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Abstract. Real standard subspaces of complex Hilbert spaces are long
known to provide the right language for Tomita-Takesaki modular theory
of von Neumann algebras. In recent years they have also become an object of
prominent interest in mathematical quantum field theory (QFT) and unitary
representation theory of Lie groups. This workshop brought together math-
ematicians and physicists working with standard subspaces, particularly in
QFT (construction of QFT models, characterization of entropy, information-
theoretic aspects), nets of standard subspaces on causal homogeneous spaces
and aspects of reflection positivity and euclidean models related to standard
subspaces and modular theory.
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Introduction by the Organizers

Standard subspaces originate from the theory of von Neumann algebras, where
they encode the modular data of a von Neumann algebra w.r.t. a cyclic and
separating (standard) vector. They can however also be defined independently of
von Neumann algebras in the simple setting of a complex Hilbert space; a standard
subspace is then a closed real linear subspace which contains no complex line and
has dense complex linear span. In recent years it has become increasingly clear
that this point of view allows for a rich and still unfolding theory that is of interest
in its own right and has fascinating applications in various fields.

The mini-workshop Standard Subspaces in Quantum Field Theory and Repre-
sentation Theory was a meeting designed to bring together researchers working
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with standard subspaces from different perspectives, with an emphasis on people
in quantum field theory and representation theory of Lie groups.

In quantum field theory (QFT), standard subspaces serve as a means to encode
localization regions in a spacetime manifold and are thus a basic aspect of any
model QFT. Typical questions involve the modular data of standard subspaces
belonging to particular localization regions (for massive QFT, the modular group
for a double cone is still unknown), the usage of standard subspaces in the formu-
lation of examples of interacting QFTs, the role played by standard subspaces to
define an intrinsic notion of entropy, or the interplay of standard subspaces with
KMS-condition and reflection positivity, which appears in reconstruction theorems
for Euclidean field theories.

In the presence of a spacetime symmetry Lie group, one considers nets of stan-
dard subspaces transforming under a unitary representation of this group, which
immediately explains the close link to Lie group representations. Here typical ques-
tions concern the interplay between the geometric configurations, such as wedge
regions for modular flows on causal homogeneous spaces and the types of unitary
group representations that can host corresponding nets of standard subspaces.
Another important aspect is to detect natural finite-dimensional spaces of dis-
tribution vectors for the representations, specified by a suitable KMS condition,
that are invariant under large subgroups and from which well-behaved nets of real
subspaces can be constructed by a smearing process.

The mini-workshop format has turned out to be the perfect choice for discussing
these questions in an efficient and productive manner. The areas of expertise of
the 17 participants were close enough to allow for easy discussions, and at the same
time far enough apart for learning new results, points of view and ideas from each
other. For the younger participants the event also offered the highly appreciated
opportunity to get to know more colleagues, discuss and present their projects,
and grow their scientific networks.

Thanks to the mini-workshop format, we could also successfully implement some
informal discussion sessions in addition to more typical seminar talks. In these
sessions, participants presented ideas, observations and questions in an unfinished
format which led to long and intense discussions between many people.

An example of such a discussion was a session on inclusions of standard sub-
spaces. Here the main question is how to decide whether an inclusion K ⊂ H
is irreducible, and the discussion related this to questions in von Neumann alge-
bras (split property, modular nuclearity), entropy (the boundedness of the cutting
projection decides about the existence of irreducible extensions), symmetric inner
functions and the distribution of their zeros (closely connected to dim(K ′ ∩H) in
particular examples), and more.

Another group discussion was centered around positive energy representations
of gauge groups. As these groups are infinite-dimensional, the highly developed
finite-dimensional structure theory does not apply to these groups, but their pos-
itive energy representations appear naturally in physical models, such as Confor-
mal Field Theory (CFT), where positive energy representations of loops groups
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are crucial in the construction for models, such as the U(1)-current and its deriva-
tives. The extension of the elaborate geometric side of standard subspaces for
finite-dimensional groups to important classes of infinite-dimensional ones is an
important problem for future research.

Some further group discussions concerned the, by far not fully understood,
aspect of reflection positivity and the existence of euclidean models. In this context
it is not clear how the modular objects, such as modular operator and conjugation,
corresponding to standard subspaces, should be represented on the euclidean side.
Natural candidates involve unitary representations of the non-connected group
O2(R), satisfying suitable positivity conditions.

The following abstracts provide an excellent picture of the current state of the
art and the diverse research directions concerning various aspects of standard
subspaces and their applications. Topics that appeared in several presentations
were aspects of entropy (Longo, Cadamuro), deformations of second quantization
processes (Lechner, Correa da Silva), reflection positivity and euclidean models
(Adamo, Tanimoto), and connections between nets of standard subspaces and

unitary representations (Morinelli, Ólafsson, Beltiţă, Neeb).

Acknowledgement: The organizers thank the director Prof. Dr. Gerhard Huisken,
and the Oberwolfach staff for offering an outstanding environment for this work-
shop and support in all phases of the planning.

The MFO and the workshop organizers would also like to thank the Simons
Foundation for supporting Gestur Ólafsson in the “Simons Visiting Professors”
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Abstracts

Standard subspaces in Representation Theory

Vincenzo Morinelli

(joint work with K.-H. Neeb, G. Ólafsson)

A model in Algebraic Quantum Field Theory (AQFT) is specified by a map as-
sociating to any open region of the spacetime, its von Neumann algebra of local
observables acting on a fixed complex Hilbert space H (the state space), satisfying
fundamental quantum and relativistic assumptions as Isotony, Locality, Poincaré
covariance, positivity of the energy, cyclicity of the vacuum vector for local alge-
bras [Haa96]. One can take as an example an AQFT on Minkowski spacetime.
Here, the Rindler wedge and its Poincaré transforms are fundamental localization
regions called wedges. They are determined by the one-parameter group of boost
symmetries (properly parametrized) that fix them as a subset of the Minkowski
spacetime. The algebraic canonical construction of the free field provided by
Brunetti–Guido–Longo (BGL) builds on the the wedge-boost identification, the
Bisognano-Wichmann (BW) property and the PCT Theorem, cf. [BGL02]. In
particular, given a particle, namely an irreducible representation of the proper
Poincaré group U that is unitary on the connected component of 1 and antiuni-
tary on the connected component of −1, it is possibile to canonically determine the
states in the Hilbert space HU supporting U localized in any wedge, having as a
fundamental input the unitary representation of the one-parameter group of boosts
associated to the wedge and the antiunitary operator implementing the wedge re-
flection. For instance, consider the wedge region WR = {x ∈ R1+d : |x0| < x1},
the real standard subspace1 H(WR) ⊂ HU of states localized in a wedge region
WR is uniquely determined as follows: let

∆it
H(WR) := U(ΛWR

(−2πt)), (BW) property

JH(WR) := U(rWR
), (PCT) Theorem

where we have that ΛWR
(t)x = (cosh(t)x0 + sinh(t)x1, sinh(t)x0 + cosh(t)x1,x),

jRx= (−x0,−x1,x), for x∈R1+d, x∈Rd−1, then H(WR) = ker(1−JH(WR)∆
1
2

H(WR)).

Note that SH(WR) = JH(WR)∆
1
2

H(WR)
is the Tomita operator of the standard sub-

space H(WR) (for the Tomita theory of standard subspaces we refer to [Lon08]).
Then for every open region O =

⋂
W⊃OW with W wedge region, one can define

the set of states localized in O by intersection H(O) =
⋂
W⊃O H(W ). The free

field net of von Neumann algebras is then constructed via second quantization,
see [BGL02, LRT78].

In this presentation, we will provide an overview on the analysis developed
in the last years together with K.-H. Neeb and G. Ólafsson where we generalize
this one-particle picture from a geometrical perspective. The core of this analysis
relies on the understanding of a deep connection between the geometry of standard

1a real closed subspace H ⊂ H is standard if H+ iH = H and H ∩ iH = {0}
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subspaces, given by the Tomita modular operator and modular conjugation, and
the geometry of specific elements in the Lie algebra of a Lie group G called Euler
elements and their representation theory. This approach provides feedbacks for
representation theory and for the algebraic approach to Quantum Field Theory
without restrictions to second quantization models.

Let G be a connected Lie group and let h be an Euler element in its Lie algebra
g, namely adh is diagonalizable and Spec(adh) = {−1, 0, 1}, then τh = exp(iπ h)
generates an involution on g. Simple Lie algebras containing Euler elements are
classified, cf. [MN21, Kan00]. Assume that τh integrates to an involution on G
and let Gτh be the semidirect product group generated by G and the involution
τh. A G-equivariant set of wedges is defined by

GE = {W = (x, τx) ∈ g× τhG : x is and Euler element}
where the G-action is defined by g.W = (Ad g(x), gτxg

−1). Once a cone C in the
Lie algebra g is given, then wedge inclusions can be defined. Furthermore, the
causal complement of a abstract wedge is given by W ′ = (−x, τx). In particular
we have defined on a abstract level a local poset of abstract wedge regions, for the
general picture see [MN21].

Let W = (xW , σxW ) ∈ GE , given an (anti-)unitary representation of Gτh on a
Hilbert space H, then U(exp(−2πt xW )) and U(σxW ) identify the standard sub-
space H(W ) ⊂ H by the Tomita theory. Due to the general theory of standard
subspaces we can define a generalized framework for one particle nets of standard
subspaces that strictly extends the set of one-particle models from AQFT that can
be constructed through the BGL-construction, cf. [MN21].

Causal homogeneous spaces M = G/H play the role of the spacetime in AQFT
models. On these spaces concrete wedge regions, as positive subsets for the Euler
element flow, can be defined, see [NÓ22, NÓ23, MNÓ23a, MNÓ23b]. If G is cen-
terfree and the wedge subset is connected in M , then there is a correspondence
between abstract wedges (Euler couples) and wedge subsets of a causal homoge-
neous space [MN23]. Given a unitary representation U of G, one can associate
real subspaces on general open regions by using the language of distribution vec-
tors [FNÓ23, NÓ23, NØÓ21, NÓ21]. Bosonic second quantization associates to a
one-particle net an isotonous, G-covariant net of von Neumann algebras acting on
the Fock space [MN21].

We are in the position of defining an axiomatic framework for nets of von Neu-
mann algebra on abstract wedges as well as on open regions of a causal symmetric
spaces. One can deduce properties of wedge symmetries and wedge von Neumann
algebras for this generalized AQFT from local properties of the net.

The following results are contained in [MN23]. Firstly, given a one-parameter
subgroup λ(t) of a connected Lie group G, a unitary representation U of G with
discrete kernel on an Hilbert space H and a standard subspace inclusion K ⊂ H ⊂
H such that ∆it

H
= U(λ(−2πt)) (BW property) and U(g)K ⊂ H when g is in an

open neighbourhood of the identity (regularity property), then λ(t) is generated
by an Euler element. So, Euler elements appear naturally in this framework as a
consequence of the (BW) and the regularity properties.
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Let G, U and λ as before. Assume that λ(t) is generated by an anti-elliptic
element of g and consider a von Neumann algebra inclusion N ⊂ M ⊂ B(H)
with a common unique G-fixed cyclic and separating vector in H (vacuum vector).
If the Bisognano-Wichmann property holds, namely ∆it

A,Ω = U(λ(−2πt)) where

∆it
A,Ω is the modular group of A with respect to Ω, and an analogue regularity

property holds for the von Neumann algebra inclusion N ⊂ M with respect to the
adjoint G-action, then the algebra M is a type III1 factor with respect to Connes’
classification.
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[MNÓ23a] Morinelli, V., K.-H. Neeb, and G. Ólafsson, From Euler elements and 3-gradings to
non-compactly causal symmetric spaces, Journal of Lie Theory 23:1 (2023), 377–432;
arXiv:2207.1403
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[NÓ22] Neeb, K.-H., and G. Ólafsson, Wedge domains in non-compactly causal symmetric
spaces, Geometriae Dedicata 217:2 (2023), Paper No. 30; arXiv:2205.07685
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Signal communications and modular theory

Roberto Longo

We propose a conceptual frame to interpret the prolate differential operator

W =
d

dx
(1 − x2)

d

dx
− x2 ,

which appears in Communication Theory, as an entropy operator; indeed, we write
its expectation values as a sum of terms, each subject to an entropy reading by an
embedding suggested by Quantum Field Theory.

This adds meaning to the classical work by Slepian et al. on the problem of
simultaneously concentrating a function and its Fourier transform, in particular
to the “lucky accident” that the truncated Fourier transform FB

FB = EBFEB

commutes with the prolate operator; here, F is the unitary Fourier transform on
L2(R) and EB the orthogonal projection onto L2(B), with B = (−1, 1) the unit
ball.

The key is the notion of entropy S(Φ||H) of a vector Φ of a complex Hilbert H
space with respect to a real linear subspace H , recently introduced by the author,
and extended with collaborators, by means of the Tomita-Takesaki modular theory
of von Neumann algebras; if H is a factorial standard subspace of H with modular
operator ∆H , we have

S(Φ||H) = ℜ(Φ, iPH i log∆HΦ) = ℜ(Φ,EHΦ) .

Here, PH is the cutting projection

PH : Φ + Φ′ 7→ Φ , Φ ∈ H, Φ′ ∈ H ′ ,

with H ′ the symplectic complement of H . PH can be explicitly expressed in terms
of the modular data.

