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Constrained quantization for the Cantor distribution

Megha Pandey and Mrinal Kanti Roychowdhury

Abstract. The theory of constrained quantization has been recently introduced by Pandey and
Roychowdhury. In this paper, they have further generalized their previous definition of con-
strained quantization and studied the constrained quantization for the classical Cantor distribu-
tion. Toward this, they have calculated the optimal sets of n-points, nth constrained quantization
errors, the constrained quantization dimensions, and the constrained quantization coefficients,
taking different families of constraints for all n 2N. The results in this paper show that both the
constrained quantization dimension and the constrained quantization coefficient for the Cantor
distribution depend on the underlying constraints. It also shows that the constrained quantiza-
tion coefficient for the Cantor distribution can exist and be equal to the constrained quantization
dimension. These facts are not true in the unconstrained quantization for the Cantor distribution.

1. Introduction

Real-life problems, such as information theory, data compression, signal processing,
etc., consist of a large number of data that is not easy to handle. In order to deal
with such a data set, the theory of quantization comes into play (see, for instance,
[3,6–8,14,20,21]). Quantization is a process of discretization, in other words, to rep-
resent a set with a large number of elements, discrete or continuous, by a set with a
smaller number of elements. Several mathematical theories have been introduced in
the literature concerning the process of quantization. Graf and Luschgy gave the rigor-
ous mathematical treatment in [6]. In [4], Graf and Luschgy studied the quantization
problem for the canonical probability measure on the classical Cantor set.

Recently, in [12], the authors introduced the concept of constrained quantization.
A quantization without a constraint is referred to as an unconstrained quantization,
which traditionally in the literature is referred to as a quantization, as mentioned in
the previous paragraph. The theory of constrained quantization is a fascinating area of
research, and it invites a lot of new areas to work with a number of applications. With
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the introduction of constrained quantization, quantization now has two classifications:
constrained quantization and unconstrained quantization. In this paper, the authors
have further generalized the definition of constrained quantization given in [12], and
study the concept of constrained quantization for the canonical probability measure
on the classical Cantor set.

Definition 1.1. Let P be a Borel probability measure on space Rk equipped with a
metric d induced by a norm k�k on Rk , and r 2 .0;1/. Let ¹Sj �Rk W j 2Nº, where
N denotes the set of all natural numbers, be a family of closed sets with S1 nonempty.
Then, for n 2N, the nth constrained quantization error for P , of order r with respect
to the family of constraints ¹Sj � Rk W j 2 Nº, is defined by

Vn;r WD Vn;r.P /D inf
°Z

min
a2˛

d.x;a/rdP.x/ W ˛ �

n[
jD1

Sj ; 1� card.˛/� n
±
; (1.1)

where card.A/ represents the cardinality of the set A.

The number
Vr.P I˛/ WD

Z
min
a2˛

d.x; a/rdP.x/

is called the distortion error for P , of order r , with respect to a set ˛ � Rk . The
sets Sj are the constraints in the constrained quantization error. We assume thatR
d.x; 0/rdP.x/ < 1 to make sure that the infimum in (1.1) exists (see [12]). A

set ˛ �
Sn
jD1 Sj for which the infimum in (1.1) exists and does not contain more

than n elements is called an optimal set of n-points for P . Elements of an optimal set
are called optimal elements.

Remark 1.2. In Definition 1.1 of the constrained quantization error, if all Sj for
j 2 N are identical, then it reduces to the definition of constrained quantization error
introduced by Pandey and Roychowdhury in [12]. Furthermore, if Sj D Rk for all
j 2N, then it reduces to the definition of nth unconstrained quantization error, which
traditionally in the literature is referred to as the nth quantization error (see [6]).
For some recent work in the direction of unconstrained quantization, one can see
[1, 2, 4–6, 10, 11, 13, 15–19].

Let Vn;r.P / be a strictly decreasing sequence and V1;r.P / WD limn!1 Vn;r.P /.
Then, the number Dr.P / defined by

Dr.P / WD lim
n!1

r logn
� log.Vn;r.P / � V1;r.P //

; (1.2)

if it exists, is called the constrained quantization dimension of P of order r . The con-
strained quantization dimension measures the speed at which the specified measure
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of the constrained quantization error converges as n tends to infinity. For any � > 0,
the number

lim
n!1

n
r
� .Vn;r.P / � V1;r.P //; (1.3)

if it exists, is called the �-dimensional constrained quantization coefficient for P of
order r .

Remark 1.3. In unconstrained quantization, V1;r.P / WD limn!1 Vn;r.P / D 0. So,
in unconstrained quantization, i.e., when V1;r.P / D 0, the definitions of constrained
quantization dimension and the �-dimensional constrained quantization coefficient
defined by (1.2) and (1.3), respectively, reduce to the corresponding definitions in
unconstrained scenario (see [6]).

This paper deals with the cases r D 2 and k D 2, and the metric on R2 as the
Euclidean metric induced by the Euclidean norm k�k. Instead of writing Vr.P I˛/ and
Vn;r WD Vn;r.P / we write them as V.P I˛/ and Vn WD Vn.P /, i.e., r is omitted in the
subscript as r D 2 throughout the paper. Let us take the family ¹Sj W j 2 Nº, that
occurs in Definition 1.1 as follows:

Sj D
°
.x; y/ W 0 � x � 1 and y D

1

j

±
for all j 2 N: (1.4)

Let T1; T2 WR!R be two contractive similarity mappings such that T1.x/D 1
3
x and

T2.x/D
1
3
x C 2

3
. Then, there exists a unique Borel probability measure P on R such

that P D 1
2
P ı T �11 C

1
2
P ı T �12 , where P ı T �1i denote the image measures of P

with respect to Ti for i D 1; 2 (see [9]). If k 2N, and � WD �1�2 � � ��k 2 ¹1; 2ºk , then
we call � a word of length k over the alphabet I WD ¹1; 2º, and denote it by j� j WD k.
By I �, we denote the set of all words, including the empty word ;. Notice that the
empty word has a length zero. For any word � WD �1�2 � � � �k 2 I �, we write

T� WD T�1 ı � � � ı T�k and J� WD T� .Œ0; 1�/:

Then, the set C WD
T
k2N

S
�2¹1;2ºk J� is known as the Cantor set generated by the

two mappings T1 and T2, and equals the support of the probability measure P , where
P can be written as

P D
X

�2¹1;2ºk

1

2k
P ı T �1� :

For this probability measure P , Graf and Luschgy determined the optimal sets of
n-means and the nth quantization errors for all n 2 N (see [4]). They also showed
that the unconstrained quantization dimension of the measure P exists and equals
log2
log3 , which is the Hausdorff dimension of the Cantor set C , and the unconstrained
quantization coefficient does not exist. In fact, in [4], they showed that the lower and
the upper unconstrained quantization coefficients exist as finite positive numbers.
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1.4. Delineation

