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1 Introduction

It is well known ([1, p. 8], [2, p. 422]) that there are six squares whose sides pass through
four given points in general position. In our discussion, we distinguish between the set
of four points in general position, often called the four-point ABCD [3, p. 246], and the
quadrangles defined by this, the arguments being valid for all kinds of generic quadrangles,
convex, non-convex, and self-intersecting ones.

Regarding the construction of such a square, this can be based on the following stand-
ard remark [2, p. 422]. From B , draw the orthogonal line to AC and take B� such that
BB� is equal to AC . It is easily seen that the point B� is on the side of a square that solves
the problem. Once two points on a side, such as B� andD, are known, the whole square is
determined by drawing lines through ¹A;C º orthogonal toDB�, etc. (see Figure 1). Point
B�� which is symmetric to B� relative to B gives another solution.

The two squares shown in Figure 1 are in some sense adjoint in that their opposite sides
pass through the same couple of points out of the four ¹A;B;C;Dº. In the rest of this sec-
tion, we discuss another aspect of this separation of the six squares in couples of adjoints,

Eine beliebte Aufgabe im Geometrieunterricht verlangt, ein Quadrat zu konstruieren,
dessen Seiten durch vier gegebene Punkte in allgemeiner Lage gehen. Es ist bekannt,
dass es sechs solcher Quadrate gibt. Der Autor des vorliegenden Artikels stellt nun
zwei Strukturen vor, die der Konfiguration dieser sechs Quadrate zugrunde liegen.
Die erste Struktur besteht aus sechs Hilfsquadraten, die sich von den sechs Lösun-
gen unterscheiden und deren Seiten die zweite Struktur tragen. Diese besteht aus sechs
Parallelogrammen, von denen je zwei kongruent sind. Es wird bewiesen, dass jedes
Paar kongruenter Parallelogramme durch seine Diagonalen ein Paar adjungierter Qua-
drate definiert, welche die Lösungen des ursprünglichen Problems darstellen.

https://creativecommons.org/licenses/by/4.0/
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Figure 1. Two squares with sides passing through four given points

which correspond also to couples of auxiliary squares and to couples of parallelograms
forming the two structures which make the core subject of this article.

The first structure consists of six auxiliary squares, other than the six solutions, whose
sides carry the second structure consisting of six parallelograms congruent by two. It is
proved that the two congruent parallelograms define through their diagonals a pair of
adjoint squares representing the solutions of the original problem whose opposite sides
pass through the same couples of points.

Returning to the procedure producing Figure 1 and doing the permutation denoted by
.A/.B/.C;D/, which fixes ¹A;Bº and interchanges ¹C;Dº, analogously the permutation
.B/.D/.A; C /, and repeating the preceding constructions for each set of permuted ver-
tices, we get six solutions displayed in Figure 2, well known to represent all the solutions
of the problem for points ¹A;B;C;Dº in general position.

Looking at this figure, one can ask which structures underlie these six squares and how
their mutual positions and the position of each relative to the given four-point ABCD are
related. This question is at the core of this article, and the whole discussion is based on the
following simple fact.

A quadruple of points ¹A;B;C;Dº in general position defines three pairs of segments
with no common ends,

.AB;CD/; .BC;AD/; .AC;BD/:

If we choose two of these pairs to represent opposite sides, then the remaining pair repres-
ents the diagonals of the respective quadrangle. It is then easy to see that each square out
of these six, leaves out one of these three pairs.
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Figure 2. Pairs of adjoint squares through four given points ¹A;B;C;Dº

This is meant in the following sense: in a definite square, like the biggest one in the
figure say, its right angles (or their supplements or vertical angles in general) are viewing
the four segments of two pairs representing the sides of a quadrangle, whereas the remain-
ing pair of segments, representing the diagonals of that quadrangle, is not viewed in this
manner. In the example of the biggest square of the figure, the segments viewed by the
right angles of the square are those of the pairs ¹.AB;CD/; .BC;AD/º. The segments of
the pair .AC;BD/, representing the diagonals of the quadrangle, have instead, each, their
endpoints on two opposite sides of the square.

Thus, the set of six squares splits in subsets of two adjoint squares, each subset leaving
out the same pair of segments. In the example of the biggest square of the figure, its
adjoint is the smallest square, whose two opposite angles view the segments .AB; CD/,
the verticals of the two other opposite right angles viewing .BC;AD/. In the following, we
will study the set of two adjoint squares and see how the three sets of adjoints are related.
First, however, we examine an alternative way to construct the squares and a couple of
auxiliary lemmata.

