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Positive solutions for a p-Laplacian equation with
sub-critical singular parametric reaction term

Pasquale Candito, Giuseppe Failla, and Roberto Livrea

Abstract. The existence of at least two smooth positive solutions for a parametric quasilinear ellip-
tic problem driven by a p-Laplacian operator involving a mildly singular non-linearity perturbed
with a sub-critical term is established. Although, to get our conclusions, we combine variational and
truncation techniques, we do not use the usual trick of C 1 versus Sobolev minimizers. An explicit
quantitative estimate from below of the best theoretical parameters considered is furnished.

1. Introduction

In this paper, the following p-Laplacian problem involving a singular non-linearity per-
turbed with a sub-critical term is studied, namely,8̂̂<̂

:̂
��pu D �f .x; u/C �g.x; u/ in �;

u > 0 in �;

u D 0 on @�;

(P�;�)

where � � RN ; .N � 3/ is a bounded domain with a smooth boundary, @� 2 C 2, the
driven operator is the usual p-Laplacian,

�pu WD div.jrujp�2ru/

with p 2 .1; N /, � and � are two positive parameters. Furthermore, we assume that
f W � � .0;C1/! Œ0;C1/ and g W � � Œ0;C1/! Œ0C1/ are two Carathéodory
functions fulfilling the following conditions:

.Q1/ lims!0C f .x; s/ D C1 uniformly w.r.t. x 2 �;

.Q2/ there exist positive constants ci for i 2 ¹1; : : : ; 4º and some 
 2 .0; 1/ such that

.Q21/ f .x; s/ � c1s
�
 C c2 for a.a. x 2 � 8s > 0;

.Q22/ g.x; s/ � c3s
q�1 C c4 for a.a. x 2 � 8s > 0, q 2 .1; p�/,

with p� D Np
N�p

being the critical Sobolev exponent.
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A wide literature on parametric problems has been produced since the pioneering and
seminal papers due to Ambrosetti, Brézis, Cerami [1] and García Azorero, Peral, Man-
fredi [16], where among the others results, in this latter the fundamental result of Brézis,
Nirenberg [8] concerning H 1 versus C 1 local minimizers is extended to the p-Laplacian
with p¤ 2, which is a well-known key point to allow merging sub-super-solution methods
with variational ones.

Subsequently, these ideas have been developed in singular settings, overcoming, in
an original way, many technical difficulties arising from the presence of the singularity on
the non-linearity, as, for instance, the lack of regularity of the energy functional associated
with the problem investigated; see Giacomoni, Saoudi [18] and Giacomoni, Schindler, and
Takáč [19].

For a general look on p-Laplacian singular problems, we refer the interested reader to
the recent survey [20], the papers [28–31] (
 < 1), [11,15] for strongly singular problems
(
 � 1) and references therein.

The study of this type of singular problems with a p-Laplacian operator is also largely
encouraged by a wide range of physical and engineering applications, particularly the so-
called non-Newtonian fluids, see [13, Remark 2.2] and references therein for more details.

Our main results, Theorems 3.1 and 3.4, establish the existence of at least one or two
smooth positive solutions for (P�;�), respectively.

Adapting here some arguments introduced and developed in [9, 10], the first solu-
tion for (P�;�) is obtained by applying a local minimum theorem (Theorem 2.12) due to
Bonanno [3], which beyond the existence of a solution, allows us to get two additional
features:

.B1/ the first solution is a local minimum of the functional J�, regardless of the
asymptotic behavior at infinity of the perturbation g;

.B2/ a quantitative estimate of the parameters �;�, for which (P�;�) admits a positive
solution, i.e.,

�
� c1

1 � 

C c2

�
C �.c3 C c4/

<

8̂̂̂̂
<̂
ˆ̂̂:
C1 if 1 < q < p;
N
p
�
p
2 j�j�

p
N

�
N�p
p�1

�p�1h�.Np /�.1CN�Np /
�.1CN

2 /�.N/

ip
if q D p;

N
p
�
p
2 j�j�

p
N

�
N�p
p�1

�p�1�q�p
2p

� q�p
q

h
�.Np /�.1CN�

N
p /

�.1CN
2 /�.N/

ip
if p < q < p�;

where � is the gamma function.

In a few words, we combine variational and truncation techniques, but we do not use
the usual trick of C 1 versus Sobolev minimizers, recalled above, as well as we do not need
a priori estimates or to prove the existence of a super-solution. More precisely, we can use
the point .B1/ together with the request on g to fulfill the classical unilateral Ambrosetti–
Rabinowitz condition (in the short (AR)-condition), see [2, 26], i.e., there exists � > p
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such that

essinf
x2�

Z s

0

g.x; t/dt > 0; 0 < �

Z s

s1

g.x; t/dt � g.x; s/s (AR)

for a.a. x 2 � and for all s � s1 > 0. Here, we realize that the functional J� satisfies two
key ingredients of the mountain pass theorem [2], that are, the so-called mountain pass
geometry, see [4, Theorem 2.1], and the Palais–Smale condition.

