universal if every
numerable principal G-bundle arises as a pullback f∗(p) along a map f : Z → Y .

For a discrete group G, a principal G-bundle X → Y is the same as a normal
covering with group of deck transformations G which by covering space theory
corresponds to a homomorphism π1(Y )→ G. In particular, the universal bundle
EG → BG can be recovered from BG and K(G, 1) and BG are the same thing.
This is specific to discrete groups and for non-discrete groups it may be more
reasonable to generalize EG.

A discrete group is of type Fn if it admits a CW-model for EG whose n-skeleton
is compact modulo G, equivalently if acts freely and cocompactly on an (n − 1)-
connected CW complex. It is of type F∞ if it is of type Fn for all n.
A basic fact about these finiteness properties is that if 1 → N → G → Q → 1 is
an extension in which N is of type Fn then G of type Fn+1 implies Q of type Fn+1

and Q of type Fn implies G of type Fn.
The main tool in determining finiteness properties is Brown’s criterion [3, The-

orems 2.2, 3.2]:

Theorem. Fix G and n. Let X be an (n−1)-connected G-CW complex. Let (Xi)i
be a filtration by G-CW subcomplexes. Assume that Gσ is of type Fn−dimσ for all
σ. Then G is of type Fn if and only if (Xi)i is essentially (n− 1)-connected.

The filtration is essentially n-connected if the directed system (πk(Xi))i is es-
sentially trivial for every k ≤ n which in turn means that for every i there exists a
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j such hat πk(Xi → Xj) = 0. Brown’s criterion can be decomposed into two parts:
the stabilizer part says that a CW-complex on which G acts can be replaced by one
on which G acts freely without affecting cocompactness on the n-skeleton provided
the stabilizers have the right finiteness properties; and the filtration part says that
if G acts freely on an (n− 1)-connected CW complex, its finiteness properties are
detected by any cocompact filtration.

2. Universal spaces for locally compact groups

Moving on to locally compact groups, we would like to define finiteness properties
Fn that capture the finiteness of some universal free G-space EG. It turns out that
is relatively easy to agree on what the properties Fn will be but not so clear what
the universal space EG is that they describe finiteness of, a basic problem being
that non-discrete groups do not act freely and continuously on CW-complexes (in
contrast there is no problem to define a classifying space for proper actions of a tdlc
group, for instance). One may hope for EG to be an object in a model category for
topological spaces with continuous G-actions that has a notion of dimension and
then Fn would be universality with respect to n-dimensional objects. Milnor’s EG,
the infinite join of G with itself appropriately topologized, is bound to be model
for EG in the sense to be established, but studying finiteness properties becomes
interesting only once one can vary the model within its (equivariant) homotopy
class. Corob Cook [4] has results in this direction with the additional ambition of
recovering G from BG as a topological group, but their universal properties are
unclear and connected groups will likely interfere with the homotopy theory.

Finiteness properties of locally compact groups should generalize the notions
of being compactly generated (F1) and of being finitely presented (F2) and these
special cases are instructive: G is compactly generated if there is a compact subset
C that generated G as an abstract group. This can be reformulated to say that
G acts cocompactly on a topological graph with vertex set G and edge set G×C
whose underlying discrete graph is connected. A natural extension to G being of
type Fn would be to ask for the existence of a simplicial space ∆ (consisting of
topological spaces ∆[k] of k-simplices and continuous face and degeneracy maps)
on which G acts freely such that the action on ∆[k], k ≤ n is cocompact and that
the geometric realization of the underlying simplicial set |F∆| is (n−1)-connected
(where F is the forgetful functor from topological spaces to topological sets). Or
alternatively to act freely on a topological CW-complex (whose n-cells are indexed
by a topological space rather than a set) cocompactly on k-cells, k ≤ n, and
that the underlying CW-complex (with discrete set of cells) be (n− 1)-connected.
But for now these are just ad-hoc notions without justification by some form of
universality.

There are a few more lessons to be learned from looking at compact generation.
First, the models for EG we are looking for will not be G-CW complexes, which
are built out of equivariant cells G/H×Dk: while the 0-skeleton of the topological
graph is a single equivariant cell G/{1}×D0, already the edges are parametrized
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by G × C, so a single G/H-factor is not sufficient to capture the amount of non-
discreteness. Second, a connected group G is not compactly generated simply
because G → G\G is a bundle with connected total space but rather because it
is generated by any identity neighborhood and this neighborhood can be taken to
be compact. This leads to a warning when moving beyond the locally compact
setting: if G\X is compact it may not be true that there is a compact C ⊆ X
with G.C = X .

3. Finiteness properties for locally compact groups

The reason that the correct notion of finiteness properties for locally compact
groups is uncontroversial is that certain simple assumptions determine them uniquely.
For instance:

Observation. Suppose (Tn)n∈N are properties of groups (and T∞ means Tn for
all n) such that the following hold:

(1) If 1→ N → G→ Q→ 1 is an extension with N of type T∞ then G is Tn

if and only if Q is Tn.
(2) If G acts properly and transitively on a contractible manifold then it is of

type T∞.

Then G is Tn if and only if G/G(0) is Tn. If in addition

(3) Brown’s criterion holds (at least for proper actions)

then the properties Tn are uniquely determined.