In this paper, first, we have determined the optimal sets of n-points and the nth
constrained quantization errors for all n 2 N for the Borel probability measure P
with support the Cantor set C . Then, we have calculated the constrained quantiza-
tion dimension and the constrained quantization coefficient. We have shown that both
the constrained quantization dimensionD.P / and theD.P /-dimensional constrained
quantization coefficient exist and are equal to one, i.e., they coincide. Then, in the last
section, taking different families of constraints for all n 2 N, we investigate the opti-
mal sets of n-points, nth constrained quantization errors, the constrained quantization
dimensions, and the constrained quantization coefficients. From work in this paper,
it can be seen that the constrained quantization dimension of the Cantor distribution
depends on the family of constraints ¹Sj W j 2 Nº, i.e., the constrained quantization
dimension is not always equal to the Hausdorff dimension of the Cantor set as it
occurs in the case of unconstrained quantization (see [4]). In the unconstrained quan-
tization, the D.P /-dimensional quantization coefficient does not exist (see [4]). But
from work in the last section, we see that the D.P /-dimensional constrained quanti-
zation coefficient also depends on the constraints; it may or may not exist.

2. Preliminaries

In this section, we give some basic notations and definitions which we have used
throughout the paper. As defined in the previous section, let I WD ¹1;2º be an alphabet.
For any two words � WD �1�2 � � ��k and � WD �1�2 � � ��` in I �, we denote their concate-
nation by �� WD �1 � � ��k�1 � � ��`. For �;� 2 I �, � is called an extension of � if � D �x
for some word x 2 I �. The mappings Ti W R! R; i D 1; 2; such that T1.x/ D 1

3
x

and T2.x/ D 1
3
x C 2

3
are the generating maps of the Cantor set C , which is the sup-

port of the probability measure P on R given by P D 1
2
P ı T �11 C

1
2
P ı T �12 . For

� WD �1�2 � � � �k 2 I
k , write J� D T� Œ0; 1�, where T� WD T�1 ı T�2 ı � � � ı T�k is a

composition mapping. Notice that J WD J; D T;Œ0; 1� D Œ0; 1�. Then, for any k 2 N,
as mentioned before, we have

C D
\
k2N

[
�2Ik

J� and P D
X
�2Ik

1

2k
P ı T �1� :

The elements of the set ¹J� W � 2 I kº are the 2k intervals in the kth level in the
construction of the Cantor set C , and are known as the basic intervals at the kth level.
The intervals J�1, J�2, into which J� is split up at the .k C 1/th level are called the
children of J� .
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With respect to a finite set ˛ � R2, by the Voronoi region of an element a 2 ˛, it
is meant the set of all elements in R2 which are nearest to a among all the elements in
˛, and is denoted by M.aj˛/. For any two elements .a; b/ and .c; d/ in R2, we write

�..a; b/; .c; d// WD .a � c/2 C .b � d/2;

which gives the squared Euclidean distance between the two elements .a; b/ and
.c; d/. Let p and q be two elements that belong to an optimal set of n-points for
some positive integer n. Then, p and q are called adjacent elements if they have a
common boundary in their own Voronoi regions. Let e be an element on the common
boundary of the Voronoi regions of the adjacent elements p and q. Since the common
boundary of the Voronoi regions of any two adjacent elements is the perpendicular
bisector of the line segment joining the elements, we have

�.p; e/ � �.q; e/ D 0:

We call such an equation a canonical equation. Notice that any element x 2 R can be
identified as an element .x; 0/ 2 R2. Thus, the nonnegative real-valued function � on
R �R2 defined by

� W R �R2 ! Œ0;1/ such that �.x; .a; b// D .x � a/2 C b2;

represents the squared Euclidean distance between an element x 2 R and an element
.a; b/ 2 R2. Let � W R2 ! R such that �.a; b/ D a for any .a; b/ 2 R2 denote the
projection mapping. For a random variable X with distribution P , let E.X/ represent
the expected value, and V WD V.X/ represent the variance of X .

The following lemmas are well known (see [4]).

Lemma 2.1. Let f W R! RC be Borel measurable and k 2 N. Then,Z
fdP D

X
�2¹1;2ºk

p�

Z
f ı T�dP:

Lemma 2.2. Let X be a random variable with probability distribution P . Then,
E.X/ D 1

2
and V WD V.X/ D EkX � 1

2
k2 D E

�
X � 1

2

�2
D

1
8

. Moreover, for any
x0 2 R, we have Z

.x � x0/
2dP.x/ D V.X/C

�
x �

1

2

�2
:

Remark 2.3. For words ˇ; 
; : : : ; ı in I �, by a.ˇ; 
; : : : ; ı/ we mean the conditional
expectation of the random variable X given Jˇ [ J
 [ � � � [ Jı ; i.e.,

a.ˇ;
; : : : ; ı/DE.X WX 2 Jˇ [ J
 [ � � � [ Jı/D
1

P.Jˇ [ � � � [ Jı/

Z
Jˇ[���[Jı

x dP:
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Recall Lemma 2.1, for each � 2 I �, since T� is a similarity mapping, we have

a.�/ D E.X W X 2 J� / D
1

P.J� /

Z
J�

x dP D

Z
J�

xd
�
P ı T �1�

�
D

Z
T� .x/ dP

D E.T� .X// D T� .E.X// D T�

�1
2

�
:

Definition 2.4. For n 2 N with n � 2, let `.n/ be the unique natural number such
that 2`.n/ � n < 2`.n/C1 and Sn D

®�
x; 1

n

�
W 0 � x � 1

¯
. For I � ¹1; 2º`.n/ with

card.I / D n � 2`.n/ let ˛n.I / � Sn be the set such that

˛n.I / D
°�
a.�/;

1

n

�
W � 2 ¹1; 2º`.n/ n I

±
[

°�
a.�1/;

1

n

�
W � 2 I

±
[

°�
a.�2/;

1

n

�
W � 2 I

±
:

Proposition 2.5. Let ˛n.I / be the set given by Definition 2.4. Then, the number of
such sets is 2

`.n/
Cn�2`.n/ , and the corresponding distortion error is given by

V.P I˛n.I //D

Z
min

a2˛n.I /
�.x;a/dP D

1

18`.n/
V
�
2`.n/C1 � nC

1

9

�
n� 2`.n/

��
C
1

n2
;

where V is the variance as stated in Lemma 2.2.