Roughly speaking, to obtain the second solution in the super-linear case, p < q <

p�, as in the above-mentioned papers, we apply the powerful mountain pass theorem of
Ambrosetti and Rabinowitz [2] to a C 1 energy functional J� associated to an auxiliary
problem, whose positive smooth solutions give back solutions of (P�;�).

We also highlight that the estimates achieved in .B2/ are not the best theoretical ones,
as, for example, in [18] or [19], but are completely computable since they involve only the
constants ci given in .Q2/ and an upper bound of the Sobolev embedding of W 1;p

0 .�/ in
Lq.�/ as in (2.1) below.

To summarize, Section 2 shows some preliminary results and describes the variational
setting adopted to solve (P�;�). Section 3 is devoted to the main results.

Finally, we observe that our results guarantee the existence of at least two solutions
for the following class of elliptic problems:8̂̂<̂

:̂
��4u D

�p
u
C �u8 in �;

u > 0 in �;

u D 0 on @�;

(1.1)

with � � RN (5 � N � 7).

2. Preliminaries

In this paper, we will use the symbol k�kp to denote the norm in the Lebesgue space
Lp.�/, i.e.,

kukp D

�Z
�

ju.x/jpdx

� 1
p

8u 2 Lp.�/I

in addition, the symbol k�k refers to the norm in Sobolev space W 1;p
0 .�/, i.e.,

kuk D krukp 8u 2 W
1;p
0 .�/:

We recall that by compact embedding W 1;p
0 .�/ ,! Lq.�/ for q 2 Œ1; p�/ we obtain

kukq � Cqkuk 8u 2 W
1;p
0 .�/;

where according to Talenti [34] and by Hölder’s inequality, we have

Cq � Sq WD �
� 12N

� 1p j�j
p��q
p�q

� p � 1
N � p

�1� 1p � �.1C N
2
/�.N /

�.N
p
/�.1CN � N

p
/

�
; (2.1)
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with � being the gamma function. Since our problem involves a singular term, we also
need the inequality [27, Theorem 21.3] in the following particular theorem.

Theorem 2.1 (Hardy–Sobolev’s inequality). Let p 2 .1;N /, � 2 Œ0; 1� and 1
r
D

1
p
�
1��
N

.

Then, for any u 2 W 1;p
0 .�/, we have ud�� 2 Lr .�/ and

kud��kr � D�kuk;

where D� is a positive constant and d denotes the distance function, i.e.,

d.x/ WD dist.x; @�/ D min
y2@�

jx � yj 8x 2 �:

As in [12, Definitions 3.14–3.15], we recall the definitions of sub-solution and weak
solution for the problem (P�;�).

Definition 2.2. The function u 2 W 1;p
0 .�/ is called a (weak) sub-solution of (P�;�), ifZ

�

jrujp�2rurvdx��

Z
�

f .x;u/vdxC�

Z
�

g.x;u/vdx 8v 2W
1;p
0 .�/\L

p
C.�/I

(2.2)
likewise, the function u 2 W 1;p

0 .�/ is called a weak solution of problem (P�;�), ifZ
�

jrujp�2rurvdx D �

Z
�

f .x; u/vdx C �

Z
�

g.x; u/vdx 8v 2 W
1;p
0 .�/I

(2.3)
in both cases, it is understood that the right-hand side is well posed.

Now, adopting some reasoning as in [9, 10], we prove the existence of a sub-solution
for (P�;�).

Lemma 2.3. Suppose (Q1) holds, then, for all �; � > 0, there exist 0 < ˛ < 1, ı > 0,
l > 0 and a sub-solution u of problem (P�;�) such that u 2 C 1;˛.x�/ and ld.x/ � u � ı
for a.a. x 2 �.

Proof. Notice that, from (Q1), there exists ı > 0 small enough such that

f .x; s/ � 1 8.x; s/ 2 � � .0; ı/: (2.4)

For � > 0, we study the auxiliary problem´
��pu D � in �;

u D 0 on @�:
(2.5)

Since � 2 W �1;p
0

.�/ and negative p-Laplacian is strictly monotone for 1 < p < 2,
strongly monotone for p D 2 and uniformly monotone for p > 2 (see (2.18) below and
[25, Example 2.27 (c)]), by Minty–Browder’s theorem [6, Theorem 5.16] and combining
[35, Theorem 5], [24, Theorem 1.1] (see also [23]) and [21, Lemma 3.1], there exists
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e� 2 C
1;˛.x�/ with 0 < ˛ < 1 (see also [22, Theorem 4.8]), a unique positive solution of

(2.5). LetM WD max¹ı;maxx� e�º and choose c such that cM � ı. We put uD ce�, then,
by (2.4),

��pu D c
p�1.��pe�/ D c

p�1� � � � �f .x; u/ � �f .x; u/C �g.x; u/:

Therefore, u is a sub-solution of the problem (P�;�). Moreover, from [32, Theorem 5.3.1],
there exists a positive constant l such that

ld.x/ � u � cmax
�
e� � ı (2.6)

and this achieves the proof.