EH = i log∆H is a real-linear, selfadjoint, positive operator, that we regard as
an entropy operator inasmuch as its expectation values are entropy quantities.

We consider a generalization of the prolate operator to the higher dimensional
case and show that it admits a natural extension commuting with the truncated
Fourier transform; this partly generalizes the one-dimensional result by Connes to
the effect that there exists a natural selfadjoint extension to the full line commuting
with the truncated Fourier transform.

We consider the entropy operator EH when H is the one-particle Hilbert space
of a free, massless, scalar Boson, H is the local subspace associated with the unit
ball B in Rd, and Φ ∈ H is a wave packet. Then S(Φ||H) is the information
contained by Φ in B.

In this case, on Cauchy data in L2(B) ⊕ L2(B), EH has (up to constants)
two components: −L, with L = ∇(1 − r2)∇ the Legendre operator, and M , the
multiplication operator by (1− r2).

We infer that the prolate operator is an entropy operator, thus a natural a priori
candidate to commute with FB.
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The massive modular Hamiltonian for a double cone

Daniela Cadamuro

Since it has been set up in the 1970’s due to works by Tomita that became public
with lectures by Takesaki [Tak70], as well as by Araki [Ara76], Tomita-Takesaki
modular theory has been one of the most important developments in the theory
of operator algebra, as well as in quantum theory. However, in relevant examples
from quantum (field) theory, obtaining an “explicit” form of the modular generator
log∆ has been the strenous work of many researchers along the time. At least in
the following situations, a model-independent answer is known:

• If M is the algebra of all observables and Ω represents a thermal equilib-
rium state (KMS condition), then log∆ is the generator of time transla-
tions (up to a factor) [HHW67].

• If M = A(W) is the algebra associated with a spacelike wedge region W
in quantum field theory, and Ω is the Minkowski vacuum, then log∆ is
the generator of boosts along the wedge [BW75].

But what about the algebra of a double cone, M = A(O), in a quantum field
theory? To answer this question we consider the example of a real scalar free
field φ of mass m > 0. We consider the Fock vacuum as our cyclic and separating
vector. The local algebras, as well as the modular operator [EO73], are determined
by second quantization, so that we only need to consider the modular operator at
one-particle level, which is defined as follows.

On the (complex) one-particle Hilbert space H1 of the theory, we consider
a (closed real) local subspace L1(O) ⊂ H1, which is “standard” and “factorial”
(L1 + iL1 = H1, L1∩L′

1 = L1∩iL1 = {0}), where “prime” denotes the symplectic
complement. We define the one-particle Tomita operator on H1 as

(1) T1 : f + ig 7→ f − ig, f, g ∈ L1(O),

the polar decomposition of its closure is T1 = J1∆
1/2
1 . (We shall drop the index

“1” from now on.)
We can rewrite the one-particle modular generator as follows. Let P be the

real-linear projector onto L ⊂ H with kernel L′ ⊂ H. Then, on a certain domain,
we write

(2) P = (1 + T )(1−∆)−1.
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A computation then shows that

log∆ = −2 arcoth(P − iP i− 1).(3)

This determines log∆ from P , and hence from L [FG89]. We now write this
formula in a different manner, by writing H in time-0 formalism in configuration
space. Here, H is parametrized by time-0 initial data of field and field momentum
f = (f+, f−). The scalar product and the complex structure, with A = −∇2+m2,
are given by

(4) Re〈f, g〉H =
〈
f,

(
A1/2 0

0 A−1/2

)
g
〉
2
, iA =

(
0 A−1/2

−A1/2 0

)
.

The local subspaces are defined as follows. Let B be the base of O at time 0, then
we define

(5) L = C∞
0 (B)⊕ C∞

0 (B), P = χ⊕ χ,

where χ multiplies with the characteristic function of B. Inserting this in formula
(3), we have

(6) log∆ = iA

(
0 M−

−M+ 0

)
,

where

(7) M± = 2A± 1
4 arcoth(B)A± 1

4 , B = A1/4χA−1/4 +A−1/4χA1/4 − 1.

Hence, ∆ is determined from χ and A. However, “explicitly” finding the spectral
decomposition of B as a selfadjoint operator on L2(Rs) is very difficult. There are
however known examples:

• If O is the wedge in x1-direction, then M− multiplies with 2πx1, indepe-
dent of m.

• If O is a double cone of radius r and m = 0, then M− multiplies with
π(r2 − ‖xxx‖2) [HL82].

Now the questions we would like to answer in the case of double cones and m > 0
are the following: Is M− mass indepedent? Is M− a multiplication operator?
Since answering these questions anaytically is very difficult, we do it numerically,
namely we evaluate B and M− numerically to check this hypothesis.

Using numerical approximation means approximating As and χ with finite-
dimensional matrices. For that, we need to choose an orthonormal basis and finite
dimensional in one summand of H, and we need to approximate A±1/4 and χ with
a matrix in this basis. Then, we can apply numerical eigendecomposition in order
to evaluate the arcoth, and therefore approximate the operator B. We do this
with no rigorous estimates on the approximation. Explicitly, A,χ acts on L2

R
(R)

by A = −∂2x+m2, and χ is determined by the region considered: χ(x) = Θ(x) for
a wedge, or χ(x) = Θ(1 + x)Θ(1− x) for the standard double cone.

As our basis functions, we choose suitable piecewise linear functions [BCM23],
and the discretization is first done for A−1/4 which is bounded and has a known
convolution kernel; we then obtain A1/4 by numerical matrix inversion. We can
then approximate (the integral kernel of)M− using the formula (7); this is done by
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Figure 1

functional calculus of matrices, and the computation turns out to require extended
floating point precision of 400–600 decimal digits. We expect convergence against
the undiscretized result in the weak sense, i.e., ifM (N,b) denotes the integral kernel
at a number N of basis elements covering the interval [−b, b],

∫∫
g(x)M

(N,b)
− (x, y)h(y)dx dy −−−−−→

N,b→∞

∫∫
g(x)M−(x, y)h(y)dx dy.

We choose g = h to be a Gaussian located near a point µ, then we vary this point
µ.

The results in the wedge case turn out to be compatible with known results. In
the case of a double cone, we find that the discretized kernel M− is concentrated
predominantly on the diagonal, see Figure 1. There appear to be some contribu-
tions along the antidiagonal, but it is unclear whether this is due to numerical
errors or whether there is really a subdominant non-diagonal contribution. An
explicit expression for the curves displayed in Figure 1 and Figure 2 is not known.
The smeared version of the discretized kernel M−, see Figure 2, shows that the
kernel is mass-dependent. In particular, the black parabola corresponds to the
case m = 0 and therefore to the quadratic result of Hislop-Longo, while the two
straight black lines (piecewise linear) for large mass correspond to the result of
a left and a right wedge. Indeed, large masses correspond to small correlation
lengths, and hence a heuristic explanation for the approximate “double wedge”
structure may be that at one end of the interval, the contribution from the other
end of the interval is very small, so that the modular operator for the interval
approximately behaves like the one for a half-line.

A similar analysis can be done for a double cone in the 3+1-dimensional field
using its spherical symmetry. It turns out in this case that the modular operator
also depends on angular momentum [BCM23].
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Figure 2
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[EO73] J.-P. Eckmann and K. Osterwalder, An application of Tomita’s theory of modular
Hilbert algebras: Duality for free Bose fields, J. Funct. Anal. 13(1), 1–12 (1973).

[FG89] F. Figliolini and D. Guido, The Tomita operator for the free scalar field, Annales de
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Modular Generators Implementing Conformal Flows in

1 + 1 de Sitter Space

Christian Jäkel

(joint work with Urs Achim Wiedemann)

We construct modular Hamiltonians, which satisfy the Virasoro algebra relations.
They give rise to one-parameter groups of unitary operators in the Fock represen-
tation for the free massless field, which implement the geometric flows associated
to the conformal Killing vector fields on the 1+1-dimensional de Sitter space dS.
Previous results by Longo and Kawahigashi [KL05] and Longo, Martinetti, and
Rehren [LMR10] on chiral quantum fields suggest that the modular Hamiltonians
on de Sitter space should be given by Connes’ spatial derivatives for pairs of prod-
uct states, build up from rescaled vacuum states. We show that this is indeed the
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case, and that we can provide explicit expressions for Connes’ spatial derivatives
in terms of higher ladder operators on Fock space.

To be more specific, we first compute the conformal Killing vector fields on the
two-dimensional de Sitter space dS

.
=

{
x ∈ R1+2 | x20 − x21 − x22 = −r2

}
. We show

that these vector fields can be analytically continued to conformal Killing vector
fields defined on S2 \ {(ir, 0, 0), (−ir, 0, 0)}, where S2 .

=
{
(ix0, x1, x2) ∈ (iR)×R2 |

x20 + x21 + x22 = r2
}
⊂ dSC is the Euclidean sphere embedded in the complexified

de Sitter space. Only six vector fields allow analytic continuations to all of S2,
as this is the maximum number of conformal Killing vector fields allowed on S2.
The other (analytically continued) vectors fields diverge at the poles (±i, 0, 0)
of S2. We solve the flows equations for the conformal Killing vector fields and the
analytically continued conformal Killing vector fields. Inspecting Killing vector
fields for higher k > 2, we find that also there, analytic continuation of the flow to
t → iπ/k yields a discrete space-time transformation that amounts to mirroring
any point a ∈ dS at the source or sink of the corresponding vector field that lies
the closest to a.

Next, we provide [BJM23] a new realisation of the representations D±
1 first

studied by Bargmann in his classification of the unitary irreducible representations
of SO0(1, 2). While Bargmann used functions supported on the forward light cone
in R1+2, our representation space consists of functions supported on the Cauchy
surface C = {x ∈ dS | x0 = 0}, sometimes called the time-zero circle. The scalar
product1

(1) 〈h1, h2〉 = − 1
2

∫

C
dψ h1(ψ)

∫

C
dψ′ ln

(
2− 2 cos(ψ − ψ′)

)
h2(ψ) .

and the generators of the rotations and the two Lorentz boosts, denoted by k0, l1
and l2, have a particular simple form in our formulation: the corresponding unitary
groups are

D±
1 (R0(α)) = eiαk

±

0 , k±
0 = −i d

dψ .

and

D±
1 (Λ1(t)) = eitνr cosψ , (cosψ h)(ψ)

.
= cosψ · h(ψ) , h ∈ h± .

The unitary group of the second boost is D±
1 (Λ2(t)) = eitνr sinψ .

In the sequel, we associate to any (generalized) function h in the one-particle

Hilbert space h, a distribution ĥ on the de Sitter space, with support on the Cauchy
surface C. With the help of the fundamental solution E, we construct solutions

Φĥ

.
= E ∗ ĥ of the wave equation with Cauchy data

φĥ = −(νr)−1ℑh and πĥ = ℜh , h ∈ h .

We verify that the generators ki and li, i = 0, 1, 2, implement the geometric flows

ΦXi
t and ΦYi

t associated to the (conformal) Killing vector fields Xi and Yi, i =

1The logarithmic singularity of the kernel is integrable and hence ultra-violet divergencies are
mild, while infra-red divergencies are absent due to the fact that C is compact.
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0, 1, 2. For instance,

ℜ eitlih =
(
∂
∂ηE ∗ (ĥ ◦ ΦXi

t )
)
(0, . ) ,

−(νr)−1ℑ eitlih = −
(
E ∗ (ĥ ◦ ΦXi

t )
)
(0, . ) , i = 1, 2 .

This geometric picture allows us to look out for Cauchy data supported in an
interval I ⊂ C. The lack of a zero mode requires care when defining the standard
subspaces hI associated to an interval I on the Cauchy surface: the Cauchy data
(f ′, g) ∈ hI gives rise to a solution of the wave equation which has support in the
space-time points that can be connected with light rays to points in the closed
interval I, once an overall constant solution is subtracted. As expected, hI =
h+I ⊕ h−I can be decomposed into right-movers and left-movers without destroying
the localisation properties, as left and right movers are uncorrelated. The map
I 7→ hI has a number of desirable properties: isotony, preservation of intersections,
additivity, locality, Haag duality, anti-locality and the one-particle Reeh-Schlieder
property all hold. Rescaling is a delicate operation on the one-particle Hilbert
space h due to the fact that the Cauchy surface is compact. The higher conformal
flows defined maps on the set of solutions of the wave function, and therefore also
on the Cauchy data. The positive and negative frequencies remain separated.

The next step is to build up the Tomita operator associated to a wedgeW ⊂ dS

from the boost leaving the wedge invariant, and the reflection at the edge of the
wedge. Since both building blocks arise from group theory, the Tomita operator
associated to a wedge is given intrinsically by the representation theory of the
space-time symmetry group. We show that modular localisation, invented by
to Brunetti, Guido and Longo [BGL02], assigns R-linear subspaces h(O) of h to
causally complete space time regions O ⊂ dS, in agreement with our physical
expectations, as it yields the localisation of Cauchy data for solutions of the wave
equation because

h(OI) :=
⋂

W⊂OI
h(W ) = hI

for all double cones OI with base I ⊂ C.
The generators l0, l1, l2 and k1, k2 are modular Hamiltonians, i.e., they are the

generators of modular groups associated to R-linear subspaces h(X ) of h. The
localisation region X ⊂ dS turns out to be the region where the associated Killing
vector field (select one among Y0,X1,X2 and Y1,Y2) is time-like and future di-
rected. As the vector field X0 is nowhere time-like, the angular momentum op-
erator k0 is not a modular Hamiltonian. Beside the five modular Hamiltonians
already mentioned, there exits many more such Hamiltonians which arise by ap-
plying SO0(2, 2) transformations to the space-time regions already considered. A
particular interesting case arises by shrinking a wedge to a double cone.