Proof. If G is compact then it is T∞ by (2). If G is connected Lie then it admits
a maximal compact subgroup C [7, Theorem 14.1.3] and C\G is contractible [7,
Theorem 14.3.11] soG is T∞ by (2). IfG is connected then by the Gleason–Yamabe
theorem it is pro-Lie. Since the Lie groups involved have bounded dimension, the
inverse system eventually consists of coverings. Since the fundamental group of a
Lie group is finitely generated abelian [7, Theorem 12.4.14], only finitely many of
these can be infinitely-sheeted. It follows that G is (pro-finite)-by-Lie and hence of
type T∞ by (1). If G is a general locally compact group with connected component
G(0) it follows by another application of (1) that G is Tn if and only if G/G(0)

is, reducing to the tdlc case. Finally if G is tdlc then by van Dantzig’s theorem
there is a compact open subgroup C. Then G acts properly on the free simplicial
set over G/C, which is contractible, so it is of type Tn if and only if some/any
cocompact filtration is essentially (n− 1)-connected. �

The existing notions of finiteness properties for locally compact groups stipu-
late some assumption of this form to get a definition. The compactness properties
Cn by Abels–Tiemeyer [2] stipulate that the filtration part of Brown’s criterion
should hold for the filtration of the free simplicial set over G filtered by G-orbits
of free simplicial sets over compact subsets of G. The finiteness properties Fn

by Castellano–Corob-Cook [5], which are only defined for tdlc groups, stipulate
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that compact groups should be F∞ and that the stabilizer part of Brown’s crite-
rion should hold for proper actions. Applying [2, Theorem 3.2.2] and [5, Theo-
rems 4.7,4.10] to the free simplicial set over G/C, C a compact open subgroup,
one finds that both notions coincide on tdlc groups.

4. Examples

Examples of locally compact groups with interesting finiteness properties exist in
the literature although they are usually formulated for discrete groups because of
the unclear meaning of finiteness properties of locally compact groups. This is
true specifically of the solvable groups discussed in [12, 10]. Note that Brown’s
criterion together with the fact that arithmetic groups are F∞ allows to reduce
the determination of finiteness properties of S-arithmetic groups to that of finite-
ness properties of algebraic groups over local fields, see [11, Theorem 3.1]. For
instance finiteness properties of A(Z[1/p]) are equivalent to compactness proper-
ties of A(Qp). Beyond this equivalence, however, the proof that A(Z[1/p]) is of
type Fn−1 but not of type Fn by filtering a Bruhat–Tits building applies in ver-
batim to prove that A(K) is of type Fn−1 but not of type Fn even if K is local
field of positive characteristic, using the version [5, Theorems 4.7,4.10] of Brown’s
criterion.

5. Coarse geometry

The second motivation for studying finiteness properties mentioned in the intro-
duction is coarse geometry. In this context the situation is much clearer, even
beyond locally compact groups. A metric space X is coarsely n-connected if the
Vietoris–Rips filtration VRr(X) is essentially n-connected. Alonso [1] observed
that this is a coarse invariant and by Brown’s criterion being of type Fn coincides
with being coarsely (n − 1)-connected for countable groups. A locally compact
σ-compact group G carries an adapted pseudo-metric that is unique up to coarse
equivalence. If G is compactly generated then the metric can be taken to be
coarsely geodesic and is then unique up to quasi-isometry (see [6, Milestones 4.A.8
and 4.B.13]. This generalizes statements for discrete groups that are countable
and finitely generated, respectively. Thus from a geometric perspective the nat-
ural notion for a locally compact (σ-compact) group to be of type Fn is to be
coarsely (n − 1)-connected. If one is willing to work with coarse structures that
need not be metrizable (see [8]) one can go further: Rosendal [9] defines a coarse
structure on every topological group that is unique up to coarse equivalence.

An analogous form of coarse and large-scale geometry also exists for approxi-
mate groups leading to similar questions. In particular, it would be interesting to
know how coarse connectivity relates to finiteness of cohomology.
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Profinite rigidity, homology, and Coxeter groups

Yuri Santos Rego

(joint work with Petra Schwer)

Dropping ‘locally’ from TDLC, a (topological, Hausdorff) group G is called profi-
nite if it is totally disconnected (TD) and compact (C). Many infinite groups have
TDC counterparts. Given G ∈ FGRF = class of finitely generated residually finite

(discrete) groups, its profinite completion Ĝ is the topological closure

Ĝ := ι(G) ≤
∏

NEG& [G:N ]<∞

G/N, where ι(g) = (gN)N is the diagonal embedding

and each finite quotient G/N is given the discrete topology (thus Ĝ is TDC).

1. Profinite rigidity and homological aspects

To what extent does the collection of (isomorphism classes of) finite quotients of
an infinite group G determine its algebraic structure? This problem, whose origin
is traced back to questions of Grothendieck and others in the 1970s, is a common
point of interest for geometric group theory and the theory of TDLC groups. An
ambitious first version is whether finite quotients determine isomorphism types.

Definition 1. Given a subclass C ⊆ FGRF we say G ∈ FGRF is profinitely rigid

relative to C if (Ĝ ∼= Ĥ =⇒ G ∼= H) holds for all H ∈ C. If C = FGRF we call
G absolutely profinitely rigid. If (up to isomorphism) there are only finitely many

H ∈ C with Ĥ ∼= Ĝ but H 6∼= G, we call G almost profinitely rigid (rel. C).

Below is a widely nonexhaustive list around the current state of knowledge. We
tacitly assume our discrete groups to lie in FGRF unless explicitly said otherwise.
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(1) (Folklore) Z and the infinite dihedral group are absolutely profinitely rigid.

(2) (Baumslag) ∃B1, B2 ∈ FGRF metacyclic with B̂1
∼= B̂2 but B1 6∼= B2.