To apply variational tools and to avoid blow up phenomena, we truncate the reaction
term as follows, set f � W � �R! R and g� W � �R! R

f �.x; s/ D

8̂̂<̂
:̂
f .x; s/ if s � uI

f .x; u/ if jsj < uI

f .x;�s/ if s � �uI

(2.7)

and

g�.x; s/ D

8̂̂<̂
:̂
g.x; s/ if s � uI

g.x; u/ if jsj < uI

g.x;�s/ if s � �u:

(2.8)

Notice that f � and g� are Carathéodory functions. In particular, by (Q2) and (2.6), we
obtain

f �.x; s/ � c1u
�
 .x/C c2 � zc1d

�
 .x/C c2 for a.a. x 2 �;8s 2 R; (2.9)

where zc1 D c1l�
 . Analogously, we get that by (2.6),

g�.x; s/ � c3jsj
q�1
C c5 for a.a. x 2 �;8s 2 R; (2.10)

where c5 D c3ıq�1 C c4.
Now, with the aim of applying variational methods for (P�;�), we consider the follow-

ing problem: 8̂̂<̂
:̂
��pu D �h

�
�;�
.x; u/ in �;

u > 0 in �;

u D 0 on @�;

(P*)

where h�;� W � �R! R is given, for a.a. x 2 �, by

h��;�.x; u/ WD

´
f �.x; u/C �

�
g�.x; u/ if juj � uI

f .x; u/C �
�
g.x; u/ if juj < u:
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Remark 2.4. We explicitly observe that the weak solution u of (P*) is well-defined, i.e.,
u 2 W

1;p
0 .�/ is such thatZ

�

jrujp�2rurvdx D �

Z
�

f �.x; u/vdx C �

Z
�

g�.x; u/vdx 8v 2 W
1;p
0 .�/:

Indeed, if u; v2W 1;p
0 .�/, by (2.9), (2.10), Hölder, Sobolev, and Hardy–Sobolev inequal-

ities, it follows thatˇ̌̌̌ Z
�

h��;�.x; u/vdx

ˇ̌̌̌
�

Z
�

f �.x; u/jvjdx C
�

�

Z
�

g�.x; u/jvjdx

�

Z
�

. zc1d
�
 .x/C c2/jvjdx C

�

�

Z
�

.c3juj
q�1
C c5/jvjdx

� zc1D
kvk C c2kvk1 C
�

�
.c3kuk

q�1
q kvkq C c5kvk1/ <1:

Now, we set

H�;�.x; s/ WD

Z s

0

h��;�.x; t/dt for a.a. x 2 �;8s 2 R:

Since h�
�;�
.x; s/ is an even function and by (2.6) (we recall that one can choose u� ı < 1),

we point out that for a.a. x 2 � and for all s 2 R,

jH�;�.x; s/j �

Z jsj
0

h��;�.x; t/dt D

Z u

0

h��;�.x; u/dt C

Z jsj
u

h��;�.x; t/dt: (2.11)

Moreover, for a.a. x 2 �, one hasZ u

0

f .x; u/dt C
�

�

Z u

0

g.x; u/dt �
c1

1 � 

C c2 C

�

�
.c3 C c4/

andZ jsj
u

f �.x; t/dt C
�

�

Z jsj
u

g�.x; t/dt �
c1

1 � 

jsj1�
 C c2jsj C

�

�
.c3jsj

q
C c4jsj/;

which implies thatZ jsj
0

h�.x; t/dt �
c1

1 � 

C c2C

�

�
.c3C c4/C

c1

1 � 

jsj1�
 C c2jsj C

�

�
.c3jsj

q
C c4jsj/:

At this point, it follows that

H�;�.x; jsj/ �

´
2
�
c1
1�

C c2 C

�
�
.c3 C c4/

�
if jsj � 1I

c1
1�

C c2 C

�
�
.c3 C c4/C

�
c1
1�

C c2 C

�
�
.c3 C c4/

�
jsjq if jsj > 1:

So, for a.a. x 2 � and for all s 2 R, we have

H.x; jsj/ � 2
h c1

1 � 

C c2 C

�

�
.c3 C c4/

i
C

h c1

1 � 

C c2 C

�

�
.c3 C c4/

i
jsjq : (2.12)
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To simplify the notation, for our convenience, let us put

A�;� WD
c1

1 � 

C c2 C

�

�
.c3 C c4/ (2.13)

from (2.12), we get

jH�;�.x; s/j � H�;�.x; jsj/ � A�;�.2C jsj
q/ for a.a. x 2 �;8s 2 R: (2.14)

Lemma 2.5. For all �;� > 0, every weak solution of (P*) is a weak solution of (P�;�).