In the sequel, we introduce Fock space and we define smeared-out field operators

ϕ(h)
.
= 1√

2

(
a∗(h) + a(h)

)
, h ∈ h ,

satisfying the canonical commutation relations
[
ϕ(f), ϕ(g)

]
= iℑ〈f, g〉h, f, g ∈ h.

The canonical momenta are defined by setting π(g)
.
= ϕ(iνrg), νrg ∈ h, g real
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valued. Next, we provide unitary operators on Fock space which implement the
higher conformal flows. The generators

X
(n)
1

.
= 1

2

(
K+
n +K+

−n +K−
n +K−

−n
)
,

Y
(n)
1

.
= 1

2

(
K+
n +K+

−n −K−
n −K−

−n
)
,

can be expressed in terms of higher ladder operators K+
n , K

+
−n, K

−
n and K−

−n
satisfying the Virasoro algebra relations

[
K±
n ,K

±
m

]
= (n−m)K±

n+m + 1
12 n(n

2 − 1)δn,−m 1 ,

while [K±
n ,K

∓
m] = 0 for all n,m ∈ Z. The generators satisfy

i
[
X

(n)
1 , ∇ϕ(f) + π(g)

]
= π

(
cosnψ

d
dψf

)
+∇ϕ

(
cosnψ

d
dψ g

)
,

i
[
Y

(n)
1 , ∇ϕ(f) + π(g)

]
= ∇ϕ

(
cosnψ

d
dψf

)
+ π

(
cosnψ

d
dψ g

)
.

Similar formulas hold for X
(n)
2 and Y

(n)
2 , n ∈ N. In the the sequel we show that

these operators are the generators of modular groups for product states consisting
of rescaled vacuum state.
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Standard Subspaces and Distribution Vectors

Gestur Ólafsson

(joint work with J. Frahm, V. Morinelli, K.-H. Neeb and I. Sitiraju)

Construction of fields of standard subspaces using antiunitary representations and
the geometry of causal symmetric spaces has recently been studied in a series of
articles including [BN23, FNÓ23, MN21, MNÓ23a, MNÓ23b, NØÓ21, NÓ23a,

NÓ23b, ÓS23]. We give here a short overview of the main ideas.
In the following G will always denote a connected semisimple Lie group with

finite center, τ : G → G a nontrivial involution and (Gτ )e ⊆ H ⊂ Gτ , where
Gτ = {x ∈ G | τ(x) = x}. We denote by Gτh the semidirect product of G and
{1, τh}. The derivative of τ induces a Lie algebra homomorphism τg : g → g which
leads to the ±1-eigenspace decomposition g = h⊕ q, where h is the Lie algebra of
H and q is isomorphic as a H-space to the tangent space of M at x0 = eH . We
assume that the symmetric space M = G/H is noncompactly causal, i.e., there
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exists an H-invariant closed pointed and generating cone C ⊂ q such that the
elements of Co are hyperbolic.

We always choose a Cartan involution that commutes with τ and write g = k⊕p

for the corresponding Cartan decomposition. Let a ⊂ p be maximal abelian.
Denote by ∆ the set of roots of a in g and let Ωa = {x ∈ a | (∀α ∈ ∆) |α(x)| < π/2}.
We then let AiΩ = exp iΩ and define ΞG/K = Ξ = GAiΩa

x0 ⊂ GC/KC, the
crown of the Riemannian symmetric space G/K. We also define ΞG = GAiΩKC =
q−1
G/K(ΞG), the crown domain in GC. Here qG/K : G→ G/K denotes the canonical

projection x 7→ xK. Ξ is open in GC/KC and ΞG is open in GC. Both sets are
by definition G-invariant. Denote by ∂dΞ the distinguished boundary of Ξ (see
[GK02]).

Theorem 1 (Gindikin-Krötz, [GK02]). Assume that G ⊂ GC, GC simply con-
nected. Let M = Gz0KC be an open G-orbit in ∂dΞ. If M is a symmetric space
then M is ncc and z−1

0 HCz0 = KC, H = Gz0 . Furthermore, up to covering, every
ncc space G/H can be realized in this way.

Example 2 (The de Sitter space). For v = (v0,v), w = (w0,w) ∈ R1+d let [v, w] =
v0w0 − 〈v,w〉. Let G = SO1,d(R) ⊃ H = SO1,d−1(R). We have G(ie0) = G/K =

Hd = {iv ∈ iRd+1 | [v, v] = 1} and Ge1 = G/H = dSd. Let h : (x0, x1, x̃) 7→
(x1, x0, 0, · · · , 0). Then h is an Euler element and a = Rh. Furthermore, ΞHd =

(Rd+1+ iV+)∩dSd where V+ is the forward light cone. We have exp(−ith)(ie0) =
i(cos t)e0 + (sin t)e1 → e1 as t → π/2 and dSd is the only open G-orbit in the
distinguished boundary of Ξ.

Let (U,H) be an anti-unitary representation of Gτh . Recall that a real subspace
V ⊂ H is standard if V is closed, V ∩ iV = {0} and V + iV ⊂ H is dense. Denote
by H∞ the space of smooth vectors and by H−∞ the conjugate linear dual of H.
For a finite dimensional H-invariant subspace E ⊆ H−∞ and O ⊆M = G/H open
define

(1) HE(O) := spanR{U−∞(φ)E | φ ∈ C∞
c (q−1

M (O),R)} ⊂ H.
HE defines a net of real subspaces which is clearly isotone and covariant, but locality,
Reeh-Schlieder and Bisonanao-Wichmann do not hold in general.

Let h be an Euler element such that z0 = exp(πi2 h), z0 as in Theorem 1. Denote

by αt(m) = exp(th)m, m ∈ M , the modular flow and XM
h (m) = d/dt|t=0 αt(m).

The positivity domain is W+
M (h) = {m ∈ M | XM

h (m) ∈ V+(m)} (see [MNÓ23a,

NÓ23a, NÓ23b]).
Let (U,H) be a irreducible antiunitary representation ofGτh. Denote byH−∞,8[h]

the space of h-finite distribution vectors and by H[K] the space of K-finite vec-
tors. If G ⊂ GC is linear then for ξ ∈ H[K] the orbit map g 7→ Ugξ extends to a
holomorphic function on ΞG ([KS04]). Define

β±(ξ) = lim
t→±π/2

U(exp−ith)ξ ∈ H[h]

whenever the limit exists.
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Theorem 3 (FNÓ23). Assume that G is linear or locally isomorphic to SO1,2(R).
Assume that M = G/H is ncc. Let (U,H) be an irreducible antunitary representa-
tion of Gτh , E ⊂ H[K] finite dimensional subspace invariant under K and J = Uτh .
Let E = EJ . Then the following holds:
1) β± : H[K] → H−∞,[h] exists and both maps are injective.
2) Let EH = β+(E) ⊆ H−∞. Then the net HM

EH
defined in (1) on M is isotone,

covariant and has the Reeh-Schlieder and Bisognano-Wichmann property, where
W = W+

M (h)eH is the connected component of the positivity domain of h on M ,
containing the base point.

The holomorphic extension of the orbit map g 7→ Ugξ leads to a sesquiholomor-
phic G-invariant positive definite kernel on Ξ×Ξ, ΦUξ (z, w) = Φw(z) = 〈Uwξ, Uzξ〉
(the inner product is linear in the second factor). The GNS construction then leads
to a realization of (U,H) in spaces of holomorphic functions on ΞG. If ξ ∈ HK

then ΦUξ lives on ΞG/K and φUξ = ΦeK is a spherical function if ‖ξ‖ = 1. Keeping

one of the variable, say z, in Ξ we have y → Φ(z, y) extends to an analytic func-
tion on M and hence a well defined distribution M . The question is then again if
limz→eH Φ(z, ·) exists in D′(G/H). For this we discuss as an example the case of

dSd. Let U = Uλ be a unitary spherical representation of SO1,d(R)e with spectral
parameter λ. In this case we have, with ρ = (n− 1)/2:

Ψ(z, w) = 2F1

(
ρ+ λ, ρ− λ;

n

2
;
1− [z, w̄]

2

)
, λ ∈ iR+ ∪ (0, ρ].

The hypergeometric function 2F1(z) is holomorphic on C \ [1,∞). For x ∈ dSd

let Γ(x) = {z ∈ dSd | [z − x, z − x] > 0} = Γ+(x) ∪ Γ−(x) where the ± indicate
±(z − x)0 > 0. We have

Lemma 4. 1) {[z, w̄] | z, w ∈ Ξ} = C \ (−∞,−1].

2) [dSd,Ξ] ∩ R = (−1, 1).

3) If x ∈ dSd then [x, y] ≤ −1 if and only if x+ y ∈ Γ(x).

(1) Shows that Ψ(z, w) is well defined on the crown. (2) shows that Ψ(z, y) is

well defined for z ∈ Ξ and y ∈ dSd. Finally, it was shown in [FNÓ23, ÓS23] that

the distributional limit exists and defines a H-invariant distribution on dSd.
There is also the conjugate crown, the crown of G(−ie0), so we have two natural

crowns Ξ± and two kernels Ψ± and hence two distributions η±λ . The explicit
formulas above show that η+−η− is supported on the closed forward and backward
light cone (see [ÓS23, Cor. 6.9])

Similar calculations work for all K-types for principal series representations of

S̃L2(R) expressed in terms of hypergeometric functions.
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[NØÓ21] Neeb, K.-H., B. Ørsted, and G. Ólafsson, Standard subspaces of Hilbert spaces of
holomorphic functions on tube domains, Comm. Math. Phys. 386 (2021), 1437–1487
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Arrow of time and quantum physics

Detlev Buchholz

(joint work with Klaus Fredenhagen)

The arrow of time is a subject of ongoing debate ever since this term was coined
by Eddington almost a hundred years ago. In brief, this topic can be described
as follows: the time parameter that enters into the fundamental equations of
physics can be reversed, which in principle seems to allow physical systems to
move backwards in time. On the other hand, there is overwhelming evidence that
this does not happen. The standard resolution of this apparent clash between
theory and reality is based on the argument that such time reversed processes
are exceedingly unlikely (Second Law). Therefore, they were and will never be
observed.

In this contribution a complementary view is presented [BF23]. It is based on
the hypothesis that time translations form a semi-group acting on all systems,
there is no inverse and hence no return to the past. Information about the past
is encoded in material bodies which accompany us, such as books or other devices
and media, not least our brains. We can extract from them information about
past events, observations, experiments, data taken, and theories developped on
their basis. The informations obtained in this way can be described in common
language, including mathematics. In order to check their truth value, one has to
repeat past experiments. But this can only happen in the future. Thus the past
may be regarded as factual, whereas the future is indeterminate.
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While this hypothesis seems consistent with reality, it raises some questions con-
cerning the theoretical treatment of time. These questions and the proposed an-
swers are outlined in this abstract.

1. Is the hypothesis of an intrinsic arrow of time compatible with the success-
ful theoretical treatment of time as a group? In order to answer this question
one considers a unital C*-algebra A(Vo), describing local observables in a given
future-directed lightcone Vo in Minkowski space M. On this algebra acts the
abelian semi-group of time translations V+ := {τ = t(1, vvv) : t ≥ 0 , |vvv| < 1} by
endomorphisms α, viz. ατ (A(Vo)) = A(Vo + τ). With this input one can identify
vacuum states in the region Vo. The following result can then be established.

Proposition 1. In the GNS-representation induced by a vacuum state

(i) there exists a continuous unitary representation U0 of the semi-group V+
whose adjoint action implements the time translations on the observables.

(ii) there exists an extension of U0 to a continuous unitary representation U
of the group of spacetime translations Rd on M. It satisfies the relativistic
spectrum condition. Its adjoint action on the represented observables in
Vo defines a net of observables in all of Minkowski space M.

This proposition shows that the hypothesis of a fundamental arrow of time is com-
patible with the familiar theoretical assumption according to which the group of
spacetime translations Rd acts on the observables. In this way a theoretical picture
of the past is obtained that is consistent with the theory for future observations.

2. Are there uncertainties in the theoretical description of the past and how do
they manifest themselves? It turns out that the unitary representation U0 of the
semigroup V+ to a representation U of the group Rd is in general not unique. The
pertinent information is encoded in the largest projection Z in the weak closure of
the algebra of observables in Vo that annihilates the vacuum state. It commutes
with all translations U . Whenever Z < (1 − P0), where P0 is the projection
onto the vacuum state, the extension U is not unique. As a consequence, the
theoretical description of the past is ambiguous. This feature becomes manifest in
the structure of the energy-momentum spectrum.

Proposition 2. If the past is ambiguous, i.e. the extensions U of the time trans-
lation U0 are not unique, their spectrum consists of the closed cone V + in energy-
momentum space. So there exist excitations of arbitrarily small mass. Conversely,
the existence of massless excitations implies that the extensions U are not unique.

Since there are massless excitations in reality, the photons, complete information
about the past (the wave function of the universe) is a theoretical fiction.

3. How big is the loss of information on the properties of states over time that arises
from these ambiguities? An answer is given by noticing that the uncertainties
concerning the past are due to states Φ in the kernel of the projection Z, involving
massless excitations. The corresponding information in a lightcone Vo + τ can be
quantified by a convenient measure of information Iτ (Φ), which is related to the
concept of relative entropy introduced by H. Araki. It was invented by R. Longo,
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who used the theory of standard subspaces for its definition. Making use of this
notion, the following result obtains.