Proof. If 2`.n/ � n < 2`.n/C1, then the subset I can be chosen in 2`.n/Cn�2`.n/ dif-
ferent ways, and so, the number of such sets is given by 2`.n/Cn�2`.n/ , and the corre-
sponding distortion error is obtained as

V.P I˛n.I // D

Z
min

a2˛n.I /
�.x; a/ dP

D

X
�2¹1;2º`.n/nI

Z
J�

�
�
x;
�
a.�/;

1

n

��
dP

C

X
�2I

�Z
J�1

�
�
x;
�
a.�1/;

1

n

��
dP C

Z
J�2

�
�
x;
�
a.�2/;

1

n

��
dP
�

D

X
�2¹1;2º`.n/nI

1

2`.n/

Z
�
�
T� .x/;

�
a.�/;

1

n

��
dP

C

X
�2I

1

2`.n/C1

�Z
�
�
T�1.x/;

�
a.�1/;

1

n

��
dP

C

Z
�
�
T�2.x/;

�
a.�2/;

1

n

��
dP
�

D

X
�2¹1;2º`.n/nI

1

2`.n/

� 1

9`.n/
V C

1

n2

�
C

X
�2I

1

2`.n/C1

� 2

9`.n/C1
V C

2

n2

�
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D
1

18`.n/
V
�
2`.n/C1 � nC

1

9

�
n � 2`.n/

��
C

1

n2
:

Thus, the proof of the proposition is complete.

In the next sections, we give the main results of the paper.

3. Optimal sets of n-points for all n � 1

In this section, we calculate the optimal sets of n-points and the nth constrained quan-
tization errors for all n 2 N. For j 2 N, we have the constraints as

Sj D
°
.x; y/ W 0 � x � 1 and y D

1

j

±
for all j 2 N:

For all j 2 N, the perpendiculars on the constraints Sj passing through the points�
a; 1
j

�
2 Sj intersect J at the points a, where 0 � a � 1. Thus, for each j 2 N, there

exists a one-one correspondence between the element
�
a; 1
j

�
on Sj and the element a

on J . Thus, for j 2 N, there exist bijective functions

Uj W Sj ! J such that Uj
�
a;
1

j

�
D a: (3.1)

Hence, the inverse functions U�1j are defined as

U�1j W J ! Sj such that U�1j .x/ D
�
x;
1

j

�
:

Remark 3.1. For n � 2, let ˛n.I / be the set given by Definition 2.4, and for each
j 2N, letUj be the bijective functions defined by (3.1). Then, Proposition 2.5 implies
that

V.P I˛n.I // D V.P IUn.˛n.I ///C
1

n2
:

Proposition 3.2. An optimal set of one-point is ¹.1
2
; 1/ºwith constrained quantization

error V1 D 9
8

.

Proof. Let ˛ WD ¹.a; b/º be an optimal set of one-point. Since ˛ � S1, we have b D 1.
Now, the distortion error for P with respect to the set ˛ is give by

V.P I˛/ D

Z
�.x; .a; 1//dP D a2 � aC

11

8
;

the minimum value of which is 9
8

and it occurs when a D 1
2

. Thus, the proof of the
proposition is complete.
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The following lemma plays an important role in the paper.

Lemma 3.3. Let ˛n � [njD1 Sj be an optimal set of n-points for P such that

˛n WD ¹.aj ; bj / W 1 � j � nº;

where a1 < a2 < a3 < � � � < an. Then, aj D E.X W X 2 �.M..aj ; bj /j˛n/// and
bj D

1
n

, where M..aj ; bj /j˛n/ are the Voronoi regions of the elements .aj ; bj / with
respect to the set ˛n for 1 � j � n.

Proof. Let ˛n WD ¹.aj ; bj / W 1 � j � nº, as given in the statement of the lemma,
be an optimal set of n-points. Take any .aq; bq/ 2 ˛n. Since ˛n �

Sn
jD1 Sj , we can

assume that .aq; bq/ 2 St , i.e., bq D 1
t

for some 1� t � n. Since the Voronoi region of
.aq; bq/, i.e., M..aq; bq/j˛n/ has positive probability, M..aq; bq/j˛n/ contains some
basic intervals from J that generates the Cantor set C . Let ¹J�.j/ W j 2ƒº, whereƒ is
an index set, be the family of all basic intervals that are contained in M..aq; bq/j˛n/.
Now, the distortion error contributed by .aq; bq/ in its Voronoi regionM..aq; bq/j˛n/
is given byZ
M..aq ;bq/j˛n/

�.x; .aq; bq// dP D
X
j2ƒ

1

2`.�
.j//

Z
J
�.j/

�.x; .aq; bq// d
�
P ı T �1

�.j/

�
D

X
j2ƒ

1

2`.�
.j//

1

9`.�
.j//

V C
X
j2ƒ

1

2`.�
.j//

�
�
T�.j/

�1
2

�
;
�
aq;

1

t

��
D

X
j2ƒ

1

2`.�
.j//

1

9`.�
.j//

V C
X
j2ƒ

1

2`.�
.j//

��
T�.j/

�1
2

�
�aq

�2
C
1

t2

�
D

X
j2ƒ

1

2`.�
.j//

1

9`.�
.j//

V C
X
j2ƒ

1

2`.�
.j//

�
T�.j/

�1
2

�
� aq

�2
C

X
j2ƒ

1

2`.�
.j//

1

t2
:

The above expression is minimum if both
P
j2ƒ

1

2`.�
.j//

�
T�.j/

�
1
2

�
� aq

�2 andP
j2ƒ

1

2`.�
.j//

1
t2

are minimum, i.e., when

aq D

P
j2ƒ

1

2`.�
.j//
T�.j/

�
1
2

�P
j2ƒ

1

2`.�
.j//

D E.X W X 2 �.M..aq; bq/j˛n/// and bq D
1

t
D
1

n
:

Since .aq; bq/ 2 ˛n is chosen arbitrarily, the proof of the lemma is complete.

Remark 3.4. Let ˛n �
Sn
jD1 Sj be an optimal set of n-points for P such that

˛n WD
®
.aj ; bj / W 1 � j � n

¯
;

where a1 < a2 < a3 < � � � < an. Then, by using Lemma 3.3, we can deduce that
0 < a1 < � � � < an < 1.
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Remark 3.5. Lemma 3.3 implies that if ˛n is an optimal set of n-points for P , then
˛n � Sn for all n 2 N.

Proposition 3.6. The set
®�
1
6
; 1
2

�
;
�
5
6
; 1
2

�¯
forms an optimal set of two-points with

constrained quantization error V2 D 19
72

.

Proof. Due to symmetry, the distortion error due to the set ˇ WD
®�
1
6
; 1
2

�
;
�
5
6
; 1
2

�¯
is

given by

V.P Iˇ/ D 2

Z
J1

�
�
x;
�1
6
;
1

2

��
dP D

19

72
:

Let ˛ WD
®�
a1;

1
2

�
;
�
a2;

1
2

�¯
, where 0 < a1 < a2 < 1, be an optimal set of two-points.