Proof. Let u 2W 1;p
0 .�/ be a solution of (P*). Following the idea in [12, Lemma 3.50], it

is enough to show that u� u. Indeed, by (2.7)–(2.8), if u� u then h�
�;�
.x; s/D f .x; s/C

�
�
g.x; s/ for a.a. x 2 �, for all s 2 R. Since u is a weak solution of (P*), then by (2.3),

one hasZ
�

jrujp�2rurvdxD�

Z
�

f �.x;u/vdxC�

Z
�

g�.x;u/vdx; v 2W
1;p
0 .�/: (2.15)

Therefore, u is a sub-solution of (P*), then by (2.2), we haveZ
�

jrujp�2rurvdx��

Z
�

f �.x;u/vdxC�

Z
�

g�.x;u/vdx; v2W
1;p
0 .�/\L

p
C.�/:

(2.16)
Subtracting (2.16) and (2.15) and choosing v D .u � u/C,Z
�

.jrujp�2ru � jrujp�2ru/r.u � u/Cdx

� �

Z
�

.f �.x; u/�f �.x; u//.u�u/CdxC�

Z
�

.g�.x; u/ � g�.x; u//.u � u/Cdx:

Notice that in ¹u > uº, from (2.7)–(2.8), we have that f � f �, g � g�, thenZ
�

.jrujp�2ru � jrujp�2ru/r.u � u/Cdx � 0: (2.17)

On the other hand, by monotonicity of .��p; W
1;p
0 .�// (see, [25, Example 2.27 (c)] and

[12, Example 2.110]), it follows that

h��puC�pv; u � vi �

´
c1.p/

�
.kuk C kvk/p�2ku � vk2

�
if 1 < p < 2;

c2.p/ku � vk
p if p � 2;

(2.18)

for suitable positive constants c1.p/; c2.p/. Moreover, by (2.17)–(2.18), there exists a
positive constant c such that

0 � k.u � u/Ckp D

Z
¹u>uº

jr.u � u/jpdx

� c

Z
¹u>uº

.jrujp�2ru � jrujp�2ru/jr.u � u/jdx

D c

Z
�

.jrujp�2ru � jrujp�2ru/r.u � u/Cdx � 0:

Therefore, k.u � u/Ckp D 0 and u � u.
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The energy functional associated to (P*) is defined by setting

J�.u/ D ˆ.u/ � �‰.u/; (2.19)

where

ˆ.u/ D
1

p
kukp; ‰.u/ D

Z
�

H�;�.x; u/dx 8u 2 W
1;p
0 .�/: (2.20)

Lemma 2.6. Suppose (Q1) and (Q2) hold. Then, ‰ is well-posed, continuously Gâteaux
differentiable and ‰0 is completely continuous (i.e., if xn * x then ‰0.xn/! ‰0.x/, see
[12, Definition 2.95]).

Proof. By (2.14) ‰ is well-posed. Now, we compute and show that

h‰0.u/; vi D

Z
�

h��;�.x; u/vdx 8u; v 2 W
1;p
0 .�/:

Indeed, fixing u; v 2 W 1;p
0 .�/, we get

h‰0.u/; vi D lim
t!0C

‰.uC tv/ �‰.u/

t
D lim

t!0C

Z
�

H�;�.x; uC tv/ �H�;�.x; u/

t
dx;

and Torricelli–Barrow’s theorem ensures that, for each t 2 Œ0; 1� and for a.a. x 2 �, we
get

H�;�.x; uC tv/ �H�;�.x; u/ D tv

Z 1

0

d

ds
H�;�.x; uC stv/ds

D tv

Z 1

0

h��;�.x; uC stv/ds:

Furthermore, fixed x 2 �,

h��;�.x; y C z/ � zc1d
�
 .x/C c2 C

�

�
c3jy C zj

q�1
C
�

�
c5 8y; z 2 �:

Then, by Fubini’s theorem and Lebesgue’s dominate convergence theorem (see, respec-
tively, [6, Theorems 4.5 and 4.2]), it follows that

lim
t!0C

Z
�

H�;�.x; uC tv/ �H�;�.x; u/

t
dx

D lim
t!0C

Z
�

�Z 1

0

tvh�
�;�
.x; uC stv/

t
ds

�
dx

D lim
t!0C

Z 1

0

�Z
�

h��;�.x; uC stv/vdx

�
ds

D

Z
�

h��;�.x; u/vdx:
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Finally, we prove that ‰0 is completely continuous and ¹unº � W
1;p
0 .�/ is a sequence

such that un * u in W 1;p
0 .�/ and let v 2 W 1;p

0 .�/,

lim
n!1

ˇ̌
h‰0.un/ �‰.u/; vi

ˇ̌
D lim
n!1

ˇ̌̌̌ Z
�

.h��;�.x; un/ � h
�
�;�.x; u//vdx

ˇ̌̌̌
� lim
n!1

Z
�

jh��;�.x; un/ � h
�
�;�.x; u/jjvjdx

� lim
n!1

�Z
�

jf �.x; un/ � f
�.x; u/jjvjdx C

�

�

Z
�

jg�.x; un/ � g
�.x; u/jjvjdx

�
:

By Rellich–Kondrachov’s embedding theorem [6, Theorem 9.16], W 1;p
0 .�/ ,! Lq.�/

is compact for q 2 Œ1; p�/. So, in Lq.�/, there exists w 2 Lq.�/ such that un ! u in
Lq.�/, un ! u a.e. in � and junj � w [6, Theorem 4.9]. Moreover, from (Q2), (2.9)–
(2.10) and the Lebesgue’s dominate convergence theorem, we get that ‰0 is completely
continuous.