Proposition 3. Let Φ be a state in the kernel of Z. Then

(i) Iτ (Φ) ∈ [0,∞] and there is a dense set of states Φ for which this informa-
tion is finite.

(ii) Iτ (Φ) ≤ Iσ(Φ) if τ − σ ∈ V+.

The information contained in the stationary vacuum state is equal to 0.

Thus the information contained in the states decreases in the course of time.

4. Does the arrow of time enforce the quantum features of operations that are
described by common language (classical terms), extracted from past information?
The preceding results suggest that a statistical description of future experiments
is unavoidable in view of the lacking information about the past. It turns out that
the arrow of time adds to it the non-commutative features of quantum physics.

We outline here the simple case of a classical, non-interacting, smooth field
x 7→ φ(x) in Minkowski space M with relativistic Lagrangian density

x 7→ L(x)[φ] = (1/2)(∂µφ(x)∂
µφ(x) −m2φ(x)2) .

One considers operations affecting the field which are induced by perturbations of
the Lagrangian. In the present simple case these are given by

L(x)[φ] → L(x)[φ] + c(x) + f(x)φ(x) ,

where c, f are real test functions with compact support. Their spacetime integrals
describe functionals φ 7→ F [φ] on the field. The support of the functionals F in
M is identified with the support of f . Constant functionals have empty support.

The effect of these pertubations on φ, encoded in the functionals F , is described
by symbols SL(F ). They define a dynamical group GL. It is the free group
generated by these symbols, modulo the following defining relations:

(1a) SL(F )SL(G) = SL(F + G) if suppF lies above and suppG lies beneath
some Cauchy surface. Here the arrow of time enters, the swapped product
is not fixed and depends on the dynamics. Only if the supports of F and
G are spacelike separated, the product is commutative according to this
definition.

(1b) SL(c) = eic1 , c ∈ R.
(2) SL(F ) = SL(F

φ0 + δL(φ0)), where F
φ0 [φ] := F [φ+ φ0] for given external

smooth field φ0 with compact support; δL(φ0) is the corresponding vari-
ation of the action, determined by L. In this relation the Lagrangian and
hence the dynamics enters. If F = 0, the underlying field is unaffected.

Proceeding from the group GL to the enveloping dynamical C*-algebra AL, one
arrives at the following result.

Proposition 4. Let L be the non-interacting Lagrangian, given above. The algebra
AL coincides with the Weyl algebra of a local quantum field, satisfying the Klein-
Gordon equation. It is generated by the exponentials of the field, integrated with
real test functions f .
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For Lagrangians L describing interacting fields, the corresponding algebras AL

comply with all Haag-Kastler axioms of local quantum physics. These results
obtain without imposing any quantization rules. It is the arrow of time which,
together with the dynamics, leads to the quantization of the classical input. In
view of these results, it seems worthwhile to take a fresh look at the foundations
of quantum physics, based on this new paradigm.
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Nets of standard subspaces on homogeneous spaces

Karl-Hermann Neeb

(joint work with Vincenzo Morinelli)

We discuss some recent results concerning nets of real subspaces indexed by open
subsets O of a homogeneous space M = G/H of a Lie group G. We assume that
M carries a G-invariant causal structure, i.e., a field of pointed generating closed
convex cones Cm ⊆ Tm(M) that is invariant under the G-action. Typical exam-
ples are time-oriented Lorentzian manifolds on which G acts by time-orientation
preserving symmetries or conformal maps. Natural properties of such nets are
closely related to those of nets of von Neumann algebras.

For a unitary representation (U,H) of a connected a Lie group G and a homoge-
neous space M = G/H , we consider families (H(O))O⊆M of closed real subspaces
of H, indexed by open subsets O ⊆M with the following properties:

(Iso) Isotony: O1 ⊆ O2 implies H(O1) ⊆ H(O2)
(Cov) Covariance: U(g)H(O) = H(gO) for g ∈ G.
(RS) Reeh–Schlieder property: H(O) is cyclic if O 6= ∅.
(BW) Bisognano–Wichmann property: There exists an open subsetW ⊆M

(called a wedge region) and h ∈ g, such that exp(Rh)W ⊆ W and H(W )

is standard with modular group ∆
−it/2π
H(W ) = U(exp th), t ∈ R.

Given a unitary representation (U,H), we would like to understand, and pos-
sibly classify, all nets with these properties. To this end, the first problem is
to understand which Lie algebra elements h and which regions W ⊆ M oc-
cur in (BW). The following theorem shows that we may restrict our attention
to the case where h is an Euler element, i.e., g = g1(h) ⊕ g0(h) ⊕ g−1(h) for
gλ(h) = ker(λ1− adh).

Theorem 1. (Euler Element Theorem, [MN23]) Let G be a connected finite-
dimensional Lie group with Lie algebra g and h ∈ g. Let (U,H) be a unitary
representation of G with discrete kernel. Suppose that V is a standard subspace
and N ⊆ G an identity neighborhood such that

(a) U(exp(th)) = ∆
−it/2π
V

for t ∈ R, i.e., ∆V = e2πi ∂U(h), and
(b) VN :=

⋂
g∈N U(g)V is cyclic, i.e., VN + iVN is dense in H.
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Then h is an Euler element and the conjugation JV satisfies

(1) JVU(expx)JV = U(exp τh(x)) for τh = eπiadh, x ∈ g.

If (Iso), (Cov), (RS) and (BW) are satisfied, then the preceding theorem applies
with V = H(W ). For any relatively compact open subset O ⊆ W we find a
symmetric e-neighborhood with N.O ⊆ W , and then H(O) ⊆ VN by (Iso), (Cov)
and (BW). Hence (RS) implies that VN is cyclic. Accordingly, we may assume
in the following that h is an Euler element, and by (1), that U extends to a
representation of the extended group Gτh = G⋊ {e, τh} with U(τh) = JH(W ).

So we may now start with an (anti-)unitary representation (U,H) of Gτh with
discrete kernel, and consider the standard subspace V := V(h, U), specified by

JV = U(τh) and ∆
−it/2π
V

= U(exp th), t ∈ R.

For any homogeneous space M = G/H and an open exp(Rh)-invariant subset
W ⊆M , we may then consider the nets

(2) H
max(O) :=

⋂

g∈G,O⊆gW
U(g)V and H

min(O) :=
∑

g∈G,gW⊆O
U(g)V.

Both nets are easily seen to be isotone and covariant. It is also rather easy to
verify that they satisfy (BW) in the sense that H

max(W ) = H
min(W ) = V if and

only if we have the following inclusion of subsemigroups of G:

(3) SW := {g ∈ G : gW ⊆W} ⊆ SV := {g ∈ G : gV ⊆ V}.
We refer to [MN23] for details. An interesting consequence is that the existence of
a net H on open subsets of M , satisfying (Iso), (Cov) and (BW), implies (3) and
that

H
min(O) ⊆ H(O) ⊆ H

max(O)

for all open subsets of O ⊆M .
As this point, the next step consists in a better understanding of condition (3).

Here W and the semigroup SW are the most intricate points, but the semigroup
SV has a rather explicit description ([Ne22, Thms. 2.16, 3.4]):

(4) SV = GV exp(C+ + C−) = exp(C+)GV exp(C−),

where GV = {g ∈ G : Ad(g)h = h, τh(g)g
−1 ∈ ker(U)}, and

C± := ±CU ∩ g±1(h), CU := {x ∈ g : −i∂U(x) ≥ 0}.
In this sense SV can be obtained from h, kerU , and the positive cone CU of the
representation U .

Natural choices of wedge regions W ⊆M are the connected components of the
positivity domain

W+
M (h) := {m ∈M : XM

h (m) ∈ C◦
m}

of the so-called modular vector field XM
h (m) := d

dt

∣∣
t=0

exp(th).m. These “wedge
regions” have been studied for compactly and non-compactly causal symmetric
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spaces in [NÓ23b] and [NÓ23a, MNÓ23], respectively. In many situations W+
M (h)

is connected, and then one has good information on SW (cf. [MN23, Prop. 2.9]):

L(SW ) := {x ∈ g : exp(R+x) ⊆ SW } = g0(h) + (CW ∩ g1(h))− (CW ∩ g−1(h)),

where CW := {y ∈ g : (∀m ∈W ) XM
y (m) ∈ Cm} contains the invariant cone

CM := {y ∈ g : (∀m ∈M) XM
y (m) ∈ Cm}.

In all examples for which we have explicit information on these cones, we have
CM ∩ g±1(h) = CW ∩ g±1(h). Note that CM can be considered as the “positive
cone” of the G-action on the causal manifold M , so that the semigroups SV and
SW are closely related to the cones CU and CM in a similar fashion.

Example 2. For Minkowski space M = R1,d, G = R1,d⋊SO1,d(R)↑, the Poincaré
group, the Lie algebra g contains only one adjoint orbit of Euler elements, repre-
sented by the boost generator h.x = (x1, x0, 0, . . . , 0). Then

W = {x ∈ R1,d : x1 > |x0|}
is the Rindler wedge, SW =W ⋊ (SO1,1(R)↑ × SOd−1(R)), and for an antiunirary
representation of Gτh = R1,d ⋊ SO1,d(R), the compatibility condition SW ⊆ SV is
equivalent to the positive energy condition that

V+ = {x ∈ R1,d : x0 > x2, x0 > 0} ⊆ CU .

If the semigroup SW is a connected group, then the compatibility condition
SW ⊆ SV imposes no essential restriction on the representation, such as positive
spectrum conditions. In this context, a central result of [MN23], based on the

irreducible case that is dealt with in [FNÓ23], is:

Theorem 3. For every connected reductive linear Lie group G and any Euler
element h ∈ g, there exists a causal symmetric space M = G/H such that for all

conneced components W ⊆ W+
M (h) and all (anti-)unitary representations (U,H)

of Gτh , the net Hmax satisfies (Iso), (Cov), (BW) and (RS).
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Quasi-free isomorphisms of second quantization von Neumann

algebras and modular theory

Gerardo Morsella

(joint work with Roberto Conti)

1. Motivations

We present the work [CM], whose main motivation is to try to understand a
classical result by Eckmann and Fröhlich on the local quasi-equivalence of vacua
of different masses of the Klein-Gordon field [EF74] (proven with methods form
constructive QFT) in terms of modular theory. The main tool employed towards
this end is the quasi-equivalence criterion of Araki and Yamagami [AY82].

2. Abstract result

Our setting is the following. Let H be a complex Hilbert space with scalar product
〈·, ·〉 and let eH =

⊕+∞
n=0H

⊗Sn be the associated symmetric Fock space, in which

the coherent vectors ex :=
⊕+∞

n=0
1√
n!
x⊗n, x ∈ H , form a total set. We also

consider on eH the Weyl unitariesW (x), x ∈ H , defined by their action on Ω := e0

(vacuum vector) and by the canonical commutation relations (CCR):

W (x)Ω := e−
1
4‖x‖

2

eix/
√
2, x ∈ H,

W (x)W (y) = e−
i
2ℑ〈x,y〉W (x+ y), x, y ∈ H.

For any standard subspace K of H (i.e., a real subspace such that K + iK = H
and K ∩ iK = {0}), the von Neumann algebra

A(K) = {W (h) | h ∈ K}′′

on eH , is called the second quantization algebra of K. Moreover, K defines a
closed, densely defined conjugate linear operator

s : K + iK → K + iK, s(h+ ik) = h− ik, h, k ∈ K.

and if s = jδ1/2 is the polar decomposition, j and δ are the modular conjugation
and the modular operator of K. Their second quantizations J = Γ(j), ∆ = Γ(δ)
are respectively the modular conjugation and the modular operator of A(K) with
respect to Ω [EO73, Lon].

A Bogolubov transformation between standard subspaces K1,K2 ⊂ H is a real
linear bijection Q : K1 → K2 preserving the symplectic form, i.e., ℑ〈Qh,Qk〉 =
ℑ〈h, k〉, h, k ∈ K1. Given such a map, the C*-algebras generated by the Weyl
operatorsW (k) and W (Qk), k ∈ K1, are isomorphic, and it is then natural to ask
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under which condition this isomorphism extends to an isomorphism between the
respective von Neumann algebras φ : A(K1) → A(K2). If this is the case, φ is
called the quasi-free isomorphism induced by Q.

The problem of the existence of the quasi-free isomorphism is equivalent to
the problem of the quasi-equivalence of the states ω and ωQ on the C*-algebra
generated by W (k), k ∈ K1, defined by

ω(W (k)) = e−
1
4‖k‖

2

, ωQ(W (k)) = e−
1
4‖Qk‖

2

, k ∈ K1.

The relevance of the modular structures of K1, K2 for this problem can be under-
stood from the fact that they relate the symplectic structures and the real Hilbert
space ones of K1, K2. Indeed, if

Rj := i
δj − 1

δj + 1
, j = 1, 2,

is the polariser of Kj , there holds ℑ〈h, k〉 = ℜ〈h,Rjk〉, h, k ∈ Kj.
Applying then the very general quasi-equivalence criterion of [AY82], one ob-

tains the following result, in which Q† : K2 → K1 is the adjoint of Q w.r.t. the real
scalar products of K1, K2, and Q

†Q is extended to K1+ iK1 by complex linearity.