As V2 is the constrained quantization error for two-points, we get V2 � V.P Iˇ/D 19
72

.
We first show that U2.˛/ \ J1 ¤ ;. Suppose that T21.1/ D 7

9
� a1. Then,

V2 >

Z
J1

�
�
x;
�7
9
;
1

2

��
dP D

413

1296
> V2;

which leads to a contradiction. Suppose that 2
3
� a1 <

7
9

. Then, the Voronoi region of�
a1;

1
2

�
does not contain any element from J22. For the sake of contradiction, assume

that the Voronoi region of
�
a1;

1
2

�
contains elements from J22. Then, we must have

1
2
.a1 C a2/ >

8
9

implying a2 > 16
9
� a1 >

16
9
�
7
9
D 1, which gives a contradiction.

Thus, we see that J22 is contained in the Voronoi region of
�
a2;

1
2

�
. Hence,

V2 >

Z
J1

�
�
x;
�2
3
;
1

2

��
dP C

Z
J22

�
�
x;
�
a.22/;

1

2

��
dP D

829

2592
> V2;

which gives a contradiction. Assume that 1
3
� a1 <

2
3

. Then, the distortion error is
obtained as

V2 �

Z
J1

�
�
x;
�1
3
;
1

2

��
dP C

Z
J21

�
�
x;
�2
3
;
1

2

��
dP C

Z
J22

�
�
x;
�
a.22/;

1

2

��
dP

D
353

1296
> V2;

which yields a contradiction. Hence, we can assume that a1 < 1
3

, i.e.,U2.˛/\ J1¤;.
Similarly, we can show that 2

3
< a2, i.e., U2.˛/\ J2 ¤ ;. Hence, U2.˛/\ Jj ¤ ; for

j D 1; 2. Notice that then the Voronoi region of .a1; 12 / does not contain any element
from J2, and the Voronoi region of .a2; 12 / does not contain any element from J1

yielding�
a1;

1

2

�
D

�
a.1/;

1

2

�
D

�1
6
;
1

2

�
; and

�
a2;

1

2

�
D

�
a.2/;

1

2

�
D

�5
6
;
1

2

�
;

with constrained quantization error V2 D 19
72

. Thus, the proof of the proposition is
complete.
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Lemma 3.7. Let ˛3 be an optimal set of three-points. Then, U3.˛3/ \ Jj ¤ ; for
j D 1;2, and U3.˛3/ does not contain any element from the open line segment joining�
1
3
; 0
�

and
�
2
3
; 0
�
.

Proof. The distortion error due to the set ˇ WD
®�
a.11/; 1

3

�
;
�
a.12/; 1

3

�
;
�
a.2/; 1

3

�¯
is

given by

V.P Iˇ/ D

Z
min
a2˛3

�.x; a/ dP D
77

648
:

Let ˛3 WD
®�
a1;

1
3

�
;
�
a2;

1
3

�
;
�
a3;

1
3

�¯
be an optimal set of three-points with the property

that 0 < a1 < a2 < a3 < 1. Since V3 is the constrained quantization error for three-
points, we have V3 � 77

648
. Let us first show that U3.˛3/ \ J1 ¤ ;, i.e., 1

3
< a1. We

prove it by contradiction. Notice thatZ
J1

�
�
x;
�
a;
1

3

��
>
77

648
;

if a > 1
36

�p
146 C 6

�
. Choose a number 211

420
> 1

36

�p
146 C 6

�
, and consider the

following cases.

Case 1. 211
420
� a1.

Then,

V3 �

Z
J1

�
�
x;
�211
420

;
1

3

��
dP D

4659

39200
> V3;

which gives a contradiction.

Case 2. 11
27
� a1 <

211
420

.
Then, we have 1

2
.a1C a2/ >

2
3

implying a2 > 4
3
� a1 >

4
3
�
211
420
D

349
420

> T21.1/.
Hence,

V3 �

Z
J1

�
�
x;
�11
27
;
1

3

��
dP C

Z
J21

�
�
x;
�349
420

;
1

3

��
dP D

7006871

57153600
> V3;

which leads to a contradiction.

Case 3. 1
3
< a1 <

11
27

.
Then, we have 1

2
.a1C a2/ >

2
3

implying a2 > 4
3
� a1 >

4
3
�
11
27
D

25
27
D T221.1/.

Hence,

V3 �

Z
J1

�
�
x;
�1
3
;
1

3

��
dP C

Z
J21[J221

�
�
x;
�25
27
;
1

3

��
dP D

6013

46656
> V3;

which gives a contradiction.
Taking into account the above cases, we see that a contradiction arises. Hence,

U3.˛3/ \ J1 ¤ ;. Reflecting the above arguments with respect to the line x D 1
2

, we
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can show that U3.˛3/ \ J2 ¤ ;. Thus, U3.˛3/ \ Jj ¤ ; for j D 1; 2. We now show
that U3.˛3/ does not contain any element from the open line segment joining

�
1
3
; 0
�

and
�
2
3
; 0
�
. For the sake of contradiction, assume that U3.˛3/ contains an element

from the open line segment joining
�
1
3
; 0
�

and
�
2
3
; 0
�
. Since U3.˛3/ \ Jj ¤ ; for

j D 1; 2, we must have 1
3
< a2 <

2
3

. The following cases can happen:

Case I. 1
2
� a2 <

2
3

.
In this case, we have 1

2
.a1 C a2/ <

1
3

which implies a1 < 2
3
� a2 �

1
6

. Again,
E.X W X 2 J1/ D

1
6

. Hence,

V3 D

Z
J1

min
a2¹a1;a2º

�.x; a/ dP C

Z
J21[J22

min
a2¹a2;a3º

�.x; a/ dP

D

Z
J1

�
�
x;
�1
6
;
1

3

��
dP C

Z
J21

�
�
x;
�2
3
;
1

3

��
dP C

Z
J22

�
�
x;
�
a.22/;

1

3

��
dP

D
155

1296
> V3;

which yields a contradiction.

Case II. 1
3
< a2 <

1
2

.
This case is the reflection of Case I with respect to the line x D 1

2
. Hence, a

contradiction also arises in this case.
Considering Case I and Case II, we can deduce that U3.˛3/ does not contain any

element from the open line segment joining
�
1
3
; 0
�

and
�
2
3
; 0
�
. Thus, the proof of the

lemma is complete.