Definition 2.7. Let X be a Banach space and J 2 C 1.X;R/. We say that J satisfies the
Palais–Smale condition (briefly, (PS)-condition), if any sequence ¹unº � X such that

(1) J.un/ is bounded,

(2) kJ 0.un/kX� ! 0 as n!C1,

admitting a convergent subsequence.

A more general condition can be found in [3].

Definition 2.8 ([3, Section 2]). Letˆ;‰ be two continuously Gâteaux differentiable func-
tions; put

J D ˆ �‰;

and fix r 2 Œ�1;C1�; we say that the function J fulfills the Palais–Smale condition cut
off upper at r (in short .PS/r -condition), if any sequence ¹unº, in addition to (1) and (2)
in the previous definition, accomplishing also

(3) ˆ.un/ < r 8n 2 N,

possesses a convergent subsequence.

Lemma 2.9. Suppose that (Q1), (Q2), and (AR) hold. Then, for all p < q < p�, the
functional J� associated to (P*) satisfies the (PS)-condition.

Proof. Fix �; � > 0, let J� be as in (2.19) and ¹unº a (PS)-sequence in W 1;p
0 .�/, i.e., it

fullfills (1) and (2) introduced in the Definition 2.7, that is, for all n 2 N, there exists a
suitable constant cb such that

J�.un/ D
1

p
kunk

p
� �

Z
�

H�;�.x; un/dx � cb (2.21)
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and

jhJ 0�.un/; vijD

ˇ̌̌̌ Z
�

jrunj
p�2
runrvdx��

Z
�

h��;�.x;un/vdx

ˇ̌̌̌
� kvk 8v2W

1;p
0 .�/:

(2.22)
In order to prove that ¹unº is bounded first we verify it on ¹u�n º. From (2.22), with v D
�u�n , we obtain

ku�n k
p
� ku�n k

p
C �

Z
�

h��;�.x; un/u
�
ndx � ku

�
n k;

then ku�n k � 1. Now, we prove that also ¹uCn º is bounded. Arguing as in (2.14), putting
A1 WD .

c1
1�

C c2/, we haveZ jsj

0

f �.x; t/dt � A1.2C jsj/ 8s 2 R:

At this point, we use (AR). Let n 2 N for a.a. x 2 � and for all s 2 R, we compute

H�;�.x; u
C
n /�

Z uCn

0

f �.x; t/dtC
�

�

Z uCn

0

g�.x; t/dt�A1.2C u
C
n /C

�

�

Z uCn

0

g�.x; t/dt:

Define
�R WD ¹x 2 � W u

C
n .x/ � Rº

and
�0R D � n�R:

We remember that we can choose u < 1 and R � max¹s1; 1º. So, from the previous
inequalities, we point outZ
�

H�;�.x; u
C
n /dx

�

Z
�

Z uCn

0

f �.x; t/dtdx C
�

�

Z
�

Z uCn

0

g�.x; t/dtdx

� A1
�
2j�j C S1ku

C
n k
�
C
�

�

Z
�R

Z uCn

0

g�.x; t/dtdx C
�

�

Z
�0R

Z uCn

0

g�.x; t/dtdx:

(2.23)

In particular, one hasZ
�0R

Z uCn

0

g�.x; t/dtdx (2.24)

�

Z
�0R

Z R

0

g�.x; t/dtdx

D

Z
�0R

Z u

0

g.x; u/dtdx C

Z
�0R

Z R

u

g.x; t/dtdx � .c3 C c4/j�j.1CR
q/: (2.25)
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Moreover, we haveZ
�R

Z uCn

0

g�.x; t/dtdx

D

Z
�R

Z u

0

g.x; u/dtdx C

Z
�R

Z R

u

g.x; t/dtdx C

Z
�R

Z uCn

R

g.x; t/dtdx; (2.26)

where Z
�R

Z u

0

g.x; u/dtdx � .c3 C c4/j�j; (2.27)Z
�R

Z R

u

g.x; t/dtdx � .c3 C c4/j�jR
q; (2.28)

since � D �R [�0R, we haveZ
�R

Z uCn

R

g.x; t/dtdx �

Z
�

Z uCn

R

g.x; t/dtdx: (2.29)

So, combining (2.23)–(2.29), we getZ
�

H�;�.x; u
C
n /dx

� A1.2j�j C S1ku
C
n k/C

�

�
.2.c3 C c4/j�j.1CR

q//C
�

�

Z
�

Z uCn

R

g�.x; t/dtdx:

Furthermore, by (AR)-condition,Z
�

H�;�.x; u
C
n /dx

� A1.2j�j C S1ku
C
n k/C

�

�
.2.c3 C c4/j�j.1CR

q//C
�

��

Z
�

g�.x; un/u
C
n dx:

By (2.22), with v D uCn , it follows that

�kuCn k
p
� kuCn k � ��

Z
�

f �.x; uCn /u
C
n dx � �

Z
�

g�.x; uCn /u
C
n dx

� ��

Z
�

g�.x; un/u
C
n dx: (2.30)

By (2.21), we arrive at

1

p
kuCn k

p
� cb C �

Z
�

H�;�.x; u
C
n /dx � cb C �A1.2j�j C S1ku

C
n k/

C �.2.c3 C c4/j�j.1CR
q//C

�

�

Z
�

g�.x; un/u
C
n dx; (2.31)
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then, dividing (2.30) by � and adding to (2.31), we derive� 1
p
�
1

�

�
kuCn k

p
�

�1
�
C �S1A1

�
kuCn k � cb C 2j�jŒ�A1 C �.c3 C c4/.1CR

q/�:

So, ¹uCn º is also bounded and our claim is shown, i.e., ¹unº is bounded in W 1;p
0 .�/. By

Lemma 2.6, ‰0 is completely continuous, then

lim
n!1
hˆ0.un/; un � ui D lim

n!1
hJ 0�.un/; un � ui C � lim

n!1
h‰0.un/; un � ui D 0;

that is,
lim sup
n!1

h��p.un/; un � ui D 0:

Thus, by .SC/ property of .��p;W
1;p
0 .�// (see [12, Definition 2.96 and Lemma 2.111]),

we have that if un * u then un ! u and J� satisfies the (PS)-condition.

The following is folklore, but for completeness we prove it also in our setting.

Lemma 2.10. Suppose .Q1/, .Q2/, and (AR) hold. Then, for all p < q < p�, the func-
tional J� associated to (P*) is unbounded from below.

Proof. Fix �; � > 0. For all M � 1, we put �M D ¹x 2 � W M'1.x/ � Rº and we
consider�0M D � n�M , where R � max¹s1; 1º and '1 is the first positive eigenfunction
of .��p; W

1;p
0 .�//, normalized in Lp.�/. From (AR), for all ! � R,

�

Z !

s1

g.x; t/dt � g.x; !/!;

�

!
�

g.x; !/R !
s1
g.x; t/dt

D

@
@!

� R !
s1
g.x; t/dt

�R !
s1
g.x; t/dt

:

By integrating both sides for s � R in ŒR; s� w.r.t. !, we obtain

� ln
� s
R

�
� ln

�R s
s1
g.x; t/dtR R

s1
g.x; t/dt

�
I

then, Z s

s1

g.x; t/dt � s�R��
Z R

s1

g.x; t/dt: (2.32)

Compute

J�.M'1/ D
1

p
kM'1k

p
� �

Z
�

Z M'1

0

h��;�.x; t/dtdx

D
�1

p
Mp
� �

Z
�

Z M'1

0

h��;�.x; t/dtdx;
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we focus on the right-hand side term, in particular,Z
�

Z M'1

0

h��;�.x; t/dtdx D

Z
�

Z M'1

0

f �.x; t/dtdx C
�

�

Z
�

Z M'1

0

g�.x; t/dtdx:

As in (2.14), we getZ
�

Z M'1

0

f .x; t/dtdx � A1.2j�j CMS1k'1k/ D A1.2j�j C �1S1M/:

While, on the integral of g, we haveZ
�

Z M'1

0

g.x; t/dtdx D

Z
�M

Z M'1

0

g.x; t/dtdx C

Z
�0M

Z M'1

0

g.x; t/dtdx;

where Z
�0M

Z M'1

0

g.x; t/dtdx �

Z
�0M

Z R

0

g.x; t/dtdx � .c3 C c4/R
q
j�j

and Z
�M

Z M'1

0

g.x; t/dtdx D

Z
�M

Z R

0

g.x; t/dtdx C

Z
�M

Z M'1

R

g.x; t/dtdx

with Z
�M

Z R

0

g.x; t/dtdx � .c3 C c4/R
q
j�j:

Thanks to these estimates, we have

J�.M'1/ �
�1M

p

p
C �A1.2j�j C S1�1M/

C 2�.c3 C c4/R
q
j�j � �

Z
�M

Z M'1

R

g.x; t/dtdx:

By (2.32), we get Z s

R

g.x; t/dt �
� s�
R�
� 1

� Z R

s1

g.x; t/dt:

We use this inequality to see that

J�.M'1/ �
�1M

p

p
C �A1.2j�j C S1�1M/

C 3�.c3 C c4/R
q
j�j � �

M �

R�

Z
�M

Z R

s1

g.x; t/'
�
1 .x/dtdxI

then, J�.M'1/! �1 as M !C1.
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For the reader’s convenience, let us recall our two fundamental tools. The first one is
the celebrated Ambrosetti–Rabinowitz’s mountain pass theorem (see [2, 7]).