Theorem 1. The Bogolubov transformation Q : K1 → K2 induces a quasi-free
isomorphism if and only if:

(i) Q is bounded (w.r.t. the norm of H);
(ii) (1 + iR1)

1/2 − (Q†Q + iR1)
1/2 is Hilbert-Schmidt on K1 + iK1, endowed

with the graph scalar product of s1.

A sufficient condition for (ii) is that 1 − Q†Q is of trace class on K1, while a
necessary condition is that 1 − Q†Q is Hilbert-Schmidt on K1. Moreover, (ii) is
also equivalent to the fact that the operators

(∗) 1−Q†Q,
1√

1 + δ1
−Q−1 1√

1 + δ2
Q

are both Hilbert-Schmidt on K1 + iK1. In the case in which δ1, δ2 are bounded,
using powerful results of [BS67], it is possible to show that the fact that 1−Q†Q
is Hilbert-Schmidt on K1 is equivalent to (ii).

3. Applications to QFT

The one particle space of the Klein-Gordon field in d spatial dimensions is H =
L2(Rd). On it, the operator ωm := (−∆+m2)1/2 is defined by functional calculus.
For d = 1 and I ⊂ R an open interval, the space

Km(I) :=
{
ω−1/2
m f + iω1/2

m g : f, g ∈ C∞
c (I,R),

∫
I
f = 0 =

∫
I
g
}−

, m ≥ 0,

is a standard subspace of H for m > 0, and of

H0 :=
{
ω
−1/2
0 f + iω

1/2
0 g : f, g ∈ C∞

c (R,R),
∫
R
f = 0 =

∫
R
g
}−
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for m = 0. The restriction to zero average functions is needed to avoid the infrared
divergence of the scalar field in d = 1. The map

Q : Km(I) → K0(I), ω−1/2
m f + iω1/2

m g 7→ ω
−1/2
0 f + iω

1/2
0 g,

is a Bogolubov transformation, and it can be shown that 1 − Q†Q is of trace
class [CM20], so, by the above results, it induces a quasi-free isomorphism of the
respective second quantization von Neumann algebras. Equivalently, the restric-
tion of the massive and massless vacua to the nets generated by the derivative of
the time zero field and momentum are locally quasi-equivalent.

For d = 2, 3 and B ⊂ Rd the unit ball, the real subspace

Km(B) := L−(B) + iL+(B), L±(B) := ω
±1/2
m C∞

c (B,R), m ≥ 0.

is a standard subspace of H for all m ≥ 0, and, given m > 0,

Q : Km(B) → K0(B), ω−1/2
m f + iω1/2

m g 7→ ω
−1/2
0 f + iω

1/2
0 g,

is a Bogolubov transformation, for which one can compute

Q†Q =

(
E−

ωm
ω0

E− + iE+
ω0

ωm
E+i

)∣∣∣
Km(B)

,

with E± : H → L±(B) the real orthogonal projections. Contrary to the d = 1
case, now 1−Q†Q is most likely not of trace class. However, the above formula can
be used to estimate the integral kernel of EKm(B)(1−Q†Q)EKm(B) (with EKm(B)

the real orthogonal projection ontoKm(B)), and obtain the following partial result
towards the existence of the quasi-free isomorphism induced by Q.

Theorem 2. The operator 1−Q†Q is Hilbert-Schmidt on Km(B)+ iKm(B) (and
then on Km(B)), and its Hilbert-Schmidt norm vanishes for m→ 0+.

Unfortunately, proving the Hilbert-Schmidt property of the second operator
in (∗) seems to require a much more detailed knowledge of the massive modular
operator than is presently available.

As a byproduct of the above result, if δm,B is the modular operator of Km(B),
then the Hilbert-Schmidt norm (on Km(B)+ iKm(B)) of (λ− δm,B)−1−Q−1(λ−
δ0,B)

−1Q, λ ∈ C \ [0,+∞), vanishes for m → 0+, i.e., the resolvents of the local
modular operators depend continuously on the mass.
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Twisted Araki-Woods Algebras: structure and inclusions

Ricardo Correa da Silva

(joint work with Gandalf Lechner)

Fock spaces and second quantization are central concepts in algebraic quantum
theory and exist in various forms. From the physics perspective, the better known
examples are the Boltzmann-Fock space F0(H) =

⊕∞
n=0 H⊗n, the Bose-Fock space

FF (H) =
⊕∞

n=0 SnH⊗n, and the Fermi-Fock space F−F (H) =
⊕∞

n=0 AnH⊗n,
where Sn and An are the symmetrization and anti-symmetrization operators,
which are used in the description of interaction-free Bosonic and Fermionic mod-
els [BR97]. The use of symmetrization and anti-symmetrization maps on the n-
particle components capture the fact that bosons satisfy CCR and fermions CAR,
respectively, and more general commutation relations such as the q-deformed com-
mutation relations require the introduction of twisted Fock spaces [BS91], whose
construction holds in much more generality than only q-deformed commutation
relations and are relevant in studying representations of Wick algebras [JSW95].
Analogous spaces, called S-symmetric Fock spaces, are also relevant in integrable
models in quantum field theory when a prescribed two-particle scattering matrix
S is given [Lec23], [AL17].

Twisted Fock Spaces and Twisted Araki-Woods Algebras. Following
[BS91] and [JSW95], given a separable Hilbert H and an operator T ∈ B(H⊗H)
with ‖T ‖ ≤ 1 we define, for n ∈ N, the operators Tj, RT,n, PT,n ∈ B(H⊗n), 1 ≤
j ≤ n−1, by Tj = 1⊗(j−1)⊗T⊗1⊗(n−j−1), RT,n := 1+T1+T1T2+. . .+T1 · · ·Tn−1,
PT,1 := 1, PT,n+1 := (1 ⊗ PT,n)RT,n+1. In case PT,n is positive for all n ∈ N we
say that T is a twist and denote the set of all twists T≥.

In case T ∈ T≥, we define HT,n as the closure of the quotient H⊗n/ ker(PT,n)
with respect to the inner product 〈[ψn], [φn]〉T,n := 〈ψn, PT,nφn〉, where the square-
brackets denote equivalence classes and ψn, φn ∈ H⊗n. Finally, the twisted Fock
space is FT (H) :=

⊕∞
n=0 HT,n provided with the natural inner product 〈·, ·〉T . It

is worth mentioning that, as the afore-used notation suggests, the case T = 0,
T = F , and T = −F , where F is the tensor flip, correspond respectively to the
Boltzmann-, Bose-, and Fermi-Fock spaces, but there are many more operators
that are twists. In fact, it is known that if T = T ∗ and T satisfies one of the
following conditions (i) ‖T ‖ ≤ 1

2 ; (ii) T ≥ 0; (iii) ‖T ‖ ≤ 1 and the Yang-Baxter
equation holds, i.e. T1T2T1 = T2T1T2, then T ∈ T≥.

The recursive formula defining PT,n makes, for each ξ ∈ H, the twisted left

creation operator a⋆L,T (ξ) : H⊗n/ kerPT,n → H⊗(n+1)/ kerPT,n+1 given by the

formula a⋆L,T (ξ)[Ψn] := [ξ ⊗ Ψn] a well-defined operator which naturally extends

to densely define operator on FT (H) denoted by the same symbol. Its adjoint with
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respect to 〈·, ·〉T can be calculated and turns out to be the twisted left annihila-
tion operator aL,T (ξ)[Ψn] = [aL(ξ)RT,nΨn], where aL(ξ) is the usual (untwisted)
annihilation operator.

As usual, we can define the essentially self-adjoint field operators φL,T (ξ) =
a⋆L,T (ξ)+aL,T (ξ) and define, following [CdSL23], for a standard subspace H ⊂ H,
the left twisted Araki-Woods algebras

Definition 1. Given a closed real subspace H ⊂ H and a twist T ∈ T≥, we define
the (left) T -twisted Araki-Woods von Neumann algebra

LT (H) := {exp(iφL,T (h)) : h ∈ H}′′ ⊂ B(FT (H)).

It is easy to prove that H being cyclic in H implies the Fock vacuum Ω to be
cyclic for LT (H). The natural question to be asked is under which conditions Ω
is separating for LT (H) and what is the modular data of this pair.

Twisted Araki-Woods Algebras and Standard Vectors. Under the assump-
tion that Ω is separating, we have two modular data to consider: The one originat-
ing from H , denoted by JH , and ∆H (see [Lon08]); and the one originating from
the pair (LT (H),Ω), denoted by J and ∆. In order to have ∆|H∩Dom(∆)

= ∆H , we
introduce the concept of compatibility:

Definition 2. Let H ⊂ H be a standard subspace. The twists compatible with H
are the elements of

T≥(H) := {T ∈ T≥ : [∆it
H ⊗∆it

H , T ] = 0 for all t ∈ R}.
Under the assumption of compatibility and Ω being separating for LT (H), one

can explore the KMS condition to prove two conditions about the twist:

(i) T is braided, i.e. T satisfies the Yang-Baxter equation T1T2T1 = T2T1T2;
(ii) T is crossing-symmetric, i.e. for all ψi ∈ H, 1 ≤ i ≤ 4

T (t) := 〈ψ1 ⊗ ψ2, (∆
it
H ⊗ 1)T (1⊗∆−it

H )ψ3 ⊗ ψ4〉
must have a continuous and bounded extension to the strip in the complex
plane with 0 ≤ Im(t) ≤ 1

2 and analytic in its interior satisfying the boundary
condition

T

(
t+

i

2

)
:= 〈ψ2 ⊗ JHψ4, (1⊗∆−it

H )T (∆it
H ⊗ 1)JHψ1 ⊗ ψ3〉.

On the other hand, in case T satisfies the Yang-Baxter equation and crossing-
symmetry, the analogous construction for right twisted operators is possible and
it is easy to see that the twisted right Araki-Woods algebra satisfies RT (H

′) ⊂
LT (H)′ whereH ′ is the symplectic complement of the standard subspaceH . These
results can be collect in the following theorem which is one of the main results on
[CdSL23]:

Theorem 3. Let H ⊂ H be a standard subspace and T ∈ T≥(H) a compatible
twist. The following are equivalent:

(1) Ω is separating for LT (H);
(2) T is braided and crossing symmetric w.r.t. H.
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Inclusions of Twisted Araki-Woods Algebras. From the quantum field the-
ory perspective, one is interested in a net of von Neumann algebras indexed by the
open regions of a manifold. Among several other physically motivated conditions,
we mention: (i) isotony, meaning that if two space-time regions O1 ⊂ O2, then
A(O1) ⊂ A(O2); and causality, meaning that if O1 is space-like separated from
O2, then [A(O1),A(O2)] = 0. In the standard subspace language, it justifies con-
sidering the relative commutant of the inclusion LT (K) ⊂ LT (H), where K ⊂ H
are standard subspaces, namely, CT (K,H) := LT (H) ∩ LT (K)′.

Two situations are studied in [CdSL23] and [CdSL], one showing that the rela-
tive commutant can be very big (a type III von Neumann algebra) and the other
showing that the relative commutant may consists only of multiples of the identity.

Theorem 4. Let K ⊂ H be an inclusion of standard subspaces and let T ∈ T≥(H)
be a braided crossing-symmetric twist w.r.t to H with norm ‖T ‖ < 1.

(1) If L2-nuclearity holds on the standard subspace level, i.e. ‖∆1/4
H ∆

−1/4
K ‖1

< 1, where ‖ · ‖1 is the trace norm on H, and T is also compatible with
K, then LT (K) ⊂ LT (H) satisfies L2-nuclearity and is quasi-split. If, in
addition, LT (H) is of type III, also the relative commutant CT (K,H) is of
type III.

(2) If ∆
1
4

HEK is not compact, where EK is the real orthogonal projection onto
K, then LT (K)′ ∩ LT (H) = C1.

The assumptions on item (1) on the above theorem are, in general, too strong
and item (2) shows that physical models with ‖T ‖ < 1 are usually non-local.

Understanding what happens in the situation when ∆
1
4

HEK is compact, but L2-
nuclearity doesn’t hold, and when ‖T ‖ = 1 are still under investigation.
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Holomorphic extension in a locally convex setting

and standard subspaces

Daniel Beltiţă

(joint work with Karl-Hermann Neeb)

In the framework of one-parameter operator groups on locally convex spaces, we
discussed holomorphic extensions with respect to the parameter, from the real
line to suitable horizontal strips in the complex plane. In the special case of one-
parameter unitary groups eitH = (eH)it on Hilbert spaces, we recover the complex
powers eizH = (eH)iz of the positive operator defined as the exponential of the
infinitesimal generator. This Hilbert space setting is however too special for the ap-
plications to certain constructions of nets of standard subspaces in the framework
of Lie group representations, as they appear in Algebraic Quantum Field Theory
in connection with the Kubo–Martin–Schwinger (KMS) boundary conditions. The
constructions of this type are our main motivation. They require one-parameter
operator groups on spaces of distribution vectors of unitary representations of Lie
groups as presented below in some more detail.

A general KMS boundary condition. We assume the following setting:

• Sπ := R+ i(0, π) ⊂ R+ i[0, π] =: Sπ ⊂ C
• Y a complex Hausdorff locally convex space.
• for every subset Γ ⊆ C we denote by O∂(Γ,Y) the set of all continuous
functions f : Γ → Y that are weakly holomorphic on the interior of Γ

• (Ut)t∈R is a 1-parameter subgroup of GL(Y)
• J : Y → Y is an anti-linear continuous map
• the following compatibility condition is satisfied: (∀t ∈ R) JUt = UtJ

Then v ∈ Y is said to satisfy the KMS condition (v ∈ YKMS) if there exists a
function f ∈ O∂(Sπ,Y), satisfying the boundary condition

(∀t ∈ R) f(t) = Utv, f(t+ iπ) = JUtv (= Jf(t)).