(3) (Pickel) Nilpotent groups are almost absolutely profinitely rigid.
(4) (Remeslennikov; open problem) Are free groups absolutely profinitely rigid?
(5) (Wilton) Free groups are profinitely rigid relative to limit groups.
(6) (Liu) Fundamental groups of hyperbolic 3-manifolds of finite volume are

almost profinitely rigid relative to 3-manifold groups.

Adapting the question, what kinds of features are witnessed by finite quotients?

Definition 2. A group-theoretic property (P ) and a group-theoretic invariant
η(−) are said to be profinite relative to C ⊆ FGRF in case the implications

• (G has property (P ), G, H ∈ C, and Ĝ ∼= Ĥ) =⇒ H has property (P ),

• (G, H ∈ C, and Ĝ ∼= Ĥ) =⇒ η(G) = η(H)

hold, respectively. If C = FGRF we call the property (P ) (resp. η(−)) profinite.

For instance, the first integral homology group H1(−,Z) is a profinite invariant.
In fortunate cases, further homological information is detected by completions, or
homological tools aid in computing completions, motivating the following (broad)
program: Given a class of groups C ⊆ FGRF, ...

(1) ...find (co)homological invariants relative to C,

(2) ...use (co)homological methods to check whether Ĝ ∼= Ĥ for G,H ∈ C.

Here we mention some important contributions in this direction.

Theorem 3 (Platonov–Tavgen). Consider G1, G2 ∈ FGRF and suppose there

exists a finitely presented group Q 6∈ FGRF for which Q̂ = 1 and H2(Q,Z) = 0
and such that there are epimorphisms π1 : G1 → Q and π2 : G2 → Q. Then the
fiber product associated to π1 and π2 has the same profinite completion as G1×G2.

Theorem 4 (Lück; Bridson–Conder–Reid). The rational Euler characteristic is
a profinite invariant relative to C = lattices in PSL2(R).

Theorem 5 (Kammeyer–Kionke–Raimbault–Sauer). Let C be the class of arith-
metic groups with the congruence subgroup property. Then the rational Euler char-
acteristic is not a profinite invariant relative to C, though its sign is so.

Theorem 6 (Jaikin-Zapirain; Hughes–Kielak). Let C be the class of finitely pre-
sented subgroup-separable groups. Then the property “the BNS invariant Σ1(−;R)
contains antipodal points (for any commutative unital ring R)” is profinite rel. C.

2. Coxeter groups

Profinite topics have been actively studied for groups of strong geometric flavor.
Surprisingly, not much is known for the (arguably) core examples of such groups:
a Coxeter group W (of rank n) is a group admitting a Coxeter presentation

W ∼= 〈s ∈ S | (st)ms,t for every pair s, t ∈ S with ms,t <∞〉,

i.e., |S| = n and the orders ms,t satisfy ms,s = 1 and ms,t = mt,s ∈ N≥2 ∪ {∞}.
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Example 7. Sym(n) is a prototypical finite Coxeter group, and D∞
∼= C2 ∗C2 is

the ‘smallest’ infinite Coxeter group. The following Coxeter group of rank 5,

W ∼= 〈a, b, c, d, e | a2, b2, c2, d2, e2, (ab)3, (bc)5, (ad)2, (bd)2, (be)2, (ce)2〉,

is also isomorphic to the (hyperbolic) Coxeter triangle group ∆(6, 10,∞).

To our knowledge, profinite literature around the class G := Coxeter groups of
finite rank ⊂ FGRF is at most a decade old. We record:

(Kropholler–Wilkes [4]; Corson–Hughes–Möller–Varghese [3]) Right-angled
Coxeter groups are profinitely rigid relative to G.
(Bridson–McReynolds–Spitler–Reid [2]) 14 hyperbolic Coxeter triangle groups
are known to be absolutely profinitely rigid.
(Möller–Varghese [5]) Relative to G, irreducible and affine imply rigidity.

Let us highlight two results addressing our motivating program for Coxeter groups.

Theorem 8 (Corson–Hughes–Möller–Varghese [3]). The right-angled Coxeter group
(C2 ∗ C2 ∗ C2 ∗ C2)× (C2 ∗ C2 ∗ C2 ∗ C2) is not absolutely profinitely rigid.

Proof sketch. Apply Theorem 3 of Platonov–Tavgen taking G1 = G2 = C2 ∗ C2 ∗
C2 ∗ C2 and using R. Thompson’s simple group V as the quotient Q, and check
that the corresponding fiber product is not isomorphic to G1 ×G2. �

Theorem 9 (Santos Rego–Schwer [6]). Write G≤3 for the class of Coxeter groups
that admit some Coxeter presentation of rank three or less. Then every W ∈ G≤3

is profinitely rigid relative to G≤3. Moreover, Coxeter triangle groups satisfy

̂∆(p, q, r) ∼= ̂∆(p′, q′, r′) ⇐⇒ {p, q, r} = {p′, q′, r′}.