Proposition 3.8. Let ˛n be an optimal set of n-points for all n � 2. Then, the inter-
section Un.˛n/\ Jj ¤ ; for j D 1; 2, and Un.˛n/ does not contain any element from
the open line segment joining

�
1
3
; 0
�

and
�
2
3
; 0
�
.

Proof. For all n � 2, let us first prove that Un.˛n/ \ J1 ¤ ;. By Proposition 3.6 and
Lemma 3.7, it is true for n D 2; 3. Using a similar technique as Lemma 3.7, we can
also prove that it is true for any n � 4. However, here we give a general proof for all
n � 16. The distortion error due to the set ˇ WD

®�
a.�/; 1

16

�
W � 2 ¹1; 2º4

¯
is given by

V.P Iˇ/ D

Z
min
a2ˇ

�.x; a/ dP D
6593

1679616
:

Since Vn is the constrained quantization error for n-points with n � 16, and Vn is a
decreasing sequence, we have Vn � V16 � 6593

1679616
. Let ˛n WD

®�
aj ;

1
n

�
W 1 � j � n

¯
be an optimal set of n-points such that 0 < a1 < a2 < � � � < an < 1. For the sake of
contradiction, assume that Un.˛n/ \ J1 D ;. Then, 1

3
< a1, and so,

Vn >

Z
J1

�
�
x;
�1
3
;
1

n

��
dP D

1

2n2
C

1

48
�
1

48
> Vn;
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which is a contradiction. Hence, we can assume that Un.˛n/ \ J1 ¤ ;. Similarly,
we can show Un.˛n/ \ J2 ¤ ;. Thus, the proof of the first part of the proposition is
complete. We now show that Un.˛n/ does not contain any element from the open line
segment joining

�
1
3
; 0
�

and
�
2
3
; 0
�
. For the sake of contradiction, assume that Un.˛n/

contains an element from the open line segment joining
�
1
3
; 0
�

and
�
2
3
; 0
�
. Let

k D min
°
j W aj >

1

3
for all 1 � j � n

±
:

Since Un.˛n/ \ J1 ¤ ;, we have 2 � k. Thus, we see that ak�1 � 1
3
< ak . Again,

recall that the Voronoi regions of the elements in an optimal set of n-points must have
positive probability. Hence, we have ak�1 � 1

3
< ak <

2
3
� akC1.

The following cases can happen:

Case 1. 5
9
� ak <

2
3

.
Then, 1

2
.ak�1 C ak/ <

1
3

implying ak�1 < 2
3
� ak �

2
3
�
5
9
D

1
9

. Hence,

Vn �

Z
J12

�
�
x;
�1
9
;
1

n

��
dP D

1

4n2
C

19

2592
�

19

2592
> Vn;

which gives a contradiction.

Case 2. 4
9
< a2 <

5
9

.
Then, 1

2
.ak�1C ak/ <

1
3

implying ak�1 < 2
3
� ak �

2
3
�
4
9
D

2
9
D T12.0/. Again,

1
2
.ak C akC1/ >

2
3

implying akC1 > 4
3
� ak >

4
3
�
5
9
D

7
9
D T21.1/. Hence,

Vn �

Z
J12

�
�
x;
�2
9
;
1

n

��
dP C

Z
J21

�
�
x;
�7
9
;
1

n

��
dP D

1

2n2
C

11

1296

�
11

1296
> Vn;

which leads to a contradiction.

Case 3. 1
3
< ak <

4
9

.
Then, 1

2
.ak C akC1/ >

2
3

implying akC1 > 4
3
� ak >

4
3
�
4
9
D

8
9

. Hence,

Vn �

Z
J21

�
�
x;
�8
9
;
1

n

��
dP D

1

4n2
C

19

2592
�

19

2592
> Vn;

which gives a contradiction.
Considering the above all possible cases, we see that a contradiction arises. Hence,

Un.˛n/ does not contain any element from the open line segment joining
�
1
3
; 0
�

and�
2
3
; 0
�
. Thus, the proof of the proposition is complete.

Corollary 3.9. Let n � 2. Then, the Voronoi region of any element in ˛n \ U�1n .J1/

does not contain any element from the set J2, and the Voronoi region of any element
in ˛n \ U�1n .J2/ does not contain any element from J1.
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Proof. Let ˛n WD
®�
aj ;

1
n

�
W 1 � j � n

¯
be an optimal set of n-points such that the

relations 0 < a1 < a2 < � � � < an < 1 hold. By Proposition 3.8, we see that Un.˛n/
contains elements from both J1 and J2, and does not contain any element from the
open line segment joining

�
1
3
; 0
�

and
�
2
3
; 0
�
. Let

k D max
°
j W aj �

1

3
for all 1 � j � n

±
:

Then, ak � 1
3
< 2

3
� akC1. For the sake of contradiction, assume that the Voronoi

region
�
ak;

1
n

�
contains an element from J2. Further, 1

2
.ak C akC1/ �

2
3

yielding
akC1 �

4
3
� ak �

4
3
�
1
3
D 1, which is a contradiction. Similarly, we can show that

if the Voronoi region
�
akC1;

1
n

�
contains an element from J1, then a contradiction

arises. Thus, the proof of the corollary is complete.

Lemma 3.10. For n � 2 let ˛n be an optimal set of n-points. Set ˇ1 WD Un.˛n/\ J1,
ˇ2 WD Un.˛n/ \ J2, and n1 WD card.ˇ1/. Then, U�1n1 .T

�1
1 .ˇ1// is an optimal set of

n1-points, U�1n�n1.T
�1
2 .ˇ2// is an optimal set of n2 WD .n � n1/-points, and

Vn D
1

18

�
Vn1 C Vn�n1 �

1

n21
�

1

.n � n1/2

�
C

1

n2
:

Proof. By Proposition 3.8, we have Un.˛n/ D ˇ1 [ ˇ2. Proceeding in a similar way
as Lemma 3.3, we can show that

Vn.P / D

Z
min
a2˛n

�.x; a/ dP D

Z
min

a2Un.˛n/
�.x; .a; 0// dP C

1

n2
:

Hence,

Vn D

Z
J1

min
a2ˇ1

�.x; .a; 0// dP C

Z
J2

min
a2ˇ2

�.x; .a; 0// dP C
1

n2

D
1

2

Z
min

a2T�1
1
.ˇ1/

�.T1.x/; .T1.a/; 0// dP

C
1

2

Z
min

a2T�1
2
.ˇ2/

�.T2.x/; .T2.a/; 0// dP C
1

n2

D
1

18

Z
min

a2T�1
1
.ˇ1/

�.x; .a; 0// dP C
1

18

Z
min

a2T�1
2
.ˇ2/

�.x; .a; 0// dP C
1

n2

D
1

18

Z
min

a2T�1
1
.ˇ1/

�
�
x;
�
a;
1

n1

��
dP

C
1

18

� Z
min

a2T�1
2
.ˇ2/

�
�
x;
�
a;
1

n2

��
dP �

1

n21
�
1

n22

�
C

1

n2
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implying

Vn D
1

18

Z
min

a2U�1n1 T
�1
1
.ˇ1/

�.x; a/ dP

C
1

18

� Z
min

a2U�1n2 T
�1
2
.ˇ2/

�.x; a/ dP �
1

n21
�
1

n22

�
C

1

n2
: (3.2)