A construction of standard subspaces in a representation theoretic set-

ting. We now assume the following:

• G is a finite-dimensional real Lie group with Lie algebra g and exponential
map expG : g → G.

• U : G → U(H), g 7→ Ug is a unitary representation of G with continuous
orbit maps U ξ(g) = Ugξ.

• H∞ := {ξ ∈ H : U ξ ∈ C∞(G,H)} is endowed with its unique Fréchet
topology for which the inclusion map H∞ →֒ H is continuous.

• dU : g → L(H∞), dU(x)v := d
dt

∣∣
t=0

UexpG(tx)v;

• The space H−∞ of continuous antilinear functionals on H∞ is endowed
with its weak-∗-topology and we write

〈·, ·〉 : H∞ ×H−∞ → C

for the antiduality pairing that coincides on H∞×H with the scalar prod-
uct of H (antilinear in the first variable).
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• U±∞ : G→ GL(H±∞) are the representations naturally associated to the
unitary representation U : G→ U(H).

• We also define for h ∈ g and t ∈ R

Uh,t := U(expG(th)), U
±∞
h,t := U±∞(expG(th)).

• J : H → H is a conjugate-linear surjective isometry satisfying JUh,t =
Uh,tJ for every t ∈ R, and moreover JH∞ ⊆ H∞, hence we also have its
corresponding operators J±∞ : H±∞ → H±∞.

We then obtain a standard subspace of H defined by

V := {v ∈ D(∆1/2) : ∆1/2v = Jv} for ∆ := e2πidU(h)

(cf. [NÓ17, §3.1]). Moreover, [NØÓ21, Prop. 2.1] implies V = HKMS.
The position of the standard subspace within the space of distribution

vectors. Our main results can now be stated as follows:

• H−∞
KMS is the (weak-∗-)closure of V in H−∞ ([BN23, Thms. 6.2 and 6.5]);

• H−∞
KMS ∩H = V ([BN23, Thm. 6.4]).

• H−∞
KMS is the annihilator of JV∩H∞ with respect to the imaginary part of

the pairing ([BN23, Cor. 6.8]).

Here we define the space H−∞
KMS via the KMS boundary condition with respect to

the 1-parameter group (U−∞
h,t )t∈R in GL(H−∞) and the continuous antilinear map

J−∞ : H−∞ → H−∞.
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Inclusions of Standard Subspaces

Gandalf Lechner

(joint work with Ricardo Correa da Silva)

Standard subspaces naturally appear in the context of von Neumann algebras,
where any von Neumann algebra in standard form gives rise to a standard subspace
encoding its modular data, and in quantum field theory, where standard subspaces
encode localization regions. From this perspective, standard subspaces appear as
auxiliary objects. There is however growing evidence that standard subspaces are
interesting objects in their own right – for example, they lead to an independent
notion of entropy [CLR19], can naturally be constructed on the basis of suitable
Lie group representations [MN21], and lie at the basis of the recently introduced
twisted Araki-Woods algebras [CdSL23].
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In these and other applications, one is typically not interested in a single stan-
dard subspace (the set of all standard subspaces H of a complex Hilbert space H
can easily be classified, see [Lon08, Cor. 2.1.5]), but rather in families of standard
subspaces and their intersection, inclusion and covariance properties. The topic of
this talk was therefore to initiate an abstract discussion of inclusions

K ⊂ H ⊂ H

of standard subspaces, without reference to von Neumann algebras or group rep-
resentations. This can be seen as an analogue of the study of inclusions of von
Neumann algebras, or more specifically subfactors.

We review some known results about inclusions of standard subspaces and then
reported on joint work in progress with R. Correa da Silva [CdSL].

Inclusions and irreducible inclusions. Given a standard subspace K, can we
embed it properly into a larger standard subspace H , or can we properly embed
a smaller standard subspace into K? This question is answered in the following
lemma:

Lemma 1. [FG00] Let K ⊂ H be a standard subspace. Then the following are
equivalent:

(1) There exists a standard subspace H ⊂ H such that K ( H.
(2) There exists a standard subspace H ⊂ H such that H ( K.
(3) The modular operator ∆K is unbounded.

Guided by the comparison with subfactor theory, we are particularly interested
in understanding irreducible inclusions, which by definition are inclusions K ⊂ H
with K ′ ∩ H = {0}. Here K ′ denotes the symplectic complement of K. Clearly,
this requires in particular K ′ ∩ K = {0}, i.e. K must be a factorial subspace
(a factor, for short). Recall that a factor has a well-defined cutting projection
PK : K +K ′ → K, k + k′ 7→ k [CLR19].

The basic result in this regard is a reformulated version of a proposition from
[FG00].

Proposition 2. Let K ⊂ H be a standard subspace. Then the following are
equivalent:

(1) There exists a standard subspace H ⊂ H such that K ( H is irreducible.
(2) There exists a standard subspace H ⊂ H such that H ( K is irreducible.
(3) The modular operator ∆K is unbounded, K is a factor, and the cutting

projection PK of K is unbounded.

This proposition states that irreducible inclusions of standard subspaces exist
in abundance. A central question is then how to detect whether a given inclusion
is irreducible, or how to detect whether the relative symplectic complement K ′∩H
is cyclic (hence standard).
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Detecting irreducibility. Let K,H be a pair of standard subspaces. Then
[BGL02, Prop. 4.1]

K ′ ∩H + i(K ′ ∩H) = {v ∈ dom(S∗
KSH) : S∗

KSHv = v}.

This characterization is however often difficult to use as it leads to intricate domain
questions. The same holds true for other characterizations that we derived for
K ′ ∩H in terms of polarizers and projections [CdSL].

Comparing with the von Neumann algebraic situation, two notions that are
helpful tools in the understanding of relative commutants are the split prop-
erty [DL84] and modular nuclearity [BDL90]. We give standard subspace for-
mulations for both of them and investigate their consequences in [CdSL]. Here we
focus on the nuclearity aspects.

Definition 3. An inclusion K ⊂ H of standard subspaces is said to satisfy mod-

ular nuclearity if the real linear operator ∆
1/4
H EK , where EK : H → K is the real

orthogonal projection onto K, is trace class.

Making use of [LRT78, BDL90, LS16], we then prove:

Theorem 4. [CdSL] Let K ⊂ H be an inclusion of factor standard subspaces
satisfying modular nuclearity. Then dim(K ′ ∩H) = ∞.

A class of examples. As a concrete class of examples, we consider the irreducible
one-dimensional standard pair, namely the Hilbert space H = L2(R+,

dp
p ) and the

standard subspace H ⊂ H given by the data (see [LL14, Sect. 4] for this and other
equivalent formulations)

(∆it
Hψ)(p) = ψ(e−2πtp), (JHψ)(p) = ψ(p).

The one-parameter group of unitaries (U(x)ψ)(p) = eipxψ(p) acts half-sidedly by
endomorphisms of H , namely U(x)H ⊂ H , x ≥ 0. It is known that the semigroup
of all unitaries V ∈ U(H) that commute with U(x), x ∈ R, and satisfy V H ⊂ H ,
are precisely the unitaries of the form V = ϕ(P ), where P is the generator of U
and ϕ an inner function on the upper half plane satisfying the symmetry condition
ϕ(−p) = ϕ(p), p > 0 [LW10, Thm. 2.3].

We are therefore presented with the family of concrete inclusions ϕ(P )H ⊂ H .
In the talk it was explained that the modular nuclearity condition fails except for
quite specifically chosen inner functions ϕ. Nonetheless it is possible to understand
and sometimes explicitly compute the relative symplectic complement ϕ(P )H ′∩H ,
which can be {0}, finite-dimensional, infinite-dimensional, or cyclic depending
on ϕ. In particular, there are interesting relations relating the number of zeros of
the inner function ϕ and the dimension of ϕ(P )H ′ ∩H .

The structures found in this class of examples are currently being investigated
alongside more general methods for analyzing relative symplectic complements of
standard subspaces [CdSL].
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Unitarity and reflection positivity in two-dimensional conformal

field theory

Yoh Tanimoto

(joint work with Maria Stella Adamo, Yuto Moriwaki)

Two-dimensional conformal field theories (2d CFTs) have been studied extensively
in various setting, from algebraic to analytic. One of the algebraic settings is
Vertex Operator Algebras (VOAs), which formalize chiral components of a 2d
CFT in terms of formal series in z. A VOA that corresponds to a quantum field
theory must satisfy a condition called unitarity [DL14].

It is known [CKLW18] that one can constructWightman fields on S1 from quasi-
primary fields in a unitary VOA satisfying so-called polynomial energy bounds.
As S1 can be seen as the one-point compactification of R, one can see these Wight-
man field as Wightman fields on one of the lightrays in R1+1. On the other hand,
there are Osterwalder-Schrader axioms (OS axioms) [OS73, OS75] that can acco-
modate many interacting QFTs, mostly the massive ones. From the Schwinger
functions satisfying the OS axioms, one can reconstruct Wightman fields. As the
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VOA formalism considers the Euclidean setting, it should be possible to construct
Schwinger functions satisfying the OS axioms, at least for a nice class of 2d CFTs.

The OS axioms in the two-dimensional Euclidean space concern the Schwinger
functions {Sn(z1, · · · , zn)}, where Sn is a distribution on a subset of R2n excluding
the coinciding points, zj 6= zk for j 6= k. Among the OS axioms, we consider only
reflection positivity, which assures the Hilbert space structure in the resulting
Wightman field theory. Up to a conformal transformation [FFK89], this means
that, for a finite sequence of test functions {fn(z1, · · · , zn)} supported in the region
|z1| < |z2| < · · · < |zn|, one should have

0 ≤
∑

j,k

∫
fj(z̄

−1
j , · · · , z̄−1

1 )fj(zj+1, · · · , zj+k)Sj+k(z1, · · · , zj+k)

|J(z1) · · · J(zn)|dx1dy1 · · · dxj+kdyj+k,(1)

where zj = xj + iyj ∈ R2 and J(z)dxdy is a measure on R2 invariant under the
reflection z 7→ z̄−1 when including the scaling factor coming from the conformal
transformations for fields (we define Sn(z1, · · · , zn) = 〈Ω, φ(z1) · · ·φ(zn)Ω〉, see
below).

Let V, Y (·, z) be a unitary VOA and v ∈ V be a quasi-primary vector. For a
given v, we denote φ(z) = Y (v, z) =

∑
n φnz

−n−d, where d ∈ N is the conformal

dimension of v and φn ∈ End(V ). Unitarity means that V is equipped with a
positive-definite inner product 〈·, ·〉 and V is generated by quasi-primary fields
satisfying (φn)

∗ = φ−n [CKLW18]. We put φ(z) =
∑
n φnz

−n and define

Sn(z1, · · · , zn) = 〈Ω, φ(z1) · · ·φ(zn)Ω〉
=

∑

k1,··· ,kn
〈Ω, φk1 · · ·φknΩ〉z−k11 · · · z−knn ,(2)

where Ω ∈ V is the vacuum. This is, at this point, a formal series in z1, · · · , zn.
We assume polynomial energy bounds for V [CKLW18]. This means that

‖φnΨ‖ ≤ C(|n| + 1)s‖(L0 + id)pΨ‖ for some C, s, p > 0. Then one can show
that the series (2) converges for |z1| < · · · < |zn|. Using again polynomial energy
bounds, it is also possible that Sn defines a distribution as required in the OS
axioms.

If we consider z ∈ S1, we have the relation (φ(z)∗) = φ(z). By analytically
continuing this equation, we have (weakly) φ(z)∗ = φ(z̄−1). As for reflection
positivity, by the positive definiteness of the scalar product, we have 〈Ψ,Ψ〉 ≥ 0,
where

Ψ =
∑

j

∫
fj(z1, · · · , zj)ϕ(a1, z1) · · ·ϕ(aj , zj)Ω |J(z1) · · ·J(zj)|dx1dy1 · · · dxjdyj

is a vector in the completion V of V . One can show that 〈Ψ,Ψ〉 is equal to the
right-hand side of (1), therefore, reflection positivity holds under unitarity and
polynomial energy bounds. Other OS axioms can be checked as well [Mor22],
and also the linear growth condition [OS75] from polynomial energy bounds. Al-
together, quasi-primary fields in unitary VOA can generate Schwinger functions,
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from which one can construct Wightman fields as is done in Constructive QFT
[GJ87].

We hope to extend this to full vertex operator algebras [Mor20], as we already
have Wightman fields for a class of full CFT [AGT]. We hope to find Hilbert
space structure for the Euclidean fields. This Euclidean construction could be
useful when one tries to perturb CFTs to obtain massive models [JT].
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Reflection Positivity for finite dimensional Lie groups

Maria Stella Adamo

(joint work with Karl-Hermann Neeb, Jonas Schober)

Reflection positivity appears as one of Osterwalder–Schrader axioms, used to study
a large class of quantum field theories (QFTs) [OS73, OS75]. Such axioms are used
in Constructive QFT, for example, to construct interacting or massive QFTs, see,
e.g., [GJ87]. Osterwalder–Schrader axioms are given for a Euclidean field theory,
providing tools to reconstruct Wightman fields for a Minkowskian (Lorentzian)
quantum field theory by analytic continuation of Euclidean Schwinger functions.

