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Short note A note on rings in which each element
is a sum of two idempotents

Santosh Kumar Pandey

Abstract. Let R be a ring in which each element of R is a sum of two idempotents.
In this short paper, we exhibit that if R is isomorphic to the direct product of two rings
R1 and R2, then the characteristic of R1 is not necessarily two.

1 Introduction

Throughout this paper, R is an associative ring with unity. The notation R D R1 C R2

means R1 and R2 are subrings of R and, for every r 2 R, there exist r1 2 R1 and r2 2 R2

such that r D r1 C r2. Many authors studied problems and relationships among properties
of R1, R2 and R in the literature. Recently, a general method of constructing rings which
are sums of two subrings was invented by Koşan and Zemlicka [2].

In [3, Proposition 6.1], the authors gave a structure theorem for the rings for which
every element is a sum of two idempotents, though some partial results were obtained
in [1]: every element of R is a sum of two idempotents if and only if R Š R1 �R2, where
char.R1/ D 2 and every element of R1 is a sum of two idempotents, and R2 is zero or
a subdirect product of Z3’s.

One may note that an element a 2 R is called idempotent if a2 D a. In this note, we
produce a counterexample for [3, Proposition 6.1]. We exhibit the following observation.

Theorem. There exists a ring R with the following properties.

(i) Each element of the ring is the sum of two idempotent elements.

(ii) For any decomposition R D R1 � R2, the characteristic of R1 is different from
two.

2 Proof of the theorem

Proof. Consider
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The following is easy to check.
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(i) R is a (commutative) ring of characteristic three under the addition and the multi-
plication of matrices modulo three.

(ii) We have�
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i.e., each element of R is the sum of two idempotents.
(iii) Given any decomposition R Š R1 � R2 of the ring R, the characteristic of R1

cannot be two because the order of R is nine and its characteristic is three.
This can be seen as follows. Each ring of characteristic two has even order, and the

least order of a ring of characteristic two is two. Therefore, a ring of characteristic two
has at least one non-zero element, say, a such that 2a D 0. If R1 is a ring of characteristic
two, then R must contain a non-zero element, say, b D .a; 0/ such that 2b D 0. But a ring
of order nine cannot contain a non-zero element b such that 2b D 0. In other words, if
RŠ R1 �R2 and the characteristic of R1 is two, then R must contain an isomorphic copy
of R1, but a ring of order nine cannot contain an isomorphic copy of a ring of even order.
Therefore, the characteristic of R1 cannot be two in this case.

Thus, the proof is complete.
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