If U�1n1 T
�1
1 .ˇ1/ is not an optimal set of n1-points for P , then there exists 
1 � Sn1 a

set with card.
1/ D n1 such thatZ
min
a2
1

�.x; a/ dP <

Z
min

a2U�1n1 T
�1
1
.ˇ1/

�.x; a/ dP:

But then, ı WD T1Un1.
1/ [ ˇ2 is a set of cardinality n. Vn being the constrained
quantization error for n-points, we have

Vn �

Z
min
a2ı

�
�
x;
�
a;
1

n

��
dP D

Z
min
a2ı

�.x; .a; 0// dP C
1

n2
: (3.3)

Notice thatZ
J1

min
a2T1Un1 .
1/

�.x; .a; 0// dP

D
1

18

Z
min

a2Un1 .
1/
�.x; .a; 0// dP D

1

18

�Z
min

a2Un1 .
1/
�
�
x;
�
a;
1

n1

��
dP �

1

n21

�
D
1

18

�Z
min
a2
1

�.x; a/ dP �
1

n21

�
<
1

18

�Z
min

a2U�1n1 T
�1
1
.ˇ1/

�.x; a/ dP �
1

n21

�
: (3.4)

Hence, by (3.2), (3.3), and (3.4), we have

Vn �

Z
J1

min
a2T1Un1 .
1/

�.x; .a; 0// dP C

Z
J2

min
a2ˇ2

�.x; .a; 0// dP C
1

n2

<
1

18

Z
min

a2U�1n1 T
�1
1
.ˇ1/

�.x; a/ dP

C
1

18

� Z
min

a2U�1n2 T
�1
2
.ˇ2/

�.x; a/ dP �
1

n21
�
1

n22

�
C

1

n2
D Vn;

which leads to a contradiction. Hence, U�1n1 .T
�1
1 .ˇ1// is an optimal set of n1-points.

Similarly, we see that U�1n�n1.T
�1
2 .ˇ2// is an optimal set of n2 WD .n � n1/-points,

and hence,

Vn D
1

18

�
Vn1 C Vn�n1 �

1

n21
�

1

.n � n1/2

�
C

1

n2
:

Thus, the proof of the lemma is complete.
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In view of Lemma 3.10, we give the following example.

Example 3.11. Because of Proposition 3.8 and Corollary 3.9, we can show that if ˛n
is an optimal set of n-points with constrained quantization error Vn, then

˛3 D
°�
a.11/;

1

3

�
;
�
a.12/;

1

3

�
;
�
a.2/;

1

3

�±
with V3 D

127

864
;

˛4 D
°�
a.11/;

1

4

�
;
�
a.12/;

1

4

�
;
�
a.21/;

1

4

�
;
�
a.22/;

1

4

�±
with V4 D

83

1296
;

˛7 D
°�
a.111/;

1

7

�
;
�
a.112/;

1

7

�
;
�
a.121/;

1

7

�
;
�
a.122/;

1

7

�
;
�
a.211/;

1

7

�
;�

a.212/;
1

7

�
;
�
a.22/;

1

7

�±
; with V7 D

1993

95256
:

Here

ˇ1 D U7.˛7/ \ J1 D ¹a.111/; a.112/; a.121/; a.122/º and

ˇ2 D U7.˛7/ \ J2 D ¹a.211/; a.212/; a.22/º;

with card.ˇ1/ D 4 and card.ˇ2/ D 3. Notice that

U�14 .T �11 .ˇ1// D
°�
a.11/;

1

4

�
;
�
a.12/;

1

4

�
;
�
a.21/;

1

4

�
;
�
a.22/;

1

4

�±
;

U�13 .T �12 .ˇ2// D
°�
a.11/;

1

3

�
;
�
a.12/;

1

3

�
;
�
a.2/;

1

3

�±
; and

V7 D
1

18

�
V4 C V3 �

1

42
�
1

32

�
C
1

72
:

Let us state and prove the following theorem, which gives the optimal sets of
n-points for all n � 2.

Theorem 3.12. Let P D 1
2
P ı T �11 C

1
2
P ı T �12 be a unique Borel probability mea-

sure on R with support the Cantor set C generated by the two contractive similarity
mappings T1.x/D 1

3
x and T2.x/D 1

3
x C 2

3
for all x 2 R. Then, the set ˛n WD ˛n.I /

given by Definition 2.4 forms an optimal set of n-points for P with the corresponding
constrained quantization error Vn WD V.P I ˛n.I //, where V.P I ˛n.I // is given by
Proposition 2.5.

Proof. We proceed by induction on `.n/. If `.n/ D 1, then the theorem is true by
Proposition 3.6. Let us assume that the theorem is true for all `.n/ < m, wherem 2N

and m � 2. We now show that the theorem is true if `.n/ D m. Let ˛n WD ˛n.I / be
an optimal set of n-points for P such that 2m � n < 2mC1. Set ˇ1 WD Un.˛n/ \ J1,
ˇ2 WD Un.˛n/ \ J2, n1 WD card.ˇ1/, and n2 WD card.ˇ2/. Then, by Lemma 3.10, we
have

Vn D
1

18

�
Vn1 C Vn2 �

1

n21
�
1

n22

�
C

1

n2
: (3.5)
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Without any loss of generality, we can assume that n1 � n2. Let p;q 2N be such that

2p � n1 < 2
pC1 and 2q � n2 < 2qC1: (3.6)

We show that p D q D m � 1. Since n1 � n2, we have n1 � 2m�1 and n2 < 2m.
Hence, p � m � 1 and q � m � 1. If QVn is the distortion error due to the set°�

a.�/;
1

n

�
W � 2 ¹1; 2ºm n I

±
[

°�
a.�1/;

1

n

�
W � 2 I

±
[

°�
a.�2/;

1

n

�
W � 2 I

±
;

where I � ¹1; 2ºm with card.I / D n � 2m, then by Proposition 2.5, we have

QVn D
1

18m
V
�
2mC1 � nC

1

9
.n � 2m/

�
C

1

n2
:

Thus, by the induction hypothesis, we have QVn � Vn, and then Equation (3.5) implies
that