As a consequence of a similar duality between the Euclidean motion Lie group
and the Poincaré Lie group on the Minkowski space, see [LM75], one can investigate
instead reflection positivity for unitary Lie group representations U on Hilbert
spaces H equipped with a θ-positive closed subspace H+ ⊆ H, where θ is an
involution on H.
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The represented Lie groups G are paired with a subsemigroup S and an invo-
lution τ such that τ(S)−1 = S. Note that S and τ play the role of H+ and θ re-
spectively in the group theoretic context. A unitary representation U : G → U(H)
is said to be reflection positive if U is a representation of (G, S) on (H,H+), i.e.,
U(S)H+ ⊆ H+, and U and θ verify a compatibility condition between θ and τ of
the form θU(g)θ = U(τ(g)) for all g ∈ G, for further reading, see [NO18]. When
the other conditions are satisfied, the compatibility condition is usually difficult
to establish.

From a quadruple (U ,H,H+, θ) as before, in a canonical way, one obtains a new

∗-representation Û of (S, ♯) on Ĥ, where s♯ := τ(s)−1 is the involution induced by

τ in S. Ĥ indicates the completion of the quotient of H+ by the null vectors

with respect to the norm induced by θ. This construction of Û from U involves
the so-called Osterwalder-Schrader transform and so we regard (U ,H,H+, θ) as a

Euclidean realization of (Û , Ĥ).
One of the simplest example of (G, S, τ), yet rich in information, is given by

the real line R with its subsemigroup of the positive half line R+ and τ = −idR.
Analogously, one can consider the triple (Z,N,−idZ). In [ANS22] we consider
only regular representations U , namely those for which ∩g∈GU(g)H+ = {0} and

∪g∈GU(g)H+ = H. For these representations U , every U(G)-invariant subspace in
H+ is trivial and the only U(G)-invariant subspace that contains H+ is H itself.

For the real line R, a regular representation U is a 1-parameter group, that by
the spectral form of the Lax–Phillips Representation Theorem, is realized by mul-
tiplication on L2(R,M), and its positive subspace corresponds to the Hardy space
H2(C+,M) of the upper half-plane C+ with values in some higher dimensional
multiplicity space M [LP81, NO18]. Furthermore, in [ANS22] we assume that the
multiplicity space is one-dimensional. However, the Lax–Phillips Theorem doesn’t
recover the involution, and thus doesn’t give information on the compatibility con-
dition between θ and τ . Thus, we investigate the issue of classifying the involution
θ which verify the compatibility condition and thus produce reflection positive
representations.

Under these assumptions, θ is of the form θ = ϕR, where ϕ ∈ L∞(R) takes
values on the unit circle and, for x ∈ R, Rf(x) := f(−x) is a reflection on the real
line. By using a similar characterization of Hankel operators given for the unit
disk D, we show that θ defines a Hankel operator by Hθ := P+θP

∗
+. Therefore,

we obtain a 1-1 correspondence between positive Hankel operators and unitary
reflection positive representations, see [ANS22, Example 1.7 (a)], cf. [Nik02, Nik19,
Par88, RR94].

Hankel operators can be characterized through Carleson measures. By Nehari’s
Theorem [ANS22, Nik02], such a measure has a symbol h ∈ L∞(R) with values in
S1, and thus a kernel, that allows us to define a new weighted space L2(R, ν) ∼=
L2(R) through a *-isometric isomorphism that preserves the Hardy space (the posi-
tive part) and produces a reflection positive representation (U ,L2(R, ν),H2(C+, ν),
θh) [ANS22, Theorem 4.5]. Recently, in [Sch23], if the positive Hankel operator on
H2(C+) is contractive, then there exists a involution θh such that (L2(R),H2(C+),
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θh) is a reflection positive Hilbert space, without modification of the measure. Ac-
cordingly, by using the Wold decomposition as a normal form for regular unitary
operators U on Z, we obtain similar results for the triple (L2(S1),H2(D),U), where
U acts as a multiplication operator by z.

For reflection positive representations on Z and R respectively, the positive part
of the Hilbert space is realized as a Hardy space H2 on D and on C+ respectively.
Such domains are biholomorphically equivalent to the β-strip Sβ of all z ∈ C
such that Im z ∈ (0, β). Nonetheless, the β-strip exhibits different geometrical
features compared to D and C+, e.g., the biholomorphism to the upper half-
plane C+ is given by the exponential map, which is not a Möbius transformation,
and the boundary of Sβ has two connected components, whereas the boundaries
of D and C+ are both connected. Such a domain naturally appears when one
studies reflection positivity for the circle group (Tβ ,Tβ,+, τβ) for β > 0, where
Tβ := R/βZ, Tβ,+ is the half-circle and τβ(z) := −idTβ . Compared to the previous
cases of R and Z, Tβ,+ is not a semigroup.

We will start our investigation of reflection positivity for the circle group Tβ
by looking at reflection positive functions ϕ, since they provide a way to pro-
duce reflection positive representations through GNS-like construction by using
the positive definite kernels induced by ϕ [NO15, NO18]. In the special case of
reflection positive functions on the real line R which verify the β-KMS condition,
they constitute a source of standard subspaces. Indeed, in [NO19] such functions
on R are shown to be of the form ϕR(t) := 〈v,∆−it/βv〉 for t ∈ R, where v belongs
to a standard subspace V ⊆ H and (∆, J) denotes its modular pair.

For the circle group Tβ , general reflection positive functions ϕTβ admit an inte-
gral representation with respect to a finite Borel measure µ on R+ [KL81, NO15].
This allows to extend ϕTβ to a continuous function on Sβ , which is holomorphic
in Sβ and to obtain by restriction to the lower boundary of Sβ a reflection positive
function on R which verify the β-KMS condition [NO15, NO19]. Using the integral
representation of ϕTβ , such a restriction is given by the Fourier transform of a finite

positive Borel measure ν on R that verifies β-reflection, i.e., dν(−p) = e−βpdν(p).
On the other hand, in [ANS], finite positive Borel measures ν on R for which β-

reflection holds are in 1-1 correspondence with finite positive Borel measures µ on
R+. To define ϕTβ , we consider the restriction on [0, β]i of the Fourier transform of
the finite positive Borel measure ν on R, which satisfies the β-reflection condition.
Therefore, we can directly show that reflection positive functions ϕTβ are in 1-
1 correspondence with reflection positive functions ϕR which verify the β-KMS-
condition.
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Maximal Quantum f−Divergences in von Neumann Algebras

Alessio Ranallo

(joint work with Stefan Hollands)

Inspired by recent advances in the study of the capacity of quantum channels be-
tween finite-dimensional factors by means of Geometric Rényi Divergences [FF21],
we study the notion of Maximal Quantum f−Divergences in the setting of von
Neumann algebras and Algebraic Quantum Field Theory.

Divergences are used to distinguish between couples of probability measures
(and quantum states). Araki’s notion of relative entropy is an example of diver-
gence. In Quantum Information Theory an account of quasi-entropies is given in
[OP93] and a more systematic account of various types of Quantum f−Divergences
can be found in [Hia19].

Consider two probability measures p = {pi}i , q = {qi}i ∈ P(X) on a finite set
X , such that p≪ q. The relative entropy between these two reads

S(p‖q) = −
∑

i

pi log

(
qi
pi

)
= −

∑

i

pi log
(
(Rqp)i

)
,
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where Rqp denotes the Radon-Nikodym derivative of q w.r.t. p. Relative entropy can
be generalized to the quantum setting in a number of ways. The Araki’s notion
of relative entropy comes from the Umegaki’s one, where the Radon-Nikodym
derivative is replaced by the relative modular operator. Indeed, let M be a von
Neumann algebra in standard form acting on the Hilbert space H. Let ψ, ϕ ∈
M∗,+ be two normal, bounded, and positive functionals with (standard) vector
representatives Ψ,Φ ∈ H. For the sake of simplicity, suppose that both ψ and ϕ
are faithful, then

S(ϕ‖ψ) = −〈Φ , log (∆ψ,ϕ)Φ〉
is the formula for Araki’s relative entropy. It is then easy to show that in finite
dimensions Araki’s notion reduces to the Umegaki’s original definition

S(ϕ‖ψ) = −Tr (ρϕ (log (ρψ)− log (ρϕ))) ,

where ρϕ, resp. ρψ, denotes the matrix representing ϕ, resp. ψ. However, in finite

dimensions, the choice of the operator ρ
1/2
ψ ρ−1

ϕ ρ
1/2
ψ induce another “entropy-like”

quantity

SBS(ϕ‖ψ) := −Tr
(
ρϕ log

(
ρ
1/2
ψ ρ−1

ϕ ρ
1/2
ψ

))
.

Here, BS is for Belavkin-Staszewski [BS82], where this entropy was introduced.
Note that SBS(ϕ‖ψ) = S(ϕ‖ψ) whenever ρϕ and ρψ commutes. Araki’s relative
entropy is an example of standard divergence, while the Belavkin-Staszewski notion
is an example of maximal divergence, see [Hia19] for a more systematic treatise.

We prove that a Kosaki-type formula holds for the Belavkin-Staszewski diver-
gence.

SBS(ϕ‖ψ) = sup sup

{
ϕ(1) logn−

∫ ∞

1/n

[
ϕ(xtx

∗
t ) +

1

t
ψ(yty

∗
t )

]
dt

t

}
,

where the first sup is taken over n ∈ N, while the second is over finite range step
functions x(·) : ( 1

n ,∞) → M such that xt = 1 for sufficiently small t, such that
xt = 0 for sufficiently large t, and where yt := 1− xt.

Given two normal linear maps α , β : N → M that are completely positive and
unital, normal channels for short, we are able to provide a notion of Belavkin-
Staszewski divergence of α w.r.t. to β. The definition generalizes the one for
matrix algebras introduced (for generalized divergences of which SBS is an instance
of) in [LKDW18], where one takes the sup over all states induced from states on
the enlarged system obtained from coupling our initial system, e.g. M above,
with an ancillary system A (arbitrary), and then precomposing with the dilated
channels α⊗ idA, β ⊗ idA:

SBS(α‖β) = sup
A

ψ∈(M⊗A)∗,+,1

SBS(ψ ◦ (α⊗ idA)‖ψ ◦ (β ⊗ idA)) .

The motivation behind this definition comes from the fact that refined informa-
tion about the action of channels can be obtained through entanglement. In the
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case of von Neumann algebras of general type, we provide a generalization of this
definition based on the notion of bimodules between two von Neumann algebras.

After presenting some results on channel divergences, we discuss briefly some open
questions of relevance to the workshop.
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Localization of positive energy representations for gauge groups on

conformally compactified Minkowski space

Bas Janssens

(joint work with Karl-Hermann Neeb)

For a gauge theory associated to a principal K-bundle P →M , the relevant group
G of gauge transformations depends rather sensitively on the boundary conditions
at infinity. It contains the group Gauc(P ) = Γc(M,Ad(P )) of compactly supported
vertical automorphisms1 of P (the ‘local’ gauge transformations), but it is usually
larger. For instance, if P = M ×K is the trivial bundle, one would expect G to
contain the group K of constant gauge transformations, which are certainly not
compactly supported.

On the other hand, if one requires that G preserves boundary conditions for the
(classical) fields at infinity, then the relevant group G of gauge transformations
may be significantly smaller than the group Gau(P ) = Γ(M,Ad(P )) of all vertical
automorphisms. Any input on the following question would be most welcome:

1My convention here is that Ad(P ) = (P×K)/K is the bundle of Lie groups over M associated
to P by the conjugation, and ad(P ) = (P × k)/K is the bundle of Lie algebras associated to P
by the adjoint action.
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Question

What, in the gauge theory and geometric setting of your choice,
would be examples of relevant groups Gauc(P ) ⊂ G ⊂ Gau(P ) of
gauge transformations?

Different gauge theories and space-time geometries will probably lead to different
answers. For instance, if the boundary conditions are in terms of a fall-off rate 1/rk

for the curvature F ∈ Ω2(M, k) of the principal connection, then the requirement
on the infinitesimal gauge transformations ξ ∈ Γ(ad(P )) will be that the fall-off
rate for δF = [ξ, F ] does not exceed 1/rk for any field F with this property. If K
is abelian, then this condition is vacuous. If K is semisimple however, then the
above condition is fulfilled only if ξ ∼ 1 is bounded. (See [Ash83] for a more refined
version of this type of argument, taking into account the ‘peeling-off’ behaviour
of F .)

Let me say a few words about the background of the above question, and sketch
the implications of one possible answer. I will be rather brief because the details
have appeared elsewhere [JN23].

Together with Karl-Hermann Neeb, we have proven a localization theorem for
certain projective unitary representations of the compactly supported gauge group
Gauc(P ). This is in an equivariant setting, with a Lie group H of ‘space–time
symmetries’ whose action on M lifts to an action on P by bundle automorphisms.
In the Lie algebra h of H we specify a distinguished cone C of ‘timelike generators’.
If, for example, M = Rd is Minkowski space and H = Rd ⋉ SO(d − 1, 1) is the
Poincaré group, then it is natural to choose C = {p ∈ Rd ; η(p, p) ≤ 0} to be the
forward light cone.