Proof strategy. Rule out spherical groups and clear the affine case by looking at
H1(−,Z) and comparing completions of virtually abelian groups. In the hyperbolic
case the presence of von Dyck subgroups implies that Theorem 4 still applies.
Compare Euler characteristics and invoke profinite techniques of [1] to finish. �

Theorem 9 applies to some groups of higher rank, see Example 7. Besides using
homological tools, Theorem 9 shows that the geometry of the given groups (e.g.,
covolume, having cusps, being hyperbolic) is encoded by finite quotients. We pose:

Problem 10. Which (co)homological properties and invariants are profinite rela-
tive to the class G of Coxeter groups of finite rank?
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Double-coset zeta functions for groups acting on trees

Bianca Marchionna

Double cosets play a prominent role in the study of totally disconnected locally
compact (= t.d.l.c.) groups, e.g. in Representation Theory or Geometric Group
Theory. From now on, we focus on double cosets of a t.d.l.c. group G with respect
to a compact open subgroup K ≤ G. In this case, each double coset KgK has

(1) µK(KgK) = |K : K ∩ gKg−1| ∈ Z≥1,

where µK( ) is the left Haar measure on G such that µK(K) = 1. For a given
pair (G,K), consider the following (formal) Dirichlet series:

(2) ζG,K(s) :=
∑

KgK∈K\G/K

µK(KgK)−s,

which is called the double-coset zeta function associated to (G,K) (cf. [2]).
The key for studying ζG,K(s) is to find a favourable enumeration of the K-

double cosets and an explicit formula for each µK(KgK). Consider for instance
G = SL2(Qp) and K = SL2(Zp), where Qp is the p-adic field and Zp is its ring of
integers. By the Cartan decomposition of G with respect to K one has

(3) G =
⊔

d∈Z≥0

K · diag(p−d, pd)︸ ︷︷ ︸
=:gd

·K.

Via a direct computation, µK(KgdK) = |K : K∩gdKg−1
d | is 1 if d = 0, and equals

(p+ 1)p2d−1 otherwise. Therefore,

(4) ζG,K(s) =
+∞∑

d=0

µK(KgdK)−s = 1 +
(p+ 1)−sp−s

1− p−2s
.

There is another (geometric) way to obtain the same result, which goes beyond
matrix computations and opens to further generalizations. It is based on the fact
(cf. [6, Ch. II, § 1]) that G = SL2(Qp) acts on a (p + 1)-regular (simplicial)
tree Tp+1 and K = SL2(Zp) is the stabilizer of a vertex, say v0. Remarkably,
the G-action on Tp+1 is locally ∞-transitive, i.e., every vertex-stabilizer Gv acts
transitively on the set of geodesics {[v, w] ⊂ Tp+1 : length([v, w]) = k}, for every
k ≥ 0. Hence there is a 1-to-1 correspondence mapping KgdK, d ≥ 0, to the orbit
K · [v0, gd · v0] = {[v0, w] ⊂ Tp+1 : length([v0, w]) = 2d}. Moreover, by (1) one has

µK(KgdK) = |K · [v0, gd · v0]| = |{[v0, w] ⊂ Tp+1 : length([v0, w]) = 2d}.

By the regularity of Tp+1, one recovers the formula of µK(KgdK) claimed before.
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This second argument easily extends to every t.d.l.c. group G acting locally ∞-
transitively on a locally finite tree T with compact open vertex-stabilizers, taking
K as a vertex-stabilizer (or, up to minor changes, an edge-stabilizer).

More generally, we can assume that G acts weakly locally ∞-transitively on T ,
i.e., every vertex-stabilizer Gv acts transitively on the set of geodesics from v in T
having the same image via the quotient map π : T −→ Γ := G\T . If the G-action
on T is edge-transitive, this condition coincides with locally ∞-transitivity. In
general, however, it comprises many other (non-edge transitive) examples, like the
groups of automorphisms of locally finite trees preserving a vertex-coloring (cf. [7,
§ 5]) or universal groups associated to certain local action diagrams (cf. [5]).

In this more general setting, let K = Gv be a compact open vertex-stabilizer.
Then, eachKgK corresponds to a loop at π(v) in Γ, i.e., π([v, g ·v]), and µK(KgK)
is the number of geodesics from v in T lifting the loop π([v, g · v]) via π. A similar
argument can be found in [1, § 3]. Hence, for computing ζG,K(s), we need only
two tools: the quotient graph Γ = G\T regarded as a Serre-graph1, and a weight
ω(e) ∈ Z≥1 on each e ∈ Edg(Γ) giving the number of edges in the Serre-graph
associated to T lifting e and with a common origin. With a similar argument as
in [3], one deduces what follows.

Theorem A. Let G be a t.d.l.c. group acting weakly locally ∞-transitively on
a locally finite tree T with compact open vertex-stabilizers, and let K = Gv be a
vertex-stabilizer. Let Γ = G\T be finite, and ω(e) ≥ 3 for every e ∈ Edg(Γ). Then
ζG,K(s) converges at some s ∈ C and it can be meromorphically continued to C as

ζG,K(s) =
det(I −W (s) + Uπ(v)(s))

det(I −W (s))
.

Here, W (s) and Uπ(v)(s) are |Edg(Γ)|-dimensional matrices whose entries are en-
tire functions in s ∈ C depending only on Γ and ω( ).

Following [2], we can often recover the Euler characteristic2 χG of the group G
from the meromorphic continuation of ζG,K(s) as follows.

Theorem B. Let (G,K) as in Theorem A. If Γ is a tree, then χG = ζG,K(−1)−1µK .

Unlike the examples studied in [2], if Γ is not a tree, the conclusion of Theorem
B is no longer true in general (cf. [4]). At the current stage, however, there is
not a complete characterization of all pairs (G,K) for which χG = ζG,K(−1)−1µK

holds yet.
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Profinite rigidity of fibring

Dawid Kielak

(joint work with Sam Hughes)

The starting point for this series of three lectures is the theorem of Jaikin-Zapirain
[5].

Theorem 1. Let M and N be compact connected orientable aspherical three-
manifolds. If their fundamental groups are profinitely isomorphic, then M fibres
over the circle if and only if N does.