1

18m
V
�
2mC1 � nC

1

9
.n � 2m/

�
C

1

n2

�
1

18

�
Vn1 C Vn�n1 �

1

n21
�

1

.n � n1/2

�
C

1

n2
;

i.e.,

1

18m
V
�
2mC1 � nC

1

9
.n � 2m/

�
�

1

18mC1

�
V
�
2pC1 � n1 C

1

9
.n1 � 2

p/
�

C

�
2qC1 � n2 C

1

9
.n2 � 2

q/
��
;

which is the same as Equation 5.9 in [4]. Thus, proceeding in a similar way as [4],
we have p D q D m � 1. By Lemma 3.10, U�1n1 .T

�1
1 .ˇ1// is an optimal set of n1-

points, U�1n�n1.T
�1
2 .ˇ2// is an optimal set of n2 WD .n � n1/-points. Moreover, we

have proved 2m�1 � n1 < 2m, and 2m�1 � n2 < 2m. Hence, by the induction hypoth-
esis,

U�1n1 .T
�1
1 .ˇ1// D

°�
a.�/;

1

n

�
W � 2 ¹1; 2ºm�1 n I1

±
[

°�
a.�1/;

1

n

�
W � 2 I1

±
[

°�
a.�2/;

1

n

�
W � 2 I1

±
;

where I1 � ¹1; 2ºm�1 with card.I1/ D n1 � 2m�1; and

U�1n2 .T
�1
2 .ˇ2// D

°�
a.�/;

1

n

�
W � 2 ¹1; 2ºm�1 n I2

±
[

°�
a.�1/;

1

n

�
W � 2 I2

±
[

°�
a.�2/;

1

n

�
W � 2 I2

±
;
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where I2 � ¹1; 2ºm�1 with card.I2/ D n2 � 2m�1. Then, notice that

ˇ1 D ¹a.1�/ W � 2 ¹1; 2º
m�1
n I1º [ ¹a.1�1/ W � 2 I1º [ ¹a.1�2/ W � 2 I1º;

and

ˇ2 D ¹a.2�/ W � 2 ¹1; 2º
m�1
n I2º [ ¹a.2�1/ W � 2 I2º [ ¹a.2�2/ W � 2 I2º:

Take I WD I1 [ I2, and then

card.I / D card.I1/C card.I2/ D n1 � 2m�1 C n2 � 2m�1 D n � 2m:

Hence,

Un.˛n/ D ˇ1 [ ˇ2

D ¹a.�/ W � 2 ¹1; 2ºm n I º [ ¹a.�1/ W � 2 I º [ ¹a.�2/ W � 2 I º:

Thus, we have

˛n WD ˛n.I / D
°�
a.�/;

1

n

�
W � 2 ¹1; 2ºm n I

±
[

°�
a.�1/;

1

n

�
W � 2 I

±
[

°�
a.�2/;

1

n

�
W � 2 I

±
;

and using Equation (3.5), we have the constrained quantization error as

Vn D
1

18

�
Vn1 C Vn2 �

1

n21
�
1

n22

�
C

1

n2

D
1

18

� 1

18m�1

�
2m � n1 C

1

9

�
n1 � 2

m�1
��

C
1

18m�1

�
2m � n2 C

1

9

�
n2 � 2

m�1
���
C

1

n2

D
1

18m

�
2mC1 � nC

1

9

�
n � 2m

��
C

1

n2
:

Thus, the theorem is true if `.n/ D m. Hence, by the induction principle, the proof of
the theorem is complete.

4. Constrained quantization dimension and constrained quantization
coefficient

Let P D 1
2
P ı T �11 C

1
2
P ı T �12 be a unique Borel probability measure on R with

support on the Cantor set C generated by the two contractive similarity mappings
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T1.x/ D
1
3
x and T2.x/ D 1

3
x C 2

3
for all x 2 R. Since the Cantor set C under inves-

tigation satisfies the strong separation condition, with each Tj having a contracting
factor of 1

3
, the Hausdorff dimension of the Cantor set is equal to the similarity dimen-

sion. Hence, from the equation 2
�
1
3

�ˇ
D 1, we have dimH.C /D ˇ D

log2
log3 . It is known

that the unconstrained quantization dimension of the probability measureP exists and
equals the Hausdorff dimension of the Cantor set (see [4]). The work in this section
shows that it is not true in the constrained case, i.e., the constrained quantization
dimension D.P / of the probability measure P , though it exists, is not necessarily
equal to the Hausdorff dimension of the Cantor set. In this section, we show that the
constrained quantization dimensionD.P / exists and equals one. We further show that
the D.P /-dimensional constrained quantization coefficient exists as a finite positive
number and equalsD.P /, which is also not true in the unconstrained quantization for
the Cantor distribution.

Theorem 4.1. The constrained quantization dimensionD.P / of the probability mea-
sure P exists, and D.P / D 1.

Proof. For n 2 N with n � 2, let `.n/ be the unique natural number such that 2`.n/ �
n<2`.n/C1. Then, V2`.n/C1 �Vn�V2`.n/ . By Theorem 3.12, we see that V2`.n/C1! 0

and V2`.n/ ! 0 as n!1, and so Vn ! 0 as n!1, i.e., V1 D 0. We can take n
large enough so that V2`.n/ � V1 < 1. Then,

0 < � log.V2`.n/ � V1/ � � log.Vn � V1/ � � log.V2`.n/C1 � V1/

yielding

2`.n/ log 2
� log.V2`.n/C1 � V1/

�
2 logn

� log.Vn � V1/
�

2.`.n/C 1/ log 2
� log.V2`.n/ � V1/

:

Notice that

lim
n!1

2`.n/ log 2
� log.V2`.n/C1 � V1/

D lim
n!1

2`.n/ log 2

� log. V

9`.n/C1
C

1

4`.n/C1
/
D 1; and

lim
n!1

2.`.n/C 1/ log 2
� log.V2`.n/ � V1/

D lim
n!1

2.`.n/C 1/ log 2

� log. V

9`.n/
C

1

4`.n/
/
D 1:

Hence, limn!1
2 logn

� log.Vn�V1/
D 1, i.e., the constrained quantization dimensionD.P /

of the probability measure P exists and D.P / D 1. Thus, the proof of the theorem is
complete.