We are interested in positive energy representations ; projective unitary repre-
sentations of Gauc(P ) that extend to the semidirect product of Gauc(P ) with the
group H of space-time symmetries in such a way that every timelike generator
p ∈ C gives rise to a Hamilton operator H(p) with spectrum bounded from below.

This positive energy condition is surprisingly restrictive. If the structure group
K of the principal fibre bundle P → M is compact, semisimple and 1-connected,
one can prove the following result.

Theorem 1 (Localization theorem). Suppose that the action of C on M has no
fixed points. Then for every positive energy representation (ρ,H) of the identity
component Γc(M,Ad(P ))0, there exists a 1-dimensional, H-equivariantly embed-
ded submanifold S ⊆ M and a positive energy representation ρS of Γc(S,Ad(P ))
such that the following diagram commutes,

Γc(M,Ad(P ))0

rS

��

ρ
// PU(H)

Γc(S,Ad(P )),

ρS

77
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦

where the vertical arrow denotes restriction to S.
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Loosely speaking: if there are no fixed points for the action of the space-time
symmetry group H , then positive energy representations come from 1-dimensional
H-orbits.

One way to fix boundary conditions on Minkowski space is to require the gauge
fields (weighted by an appropriate conformal factor) to extend smoothly to the
conformal compactification M = S1 × Sd−1. In this setting, the relevant gauge
group is G := Γ(S1×Sd−1,Ad(P )). This is larger than the group Γc(Rd,Ad(P )) of
‘local’ gauge transformation (because compactly supported gauge transformations
extend trivially to infinity), but it is strictly smaller than the group Γ(Rd,Ad(P ))
of all vertical automorphisms (which does not require any limiting behaviour at
infinity). This is one example of a choice of boundary conditions for which

Γc(R
d,Ad(P )) ⊆ G ⊆ Γ(Rd,Ad(P )).

If we take H to be the connected Poincaré group, then our theorem does not
immediately apply. The reason for this is that although the action of H on null
infinity is fixed point free, spacelike infinity ι0 (which is identified with timelike
infinity ι± in the compactification) is a fixed point.

Let us start by taking M to be the noncompact manifold M = S1 × S1/{ι0},
the conformal compactification of R2 with spatial infinity removed. The action of
the Poincaré group then has three orbits: Minkowski space R2, and the two one-
dimensional components IL/R ≃ R of null infinity (corresponding to left and right
moving modes). So the only 1-dimensional Poincaré-invariant orbits are IL/R! In
this setting, the localization theorem implies that every positive energy represen-
tation of Γc(S

1 × S1/{ι0}, P ) is determined entirely by two positive energy rep-
resentations of the pointed loop group Γc(S

1/{ι0},Ad(P )), one for IL ≃ S1/{ι0}
and one for IR ≃ S1/{ι0}.

Although we cannot directly apply the above form of the localization theorem to
the full compactification S1×S1, a more refined analysis reveals that for every pos-
itive energy representation (ρ,H) of Γ(S1×S1,Ad(P )), the projective unitary op-
erator ρ(g) ∈ PU(H) associated to a gauge transformation g ∈ Γ(S1 × S1,Ad(P ))
can only depend on the values of g at null infinity IL/R, and on the 2-jets at
spatial infinity ι0.

For Minkowski space Rd with d > 2, the conformal compactification S1 × Sd−1

has one orbit of dimension d (the open dense subset Rd), one orbit of dimension
d− 1 (null infinity), and a single fixed point (spacelike infinity ι0, which is again
identified with past and future timelike infinity ι± in the compactification). If we
again apply the localization theorem to the noncompact manifold S1×Sd−1/{ι0},
we now find that every positive energy representation of Γ(S1 × Sd−1,Ad(P )) is
trivial on Γc(S

1 × Sd−1/{ι0},Ad(P )). In other words: for every positive energy
representation (ρ,H) of Γ(S1 × Sd−1,Ad(P )), the projective unitary transforma-
tion ρ(g) ∈ PU(H) assigned to a gauge transformation g depends only on the germ
of g around spacelike infinity ι0.

In fact, a more refined analysis shows that ρ(g) depends only on the 1-jet of g
at ι0. Taking into account the Poincaré group as well, this reduces the relevant
symmetry group from (SO0(d − 1, 1) ⋊ Rd) ⋉ Γ(S1 × Sd−1,Ad(P )) to the finite



2896 Oberwolfach Report 50/2023

dimensional Lie group (SO0(d− 1, 1)⋊Rd)⋉ J1
ι0Ad(P ). Now the group of 1-jets

J1
ι0Ad(P ) is isomorphic to K ⋉ k ⊗ Rd, where the first term captures the values

of the gauge transformation at ι0 and the (abelian) second term captures the first
derivatives of the gauge transformation at ι0. Putting it all together, we end up
with a semidirect product

(SO0(d− 1, 1)×K)⋉ (Rd ⊕ k⊗ Rd)

of a semisimple Lie group G := SO0(d − 1, 1) × K with the abelian Lie group
V := Rd ⊕ k ⊗ Rd (considered as a vector space with addition). The projective
unitary representations of this group can be found using Mackey’s imprimitivity
theorem; they are given by a G-orbit in V , together with a projective unitary
representation of the little group Lν ⊆ G, the stabiliser of a point ν in the orbit.

For d = 4, K = SU(3) and ν = p ⊕ X ⊗ p with η(p, p) = 0, one obtains
representations that are induced from the little group Lν = E(2)×S(U(2)×U(1)),
where E(2) ⊆ SO(3, 1) is the group of two-dimensional euclidean motions. It is
tempting to speculate that these representations might be connected to symmetry
breaking phases.
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On separable states

Ko Sanders

1. Introduction

Entanglement is the phenomenon in quantum physics where measurements in
spacelike separated regions give rise to correlations that cannot be explained by
classical physics. Although this defining feature of quantum physics is rather
counter-intuitive, it is not at all rare. Physical systems naturally entangle them-
selves with their environment at no cost to the experimenter. On the contrary, to
prevent this decoherence is difficult and expensive in terms of effort and energy.

The omnipresence of entanglement is reflected in the structure of relativistic
quantum field theory (QFT). The Reeh-Schlieder Theorem [RS61] states that the
vacuum vector Ω0 ∈ H of any Wightman QFT in Minkowski space is cyclic for all
local algebras of observables. This entails that the vacuum is entangled between
any two spacelike separated open regions A and B of spacetime, cf. Corollary
1 in Section 5.1 of [HS18]. This property is shared by many other states, cf.
[San09, Wit18]. Indeed, H contains a dense Gδ of vectors with the Reeh-Schlieder
property [DM71].
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Even though entanglement is the rule in QFT, rather than the exception, there
are at least two good reasons to have a closer look at separable states, i.e. states
which are not entangled between A and B. Firstly, most of our physical concepts
are classical and hence arise in a context where all states are separable. Secondly,
to quantify the amount of entanglement between A and B in a given state ω,
one uses an entanglement measure, which compares ω to the nearest separable
state. Here, the word “nearest” can be made mathematically precise in various
ways, leading to a range of entanglement measures, cf. [HS18] and references cited
therein.

E.g., the entanglement entropy in vacuum typically falls off when the separation
between A and B increases. This suggests an explanation as to why the physical
world looks so classical on large scales: a smaller entanglement entropy should
make it harder to exploit any entanglement present in the system and make it
visible. Unfortunately, I am not aware of any results that quantify the word
“harder” in terms of the energy (density) needed in relativistic QFT.

It is known that there exist normal separable states under quite general cir-
cumstances, namely when a QFT satisfies the split property, cf. [BDF87] (see also
[Buc74]). However, normality is a rather weak condition on quantum states and
one might like to ascertain further physical properties, e.g. that separable states
can share the symmetry of a system and/or have a finite energy (density), etc.
Furthermore, it would be interesting to know how much energy needs to be ex-
pended to create and/or maintain a separable state. In this talk, based on [San23],
I present a result that gives partial answers to these questions in a toy model sys-
tem. The proof of this result required novel methods involving test functions of
positive type, which I will also discuss.

2. An existence theorem for separable states

To formulate the main result of [San23], let us fix an inertial coordinate frame in
Minkowski space and write x = (x0,x). ω2(x, x

′) denotes the two-point distribu-
tion of a state.

Theorem. Consider a free scalar QFT of massm > 0 in 4-dimensional Minkoswki
space. Given any R > 0 there exists a quasi-free, Hadamard, stationary, homoge-
neous, isotropic state ω, s.t.

(i) ω2(x, x
′) = 0 if (x, x′) ∈ S = {‖x− x′‖ > R+ |x0 − x′0|},

(ii) ω(T ren
00 (x)) ≤ 1031m4 e

− 1
4
mR

(mR)8 .

Item (i) ensures that ω is a product state between A and B, as soon as these
regions are separated by a distance ≥ R. By a standard spacetime deformation
argument one can also establish the existence of separable states for massless fields
and in curved spacetimes with topology R4.

To find ω, we will compare ω2 to the vacuum two-point distribution ω0
2 , i.e.

ω2(x− x′) = ω0
2(x− x′) + w(x − x′) ,
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where we exploited the translation invariance. w must satisfy (�+m2)w = 0 with
initial data w0(x) = w|x0=0(x) and w1(x) = ∂0w|x0=0 ≡ 0 such that

(1) w0 is real-valued, smooth and rotation invariant.
(2) w0 is of positive type, i.e. ŵ0 ≥ 0.
(3) w0(x) = −ω0

2(0,x) if ‖x‖ > R.

(4) ω(T ren
00 (x)) = (−∆+m2)w(0) ≤ 1031m4 e

− 1
4
mR

(mR)8 .

The strategy to find w (and hence ω2) is to modify the initial data of ω0
2 , taking

w0(x) = −χ∞(‖x‖)ω0
2(0,x) + f(x) .

Here χ∞ is a smooth, rotation invariant function that vanishes near x = 0 and
equals 1 when ‖x‖ ≥ R, removing all unwanted correlations. f ∈ C∞

0 (R3,R) is
supported in the ball of radius R and is needed to achieve the positive type of w0,

i.e. f̂ ≥ F
[
χ∞ω0

2 |x0=0

]
(the Fourier transform), which leads to the study of test

functions f of positive type and lower bounds on f̂ . To my knowledge such bounds
had not been considered before, except asymptotically for |k| → ∞ [FF15].

3. Test functions of positive type

A standard construction of test functions starts with the characteristic function
χ of the interval

[
− 1

2 ,
1
2

]
and takes repeated convolutions (cf. [Hor90]). Given

a =
∑∞

n=1 an < ∞ with a1 ≥ a2 ≥ · · · > 0, one obtains a test function f ∈
C∞

0 ([−a, a],R) by taking the limit

f := χ

(
.

a1

)
∗ χ

(
.

a2

)
∗ · · · .

This construction leads to good control on f , e.g. on ‖∂nx f‖∞ for all n ≥ 0 and on

upper bounds on |f̂ |. Because χ̂ ∗ χ = χ̂2 ≥ 0 we can even get f̂ ≥ 0. However,

we have no good control over lower bounds on f̂ . Indeed, f̂ will have zeroes. To
remedy this, one can modify the construction and replace χ by η = 3

2 (χ ∗χ)2 with

1

1 + 7
40k

2
≤ η̂(k) ≤ 1

1 + 1
20k

2
.

For f ∈ C∞
0 (R,R), f̂ falls off faster than any polynomial and |f̂(k)| ≤ e−|k| iff

f ≡ 0. More precisely, using the construction with χ Ingham [Ing34] showed:

Theorem. Given l > 0 and ǫ : R≥0 → R>0 decreasing, there exists f ∈ C∞
0 ([−l, l],

R) such that |f̂(k)| ≤ e−kǫ(|k|) iff
∫ ∞

1

ǫ(k)

k
dk <∞ .(1)

In analogy, [San23] proves a lower bound using the construction with η:

Theorem. Given l > 0, ǫ : R≥0 → R>0 decreasing and γ ∈ (0, 1) such that (1)
holds and lim

k→∞
kγǫ(k) = ∞, there exists a non-negative, even g ∈ C∞

0 ([−l, l],R)
such that

∫
g(x)dx = 1 and |ĝ(k)| ≥ e−kǫ(|k|).
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Analogous results hold in higher dimensions. Examples include test functions of
arbitrarily small support that dominate Gevrey type functions. The constructions
involved provide enough detailed control over test functions of positive type to
prove the main theorem in Section 2, but the estimate on the energy density is
not sharp. It would be interesting to see if the methods introduced here can be
developed further to yield sharper results.
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Brüderstraße 16

04103 Leipzig

GERMANY

Dr. Ricardo Correa da Silva

Department Mathematik

Universität Erlangen-Nürnberg

Cauerstr. 11

91058 Erlangen

GERMANY

Dr. Christian D. Jaekel

Department of Applied Mathematics

Institute of Mathematics and Statistics

University of São Paulo

Rua do Matão, 1010 - Vila Universitaria

São Paulo, SP 05508-090

BRAZIL

Dr. Bas Janssens

Delft Institute of Applied Mathematics

Delft University of Technology

Mekelweg 4

2628 CD Delft

NETHERLANDS

Prof. Dr. Gandalf Lechner

Department Mathematik

Universität Erlangen-Nürnberg

Cauerstr. 11

91058 Erlangen

GERMANY

Prof. Dr. Roberto Longo

Dipartimento di Matematica
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Università di Roma “Tor Vergata”

Via della Ricerca Scientifica, 1

00133 Roma

ITALY