Theorem 2.11 (Mountain pass theorem). Let X be a Banach space. Let J W X ! R be a
functional such that J 2 C 1.X;R/. Let x0, x1 2 X , r > 0 such that kx1 � x0k > r and

inf
ku�x0kDr

J.u/ > max
®
J.x0/; J.x1/

¯
:

Let

c D inf

2�

max
t2Œ0;1�

J.
.t//;

where � D ¹
 2 C.Œ0; 1�;X/ W 
.0/D x0; 
.1/D x1º. Suppose that J satisfies the Palais–
Smale condition. Then, c is a critical value for J .

For the second one, fixing r > 0, let '.r/ be as follows:

'.r/ D inf
v2ˆ�1.��1;rŒ/

supu2ˆ�1.��1;rŒ/‰.u/ �‰.v/

r �ˆ.v/
: (2.33)

Theorem 2.12 ([3, Theorem 5.2]). Let X be a Banach space and let ˆ;‰ W X ! R be
two Gâteaux differentiable functions with ˆ bounded from below. Fix r > infX ˆ and
assume that for each � 2 �0; 1

'.r/
Œ, where ' is given in (2.33), the function J� D ˆ � �‰

satisfies .PS/r -condition. Then, for each � 2 �0; 1
'.r/

Œ there is u� 2 ˆ�1.� �1; rŒ/ such
that J�.u�/ � J�.u/8u 2 ˆ�1.� �1; rŒ/ and J 0

�
.u�/ D 0.

Remark 2.13. We point out that this type of local minima theorems follows from the
ideas introduced by Ricceri in [33], in which the author used the weakly closure of suit-
able sublevels. In [5], Bonanno and Candito got the result starting from direct methods
of calculus of variations and, in [3], Bonanno himself obtained the local minimum via
Ekeland variational principle.

3. Main results

In this section, we prove our main results. In particular, we obtain the existence of at least
one solution for 1 < q � p and the existence of at least two solutions for p < q < p� for
problem (P�;�). In addition, we derive a computable estimate of the parameters �;�.

The following positive constants are central in the main results:

Z1 WD
N

p
�
p
2 j�j�

p
N

�N � p
p � 1

�p�1��.N
p
/�.1CN � N

p
/

�.1C N
2
/�.N /

�p
; (3.1)

Z2 WD
N

p
�
p
2 j�j�

p
N

�N � p
p � 1

�p�1�q � p
2p

� q�p
q

�
�.N

p
/�.1CN � N

p
/

�.1C N
2
/�.N /

�p
: (3.2)
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Theorem 3.1. Assume that .Q1/ and .Q2/ hold. In addition, we suppose that

�
� c1

1 � 

C c2

�
C �.c3 C c4/ <

8̂̂<̂
:̂
C1 if 1 < q < pI

Z1 if q D p;

Z2 if p < q < p�;

where Z1, Z2 are as in (3.1)–(3.2). Then, problem (P�;�) admits at least one solution
u 2 C

1;˛
0 .x�/, with ˛ 2 .0; 1/.

Proof. Let J�,ˆ, and‰ be as in (2.19)–(2.20). By Lemma 2.6, J� is a C 1-functional. Fix
r > 0, let ¹unº be a .PS/r -sequence. Since ˆ.un/ < r and reasoning is as in Lemma 2.9,
we have that J� satisfies the .PS/r -condition as in Definition 2.8. In this setting, The-
orem 2.12 furnishes a local minimum u� D u�.�; �/ of J� for all � 2 �0; N�Œ. So, u� is
a weak solution of (P*) and then, by Lemma 2.5, a weak solution of (P�;�). To give an
approximation of N� we need to estimate (2.33). Since r > infX ˆ D ˆ.0/ D ‰.0/ D 0

and (2.14), we detect that

'.r/ �
1

r
sup

u2ˆ�1.��1;r�/

‰.u/

�
1

r

�
sup

kuk�.pr/
1
p

Z
�

jH�;�.x; u/jdx

�
�
1

r
sup

kuk�.pr/
1
p

Z
�

A�;�
�
2C jujq

�
dx

�
1

r
A�;�

�
2j�j C Sqqp

q
p r

q
p
�
8r > 0:

(3.3)

where A�;� is defined in (2.13). We put

k.r/ WD
1

r

�
2j�j C Sqqp

q
p r

q
p
�

for all r > 0:

A straightforward calculation shows that

lim
r!0C

k.r/ D lim
r!0C

1

r

�
2j�j C Sqqp

q
p r

q
p
�
D C1 for all 1 < q < p�; (3.4)

and, for r !C1, three cases arise:

lim
r!C1

k.r/ D

8̂̂<̂
:̂
0 if 1 < q < pI

S
p
p p if q D pI

C1 if p < q < p�:

(3.5)