Here, being profinitely isomorphic means precisely that the profinite comple-
tions of the groups are isomorphic. When the groups are finitely generated, as is
the case for the groups above, this amounts to saying that for every finite group,
it is a quotient of one of the groups if and only if it is a quotient of the other.

For irreducible three-manifolds, fibring over the circle can be understood alge-
braically: it was shown by Stallings [7] that it is equivalent to algebraic fibring,
that is, admitting an epimorphism to Z with finitely generated kernel (this fact
has two more modern proofs [3, 1]). Hence, it becomes natural to ask under what
circumstances does being algebraically fibred pass between groups with the same
profinite completions.

Theorem 2 (Hughes–K. [4]). Let G and H be two finitely presented LERF groups,

and suppose that the profinite completions Ĝ and Ĥ are isomorphic. If G is alge-
braically fibred, then so is H.

Recall that a group G is LERF (locally extended residually finite) if and only
if for every finitely generated subgroup A 6 G and an element b ∈ G r A, there
exists a quotient map ρ : G→ Q with finite image such that ρ(b) 6∈ ρ(A).

The above is actually an instant of a more general result. To state it, we need to
introduce the concept of BNS-invariants. Given a ring R, the nth BNS invariant
of G over R, denoted Σn(G;R), is a subset of the set of non-zero homomorphisms
G→ R consisting of maps φ : G→ R for which

Hi(G; R̂G
φ
) = 0
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for all i 6 n. Here R̂G
φ
is the Novikov ring associated to φ, defined as the ring of

functions G → R whose support intersects φ−1((−∞, κ)) in a finite set for every
κ ∈ R.

The BNS-invariants are related to our previous discussion, since for a character
φ : G → Z, lying in Σn(G;R) ∩ −Σn(G;R) is equivalent to having kernel of type
FPn(R).

A character G→ Z lying in Σn(G;R)∪−Σn(G;R) will be called n-semi-fibred.
In [4] we introduced the following definition.

Definition 3. Let R be an integral domain. A group G lies in TAPn(R) if and
only if n-semi-fibred characters are precisely the characters for which all twisted
Alexander polynomials over R in dimensions i for all i 6 n do not vanish.

The twisting considered above is that by an epimorphism from G to a finite
group. For every group, if we are given an n-semi-fibred character, then its twisted
Alexander polynomials over R in dimensions i for all i 6 n do not vanish; the
interesting part of the definition is the reverse implication.

It was first observed by Friedl–Vidussi [2] that twisted Alexander polynomials
are important in recognising fibred 3-manifolds. In the language we just intro-
duced, the main theorem of [2] states that fundamental groups of connected com-
pact orientable three-manifolds with empty or toroidal boundary lie in TAP1(R)
for every Noetherian UFD R.

We now have more examples of such groups.

Theorem 4 (Hughes–K. [4]). Let R be a commutative ring.

• If G is a LERF group of type FP2 over any commutative ring, then G lies
in TAP1(R).
• The class TAP1(R) is closed under finite products.
• Products of limits groups lie in TAP∞(R).

Once a group is shown to lie in TAP1(F) over a finite field F we can use it to
study profinite rigidity of BNS-invariants, thanks to the following result, heavily
inspired by ideas of Jaikin-Zapirain [5] and Liu [6].

Theorem 5 (Hughes–K. [4]). Let G and H be groups of type FPn(Z) that are
n-good in the sense of Serre, and that have isomorphic profinite completions. If G
lies in TAPn(R) and Σn(G;R) = ∅ then Σn(H ;R) = ∅ as well.

The class TAP1(R) remains quite mysterious.

Conjecture 6. Do all {finitely generated free}-by-cyclic groups lie in TAP∞(R)?
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Classifying Spaces

Ged Corob Cook

An important tool for studying abstract groups G is the use of group actions on
spaces. When we care about understanding these actions up to homotopy, we
typically work in the categories like CW-complexes or G-CW-complexes. There
is a CW-complex BG which is a classifying space for G: it classifies principal
G-bundles, it is an Eilenberg-MacLane space for G, and so on. As noted by Ste-
fan Witzel at this workshop, we would like to phrase questions about homological
finiteness conditions for totally disconnected, locally compact groups (type FPn,
cohomological dimension) in terms of properties of such a classifying space. When
group theorists think of doing this for topological groups, they tend to take the
approach that, at any rate, there can be no Eilenberg-MacLane space for a topo-
logical group, since the homotopy group(oid)s of such a space would be abstract
groups. The purpose of this talk is to argue that most, if not all, of the work done
by classifying spaces for abstract groups can be recovered for topological groups.

This generalisation is done by category theory in [1]. First, we replace the cate-
gory of topological spaces with a convenient category of spaces, that is, a cartesian
closed category. In my existing work, this is the category U of compactly gener-
ated, weakly Hausdorff spaces (k-spaces); in future iterations, it will probably be
condensed sets. The first benefit of this comes when we want to define topological
homotopy groups of topological spaces X : putting the compact-open topology on
the set of (pointed) continuous maps Sn → X , and the quotient topology from
this on πn(X), does not give a topological group in general. The problem is pre-
cisely the failure of topological spaces to be cartesian closed. But using the version
of the compact-open topology internal to U (that is, the k-ification of the usual
compact-open topology) instead, πn(X) becomes an internal group object of U: a
k-group.