2 Half-circles on the sides

The next lemma is a variant of a proposition attributed by F. G.-M. [2, p. 519] to Collignon.
It brings into the play the circles having the sides of a quadrangle as diameters and with
them an alternative way to construct the circumscribed squares.
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Figure 3. Equal segments

Lemma 1. Let EFGH be a square circumscribing the quadrangle ABCD. The diag-
onals ¹EG; FH º of the square intersect the circles with diameters opposite sides of the
quadrangle at points defining equal segments ¹IJ;MN º (see Figure 3).

Proof. Project J at O on the side FG of the square. Because J is the middle of the arc
.AJD/ of the circle on diameter AD and JA D JD, we have

GO D GJ cos.�=4/ D AD sin.1GDJ/ cos.�=4/ D AD
JO cos.�=4/

JD
D
AD � JG

2 � JD
:

Using in the last expression Ptolemy’s theorem,

AD �GJ D GA � JD C AJ �GD D JD.GACGD/ H) GO D
1

2
.GACGD/:

The equalities

EQ D
1

2
.EB CEC/; HR D

1

2
.HACHB/; F T D

1

2
.FD C FC/

are proved analogously. Denoting the length of the side of the square by d , these equalities
imply

HRC F T D d C SR D
1

2
.HB CHA/C

1

2
.FD C FC/;

GO CEQ D d �OP D
1

2
.GACGD/C

1

2
.EB CEC/

H) 2d C .SR �OP/ D
1

2
.4d/ H) SR D OP H) MN D IJ:
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The lemma shows an alternative method to the one mentioned in the introduction, to
construct circumscribing squares about a given quadrangle: draw the circles with diameters
two opposite sides of the quadrangle and join the middles of the half-circle arcs, as e.g.
does the segment IJ seen in the figure. The line defined by such a segment intersects
a second time the two circles and defines a diagonal of the square, as e.g. the diagonal EG
of the figure. Having the diagonal, the construction of the corresponding square is easily
accomplished.

The next simple lemma and the definition related to it prepare the way to select in
a systematic way the appropriate middles of half-circle arcs and produce by this method
the six squares.

Lemma 2. A quadruple of points ¹A; B; C; Dº in general position defines three pairs
of segments with no common ends: ¹.AB; CD/; .BC; AD/; .AC; BD/º. Select two of
them, for example ¹.BC; AD/; .AC; BD/º, and consider the four circles with diameters
these segments. Then the four other than the segment-endpoint intersections of circles
corresponding to segments of different pairs lie by two on the lines of the remaining pair of
segments (see Figure 4),C 0;D0 2 "DAB ,A0;B 0 2 "0DCD, andA0B 0=C 0D0DAB=CD.

Hint: Proof by the figure, in which the circle with diameter XY is denoted by .XY /.
As stated, we consider only intersections ¹A0; B 0; C 0; D0º of circles with diameters not
pertaining to the same pair of segments. Thus, the intersections .AC/ \ .BD/ are not
considered since ¹.AC;BD/º belong to the same pair.

Definition 1. We call points ¹A0; B 0; C 0; D0º two-pair cuts of the two pairs of segments
¹.BC;AD/; .AC; BD/º. We call also the eight middles of the half-circle arcs defined by
these two pairs of segments two-pair middles.
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Figure 4. Collinear intersections of circles
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The next section discusses the structure underlying such a set of two-pair middles.

3 The structure of two-pair middles

Theorem 1. With the notation of Lemma 2 and Definition 1, we consider the two-pair cuts
¹A0; B 0; C 0; D0º of the pairs of segments in general position ¹.BC;AD/; .AC;BD/º and
the corresponding two-pair middles ¹K;L;M;N;P;Q;S;T º (see Figure 5). There results
a configuration with the following properties:

(1) At each two-pair cut, out of the four ¹A0; B 0; C 0; D0º, two lines passing, each,
through two two-pair middles intersect orthogonally.

(2) The eight lines of (1), taken by four, define two squares, each square having two
diagonal vertices coinciding with two two-pair cuts.

(3) The side lines of the two squares of (2), taken by four, define two equal parallel-
ograms, each having vertices four two-pair middles and each resulting from the
other by a right-angle rotation.