To guarantee that '.r/ < 1
�

for some r > 0, by (3.3), it follows that

'.r/ � A�;�k.r/ <
1

�
:
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Considering that p > 1; q > 1, then by (3.4)–(3.5), we have the following cases:

(1) if 1 < q < p, since k.r/ is a continuous function, there exists Nr�;� > 0 such that

k. Nr�;�/ D
1

�A�;�
:

Moreover, from the strictly decreasing of k.r/, our claim holds for all r > Nr�;�;

(2) if q D p, there exists Nr�;� > 0 such that �A�;� D 1
k.r/

< 1

S
p
p p
DW Z1, then since

k.r/ is strictly decreasing, the result holds for all r > Nr�;�;

(3) if p < q < p�, then k.r/ has a global minimum point for r > 0. We compute the
external point of k.r/,

Nr D

�
2pj�j

S
q
qp

q
p .q � p/

� p
q

; inf
r>0

k. Nr/ D Spq p

�
2pj�j

q � p

�1� pq
:

Thus, by (3.3), it follows that

1

Z2
WD Spq p

�2pj�j
q � p

�1� pq
<

1

�A�;�
:

So, also, in this case, our statement holds by keeping in mind (2.1).

Notice that our solution belongs to C 1;˛0 .x�/ with 0 < ˛ < 1. In particular, from the
estimates in (2.9) and (2.10), it is sufficient first to apply [17, Theorem 1.5.5] to obtain
u� 2L1.�/; finally, from [17, Theorem 1.5.6], we derive u belongs to a Hölder space.

Remark 3.2. A careful reading of the proof of Theorem 3.1, gives us, for p < q < p�,
an estimate on the Sobolev norm of the solution, i.e.,

kuk � Nr D
� 2pj�j

S
q
qp

q
p .q � p/

� p
q
:

Remark 3.3. Notice that since X D W 1;p
0 .�/ is a reflexive Banach space (for 1 < p <

C1), ‰ is also weakly sequentially continuous [36, Corollary 41.9]. Then, J� is a C 1-
functional and it is weakly sequentially lower semi-continuous. For 1 < q � p, we can
obtain the existence of a solution for (P*) as global minimum of J�, given that, in this
case, the energy functional is also coercive. Indeed, from estimates in (2.14), one has

J�.u/ D
1

p
kukp � �

Z
�

H�;�.x; u/dx �
1

p
kukp � A�;�

�
2j�j C Sqq kuk

q
�
;

and so, we have the following cases:

(1) if 1 < q < p,
lim

kuk!C1
J.u/ D C1

for all �;� > 0;
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(2) if q D p,
lim

kuk!C1
J.u/ D C1

provided 1
p
� A�;�S

p
p > 0, i.e.,

�
� c1

1 � 

C c2

�
C �.c3 C c4/ <

1

S
p
p p

:

Then, by Tonelli–Weierstrass’ theorem [14, Theorem 1.2], there exists a weak solution
of (P*). Our approach (Theorem 2.12), allows us to guarantee the existence of a weak
solution also for the super-linear case and, in all three cases, without the assumption of
weakly lower semi-continuity on J�.

Now, we prove the multiplicity result.

Theorem 3.4. Assume that (Q1) and (Q2) hold. Moreover, we suppose that there exist
� > p and s1 > 0 such that

essinf
x2�

Z s

0

g.x; t/dt > 0; 0 < �

Z s

s1

g.x; t/dt � g.x; s/s: (AR)

Then, if p < q < p�, the problem (P�;�) admits at least two solutions: u�.�; �/ a local
minimum and Qu.�;�/ a mountain pass point of the energy functional J�, for all �;� such
that

�
� c1

1 � 

C c2

�
C �.c3 C c4/ < Z2;

with Z2 being as in (3.2).

Proof. From Lemma 2.5, it is enough to obtain solution of problem (P*). Moreover, the
energy functional

J� D ˆ � �‰

satisfies the (PS)-condition (Lemma 2.9) and it is a C 1-functional (Lemma 2.6). So, by
Theorem 3.1, there exists u� local minimum of J� such that J�.u�/ � J�.u/ for all
u 2 xB.0; r/ for a suitable r > 0 as in Theorem 3.1 (see also Remark 3.2). Since J� is
unbounded from below (Lemma 2.10), [4, Theorem 2.1] ensures that it satisfies also the
mountain pass geometry and the proof is completed, owing the Theorem 2.11.

We desire to conclude our work by giving the following example.

Example 3.5. For every �;� > 0 such that

2�C � <
5

54

9

r
3125

64

� 77�
1024

�4
:

Theorem 3.4 guarantees the existence of at least two solutions for the problem (1.1) pro-
posed in the Introduction, where�� R5 is a bounded domain with smooth boundary and
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j�j D 1, p D 4, q D 9, 4 < � � 9 and 
 D 1
2

. Moreover, taking into account Remark 3.2,
the first solution u� (corresponding to a local minimum of the energy functional) satisfies

ku�k �
10

27

9

r
8

625

� 77�
1024

�4
:
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