We can put a model structure on U, the CH-structure, such that the fibrant-
cofibrant objects (that is, our analogue of CW-complexes) are retracts of KW-
complexes, spaces built by ‘attaching spaces of n-cells’ in dimension n, instead of
attaching a discrete sets of n-cells. Formally, a KW-complex X is a colimit (in
k-spaces) of a sequence

X0 → X1 →2→ · · ·
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in which X0 = T0 is a disjoint union of compact Hausdorff spaces, and each maps
Xn → Xn+1 is given by a pushout of a diagram

Xn ← Sn × Tn+1 → Bn+1 × Tn+1,

where Sn is the n-sphere, Bn+1 the n + 1-ball, and Tn+1 is a disjoint union of
compact Hausdorff spaces.

This model structure has fine enough weak equivalences that weak equivalences
induce isomorphisms of all homotopy k-groups. On the other hand, maps that
induce such isomorphisms are not weak equivalences in the CH-structure in gen-
eral. For this reason, we also need to track a weaker structure, called the regular
structure, in which the weak equivalences are those which induce isomorphisms of
homotopy group objects in the Barr-exact completion of U. Both the CH-structure
and the regular structure have analogous versions in sU, the category of simplicial
objects in U, which we will also need.

Finally, we can use this category-theoretic work to start constructing classifying
spaces for totally disconnected, locally compact groups, in [2]. For an abstract
group G, the classifying space can be constructed as the geometric realisation
of a simplicial set S with Sn given by the n-fold product Gn, and we copy this
construction for k-groups, building the classifying space BG from a simplicial k-
space S with Sn = Gn. By van Dantzig’s theorem, Sn is a disjoint union of
compact Hausdorff spaces when G is totally disconnected, locally compact, so BG
is a KW-complex. (For k-groups more generally, one takes a cofibrant replacement
of S before the geometric realisation.) The main technical result is the following:

Theorem 1. Suppose C is an open cover of X ∈ U, closed under intersections;
we think of C as a poset ordered by inclusion. Then Sing(X) is weakly equivalent

(in the regular structure on sU) to the homotopy colimit (in the CH-structure on
sU) of {Sing(U)}U∈C.

From this, we show the main result.

Theorem 2. If a k-group G is totally path-disconnected, BG is an Eilenberg–Mac
Lane space K(G, 1) for G.

This applies, in particular, to totally disconnected, locally compact groups. I
conjecture that if one replaces U with the category of condensed sets, the weak
equivalences in the CH-structure and the regular structure will be the same; this
should strengthen the equivalent of Theorem 1 and allow further results to be
proved in this direction.
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From discrete to t.d.l.c.

Laura Bonn

For discrete groups there are a lot of results about finiteness conditions, see [3].
The question is now, how we can transform these results into the world of totally
disconnected locally compact groups. As a first step we generalize the concept of
normal subgroups.

Definition. (also see [1]) Let Γ be a group and Λ ≤ Γ. Then Λ is called a
commensurated subgroup of Γ, if Λ∩gΛg−1 has finite index in Λ and in gΛg−1.

In the following we want Γ to be a discrete group and Λ ⊆ Γ to be a commensurated
subgroup. Then Γ acts on Γ/Λ by left multiplication, such that we can define a map
α : Γ → Sym(Γ/Λ). We can equipped Sym(Γ/Λ) with the topology of pointwise
convergence and then we define the following group.

Definition. The group Γ//Λ := α(Γ) is called the Schlichting completion.

Sometimes this construction is called the profinite completion of Γ relative to Λ.

Remark. (also see [2])

• If Λ is a normal subgroup, then Γ//Λ = Γ/Λ.
• Γ//Λ is a totally disconnected locally compact group.
• If Λ is a not normal subgroup, then Γ →֒ Γ//Λ is a dense embedding.

• α(Λ) is a compact open subgroup of Γ//Λ.

For the Schlichting completion the following lemma holds.

Lemma 1. [1, Lemma 6.3 and 6.4] Γ//Λ = α(Λ)α(Γ) and α(Λ) ∩ α(Γ) = α(Λ).

We want to transform some finiteness conditions of the discrete group along the
Schlichting completion to the tdlc case.

Theorem. [1, Theorem 6.1] If Γ is finitely presented and Λ ⊆ Γ is a finitely
generated commensurated subgroup then Γ//Λ is compactly presented.

Sketch of proof: For the full proof see [1, Theorem 6.1].

The compact generation set is α(Λ)∪S, where S is a finite generation set of α(Γ).
Give four types of relations, G inherits all relations of α(Γ), the intersection of

α(Λ) and S gives the second type, the two last types comes from lemma 1. �

In the setting of discrete groups the following result about finiteness properties is
known [4, Section 6], for a short exact sequence 0→ N → G→ H → 0, with N is
of type Fn−1 and G of type Fn, then H is of type Fn and if N and H of type Fn,
then G is of type Fn, too.
Here we have seen, if Γ is of type F2 and the commensurated subgroup Λ is of
type F1, then Γ//Λ is of type F2.
I am currently working on generalizing Le Boudec’s theorem to higher finiteness
conditions.
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Some cohomological invariants for tdlc-groups

Sofiya Yatsyna

When looking at the homological aspects of totally disconnected locally compact
(tdlc) groups, one may come across rational discrete cohomology theory introduced
by Castellano–Weigel in [1]. Specifically, given a commutative ring R with identity
and tdlc group G, let R[G] denote the R-group algebra, and R[G]mod – the abelian
category of left R[G]-modules. A left R[G]-module D is discrete if and only if for
each d ∈ D, the stabilizer stabG(d) is an open subgroup of G. In [1], the authors
establish R[G]dis, the full subcategory of R[G]mod, whose objects are discrete left
R[G]-modules; whereby in the case of R = Q, Q[G]dis is an abelian category with
enough injectives, and rational discrete cohomology theory for tdlc groups can be
defined.