Theorem 4.2. The D.P /-dimensional constrained quantization coefficient for P is
a finite positive number and equals the constrained quantization dimension D.P /.
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Proof. For n 2 N with n � 2, let `.n/ be the unique natural number such that 2`.n/ �
n < 2`.n/C1. Then, 0 � 2`.n/C1 � n < 2`.n/ and 0 � 1

9
.n � 2`.n// < 2`.n/. Hence,

0 � 2`.n/C1 � nC
1

9

�
n � 2`.n/

�
< 2`.n/C1;

which implies

0 �
1

18`.n/
V
�
2`.n/C1 � nC

1

9

�
n � 2`.n/

��
<
2`.n/C1

18`.n/

yielding

0 � n2
� 1

18`.n/
V
�
2`.n/C1 � nC

1

9

�
n � 2`.n/

���
< n2

2`.n/C1

18`.n/
<
22`.n/C22`.n/C1

18`.n/
D 8

�4
9

�`.n/
:

Hence, by the squeeze theorem, we have

lim
n!1

n2
� 1

18`.n/
V
�
2`.n/C1 � nC

1

9

�
n � 2`.n/

���
D 0:

Again, as shown in the proof of Theorem 4.1, we have V1 D limn!1 Vn D 0. Thus,
we deduce that

lim
n!1

n2.Vn � V1/ D 1;

i.e., theD.P /-dimensional constrained quantization coefficient for P exists as a finite
positive number and equals the constrained quantization dimension D.P /, which is
the theorem.

5. Constrained quantization with some other families of constraints

As defined in the previous sections, let P D 1
2
P ı T �11 C

1
2
P ı T �12 be the unique

Borel probability measure on R with support the Cantor set C generated by the two
contractive similarity mappings T1.x/D 1

3
x and T2.x/D 1

3
xC 2

3
for all x 2R. In this

section, in the following subsections, we give the optimal sets of n-points and the nth
constrained quantization errors for different families of constraints. Then, for each
family, we investigate the constrained quantization dimension and the constrained
quantization coefficient.
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5.1. Constrained quantization when the family is
Sj D

®
.x; y/ W 0 � x � 1 and y D 1C 1

j

¯
for j 2 N.

Using the similar arguments to Lemma 3.3, it can be shown that if ˛n is an optimal set
of n-points for P , then ˛n � Sn for all n 2N. Let us first state the following theorem,
the proof of which is similar to Theorem 3.12.

Theorem 5.2. For n 2 N with n � 2 let `.n/ be the unique natural number with
2`.n/ � n < 2`.n/C1. For I � ¹1; 2º`.n/ with card.I / D n � 2`.n/ let ˛n.I / � Sn be
the set such that

˛n.I / D
°�
a.�/; 1C

1

n

�
W � 2 ¹1; 2º`.n/ n I

±
[

°�
a.�1/; 1C

1

n

�
W � 2 I

±
[

°�
a.�2/; 1C

1

n

�
W � 2 I

±
:

Then, ˛n WD ˛n.I / forms an optimal set of n-points for P with constrained quantiza-
tion error

Vn D
1

18`.n/
V
�
2`.n/C1 � nC

1

9

�
n � 2`.n/

��
C

�
1C

1

n

�2
;

where V is the variance.

Remark 5.3. Notice that here V1D limn!1VnD 1. Thus, proceeding in the similar
way as Theorem 4.1 and Theorem 4.2, it can be seen that

lim
n!1

2 logn
� log.Vn � V1/

D 2 and lim
n!1

n2.Vn � V1/ D1;

i.e., the constrained quantization dimension D.P / exists and equals 2, but the con-
strained quantization coefficient does not exist.

5.4. Constrained quantization when the family is
Sj D ¹.x; y/ W 0 � x � 1 and y D 1º for j 2 N.

Proceeding in a similar way as Theorem 3.12, we can show that the following theorem
is true.

Theorem 5.5. For n 2 N with n � 2 let `.n/ be the unique natural number with
2`.n/ � n < 2`.n/C1. For I � ¹1; 2º`.n/ with card.I / D n � 2`.n/ let ˛n.I / � Sn be
the set such that

˛n.I /D ¹.a.�/; 1/ W � 2 ¹1; 2º
`.n/
n I º [ ¹.a.�1/; 1/ W � 2 I º [ ¹.a.�2/; 1/ W � 2 I º:
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Then, ˛n WD ˛n.I / forms an optimal set of n-points for P with constrained quantiza-
tion error

Vn D
1

18`.n/
V
�
2`.n/C1 � nC

1

9

�
n � 2`.n/

��
C 1;

where V is the variance.

Notice that here V1 D limn!1 Vn D 1. If ˇ is the Hausdorff dimension of the
Cantor set C , then, ˇ D log2

log3 . Then, the following lemma and theorems are equivalent
to the lemma and theorems that appear in the last section in [4]. For the proofs, one
can consult [4].

Theorem 5.6. The set of accumulation points of the sequence
�
n
2
ˇ
�
Vn � V1

��
n2N

equals h
V; f

� 17

8C 4ˇ

�i
;

where f W Œ1; 2�! R is such that f .x/ D 1
72
x
2
ˇ .17 � 8x/.

Lemma 5.7. Let n 2 N. Then,

1

72
� n

2
ˇ
�
Vn � V1

�
�
9

8
:

Theorem 5.8. The constrained quantization dimension of P equals the Hausdorff
dimension ˇ WD log2

log3 of the Cantor set, i.e.,

D.P / D lim
n!1

2 logn
� log.Vn � V1/

D ˇ:

Remark 5.9. Thus, in this case, we see that the constrained quantization dimension
exists and equals the Hausdorff dimension ˇ of the Cantor set, but the constrained
quantization coefficient does not exist.

5.10. Constrained quantization when the family is
Sj D

®
.x; y/ W 0 � x � 1 and y D 1 � 1

j

¯
for j 2 N.

Using the similar arguments to Lemma 3.3, it can be shown that if ˛n is an optimal set
of n-points for P , then ˛n � S1 for all n 2N. Let us first state the following theorem,
the proof of which is similar to Theorem 3.12.

Theorem 5.11. For n 2 N with n � 2 let `.n/ be the unique natural number with
2`.n/ � n < 2`.n/C1. For I � ¹1; 2º`.n/ with card.I / D n � 2`.n/ let ˛n.I / � S1 be
the set such that

˛n.I /D ¹.a.�/; 0/ W � 2 ¹1; 2º
`.n/
n I º [ ¹.a.�1/; 0/ W � 2 I º [ ¹.a.�2/; 0/ W � 2 I º:
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Then, ˛n WD ˛n.I / forms an optimal set of n-points for P with constrained quantiza-
tion error

Vn D
1

18`.n/
V
�
2`.n/C1 � nC

1

9

�
n � 2`.n/

��
;

where V is the variance.

Remark 5.12. By Theorem 5.11, we see that for the family Sj D
®
.x; y/ W 0 � x �

1 and y D 1 � 1
j

¯
, where j 2 N, the optimal sets of n-points and the corresponding

constrained quantization error Vn coincide with the optimal sets of n-means and the
corresponding quantization error for the Cantor distributionP that occurs in [4]. Thus,
all the results in [4] are also true here.
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