(4) The side ratio of the two squares is equal to the ratio of the segments of the remain-
ing third pair of segments.
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Figure 5. Configuration created by the two-pair middles ¹K;L;M;N;P;Q; S; T º
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Proof. We consider the lines ¹" D AB; "0 D BC º of Lemma 2 and the angles they form
with lines joining two-pair middles.

(1) Consider one such two-pair cut,C 0 2 .BC/\ .AC/ say. Since ¹S;M º are two-pair
middles of the same circle .BC/, we have

2SC 0M D �=2 and 1BC 0S D �=4:
By the same argument and considering now C 0 as a point of circle .AC/, we have

2QC 0N D �=2 and 1NC 0A D �=4:
This shows thatM 2 C 0N andQ 2 C 0S and proves the claim for the two-pair cut C 0. The
proof for the other two-pair cuts ¹A0; B 0;D0º is completely analogous.

(2) follows from (1) and the fact that the lines intersecting at ¹C 0;D0 2 "º are inclined
with respect to " by an angle of measure �=4.

(3) The parallelogram property follows directly from (2). The equality of the angles of
the parallelograms follows also directly from the fact that their sides are correspondingly
orthogonal. For the same reason, their sides are equally inclined to corresponding sides of
the square. This implies also the equality of corresponding sides of the parallelograms. For
example, side NK is equal to QP since

NK D D0D00= sin.�/ and QP D C 0D00= sin.�/ with � D2C 0NK D2A0QC 0:
The rotation claim follows immediately from the preceding arguments. In fact, rotating
QSPT aboutQ by a right angle, we obtain two equal parallelograms with parallel corres-
ponding equal sides. Then, translating by QM , we identify them. Since the composition
of a rotation and a translation is a rotation by the same angle, we have the proof of the
property.

(4) The side ratio of the two squares is equal to the ratio of their diagonalsA0B 0=C 0D0,
and this, by Lemma 2, is equal to AB=CD.

Notice that the right-angle rotational equivalence of the two created parallelograms
¹KLMN;PQST º implies the equality and orthogonality of their corresponding diagonals
and gives an alternative proof of Lemma 1 without the use of any computation.

The next section discusses the creation of the two adjoint squares related to these two
pairs of equal and orthogonal diagonals.

4 Adjoint squares

Theorem 2. With the notation and conventions adopted so far, each pair of equal and
orthogonal diagonals of the parallelograms of Theorem 1 (3) defines a square whose sides
pass through the four points ¹A;B;C;Dº (see Figure 6).

Proof. We discuss the proof for the pair ¹LN;PSº of orthogonal diagonals of the two par-
allelograms. The proof for the other pair of diagonals ¹KM;QT º is completely analogous.
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Figure 6. Square defined by two equal and orthogonal diagonals ¹LN;PSº

For this, extend the diagonal LN to cut again circle .BD/ at L0 and the diagonal SP
to cut again the circle .AD/ at P 0. The angles

1BL0D D 1AP 0D D �=2
are right angles and the lines ¹L0L;P 0P º are respectively bisecting them. Thus, consider-
ing the intersectionsN 0 DAP 0 \LL0 and S 0 DBL0 \ SP 0, we easily see that ¹L0;D;P 0º
are collinear and L0P 0N 0S 0 is a square. It follows also that S 0 2 .BC/ and N 0 2 .AC/.
This implies that the side lines of the square pass respectively through ¹A;B;C;Dº, and its
vertices are viewing the four segments .BC;AD/ and .AC;BD/ under a right angle, i.e.,
the square P 0N 0S 0L0 belongs to the pair of adjoint squares which leave out the segments
.AB;CD/.

Figure 7 gives an overview of the structures underlying the construction of the two
adjoint squares “right viewing” the couple of pairs of segments ¹.BC;AD/; .AC; BD/º
and leaving out the pair .AB; CD/. Their sides extended pass through ¹A;B; C;Dº, and
their right angles or supplements or verticals view the segments ¹.BC;AD/; .AC;BD/º.
Analogous configurations result for the other pairs of adjoint squares leaving out corres-
pondingly the pairs of segments .BC;AD/ and .AC;BD/.
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Figure 7. Two adjoint squares ¹P 0N 0D0L0; K 0T 0M 0Q0º
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