The question naturally arises: Can this cohomology theory be used to find anal-
ogous tdlc versions of known results? One such interesting result is given by
Gedrich–Gruenberg in [3] looking at two homological finiteness conditions on a
ring R: the supremum of projective lengths (dimensions) of injective R-modules
(spli(R)) and the supremum of injective lengths of projective R-modules (silp(R)).
By way of these invariants, one can show the following:

Theorem (Gedrich–Gruenberg [3]). Let R be a commutative noetherian ring of
finite R-injective dimension t. If Λ is a R-projective Hopf R-algebra, then

silpΛ ≤ spli Λ + t.

Results of Cornick–Kropholler in [2] expand on the relationship of the above
Gedrich–Gruenberg invariants with the finitistic dimension when R is the group
algebra of a hierarchically decomposable group. Using rational discrete cohomol-
ogy, it would be interesting to develop the theory of tdlc analogues. Furthermore,
it turns out that Z[G]dis does not have enough projections (unlike its Q[G]dis coun-
terpart) – whether the above cohomological invariants could be defined for Z[G]dis

is also interesting and worth exploring.
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Finiteness Properties of Algebraic Bieri-Strebel Groups

Lewis Molyneux

(joint work with Brita Nucinkis, Yuri Santos Rego)

Given a subinterval of the real numbers I, a subgroup of positive real numbers
under multiplication P , and a Z[P ]-submodule of the real numbers A, the Bieri-
Strebel group G(I, A, P ) is the group of piecewise linear, orientation preserving
homeomorphisms of I, with slopes in P and breakpoints in A. Bieri and Strebel
constructed these groups[1] as a generalisation of Thompson’s group F . We con-
sider groups of the form G([0, 1],Z[β], 〈β〉), where β is the positive real root of the
polynomial (

∑n
i=1 aix

i)− 1, ai ∈ N. We call these Algebraic Bieri-Strebel groups.
A frequently useful property of Thompson’s group F is the ability to express

each element of the group as an ordered pair of rooted binary trees. [2] This
representation of elements has proven useful in proofs of properties of Thompson’s
group, particularly finiteness properties such as Fn (and in particular F∞) and
the BNSR-invariant. For instance, Thompson’s group can be shown to be F∞

via its action on a space of pairs of rooted binary forests and rooted binary trees,
as summarised by Zaremsky [3]. In addition, while the initial calculation of the
BNSR invariant of Thompson’s group was performed by Bieri, Geoghegan and
Kochloukova [4], Zaremsky and Witzel were able to recalculate the invariant using
Morse theory and an adaptation of the previous forest-tree space [5].

For polynomials of the form a2x
2+a1x−1, Winstone was able to show that tree-

pair representations for all elements of the associated group are only possible when
a2 ≤ a1 [6]. Initially, Cleary was able to demonstrate the F∞ property for groups
with associated polynomial of the form x2+nx−1, n > 0 [8]. This proof has since
been generalised using tree-pair representations, demonstrating the F∞ property
for all quadratic Bieri-Strebel groups with complete tree-pair representations.

Molyneux, Nucinkis and Santos Rego [7] were able to apply Bieri, Geoghegan
and Kochloukova’s method in order to calculate the BNSR-invariant of Fτ , but
the BNSR-invariant for Algebraic Bieri-Strebel groups in general remains an open
problem. For those with complete tree-pair representations, A complex similar to
that constructed by Stein and Farley is producible, and the Morse Theory used
by Zaremsky and Witzel should be applicable.
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Embedding theorems for discrete groups

Ian J. Leary

This talk gave a survey of three embedding theorems and discussed some related
open questions. The theorems, together with their dates of publication, are stated
below.

Theorem 1 (Higman–Neumann–Neumann [4], 1949). Every countable group em-
beds in a 2-generator group.

Theorem 2 (Higman [3], 1961). A finitely generated group embeds in a finitely
presented group if and only if it is recursively presented.

Theorem 3 ([6], 2018). Every countable group embeds in a group of type FP2.

Remark 4. The questions of whether every finitely presented group embeds in a
group of type F3 and whether every group of type FP2 embeds in a group of type
FP3 remain open. Arguably the question for FP2 and FP3 should be easier because
computability seems not to arise.

Remark 5. Can one state and either prove or find a counterexample to a version
of Theorem 1 for tdlc groups? Ilaria Castellano points out that free products, which
are used in the proof of Theorem 1, are not available in this context [9].

Although the statement of Theorem 3 is similar to that of Theorem 1, the
proof is modelled closely on Valiev’s proof of the Higman embedding theorem
(Theorem 2) [11, 7]. The only recent ingredient needed in the proof is the existence
of a family of groups of type FP indexed by subsets of Z [5].

Even the most streamlined versions of the proof of the Higman embedding
theorem are difficult. Very roughly there are three steps: reduction to subgroups
of the free group F2 using Theorem 1; reduction to subsets of N; encoding suitable
subsets of N inside finitely presented groups.

A key definition is that of a benign subgroup H ≤ G of a finitely generated
group G. This is a subgroup H such that the HNN-extension

〈G, t : tht−1 = h h ∈ H〉

can be embedded in a finitely presented group.
Higman’s rope trick states that if H is a benign normal subgroup of finitely

generated G then G/H embeds in a finitely presented group. With the rope trick
and the HNN-embedding theorem, one is reduced to showing that every recursively
generated subgroup of the free group F2 is benign.

Words in two generators and their inverses are encoded as subsets of N via a
Gödel numbering, with the digits 1, 2, 3, 4 standing for the generators and their
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inverses, concatenation being unchanged, and 0 standing for the empty word.
This gives a coding process that replaces subsets of F2 = 〈a, b〉 by subgroups of
F3 = 〈c, d, e〉 of the form 〈cnden : n ∈ S〉 for some S ⊆ N in an algorithmic way.

After this step, one is reduced to showing that any recursively enumerable
subset of N can be ‘encoded’ within a finitely presented group. For this the proof
in Lyndon and Schupp [7] uses a technique that was not available to Higman in
1961: Matiyasevich’s theorem (building on work of Davis, Putnam and Robinson)
that recursively enumerable subsets of Z are Diophantine, i.e., of the form

{x ∈ Z : ∃y1, . . . , yn ∈ Z f(x, y1, . . . , yn) = 0}

for some n and for some integer polynomial f [8, 2, 10].
In the 1990’s Bestvina and Brady constructed the first groups of type FP that

are not finitely presented [1], resolving a well-known problem that had been open
for at least 30 years. Around 20 years later, I discovered a way to generalize the
Bestvina–Brady construction to produce an uncountable family of groups of type
FP ; in particular for any S ⊆ Z with 0 ∈ S I could construct a group J = J(S)
of type FP and elements j1, . . . j4 ∈ J so that jn1 j

n
2 j

n
3 j

n
4 = 1 iff n ∈ S [5]. This

showed that the class of subgroups of groups of type FP2 is larger than the class
of subgroups of finitely presented groups. Note that the map S 7→ J(S) encodes
any subset of Z that contains 0 inside the presentation of a group of type FP .

This also suggested the possibility of proving the new Theorem 3, by modifying
Valiev’s proof of Theorem 2. Define a subgroup H of a finitely generated group
G to be homologically benign if the HNN-extension 〈G, t〉 as defined earlier can be
embedded in a group of type FP2. Next check that there is a homological version
of the Higman rope trick: if H ≤ G is homologically benign, then G/H embeds
in a group of type FP2. Just as in the proof of the Higman embedding theorem,
this plus the HNN-embedding theorem gives a reduction: to prove Theorem 3 it
suffices to show that every normal subgroup of the free group F2 is homologically
benign. The encoding of subsets of F2 via subgroups of F3 and then subsets of N
can be used essentially unchanged. Since we already know how to encode arbitrary
subsets of N ⊆ Z inside presentations of groups of type FP2, this gives Theorem 3.
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Open problems on TDLC-groups

The mini-workshop also featured a discussion session on the open problems and
further questions related to totally disconnected locally compact groups. In addi-
tion to problems already stated in the extended abstracts presented in this report,
this section compiles further problems that remain unresolved and are ordered by
those who have expressed interest in them.

1. Dawid Kielak

Question 1. Let G be a group of type FPn(F), for F ∈ {Q,Fp : p prime}. In
general, G is not of type FPn(Z) (n ≥ 1), but there exist examples where it holds
(e.g. right-angled Artin group (RAAG)).

(i) In which classes of groups is it true?
(ii) Is it true if there exists an exact sequence G→ H → Z, where H of type F?

2. Rudradip Biswas

Theorem 1. [1, Theorem 19.1] Let Γ ∈ LHF (locally in Kropholler’s Hierarchy
with all finite groups as the base class), and suppose Γ is of type FP∞(Z). Then
Γ has only finitely many conjugacy classes of finite elementary abelian p-groups.

Question 2. Is it possible to formulate a TDLC version of this theorem?

Remark 2. It follows from the discussion that it may be useful to consider groups
of type FP∞(Q) or F∞.

3. Ilaria Castellano

Question 3. Let G, H be compactly generated TDLC groups, and suppose G is
quasi-isometric to H, with G and H both having finite cohomological dimension
over Q. Does cdQ(G) = cdQ(H)?

Question 4. Is there a suitable TDLC analogue of right-angled Artin groups
(RAAGs)?

4. Ian Leary & Ilaria Castellano

Question 5. Suppose G is a σ-compact TDLC group. Does G embed into a
compactly generated TDLC group?
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5. Roman Sauer

Question 6. Does a version of the Atiyah conjecture hold for TDLC groups? Or
do there exist examples of TDLC groups G with irrational L2-Betti numbers, i.e.

b
(2)
n (G,µ) 6∈ Q, where µ is the Haar measure normalised to be 1 on a compact-open
subgroup of G.

Remark 3. For a locally compact group G and lattice Γ < G, then b
(2)
n (Γ) =

covol(Γ)b
(2)
n (G). There exist non-compactly generated examples with irrational co-

volume.

Question 7. Are there examples of compactly generated TDLC groups with lattices
of irrational covolume?

6. Yuri Santos Rego

Question 8. Under which conditions are Coxeter groups virtually residually finite
rationally solvable (RFRS)?

Remark 4. Kielak in [2] shows that for a finitely generated virtually RFRS group
G, virtual fibering is equivalent to the vanishing of the first L2-Betti number, i.e.

b
(2)
1 (G) = 0.

Question 9. Do there exist Coxeter groups W1, W2 with isomorphic profinite

completions Ŵ1
∼= Ŵ2 but different rational Euler characteristic χ(W1) 6= χ(W2)?

7. Thomas Weigel

Question 10. Let Nq be the Neretin group acting on the q-regular rooted tree.

(i) Is Hk(Nq,Bi(Nq)) = 0 for all k?
(ii) Is Hk

c (EO
Nq,Q) = 0 for all k?

Question 11. Are there “non-good” Coxeter groups?
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